WO2018030616A1 - 황-탄소 복합체, 이의 제조방법 및 이를 포함하는 리튬-황 전지 - Google Patents

황-탄소 복합체, 이의 제조방법 및 이를 포함하는 리튬-황 전지 Download PDF

Info

Publication number
WO2018030616A1
WO2018030616A1 PCT/KR2017/005526 KR2017005526W WO2018030616A1 WO 2018030616 A1 WO2018030616 A1 WO 2018030616A1 KR 2017005526 W KR2017005526 W KR 2017005526W WO 2018030616 A1 WO2018030616 A1 WO 2018030616A1
Authority
WO
WIPO (PCT)
Prior art keywords
sulfur
carbon
carbon composite
lithium
battery
Prior art date
Application number
PCT/KR2017/005526
Other languages
English (en)
French (fr)
Inventor
이동욱
손권남
양두경
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to US16/304,806 priority Critical patent/US11239465B2/en
Priority to JP2018563023A priority patent/JP6732300B2/ja
Priority to EP17839634.7A priority patent/EP3457474B1/en
Priority to CN201780047495.5A priority patent/CN109643792B/zh
Publication of WO2018030616A1 publication Critical patent/WO2018030616A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/581Chalcogenides or intercalation compounds thereof
    • H01M4/5815Sulfides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0471Processes of manufacture in general involving thermal treatment, e.g. firing, sintering, backing particulate active material, thermal decomposition, pyrolysis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/136Electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1393Processes of manufacture of electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1397Processes of manufacture of electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a sulfur-carbon composite including a carbon-based material surface-modified by acid treatment, a method for preparing the same, and a lithium-sulfur battery including the same.
  • Lithium-sulfur battery is a secondary battery that uses a sulfur-based material having a SS bond (Sulfur-sulfur bond) as a positive electrode active material, and a lithium metal as a negative electrode active material.
  • Sulfur the main material of the positive electrode active material is very rich in resources and toxic There is no advantage, and it has the advantage of having a low weight per atom.
  • the theoretical discharge capacity of the lithium-sulfur battery is 1672mAh / g-sulfur, and the theoretical energy density is 2,600 Wh / kg, and the theoretical energy density of other battery systems currently being studied (Ni-MH battery: 450 Wh / kg, Li- FeS cells: 480 Wh / kg, Li-MnO 2 batteries: 1,000 Wh / kg, Na-S cells: 800 Wh / kg) is very high compared to the attention has been attracting attention as a battery having a high energy density characteristics.
  • Sulfur is used as a positive electrode active material of a lithium-sulfur battery, but sulfur is a non-conductor, and thus, it is difficult to transfer electrons generated by an electrochemical reaction.
  • a sulfur-carbon composite complexed with a conductive carbon is generally used.
  • lithium polysulfide which is an intermediate during battery reaction
  • the eluted lithium polysulfide reacts directly with lithium and is fixed to the surface of the negative electrode in the form of Li 2 S, thereby causing a problem of corroding the lithium metal negative electrode.
  • lithium polysulfide elution adversely affects the capacity retention rate and life characteristics of the battery, and various attempts have been made to suppress the elution of lithium polysulfide.
  • Republic of Korea Patent No. 1397716 treats graphene with hydrofluoric acid to form pores on the surface of graphene, and proposes a method of manufacturing a lithium sulfur-carbon composite by growing sulfur particles in the pores.
  • the method has a problem that the price of the material is high and the process is complicated, so it is not suitable for the process.
  • Lithium-sulfur secondary battery comprising a graphene composite positive electrode comprising sulfur and a method of manufacturing the same
  • the present inventors modified the surface of the carbon-based material using a mixed solution of nitric acid and sulfuric acid and then complexed with sulfur to produce a sulfur-carbon composite, the sulfur-carbon composite thus prepared is lithium
  • the present invention was completed by confirming that when used as a positive electrode active material of a sulfur battery, excellent electrical conductivity and lithium polysulfide dissolution inhibiting effect were exhibited.
  • Another object of the present invention is to provide a method for producing a sulfur-carbon composite.
  • Another object of the present invention is to provide an electrode including the sulfur-carbon composite as an active material and a lithium-sulfur battery including the electrode.
  • the present invention comprises a carbon-based material and sulfur surface-modified with a hydroxy group and a carboxyl group, the content of the hydroxy group and carboxyl group is a sulfur-carbon composite of 3 to 10% by weight of the total weight of the carbon-based material, It provides a lithium-sulfur battery electrode and a lithium-sulfur battery comprising the electrode.
  • the carbon-based material may be at least one selected from the group consisting of carbon nanotubes, graphene, graphite, amorphous carbon, carbon black, and activated carbon.
  • the sulfur-carbon composite may have a ratio of carbon-based material to sulfur of 1: 1 to 1: 9.
  • the diameter of the sulfur-carbon composite may be 0.1 to 20 ⁇ m.
  • the surface-modified carbonaceous material of step S1 has a hydroxyl group and a carboxyl group on the surface thereof, and provides a method for producing a sulfur-carbon composite having a content of 3 to 10 wt% of the carbonaceous material.
  • the mixed solution of step S1 may be a mixture of 70% nitric acid solution and sulfuric acid in a volume ratio of 1: 1 to 0: 1.
  • the mixed solution in the step S1 may be added in 50 to 150 ml per 1g of the carbon-based material.
  • the step S1 may be by ultrasonic treatment.
  • the step S1 may be made at 90 to 120 °C.
  • the sulfur-carbon composite according to the present invention includes a carbon-based material whose surface is modified to have a hydroxyl group and a carboxyl group capable of adsorbing polysulfide on the surface, thereby preventing polysulfide dissolution when used as a cathode active material of a lithium-sulfur battery. .
  • a carbon-based material whose surface is modified to have a hydroxyl group and a carboxyl group capable of adsorbing polysulfide on the surface, thereby preventing polysulfide dissolution when used as a cathode active material of a lithium-sulfur battery.
  • the surface of the carbon-based material can be modified by a simple process of treating a mixed solution of nitric acid and sulfuric acid, and the functional group content of the surface according to the mixing ratio of nitric acid and sulfuric acid. Can be adjusted.
  • 1 is a surface SEM photograph before and after surface modification of carbon nanotubes.
  • FIG. 1 is a thermogravimetric analysis (TGA) graph of the surface modified carbon nanotubes prepared in Comparative Example 2 and Examples 1 to 4.
  • FIG 3 is a charge / discharge curve of a battery prepared using the sulfur-carbon composites of Comparative Examples 1 and 2 and Examples 2 to 4 as a cathode active material.
  • Example 4 is a graph showing capacity retention characteristics of a battery manufactured using the sulfur-carbon composites of Example 2 and Comparative Example 1 as a cathode active material.
  • the present invention provides a sulfur-carbon composite, comprising carbon-based materials and sulfur surface-modified with hydroxy and carboxyl groups, wherein the hydroxy and carboxyl groups are from 3 to 10% by weight of the total weight of the carbon-based material.
  • the sulfur-carbon composite of the present invention may be used as a cathode active material for a lithium-sulfur battery, including a non-conductive sulfur and a carbon-based material having electrical conductivity.
  • Lithium-sulfur batteries undergo oxidation-reduction reactions in which the sulfur-sulfur bonds of sulfur-based compounds are broken during discharge, the oxidation number of S decreases, the SS bonds are regenerated during charging, and the oxidation number of S increases. To generate electrical energy.
  • a polysulfide which is an intermediate, is produced at the positive electrode, which is a highly polar material, and is easily dissolved in an electrolyte having a polarity.
  • the polysulfide dissolved in the electrolyte is lost out of the positive reaction region, leading to a decrease in battery capacity, which in turn leads to a decrease in battery life.
  • the dissolution problem of polysulfide was solved by using a carbon-based material whose surface was modified to have a hydroxyl group and a carboxy group as a carbon material of the sulfur-carbon composite. Since the hydroxy group and the carboxy group exhibiting polarity interact with the polar polysulfide to suppress the loss outside the positive electrode region, the utilization rate of the active material can be increased and the life of the battery can be prevented. In addition, since no additive is required, an electrode having a high capacity per unit weight can be manufactured.
  • Carbon-based materials that can be used in the sulfur-carbon composite of the present invention can be used to impart conductivity to sulfur as an insulator and to have a functional group of a hydroxy group and a carboxyl group on the surface by acid treatment.
  • the carbon-based material may be at least one selected from the group consisting of carbon nanotubes, graphene, graphite, amorphous carbon, carbon black, and activated carbon.
  • carbon nanotubes, graphite, and carbon black are more preferable in terms of excellent electrical conductivity, specific surface area, and sulfur loading.
  • the carbon nanotubes may be single-walled carbon nanotubes (SWCNTs) or multi-walled carbon nanotubes (MWCNTs). It is preferable that the diameter of the said CNT is 1-200 nm, It is more preferable that it is 1-100 nm, It is most preferable that it is 1-50 nm. If the diameter of the CNT exceeds 200nm, the specific surface area is small, there is a problem that the reaction area with the electrolyte is reduced.
  • the graphite may be one or more of artificial graphite and natural graphite.
  • Natural graphites include flake graphite, high crystalline graphite, microcrystalline or cryptocrystalline (amorphous) graphite, and artificial graphites include primary, electrographite, and secondary.
  • the said graphite particle can be used individually by 1 type or in combination of 2 or more types of graphite mentioned above.
  • the graphite particles are not particularly limited as long as they can reversibly occlude and release lithium ions during charge and discharge.
  • the graphite particles may have an interplanar spacing of 0.335 nm or more and less than 0.337 nm, for example, 0.335 nm or more and less than 0.337 nm.
  • the size of the graphite particles is preferably the same or smaller than the size of the silicon-based particles in terms of mixing uniformity and mixture density improvement.
  • the average particle diameter of the graphite particles may be 20 ⁇ m or less, specifically 0.1 to 20 ⁇ m or less, and more specifically 0.1 to 10 ⁇ m, 1 to 10 ⁇ m, or 1 to 5 ⁇ m. .
  • the carbon black may be, for example, at least one selected from the group consisting of acetylene black, Ketjen black, furnace black, oil-furnace black, Columbia carbon, channel black, lamp black, and summer black.
  • the particle size of such carbon black is not limited, an average particle diameter of 0.01 to 0.5 ⁇ m is preferable in terms of securing a reaction area with the electrolyte.
  • the carbonaceous material may be oxidized using a known method to have a hydroxyl group and a carboxyl group on its surface, and then used as a material of the composite.
  • This oxidation method is not particularly limited, but is preferably performed by the method for producing a sulfur-carbon composite according to the present invention to be described later.
  • a mixed solution of nitric acid and sulfuric acid can be used to modify the surface of a carbon-based material in a low cost and simple process, and the surface of the carbon-based material by controlling the ratio of nitric acid and sulfuric acid
  • the functional group content can be controlled.
  • the surface functional group content of the surface-modified carbonaceous material is preferably 3 to 10% by weight, more preferably 5 to 10% by weight.
  • the higher the surface functional group content of the carbonaceous material the higher the ability of the polysulfide adsorption to increase the utilization of the active material, but when it exceeds 10% by weight, it is difficult to secure the conductivity of the sulfur-carbon composite by lowering the electrical conductivity of the carbon material. It adjusts suitably within the said range.
  • the surface functional group content may be measured by a known method, for example, may be measured by thermogravimetric analysis (TGA).
  • TGA thermogravimetric analysis
  • the surface modified carbonaceous material as described above is used as sulfur-carbon composite in admixture with sulfur.
  • the sulfur used is preferably inorganic sulfur or elemental sulfur (S 8 ).
  • the carbon-based material and sulfur are preferably mixed in a weight ratio of 1: 1 to 1: 9. If the content of the carbon-based material exceeds the above range, the content of sulfur, which is an active material, is lowered, causing problems in securing battery capacity. If the content of the carbon-based material is less than the above range, the content of the carbon-based material is insufficient to impart electrical conductivity. Adjust appropriately at.
  • the method of complexing the sulfur-carbon composite of the present invention is not particularly limited in the present invention, and methods commonly used in the art may be used. For example, a method of simply mixing the surface-modified carbonaceous material with sulfur and then heat treating and complexing may be used.
  • the sulfur-carbon composite according to the present invention may be complexed by simple mixing of sulfur and the surface-modified carbon-based material described above, or may have a coating or supported form of a core-shell structure.
  • the coating form of the core-shell structure is one in which sulfur or a carbon-based material is coated with another material.
  • the surface of the carbon-based material may be surrounded by sulfur or vice versa.
  • the supported form may be a form in which sulfur is supported therein when the carbonaceous material is porous.
  • the form of the sulfur-carbon composite may be used in any form as long as it satisfies the content ratio of sulfur and carbon-based material, and is not limited in the present invention.
  • the diameter of the sulfur-carbon composite is not particularly limited in the present invention and may vary, but preferably 0.1 to 20 ⁇ m, more preferably 1 to 10 ⁇ m. When satisfying the above range, there is an advantage that can produce a high loading electrode.
  • the present invention is a.
  • the surface-modified carbonaceous material of step S1 provides a method for producing a sulfur-carbon composite having a hydroxyl group and a carboxyl group on its surface.
  • the surface-modified carbon-based material can be easily obtained by a simple process of ultrasonication or heat treatment, and the mixture used By controlling the ratio of nitric acid and sulfuric acid in the solution there is an advantage that can control the surface functional group content.
  • the surface-modified carbonaceous material prepared as described above does not have a large change in weight, and when the sulfur-carbon composite is manufactured by using the same, it is possible to suppress the dissolution of polysulfide without any additives, and thus has a large capacity per unit weight. Electrodes can be prepared.
  • step S1 the carbonaceous material is treated with a mixed solution of nitric acid and sulfuric acid to have a hydroxyl group and a carboxyl group on its surface.
  • the inventors have modified the surface of the carbonaceous material using a mixed solution of nitric acid and sulfuric acid, and as a result, have found that hydroxyl and carboxyl groups are formed on the surface. Therefore, according to the present invention, a surface-modified carbon-based material excellent in polysulfide adsorption capacity can be obtained.
  • the carbonaceous material used here is as described for the sulfur-carbon composite.
  • the mixed solution of nitric acid and sulfuric acid is preferably a solution in which a 70% by weight aqueous solution of nitric acid and sulfuric acid are mixed in a volume ratio of 1: 1 to 0: 1, and more preferably 1: 3 to 1: 9.
  • the functional group content of the carbon-based material is preferably 3 to 10% by weight so that the polysulfide adsorption capacity can be secured while ensuring electrical conductivity.
  • the mixing ratio of nitric acid and sulfuric acid is preferably within the above range.
  • the mixed solution is preferably added in a volume of 50 to 150 ml per 1 g of the carbonaceous material. If the mixed solvent is added in an excessive amount, the oxidation of the carbon-based material is increased, and the electrical conductivity is deteriorated. If the mixed solvent is less than the above range, the surface modification degree is insignificant and the polysulfide adsorption capacity cannot be expected. .
  • the mixed solution treatment conditions and methods of the carbon-based material are not particularly limited in the present invention, and may be, for example, ultrasonic treatment or heat treatment.
  • the sonication may be performed by an sonicator commonly used in the art, and the treatment temperature is not particularly limited, but is preferably 15 to 35 ° C., preferably room temperature.
  • the heat treatment may be performed in a heat and pressure resistant container such as an autoclave, and the heating temperature is preferably 90 to 120 ° C.
  • This mixed solution treatment is carried out for 30 minutes to 4 hours, preferably 1 to 3 hours.
  • the ultrasonic treatment and the heat treatment may be performed simultaneously, or they may be sequentially performed, such as the heat treatment after the ultrasonic treatment.
  • the carbon-based material surface-modified by the above method has a functional group content of 3 to 10% by weight of the carbon-based material, more preferably 5 to 10% by weight.
  • the surface modified carbonaceous material prepared according to the present invention exhibits excellent electrical conductivity and polysulfide adsorption capacity.
  • step S2 the surface-modified carbonaceous material prepared in step S1 is separated from the solution and dried to prepare a material of the sulfur-carbon composite.
  • the solution obtained in step S1 may be dispersed in distilled water, diluted, and then vacuum filtered or centrifuged using filter paper. This dilution and filtration process is repeated several times to wash the surface modified carbonaceous material.
  • the method of drying the filtered carbon-based material is not particularly limited in the present invention, and may be performed under reduced pressure or normal pressure and performed at a temperature of 20 to 130 ° C. or less. Specifically, the drying may be performed in a 90 to 120 °C vacuum oven.
