WO2019098733A1 - 황-탄소 복합체, 그의 제조방법 및 이를 포함하는 리튬 이차전지 - Google Patents

황-탄소 복합체, 그의 제조방법 및 이를 포함하는 리튬 이차전지 Download PDF

Info

Publication number
WO2019098733A1
WO2019098733A1 PCT/KR2018/014070 KR2018014070W WO2019098733A1 WO 2019098733 A1 WO2019098733 A1 WO 2019098733A1 KR 2018014070 W KR2018014070 W KR 2018014070W WO 2019098733 A1 WO2019098733 A1 WO 2019098733A1
Authority
WO
WIPO (PCT)
Prior art keywords
sulfur
carbon composite
carbon
porous
lithium
Prior art date
Application number
PCT/KR2018/014070
Other languages
English (en)
French (fr)
Inventor
김의태
한승훈
손권남
양두경
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020180022217A external-priority patent/KR102363968B1/ko
Priority claimed from KR1020180140659A external-priority patent/KR102328259B1/ko
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to US16/646,490 priority Critical patent/US11658293B2/en
Priority to EP18877799.9A priority patent/EP3712988A4/en
Priority to CN201880057563.0A priority patent/CN111095622B/zh
Priority to JP2020515133A priority patent/JP7118139B2/ja
Publication of WO2019098733A1 publication Critical patent/WO2019098733A1/ko
Priority to US18/298,720 priority patent/US12034156B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a sulfur-carbon composite, a process for producing the same, and a lithium secondary battery comprising the same.
  • Electrochemical devices have attracted the greatest attention in this respect.
  • the development of rechargeable secondary batteries has become a focus of attention.
  • Research and development on the design of new electrodes and batteries are underway.
  • the lithium secondary battery developed in the early 1990s has advantages such as higher operating voltage and higher energy density than conventional batteries such as Ni-MH, Ni-Cd and sulfuric acid-lead batteries using an aqueous electrolyte solution .
  • a lithium-sulfur (Li-S) battery is a secondary battery using a sulfur-based material having a sulfur-sulfur bond as a cathode active material and using lithium metal as an anode active material.
  • Sulfur the main material of the cathode active material, is very rich in resources, has no toxicity, and has a low atomic weight.
  • the theoretical energy density of the lithium-sulfur battery is 1675 mAh / g-sulfur and the theoretical energy density is 2,600 Wh / kg.
  • Ni-MH battery 450 Wh / , which is the most promising among the batteries that have been developed to date, because it is much higher than the FeS battery (480Wh / kg), Li-MnO 2 battery (1,000Wh / kg) and Na-S battery (800Wh / kg).
  • This lithium sulphate battery has a problem that the capacity is less than the theoretical value and the cycle life is short due to the insulating property of lithium sulphide (Li 2 S) as a cathode active material and discharge product and the elution property of polysulfide as a charge / discharge intermediate product . Therefore, in order to improve the performance of the lithium sulfur battery, various studies have been made to improve the reactivity and cycle stability of the sulfur anode.
  • Li 2 S lithium sulphide
  • Lithium Sulfur Batteries Sulfur / carbon composites, which are cathode active materials, have a great influence on the reactivity and cycle stability of the anode depending on its shape, structure, specific surface area, pore volume, and the like. As the contact area between sulfur and carbon is maximized and the specific surface area and the pore volume become larger, the electric conductivity and the lithium ion conductivity can be ensured, and a high performance lithium-sulfur battery can be expected to be driven.
  • the conventional sulfur / carbon composite manufacturing process involves a dry mixing of sulfur and carbon powder followed by a liquid phase impregnation of sulfur through heating.
  • the particle size of each of sulfur and carbon powder is in the order of tens to hundreds of micrometers.
  • Patent Document 1 Korean Patent Publication No. 2015-0043407 " Composite Material for Lithium-sulfur Battery &
  • an object of the present invention is to provide a method for producing a sulfur-carbon composite material, which comprises impregnating sulfur with liquid using a microwave, uniformly coating sulfur on a carbon surface in a thin thickness, And a method for producing the same.
  • Porous carbon material wherein the sulfur-carbon composite has a pore volume of 0.04 to 0.400 cm 3 / g and a specific surface area of the sulfur-carbon composite is Lt; 2 > / g to 4.0 to 30 m < 2 > / g.
  • the present invention also provides a method for producing a porous carbon material, comprising the steps of: (a) mixing a porous carbon material with sulfur having a particle size of 1 nm to 1 ⁇ ;
  • the present invention also provides a positive electrode comprising the sulfur-carbon composite.
  • the present invention provides a positive electrode comprising: the positive electrode; cathode; And an electrolyte.
  • Example 1 is an SEM photograph of a sulfur-carbon composite according to Example 1 and Comparative Example 1 of the present invention.
  • Example 2 is a graph showing the results of measurement of the pore size of the sulfur-carbon composite according to Example 1 and Comparative Example 1 of the present invention.
  • Example 3 is a graph showing a discharge capacity of a lithium secondary battery made of the sulfur-carbon composite material of Example 1 and Comparative Example 1 of the present invention.
  • Example 4 is a graph showing lifetime characteristics of a lithium secondary battery manufactured from the sulfur-carbon composite material of Example 1 and Comparative Example 1 of the present invention.
  • Example 5 is an SEM photograph of a sulfur-carbon composite according to Example 2 and Comparative Example 2 of the present invention.
  • Example 6 is a graph showing the results of measuring the pore size of the sulfur-carbon composite according to Example 2 and Comparative Example 2 of the present invention.
  • Example 7 is a graph showing a discharge capacity of a lithium secondary battery made of the sulfur-carbon composite material of Example 2 and Comparative Example 2 of the present invention.
  • Example 8 is a graph showing lifetime characteristics of a lithium secondary battery made from the sulfur-carbon composite of Example 2 and Comparative Example 2 of the present invention.
  • &quot composite &quot
  • composite &quot refers to a material that combines two or more materials to form a phase that is physically and chemically distinct, and that exhibits more effective functions.
  • the lithium-sulfur battery uses sulfur as the cathode active material and lithium metal as the anode active material.
  • the oxidation reaction of lithium occurs at the cathode and the reduction reaction of sulfur occurs at the anode.
  • the reduced sulfur is converted to lithium polysulfide by binding with lithium ions that have been moved from the cathode, and finally involves a reaction to form lithium sulfide.
  • the lithium-sulfur battery has a much higher theoretical energy density than the conventional lithium secondary battery, and the sulfur used as the cathode active material is inexpensive because of its abundant resources, so it can be used as a next-generation battery have.
  • the sulfur-carbon composite is most widely used as the cathode active material because it is effective in improving the electrical conductivity of the anode, but it is still not sufficient in terms of charge / discharge capacity and efficiency.
  • the capacity and efficiency of the lithium-sulfur battery may vary depending on the amount of lithium ions delivered to the anode. Therefore, it is important for facilitating the transfer of lithium ions into the sulfur-carbon composite material to increase the capacity and high efficiency of the battery.
  • the present invention provides a sulfur-carbon composite in which sulfur is thinly and uniformly coated on the inside and the surface of a porous carbonaceous material in order to secure the effect of improving the reactivity between the sulfur-carbon composite and the electrolyte and the capacity and efficiency of the lithium secondary battery.
  • the inside of the porous carbonaceous material means the inside of the pores of the porous carbonaceous material.
  • the sulfur-carbon composite of the present invention is a porous carbon material; Wherein the sulfur-carbon composite has a pore volume of 0.04 to 0.400 cm 3 / g and a specific surface area of the sulfur-carbon composite of 4.0 to 30 m 2 / g / g. < / RTI >
  • the porous carbon material of the sulfur-carbon composite of the present invention provides a skeleton capable of uniformly and stably immobilizing sulfur, which is a positive electrode active material, and improves the electrical conductivity of sulfur, so that the electrochemical reaction can proceed smoothly.
  • the porous carbon material may be used in any form as long as it is commonly used in a lithium-sulfur battery in a spherical shape, a rod shape, an acicular shape, a plate shape, a tubular shape or a bulk shape.
  • the porous carbon material may have a porous structure or a high specific surface area, as long as it is commonly used in the art.
  • the porous carbon material may include graphite; Graphene; Carbon black such as denka black, acetylene black, ketjen black, channel black, furnace black, lamp black, and summer black; Carbon nanotubes (CNTs) such as single wall carbon nanotubes (SWCNTs) and multiwall carbon nanotubes (MWCNTs); Carbon fibers such as graphite nanofibers (GNF), carbon nanofibers (CNF), and activated carbon fibers (ACF); And activated carbon, but is not limited thereto.
  • the diameter of the porous carbonaceous particles is 100 nm to 50 ⁇ ⁇ .
  • the sulfur is present on the surface as well as inside the pores of the porous carbonaceous material, and is present in an area of less than 100%, preferably 1 to 95%, more preferably 60 to 90%, of the entire outer surface of the porous carbonaceous material .
  • the sulfur is in the above range on the surface of the porous carbonaceous material, it can exhibit the maximum effect in terms of the electron transfer area and the wettability of the electrolyte solution.
  • the sulfur is impregnated thinly and evenly on the surface of the porous carbonaceous material in the above range, the electron transfer contact area can be increased in the charging and discharging process.
  • the sulfur is located in the 100% region of the surface of the porous carbon material, the porous carbon material is completely covered with sulfur, so that the wettability of the electrolyte is deteriorated and the contact with the conductive material contained in the electrode is lost. Can not.
  • the sulfur-carbon composites can carry sulfur in a high content due to pores of various sizes in the structure and three-dimensionally interconnected and regularly arranged pores. As a result, even if a polysulfide that is soluble due to an electrochemical reaction is generated, if it can be positioned inside the sulfur-carbon composite, the structure entangled in three dimensions can be maintained even when polysulfide is eluted to suppress the collapse of the anode structure have. As a result, the lithium-sulfur battery including the sulfur-carbon composite has an advantage that a high capacity can be realized even at high loading.
  • the sulfur loading amount of the sulfur-carbon composite according to the present invention may be 1 to 20 mg / cm 2 .
  • the sulfur-carbon composite of the present invention can be coated on the surface or pores of the porous carbonaceous material to a thickness of 1 to 10 nm by using sulfur particles having a particle size of 1 nm to 1 ⁇ m at the time of production.
  • the sulfur-carbon composite of the present invention can control the pore volume of the sulfur-carbon composite and the specific surface area of the sulfur-carbon composite depending on the weight ratio of the sulfur and the porous carbonaceous material.
  • the weight ratio of the sulfur and the porous carbon material may be 7.5: 2.5 to 4: 6, preferably 7.5: 2.5 to 6: 4. If the content of sulfur is less than the above-mentioned weight ratio, the amount of the binder added during the preparation of the positive electrode slurry is increased as the content of the porous carbonaceous material is increased. Such an increase in the amount of the binder increases the sheet resistance of the electrode, and acts as an insulator to prevent electron transfer, which may degrade the cell performance. On the contrary, when the content of sulfur exceeds the above-mentioned weight ratio range, the sulfur is aggregated with each other, and it is difficult to directly participate in the electrode reaction due to difficulty in receiving electrons. Especially, the pore volume, specific surface area and average pore size do.
  • porous carbon materials can be produced by carbonizing precursors of various carbon materials, and these porous carbon materials have pores having an average diameter in the range of about 100 nm to 50 ⁇ m inside.
  • the size of the sulfur particles used for the production is as large as several tens of micrometers, even when such sulfur particles are coated inside the pores of the porous carbon material, The sulfur particles can not easily enter into the pores and the sulfur particles obstruct the entrance of the pores. Therefore, when the specific surface area, the pore size, and the pore volume of the sulfur-carbon composite are measured, a problem arises.
  • sulfur having a particle size of less than 1 micrometer can be used to thinly and uniformly coat sulfur in the pores of the porous carbon material. Also, by applying a microwave to the mixture of sulfur and porous carbon material, it is possible to remove sulfur particles blocking the entrance of the pores and to thinly and evenly coat the inside of the pores.
  • the sulfur-carbon composite of the present invention may have a pore volume of 0.250 to 0.400 cm < 3 > / g, preferably 0.300 to 0.350, as the sulfur is thinly and uniformly coated inside the pores of the porous carbonaceous material. cm < 3 > / g.
  • the specific surface area of the sulfur-carbon composite may be 18.5 to 30 m 2 / g, preferably 19.5 to 30 m 2 / g .
  • the average pore size of the sulfur-carbon composite may be 55 to 100 nm.
  • the weight ratio of the sulfur and the porous carbon material may be 7.5: 2.5 to 9: 1, preferably 7.5: 2.5 to 8.5: 1.5. If the content of sulfur is less than the above-mentioned weight ratio, the amount of the binder added during the preparation of the positive electrode slurry is increased as the content of the porous carbonaceous material is increased. Such an increase in the amount of the binder increases the sheet resistance of the electrode, and acts as an insulator to prevent electron transfer, which may degrade the cell performance. On the contrary, when the content of sulfur exceeds the above-mentioned weight ratio range, the sulfur is aggregated with each other, and it is difficult to directly participate in the electrode reaction due to difficulty in receiving electrons. Especially, the pore volume, specific surface area and average pore size do.
  • sulfur having a particle size of less than 1 micrometer can be used to thinly and uniformly coat sulfur in the pores of the porous carbon material. Also, by applying a microwave to the mixture of sulfur and porous carbon material, it is possible to remove sulfur particles blocking the entrance of the pores and to thinly and evenly coat the inside of the pores.
  • the sulfur-carbon composite of the present invention may have a pore volume of 0.04 to 0.20 cm 3 / g, preferably 0.05 to 0.15 cm 2 / g, as sulfur is thinly and uniformly coated inside the pores of the porous carbonaceous material. cm < 3 > / g.
  • the specific surface area of the sulfur-carbon composite may be 4.0 to 20 m 2 / g, preferably 4.5 to 10 m 2 / g .
  • the average pore size of the sulfur-carbon composite may be 40 to 100 nm.
  • the sulfur-carbon composite of the present invention satisfies the pore volume, specific surface area and average pore size in the above range, the sulfur is coated thinly and uniformly in the pores of the porous carbon material, and when applied to the electrode, . If the above range is not satisfied, the sulfur is hardly coated in the pores, or the sulfur has blocked the inlet of the pores. Therefore, when the electrode is used as an electrode, the discharge capacity and life characteristics required by the user can not be satisfied.
  • the sulfur-carbon composite of the present invention comprises (a) a step of mixing a porous carbon material with sulfur having a particle size of 1 nm to 1 ⁇ m; (b) drying the mixed sulfur and the porous carbonaceous material; And (c) applying a microwave to the mixture of the dried sulfur and the porous carbonaceous material.
  • the method for producing a sulfur-carbon composite of the present invention comprises the step (a) of mixing sulfur and a porous carbon material having a particle size of 1 nm to 1 ⁇ .
  • the weight ratio of the sulfur and the porous carbon material may be 7.5: 2.5 to 4: 6, preferably 7.5: 2.5 to 6: 4. If the content of sulfur is less than the above-mentioned weight ratio, the amount of the binder added during the preparation of the positive electrode slurry is increased as the content of the porous carbonaceous material is increased. Such an increase in the amount of the binder increases the sheet resistance of the electrode, and acts as an insulator to prevent electron transfer, which may degrade the cell performance. On the contrary, when the content of sulfur exceeds the above-mentioned weight ratio range, the sulfur is aggregated with each other, and it is difficult to directly participate in the electrode reaction due to difficulty in receiving electrons. Especially, the pore volume, specific surface area and average pore size do.
  • the weight ratio of sulfur and the porous carbon material may be 7.5: 2.5 to 9: 1, preferably 7.5: 2.5 to 8.5: 1.5. If the content of sulfur is less than the above-mentioned weight ratio, the amount of the binder added during the preparation of the positive electrode slurry is increased as the content of the porous carbonaceous material is increased. Such an increase in the amount of the binder increases the sheet resistance of the electrode, and acts as an insulator to prevent electron transfer, which may degrade the cell performance. On the contrary, when the content of sulfur exceeds the above-mentioned weight ratio range, the sulfur is aggregated with each other, and it is difficult to directly participate in the electrode reaction due to difficulty in receiving electrons. Especially, the pore volume, specific surface area and average pore size do.
