WO2019212161A1 - 리튬-황 전지용 양극 활물질 및 그 제조방법 - Google Patents

리튬-황 전지용 양극 활물질 및 그 제조방법 Download PDF

Info

Publication number
WO2019212161A1
WO2019212161A1 PCT/KR2019/004384 KR2019004384W WO2019212161A1 WO 2019212161 A1 WO2019212161 A1 WO 2019212161A1 KR 2019004384 W KR2019004384 W KR 2019004384W WO 2019212161 A1 WO2019212161 A1 WO 2019212161A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon
sulfur
lithium
active material
battery
Prior art date
Application number
PCT/KR2019/004384
Other languages
English (en)
French (fr)
Inventor
김의태
한승훈
손권남
양두경
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020190040177A external-priority patent/KR102244916B1/ko
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Publication of WO2019212161A1 publication Critical patent/WO2019212161A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a cathode active material of a lithium-sulfur battery and a method of manufacturing the same.
  • Secondary batteries unlike primary batteries that can only be discharged once, have become an important electronic component of portable electronic devices since the 1990s as an electrical storage device capable of continuous charging and discharging.
  • the lithium ion secondary battery was commercialized by Sony, Japan in 1992, it has led the information age as a core component of portable electronic devices such as smartphones, digital cameras, and notebook computers.
  • lithium ion secondary batteries have been widely used in applications such as vacuum cleaners, power tools for electric tools, electric bicycles and electric scooters, and electric vehicles (EVs) and hybrid electric vehicles (hybrid electric vehicles).
  • EVs electric vehicles
  • hybrid electric vehicles hybrid electric vehicles
  • HEV vehicles
  • PHEVs Plug-in hybrid electric vehicles
  • ESS Electric Storage Systems
  • Lithium secondary battery is basically composed of materials such as positive electrode, electrolyte, negative electrode, etc. Among them, since positive and negative electrode materials determine the capacity of battery, lithium ion secondary battery is due to material limitations of positive and negative electrodes. Limited by capacity In particular, the secondary battery to be used for applications such as electric vehicles, PHEVs, so that the use of as long as possible after a single charge, the discharge capacity of the secondary battery is very important.
  • One of the biggest constraints on the sale of electric vehicles is that the distance that can be driven after a single charge is much shorter than that of a normal gasoline engine.
  • Lithium-sulfur secondary battery goes beyond the capacity limit determined by the insertion / decalation reaction of lithium ion layered metal oxide and graphite, which is the basic principle of conventional lithium ion secondary battery, and transition metal replacement and cost reduction It is a new high-capacity, low-cost battery system that can bring about.
  • a lithium-sulfur secondary battery is a lithium ion and the sulfur conversion (conversion) reaction at the anode - the theoretical capacity resulting from (S 8 + 16Li + + 16e ⁇ 8Li 2 S) reached 1,675 mAh / g anode is lithium metal (theoretical capacity: 3,860 mAh / g) enables ultra high capacity battery systems.
  • the discharge voltage is about 2.2 V, it theoretically shows an energy density of 2,600 Wh / kg based on the amount of the positive electrode and the negative electrode active material. This value is 6 to 7 times higher than the energy theoretical energy density of 400 Wh / kg of a commercial lithium secondary battery (LiCoO 2 / graphite) using a layered metal oxide and graphite.
  • Lithium-sulfur secondary battery has been attracting attention as a new high-capacity, eco-friendly and low-cost lithium secondary battery since it is known that the battery performance can be dramatically improved by forming nanocomposites around 2010. Is being done.
  • the particle size is tens of nanometers. It is necessary to reduce the size to the following and conduct surface treatment with conductive materials. To this end, various chemicals (melt impregnation to nano-scale porous carbon nanostructures or metal oxide structures) and physical methods (high energy ball milling) are reported. It is becoming.
  • Lithium polysulfide in particular, causes a shuttle reaction during the charging process, which causes the charging capacity to continuously increase, thereby rapidly decreasing the charge and discharge efficiency.
  • various methods have been proposed to solve this problem, and can be classified into a method of improving the electrolyte, a method of improving the surface of the negative electrode, and a method of improving the characteristics of the positive electrode.
  • the method for improving the electrolyte is to use a new electrolyte such as a functional liquid electrolyte, a polymer electrolyte, or an ionic liquid with a new composition to suppress dissolution of the polysulfide into the electrolyte or to adjust the viscosity and the dispersion rate to the negative electrode. This is to control the shuttle reaction as much as possible.
  • a new electrolyte such as a functional liquid electrolyte, a polymer electrolyte, or an ionic liquid with a new composition to suppress dissolution of the polysulfide into the electrolyte or to adjust the viscosity and the dispersion rate to the negative electrode. This is to control the shuttle reaction as much as possible.
  • electrolyte additives such as Li x NO y and Li x SO y are added to the surface of the lithium anode by adding an electrolyte additive such as LiNO 3 .
  • electrolyte additive such as LiNO 3 .
  • a method of forming a thick functional SEI layer on the surface of the lithium metal is actively conducted to control the shuttle reaction by improving the characteristics of the SEI formed on the surface of the anode.
  • a new structure of a coating layer containing a carbon material is applied to the surface of the positive electrode active material.
  • the present invention was completed by resolving the problem and improving battery performance of a lithium-sulfur battery.
  • an object of the present invention is to provide a positive electrode active material for a lithium-sulfur battery that can solve the problem caused by lithium polysulfide.
  • Another object of the present invention is to provide a lithium-sulfur battery having the positive electrode and improved battery performance.
  • the present invention sulfur-carbon composite; And a coating layer disposed on the surface of the sulfur-carbon composite and including a carbon material.
  • the present invention also provides a lithium-sulfur battery positive electrode comprising the above-described positive electrode active material for a lithium-sulfur battery, a binder, and a conductive material.
  • the present invention provides a lithium-sulfur battery including the positive electrode, the negative electrode and the separator interposed between the positive electrode and the negative electrode.
  • the present invention by dispersing any one or more of the carbon material and sulfur-carbon composite in a dispersion medium and then wet mixing, to form a coating layer comprising a carbon material on the surface of the sulfur-carbon composite;
  • a method of manufacturing a positive electrode active material for a sulfur battery by dispersing any one or more of the carbon material and sulfur-carbon composite in a dispersion medium and then wet mixing, to form a coating layer comprising a carbon material on the surface of the sulfur-carbon composite.
  • the positive electrode active material for a lithium-sulfur battery according to the present invention includes a coating layer containing a carbon material on the surface of the positive electrode active material to solve the problem caused by the lithium polysulfide generated at the positive electrode of the lithium-sulfur battery, to suppress side reactions with the electrolyte, and to conduct electrical conductivity. Has the effect of improving.
  • the lithium-sulfur battery provided with the positive electrode including the positive electrode active material does not generate a capacity decrease of sulfur, and thus can implement a high capacity battery and stably apply sulfur by high loading, and there is no problem such as shorting or heating of the battery. Stability is improved.
  • such a lithium-sulfur battery has advantages of high charging and discharging efficiency of the battery and improved life characteristics.
  • FIG. 1 shows a schematic diagram of a positive electrode active material according to the present invention.
  • Figure 2 shows a scanning electron microscope (SEM) image of the positive electrode active material according to an embodiment of the present invention.
  • Figure 3 shows a scanning electron microscope (SEM) image of the positive electrode active material according to Comparative Example (1) of the present invention.
  • Figure 4 shows a scanning electron microscope (SEM) image of the positive electrode active material according to Comparative Example (2) of the present invention.
  • Figure 5 shows a scanning electron microscope (SEM) image of the positive electrode active material according to Comparative Example (3) of the present invention.
  • FIG. 6 shows discharge capacity measurement results of a lithium-sulfur battery including a cathode active material according to Examples and Comparative Examples of the present invention.
  • the term 'composite' refers to a substance in which two or more materials are combined to form physically and chemically different phases and express more effective functions.
  • a cathode active material according to an embodiment of the present invention
  • Sulfur-carbon complexes Sulfur-carbon complexes; And a coating layer disposed on the surface of the sulfur-carbon composite and including a carbon material. It includes.
  • Lithium-sulfur batteries have a much higher discharge capacity and theoretical energy density than conventional lithium secondary batteries, and sulfur, which is used as a positive electrode active material, has been spotlighted as a next-generation battery due to its rich reserves, low cost, and environmental friendliness.
  • the lithium-sulfur battery generates a shuttle phenomenon in which lithium polysulfide formed at the positive electrode is lost out of the positive electrode reaction region during the charging and discharging reaction and moves between the positive electrode and the negative electrode.
  • the reaction activity is lowered, and lithium ions are unnecessarily consumed, thereby deteriorating the efficiency and life of the battery. A problem arises.
  • the present invention provides a cathode active material for a lithium-sulfur battery, which has been improved to solve the disadvantages of the cathode for a lithium-sulfur battery, thereby improving the problem of continuous deterioration of reactivity of the electrode due to polysulfide dissolution and shuttle phenomenon and a problem of reducing the discharge capacity. do.
  • the cathode active material provided by the present invention solves the above problems by forming a coating layer including a carbon material having a function of adsorbing lithium polysulfide on the sulfur-carbon composite.
  • the positive electrode active material according to the embodiment of the present invention forms a coating layer containing a carbon material on the surface of the sulfur-carbon composite, thereby adsorbing and eluting lithium polysulfide generated in the lithium-sulfur battery by the carbon material in the coating layer.
  • the carbon material is also located on the surface of the sulfur-carbon composite has an advantage that can greatly improve the electrical conductivity.
  • the carbon material is selected from the group consisting of carbon nanotubes, carbon nanofibers, carbon nanoribbons, carbon nanobelts, and carbon nanorods, graphene, graphene oxide, reduced graphene oxide, carbon black, activated carbon and mesoporous carbon. It may be any one or more.
  • the carbon nanotubes may be single-walled carbon nanotubes (SWCNT), double-walled carbon nanotubes (DWCNT), multi-walled carbon nanotubes (MWCNT), bundle carbon nanotubes (rope carbon nanotubes), or a combination thereof.
  • Graphene-based carbon material, such as graphene, graphene oxide, reduced graphene oxide may be a sheet (sheet) to fiber (fiber), but is not limited thereto.
  • the carbon nanotubes according to an embodiment of the present invention may have a diameter of 5 to 50 nm and a length of 500 nm to 10 ⁇ m.
  • the average diameter and length of the carbon nanotubes can be measured by methods well known to those skilled in the art, for example, transmission electron microscopy (TEM), high-resolution transmission electron microscope (HR-TEM), SEM, or FE- Measurement may be made from a field-emission scanning microscope (SEM) photograph and / or using a measuring apparatus using dynamic light scattering.
  • TEM transmission electron microscopy
  • HR-TEM high-resolution transmission electron microscope
  • SEM field-emission scanning microscope
  • the content of the carbon material included in the coating layer may be 1 to 5 parts by weight based on 100 parts by weight of the sulfur-carbon composite, preferably 1 to 3 parts by weight based on 100 parts by weight of the sulfur-carbon composite. If the content of the carbon material included in the coating layer is less than 1 part by weight based on 100 parts by weight of the sulfur-carbon composite, the adsorption effect of lithium polysulfide may be insignificant. Since it can decrease, it adjusts suitably in the said range.
  • the thickness of the coating layer may be 500 nm to 2 ⁇ m.
  • the thickness of the coating layer is less than 500 nm, the effect of improving the charge and discharge efficiency and life characteristics of the battery may be less than the adsorption effect of lithium polysulfide, and when the thickness of the coating layer exceeds 2 ⁇ m, the resistance of the lithium secondary battery may be increased. Since it may cause a fall and the efficiency of a battery may fall, it adjusts suitably in said range.
  • the sulfur-carbon composite may include 70 to 90 parts by weight of sulfur with respect to 100 parts by weight of the sulfur-carbon composite, and preferably may include 80 parts by weight of sulfur. If the content of sulfur is less than the weight ratio range, the amount of binder added required in preparing the positive electrode slurry increases as the content of the porous carbon material increases. The increase in the amount of binder added may eventually increase the sheet resistance of the electrode and serve as an insulator that prevents electron pass, thereby degrading cell performance. On the contrary, when the content of sulfur exceeds the weight ratio range, sulfur may aggregate together, and it may be difficult to receive electrons, thereby making it difficult to directly participate in the electrode reaction.
  • inorganic sulfur (S 8 ) can be used.
  • carbon of the sulfur-carbon composite according to the present invention may have any porous structure or high specific surface area as long as it is commonly used in the art.
  • the porous carbon material includes graphite; Graphene; Carbon blacks such as denka black, acetylene black, ketjen black, channel black, furnace black, lamp black and summer black; Carbon nanotubes (CNT) such as single-walled carbon nanotubes (SWCNT) and multi-walled carbon nanotubes (MWCNT); Carbon fibers such as graphite nanofibers (GNF), carbon nanofibers (CNF), and activated carbon fibers (ACF); And it may be one or more selected from the group consisting of activated carbon, but is not limited thereto, and the form may be used without limitation so long as it is conventionally used in lithium-sulfur batteries in spherical, rod-shaped, needle-shaped, plate-like, tubular or bulk form.
  • the sulfur-carbon composite may have a particle size of 10 to 50 ⁇ m.
  • the particle size of the sulfur-carbon composite is less than 10 ⁇ m, there is a problem in that an overvoltage occurs in an electrode of a lithium-sulfur battery due to an increase in interparticle resistance. Since the wetting area with the electrolyte and the reaction site with the lithium ions are reduced, and the reaction is delayed due to the decrease in the amount of electron transfer relative to the size of the composite, the discharge capacity of the battery may be reduced. Choose appropriately within.
  • the carbon material included in the coating layer can reduce the lithium polysulfide is delivered to the negative electrode by adsorbing lithium polysulfide to reduce the life of the lithium-sulfur battery, reduced due to lithium polysulfide By suppressing the reactivity, the increase in the discharge capacity of the lithium-sulfur battery including the positive electrode and the life of the battery can be improved.
  • the cathode active material for lithium-sulfur battery according to the present invention is the cathode active material for lithium-sulfur battery according to the present invention.
  • It may be prepared by a manufacturing method comprising the step of dispersing any one or more of the carbon material and sulfur-carbon composite in a dispersion medium, followed by wet mixing to form a coating layer containing a carbon material on the surface of the sulfur-carbon composite.
  • the carbon material is selected from the group consisting of carbon nanotubes, carbon nanofibers, carbon nanoribbons, carbon nanobelts, and carbon nanorods, graphene, graphene oxide, reduced graphene oxide, carbon black, activated carbon and mesoporous carbon. It may be any one or more.
  • the carbon nanotubes may be single-walled carbon nanotubes (SWCNT), double-walled carbon nanotubes (DWCNT), multi-walled carbon nanotubes (MWCNT), bundle carbon nanotubes (rope carbon nanotubes), or a combination thereof.
  • Graphene-based carbon material, such as graphene, graphene oxide, reduced graphene oxide may be a sheet (sheet) to fiber (fiber), but is not limited thereto.
  • the carbon nanotubes according to an embodiment of the present invention may have a diameter of 5 to 50 nm and a length of 500 nm to 10 ⁇ m.
  • the average diameter and length of the carbon nanotubes can be measured by methods well known to those skilled in the art, for example, transmission electron microscopy (TEM), high-resolution transmission electron microscope (HR-TEM), SEM, or FE- Measurement may be made from a field-emission scanning microscope (SEM) photograph and / or using a measuring apparatus using dynamic light scattering.
  • TEM transmission electron microscopy
  • HR-TEM high-resolution transmission electron microscope
  • SEM field-emission scanning microscope
  • the dispersion medium is not particularly limited as long as it is a liquid at room temperature and atmospheric pressure, and may be any one or a mixture of two or more selected from the group consisting of water, an alcohol compound, a ketone compound, and an ether compound.
  • Alcohols such as methanol, ethanol, propanol, isopropanol, butanol, isobutanol, s-butanol, t-butanol, pentanol, isopentanol and hexanol; Ketones such as acetone, methyl ethyl ketone, methyl propyl ketone, ethyl propyl ketone, cyclopentanone, cyclohexanone and cycloheptanone; Methyl ethyl ether, diethyl ether, dipropyl ether, diisopropyl ether, dibutyl ether, diisobutyl ether, din-amyl ether, diisoamyl ether, methylpropyl ether, methyl isopropyl ether, methyl butyl ether, Ethers such as ethyl propyl ether, ethyl
  • the carbon material according to the present invention is particularly excellent in miscibility and dispersibility with water-based and alcohol-based, in consideration of the cost and type of carbon material, the dispersion medium may be preferably an aqueous solvent or a mixed solvent of water-based and alcohol-based. have.
  • a dispersant may be further included for smooth dispersion of any one or more of the carbon material and the sulfur-carbon composite.
  • the dispersant may be nonionic, anionic or cationic, and the anionic dispersant may be sodium dodecyl sulfate (SDS) or lithium dodecyl sulfate (Alkyl sulfate).
  • the cationic dispersant may be cetyltrimethyl ammonium chloride (CTAC), cetyltrimethyl ammonium bromide (CTAB) or dodec
  • any one or more of the carbon material and the sulfur-carbon composite are dispersed in a dispersion medium, followed by wet mixing to form a surface of the sulfur-carbon composite.
  • Forming a coating layer comprising the carbon material i) only the carbon material may be dispersed in the dispersion medium, ii) only the sulfur-carbon composite may be dispersed, and iii) both the carbon material and the sulfur-carbon composite. May be dispersed.
  • a coating layer including a carbon material may be formed on the surface of the sulfur-carbon composite.
  • the carbon material may be added to the sulfur-carbon composite dispersion and wet mixed to form a coating layer including the carbon material on the surface of the sulfur-carbon composite.
