WO2019107815A1 - 리튬 이차전지의 양극 제조용 바인더 및 이를 사용한 양극의 제조방법 - Google Patents

리튬 이차전지의 양극 제조용 바인더 및 이를 사용한 양극의 제조방법 Download PDF

Info

Publication number
WO2019107815A1
WO2019107815A1 PCT/KR2018/014138 KR2018014138W WO2019107815A1 WO 2019107815 A1 WO2019107815 A1 WO 2019107815A1 KR 2018014138 W KR2018014138 W KR 2018014138W WO 2019107815 A1 WO2019107815 A1 WO 2019107815A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium
polyacrylic acid
weight
binder
positive electrode
Prior art date
Application number
PCT/KR2018/014138
Other languages
English (en)
French (fr)
Inventor
이충현
양두경
김택경
이주형
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020180095216A external-priority patent/KR102244914B1/ko
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to EP18883221.6A priority Critical patent/EP3712994A4/en
Priority to US16/768,263 priority patent/US11563215B2/en
Priority to CN201880076924.6A priority patent/CN111433951B/zh
Priority to JP2020529203A priority patent/JP7046182B2/ja
Publication of WO2019107815A1 publication Critical patent/WO2019107815A1/ko
Priority to US18/084,261 priority patent/US12057584B2/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a binder for producing a positive electrode of a lithium secondary battery and a method for producing the positive electrode using the same. Specifically, the present invention relates to a binder for producing a positive electrode of a lithium secondary battery comprising two or more kinds of lithium-substituted polyacrylic acid having different molecular weights and a method for producing the positive electrode using the same.
  • Lithium-ion secondary batteries with a relatively low weight-to-weight energy storage density ( ⁇ 250 Wh / kg), as applied areas of secondary batteries expand to EVs and energy storage devices (ESS) There are limits to the application.
  • lithium-sulfur batteries among lithium secondary batteries are theoretically attracting attention as next generation secondary battery technology because they can achieve an energy storage density ( ⁇ 2,600 Wh / kg) as compared to a theoretical weight.
  • the lithium-sulfur battery means a battery system using a sulfur-based material having S-S bond (Sulfur-Sulfur Bond) as a cathode active material and using lithium metal as an anode active material.
  • Sulfur which is a main material of the cathode active material, is rich in resources worldwide, has no toxicity, and has a low atomic weight.
  • lithium which is a negative electrode active material, releases electrons and is oxidized while being ionized, and a sulfur-based material as a cathode active material receives electrons and is reduced.
  • the oxidation reaction of lithium is a process in which lithium metal releases electrons and is converted into a lithium cation form.
  • the reduction reaction of sulfur is a process in which the SS bond accepts two electrons to be converted into a sulfur anion form. The lithium cations produced by the oxidation reaction of lithium are transferred to the anode through the electrolyte, and bind to the sulfur anion generated by the reduction reaction of sulfur to form salts.
  • sulfur prior to discharge has a cyclic S 8 structure, which is converted to lithium polysulfide (LiS x ) by a reduction reaction.
  • lithium polysulfide LiS x
  • Li 2 S lithium sulfide
  • lithium-sulfur batteries have advantages of high energy storage density, there are various problems in actual application. Specifically, there may be a problem of instability of a lithium metal used as a cathode, a problem of low conductivity of an anode, a problem of sublimation of a sulfur-based material at the time of manufacturing an electrode, and a loss of sulfur-based materials at the time of repetitive charging and discharging.
  • Conventional lithium-sulfur battery positive electrodes were prepared by using styrene butadiene rubber / carboxymethyl cellulose (SBR / CMC) as a binder.
  • SBR / CMC carboxymethyl cellulose
  • the binder does not have a thickener such as CMC, the dispersibility is decreased, and the long-term stability is deteriorated due to deterioration of the anode due to charge / discharge progress.
  • Patent Document 1 Korean Patent No. 10-1583948
  • the present invention uses a binder containing two or more kinds of lithium-substituted polyacrylic acids having different molecular weights, so that the solid content of the slurry is high and the flowability of the slurry is increased, which is capable of improving the adhesiveness and cycle characteristics of the electrode when applied to a lithium secondary battery.
  • the present invention provides a binder for producing a positive electrode of a lithium secondary battery comprising two or more kinds of lithium-substituted polyacrylic acids having different molecular weights.
  • the lithium-substituted polyacrylic acid includes two types of lithium-substituted polyacrylic acid having a weight-average molecular weight difference of 500,000 or more.
  • the lithium substituted polyacrylic acid comprises a high molecular weight lithium substituted polyacrylic acid having a weight average molecular weight of 1,000,000 to 2,000,000.
  • the high molecular weight lithium-substituted polyacrylic acid includes 20 to 70% by weight based on the total lithium-substituted polyacrylic acid.
  • the lithium substituted polyacrylic acid comprises a low molecular weight lithium substituted polyacrylic acid having a weight average molecular weight of 5,000 to 800,000.
  • the low-molecular-weight lithium-substituted polyacrylic acid includes 30 to 80% by weight based on the total lithium-substituted polyacrylic acid.
  • the binder has a viscosity of 500 to 50,000 cP in an aqueous solution of 2.5% by weight under a temperature condition of 25 ⁇ .
  • the present invention provides a composition for preparing a positive electrode of a lithium secondary battery comprising a binder, a positive electrode active material, and a conductive material.
  • the composition comprises 0.01 to 10 parts by weight of a binder based on 100 parts by weight of the solid content in the composition.
  • the composition comprises 30 to 95 parts by weight of the cathode active material per 100 parts by weight of the solid content in the composition.
  • the composition comprises 2 to 65 parts by weight of a conductive material based on 100 parts by weight of the solid content in the composition.
  • the present invention provides a positive electrode comprising a current collector and a positive electrode active material layer formed by applying the composition described above on the current collector.
  • the present invention provides a lithium secondary battery comprising the above-described positive electrode.
  • the present invention provides a binder comprising two or more lithium-substituted polyacrylic acids having different molecular weights.
  • the lithium-substituted polyacrylic acid having a relatively high molecular weight in the lithium-substituted polyacrylic acid can improve the adhesive strength of the binder in the electrode and the life stability in the battery.
  • the lithium-substituted polyacrylic acid having a relatively low molecular weight can improve the workability of the binder by increasing the content and the flowability of the solid content in the slurry. Therefore, the binder according to the present invention exhibits excellent adhesion when applied to a battery, while being easy to process, thereby improving the lifetime characteristics of the lithium secondary battery.
  • the present invention provides a binder for producing a positive electrode of a lithium secondary battery comprising two or more kinds of lithium-substituted polyacrylic acid having different molecular weights.
  • styrene butadiene rubber / carboxymethyl cellulose SBR / CMC
  • Carboxymethylcellulose is an additive used to improve the dispersibility of the binder as a thickener.
  • SBR / CMC carboxymethyl cellulose
  • the dispersibility is decreased and the processability of the binder is lowered.
  • Polyacrylic acid or lithium-substituted polyacrylic acid alone was used in order to secure long-term stability of the positive electrode without adding a thickener or the like.
  • the polyacrylic acid used for improving the performance of the battery has a low concentration in the binder solution due to its high molecular weight and its chemical properties, the solid content is low during the production of the slurry, thereby reducing the fairness of the binder. This reduction in fairness has led to a reduction in the flexibility of the electrode when applied to the electrode.
  • the present invention solves the above problems by properly combining two or more lithium-substituted polyacrylic acids having different molecular weights while using lithium-substituted polyacrylic acid.
  • the lithium substituted polyacrylic acid which is the basic material of the binder according to the present invention is a form in which hydrogen of the carboxyl group (COOH) is substituted with lithium in polyacrylic acid.
  • the lithium-substituted polyacrylic acid may be formed through a neutralization reaction by introducing a lithium-containing base into polyacrylic acid. It is preferable that the lithium-substituted polyacrylic acid is formed by completely neutralizing polyacrylic acid by adding a base so that the amount of carboxyl group and lithium of polyacrylic acid is 1: 1 molar ratio. In the case where the polyacrylic acid is not completely neutralized, side reactions may occur due to hydrogen generated from the polyacrylic acid.
  • the binder according to the present invention includes two or more lithium-substituted polyacrylic acids having different molecular weights.
  • the two or more lithium-substituted polyacrylic acids can be largely separated into a lithium-substituted polyacrylic acid having a relatively high molecular weight and a lithium-substituted polyacrylic acid having a relatively low molecular weight.
  • the lithium-substituted polyacrylic acid having a relatively high molecular weight can contribute to an increase in adhesive force of the binder and an improvement in the life stability of the battery.
  • the lithium-substituted polyacrylic acid having a relatively low molecular weight increases the solid content in the preparation of the slurry, Can be increased to contribute to the improvement of the workability of the binder.
  • the lithium-substituted polyacrylic acid having a relatively high molecular weight and the lithium-substituted polyacrylic acid having a relatively low molecular weight may differ in molecular weight from a certain level or higher.
  • the lithium-substituted polyacrylic acid includes two kinds of lithium-substituted polyacrylic acids having a weight average molecular weight of 500,000 or more, preferably 500,000 to 2,000,000, more preferably 500,000 to 800,000, can do.
  • the binder does not contain two kinds of lithium substituted polyacrylic acid having a weight average molecular weight different from each other of 500,000 or more, both the effect of the high molecular weight lithium substituted polyacrylic acid and the effect of the low molecular weight lithium substituted polyacrylic acid it's difficult.
  • the binder according to the present invention may comprise a high molecular weight lithium substituted polyacrylic acid having a weight average molecular weight of 1,000,000 to 2,000,000, preferably 1,250,000 to 1,750,000.
  • the lithium-substituted polyacrylic acid having a high molecular weight has a weight average molecular weight of less than 1,000,000, the improvement effect on the adhesion characteristics of the electrode and the cycle characteristics of the battery is insignificant.
  • the high molecular weight lithium-substituted polyacrylic acid has a weight average molecular weight of more than 2,000,000, the workability of the binder is remarkably lowered and the workability is hardly recovered even by mixing low-molecular weight lithium-substituted polyacrylic acid.
  • the high molecular weight lithium-substituted polyacrylic acid may include 20 to 70% by weight, preferably 25 to 50% by weight, based on the total lithium-substituted polyacrylic acid.
  • the content of the high molecular weight lithium-substituted polyacrylic acid is less than 20% by weight, the adhesion of the binder and the cycle performance of the battery are significantly deteriorated.
  • the high-molecular weight lithium-substituted polyacrylic acid is more than 70% by weight, .
  • the binder according to the present invention may comprise a low molecular weight lithium substituted polyacrylic acid having a weight average molecular weight of from 5,000 to 800,000, preferably from 450,000 to 750,000.
  • a low molecular weight lithium substituted polyacrylic acid having a weight average molecular weight of from 5,000 to 800,000, preferably from 450,000 to 750,000.
  • the low-molecular weight lithium-substituted polyacrylic acid has a weight average molecular weight of less than 5,000, it may adversely affect the adhesive properties of the electrode and the cycle performance of the battery.
  • the low-molecular weight lithium-substituted polyacrylic acid has a weight-average molecular weight of more than 800,000, the workability of the binder due to the introduction of the low-molecular weight lithium-substituted polyacrylic acid and the effect of improving the performance of the battery are insignificant.
  • the low-molecular-weight lithium-substituted polyacrylic acid may include 30 to 80 wt%, preferably 50 to 75 wt%, based on the total lithium-substituted polyacrylic acid.
  • the low-molecular weight lithium-substituted polyacrylic acid is less than 30% by weight, the workability of the binder is low and flexibility of the electrode is decreased.
  • the low-molecular weight lithium-substituted polyacrylic acid is more than 80% by weight, Cycle performance is remarkably deteriorated.
  • the binder according to the present invention may have a viscosity of 500 to 50,000 cP, preferably 1,000 to 50,000 cP under the condition of an aqueous solution of 2.5% by weight at a temperature of 25 ° C. Within this viscosity, the binder exhibits high workability and high adhesion Can be achieved.
  • the present invention provides a composition for preparing a positive electrode of a lithium secondary battery comprising the binder, the positive electrode active material and the conductive material.
  • a positive electrode for a lithium secondary battery is prepared by applying the above composition onto a positive electrode current collector.
  • the ratio of the binder in the composition may be selected in consideration of the performance of the desired battery.
  • the composition comprises 0.01 to 10 parts by weight of binder relative to 100 parts by weight of solid content in the composition.
  • the solid content in the composition as a basis of the content means a solid component in the composition excluding a solvent, a monomer that can be contained in the binder, and the like.
  • binders generally used in the related art may be additionally used.
  • exemplary additional binders include fluororesin binders including polyvinylidene fluoride (PVdF) or polytetrafluoroethylene (PTFE), styrene-butadiene rubber, acrylonitrile-butadiene rubber, styrene-isoprene
  • PVdF polyvinylidene fluoride
  • PTFE polytetrafluoroethylene
  • styrene-butadiene rubber acrylonitrile-butadiene rubber
  • styrene-isoprene At least one member selected from the group consisting of rubber-based binders including rubber, polyalcohol-based binders, polyolefin-based binders including polyethylene, polypropylene, polyimide-based binders, polyester-based binder mussel adhesives, silane-based binders, and polyacrylate- A binder may be selected.
  • the ratio of the cathode active material in the composition may be selected in consideration of the performance of the desired battery. According to one embodiment of the present invention, the composition includes 30 to 95 parts by weight of the cathode active material per 100 parts by weight of the solid content in the composition.
  • the positive electrode active material may be any positive electrode active material available in the art for a lithium secondary battery.
  • the cathode active material may be selected from elemental sulfur (S 8 ), a sulfur-carbon composite, a sulfur-based compound, or a mixture thereof, but is not limited thereto .
  • the sulfur-carbon composite is an embodiment of a cathode active material mixed with carbon and sulfur in order to reduce the outflow of sulfur to the electrolyte and increase the electrical conductivity of the electrode containing sulfur.
  • the carbon material constituting the sulfur-carbon composite may be crystalline or amorphous carbon, and may be conductive carbon.
  • Specific examples of the carbon black include graphite, graphene, Super P, carbon black, denka black, acetylene black, ketjen black, channel black, perneic black, lamp black, Carbon nanotubes, carbon nanowires, carbon nanorings, carbon fabrics, and fullerenes (C 60 ).
  • sulfur-carbon composite examples include a sulfur-carbon nanotube composite.
  • the sulfur-carbon nanotube composite includes a carbon nanotube aggregate having a three-dimensional structure and a sulfur or sulfur compound provided on at least a part of the inner and outer surfaces of the carbon nanotube aggregate.