  • step S3 a sulfur-carbon composite is prepared by complexing sulfur with the surface-modified carbonaceous material obtained in S2.
  • the surface-modified carbonaceous material and sulfur are preferably combined at a weight ratio of 1: 1 to 1: 9. If the sulfur content is less than the above range, the amount of the active material is insufficient to be used as the positive electrode active material, and if the carbon-based material is less than the above range, the electrical conductivity of the sulfur-carbon composite is not sufficient, so that the amount is appropriately adjusted within the above range.
  • the compounding method is not particularly limited and may be a method commonly used in the art such as wet compounding such as dry compounding or spray coating. More specifically, a method of ball milling and pulverizing sulfur powder and surface modified carbonaceous material and placing it in an oven at 120 to 160 ° C. for 20 minutes to 1 hour so that molten sulfur can be uniformly coated on the carbonaceous material is used. Can be.
  • the method for producing a sulfur-carbon composite according to the present invention is economical because the process is simple and expensive raw materials are unnecessary, and only two functional groups of hydroxy group and carboxyl group are introduced to the surface of the carbon-based material by using a mixed solution of nitric acid and sulfuric acid.
  • the sulfur-carbon composite having excellent electrical conductivity and polysulfide adsorption ability can be prepared.
  • the sulfur-carbon composite prepared by the above method shows excellent electrical conductivity and polysulfide adsorption ability, and thus may be used as a cathode active material for lithium-sulfur batteries.
  • the electrode for lithium-sulfur batteries according to the present invention uses the sulfur-carbon composite according to the present invention as an active material.
  • the sulfur-carbon composite includes a surface-modified carbon-based material having a hydroxyl group and a carboxyl group capable of adsorbing polysulfide on the surface and having electrical conductivity, thereby preventing the dissolution of polysulfide during battery operation. Therefore, when applied as a positive electrode of a lithium-sulfur battery it is possible to secure excellent battery capacity and life characteristics.
  • the lithium-sulfur battery electrode includes an active material layer formed on a current collector, and the active material layer includes a sulfur-carbon composite, a conductive material, a binder, and other additives of the present invention.
  • the electrode current collector acts as a passage for transferring electrons from the outside to allow the electrochemical reaction to occur in the active material or for receiving electrons from the active material and flowing them to the outside. It is not limited. As an example, copper, stainless steel, aluminum, nickel, titanium, calcined carbon, a surface treated with carbon, nickel, titanium, silver, or the like on the surface of copper or stainless steel, aluminum-cadmium alloy and the like can be used. In addition, the electrode current collector may form fine irregularities on the surface to increase the adhesion of the active material, and various forms such as a film, a sheet, a foil, a net, a porous body, a foam, and a nonwoven fabric may be used.
  • the conductive material is not particularly limited as long as it has conductivity without causing chemical change in the battery.
  • Examples of the conductive material include graphite such as natural graphite and artificial graphite; Carbon blacks such as carbon black, acetylene black, Ketjen black, denka black, channel black, furnace black, lamp black and summer black; Graphene; Conductive fibers such as carbon fibers and metal fibers such as carbon nanotubes (CNT) and carbon nanofibers (CNF); Metal powders such as carbon fluoride powder, aluminum powder and nickel powder; Conductive whiskers such as zinc oxide and potassium titanate; Conductive metal oxides such as titanium oxide; Polyphenylene derivatives and the like can be used.
  • graphite such as natural graphite and artificial graphite
  • Carbon blacks such as carbon black, acetylene black, Ketjen black, denka black, channel black, furnace black, lamp black and summer black
  • Graphene Graphene
  • Conductive fibers such as carbon fibers and metal fibers
  • the binder is added to bond the active material and the conductive material, and the active material and the current collector, and may be a thermoplastic resin or a thermosetting resin.
  • the binder is, for example, polyethylene, polypropylene, polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), styrene-butadiene rubber (SBR), tetrafluoroethylene-perfluoro alkylvinylether copolymer , Vinylidene fluoride-hexafluoropropylene copolymer, vinylidene fluoride-chlorotrifluoroethylene copolymer, ethylene-tetrafluoroethylene copolymer, polychlorotrifluoroethylene, vinylidene fluoride-pentafluoro propylene copolymer , Propylene-tetrafluoroethylene copolymer, ethylene-chlorotrifluoroethylene copolymer, vinylidene flu
  • the electrode for a lithium-sulfur battery of the present invention may be prepared according to a conventional method, and specifically, the composition for forming an active material layer prepared by mixing the sulfur-carbon composite, the conductive material, and the binder of the present invention as an active material on an organic solvent. It can be prepared by coating and drying on the current collector and optionally compression molding the current collector to improve the electrode density.
  • the organic solvent may uniformly disperse the positive electrode active material, the binder, and the conductive material, and preferably evaporates easily. Specifically, N-methyl-2-pyrrolidone, acetonitrile, methanol, ethanol, tetrahydrofuran, water, isopropyl alcohol, etc. are mentioned.
  • the lithium-sulfur battery according to the present invention includes a positive electrode and a negative electrode and an electrolyte solution present between them, and uses the electrode for a lithium-sulfur battery according to the present invention as a positive electrode.
  • the battery may further include a separator interposed between the positive electrode and the negative electrode.
  • the lithium-sulfur battery according to the present invention has excellent life characteristics because the polysulfide elution problem of the positive electrode is improved.
  • the structure of the negative electrode, the separator and the electrolyte of the lithium-sulfur battery is not particularly limited in the present invention, and is known in the art.
  • the negative electrode according to the present invention includes a negative electrode active material formed on the negative electrode current collector.
  • the negative electrode current collector may be specifically selected from the group consisting of copper, stainless steel, titanium, silver, palladium, nickel, alloys thereof, and combinations thereof.
  • the stainless steel may be surface treated with carbon, nickel, titanium, or silver, and an aluminum-cadmium alloy may be used as the alloy.
  • calcined carbon, a nonconductive polymer surface-treated with a conductive material, or a conductive polymer may be used.
  • a material capable of reversibly intercalating or deintercalating lithium ions (Li + ), a material capable of reacting with lithium ions to form a reversibly lithium-containing compound, a lithium metal or a lithium alloy can be used.
  • the material capable of reversibly occluding or releasing the lithium ions (Li + ) may be, for example, crystalline carbon, amorphous carbon or a mixture thereof.
  • the material capable of reacting with the lithium ions (Li + ) to form a lithium-containing compound reversibly may be, for example, tin oxide, titanium nitrate or silicon.
  • the lithium alloy is, for example, lithium (Li) and sodium (Na), potassium (K), rubidium (Rb), cesium (Cs), francium (Fr), beryllium (Be), magnesium (Mg), calcium ( It may be an alloy of a metal selected from the group consisting of Ca), strontium (Sr), barium (Ba), radium (Ra), aluminum (Al) and tin (Sn).
  • the negative electrode may further include a binder for coupling the negative electrode active material and the conductive material and the current collector.
  • the binder is the same as described above for the binder of the positive electrode.
  • the negative electrode may be lithium metal or a lithium alloy.
  • the negative electrode may be a thin film of lithium metal, and at least one metal selected from lithium and Na, K, Rb, Cs, Fr, Be, Mg, Ca, Sr, Ba, Ra, Al, and Sn groups. It may be an alloy with.
  • a conventional separator may be interposed between the positive electrode and the negative electrode.
  • the separator is a physical separator having a function of physically separating the electrode, and can be used without particular limitation as long as it is used as a conventional separator, and in particular, it is preferable that the separator has a low resistance to electrolyte migration and excellent electrolyte-moisture capability.
  • the separator enables the transport of lithium ions between the positive electrode and the negative electrode while separating or insulating the positive electrode and the negative electrode from each other.
  • a separator may be made of a porous and nonconductive or insulating material.
  • the separator may be an independent member such as a film or a coating layer added to the anode and / or the cathode.
  • a porous polymer film made of a polyolefin-based polymer such as ethylene homopolymer, propylene homopolymer, ethylene / butene copolymer, ethylene / hexene copolymer and ethylene / methacrylate copolymer may be used alone. It may be used as a lamination or or a conventional porous non-woven fabric, for example, a non-woven fabric made of glass fibers, polyethylene terephthalate fibers of high melting point, etc. may be used, but is not limited thereto.
  • the electrolyte according to the present invention is a non-aqueous electrolyte containing a lithium salt and is composed of a lithium salt and a solvent.
  • a non-aqueous organic solvent a non-aqueous organic solvent, an organic solid electrolyte, an inorganic solid electrolyte, and the like are used.
  • the lithium salt is a material that can be easily dissolved in a non-aqueous organic solvent, for example, LiCl, LiBr, LiI, LiClO 4 , LiBF 4 , LiB 10 Cl 10 , LiB (Ph) 4 , LiC 4 BO 8 , LiPF 6 , LiCF 3 SO 3, LiCF 3 CO 2, LiAsF 6, LiSbF 6, LiAlCl 4, LiSO 3 CH 3, LiSO 3 CF 3, LiSCN, LiC (CF 3 SO 2) 3, LiN (CF 3 SO 2) 2, LiN At least one from the group consisting of (C 2 F 5 SO 2 ) 2 , LiN (SO 2 F) 2 , lithium chloroborane, lower aliphatic lithium carbonate, lithium tetraphenyl borate, imide.
  • a non-aqueous organic solvent for example, LiCl, LiBr, LiI, LiClO 4 , LiBF 4 , LiB 10 Cl 10 , LiB (Ph) 4 , LiC 4
  • the concentration of the lithium salt is 0.1 to 4.0, depending on several factors such as the exact composition of the electrolyte mixture, the solubility of the salt, the conductivity of the dissolved salt, the charging and discharging conditions of the battery, the operating temperature and other factors known in the lithium-sulfur battery field. M, preferably 0.5 to 2.0 M. If the concentration of the lithium salt is less than the above range, the conductivity of the electrolyte may be lowered, thereby degrading battery performance. If the lithium salt is more than the above range, the viscosity of the electrolyte may increase, thereby reducing the mobility of lithium ions (Li + ). It is desirable to select the appropriate concentration.
  • the non-aqueous organic solvent is a substance capable of dissolving lithium salt well, preferably N-methyl-2-pyrrolidone, propylene carbonate, ethylene carbonate, butylene carbonate, dimethyl carbonate , Diethyl carbonate, ethylmethyl carbonate, gamma-butylo lactone, 1,2-dimethoxy ethane, 1,2-diethoxy ethane, 1-ethoxy-2-methoxy ethane, diethylene glycol dimethyl ether, Triethylene glycol dimethyl ether, tetraethylene glycol dimethyl ether, tetrahydroxy franc, 2-methyl tetrahydrofuran, dimethyl sulfoxide, 1,3-dioxolane, 4-methyl-1,3-dioxene, di Ethyl ether, formamide, dimethylformamide, acetonitrile, nitromethane, methyl formate, methyl acetate, phosphate triester, trimethoxy methan
  • organic solid electrolyte preferably, a polyethylene derivative, a polyethylene oxide derivative, a polypropylene oxide derivative, a phosphate ester polymer, poly agitation lysine, polyester sulfide, polyvinyl alcohol, polyvinylidene fluoride, ionic Polymers containing dissociation groups and the like can be used.
  • the inorganic solid electrolyte of the present invention is preferably Li 3 N, LiI, Li 5 NI 2 , Li 3 N-LiI-LiOH, LiSiO 4 , LiSiO 4 -LiI-LiOH, Li 2 SiS 3 , Li 4 SiO 4 Nitrides, halides, sulfates, and the like of Li, such as Li 4 SiO 4 -LiI-LiOH, Li 3 PO 4 -Li 2 S-SiS 2 , and the like, may be used.
  • the non-aqueous electrolyte solution for lithium-sulfur batteries of the present invention may further include a nitric acid or nitrous acid-based compound as an additive.
  • the nitric acid or nitrite compound has an effect of forming a stable film on the lithium electrode and improving the charge and discharge efficiency.
  • Such a nitric acid or nitrite compound is not particularly limited in the present invention, but lithium nitrate (LiNO 3 ), potassium nitrate (KNO 3 ), cesium nitrate (CsNO 3 ), barium nitrate (Ba (NO 3 ) 2 ), ammonium nitrate Inorganic nitric acid or nitrite compounds such as (NH 4 NO 3 ), lithium nitrite (LiNO 2 ), potassium nitrite (KNO 2 ), cesium nitrite (CsNO 2 ) and ammonium nitrite (NH 4 NO 2 ); Organic nitric acid such as methyl nitrate, dialkyl imidazolium nitrate, guanidine nitrate, imidazolium nitrate, pyridinium nitrate, ethyl nitrite, propyl nitrite, butyl nitrite, pentyl nitrite and oct
  • the non-aqueous electrolyte may further include other additives for the purpose of improving charge and discharge characteristics, flame retardancy and the like.
  • the additives include pyridine, triethylphosphite, triethanolamine, cyclic ether, ethylene diamine, n-glyme, hexa phosphate triamide, nitrobenzene derivative, sulfur, quinone imine dye, N-substituted oxazoli Dinon, N, N-substituted imidazolidine, ethylene glycol dialkyl ether, ammonium salt, pyrrole, 2-methoxy ethanol, aluminum trichloride, fluoroethylene carbonate (FEC), propene sultone (PRS), vinylene carbonate ( VC) etc. are mentioned.
  • the positive electrode, the negative electrode, and the separator included in the lithium-sulfur battery may be prepared according to conventional components and manufacturing methods, respectively, and the appearance of the lithium-sulfur battery is not particularly limited, but is cylindrical, rectangular, or pouch. It may be a type or a coin (Coin) type.
  • CNT carbon nanotubes
  • 70% wt% aqueous solution
  • sulfuric acid 250 ml
  • 40 kHz, 280 W 40 kHz, 280 W
  • a sulfur-carbon composite was prepared in the same manner as in Example 1, except that 125 ml of a 70% nitric acid solution and 375 ml of sulfuric acid were used.
  • a sulfur-carbon composite was prepared in the same manner as in Example 1, except that 50 ml of a 70% nitric acid solution and 450 ml of sulfuric acid were used.
  • a sulfur-carbon composite was prepared in the same manner as in Example 1 except that 500 ml of sulfuric acid was used.
  • Sulfur-carbon composites were prepared in the same manner as in Example 1, except that 500 ml of nitric acid 70% aqueous solution was used.
  • an electrode for a lithium-sulfur battery was manufactured by the following method, and a lithium-sulfur battery having this as a positive electrode was prepared.
  • a conductive material (Denka black) and 5 g of carboxymethyl cellulose (CMC) were added and mixed together with zirconia balls. Then, 3.6 g of sulfur-carbon composite and water were added in a certain amount and mixed again. Finally, 0.35 g of styrene-butadiene rubber (SBR) was added and mixed again to prepare a slurry.
  • SBR styrene-butadiene rubber
  • the slurry was prepared by pouring the slurry on an aluminum foil, coated with a blade coater to a thickness of 200 ⁇ m, and dried in a 50 ° C. oven to prepare an electrode for a lithium-sulfur battery.
  • a coin cell battery was prepared by punching the electrode prepared in (1) according to the coin cell size.
  • a coin cell was assembled by putting a positive electrode, a polyethylene membrane, a lithium negative electrode, a gasket, a stainless steel coin, a spring, and a stainless steel upper plate in turn on a stainless steel lower plate.
  • the structure of CNTs before and after surface modification was compared using a scanning electron microscope (SEM). Referring to FIG. 1, it can be seen that the CNTs do not have a large change in the secondary structure and the like even after the surface treatment.
  • the functional group contents of the surface treated CNTs of Comparative Example 2 and Examples 1 to 4 which were acid treated with different ratios of nitric acid and sulfuric acid were analyzed by thermogravimetric analysis (TGA). Thermogravimetric analysis was performed under nitrogen atmosphere to prevent carbon from oxidizing. Since the surface attachment functional group is desorbed or pyrolyzed at 500 to 600 °C, the weight loss rate up to 600 °C was measured.
  • TGA thermogravimetric analysis
  • thermogravimetric analysis graph is shown in FIG. 2.
  • the surface functional group content was 1.7 wt% in Comparative Example 2, 4.7 wt% in Example 1, 9.4 wt% in Example 2, 7.3 wt% in Example 3, and 3.1 wt% in Example 4.
  • the ratio (volume ratio) of sulfuric acid in the surface modification solution increased from 0 to 3/4, the functional group content tended to increase as the content of sulfuric acid increased. I could confirm that.
  • the performance of the battery prepared in Preparation Example 1 was evaluated. During the 2.5 cycles of the initial discharge-charge-discharge-charge-discharge, the battery performance was progressed at a rate of 0.1C, after which charging was performed at 0.3C, and the discharge was progressed at a rate of 0.5C.
  • Example 2 having a surface functional group content of 9.4% by weight was subjected to 50 cycles, and the specific discharge capacity was measured (FIG. 4). This may be because the dissolution of the polysulfide is suppressed by the surface-modified carbon-based material, so that the content of sulfur as the active material in the positive electrode is maintained even after repeated charging and discharging.
  • Comparative Example 2 having a surface functional group content of 1.7% by weight exhibited a lower battery performance compared to Comparative Example 1, which was not surface modified. However, since the surface functional group content is 3% by weight or more, the battery performance is remarkably improved, and it can be seen that the discharge capacity and cycle characteristics are excellent up to 10% by weight.
  • the sulfur-carbon composite of the present invention contains 3 to 10% by weight of a hydroxyl group and a carboxy group, and thus exhibits excellent polysulfide adsorption capacity, and is used as a cathode active material of a lithium-sulfur battery.
  • the battery life characteristics can be improved.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