  • the sulfur used in the step (a) is sulfur having a particle diameter of 1 nm to 1 ⁇ , and other features are the same as those described above.
  • the characteristics of the porous carbon material are also the same as those described above.
  • the method for producing the sulfur-carbon composite of the present invention includes the step (b) of drying the mixed sulfur and the porous carbonaceous material.
  • the drying method may be performed in an oven at 60 to 100 ° C. for 12 to 36 hours, and the solvent used for mixing the step (a) and the balls for ball mill may be removed before drying.
  • the method for producing a sulfur-carbon composite of the present invention includes the step (c) of applying a microwave to a mixture of the dried sulfur and the porous carbonaceous material.
  • the application of the microwave in the step (c) may be performed at an output of 500 to 2000 W, and the application of the microwave may be performed 2 to 10 times at a frequency of 2 to 10 seconds.
  • the sulfur particles blocking the pore openings of the porous carbonaceous material among the sulfur-carbon composites are removed through the application of microwaves as described above, have.
  • the weight ratio of the sulfur and the porous carbon material is adjusted to 7.5: 2.5 to 4: 6, preferably 7.5: 2.5 to 6:
  • the pore volume of the sulfur-carbon composite may be 0.250 to 0.400 cm < 3 > / g, preferably 0.300 to 0.350 cm < 3 > / g as sulfur is thinly and uniformly coated inside the pores of the porous carbon material.
  • the specific surface area of the sulfur-carbon composite may be 18.5 to 30 m 2 / g, preferably 19.5 to 30 m 2 / g .
  • the average pore size of the sulfur-carbon composite may be 55 to 100 nm.
  • the weight ratio of sulfur to the porous carbonaceous material is preferably in the range of 7.5: 2.5 to 9: 1, preferably 7.5: 2.5 to 8.5:
  • Carbon composite material may have a pore volume of 0.04 to 0.20 cm < 3 > / g, preferably 0.05 to 0.15 cm < 3 > / g, as sulfur is thinly and uniformly coated inside the pores of the porous carbon material.
  • the specific surface area of the sulfur-carbon composite may be 4.0 to 20 m 2 / g, preferably 4.5 to 10 m 2 / g .
  • the average pore size of the sulfur-carbon composite may be 40 to 100 nm.
  • the sulfur-carbon composites proposed in the present invention can be preferably used as a lithium secondary battery, particularly, a cathode active material of a lithium-sulfur battery.
  • the positive electrode is prepared by applying a composition for forming a positive electrode active material layer on a positive electrode collector and drying the applied positive electrode active material layer.
  • a conductive material may be added to the cathode composition to impart additional conductivity to the prepared sulfur-carbon composite.
  • the conductive material plays a role in allowing electrons to move smoothly in the anode.
  • the conductive material is not particularly limited as long as the conductive material does not cause a chemical change in the battery and can provide a large surface area. Materials are used.
  • Examples of the carbon-based material include natural graphite, artificial graphite, expanded graphite, graphite such as Graphene, active carbon, channel black, furnace black, Carbon black such as black, thermal black, contact black, lamp black, and acetylene black;
  • a carbon nano structure such as a carbon fiber, a carbon nanotube (CNT), and a fullerene, and a combination thereof may be used.
  • metallic fibers such as metal mesh may be used depending on the purpose.
  • Metallic powder such as copper (Cu), silver (Ag), nickel (Ni) and aluminum (Al);
  • an organic conductive material such as a polyphenylene derivative can also be used.
  • the conductive materials may be used alone or in combination.
  • a binder may be further included in the positive electrode composition.
  • the binder must be well dissolved in a solvent, and it should not only constitute a conductive network between the cathode active material and the conductive material, but also have an ability to impregnate the electrolyte appropriately.
  • the binder applicable to the present invention may be any binder known in the art and specifically includes a fluororesin binder containing polyvinylidene fluoride (PVdF) or polytetrafluoroethylene (PTFE) ; Rubber-based binders including styrene-butadiene rubber, acrylonitrile-butadiene rubber, and styrene-isoprene rubber; Cellulosic binders including carboxymethylcellulose (CMC), starch, hydroxypropylcellulose, and regenerated cellulose; Polyalcohol-based binders; Polyolefin binders including polyethylene and polypropylene; But are not limited to, polyimide-based binders, polyester-based binders, and silane-based binders, or a mixture or copolymer of two or more thereof.
  • PVdF polyvinylidene fluoride
  • PTFE polytetrafluoroethylene
  • Rubber-based binders including sty
  • the content of the binder resin may be 0.5-30 wt% based on the total weight of the positive electrode for a lithium secondary battery, but is not limited thereto. If the content of the binder resin is less than 0.5% by weight, the physical properties of the positive electrode may deteriorate and the positive electrode active material and the conductive material may fall off. When the amount of the binder resin is more than 30% by weight, the ratio of the active material and the conductive material is relatively decreased The battery capacity can be reduced.
  • the solvent for preparing the cathode composition for a lithium secondary battery in a slurry state should be easy to dry and most preferably the cathode active material and the conductive material can be maintained in a dispersed state without dissolving the binder.
  • the solvent according to the present invention may be water or an organic solvent, and the organic solvent may be an organic solvent containing at least one selected from the group consisting of dimethylformamide, isopropyl alcohol, acetonitrile, methanol, ethanol and tetrahydrofuran It is possible.
  • the mixing of the cathode composition may be carried out by a conventional method using a conventional mixer such as a latex mixer, a high-speed shear mixer, a homomixer, and the like.
  • a conventional mixer such as a latex mixer, a high-speed shear mixer, a homomixer, and the like.
  • the positive electrode composition is applied to a current collector, and vacuum dried to form a positive electrode for a lithium secondary battery.
  • the slurry may be coated on the current collector with an appropriate thickness according to the viscosity of the slurry and the thickness of the anode to be formed, and may be suitably selected within the range of 10 to 300 mu m.
  • the slurry may be coated by a method such as doctor blade coating, dip coating, gravure coating, slit die coating, spin coating, Spin coating, comma coating, bar coating, reverse roll coating, screen coating, cap coating and the like.
  • the cathode current collector generally has a thickness of 3 to 500 ⁇ , and is not particularly limited as long as it has high conductivity without causing chemical changes in the battery.
  • a conductive metal such as stainless steel, aluminum, copper, or titanium can be used, and an aluminum current collector can be preferably used.
  • Such a positive electrode current collector may have various forms such as a film, a sheet, a foil, a net, a porous body, a foam or a nonwoven fabric.
  • a lithium secondary battery includes the above-described anode; A negative electrode comprising lithium metal or a lithium alloy as a negative electrode active material; A separator interposed between the anode and the cathode; And an electrolyte impregnated with the negative electrode, the positive electrode and the separator, and including a lithium salt and an organic solvent.
  • the lithium secondary battery may be a lithium-sulfur battery including a sulfur compound in the positive electrode active material in the positive electrode.
  • the negative electrode is a negative active material that can reversibly intercalate or deintercalate lithium ions (Li + ), a material capable of reversibly reacting with lithium ions to form a lithium-containing compound ,
  • a lithium metal or a lithium alloy can be used.
  • the material capable of reversibly intercalating or deintercalating lithium ions may be, for example, crystalline carbon, amorphous carbon, or a mixture thereof.
  • the material capable of reacting with the lithium ion to form a lithium-containing compound reversibly may be, for example, tin oxide, titanium nitrate or silicon.
  • the lithium alloy may be, for example, an alloy of lithium and a metal selected from the group consisting of Na, K, Rb, Cs, Fr, Be, Mg, Ca, Sr, Ba, Ra, Al and Sn.
  • Inactive sulfur is sulfur in which sulfur can not participate in the electrochemical reaction of the anode after various electrochemical or chemical reactions.
  • Inactive sulfur formed on the surface of the lithium anode is a protective film of the lithium anode layer as well. Therefore, a lithium metal and an inert sulfur formed on the lithium metal, such as lithium sulfide, may be used as the cathode.
  • the negative electrode of the present invention may further include a pretreatment layer made of a lithium ion conductive material in addition to the negative electrode active material, and a lithium metal protective layer formed on the pretreatment layer.
  • the separator interposed between the anode and the cathode separates or insulates the anode and the cathode from each other and allows transport of lithium ions between the anode and the cathode, and may be made of a porous nonconductive or insulating material.
  • a separator may be an independent member such as a thin film or a film as an insulator having high ion permeability and mechanical strength, or may be a coating layer added to the anode and / or the cathode.
  • a solid electrolyte such as a polymer
  • the solid electrolyte may also serve as a separation membrane.
  • the separator preferably has a pore diameter of 0.01 to 10 ⁇ m and a thickness of 5 to 300 ⁇ m.
  • the separator may be a glass electrolyte, a polymer electrolyte, a ceramic electrolyte, or the like.
  • olefin-based polymers such as polypropylene having chemical resistance and hydrophobicity, sheets or nonwoven fabrics made of glass fibers or polyethylene, kraft paper, and the like are used.
  • Representative examples currently on the market include the Celgard R 2400 (2300 Hoechest Celanese Corp.), polypropylene separator (Ube Industries Ltd. or Pall RAI), and polyethylene (Tonen or Entek).
  • the solid electrolyte separation membrane may contain less than about 20% by weight of a non-aqueous organic solvent, in which case it may further comprise a suitable gelling agent to reduce the fluidity of the organic solvent.
  • suitable gelling agent include polyethylene oxide, polyvinylidene fluoride, and polyacrylonitrile.
  • the electrolyte impregnated in the negative electrode, the positive electrode and the separator is a non-aqueous electrolyte containing a lithium salt.
  • the non-aqueous electrolyte is composed of a lithium salt and an electrolyte.
  • Non-aqueous organic solvents, organic solid electrolytes and inorganic solid electrolytes are used as the electrolyte.
  • the lithium salt of the present invention can be dissolved in a non-aqueous organic solvent, for example, LiSCN, LiCl, LiBr, LiI, LiPF 6 , LiBF 4 , LiSbF 6 , LiAsF 6 , LiB 10 Cl 10 , LiCH 3 SO 3 , LiCF 3 SO 3, LiCF 3 CO 2 , LiClO 4, LiAlCl 4, Li (Ph) 4, LiC (CF 3 SO 2) 3, LiN (FSO 2) 2, LiN (CF 3 SO 2) 2, LiN (C 2 (F 3 SO 2 ) 2 , LiN (SFO 2 ) 2 , LiN (CF 3 CF 2 SO 2 ) 2 , chloroborane lithium, lower aliphatic carboxylate lithium, lithium tetraphenylborate, lithium imide and combinations thereof May be included.
  • a non-aqueous organic solvent for example, LiSCN, LiCl, LiBr, LiI, LiPF 6 , LiBF 4 , LiSbF 6
  • the concentration of the lithium salt may be in the range of 0.2 to 2 M, preferably 1 to 2 M, depending on various factors such as the precise composition of the electrolyte mixture, the solubility of the salt, the conductivity of the dissolved salt, the charging and discharging conditions of the battery, Specifically, it may be 0.6 to 2 M, more specifically 0.7 to 1.7 M. If it is used at less than 0.2 M, the conductivity of the electrolyte may be lowered and the performance of the electrolyte may be deteriorated. If it is used in excess of 2 M, the viscosity of the electrolyte may increase and the mobility of lithium ions (Li + ) may be reduced.
  • non-aqueous organic solvent of the present invention examples include N-methyl-2-pyrrolidinone, propylene carbonate, ethylene carbonate, butylene carbonate, dimethyl carbonate, di Ethyl carbonate, ethyl methyl carbonate, gamma-butyrolactone, 1,2-dimethoxyethane, 1,2-diethoxyethane, tetrahydroxyfuran, 2-methyltetrahydrofuran, dimethylsulfoxide, 3-dioxolane, diethyl ether, formamide, dimethyl formamide, dioxolane, acetonitrile, nitromethane, methyl formate, methyl acetate, phosphoric acid triester, trimethylene Ethers such as ethoxymethane, dioxolane derivatives, sulfolane, methylsulfolane, 1,3-dimethyl-2-imidazolidinone, propylene carbonate derivatives, tetrahydrofuran derivatives, t
  • organic solid electrolyte examples include a polymer electrolyte such as a polyethylene derivative, a polyethylene oxide derivative, a polypropylene oxide derivative, a phosphate ester polymer, an agitation lysine, a polyester sulfide, a polyvinyl alcohol, a polyvinylidene fluoride, A polymer including a group can be used.
  • a polymer electrolyte such as a polyethylene derivative, a polyethylene oxide derivative, a polypropylene oxide derivative, a phosphate ester polymer, an agitation lysine, a polyester sulfide, a polyvinyl alcohol, a polyvinylidene fluoride, A polymer including a group can be used.
  • Examples of the inorganic solid electrolyte include Li 3 N, LiI, Li 5 NI 2 , Li 3 N-LiI-LiOH, LiSiO 4 , LiSiO 4 -LiI-LiOH, Li 2 SiS 3 , Li 4 SiO 4 , Li 4 Nitrides, halides, sulfates and the like of Li such as SiO 4 -LiI-LiOH and Li 3 PO 4 -Li 2 S-SiS 2 can be used.
  • the electrolyte of the present invention may contain at least one selected from the group consisting of pyridine, triethylphosphite, triethanolamine, cyclic ether, ethylenediamine, glyme, hexa-phosphoric triamide, Benzene derivatives, sulfur, quinone imine dyes, N-substituted oxazolidinones, N, N-substituted imidazolidines, ethylene glycol dialkyl ethers, ammonium salts, pyrrole, 2-methoxyethanol, .
  • a halogen-containing solvent such as carbon tetrachloride, ethylene trifluoride or the like may be further added to impart nonflammability.
  • carbon dioxide gas may be further added.
  • the electrolyte may be used as a liquid electrolyte or as a solid electrolyte separator.
  • the separator When used as a liquid electrolyte, the separator further includes a separation membrane made of porous glass, plastic, ceramic, or polymer as a physical separation membrane having a function of physically separating the electrode.
  • Example 1 The sulfur-carbon composites prepared in Example 1 and Comparative Example 1 were photographed with a scanning electron microscope (SEM, S-4800, HITACHI) and are shown in FIG.
  • the sulfur-carbon composites of Examples 1 and 2 are thinly and uniformly coated with sulfur on the surface of carbon nanotubes at a few nm level, while the sulfur-carbon composites of Comparative Examples 1 and 2 are carbon nanotubes It was found that the surface of the tube was coated with 30 to 40 nm or more of sulfur.
  • Example 2 sulfur-carbon composites prepared in Example 2 and Comparative Example 2 were photographed with a scanning electron microscope (SEM, S-4800, HITACHI) and are shown in FIG.
  • the sulfur-carbon composite of Comparative Example 2 was coated on the surface of the carbon nanotubes while the sulfur was thinly and uniformly coated on the surface of several nanometers It was found that sulfur was coated at 30 to 40 nm or more.
  • VGCF VGCF
  • LiPAA / PVA mixed at 6.5: 0.5 The electrode was fabricated by coating on a current collector of aluminum foil having a thickness of 20 ⁇ .
  • a coin cell was produced by using the electrode thus prepared as a positive electrode and lithium metal as a negative electrode.
  • the coin cell used was an electrolytic solution prepared from 2M MeTHF / DOL / DME (1: 1: 1), LiN (CF 3 SO 2 ) 2 (LiTFSI) 1M and LiNO 3 0.1M.
  • the 2-Me-THF / DOL / DME used 2-methyl tetrahydrofuran, dioxolane, and dimethyl ether as solvents, respectively.
  • Capacitance from 1.5 to 2.8 V was measured for the prepared coin cell and is shown in FIG. 3, FIG. 7, and Table 3 and Table 4.
  • Example 1 As shown in FIG. 3 and Table 3, it was found that the initial discharge capacity of Example 1 was improved in Comparative Example 1 and Example 1 having the same ratio of sulfur: carbon.
  • the prepared coin cell was filled with 0.1 C rate CC and discharged 2.5 times with 0.1 C rate CC, followed by 0.2 C charging / 0.2 C discharging three times, followed by 0.3 C charging / 0.5 C discharging The cycle was repeated 30 times to measure charge / discharge efficiency (CC: Constant Current)
  • Example 1 The results are shown in FIG. 4, and it can be seen that the life characteristics of Example 1 are improved as compared with Comparative Example 1.
  • Example 2 7 and Table 4, it was found that the initial discharge capacity of Example 2 was improved in Comparative Example 2 and Example 2 having the same ratio of sulfur: carbon.
  • the prepared coin cell was filled with 0.1 C rate CC and discharged 2.5 times with 0.1 C rate CC, followed by 0.2 C charging / 0.2 C discharging three times, followed by 0.3 C charging / 0.5 C discharging The cycle was repeated 30 times to measure charge / discharge efficiency (CC: Constant Current)
  • Example 2 The results are shown in FIG. 8, and it can be confirmed that the lifetime characteristics of Example 2 are improved as compared with Comparative Example 2.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