  • the method of i) may be preferable to use the method of i) as much as possible so that the coating layer including the carbon material may be stably formed on the surface of the sulfur-carbon composite. That is, after dispersing the sulfur-carbon composite, not the carbon material, in the dispersion medium to prepare a sulfur-carbon composite dispersion, the carbon material is added to the sulfur-carbon composite dispersion and wet mixed, or the carbon material and the sulfur-carbon composite are dispersed in the dispersion medium. In the case of simultaneous dispersion, there is a concern that the production of the positive electrode active material for a lithium-sulfur battery according to the present invention may not be easy, such that the coating layer containing the carbon material is not stably formed on the surface of the sulfur-carbon composite.
  • the positive electrode active material for a lithium-sulfur battery of the present invention it is preferable to disperse only the carbon material in the dispersion medium to prepare a carbon material dispersion liquid, and then to add the sulfur-carbon composite to the carbon material dispersion liquid and wet mix.
  • the particle size of the carbon material is nanometer level
  • the sulfur-carbon composite is micrometer level
  • the process of preparing the carbon material dispersion is much higher than that of the sulfur-carbon composite dispersion process. It requires a lot of energy and technology, and therefore, in the case of preparing a sulfur-carbon composite dispersion, not a carbonaceous dispersion, or simultaneously produced with a carbonaceous / sulfur-carbon composite dispersion, the positive electrode active material for a lithium-sulfur battery according to the present invention This is because there is a possibility that a completely different substance is produced.
  • the cathode active material according to the present invention may coat the sulfur-carbon composite through a wet mixing process with a solution in which at least one of the carbon material and the sulfur-carbon composite is dispersed.
  • a wet mixing process with a solution in which at least one of the carbon material and the sulfur-carbon composite is dispersed.
  • the wet process according to the present invention When applying the wet process according to the present invention, it is possible to form a more uniform and effective coating layer than the dry process, and a relatively small amount of carbon material can be used to increase the discharge capacity and life characteristics of the lithium-sulfur battery As a result, there is an advantage that the high-loading positive electrode active material can be applied.
  • the coating layer is formed by a wet process through the dispersion medium, the sulfur-carbon composite and the carbon material are strongly bound to form a stable cathode active material.
  • Carbon nanotubes (CNT), which is a carbon material according to the present invention, is uniformly coated on the surface of the sulfur-carbon composite by a wet process, unlike FIG. 2 according to Example 1, when the carbon nanotubes are sulfur-carbon when the coating layer is formed by a dry process. It can be seen through FIG. 5 that the surface of the sulfur-carbon composite is unevenly coated on the surface of the composite.
  • the content of the carbon material included in the coating layer may be 1 to 5 parts by weight based on 100 parts by weight of the sulfur-carbon composite, preferably 1 to 3 parts by weight based on 100 parts by weight of the sulfur-carbon composite. If the content of the carbon material included in the coating layer is less than 1 part by weight based on 100 parts by weight of the sulfur-carbon composite, the adsorption effect of lithium polysulfide may be insignificant. Since it can decrease, it adjusts suitably in the said range.
  • the present invention may further comprise a drying step.
  • the carbon material is strongly bound to the sulfur-carbon composite by evaporating the dispersion medium in which the carbon material is dispersed through the drying step.
  • the drying may be carried out using a convection oven in air for 4 to 24 hours at 70 to 90 °C. If the drying temperature is less than 70 °C or the drying time is shorter than the above 4 hours, the dispersion medium is excessively remaining may not be uniform coating of the carbon material, the drying temperature exceeds 90 °C or more than 24 hours Since the side reaction of the sulfur-carbon composite may occur through drying, the amount is appropriately controlled within the above range.
  • the present invention provides a cathode for a lithium-sulfur battery comprising the cathode active material.
  • the positive electrode for a lithium-sulfur battery according to the present invention may include the above-described positive electrode active material for a lithium-sulfur battery, a binder, and a conductive material.
  • the positive electrode can be prepared by conventional methods known in the art.
  • a slurry may be prepared by mixing and stirring a solvent, a binder, a conductive material, and a dispersant in a positive electrode active material, and then applying (coating) to a current collector of a metal material, compressing, and drying the positive electrode to prepare a positive electrode.
  • a conductive material may be added to the cathode composition.
  • the conductive material serves to smoothly move electrons in the positive electrode, and the conductive material is not particularly limited as long as it has excellent conductivity and can provide a large surface area without causing chemical changes to the battery. Use substance.
  • the carbonaceous material may be natural graphite, artificial graphite, expanded graphite, graphite-based graphite such as graphene, active carbon-based, channel black, furnace black, thermal Carbon blacks such as thermal black, contact black, lamp black, acetylene black; Carbon fiber-based, carbon nanotubes (CNT), carbon nanostructures such as fullerene (Fullerene) and one selected from the group consisting of a combination thereof may be used.
  • metallic fibers such as metal meshes according to the purpose;
  • Metallic powders such as copper (Cu), silver (Ag), nickel (Ni) and aluminum (Al);
  • organic conductive materials such as a polyphenylene derivative, can also be used.
  • the conductive materials may be used alone or in combination.
  • a binder may be additionally included in the cathode composition in order to provide adhesion to a current collector in the cathode active material.
  • the binder must be well dissolved in a solvent, must not only form a conductive network of the positive electrode active material and the conductive material, but also must have an impregnation property of the electrolyte.
  • the binder applicable to the present invention may be all binders known in the art, and specifically, a fluororesin-based binder including polyvinylidene fluoride (PVdF) or polytetrafluoroethylene (PTFE) ; Rubber-based binders including styrene-butadiene rubber, acrylonitrile-butadiene rubber and styrene-isoprene rubber; Cellulose binders including carboxymethyl cellulose (CMC), starch, hydroxypropyl cellulose, regenerated cellulose; Poly alcohol-based binders; Polyolefin-based binders including polyethylene and polypropylene; Polyimide binders, polyester binders, silane binders; One or two or more mixtures or copolymers selected from the group consisting of, but is not limited thereto.
  • PVdF polyvinylidene fluoride
  • PTFE polytetrafluoroethylene
  • Rubber-based binders including sty
  • the content of the binder resin may be 0.5 to 30% by weight based on the total weight of the positive electrode for a lithium-sulfur battery, but is not limited thereto.
  • the content of the binder resin is less than 0.5% by weight, the physical properties of the positive electrode may be lowered, so that the positive electrode active material and the conductive material may be dropped, and when the content of the binder resin exceeds 30% by weight, the ratio of the active material and the conductive material in the positive electrode may be relatively reduced. Battery capacity can be reduced.
  • the solvent for preparing the lithium-sulfur battery positive electrode composition in a slurry state should be easy to dry and can dissolve the binder well, but most preferably, the positive electrode active material and the conductive material can be maintained in a dispersed state without dissolving.
  • the solvent according to the present invention may be water or an organic solvent, and the organic solvent is an organic solvent including at least one selected from the group consisting of dimethylformamide, isopropyl alcohol, acetonitrile, methanol, ethanol, and tetrahydrofuran. It is possible.
  • Mixing of the positive electrode composition may be stirred in a conventional manner using a conventional mixer such as a latex mixer, a high speed shear mixer, a homo mixer, and the like.
  • a conventional mixer such as a latex mixer, a high speed shear mixer, a homo mixer, and the like.
  • the positive electrode composition may be applied to a current collector and vacuum dried to form a positive electrode for a lithium-sulfur battery.
  • the slurry may be coated on the current collector in an appropriate thickness according to the viscosity of the slurry and the thickness of the positive electrode to be formed, preferably selected from 10 to 300 ⁇ m range.
  • the method of coating the slurry is not limited, and for example, doctor blade coating, dip coating, gravure coating, slit die coating, spin coating ( It may be manufactured by performing spin coating, comma coating, bar coating, reverse roll coating, screen coating, cap coating, or the like.
  • the positive electrode current collector may be generally made of a thickness of 3 ⁇ 500 ⁇ m, and is not particularly limited as long as it has a high conductivity without causing chemical changes in the battery.
  • a conductive metal such as stainless steel, aluminum, copper, titanium, or the like can be used, and preferably an aluminum current collector can be used.
  • the positive electrode current collector may be in various forms such as film, sheet, foil, net, porous body, foam, or nonwoven fabric.
  • a lithium-sulfur battery includes a positive electrode for a lithium-sulfur battery described above; A negative electrode containing lithium metal or a lithium alloy as a negative electrode active material; A separator interposed between the anode and the cathode; And an electrolyte impregnated in the negative electrode, the positive electrode, and the separator and including a lithium salt and an organic solvent.
  • the negative electrode is a negative electrode active material, a material capable of reversibly intercalating or deintercalating lithium ions (Li + ), a material capable of reacting with lithium ions to reversibly form a lithium-containing compound , Lithium metal or lithium alloy can be used.
  • the material capable of reversibly intercalating or deintercalating the lithium ions can be, for example, crystalline carbon, amorphous carbon or mixtures thereof.
  • the material capable of reacting with the lithium ions to reversibly form a lithium-containing compound may be, for example, tin oxide, titanium nitrate or silicon.
  • the lithium alloy may be, for example, an alloy of lithium and a metal selected from the group consisting of Na, K, Rb, Cs, Fr, Be, Mg, Ca, Sr, Ba, Ra, Al, and Sn.
  • sulfur used as the positive electrode active material may be changed into an inert material and adhered to the surface of the lithium negative electrode.
  • inactive sulfur refers to sulfur in which sulfur is no longer able to participate in the electrochemical reaction of the anode through various electrochemical or chemical reactions, and inactive sulfur formed on the surface of the lithium anode is a protective film of the lithium cathode. It also has the advantage of acting as a layer. Therefore, lithium metal and inert sulfur formed on the lithium metal, for example lithium sulfide, may be used as the negative electrode.
  • the negative electrode of the present invention may further include a pretreatment layer made of a lithium ion conductive material and a lithium metal protective layer formed on the pretreatment layer in addition to the negative electrode active material.
  • the separator interposed between the positive electrode and the negative electrode separates or insulates the positive electrode and the negative electrode from each other and enables transport of lithium ions between the positive electrode and the negative electrode, and may be made of a porous non-conductive or insulating material.
  • a separator may be an independent member such as a thin film or a film as an insulator having high ion permeability and mechanical strength, or may be a coating layer added to the anode and / or the cathode.
  • a solid electrolyte such as a polymer
  • the solid electrolyte may also serve as a separator.
  • the pore diameter of the separator is generally 0.01 ⁇ 10 ⁇ m, the thickness is generally 5 ⁇ 300 ⁇ m is preferred, such a separator, a glass electrolyte (Glass electrolyte), a polymer electrolyte or a ceramic electrolyte may be used.
  • Glass electrolyte Glass electrolyte
  • a polymer electrolyte or a ceramic electrolyte may be used.
  • sheets, nonwoven fabrics, kraft papers, etc. made of olefinic polymers such as polypropylene, chemical resistance and hydrophobicity, glass fibers or polyethylene, and the like are used.
  • Typical examples on the market have a guard such as cell-based (R Celgard 2400, 2300 Hoechest Celanese Corp., Ltd.), a polypropylene membrane (Ube Industries Ltd. or Pall RAI Products Corp.), polyethylene series (Tonen or Entek).
  • the electrolyte separator in the solid state may include less than about 20% by weight of a non-aqueous organic solvent, and in this case, may further include an appropriate gelling agent to reduce the fluidity of the organic solvent.
  • gel-forming compounds include polyethylene oxide, polyvinylidene fluoride, polyacrylonitrile and the like.
  • the electrolyte impregnated in the negative electrode, the positive electrode, and the separator is a non-aqueous electrolyte containing lithium salt, and is composed of a lithium salt and an electrolyte, and a non-aqueous organic solvent, an organic solid electrolyte, an inorganic solid electrolyte, and the like are used as the electrolyte.
  • Lithium salt of the present invention is a good material to be dissolved in a non-aqueous organic solvent, for example, LiSCN, LiCl, LiBr, LiI, LiPF 6 , LiBF 4 , LiSbF 6 , LiAsF 6 , LiB 10 Cl 10 , LiCH 3 SO 3 , LiCF 3 SO 3 , LiCF 3 CO 2 , LiClO 4 , LiAlCl 4 , Li (Ph) 4 , LiC (CF 3 SO 2 ) 3 , LiN (FSO 2 ) 2 , LiN (CF 3 SO 2 ) 2 , LiN (C 2 F 5 SO 2 ) 2 , LiN (SFO 2 ) 2 , LiN (CF 3 CF 2 SO 2 ) 2 , group consisting of lithium chloroborane, lower aliphatic lithium carbonate, lithium 4-phenylborate, lithium imide and combinations thereof One or more from may be included.
  • a non-aqueous organic solvent for example, LiS
  • the concentration of the lithium salt is 0.2 to 2 M, depending on several factors such as the exact composition of the electrolyte mixture, the solubility of the salt, the conductivity of the dissolved salt, the charging and discharging conditions of the cell, the operating temperature and other factors known in the lithium battery art, Specifically, it may be 0.6 to 2 M, more specifically 0.7 to 1.7 M. If the amount is less than 0.2 M, the conductivity of the electrolyte may be lowered, and thus the performance of the electrolyte may be lowered. If the concentration is more than 2 M, the viscosity of the electrolyte may be increased, thereby reducing the mobility of lithium ions (Li + ).
  • the non-aqueous organic solvent should dissolve lithium salts well, and as the non-aqueous organic solvent of the present invention, for example, N-methyl-2-pyrrolidinone, propylene carbonate, ethylene carbonate, butylene carbonate, dimethyl carbonate, di Ethyl carbonate, ethylmethyl carbonate, gamma-butyrolactone, 1,2-dimethoxy ethane, 1,2-diethoxy ethane, tetrahydroxy franc, 2-methyl tetrahydrofuran, dimethylsulfoxide, 1, 3-dioxolane, 4-methyl-1,3-dioxene, diethyl ether, formamide, dimethylformamide, dioxolane, acetonitrile, nitromethane, methyl formate, methyl acetate, triester phosphate, trimes Aprotic such as methoxymethane, dioxolane derivatives, sulfolane, methyl sulfolane,
  • organic solid electrolyte examples include polyethylene derivatives, polyethylene oxide derivatives, polypropylene oxide derivatives, phosphate ester polymers, poly etchation lysine, polyester sulfides, polyvinyl alcohol, polyvinylidene fluoride, and ionic dissociation. Polymers containing groups and the like can be used.
  • the electrolyte of the present invention includes, for example, pyridine, triethylphosphite, triethanolamine, cyclic ether, ethylene diamine, n-glyme, hexaphosphate triamide, nitro, for the purpose of improving charge and discharge characteristics, flame retardancy, and the like.
  • Benzene derivatives, sulfur, quinone imine dyes, N-substituted oxazolidinones, N, N-substituted imidazolidines, ethylene glycol dialkyl ethers, ammonium salts, pyrroles, 2-methoxy ethanol, aluminum trichloride and the like may be added. .
  • a halogen-containing solvent such as carbon tetrachloride and ethylene trifluoride may be further included, and carbon dioxide gas may be further included to improve high temperature storage characteristics, and FEC (Fluoro-ethylene) may be further included.
  • the electrolyte may be used as a liquid electrolyte, or may be used in the form of a solid electrolyte separator.
  • a physical separator having a function of physically separating an electrode further includes a separator made of porous glass, plastic, ceramic, or polymer.
  • the form of the lithium-sulfur battery as described above is not particularly limited, and may be, for example, jelly-roll type, stack type, stack-fold type (including stack-Z-fold type), or lamination-stack type, and is preferable. It can be stack-folded.
  • the electrode assembly After manufacturing an electrode assembly in which the positive electrode, the separator, and the negative electrode are sequentially stacked, the electrode assembly is placed in a battery case, and then the electrolyte is injected into the upper part of the case and sealed by cap plate and gasket to manufacture a lithium-sulfur battery. do.
  • the lithium-sulfur battery may be classified into a cylindrical shape, a square shape, a coin type, a pouch type, and the like, and may be classified into a bulk type and a thin film type according to its size. Since the structure and manufacturing method of these batteries are well known in the art, detailed description thereof will be omitted.
  • a carbon nanotube dispersion containing polyvinylpyrrolidone (PVP) as a dispersant was prepared by dispersing 0.035 g of carbon nanotubes (CNT) as a carbon material in a mixed solvent of distilled water and an ethanol (1: 5 volume ratio). . 3.5 g of a sulfur-carbon composite (sulfur / carbon 8: 2 weight ratio) was added to the carbon nanotube dispersion, and then mixed in a mortar to form a carbon nanotube coating layer on the surface of the sulfur-carbon composite. After drying at 80 ° C. for 18 hours in a convection oven, the mixed solvent was removed to prepare a cathode active material in which a carbon nanotube coating layer was formed.
  • PVP polyvinylpyrrolidone
  • the slurry composition prepared above was coated on a current collector (Al Foil, 20 ⁇ m) and dried at 50 ° C. for 12 hours to prepare a cathode for a lithium-sulfur battery.
  • the loading amount was 3.5mAh / cm 2
  • the porosity of the electrode was 60%.
  • a coin cell of a lithium-sulfur battery including a lithium metal, a separator, and an electrolyte was prepared as a cathode and an anode manufactured according to the above.
  • a mixed solution containing a second (LiFSI) and 0.1M LiNO 3 was used.
  • the anode was punched out using a 14 phi circular electrode, and a polyethylene (PE) separator was punched out at 16 phi as a negative electrode of 19 phi and 150 ⁇ m lithium metal.
  • PE polyethylene
  • LiPAA lithium substituted polyacrylamide
  • PVA Polyvinylalcohol, PVA (LiPAA / PVA: 6.5: 0.5)
  • a lithium-sulfur battery was prepared in the same manner as in Example 1, except that 7 parts by weight were used.
  • LiPAA polyacrylamide
  • PVA polyvinyl alcohol lithium-substituted with a binder polyvinylalcohol
  • CNT carbon nanotubes
  • sulfur-carbon composites sulfur / carbon 8: 2 weight ratio
  • FIGS. 3 to 5 are SEM images of Comparative Examples 1 to 3, respectively.
  • Example 1 As shown in Table 1 and Figure 1, in the case of Example 1, the carbon material is located on the surface of the sulfur-carbon composite compared to Comparative Examples 1 to 3 can easily participate in the reaction during the charging and discharging process to improve the overvoltage and discharge capacity It was found that this improved.
  • Comparative Example 2 has a structure in which the carbon material is randomly distributed in the positive electrode for a lithium-sulfur battery as shown in FIG. 2.
  • a carbon material having a very low conductivity may react to the reaction. It becomes unable to participate and acts as a resistance component of the battery. If the resistance is increased, the battery is overvoltageed and the nominal voltage is reduced.
  • the lithium-sulfur battery including the cathode active material coated with a carbon material was found to have a high rate discharge capacity of 0.5 C and have excellent life characteristics according to the cycle.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

