WO2012115119A1 - 非水系電解液、及びそれを用いた電池 - Google Patents

非水系電解液、及びそれを用いた電池 Download PDF

Info

Publication number
WO2012115119A1
WO2012115119A1 PCT/JP2012/054173 JP2012054173W WO2012115119A1 WO 2012115119 A1 WO2012115119 A1 WO 2012115119A1 JP 2012054173 W JP2012054173 W JP 2012054173W WO 2012115119 A1 WO2012115119 A1 WO 2012115119A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
allyl
propargyl
hydrogen
methyl
Prior art date
Application number
PCT/JP2012/054173
Other languages
English (en)
French (fr)
Inventor
島 邦久
脩平 澤
大橋 洋一
Original Assignee
三菱化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱化学株式会社 filed Critical 三菱化学株式会社
Publication of WO2012115119A1 publication Critical patent/WO2012115119A1/ja
Priority to US13/973,286 priority Critical patent/US20130337317A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a non-aqueous electrolyte and a battery using the same.
  • the electrolyte used for the non-aqueous electrolyte battery is usually composed mainly of an electrolyte and a non-aqueous solvent.
  • an electrolyte for a lithium ion secondary battery an electrolyte such as LiPF 6 , LiBF 4 , LiN (CF 3 SO 2 ) 2 , a high dielectric constant solvent such as ethylene carbonate, propylene carbonate, ⁇ -butyrolactone, dimethyl carbonate, A non-aqueous electrolyte solution dissolved in a mixed solvent with a low viscosity solvent such as diethyl carbonate or ethyl methyl carbonate is used.
  • Such a lithium ion secondary battery generates gas when stored under high temperature conditions in a charged state, causing deterioration such as a decrease in battery capacity. In the worst case, the battery bursts due to a runaway reaction inside the battery. It is known that there is a serious danger such as ignition, and various studies have been made on non-aqueous solvents and electrolytes to improve it. So far, as a method for improving the characteristics of a lithium ion secondary battery, a nonaqueous electrolytic solution containing a cyclic phosphorus compound having a biphenyl structure has been proposed (see Patent Document 1).
  • Patent Document 1 by using an electrolytic solution containing a compound in which an oxygen atom on a phosphate group and a phosphorus atom form a ring as the phosphorus compound, oxidative decomposition of the nonaqueous electrolytic solution at the positive electrode is suppressed. Therefore, it is possible to suppress the deterioration of the life characteristics.
  • a non-aqueous electrolyte secondary battery in a non-aqueous electrolyte secondary battery, a non-aqueous electrolyte solution for a secondary battery that suppresses gas generation during high-temperature storage in a charged state and improves the charge / discharge characteristics of the battery, and the non-aqueous electrolyte It is an object of the present invention to provide a secondary battery using an electrolytic solution. Furthermore, it makes it a subject to provide the compound represented by General formula (1) as an additive of the said non-aqueous electrolyte solution.
  • R 1 and R 2 represent a hydrogen group or an organic group having 1 to 10 carbon atoms which may contain a hetero atom
  • R 3 represents a hydrogen group or a carbon atom 1 which may contain a hetero atom
  • R 1 to R 3 may be the same or different, and two or all of R 1 to R 3 may be bonded to each other to form a ring.
  • at least one of R 1 and R 2 represents a C 2-10 organic group which has a carbon-carbon unsaturated bond that is not directly bonded to a nitrogen atom and may contain a hetero atom.
  • X represents C, S ⁇ O or P (R 4 ), and R 4 represents an organic group having 1 to 10 carbon atoms which may contain a hetero atom.
  • the present inventors have found that the above problems can be solved by including the compound represented by the general formula (1) in the electrolytic solution.
  • the invention has been completed. That is, the gist of the present invention is as follows.
  • R 1 and R 2 represent a hydrogen group or an organic group having 1 to 10 carbon atoms which may contain a hetero atom
  • R 3 represents a hydrogen group or a carbon atom 1 which may contain a hetero atom
  • R 1 to R 3 may be the same or different, and two or all of R 1 to R 3 may be bonded to each other to form a ring.
  • at least one of R 1 and R 2 represents a C 2-10 organic group which has a carbon-carbon unsaturated bond that is not directly bonded to a nitrogen atom and may contain a hetero atom.
  • X represents C, S ⁇ O or P (R 4 ), and R 4 represents an organic group having 1 to 10 carbon atoms which may contain a hetero atom.
  • At least one of R 1 and R 2 in the general formula (1) is an organic group having 2 to 10 carbon atoms which has a carbon-carbon unsaturated bond at its terminal and may contain a hetero atom.
  • D The non-aqueous electrolyte solution according to any one of (a) to (c), which contains 0.001% by mass to 10% by mass of the compound represented by the general formula (1).
  • the non-aqueous electrolyte solution according to any one of (a) to (d).
  • (F) A nonaqueous electrolyte battery including a negative electrode and a positive electrode capable of inserting and extracting lithium ions, and a nonaqueous electrolyte solution, wherein the nonaqueous electrolyte solution is any one of (a) to (e).
  • a non-aqueous electrolyte battery which is the non-aqueous electrolyte described.
  • the electrolyte solution according to the present invention is used as a battery electrolyte solution to suppress gas generation during high-temperature storage in a charged state of the battery, and is excellent in charge / discharge characteristics, particularly voltage and capacity during high-temperature storage. Battery can be obtained.
  • the compound according to the present invention is useful as a component of an electrolytic solution for a battery having the above effects.
  • the non-aqueous electrolyte solution according to the present invention contains an electrolyte and a non-aqueous solvent that dissolves the electrolyte as well as a general non-aqueous electrolyte solution, and further contains a compound represented by the general formula (1). It is characterized by.
  • Electrolytes There is no restriction
  • a lithium salt is usually used as an electrolyte.