  • the sulfur-carbon nanotube composite according to an embodiment of the present invention has sulfur in the three-dimensional structure of the carbon nanotube, so that even if polysulfide having solubility is generated by an electrochemical reaction, , It is possible to suppress the phenomenon that the anode structure is disintegrated by maintaining the structure entangled in three dimensions even in the case of polysulfide release. As a result, the lithium-sulfur battery including the sulfur-carbon nanotube composite has an advantage that a high capacity can be realized even at high loading.
  • the sulfur or sulfur-based compound may be included in the inner pores of the carbon nanotube aggregate.
  • the carbon nanotube refers to a linear conductive carbon. Specifically, carbon nanotube (CNT), graphitic nanofiber (GNF), carbon nanofiber (CNF), or activated carbon fiber (ACF) , And single wall carbon nanotubes (SWCNTs) or multiwall wall carbon nanotubes (MWCNTs) can be used.
  • CNT carbon nanotube
  • GNF graphitic nanofiber
  • CNF carbon nanofiber
  • ACF activated carbon fiber
  • SWCNTs single wall carbon nanotubes
  • MWCNTs multiwall wall carbon nanotubes
  • the sulfur-carbon composite is prepared by impregnating a sulfur or sulfur-based compound in the outer surface and inside of the carbon, and optionally, before, after or after the impregnating step, . ≪ / RTI >
  • the impregnation may be performed by mixing the carbon and the sulfur or sulfur-based compound powder and then heating to impregnate the molten sulfur or the sulfur-based compound with carbon.
  • the dry ball mill method, the dry jet mill method, A dynomill method can be used.
  • the proportion of the conductive material in the composition may be selected in consideration of the performance of the desired battery.
  • the composition comprises 2 to 65 parts by weight of the conductive material per 100 parts by weight of the solid content in the composition.
  • the conductive material may be graphite such as natural graphite or artificial graphite; Carbon black such as carbon black, acetylene black, ketjen black, channel black, furnace black, lamp black or summer black; Conductive fibers such as carbon fiber or metal fiber; Metal powders such as carbon fluoride, aluminum or nickel powder; Conductive whiskey such as zinc oxide or potassium titanate; Conductive metal oxides such as titanium oxide; Or a polyphenylene derivative, but the present invention is not limited thereto.
  • the composition may further include other components in addition to the binder, the cathode active material and the conductive material.
  • Addi- tional components to the composition include cross-linking agents or conductive dispersants.
  • the crosslinking agent may be a crosslinking agent having two or more functional groups capable of reacting with the crosslinkable functional group of the polymer so that the polymer of the binder forms a crosslinking network.
  • the crosslinking agent may be selected from an isocyanate crosslinking agent, an epoxy crosslinking agent, an aziridine crosslinking agent, or a metal chelate crosslinking agent, though not particularly limited thereto.
  • the crosslinking agent may be an isocyanate crosslinking agent.
  • the crosslinking agent may be further added to the composition in an amount of 0.0001 to 1 part by weight based on 100 parts by weight of the solid content in the composition.
  • the conductive material dispersant helps disperse and paste the non-polar carbon-based conductive material.
  • the conductive material dispersing agent is not particularly limited but may be selected from the group consisting of carboxymethylcellulose (CMC), starch, hydroxypropylcellulose, cellulose-based compounds including regenerated cellulose, polyvinyl alcohol (PVA) and polyvinylpyrrolidone ). ≪ / RTI > According to one embodiment of the present invention, the conductive material dispersing agent may be polyvinyl alcohol (PVA).
  • the conductive dispersant may be added to the composition in an amount of 0.1 to 20 parts by weight based on 100 parts by weight of the solid content in the composition.
  • a solvent may be used.
  • the type of the solvent can be appropriately set in consideration of the performance of the target cell and the like.
  • the solvent is selected from the group consisting of N-methyl-2-pyrrolidone, propylene carbonate, ethylene carbonate, butylene carbonate, dimethyl carbonate, diethyl carbonate, gamma Dimethylformamide, acetonitrile, nitromethane, methyl formate, methyl acetate, phosphoric acid triester, diisopropyl ether, tetrahydrofuran, tetrahydrofuran, dimethyl sulfoxide, , Organic solvents such as trimethoxymethane, sulfolane, methylsulfolane, 1,3-dimethyl-2-imidazolidinone, propylene carbonate derivatives, tetrahydrofuran derivatives, methyl propionate or ethyl propionate, and water You can choose.
  • the positive electrode of the lithium secondary battery includes a positive electrode collector and a positive electrode active layer formed on the positive electrode collector.
  • the positive electrode current collector is not particularly limited as long as it is generally used in the production of the positive electrode.
  • the cathode current collector may be at least one material selected from stainless steel, aluminum, nickel, titanium, sintered carbon and aluminum, and if necessary, carbon, Or silver.
  • the shape of the cathode current collector may be selected from a film, a sheet, a foil, a net, a porous body, a foam, and a nonwoven fabric.
  • the thickness of the positive electrode current collector is not particularly limited and may be set in an appropriate range in consideration of the mechanical strength of the positive electrode, the productivity, the capacity of the battery, and the like.
  • the method of forming the positive electrode active layer on the current collector is not limited to a known coating method.
  • a bar coating method, a screen coating method, a doctor blade method, a dipping method, a reverse roll method, a direct roll method, a gravure method, or an extrusion method may be applied as a coating method.
  • the amount of application of the positive electrode active layer on the current collector is not particularly limited, and is adjusted in consideration of the thickness of the desired positive electrode active layer.
  • a known process required for the production of the positive electrode for example, a rolling process or a drying process, may be performed before or after the step of forming the positive electrode active layer.
  • the thickness of the active layer formed by the composition may be appropriately selected in consideration of the desired performance, and is not particularly limited. According to one embodiment of the present invention, it is preferable that the thickness of the active layer is 1 to 200 mu m.
  • the present invention provides a lithium secondary battery in which the performance of a battery is improved by adding a structure of a cathode, a separator, and an electrolyte to the above-described anode.
  • the lithium secondary battery is a lithium-sulfur battery.
  • the electrolyte solution constituting the lithium secondary battery according to the present invention is not particularly limited as long as it is a non-aqueous solvent that acts as a medium through which ions involved in an electrochemical reaction of a battery can move.
  • the solvent may be a carbonate-based, ester-based, ether-based, ketone-based, alcohol-based or aprotic solvent.
  • the carbonate solvent examples include dimethyl carbonate (DMC), diethyl carbonate (DEC), dipropyl carbonate (DPC), methyl propyl carbonate (MPC), ethyl propyl carbonate (EPC), methyl ethyl carbonate Carbonate (EC), propylene carbonate (PC), or butylene carbonate (BC), etc. may be used.
  • the ester solvent examples include methyl acetate, ethyl acetate, n-propyl acetate, 1,1-dimethyl ethyl acetate, methyl propionate, ethyl propionate,?
  • ether solvent examples include diethyl ether, dipropyl ether, dibutyl ether, dimethoxy methane, trimethoxy methane, dimethoxyethane, diethoxyethane, diglyme, triglyme, tetraglyme, Furan, 2-methyltetrahydrofuran, or polyethylene glycol dimethyl ether.
  • ketone-based solvent examples include cyclohexanone.
  • alcoholic solvent ethyl alcohol, isopropyl alcohol and the like may be used.
  • the aprotic solvent examples include nitriles such as acetonitrile, amides such as dimethylformamide, dioxolanes such as 1,3-dioxolane (DOL), and sulfolane.
  • the non-aqueous organic solvent may be used alone or in admixture of one or more. When the one or more of the non-aqueous organic solvents is used in combination, the mixing ratio may be appropriately adjusted according to the desired cell performance. Ethanol in a 1: 1 volume ratio mixture may be preferred.
  • the negative electrode of the lithium secondary battery according to the present invention includes a negative electrode collector and a negative electrode active material layer formed on the negative electrode collector.
  • the negative electrode active material layer includes a negative electrode active material, a binder, and a conductive material.
  • the negative electrode active material include a material capable of reversibly intercalating or deintercalating lithium ions (Li + ), a material capable of reversibly forming a lithium-containing compound by reacting with lithium ions, a lithium metal or a lithium alloy Can be used.
  • the material capable of reversibly storing or releasing lithium ions (Li &lt ; + & gt ; ) may be, for example, crystalline carbon, amorphous carbon, or a mixture thereof.
  • the material capable of reacting with the lithium ion (Li &lt ; + & gt ; ) to reversibly form a lithium-containing compound may be, for example, tin oxide, titanium nitride or silicon.
  • the lithium alloy includes, for example, lithium (Li), sodium (Na), potassium (K), rubidium (Rb), cesium (Cs), francium (Fr), beryllium (Be), magnesium (Mg) Ca, strontium (Sr), barium (Ba), radium (Ra), aluminum (Al), and tin (Sn).
  • the binder is not limited to the above-described binder, and any binder can be used as long as it can be used as a binder in the related art.
  • the structure of the current collector excluding the negative electrode active material and the conductive material may be a material and a method used in the positive electrode.
  • the separator of the lithium secondary battery according to the present invention is a physical separator having a function of physically separating an electrode and can be used without any particular limitations as long as it is used as a conventional separator. Particularly, It is preferable that the ability is excellent.
  • the separator separates or insulates the positive electrode and the negative electrode from each other, and enables transport of lithium ions between the positive electrode and the negative electrode.
  • a separator may be made of a porous, nonconductive or insulating material having a porosity of 30 to 50%.
  • a porous polymer film made of a polyolefin-based polymer such as an ethylene homopolymer, a propylene homopolymer, an ethylene / butene copolymer, an ethylene / hexene copolymer, and an ethylene / methacrylate copolymer may be used.
  • a nonwoven fabric made of glass fiber of high melting point or the like can be used.
  • a porous polymer film is preferably used.
  • the electrolyte impregnation amount and the ion conduction characteristics are reduced, and the effect of reducing the overvoltage and improving the capacity characteristics becomes insignificant.
  • the mechanical rigidity can not be ensured and a problem of battery short-circuiting occurs.
  • the film-type separator and the polymer nonwoven fabric buffer layer are used together, the mechanical strength can be secured along with the battery performance improvement effect due to the adoption of the buffer layer.
  • an ethylene homopolymer (polyethylene) polymer film is used as a separator and a polyimide nonwoven fabric is used as a buffer layer.
  • the polyethylene polymer film preferably has a thickness of 10 to 25 ⁇ m and a porosity of 40 to 50%.
  • the first polyacrylic acid (Sigma-Aldrich product, molecular weight: 1,250,000) and the second polyacrylic acid (Sigma-Aldrich product, molecular weight: 450,000) were mixed at a weight ratio of 2: 5.
  • the resulting mixture was completely neutralized with lithium hydroxide (Sigma-Aldrich product, LiOH) to prepare a binder of lithium-substituted polyacrylic acid.
  • the viscosity of the binder was measured at 1,290 cP in a 2.5 wt% aqueous solution under a temperature condition of 25 ⁇ .
  • VGCF Vapor-grown carbon fiber
  • the positive electrode active material, the conductive material and the binder described above were added to water as a solvent and mixed with a mixer to prepare a composition for forming the positive electrode active layer.
  • the mixing ratio was such that the weight ratio of the cathode active material: conductive material: binder was 88: 5: 7.
  • the composition for forming the cathode active material layer was coated on an aluminum foil current collector and then dried at 50 DEG C for 2 hours to prepare a positive electrode (energy density of the anode: 5.5 mAh / cm2).
  • a cathode, a separator and an electrolytic solution were prepared together with the cathode prepared by the above-described method to assemble a lithium secondary battery as follows.
  • a lithium foil having a thickness of about 40 mu m was used as a cathode.
  • a polyethylene membrane was used as a separator
  • LiFSI and 3 wt% LiNO 3 were added to a mixed solvent (2: 1, v / v) of ethylene glycol ethyl methyl ether (EGEME) and 2-methyltetrahydrofuran (2-Me- An electrolytic solution was used.
  • EGEME ethylene glycol ethyl methyl ether
  • 2-methyltetrahydrofuran 2-Me- An electrolytic solution was used.
  • the first polyacrylic acid product of Sigma-Aldrich, molecular weight: 1,250,000
  • the third polyacrylic acid product of Scientific polymer products inc., Molecular weight: 750,000
  • a lithium secondary battery was produced in the same manner as in Example 1, except that the binder was neutralized to prepare a binder of lithium substituted polyacrylic acid.
  • the viscosity of the binder was measured at 40,000 cP in a 2.5 wt% aqueous solution under a temperature condition of 25 ⁇ .
  • the first polyacrylic acid product of Sigma-Aldrich, molecular weight: 1,250,000
  • the third polyacrylic acid Scientific polymer products inc., Molecular weight: 750,000
  • a lithium secondary battery was produced in the same manner as in Example 1, except that the binder was neutralized to prepare a binder of lithium substituted polyacrylic acid.
  • the viscosity of the binder was measured at 50,000 cP in a 2.5 wt% aqueous solution under a temperature condition of 25 ⁇ .
  • a lithium secondary battery was prepared in the same manner as in Example 1, except that only a first polyacrylic acid (product of Sigma-Aldrich, molecular weight: 1,250,000) was neutralized with lithium hydroxide to prepare a binder of lithium substituted polyacrylic acid.
  • a first polyacrylic acid product of Sigma-Aldrich, molecular weight: 1,250,000
  • a lithium secondary battery was produced in the same manner as in Example 1, except that only a third polyacrylic acid (manufactured by Scientific polymer products inc., Molecular weight: 750,000) was neutralized with lithium hydroxide to prepare a binder of lithium substituted polyacrylic acid Respectively.
  • a third polyacrylic acid manufactured by Scientific polymer products inc., Molecular weight: 750,000
  • a second polyacrylic acid product of Sigma-Aldrich, molecular weight: 450,000
  • a third polyacrylic acid product of Scientific polymer products inc., Molecular weight: 750,000
  • a lithium secondary battery was produced in the same manner as in Example 1, except that the binder was neutralized to prepare a binder of lithium substituted polyacrylic acid.
  • the first polyacrylic acid product of Sigma-Aldrich, molecular weight: 1,250,000
  • polyvinylpyrrolidone Sigma-Aldrich product, molecular weight: 360,000
  • the first polyacrylic acid product of Sigma-Aldrich, molecular weight: 1,250,000
  • the second polyacrylic acid Sigma-Aldrich product, molecular weight: 450,000
  • a lithium secondary battery was produced in the same manner as in Example 1 except that a binder of lithium substituted polyacrylic acid was prepared.
  • the first polyacrylic acid product of Sigma-Aldrich, molecular weight: 1,250,000
  • the second polyacrylic acid Sigma-Aldrich product, molecular weight: 450,000
  • the electrodes dried at 50 DEG C for 2 hours were cut to a size of 15 cm x 2 cm, adhered to a slide glass with a double-sided tape on the electrode surface, laminated to a sample for peel test Three pieces are manufactured.
  • the sample for peeling test is loaded in a UTM capable of measuring the adhesive force, and the peel resistance (gf / cm 2) is measured after 90 ° peeling test to calculate the adhesiveness of each electrode.
  • Charging and discharging are performed under the following conditions to measure the performance of the battery.
  • the lithium secondary batteries prepared according to the above Examples and Comparative Examples were repeatedly charged and discharged under the above-described analytical conditions.
  • the discharge capacity in the first cycle and the discharge capacity in the 100th cycle during charging and discharging were measured. The results are shown in Table 1.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