본 발명은 황-탄소 복합체 및 상기 황-탄소 복합체의 표면에 위치하고 탄소재를 포함하는 코팅층을 포함하는 것을 특징으로 하는 리튬-황 전지용 양극 활물질에 관한 것이다. 또한, 본 발명은 탄소재 및 황-탄소 복합체 중 어느 하나 이상을 분산매에 분산시킨 후 습식 혼합하여, 상기 황-탄소 복합체의 표면에 탄소재를 포함하는 코팅층을 형성하는 단계;를 포함하는 리튬-황 전지용 양극 활물질의 제조방법에 관한 것이다.

Description

리튬-황 전지용 양극 활물질 및 그 제조방법
본 출원은 2018년 4월 30일자 한국 특허 출원 제10-2018-0049859호 및 2019년 4월 5일자 한국 특허 출원 제10-2019-0040177호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
본 발명은 리튬-황 전지의 양극 활물질 및 그 제조방법에 관한 것이다.
이차전지는 1회 방전만 가능한 일차전지와 달리 지속적인 충전 및 방전이 가능한 전기저장기구로서 1990년대 이후 휴대용 전자기기의 중요 전자부품으로 자리를 잡았다. 특히, 리튬 이온 이차전지는 1992년 일본 소니(Sony)사에 의해 상용화된 이후, 스마트폰, 디지털 카메라, 노트북 컴퓨터 등과 같은 휴대용 전자기기의 핵심부품으로 정보화 시대를 이끌어 왔다.
근래에 리튬 이온 이차전지는 그 활용 영역을 더욱 넓혀가면서 청소기, 전동공구의 전원과 전기자전거, 전기스쿠터와 같은 분야에 사용될 중형전지에서, 전기자동차(electric vehicle, EV), 하이브리드 전기자동차(hybrid electric vehicle; HEV), 플러그-인 하이브리드 전기자동차(Plug-in hybrid electric vehicle; PHEV), 각종 로봇 및 대형 전력저장장치(Electric Storage System; ESS)와 같은 분야에 사용되는 대용량 전지에 이르기까지 빠른 속도로 수요를 늘려가고 있다.
그러나, 현재까지 나와 있는 이차전지 중 가장 우수한 특성을 가진 리튬 이차전지도 전기자동차, PHEV와 같은 수송기구에 활발히 사용되기에는 몇 가지 문제점이 있으며, 그 중 가장 큰 문제점은 용량의 한계이다.
리튬 이차전지는 기본적으로 양극, 전해질, 음극 등과 같은 소재들로 구성되며, 그 중에서 양극 및 음극 소재가 전지의 용량(capacity)을 결정하기 때문에 리튬 이온 이차전지는 양극과 음극의 물질적인 한계로 인해 용량의 제약을 받는다. 특히, 전기자동차, PHEV와 같은 용도에 사용될 이차전지는 한 번 충전 후 최대한 오래 사용할 수 있어야 하므로, 이차전지의 방전용량이 매우 중요시 된다. 전기자동차의 판매에 가장 큰 제약점으로 지적되는 것은 1회 충전 후 주행할 수 있는 거리가 일반 가솔린엔진의 자동차보다 매우 짧다는 점이다.
이와 같은 리튬 이차전지의 용량 한계는 많은 노력에도 불구하고 리튬 이차전지의 구조 및 재료적인 제약으로 인해 완전한 해결이 어렵다. 따라서, 리튬 이차전지의 용량 문제를 근본적으로 해결하기 위해서는 기존의 이차전지 개념을 뛰어 넘는 신개념의 이차전지 개발이 요구된다.
리튬-황 이차전지는 기존의 리튬 이온 이차전지의 기본원리인 리튬 이온의 층상구조의 금속산화물 및 흑연으로의 삽입/탈리(intercalation) 반응에 의해 결정되는 용량 한계를 뛰어넘고 전이금속 대체 및 비용 절감 등을 가져올 수 있는 새로운 고용량, 저가 전지 시스템이다.
리튬-황 이차전지는 양극에서 리튬 이온과 황의 변환(conversion) 반응(S8 + 16Li+ + 16e- → 8Li2S)으로부터 나오는 이론 용량이 1,675 mAh/g에 이르고 음극은 리튬 금속(이론용량: 3,860 mAh/g)을 사용하여 전지 시스템의 초고용량화가 가능하다. 또한 방전전압은 약 2.2 V이므로 이론적으로 양극, 음극 활물질의 양을 기준으로 2,600 Wh/kg의 에너지 밀도를 나타낸다. 이는 층상구조의 금속 산화물 및 흑연을 사용하는 상용 리튬 이차전지(LiCoO2/graphite)의 에너지 이론적 에너지 밀도인 400 Wh/kg보다도 6배 내지 7배 가량이 높은 수치이다.
리튬-황 이차전지는 2010년경 나노 복합체 형성을 통해 전지성능이 획기적으로 개선될 수 있다는 것이 알려진 이후 새로운 고용량, 친환경성, 저가의 리튬 이차전지로 주목받고 있으며 현재 차세대 전지 시스템으로 세계적으로 집중적인 연구가 이루어지고 있다.
현재까지 밝혀진 리튬-황 이차전지의 주요한 문제점 중에 하나는 황의 전기전도도가 5.0 x 10-14 S/cm 가량으로 부도체에 가까워 전극에서 전기화학반응이 용이하지 않고, 매우 큰 과전압으로 인해 실제 방전용량 및 전압이 이론에 훨씬 미치지 못한다는 점이다. 초기 연구자들은 황과 카본의 기계적인 볼밀링이나 카본을 이용한 표면 코팅과 같은 방법으로 성능을 개선해보고자 하였으나 큰 실효가 없었다.
전기전도도에 의해 전기화학반응이 제한되는 문제를 효과적으로 해결하기 위해서는 다른 양극 활물질 중의 하나인 LiFePO4의 예와 같이(전기전도도: 10-9 내지 10-10 S/cm) 입자의 크기를 수십 나노미터 이하의 크기로 줄이고 전도성 물질로 표면처리를 할 필요가 있는데, 이를 위하여 여러 가지 화학적(나노 크기의 다공성 탄소 나노 구조체 혹은 금속산화물 구조체로의 melt impregnation), 물리적 방법(high energy ball milling) 등이 보고되고 있다.
다른 한 가지 리튬-황 이차전지와 관련된 주요 문제점은 방전도중 생성되는 황의 중간생성체인 리튬 폴리설파이드(lithium polysulfide)의 전해질로의 용해이다. 방전이 진행됨에 따라 황(S8)은 리튬 이온과 연속적으로 반응하여 S8 → Li2S8 → (Li2S6) → Li2S4 → Li2S2 → Li2S 등으로 그 상(phase)이 연속적으로 변하게 되는데 그 중 황이 길게 늘어선 체인형태인 Li2S8, Li2S4(리튬 폴리설파이드) 등은 리튬 이온전지에서 쓰이는 일반적인 전해질에서 쉽게 용해되는 성질이 있다.
이러한 반응이 발생하면 가역 양극용량이 크게 줄어들 뿐만 아니라 용해된 리튬 폴리설파이드가 음극으로 확산되어 여러 가지 부반응(side reaction)을 일으키게 된다.
리튬 폴리설파이드는 특히 충전과정 중 셔틀반응(shuttle reaction)을 일으키는데 이로 인하여 충전용량이 계속 증가하게 되어 충방전 효율이 급격히 저하된다. 최근 이러한 문제를 해결하기 위하여 다양한 방법이 제시되었는데 크게 전해질을 개선하는 방법, 음극의 표면을 개선하는 방법, 양극의 특성을 개선하는 방법 등으로 나눌 수 있다.
전해질을 개선하는 방법은 신규 조성의 기능성 액체 전해질, 고분자 전해질, 이온성 액체(ionic liquid) 등 새로운 전해질을 사용하여 폴리설파이드의 전해질로의 용해를 억제하거나 점도 등의 조절을 통하여 음극으로의 분산 속도를 제어하여 셔틀반응을 최대한 억제하는 방법이다.
음극표면에 형성되는 SEI의 특성을 개선하여 셔틀반응을 제어하는 연구가 활발히 이루어지고 있는데 대표적으로 LiNO3과 같은 전해질 첨가제를 투입하여 리튬 음극의 표면에 LixNOy, LixSOy 등의 산화막을 형성하여 개선하는 방법, 리튬 금속의 표면에 두꺼운 기능형 SEI 층을 형성하는 방법 등이 있다.
이와 같은 노력이 진행되고는 있으나, 이러한 방법이 다소 복잡할 뿐만 아니라 활물질인 황을 넣을 수 있는 양이 제한된다는 문제가 있다. 따라서 이러한 문제들을 복합적으로 해결하고 리튬-황 전지의 성능을 개선하기 위한 새로운 기술의 개발이 필요한 실정이다.
이에 본 발명에서는 리튬-황 전지의 양극 측에서 발생하는 리튬 폴리설파이드 용출의 문제를 해소하고 전해액과의 부반응을 억제하기 위해, 양극 활물질의 표면에 탄소재를 포함하는 코팅층의 새로운 구조를 적용한 결과, 상기 문제를 해결하여 리튬-황 전지의 전지 성능을 향상시킬 수 있음을 확인하여 본 발명을 완성하였다.
따라서, 본 발명의 목적은 리튬 폴리설파이드에 의한 문제를 해소할 수 있는 리튬-황 전지용 양극 활물질을 제공하는데 있다.
또한, 본 발명의 목적은 리튬 폴리설파이드에 의한 문제를 해소할 수 있는 리튬-황 전지용 양극 활물질의 제조방법을 제공하는데 있다.
또한, 본 발명의 다른 목적은 상기 양극을 구비하여 전지 성능이 향상된 리튬-황 전지를 제공하는데 있다.
상기 목적을 달성하기 위하여, 본 발명은, 황-탄소 복합체; 및 상기 황-탄소 복합체의 표면에 위치하고 탄소재를 포함하는 코팅층;을 포함하는 것을 특징으로 하는 리튬-황 전지용 양극 활물질을 제공한다.
또한 본 발명은, 상술한 리튬-황 전지용 양극 활물질, 바인더 및 도전재를 포함하는 리튬-황 전지용 양극을 제공한다.
또한 본 발명은, 상술한 양극, 음극 및 상기의 양극과 음극 사이에 개재된 분리막을 포함하는 리튬-황 전지를 제공한다.
또한 본 발명은, 탄소재 및 황-탄소 복합체 중 어느 하나 이상을 분산매에 분산시킨 후 습식 혼합하여, 상기 황-탄소 복합체의 표면에 탄소재를 포함하는 코팅층을 형성하는 단계;를 포함하는 리튬-황 전지용 양극 활물질의 제조방법을 제공한다.
본 발명에 따른 리튬-황 전지용 양극 활물질은 양극 활물질 표면에 탄소재가 포함된 코팅층을 포함하여 리튬-황 전지의 양극에서 발생하는 리튬 폴리설파이드에 의한 문제를 해소하고 전해액과의 부반응을 억제하며 전기전도성을 향상시키는 효과가 있다.
상기 양극 활물질을 포함하는 양극이 구비된 리튬-황 전지는 황의 용량 저하가 발생하지 않아 고용량 전지 구현이 가능하고 황을 고로딩으로 안정적으로 적용 가능할 뿐만 아니라 전지의 쇼트, 발열 등의 문제가 없어 전지 안정성이 향상된다. 더불어, 이러한 리튬-황 전지는 전지의 충, 방전 효율이 높고 수명 특성이 개선되는 이점을 갖는다.
도 1은 본 발명에 따른 양극 활물질의 모식도를 나타낸 것이다.
도 2는 본 발명의 실시예에 따른 양극 활물질의 주사전자현미경(SEM) 이미지를 나타낸 것이다.
도 3은 본 발명의 비교예 (1)에 따른 양극 활물질의 주사전자현미경(SEM) 이미지를 나타낸 것이다.
도 4는 본 발명의 비교예 (2)에 따른 양극 활물질의 주사전자현미경(SEM) 이미지를 나타낸 것이다.
도 5는 본 발명의 비교예 (3)에 따른 양극 활물질의 주사전자현미경(SEM) 이미지를 나타낸 것이다.
도 6은 본 발명의 실시예 및 비교예에 따른 양극 활물질을 포함하는 리튬-황 전지의 방전용량 측정 결과를 나타낸다.
도 7은 본 발명의 실시예 및 비교예에 따른 양극 활물질을 포함하는 리튬-황 전지의 수명특성 측정 결과를 나타낸다.
이하, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 첨부한 도면을 참고로 하여 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며, 본 명세서에 한정되지 않는다.
도면에서는 본 발명을 명확하게 설명하기 위해서 설명과 관계없는 부분을 생략하였고, 명세서 전체를 통해 유사한 부분에 대해서는 유사한 도면 부호를 사용하였다. 또한, 도면에서 표시된 구성요소의 크기 및 상대적인 크기는 실제 축척과는 무관하며, 설명의 명료성을 위해 축소되거나 과장된 것일 수 있다.
본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.
본 명세서에서 사용되고 있는 용어 '복합체(composite)'란 두 가지 이상의 재료가 조합되어 물리적, 화학적으로 서로 다른 상(phase)를 형성하면서 보다 유효한 기능을 발현하는 물질을 의미한다.
리튬-황 전지용 양극 활물질
본 발명의 일 실시예에 따른 양극 활물질은,
황-탄소 복합체; 및 상기 황-탄소 복합체의 표면에 위치하고 탄소재를 포함하는 코팅층; 을 포함한다.
리튬-황 전지는 기존 리튬 이차 전지에 비해 월등히 높은 방전용량 및 이론 에너지 밀도를 가지며, 양극 활물질로 사용되는 황은 매장량이 풍부하여 저가이고, 환경친화적이라는 장점으로 인해 차세대 전지로 각광받고 있다.
이러한 장점에도 불구하고 실제 구동에 있어서는 이론 용량 및 에너지 밀도 전부를 구현하지 못하고 있다. 이는 양극 활물질인 황의 낮은 리튬 이온 전도성으로 실제 전기화학적 산화환원 반응에 참여하는 황의 비율이 매우 낮기 때문이다. 리튬-황 전지의 용량과 효율은 양극으로 전달되는 리튬 이온의 양에 따라 달라질 수 있다. 따라서, 양극의 리튬 이온 전도도를 높이는 것이 리튬-황 전지의 고용량 및 고효율화에 중요하다.
이에 더해서, 리튬-황 전지는 충, 방전 반응 시 양극에서 형성된 리튬 폴리설파이드가 양극 반응 영역 밖으로 유실되어 양극과 음극 사이를 이동하는 셔틀 현상이 발생한다. 이때 양극으로부터 용출된 리튬 폴리설파이드와 음극인 리튬 금속과의 부반응에 의해 리튬 금속 표면에 리튬 설파이드가 고착됨에 따라 반응 활성도가 낮아지며, 리튬 이온이 불필요하게 소모되어 전지의 효율과 수명의 저하가 가속화되는 문제가 발생한다.