본 발명은 다공성 탄소재; 및 상기 다공성 탄소재의 내부 및 표면 중 적어도 일부에 황이 코팅된 황-탄소 복합체에 있어서, 상기 황-탄소 복합체의 기공부피가 0.04 내지 0.400 cm3/g이고, 상기 황-탄소 복합체의 비표면적이 4.0 내지 30 m2/g 인, 황-탄소 복합체 및 그 제조방법에 관한 것이다.

Description

황-탄소 복합체, 그의 제조방법 및 이를 포함하는 리튬 이차전지
본 출원은 2017년 11월 16일자 한국 특허 출원 제10-2017-0153249호, 2018년 2월 23일자 한국 특허 출원 제10-2018-0022217호 및 2018년 11월 15일자 한국 특허 출원 제10-2018-0140659호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용을 본 명세서의 일부로서 포함한다.
본 발명은 황-탄소 복합체, 그의 제조방법 및 이를 포함하는 리튬 이차전지에 관한 것이다.
최근 에너지 저장 기술에 대한 관심이 갈수록 높아지고 있다. 휴대폰, 캠코더 및 노트북 PC, 나아가서는 전기 자동차의 에너지까지 적용분야가 확대되면서 전기화학소자의 연구와 개발에 대한 노력이 점점 구체화되고 있다.
전기화학소자는 이러한 측면에서 가장 주목을 받고 있는 분야이고 그 중에서도 충-방전이 가능한 이차전지의 개발은 관심의 초점이 되고 있으며, 최근에는 이러한 전지를 개발함에 있어서 용량 밀도 및 에너지 효율을 향상시키기 위하여 새로운 전극과 전지의 설계에 대한 연구 개발로 진행되고 있다.
현재 적용되고 있는 이차전지 중에서 1990년대 초에 개발된 리튬 이차전지는 수용액 전해액을 사용하는 Ni-MH, Ni-Cd, 황산-납 전지 등의 재래식 전지에 비해서 작동 전압이 높고 에너지 밀도가 월등히 크다는 장점으로 각광을 받고 있다.
특히 리튬-황(Li-S) 전지는 S-S 결합(Sulfur - Sulfur bond)을 갖는 황 계열 물질을 양극 활물질로 사용하고, 리튬 금속을 음극 활물질로 사용하는 이차전지이다. 양극 활물질의 주재료인 황은 자원이 매우 풍부하고, 독성이 없으며, 낮은 원자당 무게를 가지고 있는 장점이 있다. 또한 리튬-황 전지의 이론 방전용량은 1675mAh/g-sulfur이며, 이론 에너지밀도가 2,600Wh/kg로서, 현재 연구되고 있는 다른 전지시스템의 이론 에너지밀도(Ni-MH 전지: 450Wh/kg, Li-FeS 전지: 480Wh/kg, Li-MnO2 전지: 1,000Wh/kg, Na-S 전지: 800Wh/kg)에 비하여 매우 높기 때문에 현재까지 개발되고 있는 전지 중에서 가장 유망한 전지이다.
리튬-황 전지의 방전 반응 중 음극(Anode)에서는 리튬의 산화 반응이 발생하고, 양극(Cathode)에서는 황의 환원 반응이 발생한다. 방전 전의 황은 환형의 S8 구조를 가지고 있는데, 환원 반응(방전) 시 S-S 결합이 끊어지면서 S의 산화수가 감소하고, 산화 반응(충전) 시 S-S 결합이 다시 형성되면서 S의 산화수가 증가하는 산화-환원 반응을 이용하여 전기 에너지를 저장 및 생성한다. 이런 반응 중 황은 환형의 S8에서 환원 반응에 의해 선형 구조의 리튬 폴리설파이드(Lithium polysulfide, Li2Sx, x = 8, 6, 4, 2)로 변환되게 되며, 결국 이러한 리튬 폴리설파이드가 완전히 환원되면 최종적으로 리튬 설파이드(Lithium sulfide, Li2S)가 생성되게 된다. 각각의 리튬 폴리설파이드로 환원되는 과정에 의해 리튬-황 전지의 방전 거동은 리튬 이온전지와는 달리 단계적으로 방전 전압을 나타내는 것이 특징이다.
이러한 리튬 황 전지는 양극 활 물질인 황과 방전산물인 황화 리튬(Li2S)의 절연성, 충/방전 중간산물인 폴리설파이드의 용출성 등으로 인해, 용량이 이론값에 미치지 못하고 싸이클 수명이 짧다는 문제가 있다. 따라서 리튬 황 전지의 성능 개선을 위해, 황 양극의 반응성 및 싸이클 안정성을 향상시키려는 다양한 연구가 진행되고 있다.
리튬 황 전지 양극 활물질인 황/탄소 복합체는, 그 형태, 구조, 비표면적, 기공부피 등에 따라, 양극의 반응성 및 싸이클 안정성에 큰 영향을 미친다. 황과 탄소의 접촉범위가 극대화되고, 비표면적 및 기공부피가 클수록, 전기 전도성 및 리튬이온 전도성이 확보되어 고성능의 리튬-황 전지 구동을 기대할 수 있다.
따라서, 상기 조건을 만족하면서, 비용이 저렴하고 대량생산이 가능한 황/탄소 복합체 제조공정 개발이 필요한 실정이다.
이와 관련하여, 기존의 황/탄소 복합체 제조공정은 황과 탄소 분말의 건식혼합후, 가열을 통한 황의 액상 함침과정을 거치게 되는데, 황과 탄소 분말 각각의 입자 크기는 수십~수백 마이크로 미터 수준으로서, 단순 혼합 및 가열을 통한 제조시 황/탄소가 불균일하게 분포되며, 비표면적 및 기공부피가 낮아, 이를 개선시킬 수 있는 여지가 존재한다.
(특허문헌 1) 한국 공개특허 제2015-0043407호 "리튬-황 배터리용 복합 물질"
본 발명자들은 다각적인 연구를 수행한 끝에, 나노미터 사이즈로 분쇄된 황을 탄소와 혼합한 후, 마이크로웨이브를 이용하여 황을 액상 함침시키면, 황/탄소가 복합체 전반에 균일하게 분포되고, 황이 탄소 표면에 얇은 두께로 고르게 코팅된다는 사실을 확인하여 본 발명을 완성하게 되었다.
따라서, 본 발명의 목적은, 마이크로웨이브를 이용하여 황을 액상 함침시켜, 황이 탄소 표면에 얇은 두께로 고르게 코팅시켜, 전극으로 사용할 때, 기존 대비 향상된 초기 방전용량 및 고율 용량이 발현되는 황-탄소 복합체 및 이의 제조방법을 제공하는 것이다.
상기 목적을 달성하기 위해, 본 발명은
다공성 탄소재; 및 상기 다공성 탄소재의 내부 및 표면 중 적어도 일부에 황이 코팅된 황-탄소 복합체에 있어서, 상기 황-탄소 복합체의 기공부피가 0.04 내지 0.400 cm3/g이고, 상기 황-탄소 복합체의 비표면적이 4.0 내지 30 m2/g 인, 황-탄소 복합체를 제공한다.
또한, 본 발명은 (a) 1nm 내지 1㎛의 입경을 가지는 황과 다공성 탄소재를 혼합하는 단계;
(b) 상기 혼합된 황과 다공성 탄소재를 건조하는 단계; 및
(c) 상기 건조된 황과 다공성 탄소재의 혼합물에 마이크로웨이브를 인가하는 단계;를 포함하는 황-탄소 복합체의 제조방법을 제공한다.
또한, 본 발명은 상기 황-탄소 복합체를 포함하는, 양극을 제공한다.
또한, 본 발명은 상기 양극; 음극; 및 전해질;을 포함하는 리튬 이차 전지를 제공한다.
본 발명에 따르면, 마이크로웨이브를 이용하여 황을 액상 함침시켜, 황이 탄소 표면에 얇은 두께로 균일하게 코팅하여 복합체의 비표면적을 유지시키고, 리튬 폴리설파이드(lithium polysulfide)의 용출을 억제할 수 있으면서도, 기존대비 향상된 초기 방전용량 및 고율 용량이 발현시킬 수 있다는 효과가 있다.
도 1은 본 발명의 실시예 1 및 비교예 1에 따른 황-탄소 복합체를 촬영한 SEM 사진이다.
도 2는 본 발명의 실시예 1 및 비교예 1에 따른 황-탄소 복합체의 기공 크기를 측정한 결과를 나타낸 그래프이다.
도 3은 본 발명의 실시예 1 및 비교예 1의 황-탄소 복합체로 제조된 리튬 이차 전지의 방전용량을 보여주는 그래프이다.
도 4는 본 발명의 실시예 1 및 비교예 1의 황-탄소 복합체로 제조된 리튬 이차 전지의 수명 특성을 보여주는 그래프이다.
도 5는 본 발명의 실시예 2 및 비교예 2에 따른 황-탄소 복합체를 촬영한 SEM 사진이다.
도 6은 본 발명의 실시예 2 및 비교예 2에 따른 황-탄소 복합체의 기공 크기를 측정한 결과를 나타낸 그래프이다.
도 7은 본 발명의 실시예 2 및 비교예 2의 황-탄소 복합체로 제조된 리튬 이차 전지의 방전용량을 보여주는 그래프이다.
도 8은 본 발명의 실시예 2 및 비교예 2의 황-탄소 복합체로 제조된 리튬 이차 전지의 수명 특성을 보여주는 그래프이다.
이하, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 첨부한 도면을 참고로 하여 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며, 본 명세서에 한정되지 않는다.
도면에서는 본 발명을 명확하게 설명하기 위해서 설명과 관계없는 부분을 생략하였고, 명세서 전체를 통해 유사한 부분에 대해서는 유사한 도면 부호를 사용하였다. 또한, 도면에서 표시된 구성요소의 크기 및 상대적인 크기는 실제 축척과는 무관하며, 설명의 명료성을 위해 축소되거나 과장된 것일 수 있다.
본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.
본 명세서에서 사용되고 있는 용어 “복합체(composite)”란 두 가지 이상의 재료가 조합되어 물리적·화학적으로 서로 다른 상(phase)를 형성하면서 보다 유효한 기능을 발현하는 물질을 의미한다.
리튬-황 전지는 양극 활물질로 황을, 음극 활물질로 리튬 금속을 사용한다. 리튬-황 전지의 방전시 음극에서는 리튬의 산화 반응이 일어나고, 양극에서는 황의 환원 반응이 발생한다. 이때 환원된 황은 음극으로부터 이동되어 온 리튬 이온과 결합하여 리튬 폴리설파이드로 변환되고 최종적으로 리튬 설파이드를 형성하는 반응을 수반한다.
리튬-황 전지는 기존의 리튬 이차 전지에 비해 월등히 높은 이론 에너지 밀도를 가지며, 양극 활물질로 사용되는 황은 자원이 풍부하여 가격이 저렴하므로 전지의 제조단가를 낮출 수 있다는 장점으로 인해 차세대 전지로 각광받고 있다.
이러한 장점에도 불구하고 양극 활물질인 황의 낮은 전기 전도도 및 리튬 이온 전도 특성으로 인해 실제 구동에 있어서는 이론적 에너지 밀도 전부를 구현하는데 어려움이 있다.
황의 전기 전도도를 개선하기 위해 탄소, 고분자 등 전도성 소재와의 복합체 형성, 코팅 등의 방법이 사용되고 있다. 여러 방법 중 황-탄소 복합체가 양극의 전기 전도성을 개선에 효과적이기 때문에 양극 활물질로 가장 많이 사용되고 있지만, 충방전 용량 및 효율 측면에서는 아직 충분치 않다. 리튬-황 전지의 용량과 효율은 양극으로 전달되는 리튬 이온의 양에 따라 달라질 수 있다. 따라서, 황-탄소 복합체 내부로 리튬 이온의 전달이 용이하게 하는 것이 전지의 고용량 및 고효율화에 중요하다.
황-탄소 복합체
이에 본 발명에서는 황-탄소 복합체와 전해액과의 반응성 및 리튬 이차 전지의 용량 및 효율 특성 개선 효과를 확보하기 위해, 다공성 탄소재의 내부 및 표면에 황이 얇고 고르게 코팅된 황-탄소 복합체를 제공한다. 상기 다공성 탄소재의 내부는 다공성 탄소재의 기공 내부를 포함하는 의미이다.
본 발명의 황-탄소 복합체는, 다공성 탄소재; 및 상기 다공성 탄소재의 내부 및 표면 중 적어도 일부에 황이 코팅된 것으로, 상기 황-탄소 복합체의 기공부피가 0.04 내지 0.400 cm3/g이고, 상기 황-탄소 복합체의 비표면적이 4.0 내지 30 m2/g 일 수 있다.
본 발명의 황-탄소 복합체의 다공성 탄소재는 양극 활물질인 황이 균일하고 안정적으로 고정화될 수 있는 골격을 제공하고 황의 전기 전도도를 보완하여 전기화학 반응이 원활하게 진행될 수 있도록 한다.
상기 다공성 탄소재의 형태는 구형, 봉형, 침상형, 판상형, 튜브형 또는 벌크형으로 리튬-황 전지에 통상적으로 사용되는 것이라면 제한없이 사용될 수 있다.