본 발명은 리튬 이차전지의 양극 제조용 바인더 및 이를 사용한 양극의 제조방법에 관한 것이다. 상기 바인더는 분자량이 다른 2종 이상의 리튬 치환 폴리아크릴산을 포함한다. 상기 리튬 치환 폴리아크릴산은 서로 500,000 이상의 중량평균분자량이 차이가 나는 2종의 리튬 치환 폴리아크릴산을 포함한다.

Description

리튬 이차전지의 양극 제조용 바인더 및 이를 사용한 양극의 제조방법
본 출원은 2017년 11월 30일자 한국 특허 출원 제10-2017-0162681호 및 2018년 8월 16일자 한국 특허 출원 제10-2018-0095216호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용을 본 명세서의 일부로서 포함한다.
본 발명은 리튬 이차전지의 양극 제조용 바인더 및 이를 사용한 양극의 제조방법에 관한 것이다. 구체적으로, 본 발명은 분자량이 다른 2종 이상의 리튬 치환 폴리아크릴산을 포함하는 리튬 이차전지의 양극 제조용 바인더 및 이를 사용한 양극의 제조방법에 관한 것이다.
이차전지의 응용 영역이 전기 자동차(EV)나 에너지 저장 장치(ESS) 등으로 확대됨에 따라, 상대적으로 낮은 무게 대비 에너지 저장 밀도(~250 Wh/kg)를 갖는 리튬-이온 이차전지는 이러한 제품에 대한 적용의 한계가 있다. 이와 달리, 리튬 이차전지 중 리튬-황 전지는 이론상으로 높은 무게 대비 에너지 저장 밀도(~2,600 Wh/kg)를 구현할 수 있기 때문에, 차세대 이차전지 기술로 각광을 받고 있다.
리튬-황 전지는 S-S 결합(Sulfur-Sulfur Bond)을 갖는 황 계열 물질을 양극 활물질로 사용하고, 리튬 금속을 음극 활물질로 사용한 전지 시스템을 의미한다. 상기 양극 활물질의 주재료인 황은 전 세계적으로 자원량이 풍부하고, 독성이 없으며, 낮은 원자당 무게를 가지고 있는 장점이 있다.
리튬-황 전지는 방전 시에 음극 활물질인 리튬이 전자를 내어놓고 이온화되면서 산화되며, 양극 활물질인 황 계열 물질이 전자를 받아들여 환원된다. 여기서, 리튬의 산화반응은 리튬 금속이 전자를 내어놓고 리튬 양이온 형태로 변환되는 과정이다. 또한, 황의 환원반응은 S-S 결합이 2개의 전자를 받아들여 황 음이온 형태로 변환되는 과정이다. 리튬의 산화반응에 의해 생성된 리튬 양이온은 전해질을 통해 양극으로 전달되고, 황의 환원반응에 의해 생성된 황 음이온과 결합하여 염을 형성한다. 구체적으로, 방전 전의 황은 환형의 S8 구조를 가지고 있는데, 이는 환원반응에 의해 리튬 폴리설파이드(Lithium polysulfide, LiSx)로 변환된다. 리튬 폴리설파이드가 완전히 환원되는 경우에는 리튬 설파이드(Li2S)가 생성되게 된다.
리튬-황 전지는 높은 에너지 저장 밀도의 장점을 가지고 있음에도 불구하고 실제 적용함에 있어서 여러 문제점이 존재한다. 구체적으로, 음극으로 사용되는 리튬 금속의 불안정성 문제, 양극의 낮은 전도성 문제, 전극 제조 시 황 계열 물질의 승화 문제, 및 반복적인 충방전 시 황 계열 물질의 손실 문제 등이 존재할 수 있다.
종래의 리튬-황 전지용 양극은 스티렌 부타디엔 고무/카르복시메틸 셀룰로오스(Styrene Butadiene Rubber/Carboxymethyl Cellulose, SBR/CMC)를 바인더로 사용하여 제조되었다. 그러나, 바인더에서 CMC와 같은 증점제가 없으면, 분산성이 감소하였으며, 충방전 진행에 따른 양극의 열화로 인하여 장기적인 안정성이 떨어지는 문제점을 확인할 수 있었다.
따라서, 해당 기술 분야에서는 여전히 리튬-황 전지의 성능을 개선할 수 있는 바인더가 요구된다.
[선행기술문헌]
[특허문헌]
(특허문헌 1) 대한민국 등록특허 제10-1583948호
상기 문제점을 해결하기 위해, 본 발명은 분자량이 다른 2종 이상의 리튬 치환 폴리아크릴산을 포함하는 바인더를 사용함으로써, 슬러리로 제조 시 고형분의 함량이 높고 슬러리의 흐름성이 증대되어 가공성이 향상되고, 전지에 적용 시 전극에서의 접착성 및 사이클 특성을 개선할 수 있는 리튬 이차전지의 양극 제조용 바인더를 제공하고자 한다.
본 발명의 제1 측면에 따르면,
본 발명은 분자량이 다른 2종 이상의 리튬 치환 폴리아크릴산을 포함하는 리튬 이차전지의 양극 제조용 바인더를 제공한다.
본 발명의 일 구체예에 있어서, 상기 리튬 치환 폴리아크릴산은 서로 500,000 이상의 중량평균분자량이 차이가 나는 2종의 리튬 치환 폴리아크릴산을 포함한다.
본 발명의 일 구체예에 있어서, 상기 리튬 치환 폴리아크릴산은 1,000,000 내지 2,000,000의 중량평균분자량을 갖는 고분자량의 리튬 치환 폴리아크릴산을 포함한다.
본 발명의 일 구체예에 있어서, 상기 고분자량의 리튬 치환 폴리아크릴산은 전체 리튬 치환 폴리아크릴산을 기준으로 20 내지 70 중량%가 포함된다.
본 발명의 일 구체예에 있어서, 상기 리튬 치환 폴리아크릴산은 5,000 내지 800,000의 중량평균분자량을 갖는 저분자량의 리튬 치환 폴리아크릴산을 포함한다.
본 발명의 일 구체예에 있어서, 상기 저분자량의 리튬 치환 폴리아크릴산은 전체 리튬 치환 폴리아크릴산을 기준으로 30 내지 80 중량%가 포함된다.
본 발명의 일 구체예에 있어서, 상기 바인더는 25℃의 온도조건 하에 2.5 중량%의 수용액 상태에서 500 내지 50,000cP 의 점도를 갖는다.
본 발명의 제2 측면에 따르면,
본 발명은 바인더, 양극 활물질, 및 도전재를 포함하는 리튬 이차전지의 양극 제조용 조성물을 제공한다.
본 발명의 일 구체예에 있어서, 상기 조성물은 조성물 내 고형분 100 중량부에 대하여 0.01 내지 10 중량부의 바인더를 포함한다.
본 발명의 일 구체예에 있어서, 상기 조성물은 조성물 내 고형분 100 중량부에 대하여 30 내지 95 중량부의 양극 활물질을 포함한다.
본 발명의 일 구체예에 있어서, 상기 조성물은 조성물 내 고형분 100 중량부에 대하여 2 내지 65 중량부의 도전재를 포함한다.
본 발명의 제3 측면에 따르면,
본 발명은 집전체, 및 상기 집전체 상에 상술한 조성물을 도포하여 형성된 양극 활물질 층을 포함하는 양극을 제공한다.
본 발명의 제4 측면에 따르면,
본 발명은 상술한 양극을 포함하는 리튬 이차전지를 제공한다.
본 발명은 분자량이 다른 2종 이상의 리튬 치환 폴리아크릴산을 포함하는 바인더를 제공한다. 상기 리튬 치환 폴리아크릴산에서 상대적으로 높은 분자량의 리튬 치환 폴리아크릴산은 전극에서의 바인더의 접착력 및 전지에서의 수명 안정성을 향상시킬 수 있다. 또한, 상기 리튬 치환 폴리아크릴산에서 상대적으로 낮은 분자량의 리튬 치환 폴리아크릴산은 슬러리에서의 고형분의 함량 및 흐름성을 증가시켜 바인더의 가공성을 향상시킬 수 있다. 따라서, 본 발명에 따른 바인더는 가공이 용이하면서도 전지에 적용 시 우수한 접착력을 나타내고, 이에 의해 리튬 이차전지의 수명 특성을 개선시킬 수 있다.
본 발명에 따라 제공되는 구체예는 하기의 설명에 의하여 모두 달성될 수 있다. 하기의 설명은 본 발명의 바람직한 구체예를 기술하는 것으로 이해되어야 하며, 본 발명이 반드시 이에 한정되는 것은 아님을 이해해야 한다.
바인더
본 발명은 분자량이 다른 2종 이상의 리튬 치환 폴리아크릴산(Lithiated polyacrylic acid)을 포함하는 리튬 이차전지의 양극 제조용 바인더를 제공한다.
리튬 이차전지 분야에서 양극 제조 시 바인더로서 스티렌 부타디엔 고무/카르복시메틸 셀룰로오스(SBR/CMC)가 주로 사용되었다. 여기서, 카르복시메틸 셀룰로오스는 증점제로서 바인더의 분산성을 개선시키기 위해 사용되는 첨가제인데, 상기 카르복시메틸 셀룰로오스 없이 스티렌 부타디엔 고무만을 사용 시에는 분산성이 감소하여 바인더의 가공성이 떨어지며, 충방전 진행 시 양극이 열화되어 장기적인 안정성이 감소된다. 증점제 등의 추가 없이도 양극의 장기적인 안정성을 확보하기 위해 폴리아크릴산 또는 리튬 치환 폴리아크릴산을 단독으로 사용하였다. 그러나, 전지의 성능 개선을 위해 사용되는 폴리아크릴산은 높은 분자량과 이에 따른 화학적 성질로 인하여 바인더 용액 내에서 농도가 낮아 슬러리 제조 시 고형분의 함량이 낮기 때문에, 이로 인해 바인더의 공정성이 감소하였다. 이러한 공정성의 감소는 전극에 적용 시 전극의 유연성의 감소로 이어졌다. 본 발명은 기본적으로 리튬 치환 폴리아크릴산을 사용하면서도 분자량이 다른 2 이상의 리튬 치환 폴리아크릴산을 적절하게 조합함으로써, 상기 문제점을 해결하였다.
본 발명에 따른 바인더의 기본 소재인 리튬 치환 폴리아크릴산은 폴리아크릴산에서 카르복실기(COOH)의 수소가 리튬으로 치환된 형태이다. 상기 리튬 치환 폴리아크릴산은 폴리아크릴산에 리튬을 포함하는 염기를 투입하여 중화반응을 통해 형성될 수 있다. 상기 리튬 치환 폴리아크릴산은 폴리아크릴산의 카르복실기와 리튬의 양이 1:1 몰 비가 되도록 염기를 투입하여, 폴리아크릴산이 완전히 중화되어 형성되는 것이 바람직할 수 있다. 폴리아크릴산이 완전히 중화되지 않는 경우에 폴리아크릴산으로부터 발생한 수소에 의해 부반응이 일어날 수 있다. 또한, 염기가 과량으로 투입되는 경우에 중화반응에 참여하지 않는 염기에 의해 전지의 수명 특성이 열화될 수 있다. 상술한 리튬 치환에 의해 폴리아크릴산은 극성이 증가하고, 용매 내에서 분산성이 향상된다. 본 발명에 따른 바인더는 분자량이 다른 2종 이상의 리튬 치환 폴리아크릴산을 포함한다. 상기 2종 이상의 리튬 치환 폴리아크릴산은 크게 상대적으로 분자량이 높은 리튬 치환 폴리아크릴산과 상대적으로 분자량이 낮은 리튬 치환 폴리아크릴산으로 분리될 수 있다. 여기서, 상대적으로 분자량이 높은 리튬 치환 폴리아크릴산은 바인더의 접착력 증가와 전지의 수명 안정성 향상에 기여할 수 있고, 상대적으로 분자량이 낮은 리튬 치환 폴리아크릴산은 슬러리 제조 시 고형분의 함량을 높이며, 슬러리의 흐름성을 증가시켜 바인더의 가공성 향상에 기여할 수 있다. 본 발명에 따른 바인더에서 상대적으로 분자량이 높은 리튬 치환 폴리아크릴산과 상대적으로 분자량이 낮은 리튬 치환 폴리아크릴산은 일정 수준 이상의 분자량이 차이가 날 수 있다. 본 발명의 일 구체예에 따르면, 상기 리튬 치환 폴리아크릴산은 서로 500,000 이상, 바람직하게는 500,000 내지 2,000,000, 보다 바람직하게는 500,000 내지 800,000의 중량평균분자량이 차이가 나는 2종의 리튬 치환 폴리아크릴산을 포함할 수 있다. 바인더가 서로 500,000 이상의 중량평균분자량이 차이가 나는 2종의 리튬 치환 폴리아크릴산을 포함하지 않는 경우, 고분자량의 리튬 치환 폴리아크릴산이 갖는 효과와 저분자량의 리튬 치환 폴리아크릴산이 갖는 효과를 동시에 나타내기 어렵다.