이에 본 발명은 종래 리튬-황 전지용 양극의 단점을 보완하여, 폴리설파이드(polysulfide) 용해 및 셔틀 현상에 의한 전극의 지속적 반응성 저하 문제 및 방전 용량 감소 문제 등이 개선된 리튬-황 전지용 양극 활물질을 제공한다.
구체적으로, 본 발명에서 제공하는 양극 활물질은 황-탄소 복합체 상에 리튬 폴리설파이드를 흡착할 수 있는 기능을 가진 탄소재를 포함하는 코팅층을 형성하여 상기와 같은 문제점을 해결한다.
본 발명의 일 실시예에 따른 양극 활물질은 황-탄소 복합체의 표면에 탄소재를 포함하는 코팅층을 형성함으로써, 코팅층 내의 탄소재에 의해 리튬-황 전지에서 발생하는 리튬 폴리설파이드를 흡착하고, 용출되는 리튬 폴리설파이드를 재사용 가능하게 하여 전지의 충, 방전 효율을 크게 향상시킬 수 있다. 또한 상기 탄소재는 황-탄소 복합체의 표면에 위치하여 전기전도성을 크게 향상시킬 수 있는 장점도 있다. (도 1)
상기 탄소재는 탄소나노튜브, 탄소나노섬유, 탄소나노리본, 탄소나노벨트, 및 탄소나노막대, 그래핀, 그래핀옥사이드, 환원된 그래핀옥사이드, 카본블랙, 활성탄 및 메조포러스 카본으로 이루어진 군에서 선택되는 어느 하나 이상일 수 있다. 이때 탄소나노튜브는 단일벽 탄소나노튜브(SWCNT), 이중벽 탄소나노튜브(DWCNT), 다중벽 탄소나노튜브(MWCNT), 다발형 탄소나노튜브(rope carbon nanotube), 또는 이들 조합일 수 있으며, 상기 그래핀, 그래핀옥사이드, 환원된 그래핀옥사이드 등의 그래핀계 탄소재는 쉬트(sheet) 내지 섬유(fiber) 상 일 수 있으나 이에 한정되지 않는다. 본 발명의 일 실시예에 따른 상기 탄소나노튜브는 직경이 5 내지 50 nm이고, 길이가 500 nm 내지 10 ㎛ 일 수 있다. 상기 탄소나노튜브의 평균직경 및 길이는 당업자에게 널리 공지된 방법으로 측정될 수 있으며, 예를 들어, TEM(Transmission electron microscopy), HR-TEM(high-resolution transmission electron microscope), SEM, 또는 FE-SEM(Field-emission scanning microscope) 사진으로부터 측정하거나 또는/및 동적광산란법(dynamic Light-scattering)을 이용한 측정장치를 이용하여 측정할 수 있다.
이때, 상기 코팅층에 포함된 탄소재의 함량은 황-탄소 복합체 100 중량부에 대하여 1 내지 5 중량부일 수 있으며, 바람직하게는 황-탄소 복합체 100중량부에 대하여 1 내지 3 중량부일 수 있다. 만일 코팅층에 포함된 탄소재의 함량이 황-탄소 복합체 100 중량부 대비 1 중량부 미만인 경우, 리튬 폴리설파이드의 흡착 효과가 미미할 수 있고, 5 중량부를 초과하는 경우 코팅층이 저항으로 작용하여 전지의 효율이 감소할 수 있으므로, 상기 범위에서 적절히 조절한다.
본 발명의 일 실시예에 있어서 상기 코팅층의 두께는 500 nm 내지 2 ㎛ 일 수 있다. 상기 코팅층의 두께가 500 nm 미만인 경우, 리튬 폴리설파이드의 흡착 효과과 미미하여 전지의 충방전효율 및 수명 특성 개선 효과가 적을 수 있고, 2 ㎛ 초과하는 경우 이로 인한 저항 증가로 리튬 이차전지의 전기 화학적 특성의 저하를 야기시켜 전지의 효율이 떨어질 수 있으므로 상기 범위에서 적절히 조절한다.
본 발명에 따른 일 실시예는 상기 황-탄소 복합체가 황-탄소 복합체 100 중량부 대비 70 내지 90 중량부의 황을 포함하는 것일 수 있고 바람직하게는 80 중량부의 황을 포함하는 것일 수 있다. 만약 상기 황의 포함량이 상기 중량비 범위 미만인 경우 다공성 탄소재의 함량이 증가함에 따라 양극 슬러리 제조시에 필요한 바인더 첨가량이 늘어난다. 이러한 바인더 첨가량의 증가는 결국 전극의 면저항을 증가시키게 되고 전자 이동(electron pass)을 막는 절연체 역할을 하게 되어 셀 성능을 저하시킬 수 있다. 반대로 황의 포함량이 상기 중량비 범위를 초과하는 경우 황이 그들끼리 뭉치게 되고, 전자를 받기 어려워서 전극 반응에 직접적으로 참여하기 어렵게 될 수 있으므로 상기 범위내에서 적절히 조절한다.
본 발명에 따른 황-탄소 복합체의 황은 무기 황(S8), Li2Sn(n ≥ 1), 유기 황 화합물 및 탄소-황 폴리머[(C2Sx)n, x=2.5 내지 50, n ≥ 2]로 이루어진 군으로부터 선택된 1종 이상일 수 있다. 바람직하게는 무기 황(S8)을 사용할 수 있다.
또한 본 발명에 따른 황-탄소 복합체의 탄소는 다공성 구조이거나 비표면적이 높은 것으로 당업계에서 통상적으로 사용되는 것이라면 어느 것이든 무방하다. 예를 들어, 상기 다공성 탄소재로는 그래파이트(graphite); 그래핀(graphene); 덴카 블랙, 아세틸렌 블랙, 케첸 블랙, 채널 블랙, 퍼네이스 블랙, 램프 블랙, 서머 블랙 등의 카본 블랙; 단일벽 탄소나노튜브(SWCNT), 다중벽 탄소나노튜브(MWCNT) 등의 탄소나노튜브(CNT); 그라파이트 나노파이버(GNF), 카본 나노파이버(CNF), 활성화 탄소 파이버(ACF) 등의 탄소 섬유; 및 활성탄소로 이루어진 군으로부터 선택된 1종 이상일 수 있으나 이에 제한되지 않으며 그 형태는 구형, 봉형, 침상형, 판상형, 튜브형 또는 벌크형으로 리튬-황 전지에 통상적으로 사용되는 것이라면 제한없이 사용될 수 있다.
상기 황-탄소 복합체는 그 입자의 크기가 10 내지 50 ㎛일 수 있다. 황-탄소 복합체의 입자의 크기가 10 ㎛ 미만인 경우, 입자간 저항이 늘어나 리튬-황 전지의 전극에 과전압이 발생하는 문제가 있고, 50 ㎛을 초과하는 경우에는 단위 중량당 표면적이 작아져 전극 내 전해액과의 웨팅(wetting) 면적 및 리튬 이온과의 반응 사이트(site)가 감소하게 되고, 복합체 크기 대비 전자의 전달 양이 적어져서 반응이 늦어지게 되는 결과 전지의 방전 용량이 감소될 수 있으므로 상기 범위 내에서 적절히 선택한다.
본 발명의 일 실시예에 있어서, 상기 코팅층에 포함되는 탄소재는 리튬 폴리설파이드를 흡착함으로써 리튬 폴리설파이드가 음극으로 전달되어 리튬-황 전지의 수명을 감소시키는 것을 줄일 수 있고, 리튬 폴리설파이드로 인해 감소된 반응성을 억제 함으로써, 상기 양극이 포함된 리튬-황 전지의 방전용량의 증가와 전지의 수명을 향상시킬 수 있다.
리튬-황 전지용 양극 활물질의 제조방법
본 발명에 따른 리튬-황 전지용 양극 활물질은,
탄소재 및 황-탄소 복합체 중 어느 하나 이상을 분산매에 분산시킨 후 습식 혼합하여, 상기 황-탄소 복합체의 표면에 탄소재를 포함하는 코팅층을 형성하는 단계를 포함하는 제조방법에 의해 제조된 것일 수 있다.
상기 탄소재는 탄소나노튜브, 탄소나노섬유, 탄소나노리본, 탄소나노벨트, 및 탄소나노막대, 그래핀, 그래핀옥사이드, 환원된 그래핀옥사이드, 카본블랙, 활성탄 및 메조포러스 카본으로 이루어진 군에서 선택되는 어느 하나 이상일 수 있다. 이때 탄소나노튜브는 단일벽 탄소나노튜브(SWCNT), 이중벽 탄소나노튜브(DWCNT), 다중벽 탄소나노튜브(MWCNT), 다발형 탄소나노튜브(rope carbon nanotube), 또는 이들 조합일 수 있으며, 상기 그래핀, 그래핀옥사이드, 환원된 그래핀옥사이드 등의 그래핀계 탄소재는 쉬트(sheet) 내지 섬유(fiber) 상 일 수 있으나 이에 한정되지 않는다. 본 발명의 일 실시예에 따른 상기 탄소나노튜브는 직경이 5 내지 50 nm이고, 길이가 500 nm 내지 10 ㎛ 일 수 있다. 상기 탄소나노튜브의 평균직경 및 길이는 당업자에게 널리 공지된 방법으로 측정될 수 있으며, 예를 들어, TEM(Transmission electron microscopy), HR-TEM(high-resolution transmission electron microscope), SEM, 또는 FE-SEM(Field-emission scanning microscope) 사진으로부터 측정하거나 또는/및 동적광산란법(dynamic Light-scattering)을 이용한 측정장치를 이용하여 측정할 수 있다.
상기 분산매는, 상온, 상압에서 액체인 것이면 특별히 제한되지 않으며, 물, 알코올계 화합물, 케톤계 화합물 및 에테르계 화합물로 이루어진 군으로부터 선택되는 어느 하나 또는 둘 이상의 혼합물일 수 있다.
구체적으로, 물; 메탄올, 에탄올, 프로판올, 이소프로판올, 부탄올, 이소부탄올, s-부탄올, t-부탄올, 펜타놀, 이소펜타놀, 헥사놀 등의 알코올류; 아세톤, 메틸에틸케톤, 메틸프로필케톤, 에틸프로필케톤, 시클로펜타논, 시클로헥사논, 시클로헵타논 등의 케톤류; 메틸에틸에테르, 디에틸에테르, 디프로필에테르, 디이소프로필에테르, 디부틸에테르, 디이소부틸에테르, 디n-아밀에테르, 디이소아밀에테르, 메틸프로필에테르, 메틸이소프로필에테르, 메틸부틸에테르, 에틸프로필에테르, 에틸이소부틸에테르, 에틸n-아밀에테르, 에틸이소아밀에테르, 테트라하이드로퓨란 등의 에테르류; 등을 들 수 있지만, 이들만으로 한정되는 것은 아니며, 상기 분산매를 2 내지 5종 정도 혼합하여 사용할 수도 있다.
다만, 본 발명에 따른 탄소재는 특히 수계 및 알코올계와 혼화성 및 분산성이 뛰어난 것으로, 비용 및 탄소재의 종류를 고려하여 상기 분산매는 수계 용매 또는 수계 와 알코올계의 혼합 용매인 것이 바람직할 수 있다.
또한, 상기 탄소재 및 황-탄소 복합체 중 어느 하나 이상의 원활한 분산을 위해 분산제를 추가로 포함할 수 있다. 상기 분산제로는 비이온성, 음이온성 또는 양이온성의 것이 될 수 있으며, 상기 음이온성 분산제는 알킬 설페이트(Alkyl sulfate) 계통인 소듐 도데실 황산염(Sodium dodecyl sulfate, SDS), 리튬 도데실 황산염(Lithium dodecyl sulfate, LDS), 소듐 도데실 술폰산염(Sodium dodecyl sulfonate, SDSA) 또는 소듐 도데실 벤젠 술폰산염(Sodium dodecyl benzene sulfonate, SDBS)일 수 있고, 상기 비이온성 분산제는 글리세롤 모노스테아레이트(glycerol monostearate), 소르비탄 모노올레이트(sorbitan monooleate), 소르비탄트리올리에이트(PEO(20)-Sorbitan Monooleate, Tween 80), 폴리비닐 알코올(Polyvinyl alcohol, PVA), 폴리메틸아크릴레이트(Polymethylacrylate, PMA), 메틸 셀룰로오스(Methyl cellulose, MC), 카르복실 메틸 셀룰로오스(Carboxyl methyl cellulose, CMC), 아라비아고무(Gum Arabic, GA), 다당류(Polysaccharide (Dextrin), 폴리에틸렌이민(Polyethylenimine, PEI), 폴리비닐피롤리돈(Polyvinylpyrrolidone, PVP) 또는 폴리에틸렌 옥사이드(Polyethylene oxide, PE0), 폴리에틸렌 옥사이드(Poly(ethylene oxide))-폴리부틸렌 옥사이드(Poly(butylene oxide)) 삼원공중합체일 수 있으며, 상기 양이온성 분산제는 세틸트리메틸 암모늄 염화물(Cetyltrimethyl ammonium chloride, CTAC), 세틸트리메틸 암모늄 브롬화물(Cetyltrimethyl ammonium bromide, CTAB) 또는 도데실 트리메틸 암모늄 브롬화물(Dodecyl-trimethyl ammonium bromide, DTAB)일 수 있으나 이에 한정되지 않을 수 있다.
전술한 바와 같이, 본 발명에 따른 리튬-황 전지용 양극 활물질의 제조방법은, 상기 탄소재 및 황-탄소 복합체 중 어느 하나 이상을 분산매에 분산시킨 후 습식 혼합하여, 상기 황-탄소 복합체의 표면에 탄소재를 포함하는 코팅층을 형성하는 단계를 포함하는 것으로서, i) 분산매에는 탄소재만이 분산될 수도 있고, ii) 황-탄소 복합체만이 분산될 수도 있으며, iii) 탄소재 및 황-탄소 복합체 모두가 분산될 수도 있다.
상기 i) 또는 ii)의 경우에는, 탄소재 및 황-탄소 복합체 중 어느 하나만이 분산매에 분산되어 분산액이 제조되고, 분산되지 않은 탄소재 및 황-탄소 복합체 중 나머지 하나를 상기 분산액에 투입한 후 습식 혼합하여, 상기 황-탄소 복합체의 표면에 탄소재를 포함하는 코팅층을 형성시킬 수 있다.
구체적인 예를 들면, i)의 경우에는,
(1) 탄소재를 분산매에 분산시켜 탄소재 분산액을 제조한 후,
(2) 황-탄소 복합체를 상기 탄소재 분산액에 투입하고 습식 혼합하여 상기 황-탄소 복합체의 표면에 탄소재를 포함하는 코팅층을 형성시킬 수 있고,
ii)의 경우에는,
(1) 황-탄소 복합체를 분산매에 분산시켜 황-탄소 복합체 분산액을 제조한 후,
(2) 탄소재를 상기 황-탄소 복합체 분산액에 투입하고 습식 혼합하여 상기 황-탄소 복합체의 표면에 탄소재를 포함하는 코팅층을 형성시킬 수 있다.