본 발명은 산 처리에 의하여 표면 개질된 탄소계 물질을 포함하는 황-탄소 복합체, 이의 제조방법 및 이를 포함하는 리튬-황 전지에 관한 것이다. 본 발명에 따른 황-탄소 복합체는 표면에 폴리설파이드를 흡착할 수 있는 히드록시기 및 카르복시기를 갖도록 표면이 개질된 탄소계 물질을 포함함으로써, 리튬-황 전지의 양극 활물질로 사용 시 폴리설파이드 용출이 억제된다. 이에 따라 전지의 용량 특성 및 수명 특성을 향상시킬 수 있다. 또한, 본 발명에 따른 황-탄소 복합체의 제조방법에 따르면 질산 및 황산의 혼합용액을 처리하는 간편한 공정으로 탄소계 물질의 표면을 개질할 수 있으며, 질산과 황산의 혼합 비율에 따라 표면의 작용기 함량을 조절할 수 있다.

Description

황-탄소 복합체, 이의 제조방법 및 이를 포함하는 리튬-황 전지
본 출원은 2016년 8월 11일자 한국 특허 출원 제10-2016-0102180호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용을 본 명세서의 일부로서 포함한다.
본 발명은 산 처리에 의하여 표면 개질된 탄소계 물질을 포함하는 황-탄소 복합체, 이의 제조방법 및 이를 포함하는 리튬-황 전지에 관한 것이다.
최근 휴대용 전자기기, 전기자동차 및 대용량 전력저장 시스템 등이 발전함에 따라 대용량 전지의 필요성이 대두되고 있다. 리튬-황 전지는 S-S 결합(Sulfur - sulfur bond)을 갖는 황 계열 물질을 양극 활물질로 사용하고, 리튬 금속을 음극 활물질로 사용하는 이차전지로, 양극 활물질의 주재료인 황은 자원이 매우 풍부하고, 독성이 없으며, 낮은 원자당 무게를 가지고 있는 장점이 있다.
또한 리튬-황 전지의 이론 방전용량은 1672mAh/g-sulfur이며, 이론 에너지밀도가 2,600Wh/kg로서, 현재 연구되고 있는 다른 전지시스템의 이론 에너지밀도(Ni-MH 전지: 450Wh/kg, Li-FeS 전지: 480Wh/kg, Li-MnO2 전지: 1,000Wh/kg, Na-S 전지: 800Wh/kg)에 비하여 매우 높기 때문에 고에너지 밀도 특성을 갖는 전지로서 주목 받고 있다.
리튬-황 전지의 양극 활물질로는 황이 사용되나, 황은 부도체로서 전기화학 반응으로 생성된 전자의 이동이 어려우므로 이를 보완하기 위하여 전도성 물질인 탄소와 복합화한 황-탄소 복합체가 일반적으로 쓰이고 있다.
그러나, 단순한 황-탄소 복합체의 경우, 전지 반응 중 중간체인 리튬 폴리설파이드가 용출되어 활물질의 손실이 생기는 문제점이 있다. 이렇게 용출된 리튬 폴리설파이드는 전해액 중에 부유 또는 침전되는 것 이외에도, 리튬과 직접 반응하여 음극 표면에 Li2S 형태로 고착되므로 리튬 금속 음극을 부식시키는 문제를 발생시킨다.
이와 같이 리튬 폴리설파이드 용출은 전지의 용량 유지율 및 수명 특성에 악영향을 미치는 바, 리튬 폴리설파이드의 용출을 억제하기 위한 다양한 시도가 이루어지고 있다. 일례로, 대한민국 등록특허 제1379716호는 그래핀에 불산을 처리하여 그래핀 표면에 기공을 형성하고, 상기 기공에 유황 입자를 성장시켜 리튬 황-탄소 복합체를 제조하는 방법을 제시한다. 그러나, 상기 방법은 소재의 가격이 높고 공정이 복잡하여 공정화에는 적합하지 않은 문제점이 있다.
이외에도 황을 흡착하는 성질을 갖는 첨가제를 양극 합제에 첨가하는 방법이 있으나, 이때 사용되는 첨가제는 전이 금속 칼코게나이드와 같은 고가의 물질로 상용화에는 적합하지 않으며, 첨가제의 첨가로 인해 양극의 무게가 증가할 수 밖에 없어 단위 무게당 용량을 증가시키기 어려운 문제가 있다.
따라서, 리튬-황 전지의 상용화를 위해서는 리튬 폴리설파이드의 용출 문제를 해결할 수 있으면서도 대량 생산이 가능하도록 공정이 간단하고 제조비용이 저렴한 황-탄소 복합체의 개발이 필요한 실정이다.
[선행기술문헌]
대한민국 등록특허 제1379716호, 유황을 포함하는 그래핀 복합체 양극을 포함하는 리튬-유황 이차전지 및 그의 제조 방법
상기 문제를 해결하기 위하여, 본 발명자들은 질산 및 황산이 혼합된 수용액을 이용하여 탄소계 물질의 표면을 개질시킨 다음 황과 복합화 하여 황-탄소 복합체를 제조하였고, 이렇게 제조된 황-탄소 복합체가 리튬-황 전지의 양극 활물질로 사용 시 우수한 전기 전도성 및 리튬 폴리설파이드 용출 억제 효과를 나타내는 것을 확인하여 본 발명을 완성하였다.
따라서, 본 발명의 목적은 황-탄소 복합체를 제공하는 것이다.
또한, 본 발명의 다른 목적은 황-탄소 복합체의 제조방법을 제공하는 것이다.
또한, 본 발명의 또 다른 목적은 상기 황-탄소 복합체를 활물질로 포함하는 전극 및 상기 전극을 포함하는 리튬-황 전지를 제공하는 것이다.
상기 목적을 달성하기 위하여, 본 발명은 히드록시기 및 카르복시기로 표면 개질된 탄소계 물질 및 황을 포함하며, 상기 히드록시기 및 카르복시기의 함량은 탄소계 물질 총 중량의 3 내지 10 중량%인 황-탄소 복합체, 이를 포함하는 리튬-황 전지용 전극 및 상기 전극을 포함하는 리튬-황 전지를 제공한다.
이때, 상기 탄소계 물질은 탄소나노튜브, 그래핀, 흑연, 비정질탄소, 카본블랙, 및 활성탄으로 이루어지는 군에서 선택되는 1종 이상일 수 있다.
이때, 상기 황-탄소 복합체는 탄소계 물질 대 황의 비율이 1:1 내지 1:9일 수 있다.
이때, 상기 황-탄소 복합체의 직경은 0.1 내지 20 μm일 수 있다.
또한, 본 발명은
S1) 탄소계 물질을 질산 및 황산의 혼합용액 또는 황산으로 처리하여 표면 개질된 탄소계 물질을 제조하는 단계;
S2) 상기 표면 개질된 탄소계 물질을 건조시키는 단계; 및
S3) 상기 건조된 표면 개질된 탄소계 물질을 황 분말과 복합화하여 황-탄소 복합체를 제조하는 단계;로 이루어지는 황-탄소 복합체의 제조방법으로서,
상기 S1 단계의 표면 개질된 탄소계 물질은 표면에 히드록시기 및 카르복시기를 가지며, 그 함량이 탄소계 물질의 3 내지 10 중량%인 황-탄소 복합체의 제조방법을 제공한다.
이때, 상기 S1 단계의 혼합용액은 70% 질산 수용액 및 황산이 1:1 내지 0:1 의 부피비로 혼합된 것일 수 있다.
이때, 상기 S1 단계에서 혼합용액은 탄소계 물질 1g 당 50 내지 150 ml로 첨가될 수 있다.
이때, 상기 S1 단계는 초음파 처리에 의할 수 있다.
이때, 상기 S1 단계는 90 내지 120 ℃에서 이루어질 수 있다.
본 발명에 따른 황-탄소 복합체는 표면에 폴리설파이드를 흡착할 수 있는 히드록시기 및 카르복시기를 갖도록 표면이 개질된 탄소계 물질을 포함함으로써, 리튬-황 전지의 양극 활물질로 사용 시 폴리설파이드 용출이 억제된다. 이에 따라 전지의 용량 특성 및 수명 특성을 향상시킬 수 있다.
또한, 본 발명에 따른 황-탄소 복합체의 제조방법에 따르면 질산 및 황산의 혼합용액을 처리하는 간편한 공정으로 탄소계 물질의 표면을 개질할 수 있으며, 질산과 황산의 혼합 비율에 따라 표면의 작용기 함량을 조절할 수 있다.
도 1은 탄소나노튜브의 표면 개질 전 및 표면 개질 후의 표면 SEM 사진이다.
도 2는 비교예 2 및 실시예 1 내지 4에서 제조된 표면 개질된 탄소나노튜브의 열중량분석(TGA) 그래프이다.
도 3는 비교예 1, 2 및 실시예 2 내지 4의 황-탄소 복합체를 양극 활물질로 하여 제조된 전지의 충방전 곡선이다.
도 4는 실시예 2 및 비교예 1의 황-탄소 복합체를 양극 활물질로 하여 제조된 전지의 용량유지율 특성을 나타낸 그래프이다.
이하, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본 발명의 실시예에 대하여 첨부한 도면을 참고로 하여 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며, 여기에서 설명하는 실시예에 한정되지 않는다.
본 명세서에서 “폴리설파이드”는 “폴리설파이드 이온(Sx 2 -, x = 8, 6, 4, 2))” 및 “리튬 폴리설파이드(Li2Sx 또는 LiSx - x = 8, 6, 4, 2)”를 모두 포함하는 개념이다.
황-탄소 복합체
본 발명은 히드록시기 및 카르복시기로 표면 개질된 탄소계 물질 및 황을 포함하며, 상기 히드록시기 및 카르복시기는 탄소계 물질 총 중량의 3 내지 10 중량% 인, 황-탄소 복합체를 제공한다.
본 발명의 황-탄소 복합체는 부도체인 황과 전기 전도성을 가지는 탄소계 물질을 포함하여, 리튬-황 전지용 양극 활물질로 이용될 수 있다.
리튬-황 전지는 방전 시 황 계열 화합물의 황-황 결합(sulfur-sulfur bond)이 끊어지며 S의 산화수가 감소하고, 충전 시 S-S 결합이 다시 생성되며 S의 산화수가 증가하는 산화-환원 반응을 이용하여 전기적 에너지를 생성한다.
이러한 리튬-황 전지의 충방전 중에 양극에서는 중간체인 폴리설파이드가 생성되는 데, 이는 극성이 강한 물질로서 극성을 갖는 전해질에 용해되기 쉽다. 전해질에 용해된 폴리설파이드는 양극 반응 영역 밖으로 유실되어 전지 용량 저하를 초래하며, 이는 결국 전지 수명 저하로 이어진다.
본 발명에서는 히드록시기 및 카르복시기를 갖도록 표면을 개질한 탄소계 물질을 황-탄소 복합체의 탄소 재료로 사용함으로써 폴리설파이드의 용출 문제를 해결하였다. 극성을 나타내는 히드록시기 및 카르복시기는 극성의 폴리설파이드와 상호작용하여 양극 영역 밖으로의 유실을 억제하므로, 활물질의 이용률을 높이고 전지의 수명 저하를 방지할 수 있다. 또한, 별도의 첨가제가 불필요하므로 단위 무게당 용량이 높은 전극을 제조할 수 있다.
본 발명의 황-탄소 복합체에 이용될 수 있는 탄소계 물질은 절연체인 황에 도전성을 부여할 수 있고, 산 처리에 의하여 표면에 히드록시기 및 카르복시기의 작용기를 가질 수 있는 것을 사용한다. 구체적으로, 상기 탄소계 물질은 탄소나노튜브, 그래핀, 흑연, 비정질탄소, 카본블랙, 및 활성탄으로 이루어지는 군에서 선택되는 1종 이상일 수 있다. 이 중, 전기전도도, 비표면적 및 황 담지량이 우수한 점에서 탄소나노튜브, 흑연, 및 카본블랙이 보다 바람직하다.
상기 탄소나노튜브(CNT)는 단일벽 탄소 나노 튜브(SWCNT) 또는 다중벽 탄소 나노 튜브(MWCNT)일 수 있다. 상기 CNT의 직경은 1 내지 200nm인 것이 바람직하고, 1 내지 100nm인 것이 더욱 바람직하며, 1 내지 50nm인 것이 가장 바람직하다. CNT의 직경이 200nm를 초과하는 경우 비표면적이 작아져 전해액과의 반응 면적이 줄어드는 문제점이 있다.
상기 흑연은 인조 흑연 및 천연 흑연 중 하나 이상이 사용될 수 있다. 천연 흑연으로는 인상(flake) 흑연, 고결정질(high crystalline) 흑연, 미정질(microcrystalline or cryptocrystalline; amorphous)흑연 등이 있고, 인조 흑연으로는 일차(primary) 혹은 전기흑연(electrographite), 이차(secondary) 흑연, 흑연섬유(graphite fiber) 등이 있다. 상기 흑연 입자는 상술한 흑연 종류를 1종 단독으로 또는 2종 이상 조합하여 사용할 수 있다.