상기 다공성 탄소재는 다공성 구조이거나 비표면적이 높은 것으로 당업계에서 통상적으로 사용되는 것이라면 어느 것이든 무방하다. 예를 들어, 상기 다공성 탄소재로는 그래파이트(graphite); 그래핀(graphene); 덴카 블랙, 아세틸렌 블랙, 케첸 블랙, 채널 블랙, 퍼네이스 블랙, 램프 블랙, 서머 블랙 등의 카본 블랙; 단일벽 탄소나노튜브(SWCNT), 다중벽 탄소나노튜브(MWCNT) 등의 탄소나노튜브(CNT); 그라파이트 나노파이버(GNF), 카본 나노파이버(CNF), 활성화 탄소 파이버(ACF) 등의 탄소 섬유; 및 활성탄소로 이루어진 군으로부터 선택된 1종 이상일 수 있으나 이에 제한되지 않는다.
상기 다공성 탄소재 입자의 직경은 100nm 내지 50㎛인 것을 사용할 수 있다.
본 발명의 황-탄소 복합체의 황은 무기 황(S8), Li2Sn(n ≥ 1), 유기 황 화합물 및 탄소-황 폴리머[(C2Sx)n, x=2.5 내지 50, n ≥ 2]로 이루어진 군으로부터 선택된 1종 이상일 수 있다. 바람직하게는 무기 황(S8)을 사용할 수 있다.
또한, 상기 황은 상기 다공성 탄소재의 기공 내부뿐만 아니라 표면에 위치하며 이때 상기 다공성 탄소재의 외부 전체 표면의 100% 미만, 바람직하게는 1 내지 95 %, 더욱 바람직하게는 60 내지 90 % 영역에 존재할 수 있다. 상기 황이 다공성 탄소재의 표면에 상기 범위 내에 있을 때 전자 전달 면적 및 전해액의 젖음성 면에서 최대 효과를 나타낼 수 있다. 구체적으로, 상기 범위 영역에서 황이 다공성 탄소재의 표면에 얇고 고르게 함침되므로 충방전 과정에서 전자 전달 접촉 면적을 증가시킬 수 있다. 만약, 상기 황이 다공성 탄소재의 표면의 100% 영역에 위치하는 경우, 상기 다공성 탄소재가 완전히 황으로 덮여 전해액의 젖음성이 떨어지고 전극 내 포함되는 도전재와 접촉성이 떨어져 전자 전달을 받지 못해 반응에 참여할 수 없게 된다.
상기 황-탄소 복합체는 구조체 내 다양한 크기의 기공 및 3차원적으로 상호 연결되며 규칙적으로 정렬된 기공들로 인해 황을 높은 함량으로 담지할 수 있다. 이로 인해 전기화학 반응으로 용해성이 있는 폴리설파이드가 생성되더라도 황-탄소 복합체 내부에 위치할 수 있게 되면, 폴리설파이드 용출 시에도 3차원으로 얽혀 있는 구조가 유지되어 양극 구조가 붕괴되는 현상을 억제시킬 수 있다. 그 결과, 상기 황-탄소 복합체를 포함하는 리튬-황 전지는 고로딩(high loading)에서도 고용량을 구현할 수 있다는 장점이 있다. 본 발명에 따른 황-탄소 복합체의 황 로딩량은 1 ~ 20 mg/cm2가 될 수 있다.
본 발명의 황-탄소 복합체는 제조 시에, 1nm 내지 1㎛의 입경을 가지는 황 입자를 사용함에 따라서, 다공성 탄소재의 표면 또는 기공에 1 내지 10 nm의 두께로 코팅될 수 있다.
본 발명의 황-탄소 복합체는 황과 다공성 탄소재의 중량비의 범위에 따라서, 황-탄소 복합체의 기공부피 및 황-탄소 복합체의 비표면적을 조절할 수 있다.
먼저, 본 발명에 따른 황-탄소 복합체에서 전술한 황과 다공성 탄소재의 중량비는 7.5:2.5 내지 4:6, 바람직하게는 7.5:2.5 내지 6:4일 수 있다. 만약 상기 황의 포함량이 상기 중량비 범위 미만인 경우 다공성 탄소재의 함량이 증가함에 따라 양극 슬러리 제조시에 필요한 바인더 첨가량이 늘어난다. 이러한 바인더 첨가량의 증가는 결국 전극의 면저항을 증가시키기게 되고 전자 이동(electron pass)을 막는 절연체 역할을 하게 되어 셀 성능을 저하시킬 수 있다. 반대로 황의 포함량이 상기 중량비 범위를 초과하는 경우 황이 그들끼리 뭉치게 되고, 전자를 받기 어려워서 전극 반응에 직접적으로 참여하기 어렵게 될 수 있으며, 특히 후술하는 기공부피, 비표면적 및 평균 기공 크기를 만족하지 못하게 된다.
일반적으로 다공성 탄소재는 다양한 탄소 재질의 전구체를 탄화시킴으로써 제조될 수 있으며, 이러한 다공성 탄소재는 내부에 약 100nm 내지 50㎛ 범위의 평균 직경을 가지는 기공을 가지게 된다.
그러나, 본 발명의 황-탄소 복합체는 상기 다공성 탄소재의 내부 및 외부 표면의 일부에 황이 코팅되며, 구체적으로 황이 다공성 탄소재의 기공 내부에 코팅이 되기 때문에, 다공성 탄소재의 기공의 크기에 변화가 생기게 된다.
기존의 방식에 의하여 제조된 황-탄소 복합체의 경우, 제조에 사용되는 황 입자의 크기가 수십 마이크로미터 수준으로 크기 때문에, 이러한 황 입자를 다공성 탄소재의 기공 내부에 코팅시키더라도, 다공성 탄소재의 기공 내부로 황 입자가 쉽게 진입하지 못하게 되고, 오히려 기공의 입구를 황 입자가 막아버리는 문제가 있었다. 따라서, 황-탄소 복합체의 비표면적, 기공크기 및 기공부피를 측정할 시에 오히려 작아지는 문제점이 발생하였다.
그러나, 본 발명의 제조방법에 의하여 황-탄소 복합체를 제조하는 경우에는, 1 마이크로미터 미만의 입자 크기를 가지는 황을 사용하여 다공성 탄소재의 기공 내부에 황을 얇고 고르게 코팅 시킬 수 있게 된다. 또한, 황과 다공성 탄소재의 혼합물에 마이크로웨이브를 인가함에 따라서, 혹시라도 기공의 입구를 막고 있는 황 입자들을 제거하고, 기공 내부로 들어가 얇고 고르게 코팅 시킬 수 있게 된다.
따라서, 본 발명의 황-탄소 복합체는, 황이 다공성 탄소재의 기공 내부에 얇고 고르게 코팅됨에 따라서, 황-탄소 복합체의 기공부피가 0.250 내지 0.400 cm3/g일 수 있으며, 바람직하게는 0.300 내지 0.350 cm3/g일 수 있다.
또한, 황이 다공성 탄소재의 기공 내부에 얇고 고르게 코팅이 됨에 따라서, 상기 황-탄소 복합체의 비표면적이 18.5 내지 30 m2/g 일 수 있으며, 바람직하게는 19.5 내지 30 m2/g 일 수 있다.
또한, 황이 다공성 탄소재의 기공 내부에 얇고 고르게 코팅이 됨에 따라서, 상기 황-탄소 복합체의 평균 기공 크기가 55 내지 100nm일 수 있다.
또한, 본 발명에 따른 황-탄소 복합체에서 전술한 황과 다공성 탄소재의 중량비는 7.5:2.5 내지 9:1, 바람직하게는 7.5:2.5 내지 8.5:1.5일 수 있다. 만약 상기 황의 포함량이 상기 중량비 범위 미만인 경우 다공성 탄소재의 함량이 증가함에 따라 양극 슬러리 제조시에 필요한 바인더 첨가량이 늘어난다. 이러한 바인더 첨가량의 증가는 결국 전극의 면저항을 증가시키기게 되고 전자 이동(electron pass)을 막는 절연체 역할을 하게 되어 셀 성능을 저하시킬 수 있다. 반대로 황의 포함량이 상기 중량비 범위를 초과하는 경우 황이 그들끼리 뭉치게 되고, 전자를 받기 어려워서 전극 반응에 직접적으로 참여하기 어렵게 될 수 있으며, 특히 후술하는 기공부피, 비표면적 및 평균 기공 크기를 만족하지 못하게 된다.
그러나, 본 발명의 제조방법에 의하여 황-탄소 복합체를 제조하는 경우에는, 1 마이크로미터 미만의 입자 크기를 가지는 황을 사용하여 다공성 탄소재의 기공 내부에 황을 얇고 고르게 코팅 시킬 수 있게 된다. 또한, 황과 다공성 탄소재의 혼합물에 마이크로웨이브를 인가함에 따라서, 혹시라도 기공의 입구를 막고 있는 황 입자들을 제거하고, 기공 내부로 들어가 얇고 고르게 코팅 시킬 수 있게 된다.
따라서, 본 발명의 황-탄소 복합체는, 황이 다공성 탄소재의 기공 내부에 얇고 고르게 코팅됨에 따라서, 황-탄소 복합체의 기공부피가 0.04 내지 0.20 cm3/g일 수 있으며, 바람직하게는 0.05 내지 0.15 cm3/g일 수 있다.
또한, 황이 다공성 탄소재의 기공 내부에 얇고 고르게 코팅이 됨에 따라서, 상기 황-탄소 복합체의 비표면적이 4.0 내지 20 m2/g 일 수 있으며, 바람직하게는 4.5 내지 10 m2/g 일 수 있다.
또한, 황이 다공성 탄소재의 기공 내부에 얇고 고르게 코팅이 됨에 따라서, 상기 황-탄소 복합체의 평균 기공 크기가 40 내지 100nm일 수 있다.
본 발명의 황-탄소 복합체가 상기 범위의 기공부피, 비표면적 및 평균 기공 크기를 만족하는 경우, 황이 다공성 탄소재의 기공 내부에 얇고 고르게 코팅이 되어, 전극에 적용하게 되면 우수한 방전용량 및 수명 특성을 가지게 된다. 상기 범위를 만족하지 못하는 경우에는, 황이 기공 내에 코팅이 거의 되어 있지 않거나, 혹은 황이 기공의 입구를 막아 버린 것이므로, 전극으로 사용할 경우, 사용자가 필요로 하는 방전용량 및 수명 특성을 만족하지 못하게 된다.
황-탄소 복합체의 제조방법
본 발명의 황-탄소 복합체는 (a) 1nm 내지 1㎛의 입경을 가지는 황과 다공성 탄소재를 혼합하는 단계; (b) 상기 혼합된 황과 다공성 탄소재를 건조하는 단계; 및 (c) 상기 건조된 황과 다공성 탄소재의 혼합물에 마이크로웨이브를 인가하는 단계;를 통하여 제조된다.
먼저, 본 발명의 황-탄소 복합체의 제조방법은, 1nm 내지 1㎛의 입경을 가지는 황과 다공성 탄소재를 혼합하는 (a) 단계를 포함한다.
상기 (a) 단계에서는 황과 다공성 탄소재를 혼합할 때, 황과 다공성 탄소재의 중량비는 7.5:2.5 내지 4:6, 바람직하게는 7.5:2.5 내지 6:4일 수 있다. 만약 상기 황의 포함량이 상기 중량비 범위 미만인 경우 다공성 탄소재의 함량이 증가함에 따라 양극 슬러리 제조시에 필요한 바인더 첨가량이 늘어난다. 이러한 바인더 첨가량의 증가는 결국 전극의 면저항을 증가시키기게 되고 전자 이동(electron pass)을 막는 절연체 역할을 하게 되어 셀 성능을 저하시킬 수 있다. 반대로 황의 포함량이 상기 중량비 범위를 초과하는 경우 황이 그들끼리 뭉치게 되고, 전자를 받기 어려워서 전극 반응에 직접적으로 참여하기 어렵게 될 수 있으며, 특히 후술하는 기공부피, 비표면적 및 평균 기공 크기를 만족하지 못하게 된다.
또한, 상기 (a) 단계에서는 황과 다공성 탄소재를 혼합할 때, 황과 다공성 탄소재의 중량비는 7.5:2.5 내지 9:1, 바람직하게는 7.5:2.5 내지 8.5:1.5일 수 있다. 만약 상기 황의 포함량이 상기 중량비 범위 미만인 경우 다공성 탄소재의 함량이 증가함에 따라 양극 슬러리 제조시에 필요한 바인더 첨가량이 늘어난다. 이러한 바인더 첨가량의 증가는 결국 전극의 면저항을 증가시키기게 되고 전자 이동(electron pass)을 막는 절연체 역할을 하게 되어 셀 성능을 저하시킬 수 있다. 반대로 황의 포함량이 상기 중량비 범위를 초과하는 경우 황이 그들끼리 뭉치게 되고, 전자를 받기 어려워서 전극 반응에 직접적으로 참여하기 어렵게 될 수 있으며, 특히 후술하는 기공부피, 비표면적 및 평균 기공 크기를 만족하지 못하게 된다.
상기 (a) 단계에서 사용되는 상기 황은 1nm 내지 1㎛의 입경을 가지는 황으로서, 다른 특징은 앞서 살펴본 내용과 동일하다. 또한 다공성 탄소재의 특징 역시 앞서 살펴본 내용과 동일하다.
다음으로, 본 발명의 황-탄소 복합체의 제조방법은, 상기 혼합된 황과 다공성 탄소재를 건조하는 (b) 단계를 포함한다.
상기 건조 방법은, 60 내지 100℃ 오븐에서 12 내지 36시간 건조할 수 있으며, 건조 전에 상기 (a) 단계의 혼합 시에 사용한 용매나 볼밀용 볼 등을 제거하는 과정을 수행할 수 있다.
다음으로, 본 발명의 황-탄소 복합체의 제조방법은, 상기 건조된 황과 다공성 탄소재의 혼합물에 마이크로웨이브를 인가하는 (c) 단계를 포함한다.
상기 (c) 단계의 마이크로 웨이브의 인가는 500 내지 2000W의 출력으로 인가할 수 있으며, 마이크로 웨이브의 인가는 2초 내지 10초간의 횟수로 2회 내지 10회 진행할 수 있다.