  • the electrolyte include inorganic lithium salts such as LiClO 4 , LiAsF 6 , LiPF 6 , Li 2 CO 3 , LiBF 4 , LiSbF 6 , LiSO 3 F, LiN (FSO 2 ) 2 ; LiCF 3 SO 3 , LiN ( CF 3 SO 2 ) 2 , LiN (C 2 F 5 SO 2 ) 2 , lithium cyclic 1,3-hexafluoropropane disulfonylimide, lithium cyclic 1,2-tetrafluoroethane disulfonylimide, LiN (CF 3 SO 2 ) (C 4 F 9 SO 2 ), LiC (CF 3 SO 2 ) 3 , LiPF 4 (CF 3 ) 2 , LiPF 4 (C 2 F 5 ) 2 , LiPF 4 (CF 3 SO 2 ) 2 , LiPF 4 ( C 2 F 5 SO 2) 2 , LiBF 2 (CF 3) 2, LiBF 2 (C 2 F 5) 2, LiBF 2 (CF SOCF SO
  • LiPF 6 , LiBF 4 , LiSO 3 F, LiN (FSO 2 ) 2 , LiCF 3 SO 3 , LiN (LiN) from the viewpoints of solubility / dissociation in a non-aqueous solvent, electrical conductivity, and battery characteristics obtained.
  • LiN (C 2 F 5 SO 2 ) 2 lithium cyclic 1,3-hexafluoropropane disulfonylimide, lithium cyclic 1,2-tetrafluoroethane disulfonylimide, lithium bis (oxalato) borate Lithium difluoro (oxalato) borate, lithium tris (oxalato) phosphate, lithium difluorobis (oxalato) phosphate, and lithium tetrafluoro (oxalato) phosphate are preferable, and LiPF 6 and LiBF 4 are particularly preferable.
  • electrolyte may be used individually by 1 type and may use 2 or more types together by arbitrary combinations and / or a ratio.
  • electrolyte may be used individually by 1 type and may use 2 or more types together by arbitrary combinations and / or a ratio.
  • the combination and the LiPF 6 and LiBF 4, and an inorganic lithium salt such as LiPF 6, LiBF 4, LiCF 3 SO 3, LiN (CF 3 SO 2) 2, LiN (C 2 F 5 SO 2) 2, etc. It is preferable to use in combination with a fluorine-containing organic lithium salt.
  • LiBF 4 is usually contained at a ratio of 0.01% by mass to 50% by mass with respect to the entire electrolyte.
  • the ratio is preferably 0.05% by mass or more, more preferably 0.1% by mass or more, while preferably 20% by mass or less, more preferably 10% by mass or less, particularly preferably 5% by mass or less, Most preferably, it is 3 mass% or less.
  • the ratio is in the above range, it is easy to obtain a desired effect, and the low dissociation degree of LiBF 4 prevents the resistance of the electrolyte from increasing.
  • inorganic lithium salts such as LiPF 6 and LiBF 4 and inorganic lithium salts such as LiSO 3 F and LiN (FSO 2 ) 2 , LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 , and LiN (C 2 F 5 SO 2 ) 2 , lithium cyclic 1,3-hexafluoropropane disulfonylimide, lithium cyclic 1,2-tetrafluoroethane disulfonylimide, LiN (CF 3 SO 2 ) (C 4 F 9 SO 2 ), LiC (CF 3 SO 2 ) 3 , LiPF 4 (CF 3 ) 2 , LiPF 4 (C 2 F 5 ) 2 , LiPF 4 (CF 3 SO 2 ) 2 , LiPF 4 (C 2 F 5 SO 2 ) 2 , LiBF 2 (CF 3) 2, LiBF 2 (C 2 F 5) 2, LiBF 2 (CF 3 SO 2) 2, LiBF 2 (C 2 F 5 SO 2) 2 or the like containing foldback Organic lithium
  • the concentration of the lithium salt in the non-aqueous electrolyte of the present invention is arbitrary as long as the gist of the present invention is not impaired, but is usually 0.5 mol / L or more, preferably 0.6 mol / L or more, more preferably 0.8. 8 mol / L or more. Moreover, it is 3 mol / L or less normally, Preferably it is 2 mol / L or less, More preferably, it is 1.8 mol / L or less, More preferably, it is the range of 1.6 mol / L or less.
  • the electrical conductivity of the non-aqueous electrolyte is sufficient, and the decrease in electrical conductivity due to the increase in viscosity, and hence the performance of the non-aqueous electrolyte secondary battery, is suppressed. To do.
  • Nonaqueous solvent As the non-aqueous solvent contained in the non-aqueous electrolyte solution of the present invention, it can be appropriately selected from conventionally known solvents for non-aqueous electrolyte solutions.
  • a non-aqueous solvent may be used individually by 1 type, and may use 2 or more types together by arbitrary combinations and / or ratios. Examples of commonly used non-aqueous solvents include cyclic carbonates, linear carbonates, linear or cyclic carboxylic acid esters, linear or cyclic ethers, phosphorus-containing organic solvents, sulfur-containing organic solvents, aromatic fluorine-containing solvents, etc. Is mentioned.
  • cyclic carbonate examples include cyclic carbonates such as ethylene carbonate, propylene carbonate, butylene carbonate, and the carbon number of the cyclic carbonate is usually 3 or more and 6 or less.
  • ethylene carbonate and propylene carbonate are preferable in that the electrolyte is easily dissolved because of a high dielectric constant, and cycle characteristics are good when a non-aqueous electrolyte secondary battery is used, and ethylene carbonate is particularly preferable. Further, a part of hydrogen of these compounds may be substituted with fluorine.
  • Cyclic carbonates substituted with fluorine include fluoroethylene carbonate, 1,2-difluoroethylene carbonate, 1,1-difluoroethylene carbonate, 1,1,2-trifluoroethylene carbonate, tetrafluoroethylene carbonate, 1-fluoro- Such as 2-methylethylene carbonate, 1-fluoro-1-methylethylene carbonate, 1,2-difluoro-1-methylethylene carbonate, 1,1,2-trifluoro-2-methylethylene carbonate, trifluoromethylethylene carbonate, etc. And cyclic carbonates having 3 to 5 carbon atoms substituted with fluorine. Among these, fluoroethylene carbonate, 1,2-difluoroethylene carbonate, and trifluoromethylethylene carbonate are exemplified. Masui.
  • chain carbonate examples include chain carbonates such as dimethyl carbonate, ethyl methyl carbonate, diethyl carbonate, methyl-n-propyl carbonate, ethyl-n-propyl carbonate, and di-n-propyl carbonate.
  • the number of carbon atoms is preferably 1 or more and 5 or less, particularly preferably 1 or more and 4 or less.
  • dimethyl carbonate, diethyl carbonate, and ethyl methyl carbonate are preferable from the viewpoint of improving battery characteristics.
  • a part of hydrogen of the alkyl group may be substituted with fluorine.