상기 흑연 입자는 충방전 시에 리튬 이온을 가역적으로 흡장 방출(intercalation)할 수 있는 것이라면 결정구조가 특별히 제한되지 않는다. 예를 들어, 상기 흑연 입자는 X선 광각회절에 의한 면의 면간격이 0.335 nm 이상 0.337 nm 미만, 예를 들어 0.335 nm 이상 0.337 nm 미만일 수 있다.
또한, 상기 흑연 입자의 크기는 실리콘계 입자의 크기와 동등하거나 작은 형태인 것이 혼합 균일 및 합제 밀도 향상 측면에서 바람직하다. 예를 들어, 상기 흑연 입자의 평균 입경은 20μm 이하일 수 있으며, 구체적으로 예를 들어 0.1 내지 20 μm 이하일 수 있고, 보다 구체적으로 0.1 내지 10 μm, 1 내지 10 μm, 또는 1 내지 5 μm 일 수 있다.
상기 카본블랙은 예를 들어 아세틸렌 블랙, 케첸 블랙, 퍼니스 블랙, 오일-퍼니스 블랙, 콜럼비아 탄소, 채널 블랙, 램프 블랙, 서머 블랙으로 이루어진 군에서 선택된 하나 이상일 수 있다. 이러한 카본블랙의 입도는 제한되지 않으나, 평균 입경이 0.01 내지 0.5 μm인 것이 전해액과의 반응 면적 확보 측면에서 바람직하다.
상기 탄소계 물질은 표면에 히드록시기 및 카르복시기를 가지도록 공지의 방법을 이용하여 산화시킨 다음 복합체의 재료로써 사용될 수 있다. 이러한 산화 방법은 특별히 제한되지 않으나, 후술할 본 발명에 따른 황-탄소 복합체의 제조방법에 의하여 수행되는 것이 바람직하다. 본 발명에 따른 황-탄소 복합체의 제조 방법에 따르면 질산 및 황산의 혼합용액을 사용하여 저비용 및 간단한 공정으로 탄소계 물질의 표면 개질이 가능하며, 질산과 황산의 비율 조절에 의하여 탄소계 물질의 표면 작용기 함량을 조절할 수 있다.
상기 표면 개질된 탄소계 물질의 표면 작용기 함량은 3 내지 10 중량%인 것이 바람직하며, 5 내지 10 중량%인 것이 보다 바람직하다. 탄소계 물질의 표면 작용기 함량이 높을수록 폴리설파이드 흡착 능력이 뛰어나 활물질 활용도를 높일 수 있으나, 10 중량%를 초과할 경우 탄소 소재의 전기 전도도를 저하시켜 황-탄소 복합체의 도전성을 확보하기 어려우므로, 상기 범위 내에서 적절히 조절한다.
이때, 상기 표면 작용기 함량은 공지의 방법에 의하여 측정될 수 있으며, 일례로 열중량분석(TGA)에 의해 측정될 수 있다.
전술한 바의 표면 개질된 탄소계 물질은 황과 혼합하여 황-탄소 복합체로서 사용된다.
이때 사용하는 황으로는 무기 황 또는 원소 황(elemental sulfur, S8)이 바람직하다.
본 발명에 따른 황-탄소 복합체에서 탄소계 물질과 황은 1:1 내지 1:9의 중량비로 혼합되는 것이 바람직하다. 탄소계 물질의 함량이 상기 범위를 초과하면 활물질인 황의 함량이 낮아져 전지 용량 확보에 있어서 문제가 발생하고, 상기 범위 미만이면 탄소계 물질의 함량이 전기 전도도를 부여하기에 부족하게 되므로, 상기 범위 내에서 적절히 조절한다.
본 발명의 황-탄소 복합체의 복합화 방법은 본 발명에서 특별히 한정하지 않으며 당 업계에서 통상적으로 사용되는 방법이 사용될 수 있다. 일례로, 표면 개질된 탄소계 물질과 황을 단순 혼합한 다음 열처리하여 복합화 하는 방법이 사용될 수 있다.
본 발명에서 제시하는 황-탄소 복합체는 황과 상기 제시한 표면 개질된 탄소계 물질이 단순 혼합되어 복합화되거나 코어-쉘 구조의 코팅 형태 또는 담지 형태를 가질 수 있다. 상기 코어-쉘 구조의 코팅 형태는 황 또는 탄소계 물질 중 어느 하나가 다른 물질을 코팅한 것으로, 일례로 탄소계 물질 표면을 황으로 감싸거나 이의 반대가 될 수 있다. 또한, 담지 형태는 탄소계 물질이 다공성일 때 이의 내부에 황이 담지된 형태일 수 있다. 상기 황-탄소 복합체의 형태는 상기 제시한 황과 탄소계 물질의 함량비를 만족하는 것이면 어떠한 형태라도 사용 가능하며 본 발명에서 한정하지 않는다.
이러한 황-탄소 복합체의 직경은 본 발명에서 특별히 한정하지 않으며 다양할 수 있으나, 바람직하기로 0.1 내지 20 μm, 보다 바람직하기로 1 내지 10 μm 이다. 상기 범위를 만족할 때, 고로딩 전극을 제조할 수 있는 장점이 있다.
황-탄소 복합체의 제조방법
본 발명은
S1) 탄소계 물질을 질산 및 황산의 혼합용액 또는 황산으로 처리하여 표면 개질된 탄소계 물질을 제조하는 단계;
S2) 상기 표면 개질된 탄소계 물질을 건조시키는 단계; 및
S3) 상기 건조된 표면 개질된 탄소계 물질을 황 분말과 복합화하여 황-탄소 복합체를 제조하는 단계;로 이루어지는 황-탄소 복합체의 제조방법으로서,
상기 S1 단계의 표면 개질된 탄소계 물질은 표면에 히드록시기 및 카르복시기를 갖는 것인 황-탄소 복합체의 제조방법을 제공한다.
본 발명의 황-탄소 복합체의 제조방법에 따르면 질산 및 황산의 혼합용액에 탄소계 물질을 담지한 후 초음파 처리 또는 가열 처리의 간단한 공정만으로 손쉽게 표면 개질된 탄소계 물질을 얻을 수 있으며, 사용되는 혼합용액의 질산 및 황산의 비율 조절에 의하여 표면 작용기 함량을 조절할 수 있는 장점이 있다. 이와 같이 제조된 표면 개질된 탄소계 물질은 중량 변화가 크지 않고, 이를 이용하여 황-탄소 복합체를 제조하면 별도의 첨가제 없이 폴리설파이드 용출을 억제할 수 있으므로, 단위 무게당 용량이 큰 리튬-황 전지용 전극을 제조할 수 있다.
이하 각 단계별로 설명한다.
(1) S1 단계
S1 단계에서는 탄소계 물질을 질산 및 황산의 혼합용액으로 처리하여 표면에 히드록시기 및 카르복시기를 갖도록 한다.
탄소 분말 등 탄소계 물질을 산성 용액으로 처리하여 산화시키면 표면에 산소를 포함하는 작용기, 즉 히드록시기, 카르복시기 등의 작용기가 생성되는 것으로 알려져 있다. 이러한 작용기는 비공유 전자쌍을 갖는 산소를 포함하여, 폴리설파이드를 흡착하는 효과를 나타낸다. 한편, 산소를 포함하는 작용기의 함량이 높아질수록 탄소계 물질의 전기 전도도는 저하되므로, 폴리설파이드의 용출을 억제하면서도 황-탄소 복합체의 전기 전도도를 확보하기 위해서는 작용기 함량이 탄소계 물질 총 중량의 3 내지 10 중량%인 것이 바람직하다.
본 발명자들은 질산 및 황산의 혼합용액을 이용하여 탄소계 물질의 표면을 개질하였으며, 그 결과 표면상에 히드록시기 및 카르복시기가 생성되는 것을 발견하였다. 따라서, 본 발명에 따르면 폴리설파이드 흡착능이 뛰어난 표면 개질된 탄소계 물질을 얻을 수 있다.
이때 사용되는 탄소계 물질은 상기 황-탄소 복합체에서 설명한 바와 같다.
상기 질산 및 황산의 혼합용액은 바람직하기로 질산 70 중량% 수용액 및 황산을 부피비 1:1 내지 0:1로 혼합한 용액을 사용하며, 보다 바람직하기로 1:3 내지 1:9로 혼합한 용액을 사용한다.
본 발명자들의 실험 결과, 상기 혼합용액 중 황산의 부피가 3/4 이하인 경우는 황산의 함량이 높을수록 탄소계 물질의 표면 작용기 함량이 높아졌으나, 3/4 이상으로 함량을 높이면 작용기 함량은 다시 줄어드는 것이 확인되었다.
히드록시기 및 카르복시기와 같이 산소를 포함하는 표면 작용기는 폴리설파이드 흡착능을 나타내기 때문에, 작용기 함량이 높아지면 폴리설파이드의 용출이 억제되는 효과도 증대된다. 그러나, 일정 수준 이상으로 작용기 함량이 높아지게 되면 상기한 바와 같이 전기 전도도가 저하되는 문제점이 있다. 따라서, 폴리설파이드 흡착능을 나타내면서도 전기 전도도를 확보할 수 있도록 탄소계 물질의 작용기 함량은 3 내지 10 중량%인 것이 바람직하며, 이를 위하여 질산 및 황산의 혼합 비율은 상기 범위를 벗어나지 않는 것이 바람직하다.
S1 단계에서 상기 혼합용액은 바람직하기로 탄소계 물질 1g 당 50 내지 150 ml의 부피로 첨가된다. 만일 혼합용매가 과량으로 첨가되면 탄소계 물질의 산화도가 높아져 전기 전도도가 저하되는 문제가 발생하며, 상기 범위 미만이면 표면 개질 정도가 미미하여 폴리설파이드 흡착 능력을 기대할 수 없으므로 상기 범위 내에서 적절히 조절한다.
탄소계 물질의 상기 혼합용액 처리 조건 및 방법은 본 발명에서 특별히 한정하지 않으며, 예를 들면 초음파 처리 또는 가열 처리에 의할 수 있다. 상기 초음파 처리는 당 업계에서 통상 사용되는 초음파 처리기에 의해 이루어질 수 있으며, 처리 온도는 특별히 제한되지 않으나 바람직하기로 15 내지 35 ℃, 바람직하기로 상온이다.
또한, 가열 처리에 의할 경우는 오토클레이브(Autoclave)와 같은 내열, 내압성 용기 내에서 이루어질 수 있으며, 가열 온도는 바람직하기로 90 내지 120 ℃이다. 이러한 혼합용액 처리는 30분 내지 4시간 동안 수행되며, 바람직하기로 1 내지 3시간 동안 수행된다.
또한, 초음파 처리와 가열 처리를 동시에 수행하거나 초음파 처리 후 가열 처리와 같이 이들을 순차적으로 수행할 수 있다.
상기의 방법으로 표면 개질된 탄소계 물질은 작용기 함량이 탄소계 물질의 3 내지 10 중량% 이며, 보다 바람직하게는 5 내지 10 중량%이다. 상기와 같은 작용기 함량을 가짐으로써 본 발명에 따라 제조된 표면 개질된 탄소계 물질은 우수한 전기 전도도 및 폴리설파이드 흡착능을 나타낸다.
(2) S2 단계
S2 단계에서는 S1 단계에서 제조된 표면 개질된 탄소계 물질을 용액에서 분리하고 건조하여 황-탄소 복합체의 재료가 될 수 있도록 준비한다.
용액 중의 표면 개질된 탄소계 물질을 분리하는 방법으로는 여과 등의 방법을 이용할 수 있다. 구체적으로, 상기 S1 단계에서 얻어진 용액을 증류수에 분산시켜 묽힌 다음, 여과지를 이용하여 진공 여과하거나 원심분리하는 방법을 이용할 수 있다. 이와 같은 묽힘 및 여과 과정을 수회 반복하여 표면 개질된 탄소계 물질을 세척한다.
상기 여과된 탄소계 물질의 건조 방법은 본 발명에서 특별히 제한하지 않으며 감압 또는 상압 하에서 진행될 수 있고 20 내지 130 ℃이하의 온도에서 수행될 수 있다. 구체적으로, 건조는 90 내지 120 ℃ 진공 오븐에서 이루어질 수 있다.
(3) S3 단계
S3 단계에서는 상기 S2에서 수득한 표면 개질된 탄소계 물질과 황을 복합화하여 황-탄소 복합체를 제조한다.
이때 표면 개질된 탄소계 물질과 황은 1:1 내지 1:9 중량비로 복합화되는 것이 바람직하다. 만일 황의 함량이 상기 범위 미만이면 양극 활물질로 사용되기에 활물질 양이 부족하게 되고, 탄소계 물질이 상기 범위 미만이면 황-탄소 복합체의 전기 전도도가 충분하지 않게 되므로 상기 범위 내에서 적절히 조절한다.
상기 복합화 방법은 특별히 제한되지 않으며, 건식 복합화 또는 스프레이 코팅 등과 같은 습식 복합화 등 당 업계에서 통상적으로 이용되는 방법을 이용할 수 있다. 보다 구체적으로, 황 분말과 표면 개질된 탄소계 물질을 볼 밀링하여 분쇄한 후 120 내지 160 ℃의 오븐에 20분 내지 1시간 동안 두어 용융된 황이 탄소계 물질에 고루 코팅될 수 있도록 하는 방법이 사용될 수 있다.