본 발명의 황-탄소 복합체의 제조방법은, 상기와 같은 마이크로 웨이브의 인가를 통하여, 황-탄소 복합체 중 다공성 탄소재의 기공 입구를 막고 있는 황 입자를 제거하여, 전체적으로 얇고 고르게 황이 코팅되도록 할 수 있다.
상기 (a) 단계에서, 황과 다공성 탄소재를 혼합할 때, 황과 다공성 탄소재의 중량비를 7.5:2.5 내지 4:6, 바람직하게는 7.5:2.5 내지 6:4로 제조된 황-탄소 복합체는 황이 다공성 탄소재의 기공 내부에 얇고 고르게 코팅됨에 따라서, 황-탄소 복합체의 기공부피가 0.250 내지 0.400 cm3/g일 수 있으며, 바람직하게는 0.300 내지 0.350 cm3/g일 수 있다.
또한, 황이 다공성 탄소재의 기공 내부에 얇고 고르게 코팅이 됨에 따라서, 상기 황-탄소 복합체의 비표면적이 18.5 내지 30 m2/g 일 수 있으며, 바람직하게는 19.5 내지 30 m2/g 일 수 있다.
또한, 황이 다공성 탄소재의 기공 내부에 얇고 고르게 코팅이 됨에 따라서, 상기 황-탄소 복합체의 평균 기공 크기가 55 내지 100nm일 수 있다.
또한, 상기 (a) 단계에서, 황과 다공성 탄소재를 혼합할 때, 황과 다공성 탄소재의 중량비를 7.5:2.5 내지 9:1, 바람직하게는 7.5:2.5 내지 8.5:1.5로 제조된 황-탄소 복합체는 황이 다공성 탄소재의 기공 내부에 얇고 고르게 코팅됨에 따라서, 황-탄소 복합체의 기공부피가 0.04 내지 0.20 cm3/g일 수 있으며, 바람직하게는 0.05 내지 0.15 cm3/g일 수 있다.
또한, 황이 다공성 탄소재의 기공 내부에 얇고 고르게 코팅이 됨에 따라서, 상기 황-탄소 복합체의 비표면적이 4.0 내지 20 m2/g 일 수 있으며, 바람직하게는 4.5 내지 10 m2/g 일 수 있다.
또한, 황이 다공성 탄소재의 기공 내부에 얇고 고르게 코팅이 됨에 따라서, 상기 황-탄소 복합체의 평균 기공 크기가 40 내지 100nm일 수 있다.
양극
본 발명에서 제시하는 황-탄소 복합체는 리튬 이차 전지, 그 중에서도 리튬-황 전지의 양극 활물질로서 바람직하게 사용이 가능하다.
상기 양극은 양극 집전체 상에 양극 활물질층 형성용 조성물을 도포 및 건조하여 제작된다.
구체적으로 상기 제조된 황-탄소 복합체에 추가적인 도전성을 부여하기 위하여, 상기 양극 조성물에는 도전재가 추가될 수 있다. 상기 도전재는 전자가 양극 내에서 원활하게 이동하도록 하기 위한 역할을 하는 것으로, 전지에 화학적 변화를 유발하지 않으면서 도전성이 우수하고 넓은 표면적을 제공할 수 있는 것이면 특별한 제한이 없으나, 바람직하게는 탄소계 물질을 사용한다.
상기 탄소계 물질로는 천연 흑연, 인조 흑연, 팽창 흑연, 그래핀(Graphene)과 같은 흑연(Graphite)계, 활성탄(Active carbon)계, 채널 블랙(Channel black), 퍼니스 블랙(Furnace black), 써말 블랙(Thermal black), 컨택트 블랙(Contact black), 램프 블랙(Lamp black), 아세틸렌 블랙(Acetylene black)과 같은 카본 블랙(Carbon black)계; 탄소 섬유(Carbon fiber)계, 탄소나노튜브(Carbon nanotube: CNT), 풀러렌(Fullerene)과 같은 탄소 나노 구조체 및 이들의 조합으로 이루어진 군으로부터 선택된 1종을 사용할 수 있다.
상기 탄소계 물질 이외에도, 목적에 따라 금속 메쉬 등의 금속성 섬유; 구리(Cu), 은(Ag), 니켈(Ni), 알루미늄(Al) 등의 금속성 분말; 또는 폴리페닐렌 유도체 등의 유기 도전성 재료도 사용할 수 있다. 상기 도전성 재료들은 단독 또는 혼합하여 사용될 수 있다.
또한 상기 양극 활물질에 집전체에 대한 부착력을 제공하기 위하여, 상기 양극 조성물에는 바인더가 추가적으로 포함될 수 있다. 상기 바인더는 용매에 잘 용해되어야 하며, 양극 활물질과 도전재와의 도전 네트워크를 잘 구성해주어야 할 뿐만 아니라 전해액의 함침성도 적당히 가져야 한다.
본 발명에 적용 가능한 바인더는 당해 업계에서 공지된 모든 바인더들일 수 있고, 구체적으로는, 폴리비닐리덴 플루오라이드(Polyvinylidene fluoride, PVdF) 또는 폴리테트라플루오로에틸렌(Polytetrafluoroethylene, PTFE)을 포함하는 불소 수지계 바인더; 스티렌-부타디엔 고무, 아크릴로니트릴-부티디엔 고무, 스티렌-이소프렌 고무를 포함하는 고무계 바인더; 카르복시메틸셀룰로우즈(CMC), 전분, 히드록시프로필셀룰로우즈, 재생 셀룰로우즈를 포함하는 셀룰로오스계 바인더; 폴리 알코올계 바인더; 폴리에틸렌, 폴리프로필렌를 포함하는 폴리 올레핀계 바인더; 폴리 이미드계 바인더, 폴리 에스테르계 바인더, 실란계 바인더;로 이루어진 군에서 선택된 1종 또는 2종 이상의 혼합물이거나 공중합체일 수 있으나, 이에 제한되지 않음은 물론이다.
상기 바인더 수지의 함량은 상기 리튬 이차 전지용 양극 총중량을 기준으로 0.5 ~ 30 중량%일 수 있으나, 이에만 한정되는 것은 아니다. 상기 바인더 수지의 함량이 0.5 중량% 미만인 경우에는, 양극의 물리적 성질이 저하되어 양극 활물질과 도전재가 탈락할 수 있고, 30 중량%를 초과하는 경우에는 양극에서 활물질과 도전재의 비율이 상대적으로 감소되어 전지 용량이 감소될 수 있다.
리튬 이차 전지용 양극 조성물을 슬러리 상태로 제조하기 위한 용매는 건조가 용이해야하며, 바인더를 잘 용해시킬 수 있되, 양극 활물질 및 도전재는 용해시키지 않고 분산 상태로 유지시킬 수 있는 것이 가장 바람직하다. 용매가 양극 활물질을 용해시킬 경우에는 슬러리에서 황의 비중(D = 2.07)이 높기 때문에 황이 슬러리에서 가라앉게 되어 코팅시 집전체에 황이 몰려 도전 네트워크에 문제가 생겨 전지의 작동에 문제가 발생하는 경향이 있다.
본 발명에 따른 용매는 물 또는 유기 용매가 가능하며, 상기 유기 용매는 디메틸포름아미드, 이소프로필알콜, 아세토니트릴, 메탄올, 에탄올, 테트라하이드로퓨란 군으로부터 선택되는 1종 이상을 포함하는 유기 용매가 적용 가능하다.
상기 양극 조성물의 혼합은 통상의 혼합기, 예컨대 레이트스 믹서, 고속 전단 믹서, 호모 믹서 등을 이용하여 통상의 방법으로 교반할 수 있다.
상기 양극 조성물을 집전체에 도포하고, 진공 건조하여 리튬 이차 전지용 양극을 형성할 수 있다. 상기 슬러리는 슬러리의 점도 및 형성하고자 하는 양극의 두께에 따라 적절한 두께로 집전체에 코팅할 수 있으며, 바람직하게는 10 내지 300 ㎛ 범위 내에서 적절히 선택할 수 있다.
이때 상기 슬러리를 코팅하는 방법으로 그 제한은 없으며, 예컨대, 닥터 블레이드 코팅(Doctor blade coating), 딥 코팅(Dip coating), 그라비어 코팅(Gravure coating), 슬릿 다이 코팅(Slit die coating), 스핀 코팅(Spin coating), 콤마 코팅(Comma coating), 바 코팅(Bar coating), 리버스 롤 코팅(Reverse roll coating), 스크린 코팅(Screen coating), 캡 코팅(Cap coating) 방법 등을 수행하여 제조할 수 있다.
상기 양극 집전체로는 일반적으로 3 ~ 500 ㎛의 두께로 만들 수 있고, 전지에 화학적 변화를 유발하지 않으면서 높은 도전성을 가지는 것이라면 특히 제한하지 않는다. 예컨대 스테인레스 스틸, 알루미늄, 구리, 티타늄 등의 전도성 금속을 사용할 수 있고, 바람직하게는 알루미늄 집전체를 사용할 수 있다. 이러한 양극 집전체는 필름, 시트, 호일, 네트, 다공질체, 발포체 또는 부직포체 등 다양한 형태가 가능하다.
리튬 이차 전지
본 발명의 일 실시예로서, 리튬 이차 전지는 상술한 양극; 음극 활물질로서 리튬 금속 또는 리튬 합금을 포함하는 음극; 상기 양극과 음극 사이에 개재되는 분리막; 및 상기 음극, 양극 및 분리막에 함침되어 있으며, 리튬염과 유기용매를 포함하는 전해질을 포함할 수 있다. 또한, 상기 리튬 이차 전지는 상기 양극 내의 양극 활물질에 황 화합물을 포함하는 리튬-황 전지 일 수 있다.
상기 음극은 음극 활물질로서 리튬 이온(Li+)을 가역적으로 인터칼레이션(Intercalation) 또는 디인터칼레이션(Deintercalation)할 수 있는 물질, 리튬 이온과 반응하여 가역적으로 리튬 함유 화합물을 형성할 수 있는 물질, 리튬 금속 또는 리튬 합금을 사용할 수 있다. 상기 리튬 이온을 가역적으로 인터칼레이션 또는 디인터칼레이션할 수 있는 물질은 예컨대 결정질 탄소, 비정질 탄소 또는 이들의 혼합물일 수 있다. 상기 리튬 이온과 반응하여 가역적으로 리튬 함유 화합물을 형성할 수 있는 물질은 예를 들어, 산화주석, 티타늄나이트레이트 또는 실리콘일 수 있다. 상기 리튬 합금은 예를 들어, 리튬과 Na, K, Rb, Cs, Fr, Be, Mg, Ca, Sr, Ba, Ra, Al 및 Sn으로 이루어지는 군에서 선택되는 금속의 합금일 수 있다.
또한, 리튬-황 전지를 충·방전하는 과정에서, 양극 활물질로 사용되는 황이 비활성 물질로 변화되어, 리튬 음극 표면에 부착될 수 있다. 이와 같이 비활성 황(Inactive sulfur)은 황이 여러 가지 전기화학적 또는 화학적 반응을 거쳐 양극의 전기화학 반응에 더 이상 참여할 수 없는 상태의 황을 의미하며, 리튬 음극 표면에 형성된 비활성 황은 리튬 음극의 보호막(Protective layer)으로서 역할을 하는 장점도 있다. 따라서, 리튬 금속과 이 리튬 금속 위에 형성된 비활성 황, 예를 들어 리튬 설파이드를 음극으로 사용할 수도 있다.
본 발명의 음극은 상기 음극 활물질 이외에 리튬 이온 전도성 물질로 이루어진 전처리층 및 상기 전처리층 상에 형성된 리튬 금속 보호층을 추가적으로 더 포함할 수 있다.
상기 양극과 음극 사이에 개재되는 분리막은 양극과 음극을 서로 분리 또는 절연시키고, 양극과 음극 사이에 리튬 이온의 수송을 가능하게 하는 것으로 다공성 비전도성 또는 절연성 물질로 이루어질 수 있다. 이러한 분리막은 높은 이온 투과도 및 기계적 강도를 가지는 절연체로서 얇은 박막 또는 필름과 같은 독립적인 부재일 수도 있고, 양극 및/또는 음극에 부가된 코팅층일 수도 있다. 또한 전해질로서 폴리머 등의 고체 전해질이 사용되는 경우에는 고체 전해질이 분리막을 겸할 수도 있다.
상기 분리막의 기공 직경은 일반적으로 0.01 ~ 10 ㎛이고, 두께는 일반적으로 5 ~ 300 ㎛이 바람직하며, 이러한 분리막으로는, 유리 전해질(Glass electrolyte), 고분자 전해질 또는 세라믹 전해질 등이 사용될 수 있다. 예컨대 내화학성 및 소수성의 폴리프로필렌 등의 올레핀계 폴리머, 유리섬유 또는 폴리에틸렌 등으로 만들어진 시트나 부직포, 크라프트지 등이 사용된다. 현재 시판중인 대표적인 예로는 셀가드 계열(CelgardR 2400, 2300 Hoechest Celanese Corp. 제품), 폴리프로필렌 분리막(Ube Industries Ltd. 제품 또는 Pall RAI사 제품), 폴리에틸렌 계열(Tonen 또는 Entek) 등이 있다.
고체 상태의 전해질 분리막은 약 20 중량% 미만의 비수성 유기 용매를 포함할 수도 있으며, 이 경우에는 유기 용매의 유동성을 줄이기 위하여 적절한 겔 형성 화합물(Gelling agent)을 더 포함할 수도 있다. 이러한 겔 형성 화합물의 대표적인 예로는 폴리에틸렌옥사이드, 폴리비닐리덴플루라이드, 폴리아크릴로니트릴 등을 들 수 있다.