  • the chain carbonates substituted with fluorine include bis (fluoromethyl) carbonate, bis (difluoromethyl) carbonate, bis (trifluoromethyl) carbonate, bis (2-fluoroethyl) carbonate, bis (2,2-difluoroethyl). ) Carbonate, bis (2,2,2-trifluoroethyl) carbonate, 2-fluoroethyl methyl carbonate, 2,2-difluoroethyl methyl carbonate, 2,2,2-trifluoroethyl methyl carbonate, and the like.
  • chain carboxylates include methyl acetate, ethyl acetate, propyl acetate, isopropyl acetate, butyl acetate, sec-butyl acetate, isobutyl acetate, t-butyl acetate, methyl propionate, ethyl propionate, propyl propionate, propion
  • examples include isopropyl acid, methyl butyrate, ethyl butyrate, propyl butyrate, methyl valerate, ethyl valerate, and the like, and compounds in which part of hydrogen of these compounds is substituted with fluorine.
  • Examples of the compound substituted with fluorine include methyl trifluoroacetate, ethyl trifluoroacetate, propyl trifluoroacetate, butyl trifluoroacetate, 2,2,2-trifluoroethyl trifluoroacetate and the like.
  • methyl acetate, ethyl acetate, propyl acetate, butyl acetate, methyl propionate, ethyl propionate, propyl propionate, methyl butyrate, ethyl butyrate, and methyl valerate are preferable from the viewpoint of improving battery characteristics.
  • cyclic carboxylic acid esters examples include ⁇ -butyrolactone, ⁇ -valerolactone, and the like, and compounds in which part of hydrogen of these compounds is substituted with fluorine. Among these, ⁇ -butyrolactone is more preferable.
  • the chain ether includes dimethoxymethane, 1,1-dimethoxyethane, 1,2-dimethoxyethane, diethoxymethane, 1,1-diethoxyethane, 1,2-diethoxyethane, ethoxymethoxymethane, , 1-ethoxymethoxyethane, 1,2-ethoxymethoxyethane, and the like, and compounds obtained by substituting a part of hydrogen of these compounds with fluorine.
  • cyclic ether examples include tetrahydrofuran, 2-methyltetrahydrofuran and the like, and compounds obtained by substituting a part of hydrogen of these compounds with fluorine.
  • phosphorus-containing organic solvents include trimethyl phosphate, triethyl phosphate, dimethyl ethyl phosphate, methyl diethyl phosphate, ethylene methyl phosphate, ethylene ethyl phosphate, triphenyl phosphate, trimethyl phosphite, phosphorous acid.
  • examples thereof include triethyl, triphenyl phosphite, trimethylphosphine oxide, triethylphosphine oxide, triphenylphosphine oxide, and the like, and compounds in which part of hydrogen of these compounds is substituted with fluorine.
  • Examples of compounds in which part of hydrogen in these compounds is substituted with fluorine include tris phosphate (2,2,2-trifluoroethyl), tris phosphate (2,2,3,3,3-pentafluoropropyl), etc. Is mentioned.
  • sulfur-containing organic solvents include sulfolane, 2-methylsulfolane, 3-methylsulfolane, dimethylsulfone, diethylsulfone, ethylmethylsulfone, methylpropylsulfone, dimethylsulfoxide, methyl methanesulfonate, ethyl methanesulfonate, ethanesulfone.
  • Examples include methyl acid, ethyl ethanesulfonate, dimethyl sulfate, diethyl sulfate, dibutyl sulfate and the like, and compounds in which part of hydrogen of these compounds is substituted with fluorine.
  • examples of the aromatic fluorine-containing solvent include fluorobenzene, difluorobenzene, trifluorobenzene, tetrafluorobenzene, pentafluorobenzene, hexafluorobenzene, and benzotrifluoride.
  • ethylene carbonate and / or propylene carbonate which are cyclic carbonates, and the combined use of these cyclic carbonates and chain carbonates has a high conductivity and low viscosity of the electrolyte. It is preferable from the standpoint of compatibility.
  • the preferred content of the chain carbonate in the non-aqueous solvent in the non-aqueous electrolyte of the present invention is usually 20% by volume or more, Preferably it is 40 volume% or more, and is 95 volume% or less normally, Preferably it is 90 volume% or less.
  • the suitable content of the cyclic carbonate in the non-aqueous solvent in the non-aqueous electrolyte of the present invention is usually 5% by volume or more, preferably 10% by volume or more, and usually 80% by volume or less, preferably 60%. % By volume or less.
  • the capacity of the non-aqueous solvent is a measured value at 25 ° C., but the measured value at the melting point is used for a solid at 25 ° C. such as ethylene carbonate.
  • the nonaqueous electrolytic solution of the present invention is characterized by containing a compound represented by the following general formula (1).
  • R 1 and R 2 represent a hydrogen group or an organic group having 1 to 10 carbon atoms which may contain a hetero atom
  • R 3 represents a hydrogen group or a carbon atom 1 which may contain a hetero atom.
  • R 1 to R 3 may be the same or different, and two or all of R 1 to R 3 may be bonded to each other to form a ring.
  • at least one of R 1 and R 2 represents a C 2-10 organic group which has a carbon-carbon unsaturated bond that is not directly bonded to a nitrogen atom and may contain a hetero atom.
  • X represents C, S ⁇ O or P (R 4 ), and R 4 represents an organic group having 1 to 10 carbon atoms which may contain a hetero atom.
  • the “hydrogen group” means a hydrogen atom.
  • hetero atom of the organic group which may contain a hetero atom of R 1 to R 3 in the general formula (1), a halogen atom, a carbonyl group, a carboxylic acid ester group, a carbonic acid mentioned in fluorine, chlorine, bromine or iodine
  • Functional group consisting of carbon and oxygen such as ester, carbon such as carboxylic acid amide, carbamate group, urea group, cyanate group and isocyanato group, functional group consisting of oxygen and nitrogen, functional group consisting of carbon and nitrogen such as nitrile group and isonitrile group
  • Functional group consisting of nitrogen and oxygen such as nitro group and nitroso group
  • functional group consisting of nitrogen such as amino group
  • functional group consisting of oxygen such as ether group
  • functional group consisting of silicon such as silyl group, sulfoxide group
  • Sulfon and oxygen functional groups such as sulfonyl group, sulfonic acid ester group and sulfuric acid ester group
  • Examples of the organic group include a saturated or unsaturated hydrocarbon group and an aromatic hydrocarbon group.