본 발명에 따른 황-탄소 복합체의 제조방법은 공정이 간단하고 고가의 원료가 불필요하므로 경제적이며, 질산 및 황산의 혼합용액을 이용함으로써 히드록시기 및 카르복시기의 두 작용기만을 탄소계 물질의 표면에 도입할 수 있어 전기 전도성 및 폴리설파이드 흡착 능력이 우수한 황-탄소 복합체를 제조할 수 있다. 또한, 별도의 공정 없이 질산과 황산의 비율 조절만으로 작용기 함량을 조절할 수 있는 장점이 있다.
상기의 방법으로 제조된 황-탄소 복합체는 우수한 전기 전도도 및 폴리설파이드 흡착 능력을 나타내는 바, 리튬-황 전지용 양극 활물질로서 사용될 수 있다.
리튬-황 전지용 전극
본 발명에 따른 리튬-황 전지용 전극은 활물질로서 본 발명에 따른 황-탄소 복합체를 사용한다. 상기 황-탄소 복합체는 표면에 폴리설파이드를 흡착할 수 있는 히드록시기 및 카르복시기를 가지고 있고 전기 전도성을 가지는 표면 개질된 탄소계 물질을 포함하여, 전지 구동 중 폴리설파이드의 용출이 억제된다. 따라서, 리튬-황 전지의 양극으로 적용 시 우수한 전지 용량 및 수명 특성을 확보할 수 있다.
상기 리튬-황 전지용 전극은 집전체 상에 형성된 활물질층을 포함하며, 상기 활물질층은 본 발명의 황-탄소 복합체, 도전재, 바인더 및 기타 첨가제를 포함한다.
상기 전극 집전체는 활물질에서 전기화학 반응이 일어나도록 전자를 외부에서 전달하거나 또는 활물질에서 전자를 받아 외부로 흘려 보내는 통로 역할을 하는 것으로서, 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되지 않는다. 그 예시로서 구리, 스테인리스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소, 구리나 스테인리스 스틸의 표면에 카본, 니켈, 티탄, 은 등으로 표면 처리한 것, 알루미늄-카드뮴 합금 등이 사용될 수 있다. 또한, 상기 전극 집전체는 표면에 미세한 요철을 형성하여 활물질의 접착력을 높일 수도 있으며, 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태가 사용될 수 있다.
상기 도전재는 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 천연 흑연이나 인조 흑연 등의 흑연; 카본블랙, 아세틸렌 블랙, 케첸 블랙, 덴카 블랙, 채널 블랙, 퍼니스 블랙, 램프 블랙, 서머 블랙 등의 카본블랙; 그라핀(graphene); 탄소나노튜브(CNT), 탄소나노섬유(CNF) 등 탄소 섬유나 금속 섬유 등의 도전성 섬유; 불화 카본, 알루미늄, 니켈 분말 등의 금속 분말; 산화아연, 티탄산 칼륨 등의 도전성 휘스커; 산화티탄 등의 도전성 금속 산화물; 폴리페닐렌 유도체 등이 사용될 수 있다.
상기 바인더는 활물질과 도전재의 결합, 활물질과 집전체의 결합을 위하여 첨가되는 것으로서, 열가소성 수지 또는 열경화성 수지일 수 있다. 상기 바인더는 예를 들어, 폴리에틸렌, 폴리프로필렌, 폴리테트라플루오로 에틸렌(PTFE), 폴리불화비닐리덴(PVDF), 스티렌-부타디엔 고무(SBR), 테트라플루오로에틸렌-퍼플루오로 알킬비닐에테르 공중합체, 불화비닐리덴-헥사 플루오로프로필렌 공중합체, 불화비닐리덴-클로로트리플루오로에틸렌 공중합체, 에틸렌-테트라플루오로에틸렌 공중합체, 폴리클로로트리플루오로에틸렌, 불화비닐리덴-펜타플루오로 프로필렌 공중합체, 프로필렌-테트라플루오로에틸렌 공중합체, 에틸렌-클로로트리플루오로에틸렌 공중합체, 불화비닐리덴-헥사플루오로프로필렌-테트라 플루오로에틸렌 공중합체, 불화비닐리덴-퍼플루오로메틸비닐에테르-테트라플루오로 에틸렌 공중합체, 에틸렌-아크릴산 공중합체, 폴리비닐알코올(PVA), 폴리아크릴산(PAA), 폴리메타크릴산(PMA), 폴리메틸메타크릴레이트(PMMA) 폴리아크릴아미드(PAM), 폴리메타크릴아미드, 폴리아크릴로니트릴(PAN), 폴리메타크릴로니트릴, 폴리이미드(PI), 알긴산(Alginic acid), 알지네이트(Alginate), 키토산(Chitosan), 카르복시메틸셀룰로오스(CMC), 전분, 하이드록시프로필셀룰로오스, 재생 셀룰로오스, 폴리비닐피롤리돈 등을 단독 또는 혼합하여 사용할 수 있으나, 반드시 이들로 한정되지 않으며 당해 기술분야에서 바인더로 사용될 수 있는 것이라면 모두 가능하다.
본 발명의 리튬-황 전지용 전극은 통상의 방법에 따라 제조될 수 있으며, 구체적으로는 활물질인 본 발명의 황-탄소 복합체와 도전재 및 바인더를 유기 용매 상에서 혼합하여 제조한 활물질층 형성용 조성물을 집전체 위에 도포 및 건조하고, 선택적으로 전극 밀도의 향상을 위하여 집전체에 압축 성형하여 제조할 수 있다. 이때 상기 유기 용매로는 양극 활물질, 바인더 및 도전재를 균일하게 분산시킬 수 있으며, 쉽게 증발되는 것을 사용하는 것이 바람직하다. 구체적으로는 N-메틸-2-피롤리돈, 아세토니트릴, 메탄올, 에탄올, 테트라히드로퓨란, 물, 이소프로필알코올 등을 들 수 있다.
리튬-황 전지
본 발명에 따른 리튬-황 전지는 양극 및 음극과 이들 사이에 존재하는 전해액을 포함하고, 양극으로 본 발명에 따른 리튬-황 전지용 전극을 사용한다. 이때, 상기 전지는 양극 및 음극 사이에 개재되는 분리막을 더 포함할 수 있다.
본 발명에 따른 리튬-황 전지는 양극의 폴리설파이드 용출 문제가 개선되어 수명 특성이 우수하다.
상기 리튬-황 전지의 음극, 분리막 및 전해액의 구성은 본 발명에서 특별히 한정하지 않으며, 이 분야에서 공지된 바를 따른다.
음극
본 발명에 따른 음극은 음극 집전체 상에 형성된 음극 활물질을 포함한다.
상기 음극 집전체는 구체적으로 구리, 스테인리스스틸, 티타늄, 은, 팔라듐, 니켈, 이들의 합금 및 이들의 조합으로 이루어진 군에서 선택되는 것일 수 있다. 상기 스테인리스스틸은 카본, 니켈, 티탄 또는 은으로 표면 처리될 수 있으며, 상기 합금으로는 알루미늄-카드뮴 합금이 사용될 수 있다. 그 외에도 소성 탄소, 도전재로 표면 처리된 비전도성 고분자, 또는 전도성 고분자 등이 사용될 수도 있다.
상기 음극 활물질로는 리튬 이온(Li+)을 가역적으로 흡장(Intercalation) 또는 방출(Deintercalation)할 수 있는 물질, 리튬 이온과 반응하여 가역적으로 리튬 함유 화합물을 형성할 수 있는 물질, 리튬 금속 또는 리튬 합금을 사용할 수 있다. 상기 리튬 이온(Li+)을 가역적으로 흡장 또는 방출할 수 있는 물질은 예컨대 결정질 탄소, 비정질 탄소 또는 이들의 혼합물일 수 있다. 상기 리튬 이온(Li+)과 반응하여 가역적으로 리튬 함유 화합물을 형성할 수 있는 물질은 예를 들어, 산화주석, 티타늄나이트레이트 또는 실리콘일 수 있다. 상기 리튬 합금은 예를 들어, 리튬(Li)과 나트륨(Na), 칼륨(K), 루비듐(Rb), 세슘(Cs), 프랑슘(Fr), 베릴륨(Be), 마그네슘(Mg), 칼슘(Ca), 스트론튬(Sr), 바륨(Ba), 라듐(Ra), 알루미늄(Al) 및 주석(Sn)으로 이루어지는 군에서 선택되는 금속의 합금일 수 있다.
상기 음극은 음극 활물질과 도전재의 결합과 집전체에 대한 결합을 위하여 바인더를 더 포함할 수 있으며, 구체적으로 상기 바인더는 앞서 양극의 바인더에서 설명한 바와 동일하다.
또한 상기 음극은 리튬 금속 또는 리튬 합금일 수 있다. 비제한적인 예로, 음극은 리튬 금속의 박막일 수도 있으며, 리튬과 Na, K, Rb, Cs, Fr, Be, Mg, Ca, Sr, Ba, Ra, Al 및 Sn 군으로부터 선택되는 1종 이상의 금속과의 합금일 수 있다.
분리막
양극과 음극 사이는 통상적인 분리막이 개재될 수 있다. 상기 분리막은 전극을 물리적으로 분리하는 기능을 갖는 물리적인 분리막으로서, 통상의 분리막으로 사용되는 것이라면 특별한 제한 없이 사용 가능하며, 특히 전해액의 이온 이동에 대하여 저저항이면서 전해액 함습 능력이 우수한 것이 바람직하다.
또한 상기 분리막은 양극과 음극을 서로 분리 또는 절연시키면서 양극과 음극 사이에 리튬 이온의 수송을 가능하게 한다. 이러한 분리막은 다공성이고 비전도성 또는 절연성인 물질로 이루어질 수 있다. 상기 분리막은 필름과 같은 독립적인 부재이거나, 또는 양극 및/또는 음극에 부가된 코팅층일 수 있다.
구체적으로는 다공성 고분자 필름, 예를 들어 에틸렌 단독중합체, 프로필렌 단독중합체, 에틸렌/부텐 공중합체, 에틸렌/헥센 공중합체 및 에틸렌/메타크릴레이트 공중합체 등과 같은 폴리올레핀계 고분자로 제조한 다공성 고분자 필름을 단독으로 또는 이들을 적층하여 사용할 수 있으며, 또는 통상적인 다공성 부직포, 예를 들어 고융점의 유리 섬유, 폴리에틸렌테레프탈레이트 섬유 등으로 된 부직포를 사용할 수 있으나, 이에 한정되는 것은 아니다.
전해액
본 발명에 따른 전해액은 리튬염을 함유하는 비수계 전해액으로서 리튬염과 용매로 구성되어 있으며, 용매로는 비수계 유기 용매, 유기 고체 전해질 및 무기 고체 전해질 등이 사용된다.
상기 리튬염은 비수계 유기 용매에 쉽게 용해될 수 있는 물질로서, 예컨대, LiCl, LiBr, LiI, LiClO4, LiBF4, LiB10Cl10, LiB(Ph)4 , LiC4BO8, LiPF6, LiCF3SO3, LiCF3CO2, LiAsF6, LiSbF6, LiAlCl4, LiSO3CH3, LiSO3CF3, LiSCN, LiC(CF3SO2)3, LiN(CF3SO2)2, LiN(C2F5SO2)2, LiN(SO2F)2, 클로로 보란 리튬, 저급 지방족 카르본산 리튬, 테트라 페닐 붕산 리튬, 이미드로 이루어진 군으로부터 하나 이상일 수 있다.
상기 리튬염의 농도는, 전해액 혼합물의 정확한 조성, 염의 용해도, 용해된 염의 전도성, 전지의 충전 및 방전 조건, 작업 온도 및 리튬-황 전지 분야에 공지된 다른 요인과 같은 여러 요인에 따라, 0.1 내지 4.0 M, 바람직하기로 0.5 내지 2.0 M일 수 있다. 만약, 리튬염의 농도가 상기 범위 미만이면 전해액의 전도도가 낮아져서 전지 성능이 저하될 수 있고, 상기 범위 초과이면 전해액의 점도가 증가하여 리튬 이온(Li+)의 이동성이 감소될 수 있으므로 상기 범위 내에서 적정 농도를 선택하는 것이 바람직하다.