본 발명에 따른 바인더는 1,000,000 내지 2,000,000, 바람직하게는 1,250,000 내지 1,750,000의 중량평균분자량을 갖는 고분자량의 리튬 치환 폴리아크릴산을 포함할 수 있다. 고분자량의 리튬 치환 폴리아크릴산이 1,000,000 미만의 중량평균분자량을 갖는 경우, 전극의 접착 특성 및 전지의 사이클 특성에 대한 개선 효과가 미미하다. 이와 달리, 고분자량의 리튬 치환 폴리아크릴산이 2,000,000 초과의 중량평균분자량을 갖는 경우, 바인더의 가공성이 현저하게 저하되어 저분자량의 리튬 치환 폴리아크릴산의 혼합에 의해서도 가공성이 회복되기 어렵다. 본 발명의 일 구체예에 따르면, 상기 고분자량의 리튬 치환 폴리아크릴산은 전체 리튬 치환 폴리아크릴산을 기준으로 20 내지 70 중량%, 바람직하게는 25 내지 50 중량%가 포함될 수 있다. 상기 고분자량의 리튬 치환 폴리아크릴산이 20 중량% 미만인 경우, 바인더의 접착력 및 전지의 사이클 성능이 현저하게 저하되고, 상기 고분자량의 리튬 치환 폴리아크릴산이 70 중량% 초과인 경우, 바인더의 가공성이 현저하게 저하된다.
본 발명에 따른 바인더는 5,000 내지 800,000, 바람직하게는 450,000 내지 750,000의 중량평균분자량을 갖는 저분자량의 리튬 치환 폴리아크릴산을 포함할 수 있다. 저분자량의 리튬 치환 폴리아크릴산이 5,000 미만의 중량평균분자량을 갖는 경우, 전극의 접착 특성 및 전지의 사이클 성능에 부정적인 영향을 미칠 수 있다. 이와 달리, 저분자량의 리튬 치환 폴리아크릴산이 800,000 초과의 중량평균분자량을 갖는 경우, 저분자량의 리튬 치환 폴리아크릴산 투입에 따른 바인더의 가공성 향상 및 이에 따른 전지의 성능 개선 효과가 미미하다. 본 발명의 일 구체예에 따르면, 상기 저분자량의 리튬 치환 폴리아크릴산은 전체 리튬 치환 폴리아크릴산을 기준으로 30 내지 80 중량%, 바람직하게는 50 내지 75 중량%가 포함될 수 있다. 상기 저분자량의 리튬 치환 폴리아크릴산이 30 중량% 미만인 경우, 바인더의 가공성이 낮아 전극의 유연성 등이 감소하고, 상기 저분자량의 리튬 치환 폴리아크릴산이 80 중량% 초과인 경우, 바인더의 접착력 및 전지의 사이클 성능이 현저하게 저하된다.
본 발명에 따른 바인더는 25℃의 온도조건 하에 2.5 중량%의 수용액 상태에서 500 내지 50,000cP, 바람직하게는 1,000 내지 50,000cP의 점도를 가질 수 있고, 상기 점도 내에서 바인더는 높은 가공성 및 높은 접착력을 달성할 수 있다.
리튬 이차전지용 양극
본 발명은 상술한 바인더, 양극 활물질 및 도전재를 포함하는 리튬 이차전지의 양극 제조용 조성물을 제공한다. 리튬 이차전지용 양극은 상기 조성물을 양극 집전체 상에 도포하여 제조된다.
상기 조성물에서 바인더의 비율은 목적하는 전지의 성능을 고려하여 선택할 수 있다. 본 발명의 일 구체예에 따르면, 상기 조성물은 조성물 내 고형분 100 중량부에 대하여 0.01 내지 10 중량부의 바인더를 포함한다. 함량의 기준이 되는 조성물 내 고형분은 조성물 내에서 용매, 및 바인더에 포함될 수 있는 단량체 등을 제외한 고체 성분을 의미한다.
상술한 본 발명에 따른 바인더와 함께, 해당 기술 분야에서 일반적으로 사용되는 바인더가 추가적으로 사용될 수 있다. 예시적인 추가 바인더로서, 폴리불화비닐리덴(polyvinylidene fluoride, PVdF) 또는 폴리테트라플루오로에틸렌(Polytetrafluoroethylene, PTFE)을 포함하는 불소 수지계 바인더, 스티렌-부타디엔 고무, 아크릴로니트릴-부티디엔 고무, 스티렌-이소프렌 고무를 포함하는 고무계 바인더, 폴리 알코올계 바인더, 폴리에틸렌, 폴리프로필렌를 포함하는 폴리 올레핀계 바인더, 폴리 이미드계 바인더, 폴리 에스테르계 바인더 홍합 접착제, 실란계 바인더, 폴리 아크릴레이트계 바인더로 이루어진 군으로부터 하나 이상의 바인더가 선택될 수 있다. 본 발명의 일 구체예에 따르면, 상기 추가 바인더는 조성물 내 고형분 100 중량부에 대하여 0.01 내지 10.0 중량부가 조성물에 추가적으로 포함될 수 있다.
상기 조성물에서 양극 활물질의 비율은 목적하는 전지의 성능을 고려하여 선택할 수 있다. 본 발명의 일 구체예에 따르면, 상기 조성물은 조성물 내 고형분 100 중량부에 대하여 30 내지 95 중량부의 양극 활물질을 포함한다. 상기 양극 활물질은 리튬 이차전지용으로 당해 기술분야에서 이용 가능한 모든 양극 활물질이 사용 가능하다. 이러한 양극 활물질의 구체적인 예로서, 리튬 금속; LiCoO2 등의 리튬 코발트계 산화물; Li1 + xMn2 - xO4(여기서, x는 0 내지 0.33임), LiMnO3, LiMn2O3, LiMnO2 등의 리튬 망간계 산화물; Li2CuO2등의 리튬 구리산화물; LiV3O8, LiFe3O4, V2O5, Cu2V2O7 등의 바나듐 산화물; LiNi1 - xMxO2 (여기서, M=Co, Mn, Al, Cu, Fe, Mg, B 또는 Ga 이고, x=0.01 내지 0.3임)으로 표현되는 리튬 니켈계 산화물; LiMn2 -xMxO2(여기서, M=Co, Ni, Fe, Cr, Zn 또는 Ta 이고, x=0.01 내지 0.1임) 또는 Li2Mn3MO8(여기서, M=Fe, Co, Ni, Cu 또는 Zn 임)으로 표현되는 리튬 망간 복합산화물; Li(NiaCobMnc)O2(여기에서, 0<a<1, 0<b<1, 0<c<1, a+b+c=1)으로 표현되는 리튬-니켈-망간-코발트계 산화물; LiV3O8, LiFe3O4, V2O5, Cu2V2O7 등의 바나듐 산화물; 황 또는 디설파이드 화합물; LiFePO4, LiMnPO4, LiCoPO4, LiNiPO4 등의 인산염; Fe2(MoO4)3 등을 들 수 있지만, 이들만으로 한정되는 것은 아니다.
특히, 리튬 이차전지가 리튬-황 전지인 경우, 양극 활물질은 황 원소(Elemental sulfur, S8), 황-탄소 복합체, 황 계열 화합물 또는 이들의 혼합물로부터 선택될 수 있으나, 반드시 이에 한정되는 것은 아니다. 상기 황 계열 화합물은 구체적으로, Li2Sn(n≥1), 유기황 화합물 또는 탄소-황 폴리머((C2Sx)n: x=2.5 ~ 50, n≥2) 등일 수 있다. 이들은 황 물질 단독으로는 전기 전도성이 없기 때문에 도전재와 복합하여 적용한다.
또한, 상기 황-탄소 복합체는 황이 전해질로 유출되는 것을 감소시키고, 황이 포함된 전극의 전기 전도도를 높이기 위해 탄소와 황의 혼합시킨 양극활물질의 일 양태이다.
상기 황-탄소 복합체를 구성하는 탄소 물질은 결정질 또는 비정질 탄소일 수 있고, 도전성 탄소일 수 있다. 구체적으로, 그라파이트(graphite), 그래핀(graphene), 수퍼 p(Super P), 카본 블랙, 덴카 블랙, 아세틸렌 블랙, 케첸 블랙, 채널 블랙, 퍼네이스 블랙, 램프 블랙, 서머 블랙, 탄소섬유, 탄소나노섬유, 탄소나노튜브, 탄소나노와이어, 탄소나노링, 탄소 직물 및 풀러렌(C60)으로 이루어진 군에서 선택되는 것일 수 있다.
이러한 황-탄소 복합체로는 황-탄소나노튜브 복합체 등이 있다. 구체적으로, 상기 황-탄소나노튜브 복합체는 3차원 구조의 탄소나노튜브 응집체, 및 상기 탄소나노튜브 응집체의 내부표면 및 외부표면 중 적어도 일부에 구비된 황 또는 황 화합물을 구비한다.
본 발명의 일 구체예에 따른 황-탄소나노튜브 복합체는 탄소나노튜브의 3차원 구조의 내부에 황이 존재하기 때문에, 전기화학 반응으로 용해성이 있는 폴리설파이드가 생성되더라도 탄소나노튜브 내부에 위치할 수 있게 되면, 폴리설파이드 용출시에도 3차원으로 얽혀 있는 구조가 유지되어 양극 구조가 붕괴되는 현상을 억제시킬 수 있다. 그 결과, 상기 황-탄소나노튜브 복합체를 포함하는 리튬-황 전지는 고로딩(high loading)에서도 고용량을 구현할 수 있다는 장점이 있다. 또한, 상기 황 또는 황 계열 화합물은 상기 탄소나노튜브 응집체의 내부 기공에도 구비될 수 있다.
상기 탄소나노튜브는 선형 도전성 탄소를 의미하며, 구체적으로 탄소나노튜브(CNT), 흑연성 나노섬유(Graphitic nanofiber, GNF), 탄소 나노섬유(CNF) 또는 활성화 탄소섬유(Activated carbon fiber, ACF)가 사용될 수 있고, 단일벽 탄소나노튜브(SWCNT) 또는 다중벽 탄소나노튜브(MWCNT) 모두 사용 가능하다.
본 발명의 일 구체예에 따르면, 상기 황-탄소 복합체는 황 또는 황 계열 화합물을 탄소의 외부 포면 및 내부에 함침시켜서 제조하며, 선택적으로, 상기 함침시키는 단계 이전, 이후 또는 전후 모두에서 탄소의 직경을 조절하는 단계를 거칠 수 있다. 상기 함침시키는 단계는 탄소와 황 또는 황 계열 화합물 분말을 혼합한 후 가열하여 용융된 황 또는 황 계열 화합물을 탄소에 함침시켜서 수행할 수 있으며, 이러한 혼합시에 건식 볼밀 방법, 건식 제트밀 방법 또는 건식 다이노 밀 방법을 사용할 수 있다.
상기 조성물에서 도전재의 비율은 목적하는 전지의 성능을 고려하여 선택할 수 있다. 본 발명의 일 구체예에 따르면, 상기 조성물은 조성물 내 고형분 100 중량부에 대하여 2 내지 65 중량부의 도전재를 포함한다. 상기 도전재는 천연 흑연 또는 인조 흑연 등의 흑연; 카본블랙, 아세틸렌 블랙, 케첸 블랙, 채널 블랙, 퍼네이스 블랙, 램프 블랙 또는 서머 블랙 등의 카본블랙; 탄소 섬유 또는 금속 섬유 등의 도전성 섬유; 불화 카본, 알루미늄 또는 니켈 분말 등의 금속 분말; 산화아연 또는 티탄산 칼륨 등의 도전성 위스키; 산화 티탄 등의 도전성 금속 산화물; 또는 폴리페닐렌 유도체로부터 선택될 수 있으나, 반드시 이에 한정되는 것은 아니다.