  • Saturated hydrocarbon groups include methyl, ethyl, n-propyl, i-propyl, n-butyl, sec-butyl and other linear or branched alkyl groups, cyclopropyl, cyclopentyl And cyclic alkyl groups such as a cyclohexyl group.
  • Examples of the unsaturated hydrocarbon group include alkenyl groups such as vinyl group, allyl group and 1-propenyl group, and alkynyl groups such as ethynyl group, propargyl group and 1-propynyl group.
  • Examples of the aromatic hydrocarbon group include aryl groups such as phenyl group and tolyl group, and aralkyl groups such as benzyl group and phenethyl group.
  • the carbon number of the saturated hydrocarbon group is usually 1 or more and 10 or less, preferably 6 or less, more preferably 4 or less
  • the carbon number of the unsaturated hydrocarbon group is usually 2 or more and 10 or less, preferably 6 Or less, more preferably 4 or less
  • the number of carbon atoms of the aromatic hydrocarbon group is usually 6 or more and 10 or less, preferably 8 or less.
  • At least one of R 1 and R 2 in the general formula (1) has a carbon-carbon unsaturated bond that is not directly bonded to a nitrogen atom, and may contain a hetero atom, and has 2 to 10 carbon atoms. It must be an organic group.
  • a carbon-carbon unsaturated bond that is not directly bonded to a nitrogen atom does not enter when a carbon atom adjacent to the nitrogen atom such as —NC—C— is unsaturated bonded.
  • the effect of suppressing the generation of gas when the battery is stored at high temperature is inferior, and the capacity after storage at high temperature is inferior.
  • At least one of R 1 and R 2 in the general formula (1) has a carbon-carbon unsaturated bond at the terminal from the viewpoint of suppressing gas generation during high-temperature storage.
  • An organic group having 2 to 10 carbon atoms which may contain a hetero atom is preferable.
  • the organic group having 2 to 10 carbon atoms which has a carbon-carbon unsaturated bond at the end and may contain a hetero atom is preferably an allyl group or a propargyl group.
  • the other has a carbon-carbon unsaturated bond that is directly bonded to the nitrogen atom.
  • X in the general formula (1) represents C, S ⁇ O, or P (R 4 ), and R 4 represents an organic group having 1 to 10 carbon atoms that may contain a hetero atom.
  • X and R 3 do not form a ring.
  • R 3 and R 4 When X is P (R 4 ), one of R 3 and R 4 has an oxygen atom, and the oxygen atom is directly bonded to the phosphorus atom of P (R 4 ), and the other is P In the case of having a phosphorus atom of (R 4 ) and a PC bond, R 3 and R 4 are not bonded to each other to form a ring.
  • R 4 includes allyl group, propargyl group, cis-2-butenyl group, trans-2-butenyl group, 3-butenyl group, 2-butynyl group, 3-butynyl group, 4-pentenyl group, 4-pentynyl group, 5-hexenyl group, 5-hexynyl group, 7-octenyl group, 7-octynyl group, 9-decenyl group, 9-decynyl group and the like.
  • allyl group, propargyl group, 3-butenyl group, Those having a carbon-carbon unsaturated bond at the terminal, such as a 3-butynyl group, a 4-pentenyl group, and a 4-pentynyl group, are preferable from the viewpoint of battery characteristics.
  • R 5 includes allyl group, propargyl group, cis-2-butenyl group, trans-2-butenyl group, 3-butenyl group, 2-butynyl group, 3-butynyl group, 4-pentenyl group, 4-pentynyl group, 5-hexenyl group, 5-hexynyl group, 7-octenyl group, 7-octynyl group, 9-decenyl group, 9-decynyl group and the like.
  • allyl group, propargyl group, 3-butenyl group, Those having a carbon-carbon unsaturated bond at the terminal, such as a 3-butynyl group, a 4-pentenyl group, and a 4-pentynyl group, are preferable from the viewpoint of battery characteristics.
  • a hydrogen group, a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, a pentyl group, a hexyl group, an octyl group, a decyl group, a cyclopentyl group, a cyclohexyl group, a phenyl group, a benzyl group examples include phenethyl group, 2-methoxyethyl group, 2-ethoxyethyl group and the like.
  • R 6 includes a hydrogen group, methyl group, ethyl group, propyl group, isopropyl group, butyl group, t-butyl group, pentyl group, hexyl group, heptyl group, octyl group, nonyl group, decyl group, cyclohexyl group, fluoro Methyl group, difluoromethyl group, trifluoromethyl group, pentafluoroethyl group, heptafluoropropyl group, vinyl group, allyl group, 1-propenyl group, isopropenyl group, phenyl group, benzyl group, phenethyl group, etc.
  • substituent containing a hetero atom include methoxymethyl, ethoxymethyl, acetylmethyl group, cyanomethyl group, 1-cyanoethyl group, 2-cyanoethyl group and the like.
  • R 4 is an allyl group or a propargyl group from the viewpoint of battery characteristics
  • examples include the following.
  • R 4 allyl group, R 5 ; allyl group, R 6 ; hydrogen group R 4 ; allyl group, R 5 ; hydrogen group, R 6 ; hydrogen group R 4 ; propargyl group, R 5 ; hydrogen group, R 6 ; hydrogen Group R 4 ; allyl group, R 5 ; methyl group, R 6 ; hydrogen group R 4 ; allyl group, R 5 ; ethyl group, R 6 ; hydrogen group R 4 ; allyl group, R 5 ; allyl group, R 6 ; Methyl group R 4 ; allyl group, R 5 ; hydrogen group, R 6 ; methyl group R 4 ; propargyl group, R 5 ; hydrogen group, R 6 ; methyl group R 4 ; allyl group, R 5 ; methyl group, R 6 Methyl group R 4 ; allyl group, R 5 ; hydrogen group, R 6 ; methyl group R 4 ; propargyl group, R 5 ; hydrogen group,
  • R 4 allyl group, R 5 ; allyl group, R 6 ; hydrogen group R 4 ; allyl group, R 5 ; hydrogen group, R 6 ; hydrogen group R 4 ; propargyl group, R 5 ; hydrogen group, R 6 ; hydrogen Group R 4 ; allyl group, R 5 ; allyl group, R 6 ; methyl group R 4 ; allyl group, R 5 ; hydrogen group, R 6 ; methyl group R 4 ; propargyl group, R 5 ; hydrogen group, R 6 ; Methyl group R 4 ; allyl group, R 5 ; allyl group, R 6 ; ethyl group R 4 ; allyl group, R 5 ; hydrogen group, R 6 ; ethyl group R 4 ; propargyl group, R 5 ; hydrogen group, R 6 Ethyl group R 4 ; allyl group, R 5 ; ; allyl group, R 6 ; propyl group, R 5 ; hydrogen group
  • R 4 to R 6 in the above combination may be substituted with a heteroatom, and when substituted with a heteroatom, the heteroatom is preferably a halogen atom exemplified by fluorine, chlorine, bromine or iodine More preferably, it is a fluorine atom. Examples of those in which R 4 to R 6 are substituted with a hetero atom include the following.