상기 비수계 유기 용매는 리튬염을 잘 용해시킬 수 있는 물질로서, 바람직하기로 N-메틸-2-피롤리돈, 프로필렌 카르보네이트, 에틸렌 카르보네이트, 부틸렌 카르보네이트, 디메틸 카르보네이트, 디에틸 카르보네이트, 에틸메틸 카보네이트, 감마-부틸로 락톤, 1,2-디메톡시 에탄, 1,2-디에톡시 에탄, 1-에톡시-2-메톡시 에탄, 디에틸렌글리콜 디메틸에테르, 트리에틸렌글리콜 디메틸에테르, 테트라에틸렌글리콜 디메틸에테르, 테트라히드록시 프랑(franc), 2-메틸 테트라하이드로푸란, 디메틸술폭시드, 1,3-디옥솔란, 4-메틸-1,3-디옥센, 디에틸에테르, 포름아미드, 디메틸포름아미드, 아세토니트릴, 니트로메탄, 포름산 메틸, 초산메틸, 인산 트리에스테르, 트리메톡시 메탄, 디옥솔란 유도체, 설포란, 메틸 설포란, 1,3-디메틸-2-이미다졸리디논, 프로필렌 카르보네이트 유도체, 테트라하이드로푸란 유도체, 에테르, 프로피온산 메틸, 프로피온산 에틸 등의 비양자성 유기 용매가 사용될 수 있으며, 이들 중 하나 또는 둘 이상의 혼합 용매 형태로 사용될 수 있다.
상기 유기 고체 전해질로는 바람직하기로, 폴리에틸렌 유도체, 폴리에틸렌 옥사이드 유도체, 폴리프로필렌 옥사이드 유도체, 인산 에스테르 폴리머, 폴리 에지테이션 리신(Agitation lysine), 폴리에스테르 설파이드, 폴리비닐 알코올, 폴리 불화 비닐리덴, 이온성 해리기를 포함하는 중합체 등이 사용될 수 있다.
본 발명의 무기 고체 전해질로는 바람직하기로, Li3N, LiI, Li5NI2, Li3N-LiI-LiOH, LiSiO4, LiSiO4-LiI-LiOH, Li2SiS3, Li4SiO4, Li4SiO4-LiI-LiOH, Li3PO4-Li2S-SiS2 등의 Li의 질화물, 할로겐화물, 황산염 등이 사용될 수 있다.
본 발명의 리튬-황 전지용 비수계 전해액은 첨가제로서 질산 또는 아질산계 화합물을 더 포함할 수 있다. 상기 질산 또는 아질산계 화합물은 리튬 전극에 안정적인 피막을 형성하고 충방전 효율을 향상시키는 효과가 있다. 이러한 질산 또는 아질산계 화합물로는 본 발명에서 특별히 한정하지는 않으나, 질산리튬(LiNO3), 질산칼륨(KNO3), 질산세슘(CsNO3), 질산바륨(Ba(NO3)2), 질산암모늄(NH4NO3), 아질산리튬(LiNO2), 아질산칼륨(KNO2), 아질산세슘(CsNO2), 아질산암모늄(NH4NO2) 등의 무기계 질산 또는 아질산 화합물; 메틸 니트레이트, 디알킬 이미다졸륨 니트레이트, 구아니딘 니트레이트, 이미다졸륨 니트레이트, 피리디늄 니트레이트, 에틸 니트라이트, 프로필 니트라이트, 부틸 니트라이트, 펜틸 니트라이트, 옥틸 니트라이트 등의 유기계 질산 또는 아질산 화합물; 니트로메탄, 니트로프로판, 니트로부탄, 니트로벤젠, 디니트로벤젠, 니트로 피리딘, 디니트로피리딘, 니트로톨루엔, 디니트로톨루엔 등의 유기 니트로 화합물 및 이들의 조합으로 이루어진 군에서 선택된 1종이 가능하며, 바람직하게는 질산리튬을 사용한다.
또한, 상기 비수계 전해액은 충방전 특성, 난연성 등의 개선을 목적으로 기타 첨가제를 더 포함할 수 있다. 상기 첨가제의 예시로는 피리딘, 트리에틸포스파이트, 트리에탄올아민, 환상 에테르, 에틸렌 디아민, n-글라임(glyme), 헥사 인산 트리 아마이드, 니트로벤젠 유도체, 유황, 퀴논 이민 염료, N-치환 옥사졸리디논, N,N-치환 이미다졸리딘, 에틸렌 글리콜 디알킬 에테르, 암모늄염, 피롤, 2-메톡시 에탄올, 삼염화 알루미늄, 플루오로에틸렌 카보네이트(FEC), 프로펜 설톤(PRS), 비닐렌 카보네이트(VC) 등을 들 수 있다.
상기 리튬-황 전지에 포함되는 상기 양극, 음극 및 분리막은 각각 통상적인 성분과 제조 방법에 따라 준비될 수 있으며, 또한 리튬-황 전지의 외형은 특별한 제한이 없으나, 원통형, 각형, 파우치(Pouch)형 또는 코인(Coin)형 등이 될 수 있다.
이하 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시하나, 하기 실시예는 본 발명을 예시하는 것일 뿐 본 발명의 범주 및 기술사상 범위 내에서 다양한 변경 및 수정이 가능함은 통상의 기술자에게 있어서 명백한 것이며, 이러한 변경 및 수정이 첨부된 특허청구범위에 속하는 것도 당연한 것이다.
[실시예]
실시예 1: 황-탄소 복합체의 제조
탄소나노튜브(CNT) 5g에 질산 70%(중량%) 수용액 250ml 및 황산 250ml를 첨가한 혼합액을 BRANSON사의 CPX8800H-E 초음파 처리기(Bath sonicator)에 넣고 상온(25 ℃)에서 2시간 동안 초음파 처리(40kHz, 280W)한 다음, 110 ℃의 진공 오븐에서 건조시켜 표면 개질된 CNT를 얻었다.
상기 표면 개질된 CNT 3g을 황(S8) 7g과 혼합하고 볼 밀링하여 분쇄한 후, 155 ℃의 오븐에서 30분간 두어 황-탄소 복합체를 제조하였다.
실시예 2: 황-탄소 복합체의 제조
질산 70% 수용액 125ml 및 황산 375ml의 혼합 용액을 사용한 것을 제외하고는 실시예 1과 동일한 방법을 사용하여 황-탄소 복합체를 제조하였다.
실시예 3: 황-탄소 복합체의 제조
질산 70% 수용액 50ml 및 황산 450ml의 혼합 용액을 사용한 것을 제외하고는 실시예 1과 동일한 방법을 사용하여 황-탄소 복합체를 제조하였다.
실시예 4: 황-탄소 복합체의 제조
황산 500ml를 사용한 것을 제외하고는 실시예 1과 동일한 방법을 사용하여 황-탄소 복합체를 제조하였다.
비교예 1: 황-탄소 복합체의 제조
산 처리를 하지 않은 탄소나노튜브 3g을 황(S8) 7g과 혼합하고 볼 밀링하여 분쇄한 후, 155 ℃의 오븐에서 30분간 두어 황-탄소 복합체를 제조하였다.
비교예 2: 황-탄소 복합체의 제조
질산 70% 수용액 500ml를 사용한 것을 제외하고는 실시예 1과 동일한 방법을 사용하여 황-탄소 복합체를 제조하였다.
제조예 1: 리튬-황 전지용 전극 및 리튬-황 전지의 제조
실시예 2 내지 4, 비교예 1 및 2의 황-탄소 복합체를 이용하여 하기의 방법으로 리튬-황 전지용 전극을 제조하고, 이를 양극으로 하는 리튬-황 전지를 제조하였다.
(1) 전극의 제조
도전재(Denka black) 0.2g과 카르복시메틸셀룰로오스(CMC) 5g을 넣고 지르코니아 볼과 함께 혼합하였다. 그런 다음, 황-탄소 복합체 3.6g과 물을 일정량 넣고 다시 혼합하였다. 마지막으로 스티렌-부타디엔 고무(SBR)를 0.35g 넣고 다시 혼합하여 슬러리를 제조하였다.
상기 제조된 슬러리를 알루미늄 호일 위에 슬러리를 붓고 블레이드 코터로 200μm 두께로 코팅한 뒤 50°C 오븐에서 건조하여 리튬-황 전지용 전극을 제조하였다.
(2) 전지의 제조
상기 (1)에서 제조된 전극을 코인셀 크기에 맞게 타발하여 이를 양극으로 하는 코인셀 전지를 제조하였다.
아르곤 분위기의 글러브박스에서 스테인레스스틸 하판에 양극, 분리막(polyethylene), 리튬 음극, 가스킷, 스테인레스스틸 코인, 스프링, 스테인레스스틸 상판을 차례로 올려놓고 압력을 가해 코인셀을 조립하였다.
전해액은 1M LiFSI 1wt%의 LiNO3가 용해된 DOL(1,3-dioxolane):DEGDME(diethylene glycol dimethyl ether)=4:6 (v/v) 혼합액을 타발된 양극 위에 주액하여 사용하였다.
실험예 1: 표면 개질된 탄소나노튜브(CNT)의 구조 분석
(1) SEM 분석
표면 개질 전후의 CNT의 구조를 주사전자현미경(SEM)을 이용하여 비교하였다. 도 1을 참조하면, CNT는 표면 처리 후에도 2차 구조 등에 있어서는 큰 변화가 없음을 확인할 수 있다.
(2) 적외선 분광법(FT-IR) 분석
비교예 2 및 실시예 1 내지 4의 CNT가 산 용액 처리 이후 표면 개질되었는지 확인하기 위하여, 적외선 분광법을 실시하였다. 그 결과, 산 처리 이후 -OH(3500~3000cm-1), -COOH(C=O: 1750cm-1, C-O(1050cm-1)) 피크가 확인되었으며, 이로부터 CNT 표면이 작용기화 된 것을 확인할 수 있었다.
(3) CNT의 작용기 함량 분석
질산 및 황산의 비율을 달리하여 산 처리한 비교예 2 및 실시예 1 내지 4의 표면 처리된 CNT의 작용기 함량을 열중량분석(TGA)에 의하여 분석하였다. 열중량분석은 탄소가 산화되지 않도록 질소 분위기 하에서 이루어졌다. 표면 부착 작용기는 500 내지 600 ℃에서 탈착 또는 열분해 되므로, 600℃까지의 중량 감소율을 측정하였다.
상기 열중량분석 그래프를 도 2에 나타내었다. 실험 결과, 표면 작용기 함량은 비교예 2는 1.7 중량% 실시예 1은 4.7 중량%, 실시예 2는 9.4 중량%, 실시예 3은 7.3 중량%, 실시예 4는 3.1 중량% 로 나타났다. 즉, 표면 개질 용액에서 황산의 비율(부피비)이 0 에서 3/4로 증가하는 동안은 황산의 함량이 증가수록 작용기 함량도 높아지는 경향을 보였으나, 3/4 를 초과하면 다시 표면 개질도가 감소하는 것을 확인할 수 있었다.
실험예 2: 전지 성능 평가
상기 제조예 1에서 제조된 전지의 성능을 평가하였다. 초기 방전-충전-방전-충전-방전의 2.5 사이클 동안 0.1C 속도로 진행하였으며, 그 이후 충전은 0.3C, 방전은 0.5C 속도로 진행하여 50 사이클까지 전지 성능을 평가하였다.
그 결과를 하기 표 1, 도 3 및 도 4에 나타내었다.
비교예 1 비교예 2 실시예 2 실시예 3 실시예 4
표면 작용기 함량 (wt%) <1 1.7 9.4 7.3 3.1
초기 방전 용량 (0.1C, mAh/g) 1086 741 1349 1113 1090
실험 결과, 표면 개질 되지 않은 비교예 1과 비교하여 표면 작용기 함량이 3.1 중량% 이상인 실시예 2 내지 4의 초기 방전 용량이 우수하게 나타났으며, 작용기 함량이 높을수록 초기 방전 용량도 증가하는 것을 확인할 수 있었다.
또한, 도 3의 충방전 곡선을 참조하면, 표면 작용기 함량이 3 중량% 이상인 실시예 2 내지 4의 경우 용출성 폴리설파이드가 다시 Li2S로 환원되는 두번째 전위평탄부분(voltage plateau)이 증가함을 볼 수 있다. 전위평탄부분의 증가 정도를 비교해 보면, 표면 개질도가 증가할수록 중간 생성물을 효율적으로 최종 산물로 변환시킬 수 있으며, 이로 인하여 용량 특성이 향상되는 것을 확인할 수 있다.
한편, 표면 작용기 함량이 9.4 중량%인 실시예 2의 전지를 50 사이클을 진행하며 비 방전 용량을 측정한 결과(도 4), 비교예 1에 비하여 우수한 용량 유지율을 나타내는 것을 확인할 수 있었다. 이는 표면 개질된 탄소계 물질에 의해 폴리설파이드의 용출이 억제되어, 충방전의 반복에도 양극 내 활물질인 황의 함량이 높게 유지되기 때문으로 볼 수 있다.
상기 전지 성능 평가에서, 표면 작용기 함량이 1.7 중량%인 비교예 2는 표면 개질되지 않은 비교예 1에 비해서도 저하된 전지 성능을 나타내었다. 그러나, 표면 작용기 함량이 3 중량% 이상이 되면서부터 전지 성능은 현저히 향상되며, 10 중량%까지 매우 우수한 방전 용량 및 사이클 특성을 나타냄을 알 수 있다.
상기 실험예에서 확인된 바와 같이, 본 발명의 황-탄소 복합체는 탄소계 물질이 3 내지 10 중량%의 히드록시기 및 카복시기를 포함하고 있어 우수한 폴리설파이드 흡착 능력을 나타내며, 리튬-황 전지의 양극 활물질로 사용 시 전지의 수명 특성을 향상시킬 수 있다.