상기 조성물은 상술한 바인더, 양극 활물질 및 도전재 외에 다른 성분을 추가로 포함할 수 있다. 상기 조성물에 추가 가능한 성분으로는 가교제 또는 도전재 분산제가 있다. 상기 가교제는 바인더의 고분자가 가교 네트워크를 형성하게 하기 위해 고분자의 가교성 관능기와 반응할 수 있는 2 이상이 관능기를 갖는 가교제가 사용될 수 있다. 상기 가교제는 특별히 한정되는 것은 아니나, 이소시아네이트 가교제, 에폭시 가교제, 아지리딘 가교제 또는 금속 킬레이트 가교제로부터 선택될 수 있다. 본 발명의 일 구체예에 따르면, 상기 가교제는 이소시아네이트 가교제가 바람직할 수 있다. 상기 가교제는 조성물 내 고형분 100 중량부를 기준으로 0.0001 내지 1 중량부가 조성물에 추가적으로 포함될 수 있다.
상기 도전재 분산제는 비극성의 탄소계 도전재를 분산하여 페이스트화 하는데 도움을 준다. 상기 도전재 분산제는 특별히 한정되는 것은 아니나, 카르복시메틸 셀룰로오스(CMC), 전분, 히드록시프로필 셀룰로우스, 재생 셀룰로오스를 포함하는 셀룰로오스계 화합물, 폴리비닐알코올(PVA) 및 폴리비닐피롤리돈(PVP)로부터 선택될 수 있다. 본 발명의 일 구체예에 따르면, 상기 도전재 분산제는 폴리비닐알코올(PVA)이 바람직할 수 있다. 상기 도전재 분산제는 조성물 내 고형분 100 중량부에 대하여 0.1 내지 20 중량부가 조성물에 추가적으로 포함될 수 있다.
상기 조성물을 형성함에 있어서, 용매가 사용될 수 있다. 용매의 종류는 목적하는 전지의 성능 등을 고려하여 적절하게 설정할 수 있다. 본 발명의 일 구체예에 따르면, 상기 용매는 N-메틸-2-피롤리돈, 프로필렌 카르보네이트, 에틸렌 카르보네이트, 부틸렌 카르보네이트, 디메틸 카르보네이트, 디에틸 카르보네이트, 감마-부틸로 락톤, 1,2-디메톡시 에탄, 테트라하이드로퓨란, 2-메틸 테트라하이드로퓨란, 디메틸술폭시드, 포름아미드, 디메틸포름아미드, 아세토니트릴, 니트로메탄, 포름산 메틸, 초산메틸, 인산 트리에스테르, 트리메톡시 메탄, 설포란, 메틸 설포란, 1,3-디메틸-2-이미다졸리디논, 프로필렌 카르보네이트 유도체, 테트라하이드로퓨란 유도체, 프로피온산 메틸 또는 프로피온산 에틸 등의 유기용매, 및 물로부터 선택할 수 있다. 물을 용매로 사용하는 경우 건조 온도나 환경적인 측면에서 유리하다.
상술한 조성물은 양극 집전체 상에 도포되어 양극 활성층을 형성한다. 따라서, 리튬 이차전지의 양극은 양극 집전체, 및 상기 양극 집전체 상에 형성된 양극 활성층을 포함한다.
상기 양극 집전체는 양극의 제조에서 일반적으로 사용되는 것이라면 특별히 한정되는 것은 아니다. 본 발명의 일 구체예에 따르면, 상기 양극 집전체의 종류는 스테인레스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소 및 알루미늄으로부터 선택된 하나 이상의 소재일 수 있고, 필요한 경우 상기 소재의 표면에 카본, 니켈, 티탄 또는 은을 처리하여 사용할 수 있다. 본 발명의 일 구체예에 따르면, 상기 양극 집전체의 형태는 필름, 시트, 호일(foil), 네트(net), 다공질체, 발포체 및 부직포체로부터 선택될 수 있다. 양극 집전체의 두께는 특별히 한정되지 않고, 양극의 기계적 강도, 생산성이나 전지의 용량 등을 고려하여 적절한 범위로 설정할 수 있다.
상기 집전체 상에 양극 활성층을 형성하는 방법은 공지된 도포 방법에 의하며 특별히 한정되는 것은 아니다. 예를 들면, 도포 방법으로 바 코팅법, 스크린 코팅법, 닥터 블레이드법, 딥 법, 리버스 롤법, 다이렉트 롤법, 그라비어법 또는 압출법이 적용될 수 있다. 상기 집전체 상에 양극 활성층을 도포하는 양은 특별히 한정되는 것은 아니고, 최종적으로 목적하는 양극 활성층의 두께를 고려하여 조절한다. 또한, 상기 양극 활성층의 형성 공정 전 또는 후에 양극의 제조를 위해 요구되는 공지의 공정, 예를 들면, 압연이나 건조 공정이 수행될 수 있다. 상기 조성물에 의해 형성된 활성층의 두께는 목적하는 성능을 고려하여 적절하게 선택될 수 있으며, 특별히 한정되는 것은 아니다. 본 발명의 일 구체예에 따르면, 상기 활성층의 두께는 1 내지 200㎛인 것이 바람직할 수 있다.
리튬 이차전지
본 발명은 상술한 양극에 음극, 분리막 및 전해액의 구성을 추가하여, 전지의 성능이 개선된 리튬 이차전지를 제공한다. 본 발명에 일 구체예에 있어서, 리튬 이차전지는 리튬-황 전지인 것이 바람직할 수 있다.
본 발명에 따른 리튬 이차전지를 구성하는 전해액은 전지의 전기화학적 반응에 관여하는 이온들이 이동할 수 있는 매질 역할을 하는 비수성 용매라면, 특별히 한정되지 않는다. 본 발명의 일 구체예에 따르면, 상기 용매는 카보네이트계, 에스테르계, 에테르계, 케톤계, 알코올 계 또는 비양자성 용매를 사용할 수 있다. 상기 카보네이트계 용매로는 구체적으로 디메틸카보네이트(DMC), 디에틸카보네이트(DEC), 디프로필카보네이트(DPC), 메틸프로필카보네이트(MPC), 에틸프로필카보네이트(EPC), 메틸에틸카보네이트(MEC), 에틸렌카보네이트(EC), 프로필렌카보네이트(PC), 또는 부틸렌 카보네이트(BC), 등이 사용될 수 있다. 상기 에스테르계 용매로는 구체적으로 메틸 아세테이트, 에틸 아세테이트, n-프로필 아세테이트, 1,1-디메틸에틸 아세테이트, 메틸프로피오네이트, 에틸프로피오네이트, γ-부티로락톤, 데카놀라이드(decanolide), 발레로락톤, 메발로노락톤(mevalonolactone), 카프로락톤(carprolactone) 등이 사용될 수 있다. 상기 에테르계 용매로는 구체적으로 디에틸 에테르, 디프로필 에테르, 디부틸 에테르, 디메톡시메탄, 트리메톡시메탄, 디메톡시에탄, 디에톡시에탄, 디글라임, 트리글라임, 테트라글라임, 테트라하이드로퓨란, 2-메틸테트라하이드로퓨란, 또는 폴리에틸렌 글리콜 디메틸 에테르 등이 사용될 수 있다. 상기 케톤계 용매로는 구체적으로 시클로헥사논 등이 사용될 수 있다. 상기 알코올계 용매로는 구체적으로 에틸알코올, 이소프로필알코올 등이 사용될 수 있다. 상기 비양자성 용매로는 구체적으로 아세토니트릴 등의 니트릴류, 디메틸포름아미드 등의 아미드류, 1,3-디옥솔란(DOL) 등의 디옥솔란류, 또는 술포란(sulfolane) 등이 사용될 수 있다. 상기 비수성 유기 용매는 단독으로 또는 하나 이상 혼합하여 사용될 수 있고, 하나 이상 혼합하여 사용되는 경우의 혼합 비율은 목적하는 전지 성능에 따라 적절하게 조절할 수 있으며, 특히 1,3-디옥솔란과 디메톡시에탄의 1:1 부피비 혼합액이 바람직할 수 있다.
본 발명에 따른 리튬 이차전지의 음극은 음극 집전체, 및 음극 집전체 상에 형성된 음극 활물질층을 포함한다.
상기 음극 활물질층은 음극 활물질, 바인더 및 도전재를 포함한다. 상기 음극 활물질로는 리튬 이온(Li+)을 가역적으로 흡장(Intercalation) 또는 방출(Deintercalation)할 수 있는 물질, 리튬 이온과 반응하여 가역적으로 리튬 함유 화합물을 형성할 수 있는 물질, 리튬 금속 또는 리튬 합금을 사용할 수 있다. 상기 리튬 이온(Li+)을 가역적으로 흡장 또는 방출할 수 있는 물질은 예컨대 결정질 탄소, 비정질 탄소 또는 이들의 혼합물일 수 있다. 상기 리튬 이온(Li+)과 반응하여 가역적으로 리튬 함유 화합물을 형성할 수 있는 물질은 예를 들어, 산화주석, 티타늄나이트레이트 또는 실리콘일 수 있다. 상기 리튬 합금은 예를 들어, 리튬(Li)과 나트륨(Na), 칼륨(K), 루비듐(Rb), 세슘(Cs), 프랑슘(Fr), 베릴륨(Be), 마그네슘(Mg), 칼슘(Ca), 스트론튬(Sr), 바륨(Ba), 라듐(Ra), 알루미늄(Al) 및 주석(Sn)으로 이루어지는 군에서 선택되는 금속의 합금일 수 있다.
상기 바인더는 상술한 바인더에 한정되지 않고, 해당 기술 분야에서 바인더로 사용될 수 있는 것이라면 모두 가능하다.
상기 음극 활물질 및 도전재를 제외한 집전체 등의 구성은 상술한 양극에서 사용된 물질 및 방법 등이 사용될 수 있다.
본 발명에 따른 리튬 이차전지의 분리막은 전극을 물리적으로 분리하는 기능을 갖는 물리적인 분리막으로서, 통상의 분리막으로 사용되는 것이라면 특별한 제한 없이 사용 가능하며, 특히 전해액의 이온 이동에 대하여 저 저항이면서 전해액 함습 능력이 우수한 것이 바람직하다.
또한, 상기 분리막은 양극과 음극을 서로 분리 또는 절연시키면서 양극과 음극 사이에 리튬 이온의 수송을 가능하게 한다. 이러한 분리막은 기공도 30~50%의 다공성이고, 비전도성 또는 절연성인 물질로 이루어질 수 있다.
구체적으로는 다공성 고분자 필름, 예를 들어 에틸렌 단독중합체, 프로필렌 단독중합체, 에틸렌/부텐 공중합체, 에틸렌/헥센 공중합체 및 에틸렌/메타크릴레이트 공중합체 등과 같은 폴리올레핀계 고분자로 제조한 다공성 고분자 필름을 사용할 수 있고, 고융점의 유리 섬유 등으로 된 부직포를 사용할 수 있다. 이 중 바람직하기로 다공성 고분자 필름을 사용한다.
만일 버퍼층 및 분리막으로 모두 고분자 필름을 사용하게 되면, 전해액 함침량 및 이온 전도 특성이 감소하고, 과전압 감소 및 용량 특성 개선 효과가 미미하게 된다. 반대로, 모두 부직포 소재를 사용할 경우는 기계적 강성이 확보되지 못하여 전지 단락의 문제가 발생한다. 그러나, 필름형의 분리막과 고분자 부직포 버퍼층을 함께 사용하면, 버퍼층의 채용으로 인한 전지 성능 개선 효과와 함께 기계적 강도 또한 확보할 수 있다.
본 발명의 바람직한 일 구체예에 따르면 에틸렌 단독중합체(폴리에틸렌) 고분자 필름을 분리막으로, 폴리이미드 부직포를 버퍼층으로 사용한다. 이때, 상기 폴리에틸렌 고분자 필름은 두께가 10 내지 25μm, 기공도가 40 내지 50%인 것이 바람직하다.
이하, 본 발명의 이해를 돕기 위해 바람직한 실시예를 제시하지만, 하기의 실시예는 본 발명을 보다 쉽게 이해하기 위하여 제공되는 것일 뿐 본 발명이 이에 한정되는 것은 아니다.
실시예
실시예 1
1. 양극의 제조