  • R 7 includes allyl group, propargyl group, cis-2-butenyl group, trans-2-butenyl group, 3-butenyl group, 2-butynyl group, 3-butynyl group, 4-pentenyl group, 4-pentynyl group, 5-hexenyl group, 5-hexynyl group, 7-octenyl group, 7-octynyl group, 9-decenyl group, 9-decynyl group and the like.
  • allyl group, propargyl group, 3-butenyl group, Those having a carbon-carbon unsaturated bond at the terminal, such as a 3-butynyl group, a 4-pentenyl group, and a 4-pentynyl group, are preferable from the viewpoint of battery characteristics.
  • R 8 includes ethylene group, trimethylene group, 1-methyltrimethylene group, 2-methyltrimethylene group, 3-methyltrimethylene group, 1-methyltetramethylene group, 4-methyltetramethylene group, pentamethylene group, etc. Is mentioned.
  • R 7 is an allyl group or a propargyl group from the viewpoint of battery characteristics.
  • R 7 being an allyl group, N-allyl- ⁇ -propiolactam, N-allyl-2-pyrrolidone, N-allyl-3-methyl-2-pyrrolidone, N-allyl-5-methyl-2-pyrrolidone N-allyl-2-piperidone, N-allyl-3-methyl-2-piperidone, N-allyl-6-methyl-2-piperidone, N-allyl- ⁇ -caprolactam and the like.
  • R 7 being a propargyl group
  • N-propargyl- ⁇ -propiolactam N-propargyl 2-pyrrolidone, N-propargyl 3-methyl-2-pyrrolidone
  • N-propargyl 5-methyl-2-pyrrolidone N-propargyl 2-piperidone
  • N-propargyl 3-methyl-2-piperidone N-propargyl 6-methyl-2-piperidone
  • N-propargyl ⁇ -caprolactam N-propargyl- ⁇ -propiolactam
  • N-propargyl 2-pyrrolidone N-propargyl 3-methyl-2-pyrrolidone
  • N-propargyl 5-methyl-2-pyrrolidone N-propargyl 2-piperidone
  • N-propargyl 3-methyl-2-piperidone N-propargyl 6-methyl-2-piperidone
  • N-propargyl ⁇ -caprolactam N-propargyl ⁇ -caprolactam and the like.
  • N-allyl- ⁇ -propiolactam, N-allyl-2-pyrrolidone, N-allyl-2-piperidone, N- from the viewpoint of suppressing gas generation during high temperature storage and improving charge / discharge characteristics of the battery.
  • Examples include allyl- ⁇ -caprolactam, N-propargyl- ⁇ -propiolactam, N-propargyl-2-pyrrolidone, N-propargyl-2-piperidone, and N-propargyl- ⁇ -caprolactam.
  • R 9 includes an allyl group, a propargyl group, a cis-2-butenyl group, a trans-2-butenyl group, a 3-butenyl group, a 2-butynyl group, a 3-butynyl group, a 4-pentenyl group, a 4-pentynyl group, 5-hexenyl group, 5-hexynyl group, 7-octenyl group, 7-octynyl group, 9-decenyl group, 9-decynyl group and the like.
  • allyl group, propargyl group, 3-butenyl group, Those having a carbon-carbon unsaturated bond at the terminal, such as a 3-butynyl group, a 4-pentenyl group, and a 4-pentynyl group, are preferable from the viewpoint of battery characteristics.
  • R 10 to R 12 are allyl group, propargyl group, cis-2-butenyl group, trans-2-butenyl group, 3-butenyl group, 2-butynyl group, 3-butynyl group, 4-pentenyl group, 4- Examples include pentynyl group, 5-hexenyl group, 5-hexynyl group, 7-octenyl group, 7-octynyl group, 9-decenyl group, 9-decynyl group, among which allyl group, propargyl group, 3- Those having a carbon-carbon unsaturated bond at the terminal, such as a butenyl group, a 3-butynyl group, a 4-pentenyl group, and a 4-pentynyl group, are preferable from the viewpoint of battery characteristics.
  • a hydrogen group, a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, a pentyl group, a hexyl group, an octyl group, a decyl group, a cyclopentyl group, a cyclohexyl group, a phenyl group, a benzyl group examples include phenethyl group, 2-methoxyethyl group, 2-ethoxyethyl group and the like.
  • R 13 includes a direct bond group, methylene group, ethylene group, trimethylene group, tetramethylene group, pentamethylene group, hexamethylene group, heptamethylene group, octamethylene group, nonamethylene group, decamethylene group, vinylene group, acetylene group, 1 , 2-phenylene group, 1,3-phenylene group, 1,4-phenylene group, 4,4′-biphenylene group, 1,2-cyclohexanediyl group, 1,3-cyclohexanediyl group, 1,4-cyclohexanediyl Group and the like.
  • R 9 to R 13 is one in which R 9 is an allyl group or a propargyl group from the viewpoint of battery characteristics, and the following examples are given.