다만, 탄소재를 포함하는 코팅층이 황-탄소 복합체의 표면에 안정정으로 형성될 수 있도록, 가급적 i)의 방법을 이용하는 것이 바람직할 수 있다. 즉, 탄소재가 아닌 황-탄소 복합체를 분산매에 분산시켜 황-탄소 복합체 분산액을 제조한 후, 탄소재를 상기 황-탄소 복합체 분산액에 투입하여 습식 혼합하거나, 탄소재와 황-탄소 복합체를 분산매에 동시 분산시키는 경우에는, 탄소재를 포함하는 코팅층이 황-탄소 복합체의 표면에 안정적으로 형성되지 않는 등, 본 발명에 따른 리튬-황 전지용 양극 활물질의 제조가 용이하지 않을 우려가 있으며, 따라서, 본 발명의 리튬-황 전지용 양극 활물질을 제조하기 위해서는, 가급적 탄소재만을 분산매에 분산시켜 탄소재 분산액을 제조한 후, 황-탄소 복합체를 상기 탄소재 분산액에 투입하고 습식 혼합하는 것이 좋다.
즉 이는, 다시 말해, 상기 탄소재의 입자 크기는 나노미터 수준인데 반하여, 황-탄소 복합체는 마이크로미터 수준인 바, 탄소재 분산액을 제조하는 공정은 황-탄소 복합체 분산액을 제조하는 공정에 비하여 매우 많은 에너지와 기술이 요구되며, 따라서, 탄소재 분산액이 아닌 황-탄소 복합체 분산액으로 제조하거나, 탄소재/황-탄소 복합체 분산액으로 동시 제조하는 경우에는, 본 발명에 따른 리튬-황 전지용 양극 활물질과 전혀 다른 물질이 생성될 가능성이 있기 때문이다.
본 발명에 따른 양극 활물질은 상기 탄소재 및 황-탄소 복합체 중 어느 하나 이상이 분산된 용액을 습식 혼합 공정을 통해 황-탄소 복합체를 코팅할 수 있다. 기존의 대한민국 공개특허 제2015-0135961호에 나타난 바와 같이 황-탄소 복합체의 표면에 코팅층을 형성하기 위해 건식 공정을 적용하는 경우, 코팅층의 균일한 형성을 위해 코팅물질을 과량 사용하여야 하는 문제점이 있다. 본 발명에 따른 습식 공정을 적용할 경우, 건식 공정에 비해 보다 균일하고 효과적인 코팅층의 형성이 가능하고, 리튬-황 전지의 방전 용량 증가와 수명 특성 향상을 위해 비교적 적은 양의 탄소재를 사용할 수 있으므로, 결과적으로 고로딩의 양극 활물질을 적용할 수 있다는 장점이 있다. 또한 분산매를 통해 습식 공정으로 코팅층을 형성하기 때문에 황-탄소 복합체와 탄소재가 강하게 결착하여 안정적인 양극 활물질의 형성이 가능한 장점도 있다.
본 발명에 따른 탄소재인 탄소나노튜브(CNT)가 습식 공정으로 황-탄소 복합체 표면에 고르게 코팅된 실시예 1에 따른 도 2와 달리, 건식 공정으로 코팅층을 형성한 경우 탄소나노튜브가 황-탄소 복합체 표면에 불균일하게 코팅되어 상기 황-탄소 복합체의 표면이 드러난 것을 도 5를 통해 확인할 수 있다.
이때, 상기 코팅층에 포함된 탄소재의 함량은 황-탄소 복합체 100 중량부에 대하여 1 내지 5 중량부일 수 있으며, 바람직하게는 황-탄소 복합체 100중량부에 대하여 1 내지 3 중량부일 수 있다. 만일 코팅층에 포함된 탄소재의 함량이 황-탄소 복합체 100 중량부 대비 1 중량부 미만인 경우, 리튬 폴리설파이드의 흡착 효과가 미미할 수 있고, 5 중량부를 초과하는 경우 코팅층이 저항으로 작용하여 전지의 효율이 감소할 수 있으므로, 상기 범위에서 적절히 조절한다.
본 발명에 따른 일 구현예에 있어서 건조단계를 더 포함할 수 있다. 상기 건조 단계를 거치며 탄소재를 분산시킨 분산매를 증발시켜 상기 탄소재가 황-탄소 복합체에 강하게 결착할 수 있게 된다. 상기 건조는 70 내지 90 ℃에서 4 내지 24 시간동안 공기중에서 컨벡션 오븐을 이용하여 진행할 수 있다. 만일 건조 온도가 70 ℃ 미만이거나 건조 시간이 상기 4 시간보다 짧은 경우, 분산매가 과량 잔존하여 탄소재의 균일한 코팅이 이루어지지 않을 수 있으며, 건조 온도가 90 ℃를 초과하거나 24 시간을 초과하는 경우 건조를 통해 황-탄소 복합체의 부반응이 일어날 수 있으므로 상기 범위내에서 적절히 조절한다.
리튬-황 전지용 양극
본 발명은 상기 양극 활물질을 포함하는 리튬-황 전지용 양극을 제공한다. 구체적으로는 본 발명에 따른 리튬-황 전지용 양극은 상술한 리튬-황 전지용 양극 활물질, 바인더 및 도전재를 포함할 수 있다.
상기 양극은 당 분야에 알려져 있는 통상적인 방법으로 제조할 수 있다. 예를 들면, 양극 활물질에 용매, 필요에 따라 바인더, 도전재, 분산제를 혼합 및 교반하여 슬러리를 제조한 후 이를 금속 재료의 집전체에 도포(코팅)하고 압축한 뒤 건조하여 양극을 제조할 수 있다.
구체적으로 상기 제조된 양극 활물질에 추가적인 도전성을 부여하기 위하여, 상기 양극 조성물에는 도전재가 추가될 수 있다. 상기 도전재는 전자가 양극 내에서 원활하게 이동하도록 하기 위한 역할을 하는 것으로, 전지에 화학적 변화를 유발하지 않으면서 도전성이 우수하고 넓은 표면적을 제공할 수 있는 것이면 특별한 제한이 없으나, 바람직하게는 탄소계 물질을 사용한다.
상기 탄소계 물질로는 천연 흑연, 인조 흑연, 팽창 흑연, 그래핀(Graphene)과 같은 흑연(Graphite)계, 활성탄(Active carbon)계, 채널 블랙(Channel black), 퍼니스 블랙(Furnace black), 써말 블랙(Thermal black), 컨택트 블랙(Contact black), 램프 블랙(Lamp black), 아세틸렌 블랙(Acetylene black)과 같은 카본 블랙(Carbon black)계; 탄소 섬유(Carbon fiber)계, 탄소나노튜브(Carbon nanotube: CNT), 풀러렌(Fullerene)과 같은 탄소 나노 구조체 및 이들의 조합으로 이루어진 군으로부터 선택된 1종을 사용할 수 있다.
상기 탄소계 물질 이외에도, 목적에 따라 금속 메쉬 등의 금속성 섬유; 구리(Cu), 은(Ag), 니켈(Ni), 알루미늄(Al) 등의 금속성 분말; 또는 폴리페닐렌 유도체 등의 유기 도전성 재료도 사용할 수 있다. 상기 도전성 재료들은 단독 또는 혼합하여 사용될 수 있다.
또한 상기 양극 활물질에 집전체에 대한 부착력을 제공하기 위하여, 상기 양극 조성물에는 바인더가 추가적으로 포함될 수 있다. 상기 바인더는 용매에 잘 용해되어야 하며, 양극 활물질과 도전재와의 도전 네트워크를 잘 구성해주어야 할 뿐만 아니라 전해액의 함침성도 적당히 가져야 한다.
본 발명에 적용 가능한 바인더는 당해 업계에서 공지된 모든 바인더들일 수 있고, 구체적으로는, 폴리비닐리덴 플루오라이드(Polyvinylidene fluoride, PVdF) 또는 폴리테트라플루오로에틸렌(Polytetrafluoroethylene, PTFE)을 포함하는 불소 수지계 바인더; 스티렌-부타디엔 고무, 아크릴로니트릴-부티디엔 고무, 스티렌-이소프렌 고무를 포함하는 고무계 바인더; 카르복시메틸셀룰로우즈(CMC), 전분, 히드록시프로필셀룰로우즈, 재생 셀룰로우즈를 포함하는 셀룰로오스계 바인더; 폴리 알코올계 바인더; 폴리에틸렌, 폴리프로필렌를 포함하는 폴리 올레핀계 바인더; 폴리 이미드계 바인더, 폴리 에스테르계 바인더, 실란계 바인더; 로 이루어진 군에서 선택된 1종 또는 2종 이상의 혼합물이거나 공중합체일 수 있으나, 이에 제한되지 않음은 물론이다.
상기 바인더 수지의 함량은 상기 리튬-황 전지용 양극 총중량을 기준으로 0.5 ~ 30 중량%일 수 있으나, 이에만 한정되는 것은 아니다. 상기 바인더 수지의 함량이 0.5 중량% 미만인 경우에는, 양극의 물리적 성질이 저하되어 양극 활물질과 도전재가 탈락할 수 있고, 30 중량%를 초과하는 경우에는 양극에서 활물질과 도전재의 비율이 상대적으로 감소되어 전지 용량이 감소될 수 있다.
리튬-황 전지용 양극 조성물을 슬러리 상태로 제조하기 위한 용매는 건조가 용이해야하며, 바인더를 잘 용해시킬 수 있되, 양극 활물질 및 도전재는 용해시키지 않고 분산 상태로 유지시킬 수 있는 것이 가장 바람직하다. 용매가 양극 활물질을 용해시킬 경우에는 슬러리에서 황의 비중(D = 2.07)이 높기 때문에 황이 슬러리에서 가라앉게 되어 코팅시 집전체에 황이 몰려 도전 네트워크에 문제가 생겨 전지의 작동에 문제가 발생하는 경향이 있다.
본 발명에 따른 용매는 물 또는 유기 용매가 가능하며, 상기 유기 용매는 디메틸포름아미드, 이소프로필알콜, 아세토니트릴, 메탄올, 에탄올, 테트라하이드로퓨란 군으로부터 선택되는 1종 이상을 포함하는 유기 용매가 적용 가능하다.
상기 양극 조성물의 혼합은 통상의 혼합기, 예컨대 레이트스 믹서, 고속 전단 믹서, 호모 믹서 등을 이용하여 통상의 방법으로 교반할 수 있다.
상기 양극 조성물을 집전체에 도포하고, 진공 건조하여 리튬-황 전지용 양극을 형성할 수 있다. 상기 슬러리는 슬러리의 점도 및 형성하고자 하는 양극의 두께에 따라 적절한 두께로 집전체에 코팅할 수 있으며, 바람직하게는 10 내지 300 ㎛ 범위 내에서 적절히 선택할 수 있다.
이때 상기 슬러리를 코팅하는 방법으로 그 제한은 없으며, 예컨대, 닥터 블레이드 코팅(Doctor blade coating), 딥 코팅(Dip coating), 그라비어 코팅(Gravure coating), 슬릿 다이 코팅(Slit die coating), 스핀 코팅(Spin coating), 콤마 코팅(Comma coating), 바 코팅(Bar coating), 리버스 롤 코팅(Reverse roll coating), 스크린 코팅(Screen coating), 캡 코팅(Cap coating) 방법 등을 수행하여 제조할 수 있다.
상기 양극 집전체로는 일반적으로 3 ~ 500 ㎛의 두께로 만들 수 있고, 전지에 화학적 변화를 유발하지 않으면서 높은 도전성을 가지는 것이라면 특히 제한하지 않는다. 예컨대 스테인레스 스틸, 알루미늄, 구리, 티타늄 등의 전도성 금속을 사용할 수 있고, 바람직하게는 알루미늄 집전체를 사용할 수 있다. 이러한 양극 집전체는 필름, 시트, 호일, 네트, 다공질체, 발포체 또는 부직포체 등 다양한 형태가 가능하다.
리튬-황 전지
본 발명의 일 실시예로서, 리튬-황 전지는 상술한 리튬-황 전지용 양극; 음극 활물질로서 리튬 금속 또는 리튬 합금을 포함하는 음극; 상기 양극과 음극 사이에 개재되는 분리막; 및 상기 음극, 양극 및 분리막에 함침되어 있으며, 리튬염과 유기용매를 포함하는 전해질을 포함할 수 있다.
상기 음극은 음극 활물질로서 리튬 이온(Li+)을 가역적으로 인터칼레이션(Intercalation) 또는 디인터칼레이션(Deintercalation)할 수 있는 물질, 리튬 이온과 반응하여 가역적으로 리튬 함유 화합물을 형성할 수 있는 물질, 리튬 금속 또는 리튬 합금을 사용할 수 있다. 상기 리튬 이온을 가역적으로 인터칼레이션 또는 디인터칼레이션할 수 있는 물질은 예컨대 결정질 탄소, 비정질 탄소 또는 이들의 혼합물일 수 있다. 상기 리튬 이온과 반응하여 가역적으로 리튬 함유 화합물을 형성할 수 있는 물질은 예를 들어, 산화주석, 티타늄나이트레이트 또는 실리콘일 수 있다. 상기 리튬 합금은 예를 들어, 리튬과 Na, K, Rb, Cs, Fr, Be, Mg, Ca, Sr, Ba, Ra, Al 및 Sn으로 이루어지는 군에서 선택되는 금속의 합금일 수 있다.
또한, 리튬-황 전지를 충·방전하는 과정에서, 양극 활물질로 사용되는 황이 비활성 물질로 변화되어, 리튬 음극 표면에 부착될 수 있다. 이와 같이 비활성 황(Inactive sulfur)은 황이 여러 가지 전기화학적 또는 화학적 반응을 거쳐 양극의 전기화학 반응에 더 이상 참여할 수 없는 상태의 황을 의미하며, 리튬 음극 표면에 형성된 비활성 황은 리튬 음극의 보호막(Protective layer)으로서 역할을 하는 장점도 있다. 따라서, 리튬 금속과 이 리튬 금속 위에 형성된 비활성 황, 예를 들어 리튬 설파이드를 음극으로 사용할 수도 있다.
본 발명의 음극은 상기 음극 활물질 이외에 리튬 이온 전도성 물질로 이루어진 전처리층 및 상기 전처리층 상에 형성된 리튬 금속 보호층을 추가적으로 더 포함할 수 있다.
상기 양극과 음극 사이에 개재되는 분리막은 양극과 음극을 서로 분리 또는 절연시키고, 양극과 음극 사이에 리튬 이온의 수송을 가능하게 하는 것으로 다공성 비전도성 또는 절연성 물질로 이루어질 수 있다. 이러한 분리막은 높은 이온 투과도 및 기계적 강도를 가지는 절연체로서 얇은 박막 또는 필름과 같은 독립적인 부재일 수도 있고, 양극 및/또는 음극에 부가된 코팅층일 수도 있다. 또한 전해질로서 폴리머 등의 고체 전해질이 사용되는 경우에는 고체 전해질이 분리막을 겸할 수도 있다.