제1 폴리아크릴산(Sigma-Aldrich 제품, 분자량: 1,250,000)과 제2 폴리아크릴산(Sigma-Aldrich 제품, 분자량: 450,000)을 2 : 5의 중량비로 혼합하였다. 얻어진 혼합물을 수산화리튬(Sigma-Aldrich 제품, LiOH)으로 완전하게 중화하여 리튬 치환 폴리아크릴산의 바인더를 제조하였다. 상기 바인더의 점도는 25℃의 온도조건 하에 2.5 중량%의 수용액 상태에서 1,290cP로 측정되었다. 또한, 황(Sigma-Aldrich 제품)을 CNT(Carbon Nanotube)와 함께 볼 밀을 사용하여 혼합 후 155℃에서 열처리하여 황-탄소 복합체의 양극 활물질을 제조하였다. 도전재로는 VGCF (Vapor-grown Carbon Fiber)를 준비하였다. 상술한 양극 활물질, 도전재 및 바인더를 용매인 물에 첨가하고 믹서로 혼합하여 양극 활성층 형성용 조성물을 제조하였다. 이때, 혼합비율은 중량비로 양극 활물질 : 도전재 : 바인더가 88 : 5 : 7가 되도록 하였다. 제조한 양극 활물질층 형성용 조성물을 알루미늄 포일 집전체에 도포한 후 50℃에서 2시간 건조하여 양극을 제조하였다 (양극의 에너지 밀도: 5.5mAh/㎠).
2. 리튬 이차전지의 제조
상술한 방법에 의해 제조된 양극과 함께, 하기와 같이 음극, 분리막 및 전해액을 제조하여 리튬 이차전지를 조립하였다.
(1) 음극
음극으로서 약 40㎛ 두께를 갖는 리튬 호일을 사용하였다.
(2) 분리막
분리막으로서 폴리에틸렌 막을 사용하였다
(3) 전해액
전해액으로 에틸렌글리콜에틸메틸에테르(EGEME)와 2-메틸 테트라하이드로푸란(2-Me-THF)의 혼합용매(2:1, v/v)에 0.75M의 LiFSI와 3 중량%의 LiNO3를 첨가한 전해액을 사용하였다.
실시예 2
양극의 제조 시 제1 폴리아크릴산(Sigma-Aldrich 제품, 분자량: 1,250,000)과 제3 폴리아크릴산(Scientific polymer products inc. 제품, 분자량: 750,000)을 2 : 5의 중량비로 혼합한 후 수산화리튬으로 완전하게 중화하여 리튬 치환 폴리아크릴산의 바인더를 제조한 것을 제외하고는 실시예 1과 동일한 방법으로 리튬 이차전지를 제조하였다. 상기 바인더의 점도는 25℃의 온도조건 하에 2.5 중량%의 수용액 상태에서 40,000cP로 측정되었다.
실시예 3
양극의 제조 시 제1 폴리아크릴산(Sigma-Aldrich 제품, 분자량: 1,250,000)과 제3 폴리아크릴산(Scientific polymer products inc. 제품, 분자량: 750,000)을 1 : 1의 중량비로 혼합한 후 수산화리튬으로 완전하게 중화하여 리튬 치환 폴리아크릴산의 바인더를 제조한 것을 제외하고는 실시예 1과 동일한 방법으로 리튬 이차전지를 제조하였다. 상기 바인더의 점도는 25℃의 온도조건 하에 2.5 중량%의 수용액 상태에서 50,000cP로 측정되었다.
비교예 1
양극의 제조 시 제1 폴리아크릴산(Sigma-Aldrich 제품, 분자량: 1,250,000)만을 수산화리튬으로 중화하여 리튬 치환 폴리아크릴산의 바인더를 제조한 것을 제외하고 실시예 1과 동일한 방법으로 리튬 이차전지를 제조하였다.
비교예 2
양극의 제조 시 제3 폴리아크릴산(Scientific polymer products inc. 제품, 분자량: 750,000)만을 수산화리튬으로 중화하여 리튬 치환 폴리아크릴산의 바인더를 제조한 것을 제외하고 실시예 1과 동일한 방법으로 리튬 이차전지를 제조하였다.
비교예 3
양극의 제조 시 제2 폴리아크릴산(Sigma-Aldrich 제품, 분자량: 450,000)과 제3 폴리아크릴산(Scientific polymer products inc. 제품, 분자량: 750,000)을 5 : 2의 중량비로 혼합한 후 수산화리튬으로 완전하게 중화하여 리튬 치환 폴리아크릴산의 바인더를 제조한 것을 제외하고는 실시예 1과 동일한 방법으로 리튬 이차전지를 제조하였다.
비교예 4
양극의 제조 시 제1 폴리아크릴산(Sigma-Aldrich 제품, 분자량: 1,250,000)과 폴리비닐피롤리돈(Sigma-Aldrich 제품, 분자량: 360,000)을 5 : 2의 중량비로 혼합한 후 수산화리튬으로 완전하게 중화하여 리튬 치환 폴리아크릴산의 바인더를 제조한 것을 제외하고는 실시예 1과 동일한 방법으로 리튬 이차전지를 제조하였다.
비교예 5
양극의 제조 시 제1 폴리아크릴산(Sigma-Aldrich 제품, 분자량: 1,250,000)과 제2 폴리아크릴산(Sigma-Aldrich 제품, 분자량: 450,000)을 1 : 9의 중량비로 혼합한 후 수산화리튬으로 완전하게 중화하여 리튬 치환 폴리아크릴산의 바인더를 제조한 것을 제외하고는 실시예 1과 동일한 방법으로 리튬 이차전지를 제조하였다.
비교예 6
양극의 제조 시 제1 폴리아크릴산(Sigma-Aldrich 제품, 분자량: 1,250,000)과 제2 폴리아크릴산(Sigma-Aldrich 제품, 분자량: 450,000)을 4 : 1의 중량비로 혼합한 후 수산화리튬으로 완전하게 중화하여 리튬 치환 폴리아크릴산의 바인더를 제조한 것을 제외하고는 실시예 1과 동일한 방법으로 리튬 이차전지를 제조하였다.
실험예
바인더의 성능 평가 방법
1. 접착력 측정 방법
50℃에서 2시간 건조된 전극을 15cm × 2cm 의 크기로 재단한 후, 양면 테이프를 붙인 슬라이드 글라스(slide glass)에 전극 면으로 접착하고 라미네이션(lamination)을 통해 박리 시험(peel test)용 샘플을 3개 제조한다. 상기 박리 시험용 샘플을 접착력 측정이 가능한 UTM 에 로딩(loading)하고 90° 박리 시험을 진행하여 걸리는 박리 저항(gf/cm)을 측정하여 각 전극의 접착성을 계산한다.
<분석 조건>
- 샘플 폭: 20mm
- 전파 속도(propagation speed): 300mm/min
- 데이터 유효 계산 구간: 10mm ~ 40mm
2. 사이클 특성 평가 방법
하기의 조건 하에 충방전을 수행하여 전지의 성능을 측정한다.
<분석 조건>
- 기기: 100 mA급 충방전기
- 충전: 0.3C, 정전류/정전압 모드
- 방전: 0.5C, 정전류/정전압 모드, 1.8 V
- 사이클 온도: 25℃
실험예 1: 방전 용량에 따른 전지의 성능 분석
상기 실시예 및 비교예에 따라 제조된 리튬 이차전지를 각각 상술한 분석 조건으로 반복적으로 충방전을 수행하였다. 충방전 중 1번째 사이클에서의 방전 용량 및 100번째 사이클에서의 방전 용량을 측정하여, 그 결과를 표 1에 나타내었다.
방전 용량(mAh/g) 용량 유지율(%)
1번째 사이클 100번째 사이클
실시예 1 1,057 648 61.3
실시예 2 1,109 715 64.5
실시예 3 1,105 676 61.2
비교예 1 1,061 368 34.7
비교예 2 1,120 412 36.8
비교예 3 1,099 528 48.0
비교예 4 1,109 302 27.2
비교예 5 1,069 322 30.1
비교예 6 1,073 271 25.3
상기 표 1에 따르면, 약 500,000 이상의 분자량 차이가 나는 2종류의 리튬 치환 폴리아크릴산을 포함하는 바인더를 사용하는 경우(실시예 1 내지 3), 리튬 치환 폴리아크릴산을 단독으로 사용하는 경우(비교예 1 및 2)에 비해 용량 유지율이 현저하게 향상된 것을 확인할 수 있었다.
또한, 약 500,000 이상의 분자량 차이가 나는 2종류의 리튬 치환 폴리아크릴산을 포함하는 바인더를 사용하는 경우(실시예 1 내지 3), 약 500,000 미만의 분자량 차이가 나는 2종류의 리튬 치환 폴리아크릴산을 포함하는 바인더를 사용하는 경우(비교예 3)에 비해 용량 유지율이 현저하게 향상된 것을 확인할 수 있었다.
상기 표 1의 비교예 4를 볼 때, 약 500,000 이상의 분자량 차이가 나더라도 리튬 치환 폴리아크릴산과 이종의 고분자를 포함하는 바인더를 사용하는 경우 실시예 1 내지 3과 같은 상술한 용량 유지율에 대한 효과를 확인할 수 없었다.
상기 표 1의 비교예 5 및 6을 볼 때, 고분자량의 리튬 치환 폴리아크릴산(20 내지 70 중량%) 또는 저분자량의 리튬 치환 폴리아크릴산(30 내지 80 중량%)이 특정 함량 범위를 벗어나는 경우 상술한 용량 유지율에 대한 효과가 거의 나타나지 않았다.
실험예 2: 양극의 접착력 분석
상기 실시예 및 비교예에 따라 제조된 양극을 각각 상술한 분석 조건으로 접착력을 측정하여, 그 결과를 표 2에 나타내었다.
접착력(gf/cm) 비고
실시예 1 8.1 3회 측정
실시예 2 9 초과 3회 측정
실시예 3 9 초과 3회 측정
비교예 1 4.6 3회 측정
비교예 2 4.5 3회 측정
비교예 3 7.9 3회 측정
비교예 4 1.8 3회 측정
비교예 5 1.0 3회 측정
비교예 6 3.7 3회 측정
상기 표 2에 따르면, 약 500,000 이상의 분자량 차이가 나는 2종류의 리튬 치환 폴리아크릴산을 포함하는 바인더를 사용하는 경우(실시예 1 내지 3), 리튬 치환 폴리아크릴산을 단독으로 사용하는 경우(비교예 1 및 2)에 비해 양극의 접착력이 현저하게 향상된 것을 확인할 수 있었다.
또한, 약 500,000 미만의 분자량 차이가 나는 2종류의 리튬 치환 폴리아크릴산을 포함하는 바인더를 사용하는 경우(비교예 3)에는 약 500,000 이상의 분자량 차이가 나는 2종류의 리튬 치환 폴리아크릴산을 포함하는 바인더를 사용하는 경우(실시예 1 내지 3)와 대비하여 상술한 용량 유지율과는 접착력은 크게 저하되지 않았다.
상기 표 2의 비교예 4를 볼 때, 약 500,000 이상의 분자량 차이가 나더라도 리튬 치환 폴리아크릴산과 이종의 고분자를 포함하는 바인더를 사용하는 경우 실시예 1 내지 3과 같은 상술한 접착력에 대한 효과를 확인할 수 없었다.
상기 표 2의 비교예 5 및 6을 볼 때, 고분자량의 리튬 치환 폴리아크릴산(20 내지 70 중량%) 또는 저분자량의 리튬 치환 폴리아크릴산(30 내지 80 중량%)이 특정 함량 범위를 벗어나는 경우 상술한 접착력에 대한 효과가 거의 나타나지 않았다.
본 발명의 단순한 변형 내지 변경은 모두 본 발명의 영역에 속하는 것이며, 본 발명의 구체적인 보호 범위는 첨부된 특허청구범위에 의하여 명확해질 것이다.