  • R 9 to R 12 allyl group, R 13 ; direct bonding group R 9 to R 12 ; allyl group, R 13 ; methylene group R 9 to R 12 ; allyl group, R 13 ; ethylene group R 9 to R 12 ; , R 13 ; trimethylene group R 9 to R 12 ; allyl group, R 13 ; tetramethylene group R 9 to R 12 ; allyl group, R 13 ; pentamethylene group R 9 to R 12 ; allyl group, R 13 ; Group R 9 to R 12 ; allyl group, R 13 ; 1,2-phenylene group R 9 to R 12 ; allyl group, R 13 ; 1,3-phenylene group R 9 to R 12 ; allyl group, R 13 ; 1 , 4-phenylene group R 9 ⁇ R 12; allyl, R 13 ; direct bonding group R 9 to R 12 ; allyl group, R 13 ; methylene group R 9 to R 12 ; allyl group,
  • R 9 to R 12 allyl group, R 13 ; direct bonding group R 9 to R 12 ; allyl group, R 13 ; methylene group R 9 to R 12 ; allyl group, R 13 ; ethylene group R 9 to R 12 ; , R 13 ; trimethylene group R 9 to R 12 ; allyl group, R 13 ; tetramethylene group R 9 to R 12 ; allyl group, R 13 ; pentamethylene group R 9 to R 12 ; allyl group, R 13 ; Group R 9 to R 12 ; allyl group, R 13 ; 1,2-phenylene group R 9 to R 12 ; allyl group, R 13 ; 1,3-phenylene group R 9 to R 12 ; allyl group, R 13 ; 1 , 4-phenylene group R 9 ⁇ R 12; allyl, R 13; 1,2-cyclohexane diyl group R 9 ⁇ R 12; allyl, R 13; 1,3
  • R 14 includes an allyl group, a propargyl group, a cis-2-butenyl group, a trans-2-butenyl group, a 3-butenyl group, a 2-butynyl group, a 3-butynyl group, a 4-pentenyl group, a 4-pentynyl group, 5-hexenyl group, 5-hexynyl group, 7-octenyl group, 7-octynyl group, 9-decenyl group, 9-decynyl group and the like.
  • allyl group, propargyl group, 3-butenyl group, Those having a carbon-carbon unsaturated bond at the terminal, such as a 3-butynyl group, a 4-pentenyl group, and a 4-pentynyl group, are preferable from the viewpoint of battery characteristics.
  • R 15 examples include an allyl group, a propargyl group, a hydrogen group, a methyl group, an ethyl group, a propyl group, and an isopropyl group.
  • R 16 and R 17 include a hydrogen group, a methyl group, an ethyl group, and a trifluoromethyl group.
  • R 18 includes methylene, ethylene, trimethylene, tetramethylene and the like.
  • R 14 is an allyl group or a propargyl group from the viewpoint of battery characteristics, and examples thereof include the following.
  • R 19 includes allyl group, propargyl group, cis-2-butenyl group, trans-2-butenyl group, 3-butenyl group, 2-butynyl group, 3-butynyl group, 4-pentenyl group, 4-pentynyl group, 5-hexenyl group, 5-hexynyl group, 7-octenyl group, 7-octynyl group, 9-decenyl group, 9-decynyl group and the like.
  • allyl group, propargyl group, 3-butenyl group, Those having a carbon-carbon unsaturated bond at the terminal, such as a 3-butynyl group, a 4-pentenyl group, and a 4-pentynyl group, are preferable from the viewpoint of battery characteristics.
  • R 20 includes allyl group, propargyl group, cis-2-butenyl group, trans-2-butenyl group, 3-butenyl group, 2-butynyl group, 3-butynyl group, 4-pentenyl group, 4-pentynyl group, 5-hexenyl group, 5-hexynyl group, 7-octenyl group, 7-octynyl group, 9-decenyl group, 9-decynyl group and the like.
  • allyl group, propargyl group, 3-butenyl group, Those having a carbon-carbon unsaturated bond at the terminal, such as a 3-butynyl group, a 4-pentenyl group, and a 4-pentynyl group, are preferable from the viewpoint of battery characteristics.
  • a hydrogen group, a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, a pentyl group, a hexyl group, an octyl group, a decyl group, a cyclopentyl group, a cyclohexyl group, a phenyl group, a benzyl group examples include phenethyl group, 2-methoxyethyl group, 2-ethoxyethyl group and the like.
  • R 21 includes methyl, ethyl group, propyl group, isopropyl group, butyl group, t-butyl group, pentyl group, hexyl group, cyclohexyl group, 2,2,2-trifluoroethyl group, allyl group, phenyl group, A benzyl group, a phenethyl group and the like can be mentioned, and examples of the substituent containing a hetero atom include methoxyethyl, ethoxyethyl, 2-cyanoethyl group, 2-cyano-1- (cyanomethyl) ethyl and the like.
  • R 19 is an allyl group or a propargyl group from the viewpoint of battery characteristics, and the following specific examples can be given.
  • R 19 allyl group, R 20 ; allyl group, R 21 ; methyl group R 19 ; allyl group, R 20 ; allyl group, R 21 ; ethyl group R 19 ; allyl group, R 20 ; allyl group, R 21 ; cyclohexyl Group R 19 ; allyl group, R 20 ; allyl group, R 21 ; phenyl group R 19 ; allyl group, R 20 ; allyl group, R 21 ; 2,2,2-trifluoroethyl group R 19 ; allyl group, R 20 ; allyl group, R 21 ; 2-cyanoethyl group R 19 ; allyl group, R 20 ; hydrogen group, R 21 ; methyl group R 19 ; allyl group, R 20 ; hydrogen group, R 21 ;
  • R 22 includes allyl group, propargyl group, cis-2-butenyl group, trans-2-butenyl group, 3-butenyl group, 2-butynyl group, 3-butynyl group, 4-pentenyl group, 4-pentynyl group, 5-hexenyl group, 5-hexynyl group, 7-octenyl group, 7-octynyl group, 9-decenyl group, 9-decynyl group and the like.
  • allyl group, propargyl group, 3-butenyl group, Those having a carbon-carbon unsaturated bond at the terminal, such as a 3-butynyl group, a 4-pentenyl group, and a 4-pentynyl group, are preferable from the viewpoint of battery characteristics.
  • R 23 includes ethylene, trimethylene, 1-methyltrimethylene, 2-methyltrimethylene, 3-methyltrimethylene, 2,2-dimethyltrimethylene, tetramethylene, 1-methyltetramethylene. Group, 4-methyltetramethylene group, pentamethylene group and the like.
  • R 22 and R 23 A preferable combination among R 22 and R 23 is one in which R 22 is an allyl group or a propargyl group from the viewpoint of improving battery characteristics.
  • N-allyl-2-oxazolidone, N-allyl-1,3-oxazin-2-one as R 22 is an allyl group
  • N-propargyl-2-oxazolidone as R 23 is a propargyl group N-propargyl-1,3-oxazin-2-one.