Claims (11)

  1. 히드록시기 및 카르복시기로 표면 개질된 탄소계 물질 및 황을 포함하는 황-탄소 복합체로서,
    상기 히드록시기 및 카르복시기는 탄소계 물질 총 중량의 3 내지 10 중량% 인, 황-탄소 복합체.
  2. 제1항에 있어서,
    상기 탄소계 물질은 탄소나노튜브, 그래핀, 흑연, 비정질탄소, 카본블랙, 및 활성탄으로 이루어지는 군에서 선택되는 1종 이상인, 황-탄소 복합체.
  3. 제1항에 있어서,
    상기 황-탄소 복합체는 탄소계 물질 대 황의 비율이 1:1 내지 1:9 인, 황-탄소 복합체.
  4. 제1항에 있어서,
    상기 황-탄소 복합체의 직경은 0.1 내지 20 μm인, 황-탄소 복합체.
  5. S1) 탄소계 물질을 질산 및 황산의 혼합용액 또는 황산으로 처리하여 표면 개질된 탄소계 물질을 제조하는 단계;
    S2) 상기 표면 개질된 탄소계 물질을 건조시키는 단계; 및
    S3) 상기 건조된 표면 개질된 탄소계 물질을 황 분말과 복합화하여 황-탄소 복합체를 제조하는 단계;로 이루어지는 황-탄소 복합체의 제조방법으로서,
    상기 S1 단계의 표면 개질된 탄소계 물질은 표면에 히드록시기 및 카르복시기를 갖는 것인, 제1항의 황-탄소 복합체의 제조방법.
  6. 제5항에 있어서,
    상기 S1 단계의 혼합용액은 70% 질산 수용액 및 황산이 1:1 내지 0:1 의 부피비로 혼합된 것인, 황-탄소 복합체의 제조방법.
  7. 제5항에 있어서,
    상기 S1 단계에서 혼합용액은 탄소계 물질 1g 당 50 내지 150 ml로 첨가되는 것인, 황-탄소 복합체의 제조방법.
  8. 제5항에 있어서,
    상기 S1 단계는 초음파 처리에 의하는 것인, 황-탄소 복합체의 제조방법.
  9. 제5항에 있어서,
    상기 S1 단계는 90 내지 120 ℃에서 이루어지는 것인, 황-탄소 복합체의 제조방법.
  10. 제1항 내지 제4항 중 어느 한 항의 황-탄소 복합체를 활물질로 하여 제조되는 리튬-황 전지용 전극.
  11. 양극; 음극; 및 이들 사이에 존재하는 전해질을 포함하는 리튬-황 전지에 있어서,
    상기 양극은 제10항의 전극인, 리튬-황 전지.
PCT/KR2017/005526 2016-08-11 2017-05-26 황-탄소 복합체, 이의 제조방법 및 이를 포함하는 리튬-황 전지 WO2018030616A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US16/304,806 US11239465B2 (en) 2016-08-11 2017-05-26 Sulfur-carbon composite, preparation method therefor, and lithium-sulfur battery comprising same
JP2018563023A JP6732300B2 (ja) 2016-08-11 2017-05-26 硫黄−炭素複合体、この製造方法及びこれを含むリチウム−硫黄電池
EP17839634.7A EP3457474B1 (en) 2016-08-11 2017-05-26 Sulfur-carbon composite, preparation method therefor, and lithium-sulfur battery comprising same
CN201780047495.5A CN109643792B (zh) 2016-08-11 2017-05-26 硫碳复合物、其制备方法和包含其的锂硫电池

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2016-0102180 2016-08-11
KR1020160102180A KR20180017796A (ko) 2016-08-11 2016-08-11 황-탄소 복합체, 이의 제조방법 및 이를 포함하는 리튬-황 전지

Publications (1)

Publication Number Publication Date
WO2018030616A1 true WO2018030616A1 (ko) 2018-02-15

Family

ID=61162997

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/005526 WO2018030616A1 (ko) 2016-08-11 2017-05-26 황-탄소 복합체, 이의 제조방법 및 이를 포함하는 리튬-황 전지

Country Status (6)

Country Link
US (1) US11239465B2 (ko)
EP (1) EP3457474B1 (ko)
JP (1) JP6732300B2 (ko)
KR (1) KR20180017796A (ko)
CN (1) CN109643792B (ko)
WO (1) WO2018030616A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11362325B2 (en) * 2018-09-19 2022-06-14 Lg Energy Solution, Ltd. Sulfur-carbon composite manufacturing method, sulfur-carbon composite manufactured thereby, cathode comprising same sulfur-carbon composite, and lithium secondary battery comprising same cathode
JP7536935B2 (ja) 2019-02-08 2024-08-20 トゥー-シックス デラウェア,インコーポレイテッド 固定化セレン体を調製する方法