Claims (14)

  1. 분자량이 다른 2종 이상의 리튬 치환 폴리아크릴산을 포함하는 리튬 이차전지의 양극 제조용 바인더.
  2. 청구항 1에 있어서,
    상기 리튬 치환 폴리아크릴산은 서로 500,000 이상의 중량평균분자량이 차이가 나는 2종의 리튬 치환 폴리아크릴산을 포함하는 것을 특징으로 하는 리튬 이차전지의 양극 제조용 바인더.
  3. 청구항 1에 있어서,
    상기 리튬 치환 폴리아크릴산은 1,000,000 내지 2,000,000의 중량평균분자량을 갖는 고분자량의 리튬 치환 폴리아크릴산을 포함하는 것을 특징으로 하는 리튬 이차전지의 양극 제조용 바인더.
  4. 청구항 3에 있어서,
    상기 고분자량의 리튬 치환 폴리아크릴산은 전체 리튬 치환 폴리아크릴산을 기준으로 20 내지 70 중량%가 포함되는 것을 특징으로 하는 리튬 이차전지의 양극 제조용 바인더.
  5. 청구항 1에 있어서,
    상기 리튬 치환 폴리아크릴산은 5,000 내지 800,000의 중량평균분자량을 갖는 저분자량의 리튬 치환 폴리아크릴산을 포함하는 것을 특징으로 하는 리튬 이차전지의 양극 제조용 바인더.
  6. 청구항 5에 있어서,
    상기 저분자량의 리튬 치환 폴리아크릴산은 전체 리튬 치환 폴리아크릴산을 기준으로 30 내지 80 중량%가 포함되는 것을 특징으로 하는 리튬 이차전지의 양극 제조용 바인더.
  7. 청구항 1에 있어서,
    상기 바인더는 25℃의 온도조건 하에 2.5 중량%의 수용액 상태에서 500 내지 50,000cP의 점도를 갖는 것을 특징으로 하는 리튬 이차전지의 양극 제조용 바인더.
  8. 청구항 1에 있어서,
    상기 리튬 이차전지는 리튬-황 전지인 것을 특징으로 하는 리튬 이차전지의 양극 제조용 바인더.
  9. 청구항 1에 따른 바인더, 양극 활물질, 및 도전재를 포함하는 리튬 이차전지의 양극 제조용 조성물.
  10. 청구항 9에 있어서,
    상기 조성물은 조성물 내 고형분 100 중량부에 대하여 0.01 내지 10 중량부의 바인더를 포함하는 것을 특징으로 하는 리튬 이차전지의 양극 제조용 조성물.
  11. 청구항 9에 있어서,
    상기 조성물은 조성물 내 고형분 100 중량부에 대하여 30 내지 95 중량부의 양극 활물질을 포함하는 것을 특징으로 하는 리튬 이차전지의 양극 제조용 조성물.
  12. 청구항 9에 있어서,
    상기 조성물은 조성물 내 고형분 100 중량부에 대하여 2 내지 65 중량부의 도전재를 포함하는 것을 특징으로 하는 리튬 이차전지의 양극 제조용 조성물.
  13. 집전체, 및 상기 집전체 상에 청구항 9에 따른 조성물을 도포하여 형성된 양극 활물질 층을 포함하는 양극.
  14. 청구항 13에 따른 양극을 포함하는 리튬 이차전지.
PCT/KR2018/014138 2017-11-30 2018-11-16 리튬 이차전지의 양극 제조용 바인더 및 이를 사용한 양극의 제조방법 WO2019107815A1 (ko)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP18883221.6A EP3712994A4 (en) 2017-11-30 2018-11-16 BINDING AGENT FOR MANUFACTURING A POSITIVE ELECTRODE OF A LITHIUM SECONDARY BATTERY AND METHOD FOR MANUFACTURING A POSITIVE ELECTRODE USING THE SAME
US16/768,263 US11563215B2 (en) 2017-11-30 2018-11-16 Binder for manufacturing positive electrode of lithium secondary battery and method for manufacturing positive electrode by using same
CN201880076924.6A CN111433951B (zh) 2017-11-30 2018-11-16 用于制造锂二次电池正极的粘结剂和通过使用所述粘结剂制造正极的方法
JP2020529203A JP7046182B2 (ja) 2017-11-30 2018-11-16 リチウム二次電池の正極製造用バインダー及びこれを使用した正極の製造方法
US18/084,261 US12057584B2 (en) 2017-11-30 2022-12-19 Binder for manufacturing positive electrode of lithium secondary battery and method for manufacturing positive electrode by using same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2017-0162681 2017-11-30
KR20170162681 2017-11-30
KR10-2018-0095216 2018-08-16
KR1020180095216A KR102244914B1 (ko) 2017-11-30 2018-08-16 리튬-황 전지의 양극 제조용 바인더 및 이를 사용한 양극의 제조방법