상기 음극, 양극 및 분리막에 함침되어 있는 전해질은 리튬염을 함유하는 비수계 전해질로서 리튬염과 전해액으로 구성되어 있으며, 전해액으로는 비수계 유기용매, 유기 고체 전해질 및 무기 고체 전해질 등이 사용된다.
본 발명의 리튬염은 비수계 유기용매에 용해되기 좋은 물질로서, 예컨대, LiSCN, LiCl, LiBr, LiI, LiPF6, LiBF4, LiSbF6, LiAsF6, LiB10Cl10, LiCH3SO3, LiCF3SO3, LiCF3CO2, LiClO4, LiAlCl4, Li(Ph)4, LiC(CF3SO2)3, LiN(FSO2)2, LiN(CF3SO2)2, LiN(C2F5SO2)2, LiN(SFO2)2, LiN(CF3CF2SO2)2, 클로로 보란 리튬, 저급 지방족 카르본산 리튬, 4 페닐 붕산 리튬, 리튬 이미드 및 이들의 조합으로 이루어진 군으로부터 하나 이상이 포함될 수 있다.
상기 리튬염의 농도는, 전해질 혼합물의 정확한 조성, 염의 용해도, 용해된 염의 전도성, 전지의 충전 및 방전 조건, 작업 온도 및 리튬 배터리 분야에 공지된 다른 요인과 같은 여러 요인에 따라, 0.2 ~ 2 M, 구체적으로 0.6 ~ 2 M, 더욱 구체적으로 0.7 ~ 1.7 M일 수 있다. 0.2 M 미만으로 사용하면 전해질의 전도도가 낮아져서 전해질 성능이 저하될 수 있고, 2 M을 초과하여 사용하면 전해질의 점도가 증가하여 리튬 이온(Li+)의 이동성이 감소될 수 있다.
상기 비수계 유기용매는 리튬염을 잘 용해시켜야 하며, 본 발명의 비수계 유기용매로는, 예컨대, N-메틸-2-피롤리디논, 프로필렌 카보네이트, 에틸렌 카보네이트, 부틸렌 카보네이트, 디메틸 카보네이트, 디에틸 카보네이트, 에틸메틸 카보네이트, 감마-부티로락톤, 1,2-디메톡시 에탄, 1,2-디에톡시 에탄, 테트라히드록시 프랑(franc), 2-메틸 테트라하이드로푸란, 디메틸술폭시드, 1,3-디옥소란, 4-메틸-1,3-디옥센, 디에틸에테르, 포름아미드, 디메틸포름아미드, 디옥소란, 아세토니트릴, 니트로메탄, 포름산 메틸, 초산메틸, 인산 트리에스테르, 트리메톡시 메탄, 디옥소란 유도체, 설포란, 메틸 설포란, 1,3-디메틸-2-이미다졸리디논, 프로필렌 카보네이트 유도체, 테트라하이드로푸란 유도체, 에테르, 피로피온산 메틸, 프로피온산 에틸 등의 비양자성 유기용매가 사용될 수 있으며, 상기 유기 용매는 하나 또는 둘 이상의 유기 용매들의 혼합물일 수 있다.
상기 유기 고체 전해질로는, 예컨대, 폴리에틸렌 유도체, 폴리에틸렌 옥사이드 유도체, 폴리프로필렌 옥사이드 유도체, 인산 에스테르 폴리머, 폴리 에지테이션 리신(Agitation lysine), 폴리에스테르 설파이드, 폴리비닐 알코올, 폴리 불화 비닐리덴, 이온성 해리기를 포함하는 중합체 등이 사용될 수 있다.
상기 무기 고체 전해질로는, 예컨대, Li3N, LiI, Li5NI2, Li3N-LiI-LiOH, LiSiO4, LiSiO4-LiI-LiOH, Li2SiS3, Li4SiO4, Li4SiO4-LiI-LiOH, Li3PO4-Li2S-SiS2 등의 Li의 질화물, 할로겐화물, 황산염 등이 사용될 수 있다.
본 발명의 전해질에는 충·방전 특성, 난연성 등의 개선을 목적으로, 예컨대, 피리딘, 트리에틸포스파이트, 트리에탄올아민, 환상 에테르, 에틸렌 디아민, n-글라임(glyme), 헥사 인산 트리 아미드, 니트로벤젠 유도체, 유황, 퀴논 이민 염료, N-치환 옥사졸리디논, N,N-치환 이미다졸리딘, 에틸렌 글리콜 디알킬 에테르, 암모늄염, 피롤, 2-메톡시 에탄올, 삼염화 알루미늄 등이 첨가될 수도 있다. 경우에 따라서는, 불연성을 부여하기 위하여, 사염화탄소, 삼불화에틸렌 등의 할로겐 함유 용매를 더 포함시킬 수도 있고, 고온 보존 특성을 향상시키기 위하여 이산화탄산 가스를 더 포함시킬 수도 있으며, FEC(Fluoro-ethylene carbonate), PRS(Propene sultone), FPC(Fluoro-propylene carbonate) 등을 더 포함시킬 수 있다.
상기 전해질은 액상 전해질로 사용할 수도 있고, 고체 상태의 전해질 세퍼레이터 형태로도 사용할 수 있다. 액상 전해질로 사용할 경우에는 전극을 물리적으로 분리하는 기능을 갖는 물리적인 분리막으로서 다공성 유리, 플라스틱, 세라믹 또는 고분자 등으로 이루어진 분리막을 더 포함한다.
이하, 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시하나, 하기 실시예는 본 발명을 예시하는 것일 뿐 본 발명의 범주 및 기술사상 범위 내에서 다양한 변경 및 수정이 가능함은 당업자에게 있어서 명백한 것이며, 이러한 변형 및 수정이 첨부된 특허청구범위에 속하는 것도 당연한 것이다.
[실시예]
황-탄소 복합체의 제조
[실시예 1]
125mL들이 용기에 5mm 직경의 ZrO2 볼 200g, 황 7.8g, 에탄올 30g을 넣고 200rpm 으로 3일간 볼밀하여 나노크기의 황 입자로 분쇄하였다. 이 후, 상기 분쇄된 황 입자와 ZrO2볼, 에탄올이 포함된 용기에 탄소나노튜브 3g을 첨가하여 200rpm으로 3시간 동안 볼밀하여 황과 탄소를 혼합하였다. 상기 황과 탄소의 혼합물을 여과하여 에탄올과 ZrO2볼을 제거한 후 80℃ 오븐에서 24시간 건조시켰다. 이 후, 상기 건조된 황과 탄소의 혼합물에 1000W 마이크로웨이브(BP-110, Microwave Research and Applications)를 3초씩 3회 가하여 황-탄소 복합체를 제조하였다.
[실시예 2]
125mL들이 용기에 5mm직경의 ZrO2 볼(RETSCH사) 200g, 황 8.9g, 에탄올 30g을 넣고 200rpm 으로 3일간 볼밀하여 나노크기의 황 입자로 분쇄하였다. 이 후, 상기 분쇄된 황 입자와 ZrO2볼, 에탄올이 포함된 용기에 탄소나노튜브 2g을 첨가하여 200rpm으로 3시간 동안 볼밀하여 황과 탄소를 혼합하였다. 상기 황과 탄소의 혼합물을 여과하여 에탄올과 ZrO2볼을 제거한 후 80℃ 오븐에서 24시간 건조시켰다. 이 후, 상기 건조된 황과 탄소의 혼합물에 1000W 마이크로웨이브(BP-110, Microwave Research and Applications)를 3초씩 3회 가하여 황-탄소 복합체를 제조하였다.
[비교예 1]
1L들이 용기에 5mm직경의 ZrO2 볼 270g, 황 23.4g, 탄소나노튜브 7g을 넣고 200rpm으로 3시간 동안 볼밀하여 황과 탄소 혼합하였다. 이 후, 상기 혼합물을 155℃ 오븐에서 30분동안 가열하여 황-탄소 복합체 제조하였다.
[비교예 2]
1L들이 용기에 5mm직경의 ZrO2 볼 270g, 황 26.7g, 탄소나노튜브 6g을 넣고 200rpm으로 3시간 동안 볼밀하여 황과 탄소 혼합하였다. 이 후, 상기 혼합물을 155℃ 오븐에서 30분동안 가열하여 황-탄소 복합체 제조하였다.
실험예 1: 복합체 물성 평가
(SEM 분석 결과)
실시예 1 및 비교예 1에서 제조한 황-탄소 복합체를 주사전자현미경(SEM, S-4800, HITACHI)으로 촬영하였으며, 이를 도 1에 나타내었다.
도 1에 나타난 바와 같이, 실시예 1 및 2의 황-탄소 복합체는 탄소 나노튜브 의 표면에 황이 수 nm 수준으로 얇고 균일하게 코팅되어 있는데 반하여, 비교예 1 및 2의 황-탄소 복합체는 탄소 나노튜브 의 표면에 황이 30 내지 40 nm 이상 코팅되어 있는 것을 알 수 있었다.
또한, 실시예 2 및 비교예 2에서 제조한 황-탄소 복합체를 주사전자현미경(SEM, S-4800, HITACHI)으로 촬영하였으며, 이를 도 5에 나타내었다.
도 5에 나타난 바와 같이, 실시예 2의 황-탄소 복합체는 탄소 나노튜브의 표면에 황이 수 nm 수준으로 얇고 균일하게 코팅되어 있는데 반하여, 비교예 2의 황-탄소 복합체는 탄소 나노튜브 의 표면에 황이 30 내지 40 nm 이상 코팅되어 있는 것을 알 수 있었다.
(기공 구조 비교)
실시예 1 내지 2 및 비교예 1 내지 2에서 제조한 황-탄소 복합체의 기공 크기, 비표면적 및 기공부피를 질소 흡착 장비 (BELSorp, BEL)를 이용해 측정하여 표 1 내지 2 및 도 2와 도 6에 나타내었다.
비표면적 (m2/g) 기공부피 (cm3/g) 평균 기공 (nm)
비교예1 18.01 0.235 52.3
실시예1 19.71 0.310 62.8
비표면적 (m2/g) 기공부피 (cm3/g) 평균 기공 (nm)
실시예2 5.73 0.063 43.7
비교예2 3.46 0.030 34.9
상기 표 1 및 도 2의 해석을 통하여, 실시예 1에서 제조된 황-탄소 복합체의 비표면적, 기공부피 및 평균 기공이 모두 증가하였다는 것을 알 수 있었다.
또한, 상기 표 2 및 도 6의 해석을 통하여, 실시예 2에서 제조된 황-탄소 복합체의 비표면적, 기공부피 및 평균 기공이 모두 증가하였다는 것을 알 수 있었다.
실험예 2: 전지 물성 평가
(전지의 제조)
실시예 1 내지 2 및 비교예 1 내지 2에서 제조한 황-탄소 복합체: 바인더(LiPAA/PVA를 6.5:0.5로 혼합): 도전재(VGCF)를 88:7:5의 중량비로 혼합하여 슬러리를 제조한 후, 20㎛ 두께의 알루미늄 호일의 집전체에 코팅하여 전극을 제조하였다.
상기 제조된 전극을 양극으로, 리튬 금속을 음극으로 사용하여 코인셀을 제조했다. 이때, 상기 코인셀은 2-Me-THF/DOL/DME(1:1:1), LiN(CF3SO2)2 (LiTFSI) 1M, LiNO3 0.1M로 제조한 전해액을 사용하였다. 상기 2-Me-THF/DOL/DME는 용매로서 각각 2-methyl tetrahydrofuran, dioxolane 및 Dimethyl ether를 사용하였다.
제조된 코인셀에 대하여, 1.5에서 2.8V까지의 용량을 측정하여 도 3과 도 7 및 표 3과 표 4에 나타내었다.
구분 방전용량 [mAh/g]
실시예1 1,209
비교예1 1,144
구분 방전용량 [mAh/g]
실시예2 1,037
비교예2 892
도 3 및 표 3에 나타난 바와 같이, 동일한 황:탄소의 비율을 가지는 비교예 1과 실시예 1의 경우, 실시예 1의 초기 방전 용량이 향상된 것을 알 수 있었다. 또한, 제조된 코인셀에 대하여 0.1C rate CC 로 충전하고, 0.1C rate CC로 방전을 2.5회 반복한 후, 0.2C 충전/0.2C 방전 3회 반복, 이후에는 0.3C 충전/0.5C 방전하는 사이클을 30회 반복하여 충방전 효율을 측정하였다.(CC: Constant Current)
그 결과를 도 4를 통하여 확인할 수 있었으며, 실시예 1의 수명특성이 비교예 1에 비하여 향상된 것을 확인할 수 있다.
또한, 도 7 및 표 4에 나타난 바와 같이, 동일한 황:탄소의 비율을 가지는 비교예 2과 실시예 2의 경우, 실시예 2의 초기 방전 용량이 향상된 것을 알 수 있었다.
또한, 제조된 코인셀에 대하여 0.1C rate CC 로 충전하고, 0.1C rate CC로 방전을 2.5회 반복한 후, 0.2C 충전/0.2C 방전 3회 반복, 이후에는 0.3C 충전/0.5C 방전하는 사이클을 30회 반복하여 충방전 효율을 측정하였다.(CC: Constant Current)
그 결과를 도 8을 통하여 확인할 수 있었으며, 실시예 2의 수명특성이 비교예 2에 비하여 향상된 것을 확인할 수 있다.