상기 분리막의 기공 직경은 일반적으로 0.01 ~ 10 ㎛이고, 두께는 일반적으로 5 ~ 300 ㎛이 바람직하며, 이러한 분리막으로는, 유리 전해질(Glass electrolyte), 고분자 전해질 또는 세라믹 전해질 등이 사용될 수 있다. 예컨대 내화학성 및 소수성의 폴리프로필렌 등의 올레핀계 폴리머, 유리섬유 또는 폴리에틸렌 등으로 만들어진 시트나 부직포, 크라프트지 등이 사용된다. 현재 시판중인 대표적인 예로는 셀가드 계열(CelgardR 2400, 2300 Hoechest Celanese Corp. 제품), 폴리프로필렌 분리막(Ube Industries Ltd. 제품 또는 Pall RAI사 제품), 폴리에틸렌 계열(Tonen 또는 Entek) 등이 있다.
고체 상태의 전해질 분리막은 약 20 중량% 미만의 비수성 유기 용매를 포함할 수도 있으며, 이 경우에는 유기 용매의 유동성을 줄이기 위하여 적절한 겔 형성 화합물(Gelling agent)을 더 포함할 수도 있다. 이러한 겔 형성 화합물의 대표적인 예로는 폴리에틸렌옥사이드, 폴리비닐리덴플루라이드, 폴리아크릴로니트릴 등을 들 수 있다.
상기 음극, 양극 및 분리막에 함침되어 있는 전해질은 리튬염을 함유하는 비수계 전해질로서 리튬염과 전해액으로 구성되어 있으며, 전해액으로는 비수계 유기용매, 유기 고체 전해질 및 무기 고체 전해질 등이 사용된다.
본 발명의 리튬염은 비수계 유기용매에 용해되기 좋은 물질로서, 예컨대, LiSCN, LiCl, LiBr, LiI, LiPF6, LiBF4, LiSbF6, LiAsF6, LiB10Cl10, LiCH3SO3, LiCF3SO3, LiCF3CO2, LiClO4, LiAlCl4, Li(Ph)4, LiC(CF3SO2)3, LiN(FSO2)2, LiN(CF3SO2)2, LiN(C2F5SO2)2, LiN(SFO2)2, LiN(CF3CF2SO2)2, 클로로 보란 리튬, 저급 지방족 카르본산 리튬, 4 페닐 붕산 리튬, 리튬 이미드 및 이들의 조합으로 이루어진 군으로부터 하나 이상이 포함될 수 있다.
상기 리튬염의 농도는, 전해질 혼합물의 정확한 조성, 염의 용해도, 용해된 염의 전도성, 전지의 충전 및 방전 조건, 작업 온도 및 리튬 배터리 분야에 공지된 다른 요인과 같은 여러 요인에 따라, 0.2 ~ 2 M, 구체적으로 0.6 ~ 2 M, 더욱 구체적으로 0.7 ~ 1.7 M일 수 있다. 0.2 M 미만으로 사용하면 전해질의 전도도가 낮아져서 전해질 성능이 저하될 수 있고, 2 M을 초과하여 사용하면 전해질의 점도가 증가하여 리튬 이온(Li+)의 이동성이 감소될 수 있다.
상기 비수계 유기용매는 리튬염을 잘 용해시켜야 하며, 본 발명의 비수계 유기용매로는, 예컨대, N-메틸-2-피롤리디논, 프로필렌 카보네이트, 에틸렌 카보네이트, 부틸렌 카보네이트, 디메틸 카보네이트, 디에틸 카보네이트, 에틸메틸 카보네이트, 감마-부티로락톤, 1,2-디메톡시 에탄, 1,2-디에톡시 에탄, 테트라히드록시 프랑(franc), 2-메틸 테트라하이드로푸란, 디메틸술폭시드, 1,3-디옥소란, 4-메틸-1,3-디옥센, 디에틸에테르, 포름아미드, 디메틸포름아미드, 디옥소란, 아세토니트릴, 니트로메탄, 포름산 메틸, 초산메틸, 인산 트리에스테르, 트리메톡시 메탄, 디옥소란 유도체, 설포란, 메틸 설포란, 1,3-디메틸-2-이미다졸리디논, 프로필렌 카보네이트 유도체, 테트라하이드로푸란 유도체, 에테르, 피로피온산 메틸, 프로피온산 에틸 등의 비양자성 유기용매가 사용될 수 있으며, 상기 유기 용매는 하나 또는 둘 이상의 유기 용매들의 혼합물일 수 있다.
상기 유기 고체 전해질로는, 예컨대, 폴리에틸렌 유도체, 폴리에틸렌 옥사이드 유도체, 폴리프로필렌 옥사이드 유도체, 인산 에스테르 폴리머, 폴리 에지테이션 리신(Agitation lysine), 폴리에스테르 설파이드, 폴리비닐 알코올, 폴리 불화 비닐리덴, 이온성 해리기를 포함하는 중합체 등이 사용될 수 있다.
상기 무기 고체 전해질로는, 예컨대, Li3N, LiI, Li5NI2, Li3N-LiI-LiOH, LiSiO4, LiSiO4-LiI-LiOH, Li2SiS3, Li4SiO4, Li4SiO4-LiI-LiOH, Li3PO4-Li2S-SiS2 등의 Li의 질화물, 할로겐화물, 황산염 등이 사용될 수 있다.
본 발명의 전해질에는 충·방전 특성, 난연성 등의 개선을 목적으로, 예컨대, 피리딘, 트리에틸포스파이트, 트리에탄올아민, 환상 에테르, 에틸렌 디아민, n-글라임(glyme), 헥사 인산 트리 아미드, 니트로벤젠 유도체, 유황, 퀴논 이민 염료, N-치환 옥사졸리디논, N,N-치환 이미다졸리딘, 에틸렌 글리콜 디알킬 에테르, 암모늄염, 피롤, 2-메톡시 에탄올, 삼염화 알루미늄 등이 첨가될 수도 있다. 경우에 따라서는, 불연성을 부여하기 위하여, 사염화탄소, 삼불화에틸렌 등의 할로겐 함유 용매를 더 포함시킬 수도 있고, 고온 보존 특성을 향상시키기 위하여 이산화탄산 가스를 더 포함시킬 수도 있으며, FEC(Fluoro-ethylene carbonate), PRS(Propene sultone), FPC(Fluoro-propylene carbonate) 등을 더 포함시킬 수 있다.
상기 전해질은 액상 전해질로 사용할 수도 있고, 고체 상태의 전해질 세퍼레이터 형태로도 사용할 수 있다. 액상 전해질로 사용할 경우에는 전극을 물리적으로 분리하는 기능을 갖는 물리적인 분리막으로서 다공성 유리, 플라스틱, 세라믹 또는 고분자 등으로 이루어진 분리막을 더 포함한다.
전술한 바의 리튬-황 전지의 형태는 특별히 제한되지 않으며, 예를 들어 젤리-롤형, 스택형, 스택-폴딩형(스택-Z-폴딩형 포함), 또는 라미네이션-스택 형일 수 있으며, 바람직하기로 스택-폴딩형일 수 있다.
이러한 상기 양극, 분리막, 및 음극이 순차적으로 적층된 전극 조립체를 제조한 후, 이를 전지 케이스에 넣은 다음, 케이스의 상부에 전해액을 주입하고 캡 플레이트 및 가스켓으로 밀봉하여 조립하여 리튬-황 전지를 제조한다.
상기 리튬-황 전지는 형태에 따라 원통형, 각형, 코인형, 파우치형 등으로 분류될 수 있으며, 사이즈에 따라 벌크 타입과 박막 타입으로 나눌 수 있다. 이들 전지의 구조와 제조 방법은 이 분야에 널리 알려져 있으므로 상세한 설명은 생략한다.
이하에서 실시예 등을 통해 본 발명을 더욱 상세히 설명하고자 하며, 다만 이하에 실시예 등에 의해 본 발명의 범위와 내용이 축소되거나 제한되어 해석될 수 없다. 또한, 이하의 실시예를 포함한 본 발명의 개시 내용에 기초한다면, 구체적으로 실험 결과가 제시되지 않은 본 발명을 통상의 기술자가 용이하게 실시할 수 있음은 명백한 것이며, 이러한 변형 및 수정이 첨부된 특허청구범위에 속하는 것도 당연하다.
[제조예] 양극 활물질의 제조
탄소재로 탄소나노튜브(CNT) 0.035 g 를 분산매인 증류수와 에탄올 혼합 용매 (1:5 부피비)에 분산하여 분산제로 폴리비닐피롤리돈(Polyvinylpyrrolidone, PVP)가 포함된 탄소나노튜브 분산액을 제조하였다. 황-탄소 복합체(황/탄소 8:2 중량비) 3.5 g을 상기 탄소나노튜브 분산액에 첨가한 뒤, 유발로 섞어 황-탄소 복합체 표면에 탄소나노튜브 코팅층을 형성하였다. 이후 컨벡션 오븐에서 80 ℃, 18 시간동안 건조하고 상기 혼합 용매를 제거하여 탄소나노튜브 코팅층이 형성된 양극 활물질을 제조하였다.
[실시예 1] 리튬-황 전지의 제조
용매로서 증류수(de-ionized water; DIW)에 상기 제조예에서 제조한 양극 활물질 88 중량부, 도전재로 VGCF(Vapor Grown Carbon Fiber)를 5 중량부, 바인더로 리튬 치환된 폴리아크릴아미드(lithiated polyacrylamide, LiPAA)/폴리비닐알코올(polyvinylalcohol, PVA) (LiPAA/PVA: 6.5:0.5) 7 중량부를 투입하고 믹싱하여 양극 활물질용 슬러리 조성물을 제조하였다.
이어서 상기 제조된 슬러리 조성물을 집전체(Al Foil, 20 ㎛) 상에 코팅하고 50℃ 에서 12시간 동안 건조하여 리튬-황 전지용 양극을 제조하였다. 이때 로딩양은 3.5mAh/cm2이고, 전극의 공극률(porosity)은 60%로 하였다.
이후 상술한 바에 따라 제조된 양극, 음극으로 리튬금속, 분리막 및 전해액을 포함한 리튬-황 전지의 코인셀을 하기와 같이 제조하였다. 상기 전해액으로 2-메틸 테트라하이드로퓨란(THF), 디옥솔란(DOL) 및 디메틸에테르(DME)의 부피비가 1:1:1 의 조성을 갖는 비수성 유기 용매에 1.0M의 LiN(CF3SO2)2 (LiFSI) 및 LiNO3 0.1M 를 포함하는 혼합 용액을 사용하였다. 구체적으로, 상기 양극은 14 phi 원형 전극으로 타발하여 사용하였으며, 폴리에틸렌(PE) 분리막은 19 phi, 150 ㎛ 리튬 금속은 음극으로서 16 phi로 타발하여 사용하였다.
[비교예 1] 리튬-황 전지의 제조
양극 활물질로 CNT로 코팅되지 않은 황-탄소 복합체 88 중량부, 도전재로 VGCF(Vapor Grown Carbon Fiber)을 5 중량부, 바인더로 리튬 치환된 폴리아크릴아미드(lithiated polyacrylamide, LiPAA)/폴리비닐알코올(polyvinylalcohol, PVA) (LiPAA/PVA: 6.5:0.5) 7 중량부를 사용한 것을 제외하고는, 상기 실시예 1과 동일하게 하여 리튬-황 전지를 제조하였다.
[비교예 2] 리튬-황 전지의 제조
양극 활물질로 CNT로 코팅되지 않은 황-탄소 복합체 88 중량부, 도전재로 VGCF(Vapor Grown Carbon Fiber)을 3 중량부, 바인더로 리튬 치환된 폴리아크릴아미드(lithiated polyacrylamide, LiPAA)/폴리비닐알코올(polyvinylalcohol, PVA) (LiPAA/PVA: 6.5:0.5) 7 중량부 및 첨가제로 CNT 2 중량부를 사용한 것을 제외하고는, 상기 실시예 1과 동일하게 하여 리튬-황 전지를 제조하였다.
[비교예 3] 리튬-황 전지의 제조
탄소재로 탄소나노튜브(CNT) 1 g, 황-탄소 복합체(황/탄소 8:2 중량비) 100 g을 건식 혼합장비(Nobilta, Hosokawa 社)에 투입하고 1,500 rpm의 속도로 20 분 동안 혼합하여 양극 활물질을 제조하여 사용한 것을 제외하고는, 상기 실시예 1과 동일하게 하여 리튬-황 전지를 제조하였다.
[실험예 1] SEM (Scanning Electron Microscope) 분석
실시예 및 비교예 1 내지 3에 따른 양극 활물질에 대하여 배율을 각각 20k 로 하여 SEM 분석(Hitachi社의 S-4800 FE-SEM)을 실시하였다.
도 2는 실시예 1에 따른 양극 활물질의 SEM 이미지이고, 도 3 내지 5는 각각 비교예 1 내지 3에 대한 SEM 이미지이다.
도 2를 보면 본 발명의 실시예 1에 따른 습식 공정으로 코팅층을 형성한 결과, CNT가 황-탄소 복합체 표면에 고르게 코팅된 것을 알 수 있었다.
도 3의 경우, 비교예 1에 따른 것으로 탄소재 코팅층이 형성되지 않아 황-탄소 복합체의 표면이 드러난 것을 확인할 수 있었다.
도 4 및 5의 경우, 각각 비교예 2 및 3에 따른 것으로 CNT가 불균일하게 코팅되어 황-탄소 복합체의 표면이 드러난 것을 확인할 수 있었다.
[실험예 2] 리튬-황 저지 방전용량 비교실험
상기 실시예 1, 비교예 1 내지 3에서 제조된 코인셀에 대하여, 충전전류 0.1C, 전압 1.8에서 2.5V까지의 방전용량을 측정하여 표 1 및 도 1 에 나타내었다.
방전용량 [mAh/g]
실시예 1 1,124
비교예 1 1,028
비교예 2 1,032
비교예 3 956
표 1 및 도 1에 나타난 바와 같이, 실시예 1의 경우 비교예 1 내지 3에 비해 탄소재가 황-탄소 복합체 표면에 위치함으로써 충, 방전 과정 중에 반응에 쉽게 참여할 수 있게 되어 과전압이 개선되고 방전 용량이 향상된 것을 알 수 있었다.
특히 비교예 2는 도 2에 나타난 바와 같이 탄소재가 리튬-황 전지용 양극 내에 무작위로 분포되어 있는 구조를 가지게 되는데, 황-탄소 복합체 표면에 위치하지 않은 탄소재의 경우 전도성이 매우 낮은 탄소재가 반응에 참여하지 못하게 되어 전지의 저항 성분으로 작용하고, 저항이 커질 경우 전지에 과전압이 걸리고 노미널 전압이 감소하게 된다.
[실험예 3] 리튬-황 전지의 수명특성 비교실험
상기 실시예 및 비교예 1 내지 3에서 제조된 리튬-황 전지를 이용하여 전지의 사이클에 따른 수명 특성을 측정하여 도 7에 나타내었다. 측정은 전압 범위 1.8 ~ 2.5V에서, 0.1C 방전/0.1C 충전 3 Cycle, 0.2C 방전/0.2C 충전 3 Cycle, 이후 0.5C 방전/0.3C 충전을 반복하여 실시하였다.
비교예 1에 따른 전지의 경우 40 사이클 부근에서 전지가 퇴화하였고, 비교예 2의 경우에는 70 사이클 부근에서 전지가 퇴화하였으며, 비교예 3의 경우에는 60 사이클 부근에서 전지가 퇴화한 반면, 실시예 1에 따른 전지의 경우 110 사이클 이상에서도 전지가 퇴화하지 않음을 확인할 수 있었다.
결과적으로 탄소재가 코팅된 양극 활물질을 포함하는 리튬-황 전지의 경우 0.5 C의 고율 방전 용량이 증가하고 사이클에 따른 수명 특성이 우수함을 알 수 있었다.