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US16/768,263 A-371-Of-International US11563215B2 (en) 2017-11-30 2018-11-16 Binder for manufacturing positive electrode of lithium secondary battery and method for manufacturing positive electrode by using same
US18/084,261 Continuation US12057584B2 (en) 2017-11-30 2022-12-19 Binder for manufacturing positive electrode of lithium secondary battery and method for manufacturing positive electrode by using same

Publications (1)

Publication Number Publication Date
WO2019107815A1 true WO2019107815A1 (ko) 2019-06-06

Family

ID=66665701

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/014138 WO2019107815A1 (ko) 2017-11-30 2018-11-16 리튬 이차전지의 양극 제조용 바인더 및 이를 사용한 양극의 제조방법

Country Status (1)

Country Link
WO (1) WO2019107815A1 (ko)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021241467A1 (ja) * 2020-05-29 2021-12-02 株式会社Gsユアサ 非水電解液蓄電素子
CN114497444A (zh) * 2022-02-16 2022-05-13 华鼎国联四川动力电池有限公司 锂离子电池极片保护涂层用陶瓷浆料及其制备方法
CN115000406A (zh) * 2022-05-24 2022-09-02 广州鹏辉能源科技股份有限公司 一种锂离子电池、正极极片、正极材料
KR20240100367A (ko) 2021-11-18 2024-07-01 도아고세이가부시키가이샤 리튬 황 이차전지용의 전극 합제층 형성용 조성물, 리튬 황 이차전지용 전극 및 리튬 황 이차전지(composition for forming electrode binder layer for use in lithium-sulfur secondary battery, electrode for lithium-sulfur secondary battery, and lithium-sulfur secondary battery)
KR20240110939A (ko) 2021-11-18 2024-07-16 도아고세이가부시키가이샤 리튬 황 이차전지용의 전극 합제층 형성용 조성물, 리튬 황 이차전지용 전극 및 리튬 황 이차전지(composition for forming electrode binder layer for use in lithium-sulfur secondary battery, electrode for lithium-sulfur secondary battery, and lithium-sulfur secondary battery)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010518581A (ja) * 2007-02-06 2010-05-27 スリーエム イノベイティブ プロパティズ カンパニー 新規結合剤を含む電極、並びにその製造方法及び使用方法
KR20130104013A (ko) * 2012-03-12 2013-09-25 한국세라믹기술원 폴리아크릴산 관능기를 치환한 전극 결합제 및 이를 이용한 리튬 이차전지
KR20150028662A (ko) * 2013-09-06 2015-03-16 주식회사 엘지화학 전극 활물질 슬러리 및 이를 포함하는 리튬 이차 전지
KR101583948B1 (ko) 2014-06-24 2016-01-08 현대자동차주식회사 리튬황 전지용 양극
KR20170008178A (ko) * 2015-07-13 2017-01-23 도요타 지도샤(주) 리튬 이온 이차 전지용 정극판의 제조 방법, 및 리튬 이온 이차 전지용 정극판
KR20170047095A (ko) * 2015-10-22 2017-05-04 삼성전자주식회사 전극 활물질, 이를 포함하는 전극 및 이차전지, 및 상기 전극 활물질의 제조방법
KR20180095216A (ko) 2017-02-17 2018-08-27 최종용 미반응 가스 처리를 위한 고전압 진공 플라즈마 반응 장치

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010518581A (ja) * 2007-02-06 2010-05-27 スリーエム イノベイティブ プロパティズ カンパニー 新規結合剤を含む電極、並びにその製造方法及び使用方法
KR20130104013A (ko) * 2012-03-12 2013-09-25 한국세라믹기술원 폴리아크릴산 관능기를 치환한 전극 결합제 및 이를 이용한 리튬 이차전지
KR20150028662A (ko) * 2013-09-06 2015-03-16 주식회사 엘지화학 전극 활물질 슬러리 및 이를 포함하는 리튬 이차 전지
KR101583948B1 (ko) 2014-06-24 2016-01-08 현대자동차주식회사 리튬황 전지용 양극
KR20170008178A (ko) * 2015-07-13 2017-01-23 도요타 지도샤(주) 리튬 이온 이차 전지용 정극판의 제조 방법, 및 리튬 이온 이차 전지용 정극판
KR20170047095A (ko) * 2015-10-22 2017-05-04 삼성전자주식회사 전극 활물질, 이를 포함하는 전극 및 이차전지, 및 상기 전극 활물질의 제조방법
KR20180095216A (ko) 2017-02-17 2018-08-27 최종용 미반응 가스 처리를 위한 고전압 진공 플라즈마 반응 장치

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3712994A4 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021241467A1 (ja) * 2020-05-29 2021-12-02 株式会社Gsユアサ 非水電解液蓄電素子
KR20240100367A (ko) 2021-11-18 2024-07-01 도아고세이가부시키가이샤 리튬 황 이차전지용의 전극 합제층 형성용 조성물, 리튬 황 이차전지용 전극 및 리튬 황 이차전지(composition for forming electrode binder layer for use in lithium-sulfur secondary battery, electrode for lithium-sulfur secondary battery, and lithium-sulfur secondary battery)
KR20240110939A (ko) 2021-11-18 2024-07-16 도아고세이가부시키가이샤 리튬 황 이차전지용의 전극 합제층 형성용 조성물, 리튬 황 이차전지용 전극 및 리튬 황 이차전지(composition for forming electrode binder layer for use in lithium-sulfur secondary battery, electrode for lithium-sulfur secondary battery, and lithium-sulfur secondary battery)
CN114497444A (zh) * 2022-02-16 2022-05-13 华鼎国联四川动力电池有限公司 锂离子电池极片保护涂层用陶瓷浆料及其制备方法
CN114497444B (zh) * 2022-02-16 2023-05-30 华鼎国联四川动力电池有限公司 锂离子电池极片保护涂层用陶瓷浆料及其制备方法
CN115000406A (zh) * 2022-05-24 2022-09-02 广州鹏辉能源科技股份有限公司 一种锂离子电池、正极极片、正极材料

Similar Documents

Publication Publication Date Title
WO2018030616A1 (ko) 황-탄소 복합체, 이의 제조방법 및 이를 포함하는 리튬-황 전지
KR102244914B1 (ko) 리튬-황 전지의 양극 제조용 바인더 및 이를 사용한 양극의 제조방법
WO2019103326A2 (ko) 황-탄소 복합체, 그의 제조방법 및 이를 포함하는 리튬 이차전지
WO2019107815A1 (ko) 리튬 이차전지의 양극 제조용 바인더 및 이를 사용한 양극의 제조방법
WO2019066369A2 (ko) 탄소-황 복합체, 그의 제조방법 및 이를 포함하는 리튬 이차전지
WO2019088628A2 (ko) 황-탄소 복합체, 그의 제조방법 및 이를 포함하는 리튬 이차전지
WO2019022359A1 (ko) 리튬-황 이차전지의 양극 제조용 바인더 및 이를 사용한 양극의 제조방법
WO2019088630A2 (ko) 황-탄소 복합체 및 그의 제조방법
WO2019103409A1 (ko) 황-탄소 복합체의 제조방법
WO2019078505A1 (ko) 바인더, 이를 포함하는 전극 및 리튬 이차전지
WO2019107752A1 (ko) 황-탄소 복합체, 그의 제조방법 및 이를 포함하는 리튬 이차전지
WO2019212162A1 (ko) 리튬-황 이차전지용 바인더 및 이를 포함하는 리튬-황 이차전지
WO2020251199A1 (ko) 황-탄소 복합체, 이를 포함하는 리튬 이차전지용 양극 및 리튬 이차전지
WO2020105980A1 (ko) 리튬-황 이차전지
WO2021251663A1 (ko) 음극 및 이를 포함하는 이차전지
WO2021010626A1 (ko) 리튬-황 이차전지
WO2019083257A1 (ko) 리튬-황 전지용 분리막 및 이를 포함하는 리튬-황 전지
WO2018236046A1 (ko) 리튬-황 전지
WO2019098733A1 (ko) 황-탄소 복합체, 그의 제조방법 및 이를 포함하는 리튬 이차전지
WO2020009333A1 (ko) 황-탄소 복합체, 이의 제조방법, 이를 포함하는 리튬-황 전지용 양극 및 리튬-황 전지
WO2019093851A1 (ko) 리튬 이차 전지용 음극 및 이를 포함하는 리튬 이차 전지
WO2022211282A1 (ko) 리튬 이차전지
WO2022149913A1 (ko) 황-탄소 복합체, 이의 제조방법, 및 이를 포함하는 리튬-황 전지
WO2022092701A1 (ko) 고리형 카보네이트를 함유하는 전해질을 포함하는 리튬-황 이차전지
WO2020242247A1 (ko) 황-탄소 복합체, 이를 포함하는 리튬-황 전지용 양극, 및 상기 양극을 포함하는 리튬-황 전지

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18883221

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020529203

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2018883221

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2018883221

Country of ref document: EP

Effective date: 20200618