Claims (21)

  1. 다공성 탄소재; 및
    상기 다공성 탄소재의 내부 및 표면 중 적어도 일부에 황이 코팅된 황-탄소 복합체에 있어서,
    상기 황-탄소 복합체의 기공부피가 0.04 내지 0.400 cm3/g이고,
    상기 황-탄소 복합체의 비표면적이 4.0 내지 30 m2/g 인, 황-탄소 복합체.
  2. 제1항에 있어서,
    상기 황-탄소 복합체의 기공부피가 0.250 내지 0.400 cm3/g이고,
    상기 황-탄소 복합체의 비표면적이 18.5 내지 30 m2/g 인, 황-탄소 복합체.
  3. 제2항에 있어서,
    상기 황-탄소 복합체의 기공부피가 0.300 내지 0.350 cm3/g이고,
    상기 황-탄소 복합체의 비표면적이 19.5 내지 30 m2/g 이고,
    상기 황-탄소 복합체의 기공 크기는 55nm 내지 100nm 범위인, 황-탄소 복합체.
  4. 제1항에 있어서,
    상기 황-탄소 복합체의 기공부피가 0.04 내지 0.20 cm3/g이고,
    상기 황-탄소 복합체의 비표면적이 4.0 내지 20 m2/g 인, 황-탄소 복합체.
  5. 제1항에 있어서,
    상기 황-탄소 복합체의 기공부피가 0.05 내지 0.15 cm3/g이고,
    상기 황-탄소 복합체의 비표면적이 4.5 내지 10 m2/g 이고,
    상기 황-탄소 복합체의 기공 크기는 40nm 내지 100nm 범위인, 황-탄소 복합체.
  6. 제1항에 있어서,
    상기 황은 1 내지 10 nm의 두께로 코팅된, 황-탄소 복합체.
  7. 제1항에 있어서,
    상기 다공성 탄소재의 직경이 100nm 내지 50㎛인, 황-탄소 복합체.
  8. 제2항에 있어서,
    상기 황-탄소 복합체는 황과 다공성 탄소재가 7.5:2.5 내지 4:6의 중량비로 포함되는, 황-탄소 복합체.
  9. 제4항에 있어서,
    상기 황-탄소 복합체는 황과 다공성 탄소재가 7.5:2.5 내지 9:1의 중량비로 포함되는, 황-탄소 복합체.
  10. 제1항에 있어서,
    상기 다공성 탄소재는 그래파이트, 그래핀, 카본 블랙, 탄소나노튜브, 탄소 섬유 및 활성탄소로 이루어진 군으로부터 선택된 1종 이상인, 황-탄소 복합체.
  11. 제1항 내지 제10항 중 어느 한 항의 황-탄소 복합체를 포함하는, 양극.
  12. (a) 1nm 내지 1㎛의 입경을 가지는 황과 다공성 탄소재를 혼합하는 단계;
    (b) 상기 혼합된 황과 다공성 탄소재를 건조하는 단계; 및
    (c) 상기 건조된 황과 다공성 탄소재의 혼합물에 마이크로웨이브를 인가하는 단계;를 포함하는 황-탄소 복합체의 제조방법.
  13. 제12항에 있어서,
    상기 (b) 단계의 건조는 60 내지 100℃ 오븐에서 12 내지 36시간 건조하는, 황-탄소 복합체의 제조방법.
  14. 제12항에 있어서,
    상기 (c) 단계의 마이크로 웨이브의 인가는 500 내지 2000W의 출력으로 인가하는, 황-탄소 복합체의 제조방법.
  15. 제12항에 있어서,
    상기 (c) 단계의 마이크로 웨이브의 인가는 2초 내지 10초간의 횟수로 2회 내지 10회 인가하는, 황-탄소 복합체의 제조방법.
  16. 제12항에 있어서,
    상기 황-탄소 복합체의 기공부피가 0.250 내지 0.400 cm3/g이고,
    상기 황-탄소 복합체의 비표면적이 18.5 내지 30 m2/g 이고,
    상기 황-탄소 복합체의 기공 크기는 55 내지 100nm 범위의 평균기공을 갖는, 황-탄소 복합체의 제조방법.
  17. 제12항에 있어서,
    상기 황-탄소 복합체의 기공부피가 0.04 내지 0.20 cm3/g이고,
    상기 황-탄소 복합체의 비표면적이 4.0 내지 20 m2/g 이고,
    상기 황-탄소 복합체의 기공 크기는 40 내지 100nm 범위의 평균기공을 갖는, 황-탄소 복합체의 제조방법.
  18. 제12항에 있어서,
    상기 황-탄소 복합체는 황과 다공성 탄소재가 7.5:2.5 내지 4:6의 중량비로 포함되는, 황-탄소 복합체의 제조방법.
  19. 제12항에 있어서,
    상기 황-탄소 복합체는 황과 다공성 탄소재가 7.5:2.5 내지 9:1의 중량비로 포함되는, 황-탄소 복합체의 제조방법.
  20. 제11항의 양극; 음극; 및 전해질;을 포함하는 리튬 이차 전지.
  21. 제20항에 있어서,
    상기 양극 내의 양극 활물질은 황 화합물을 포함하는, 리튬 이차 전지.
PCT/KR2018/014070 2017-11-16 2018-11-16 황-탄소 복합체, 그의 제조방법 및 이를 포함하는 리튬 이차전지 WO2019098733A1 (ko)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US16/646,490 US11658293B2 (en) 2017-11-16 2018-11-16 Sulfur-carbon composite, preparation method therefor, and lithium secondary battery comprising same
EP18877799.9A EP3712988A4 (en) 2017-11-16 2018-11-16 SULFUR-CARBON COMPOSITE, ITS PREPARATION PROCESS AND SECONDARY LITHIUM BATTERY CONTAINING IT
CN201880057563.0A CN111095622B (zh) 2017-11-16 2018-11-16 硫碳复合物、其制备方法和包含其的锂二次电池
JP2020515133A JP7118139B2 (ja) 2017-11-16 2018-11-16 硫黄‐炭素複合体、その製造方法及びこれを含むリチウム二次電池
US18/298,720 US12034156B2 (en) 2017-11-16 2023-04-11 Sulfur-carbon composite, preparation method therefor, and lithium secondary battery comprising same