Claims (16)

  1. 황-탄소 복합체; 및
    상기 황-탄소 복합체의 표면에 위치하고 탄소재를 포함하는 코팅층;을 포함하는 리튬-황 전지용 양극 활물질.
  2. 청구항 1에 있어서, 상기 코팅층에 포함된 탄소재의 함량은 황-탄소 복합체 100 중량부에 대하여 1 내지 5 중량부인 리튬-황 전지용 양극 활물질.
  3. 청구항 1에 있어서, 상기 코팅층에 포함된 탄소재의 함량은 황-탄소 복합체 100 중량부에 대하여 1 내지 3 중량부인 리튬-황 전지용 양극 활물질.
  4. 청구항 1에 있어서, 상기 코팅층의 두께는 500 nm 내지 2 ㎛ 인 리튬-황 전지용 양극 활물질.
  5. 청구항 1에 있어서, 상기 탄소재는 탄소나노튜브, 탄소나노섬유, 탄소나노리본, 탄소나노벨트, 및 탄소나노막대, 그래핀, 그래핀옥사이드, 환원된 그래핀옥사이드, 카본블랙, 활성탄 및 메조포러스 카본으로 이루어진 군에서 선택되는 어느 하나 이상인 것을 특징으로 하는 리튬-황 전지용 양극 활물질.
  6. 청구항 5에 있어서, 상기 탄소나노튜브는 직경이 5 내지 50 nm이고, 길이가 500 nm 내지 10 ㎛ 인 것을 특징으로 하는 리튬-황 전지용 양극 활물질.
  7. 청구항 1에 있어서, 상기 황-탄소 복합체는 황-탄소 복합체 100 중량부 대비 70 내지 90 중량부의 황을 포함하는 리튬-황 전지용 양극 활물질.
  8. 청구항 1에 있어서, 상기 황-탄소 복합체는 그 입자의 크기가 10 내지 50 ㎛인 리튬-황 전지용 양극 활물질.
  9. 청구항 1 내지 8 중 어느 한 항에 따른 리튬-황 전지용 양극 활물질, 바인더 및 도전재를 포함하는 리튬-황 전지용 양극.
  10. 청구항 9의 리튬-황 전지용 양극; 음극; 및 상기의 양극과 음극 사이에 개재된 분리막;을 포함하는 리튬-황 전지.
  11. 탄소재 및 황-탄소 복합체 중 어느 하나 이상을 분산매에 분산시킨 후 습식 혼합하여, 상기 황-탄소 복합체의 표면에 탄소재를 포함하는 코팅층을 형성하는 단계;를 포함하는 리튬-황 전지용 양극 활물질의 제조방법.
  12. 청구항 11에 있어서, 상기 탄소재 및 황-탄소 복합체 중 어느 하나만이 분산매에 분산되어 분산액이 제조되고, 분산되지 않은 나머지 하나를 상기 분산액에 투입한 후 습식 혼합하여, 상기 황-탄소 복합체의 표면에 탄소재를 포함하는 코팅층을 형성하는 것을 특징으로 하는, 리튬-황 전지용 양극 활물질의 제조방법.
  13. 청구항 11에 있어서, 상기 탄소재를 분산매에 분산시켜 탄소재 분산액이 제조되고, 황-탄소 복합체를 상기 탄소재 분산액에 투입하고 습식 혼합하여, 상기 황-탄소 복합체의 표면에 탄소재를 포함하는 코팅층을 형성하는 것을 특징으로 하는, 리튬-황 전지용 양극 활물질의 제조방법.
  14. 청구항 11에 있어서, 상기 코팅층에 포함된 탄소재의 함량은 황-탄소 복합체 100 중량부에 대하여 1 내지 5 중량부인 리튬-황 전지용 양극 활물질의 제조방법.
  15. 청구항 11에 있어서, 상기 탄소재는 탄소나노튜브, 탄소나노섬유, 탄소나노리본, 탄소나노벨트, 및 탄소나노막대, 그래핀, 그래핀옥사이드, 환원된 그래핀옥사이드, 카본블랙, 활성탄 및 메조포러스 카본으로 이루어진 군에서 선택되는 어느 하나 이상인 것을 특징으로 하는 리튬-황 전지용 양극 활물질의 제조방법.
  16. 청구항 11에 있어서, 상기 분산매는 물, 알코올계 화합물, 케톤계 화합물 및 에테르계 화합물로 이루어진 군으로부터 선택되는 어느 하나 또는 둘 이상의 혼합물인 것을 특징으로 하는 리튬-황 전지용 양극 활물질의 제조방법.
PCT/KR2019/004384 2018-04-30 2019-04-11 리튬-황 전지용 양극 활물질 및 그 제조방법 WO2019212161A1 (ko)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2018-0049859 2018-04-30
KR20180049859 2018-04-30
KR10-2019-0040177 2019-04-05
KR1020190040177A KR102244916B1 (ko) 2018-04-30 2019-04-05 리튬-황 전지용 양극 활물질 및 그 제조방법