  • R 24 includes an allyl group, propargyl group, cis-2-butenyl group, trans-2-butenyl group, 3-butenyl group, 2-butynyl group, 3-butynyl group, 4-pentenyl group, 4-pentynyl group, 5-hexenyl group, 5-hexynyl group, 7-octenyl group, 7-octynyl group, 9-decenyl group, 9-decynyl group and the like.
  • allyl group, propargyl group, 3-butenyl group, Those having a carbon-carbon unsaturated bond at the terminal, such as a 3-butynyl group, a 4-pentenyl group, and a 4-pentynyl group, are preferable from the viewpoint of battery characteristics.
  • R 25 to R 27 are allyl group, propargyl group, cis-2-butenyl group, trans-2-butenyl group, 3-butenyl group, 2-butynyl group, 3-butynyl group, 4-pentenyl group, 4- Examples include pentynyl group, 5-hexenyl group, 5-hexynyl group, 7-octenyl group, 7-octynyl group, 9-decenyl group, 9-decynyl group, among which allyl group, propargyl group, 3- Those having a carbon-carbon unsaturated bond at the terminal, such as a butenyl group, a 3-butynyl group, a 4-pentenyl group, and a 4-pentynyl group, are preferable from the viewpoint of battery characteristics.
  • a hydrogen group, a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, a pentyl group, a hexyl group, an octyl group, a decyl group, a cyclopentyl group, a cyclohexyl group, a phenyl group, a benzyl group examples include phenethyl group, 2-methoxyethyl group, 2-ethoxyethyl group and the like.
  • R 28 includes methylene group, ethylene group, propylene group, trimethylene group, tetramethylene group, pentamethylene group, hexamethylene group, heptamethylene group, octamethylene group, nonamethylene group, decamethylene group, vinylene group, acetylene group, 1 , 2-phenylene group, 1,3-phenylene group, 1,4-phenylene group, 1,1′-biphenylene group, 3,3′-biphenylene group, 4,4′-biphenylene group, 1,2-cyclohexanediyl Group, 1,3-cyclohexanediyl group, 1,4-cyclohexanediyl group and the like.
  • R 24 to R 28 is preferably one in which R 24 is an allyl group or a propargyl group from the viewpoint of battery characteristics.
  • R 24 to R 27 allyl group, R 28 ; methylene group R 24 to R 27 ; allyl group, R 28 ; ethylene group R 24 to R 27 ; allyl group, R 28 ; trimethylene group R 24 to R 27 ; , R 28 ; tetramethylene group R 24 to R 27 ; allyl group, R 28 ; pentamethylene group R 24 to R 27 ; allyl group, R 28 ; hexamethylene group R 24 to R 27 ; allyl group, R 28 ; 1 , 2-phenylene group R 24 to R 27 ; allyl group, R 28 ; 1,3-phenylene group R 24 to R 27 ; allyl group, R 28 ; 1,4-phenylene group R 24 to R 27 ; R 28; 1,2-cyclohexane diyl group R 24 ⁇ R 27
  • R 24 to R 27 allyl group, R 28 ; methylene group R 24 to R 27 ; allyl group, R 28 ; ethylene group R 24 to R 27 ; allyl group, R 28 ; trimethylene group R 24 to R 27 ; , R 28 ; tetramethylene group R 24 to R 27 ; allyl group, R 28 ; pentamethylene group R 24 to R 27 ; allyl group, R 28 ; hexamethylene group R 24 to R 27 ; allyl group, R 28 ; 1 , 2-phenylene group R 24 to R 27 ; allyl group, R 28 ; 1,3-phenylene group R 24 to R 27 ; allyl group, R 28 ; 1,4-phenylene group R 24 to R 27 ; R 28; 1,2-cyclohexane diyl group R 24 ⁇ R 27; allyl radical, R 28; 1,3-cyclohexane diyl group R 24 ⁇ R 27;
  • R 29 includes allyl group, propargyl group, cis-2-butenyl group, trans-2-butenyl group, 3-butenyl group, 2-butynyl group, 3-butynyl group, 4-pentenyl group, 4-pentynyl group, 5-hexenyl group, 5-hexynyl group, 7-octenyl group, 7-octynyl group, 9-decenyl group, 9-decynyl group and the like.
  • allyl group, propargyl group, 3-butenyl group, Those having a carbon-carbon unsaturated bond at the terminal, such as a 3-butynyl group, a 4-pentenyl group, and a 4-pentynyl group, are preferable from the viewpoint of battery characteristics.
  • R 30 examples include an allyl group, a propargyl group, a hydrogen group, a methyl group, an ethyl group, a propyl group, and an isopropyl group.
  • R 31 and R 32 include a methyl group, an ethyl group, and a 2,2,2-trifluoroethyl group.
  • R 33 includes methylene, ethylene, trimethylene, tetramethylene and the like.
  • R 29 to R 33 is preferably one in which R 29 is an allyl group or a propargyl group from the viewpoint of battery characteristics, and examples thereof include the following.
  • R 29 , R 30 allyl group, R 31 , R 32 ; methyl group, R 33 ; methylene group R 29 , R 30 ; allyl group, R 31 , R 32 ; ethyl group, R 33 ; methylene group R 29 , R 30 ; allyl group, R 31 , R 32 ; 2,2,2-trifluoroethyl group, R 33 ; methylene group R 29 , R 30 ; allyl group, R 31 , R 32 ; methyl group, R 33 ; ethylene group R 29 , R 30 ; allyl group, R 31 , R 32 ; ethyl group, R 33 ; ethylene group R 29 , R 30 ; allyl group, R 31 , R 32 ; 2,2,2-trifluoroethyl group, R 33 ; ethylene group R 29 , R 30 ; allyl group, R 31 , R 32 ; 2,2,2-trifluoroethyl group, R 33
  • R 29 , R 30 allyl group, R 31 , R 32 ; methyl group, R 33 ; ethylene group R 29 , R 30 ; allyl group, R 31 , R 32 ; ethyl group, R 33 ; ethylene group R 29 , R 30 ; allyl group, R 31 , R 32 ; 2,2,2-trifluoroethyl group, R 33 ; ethylene group R 29 , R 30 ; allyl group, R 31 , R 32 ; methyl group, R 33 ; trimethylene group R 29 , R 30 ; allyl group, R 31 , R 32 ; ethyl group, R 33 ; trimethylene group R 29 , R 30 ; allyl group, R 31 , R 32 ; 2,2,2-trifluoroethyl group, R 33; trimethylene group R 29, R 30; allyl, R 31, R 32; methyl, R 33; tetramethylene group R 29, R 30; allyl, R 31, R 32;
  • R 34 includes allyl group, propargyl group, cis-2-butenyl group, trans-2-butenyl group, 3-butenyl group, 2-butynyl group, 3-butynyl group, 4-pentenyl group, 4-pentynyl group, 5-hexenyl group, 5-hexynyl group, 7-octenyl group, 7-octynyl group, 9-decenyl group, 9-decynyl group and the like.