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102420595B1 (ko) * 2018-05-30 2022-07-13 주식회사 엘지에너지솔루션 리튬-황 전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬-황 전지
WO2020060084A1 (ko) * 2018-09-20 2020-03-26 주식회사 엘지화학 황-탄소 복합체, 이의 제조방법, 이를 포함하는 리튬 이차전지용 양극 및 리튬 이차전지
KR20200033736A (ko) * 2018-09-20 2020-03-30 주식회사 엘지화학 황-탄소 복합체, 이의 제조방법, 이를 포함하는 리튬 이차전지용 양극 및 리튬 이차전지
KR102663583B1 (ko) * 2018-09-28 2024-05-03 주식회사 엘지에너지솔루션 황-탄소 복합체의 제조방법
US12062778B2 (en) 2018-09-28 2024-08-13 Lg Energy Solution, Ltd. Sulfur-carbon composite and manufacturing method therefor
KR102152982B1 (ko) 2018-10-15 2020-09-08 한국과학기술연구원 리튬-황 이차전지용 수계 바인더, 이의 제조방법 및 이를 포함하는 리튬-황 이차전지
CN110459742A (zh) * 2019-07-22 2019-11-15 杭州怡莱珂科技有限公司 一种碳-硫分子间化合物及其制备方法与电极和电池
KR102274529B1 (ko) * 2019-08-29 2021-07-06 성균관대학교산학협력단 양극 활물질, 이의 제조 방법 및 이를 포함하는 리튬-황 전지
KR102297538B1 (ko) 2019-12-18 2021-09-02 한국화학연구원 헤테로 원자가 도핑된 탄소나노구조체를 포함하는 리튬-황 전지
KR102339746B1 (ko) 2019-12-23 2021-12-17 재단법인대구경북과학기술원 황을 함유한 다공성 실리카 층을 포함하는 리튬-황 전지
CN111540904A (zh) * 2020-05-08 2020-08-14 中航锂电技术研究院有限公司 锂硫电池正极材料、其制备方法及锂硫电池
CN111952567B (zh) * 2020-08-18 2023-09-22 武汉工程大学 一种以三维导电碳材料为基底的有机亲锂复合负极及其制备方法
KR102448549B1 (ko) * 2020-10-08 2022-09-28 고려대학교 산학협력단 직물소재를 이용한 리튬-황 전지 양극, 이를 포함하는 리튬-황 전지 및 그 제조방법
CN116964777A (zh) * 2021-03-01 2023-10-27 株式会社杰士汤浅国际 非水电解质蓄电元件及其制造方法
US20220376247A1 (en) * 2021-05-21 2022-11-24 Zeta Energy Llc Anode-Free Electrochemical Cell
EP4287309A1 (en) * 2021-10-01 2023-12-06 LG Energy Solution, Ltd. Anode composition, anode for lithium secondary battery including same, lithium secondary battery including anode, and preparation method for anode composition
CN114400328B (zh) * 2022-01-13 2024-06-25 河北康壮环保科技股份有限公司 一种锂硫电池及其制备方法
US20230327108A1 (en) 2022-04-08 2023-10-12 Ii-Vi Delaware, Inc. Silver-doped sulfur cathode material for rechargeable lithium battery
KR20240020226A (ko) 2022-08-04 2024-02-14 한국기계연구원 전지 활성 물질 지지체, 전극 및 이를 포함하는 이차 전지

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120013364A (ko) * 2009-04-06 2012-02-14 이 아이 듀폰 디 네모아 앤드 캄파니 방탄 방호구 용품
KR20120051549A (ko) * 2010-11-12 2012-05-22 현대자동차주식회사 금속-황 전지용 양극 활물질 및 그의 제조 방법
KR101379716B1 (ko) 2012-03-21 2014-03-31 에스케이 테크놀로지 이노베이션 컴퍼니 유황을 포함하는 그래핀 복합체 양극을 포함하는 리튬-유황 이차전지 및 그의 제조 방법
KR20140084840A (ko) * 2012-12-27 2014-07-07 부산대학교 산학협력단 리튬-황 전지용 양극의 제조 방법 및 리튬-황 전지
KR20140090109A (ko) * 2013-01-08 2014-07-16 주식회사 엘지화학 리튬-황 전지용 양극 활물질 및 이의 제조방법
KR20160102180A (ko) 2013-12-27 2016-08-29 소니 주식회사 제어 장치, 제어 방법 및 컴퓨터 프로그램

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW494591B (en) 1999-07-21 2002-07-11 Mitsubishi Materials Corp Carbon powder having enhanced electrical characteristics and its use
KR100578789B1 (ko) * 2003-06-20 2006-05-11 삼성에스디아이 주식회사 리튬 이차 전지용 양극 및 그를 포함하는 리튬 이차 전지
JP5266907B2 (ja) * 2007-06-29 2013-08-21 東レ株式会社 カーボンナノチューブ集合体、分散体および導電性フィルム
US20110206992A1 (en) 2009-08-28 2011-08-25 Sion Power Corporation Porous structures for energy storage devices
US9912009B2 (en) * 2009-12-18 2018-03-06 Molecular Rebar Design, Llc Binders, electrolytes and separator films for energy storage and collection devices using discrete carbon nanotubes
WO2012115119A1 (ja) 2011-02-22 2012-08-30 三菱化学株式会社 非水系電解液、及びそれを用いた電池
KR101384198B1 (ko) 2011-05-31 2014-04-25 한양대학교 산학협력단 카본 황 복합체의 제조 방법, 이에 의하여 제조된 카본 황 복합체 및 이를 포함하는 리튬황 전지
EP2761688B1 (en) * 2011-09-30 2018-11-28 The Regents of The University of California Graphene oxide as a sulfur immobilizer in high performance lithium/sulfur cells
US20130164625A1 (en) * 2011-12-22 2013-06-27 Arumugam Manthiram Sulfur-carbon composite cathodes for rechargeable lithium-sulfur batteries and methods of making the same
CN103187570B (zh) * 2011-12-28 2015-09-30 清华大学 硫-石墨烯复合材料的制备方法
JP6182901B2 (ja) 2012-03-09 2017-08-23 東レ株式会社 カーボン硫黄複合体の製造方法
KR101398313B1 (ko) 2012-07-11 2014-05-22 서울대학교산학협력단 배향된 탄소나노튜브 페이퍼의 제조방법
CN103199250B (zh) * 2013-04-24 2015-08-05 中国科学院苏州纳米技术与纳米仿生研究所 一种有机硅化物修饰的锂硫电池正极材料的制备方法
KR101530963B1 (ko) 2013-06-20 2015-06-25 국립대학법인 울산과학기술대학교 산학협력단 리튬 이차 전지용 음극 활물질, 이의 제조 방법 및 리튬 이차 전지
KR20160021848A (ko) 2013-06-21 2016-02-26 더 리젠츠 오브 더 유니버시티 오브 캘리포니아 전지 성능을 향상시키기 위해 전체론적 접근을 이용한 긴 수명의 높은 레이트 리튬/황 전지
US9882243B2 (en) * 2013-09-26 2018-01-30 Eaglepicher Technologies, Llc Lithium-sulfur battery and methods of reducing insoluble solid lithium-polysulfide depositions
WO2015058057A1 (en) 2013-10-18 2015-04-23 Nohms Technologies, Inc Functionalized carbons for lithium-sulfur batteries
KR101601415B1 (ko) * 2014-05-08 2016-03-09 현대자동차주식회사 코어-쉘 구조의 황 입자를 포함하는 이차전지
US10033034B2 (en) 2014-09-14 2018-07-24 Massachusetts Institute Of Technology Sulfur nanosponge cathode for lithium—sulfur battery and methods of manufacture thereof
KR20170122201A (ko) * 2015-02-25 2017-11-03 도레이 카부시키가이샤 카본 나노튜브 분산액 및 도전성 필름의 제조 방법
CN104766967A (zh) * 2015-03-18 2015-07-08 南京师范大学 一种锂硫电池正极用硫/碳复合材料的制备方法
CN104786967A (zh) 2015-04-22 2015-07-22 北京九五智驾信息技术股份有限公司 驾驶行为分析系统
EP3292580B1 (en) * 2015-05-04 2019-09-18 Nederlandse Organisatie voor toegepast- natuurwetenschappelijk onderzoek TNO A device and method of manufacturing high aspect ratio structures
US20180183041A1 (en) * 2015-06-09 2018-06-28 William Marsh Rice University Sulfur-containing carbon nanotube arrays as electrodes
CN105374998B (zh) 2015-10-16 2018-11-16 广东烛光新能源科技有限公司 一种含硫电极材料、含有该电极材料的锂硫电池及含硫电极材料的制备方法
US10205189B2 (en) * 2016-02-11 2019-02-12 University Of Puerto Rico Synthesis of novel sulfur-carbon nano-network composite as cathode for rechargeable Li—S batteries

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120013364A (ko) * 2009-04-06 2012-02-14 이 아이 듀폰 디 네모아 앤드 캄파니 방탄 방호구 용품
KR20120051549A (ko) * 2010-11-12 2012-05-22 현대자동차주식회사 금속-황 전지용 양극 활물질 및 그의 제조 방법
KR101379716B1 (ko) 2012-03-21 2014-03-31 에스케이 테크놀로지 이노베이션 컴퍼니 유황을 포함하는 그래핀 복합체 양극을 포함하는 리튬-유황 이차전지 및 그의 제조 방법
KR20140084840A (ko) * 2012-12-27 2014-07-07 부산대학교 산학협력단 리튬-황 전지용 양극의 제조 방법 및 리튬-황 전지
KR20140090109A (ko) * 2013-01-08 2014-07-16 주식회사 엘지화학 리튬-황 전지용 양극 활물질 및 이의 제조방법
KR20160102180A (ko) 2013-12-27 2016-08-29 소니 주식회사 제어 장치, 제어 방법 및 컴퓨터 프로그램

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
YAN, JIANHUA ET AL.: "Long-life, High-efficiency Lithium/sulfur Batteries from Sulfurized Carbon Nanotube Cathodes", JOURNAL OF MATERIALS CHEMISTRY A, vol. 3, no. 18, 2015, pages 10127 - 10133, XP055556610 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11362325B2 (en) * 2018-09-19 2022-06-14 Lg Energy Solution, Ltd. Sulfur-carbon composite manufacturing method, sulfur-carbon composite manufactured thereby, cathode comprising same sulfur-carbon composite, and lithium secondary battery comprising same cathode
US11757091B2 (en) 2018-09-19 2023-09-12 Lg Energy Solution, Ltd. Sulfur-carbon composite manufacturing method, sulfur-carbon composite manufactured thereby, cathode comprising same sulfur-carbon composite, and lithium secondary battery comprising same cathode
JP7536935B2 (ja) 2019-02-08 2024-08-20 トゥー-シックス デラウェア,インコーポレイテッド 固定化セレン体を調製する方法

Also Published As

Publication number Publication date
EP3457474A1 (en) 2019-03-20
EP3457474B1 (en) 2020-11-25
EP3457474A4 (en) 2019-07-31
US11239465B2 (en) 2022-02-01
CN109643792A (zh) 2019-04-16
CN109643792B (zh) 2022-05-24
US20200235394A1 (en) 2020-07-23
JP6732300B2 (ja) 2020-07-29
KR20180017796A (ko) 2018-02-21
JP2019517719A (ja) 2019-06-24

Similar Documents

Publication Publication Date Title
WO2018030616A1 (ko) 황-탄소 복합체, 이의 제조방법 및 이를 포함하는 리튬-황 전지
WO2019151813A1 (ko) 음극 활물질, 이를 포함하는 음극 및 리튬 이차전지
WO2017099456A1 (ko) 카본으로 이루어진 코어를 포함하는 리튬 이차 전지용 음극 활물질, 이의 제조방법 및 이를 포함하는 리튬 이차 전지
WO2019103326A2 (ko) 황-탄소 복합체, 그의 제조방법 및 이를 포함하는 리튬 이차전지
WO2018084449A2 (ko) 황-탄소 복합체 및 이를 포함하는 리튬-황 전지
WO2020040446A1 (ko) 리튬 이차전지용 양극 활물질, 이의 제조방법 및 이를 포함하는 리튬 이차 전지
WO2019088475A1 (ko) 황-탄소 복합체 및 이를 포함하는 리튬-황 전지
WO2019088628A2 (ko) 황-탄소 복합체, 그의 제조방법 및 이를 포함하는 리튬 이차전지
WO2019177355A1 (ko) 세리아-탄소-황 복합체, 이의 제조방법, 이를 포함하는 양극 및 리튬-황 전지
WO2019088630A2 (ko) 황-탄소 복합체 및 그의 제조방법
WO2019107752A1 (ko) 황-탄소 복합체, 그의 제조방법 및 이를 포함하는 리튬 이차전지
WO2019212162A1 (ko) 리튬-황 이차전지용 바인더 및 이를 포함하는 리튬-황 이차전지
WO2020009332A1 (ko) 황-탄소 복합체, 이의 제조방법, 이를 포함하는 리튬-황 전지용 양극 및 리튬-황 전지
WO2020105980A1 (ko) 리튬-황 이차전지
WO2017209383A1 (ko) 탄소계 섬유 시트 및 이를 포함하는 리튬-황 전지
WO2019066129A2 (ko) 복합음극활물질, 이의 제조 방법 및 이를 포함하는 음극을 구비한 리튬이차전지
WO2021010626A1 (ko) 리튬-황 이차전지
WO2018097695A1 (ko) 금속 황화물 나노입자를 포함하는 리튬-황 전지용 양극 활물질 및 이의 제조방법
WO2020060132A1 (ko) 황-탄소 복합체의 제조방법, 그에 의해 제조된 황-탄소 복합체, 상기 황-탄소 복합체를 포함하는 양극, 및 상기 양극을 포함하는 리튬 이차 전지
WO2020067793A1 (ko) 황-탄소 복합체 및 그 제조방법
WO2019098733A1 (ko) 황-탄소 복합체, 그의 제조방법 및 이를 포함하는 리튬 이차전지
WO2019093825A1 (ko) 음극 활물질, 상기 음극 활물질을 포함하는 음극, 및 상기 음극을 포함하는 이차 전지
WO2022149913A1 (ko) 황-탄소 복합체, 이의 제조방법, 및 이를 포함하는 리튬-황 전지
WO2022060181A1 (ko) 음극 및 이를 포함하는 리튬 이차전지
WO2020060084A1 (ko) 황-탄소 복합체, 이의 제조방법, 이를 포함하는 리튬 이차전지용 양극 및 리튬 이차전지

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018563023

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17839634

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017839634

Country of ref document: EP

Effective date: 20181212

NENP Non-entry into the national phase

Ref country code: DE