Publications (1)

Publication Number Publication Date
WO2019212161A1 true WO2019212161A1 (ko) 2019-11-07

Family

ID=68386061

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/004384 WO2019212161A1 (ko) 2018-04-30 2019-04-11 리튬-황 전지용 양극 활물질 및 그 제조방법

Country Status (1)

Country Link
WO (1) WO2019212161A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111180701A (zh) * 2020-01-06 2020-05-19 深圳大学 一种锂硫电池正极材料及其制备方法
CN111211289A (zh) * 2020-03-17 2020-05-29 天津市捷威动力工业有限公司 复合正极、免集流体复合电极结构及其制备方法和电池

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103560235A (zh) * 2013-11-15 2014-02-05 哈尔滨工业大学 石墨烯包覆的硫/多孔碳复合正极材料及其制备方法
CN104064738A (zh) * 2014-06-27 2014-09-24 哈尔滨工业大学 石墨烯包覆硫/多孔碳复合正极材料的水热制备方法
KR20160037084A (ko) * 2014-09-26 2016-04-05 주식회사 엘지화학 황-탄소나노튜브 복합체, 이의 제조방법, 이를 포함하는 리튬-황 전지용 캐소드 활물질 및 이를 포함한 리튬-황 전지
KR20160038724A (ko) * 2014-09-30 2016-04-07 주식회사 엘지화학 리튬-설퍼 전지용 양극 활물질 및 이의 제조 방법

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103560235A (zh) * 2013-11-15 2014-02-05 哈尔滨工业大学 石墨烯包覆的硫/多孔碳复合正极材料及其制备方法
CN104064738A (zh) * 2014-06-27 2014-09-24 哈尔滨工业大学 石墨烯包覆硫/多孔碳复合正极材料的水热制备方法
KR20160037084A (ko) * 2014-09-26 2016-04-05 주식회사 엘지화학 황-탄소나노튜브 복합체, 이의 제조방법, 이를 포함하는 리튬-황 전지용 캐소드 활물질 및 이를 포함한 리튬-황 전지
KR20160038724A (ko) * 2014-09-30 2016-04-07 주식회사 엘지화학 리튬-설퍼 전지용 양극 활물질 및 이의 제조 방법

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
C HEN, SHANLANG: "Controllable graphene coated mesoporous carbon/sulfur composite for lithium-sulfur batteries", RSC ADVANCES, vol. 5, no. 90, 21 August 2015 (2015-08-21), pages 74138 - 74143 *
ZHANG, ZE: "Encapsulating sulfur into a hybrid porous carbon/CNT substrate as a cathode for lithium-sulfur batteries", JOURNAL OF MATERIALS CHEMISTRY A, vol. 3, no. 13, 6 February 2015 (2015-02-06), pages 6827 - 6834, XP055649230 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111180701A (zh) * 2020-01-06 2020-05-19 深圳大学 一种锂硫电池正极材料及其制备方法
CN111180701B (zh) * 2020-01-06 2022-07-05 深圳大学 一种锂硫电池正极材料及其制备方法
CN111211289A (zh) * 2020-03-17 2020-05-29 天津市捷威动力工业有限公司 复合正极、免集流体复合电极结构及其制备方法和电池

Similar Documents

Publication Publication Date Title
WO2018164413A1 (ko) 탄소-황 복합체, 이의 제조방법, 이를 포함하는 양극 및 리튬-황 전지
WO2019103326A2 (ko) 황-탄소 복합체, 그의 제조방법 및 이를 포함하는 리튬 이차전지
WO2020045854A1 (ko) 이황화몰리브덴을 포함하는 탄소나노구조체의 제조방법, 이로부터 제조된 이황화몰리브덴을 포함하는 탄소나노구조체를 포함하는 리튬 이차전지용 양극 및 이를 구비한 리튬 이차전지
WO2017131377A1 (ko) 폴리도파민을 포함하는 복합 코팅층이 형성된 리튬-황 전지용 분리막, 이의 제조방법 및 이를 포함하는 리튬-황 전지
KR101990615B1 (ko) 금속 나노입자를 포함하는 양극 활물질 및 양극, 이를 포함하는 리튬-황 전지
WO2018084449A2 (ko) 황-탄소 복합체 및 이를 포함하는 리튬-황 전지
KR102244916B1 (ko) 리튬-황 전지용 양극 활물질 및 그 제조방법
WO2019132394A1 (ko) 리튬-황 전지용 바인더, 이를 포함하는 양극 및 리튬-황 전지
WO2019088475A1 (ko) 황-탄소 복합체 및 이를 포함하는 리튬-황 전지
WO2014148819A1 (ko) 저저항 전기화학소자용 전극, 그의 제조방법 및 상기 전극을 포함하는 전기화학소자
WO2019088628A2 (ko) 황-탄소 복합체, 그의 제조방법 및 이를 포함하는 리튬 이차전지
WO2019103409A1 (ko) 황-탄소 복합체의 제조방법
WO2019088630A2 (ko) 황-탄소 복합체 및 그의 제조방법
WO2017052246A1 (ko) 금속 나노입자를 포함하는 양극 활물질 및 양극, 이를 포함하는 리튬-황 전지
WO2019107752A1 (ko) 황-탄소 복합체, 그의 제조방법 및 이를 포함하는 리튬 이차전지
KR20200049685A (ko) 황-탄소 복합체, 이의 제조방법 및 이를 포함하는 리튬 이차전지
WO2020009332A1 (ko) 황-탄소 복합체, 이의 제조방법, 이를 포함하는 리튬-황 전지용 양극 및 리튬-황 전지
WO2019212161A1 (ko) 리튬-황 전지용 양극 활물질 및 그 제조방법
WO2020166871A1 (ko) 리튬 이차전지용 양극 활물질
WO2022045852A1 (ko) 음극 및 상기 음극을 포함하는 이차 전지
WO2018097695A1 (ko) 금속 황화물 나노입자를 포함하는 리튬-황 전지용 양극 활물질 및 이의 제조방법
WO2020060199A1 (ko) 황화철의 제조방법, 이로부터 제조된 황화철을 포함하는 리튬 이차전지용 양극 및 이를 구비한 리튬 이차전지
WO2019198949A1 (ko) 인화철의 제조방법, 인화철을 포함하는 리튬 이차전지용 양극 및 이를 구비한 리튬 이차전지
WO2020013482A1 (ko) 옥시수산화질산철의 제조방법, 이로부터 제조된 옥시수산화질산철을 포함하는 리튬 이차전지용 양극 및 이를 구비한 리튬 이차전지
WO2020009333A1 (ko) 황-탄소 복합체, 이의 제조방법, 이를 포함하는 리튬-황 전지용 양극 및 리튬-황 전지

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19797048

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19797048

Country of ref document: EP

Kind code of ref document: A1