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
KR20170153249 2017-11-16
KR10-2017-0153249 2017-11-16
KR1020180022217A KR102363968B1 (ko) 2018-02-23 2018-02-23 황-탄소 복합체, 그의 제조방법 및 이를 포함하는 리튬 이차전지
KR10-2018-0022217 2018-02-23
KR10-2018-0140659 2018-11-15
KR1020180140659A KR102328259B1 (ko) 2017-11-16 2018-11-15 황-탄소 복합체, 그의 제조방법 및 이를 포함하는 리튬 이차전지

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US16/646,490 A-371-Of-International US11658293B2 (en) 2017-11-16 2018-11-16 Sulfur-carbon composite, preparation method therefor, and lithium secondary battery comprising same
US18/298,720 Continuation US12034156B2 (en) 2017-11-16 2023-04-11 Sulfur-carbon composite, preparation method therefor, and lithium secondary battery comprising same

Publications (1)

Publication Number Publication Date
WO2019098733A1 true WO2019098733A1 (ko) 2019-05-23

Family

ID=66538691

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/014070 WO2019098733A1 (ko) 2017-11-16 2018-11-16 황-탄소 복합체, 그의 제조방법 및 이를 포함하는 리튬 이차전지

Country Status (1)

Country Link
WO (1) WO2019098733A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3667779A4 (en) * 2017-11-24 2020-10-28 LG Chem, Ltd. SULFUR-CARBON COMPOSITE, ITS PREPARATION PROCESS AND SECONDARY LITHIUM BATTERY CONTAINING IT
CN115398672A (zh) * 2020-03-04 2022-11-25 诺姆斯科技股份有限公司 注入硫的方法和得到的组合物

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100136974A (ko) * 2008-03-12 2010-12-29 도요타 모터 엔지니어링 앤드 매뉴팩쳐링 노스 아메리카, 인코포레이티드 황-탄소 물질
KR20130011157A (ko) * 2011-07-20 2013-01-30 인하대학교 산학협력단 마이크로파를 이용한 리튬-공기 전지 양극 물질용 백금-이산화망간/탄소 복합체의 제조 방법
KR20150043407A (ko) 2012-08-14 2015-04-22 바스프 에스이 리튬-황 배터리용 복합 물질
KR20160061033A (ko) * 2014-11-21 2016-05-31 국방과학연구소 다공성 탄소-황 복합체와 다층 분리막을 포함하는 리튬-황 이차전지, 그 제조방법 및 그 용도
WO2017081182A1 (en) * 2015-11-10 2017-05-18 Grabat Energy S.L. Carbon composites
US20170179477A1 (en) * 2014-03-28 2017-06-22 Perpetuus Research & Development Limited A composite material
KR20180022217A (ko) 2016-08-23 2018-03-06 주식회사 대림코퍼레이션 수지안정성, 내열성이 향상되고 투명성을 갖는 폴리이미드 전구체 수지 조성물, 이를 이용한 폴리이미드 필름 제조방법, 및 이에 의해 제조된 폴리이미드 필름

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100136974A (ko) * 2008-03-12 2010-12-29 도요타 모터 엔지니어링 앤드 매뉴팩쳐링 노스 아메리카, 인코포레이티드 황-탄소 물질
KR20130011157A (ko) * 2011-07-20 2013-01-30 인하대학교 산학협력단 마이크로파를 이용한 리튬-공기 전지 양극 물질용 백금-이산화망간/탄소 복합체의 제조 방법
KR20150043407A (ko) 2012-08-14 2015-04-22 바스프 에스이 리튬-황 배터리용 복합 물질
US20170179477A1 (en) * 2014-03-28 2017-06-22 Perpetuus Research & Development Limited A composite material
KR20160061033A (ko) * 2014-11-21 2016-05-31 국방과학연구소 다공성 탄소-황 복합체와 다층 분리막을 포함하는 리튬-황 이차전지, 그 제조방법 및 그 용도
WO2017081182A1 (en) * 2015-11-10 2017-05-18 Grabat Energy S.L. Carbon composites
KR20180022217A (ko) 2016-08-23 2018-03-06 주식회사 대림코퍼레이션 수지안정성, 내열성이 향상되고 투명성을 갖는 폴리이미드 전구체 수지 조성물, 이를 이용한 폴리이미드 필름 제조방법, 및 이에 의해 제조된 폴리이미드 필름

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3712988A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3667779A4 (en) * 2017-11-24 2020-10-28 LG Chem, Ltd. SULFUR-CARBON COMPOSITE, ITS PREPARATION PROCESS AND SECONDARY LITHIUM BATTERY CONTAINING IT
US11695111B2 (en) 2017-11-24 2023-07-04 Lg Energy Solution, Ltd. Sulfur-carbon composite, preparation method thereof, and lithium secondary battery comprising same
CN115398672A (zh) * 2020-03-04 2022-11-25 诺姆斯科技股份有限公司 注入硫的方法和得到的组合物

Similar Documents

Publication Publication Date Title
WO2019103326A2 (ko) 황-탄소 복합체, 그의 제조방법 및 이를 포함하는 리튬 이차전지
WO2019066369A2 (ko) 탄소-황 복합체, 그의 제조방법 및 이를 포함하는 리튬 이차전지
WO2018030616A1 (ko) 황-탄소 복합체, 이의 제조방법 및 이를 포함하는 리튬-황 전지
WO2018164413A1 (ko) 탄소-황 복합체, 이의 제조방법, 이를 포함하는 양극 및 리튬-황 전지
WO2020045854A1 (ko) 이황화몰리브덴을 포함하는 탄소나노구조체의 제조방법, 이로부터 제조된 이황화몰리브덴을 포함하는 탄소나노구조체를 포함하는 리튬 이차전지용 양극 및 이를 구비한 리튬 이차전지
WO2015056925A1 (ko) 탄소나노튜브 응집체를 포함하는 탄소나노튜브-황 복합체 및 그의 제조방법
WO2019066366A1 (ko) 티타니아-탄소나노튜브-황(TiO2-X-CNT-S) 복합체 및 그의 제조방법
WO2019103409A1 (ko) 황-탄소 복합체의 제조방법
WO2019088628A2 (ko) 황-탄소 복합체, 그의 제조방법 및 이를 포함하는 리튬 이차전지
WO2019107752A1 (ko) 황-탄소 복합체, 그의 제조방법 및 이를 포함하는 리튬 이차전지
WO2019177355A1 (ko) 세리아-탄소-황 복합체, 이의 제조방법, 이를 포함하는 양극 및 리튬-황 전지
WO2021025349A1 (ko) 음극, 이의 제조방법 및 이를 포함하는 이차전지
WO2020251199A1 (ko) 황-탄소 복합체, 이를 포함하는 리튬 이차전지용 양극 및 리튬 이차전지
WO2019088630A2 (ko) 황-탄소 복합체 및 그의 제조방법
WO2019212162A1 (ko) 리튬-황 이차전지용 바인더 및 이를 포함하는 리튬-황 이차전지
WO2019098733A1 (ko) 황-탄소 복합체, 그의 제조방법 및 이를 포함하는 리튬 이차전지
WO2019107815A1 (ko) 리튬 이차전지의 양극 제조용 바인더 및 이를 사용한 양극의 제조방법
WO2021251663A1 (ko) 음극 및 이를 포함하는 이차전지
WO2020067793A1 (ko) 황-탄소 복합체 및 그 제조방법
WO2018236046A1 (ko) 리튬-황 전지
KR20190047907A (ko) 황-탄소 복합체, 그의 제조방법 및 이를 포함하는 리튬 이차전지
KR20190056321A (ko) 황-탄소 복합체, 그의 제조방법 및 이를 포함하는 리튬 이차전지
WO2022149913A1 (ko) 황-탄소 복합체, 이의 제조방법, 및 이를 포함하는 리튬-황 전지
WO2022005210A1 (ko) 리튬-황 전지용 양극 및 이의 제조방법
WO2020009333A1 (ko) 황-탄소 복합체, 이의 제조방법, 이를 포함하는 리튬-황 전지용 양극 및 리튬-황 전지

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18877799

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020515133

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018877799

Country of ref document: EP

Effective date: 20200616