  • allyl group, propargyl group, 3-butenyl group, Those having a carbon-carbon unsaturated bond at the terminal, such as a 3-butynyl group, a 4-pentenyl group, and a 4-pentynyl group, are preferable from the viewpoint of battery characteristics.
  • R 35 to R 37 are allyl group, propargyl group, cis-2-butenyl group, trans-2-butenyl group, 3-butenyl group, 2-butynyl group, 3-butynyl group, 4-pentenyl group, 4- Examples include pentynyl group, 5-hexenyl group, 5-hexynyl group, 7-octenyl group, 7-octynyl group, 9-decenyl group, 9-decynyl group, among which allyl group, propargyl group, 3- Those having a carbon-carbon unsaturated bond at the terminal, such as a butenyl group, a 3-butynyl group, a 4-pentenyl group, and a 4-pentynyl group, are preferable from the viewpoint of battery characteristics.
  • a hydrogen group, a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, a pentyl group, a hexyl group, an octyl group, a decyl group, a cyclopentyl group, a cyclohexyl group, a phenyl group, a benzyl group examples include phenethyl group, 2-methoxyethyl group, 2-ethoxyethyl group and the like.
  • R 34 to R 37 is preferably one in which R 34 is an allyl group or a propargyl group from the viewpoint of battery characteristics, and examples thereof include the following.
  • R 34 to R 37 allyl group R 34 , R 36 ; allyl group, R 35 , R 37 ; hydrogen group R 34 , R 36 ; propargyl group, R 35 , R 37 ; hydrogen group R 34 , R 35 ; , R 36 , R 37 ; methyl group R 34 ; allyl group, R 35 ; hydrogen group, R 36 , R 37 ; methyl group R 34 ; propargyl group, R 35 ; hydrogen group, R 36 , R 37 ; 34 , R 35 ; allyl group, R 36 , R 37 ; ethyl group R 34 ; allyl group, R 35 ; hydrogen group, R 36 , R 37 ; ethyl group R 34 ; propargyl group, R 35 ; hydrogen group, R 36 , R 37; ethyl R 34 ; propargyl group, R 35 ; hydrogen group, R 36 , R 37; ethyl R 34 ; propargyl group, R
  • R 38 includes allyl group, propargyl group, cis-2-butenyl group, trans-2-butenyl group, 3-butenyl group, 2-butynyl group, 3-butynyl group, 4-pentenyl group, 4-pentynyl group, 5-hexenyl group, 5-hexynyl group, 7-octenyl group, 7-octynyl group, 9-decenyl group, 9-decynyl group and the like.
  • allyl group, propargyl group, 3-butenyl group, Those having a carbon-carbon unsaturated bond at the terminal, such as a 3-butynyl group, a 4-pentenyl group, and a 4-pentynyl group, are preferable from the viewpoint of battery characteristics.
  • R 39 includes an allyl group, propargyl group, cis-2-butenyl group, trans-2-butenyl group, 3-butenyl group, 2-butynyl group, 3-butynyl group, 4-pentenyl group, 4-pentynyl group, 5-hexenyl group, 5-hexynyl group, 7-octenyl group, 7-octynyl group, 9-decenyl group, 9-decynyl group and the like.
  • allyl group, propargyl group, 3-butenyl group, Those having a carbon-carbon unsaturated bond at the terminal, such as a 3-butynyl group, a 4-pentenyl group, and a 4-pentynyl group, are preferable from the viewpoint of battery characteristics.
  • a hydrogen group, a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, a pentyl group, a hexyl group, an octyl group, a decyl group, a cyclopentyl group, a cyclohexyl group, a phenyl group, a benzyl group examples include phenethyl group, 2-methoxyethyl group, 2-ethoxyethyl group and the like.
  • R 40 examples include an ethylene group, a propylene group, a trimethylene group, a 1-methyltrimethylene group, a 2-methyltrimethylene group, a 3-methyltrimethylene group, and a 2,2-dimethyltrimethylene group.
  • R 38 to R 40 is preferably one in which R 38 is an allyl group or a propargyl group from the viewpoint of battery characteristics, and examples include the following.
  • R 38 , R 39 allyl group, R 40 ; ethylene group R 38 , R 39 ; propargyl group, R 40 ; ethylene group R 38 , R 39 ; allyl group, R 40 ; trimethylene group R 38 , R 39 ; propargyl group , R 40 ; trimethylene group R 38 , R 39 ; allyl group, R 40 ; 2,2-dimethyltrimethylene group R 38 , R 39 ; propargyl group, R 40 ; 2,2-dimethyltrimethylene group
  • R 41 includes allyl group, propargyl group, cis-2-butenyl group, trans-2-butenyl group, 3-butenyl group, 2-butynyl group, 3-butynyl group, 4-pentenyl group, 4-pentynyl group, 5-hexenyl group, 5-hexynyl group, 7-octenyl group, 7-octynyl group, 9-decenyl group, 9-decynyl group and the like.
  • allyl group, propargyl group, 3-butenyl group, Those having a carbon-carbon unsaturated bond at the terminal, such as a 3-butynyl group, a 4-pentenyl group, and a 4-pentynyl group, are preferable from the viewpoint of battery characteristics.
  • R 42 includes an allyl group, a propargyl group, a cis-2-butenyl group, a trans-2-butenyl group, a 3-butenyl group, a 2-butynyl group, a 3-butynyl group, a 4-pentenyl group, a 4-pentynyl group, 5-hexenyl group, 5-hexynyl group, 7-octenyl group, 7-octynyl group, 9-decenyl group, 9-decynyl group and the like.
  • allyl group, propargyl group, 3-butenyl group, Those having a carbon-carbon unsaturated bond at the terminal, such as a 3-butynyl group, a 4-pentenyl group, and a 4-pentynyl group, are preferable from the viewpoint of battery characteristics.
  • a hydrogen group, a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, a pentyl group, a hexyl group, an octyl group, a decyl group, a cyclopentyl group, a cyclohexyl group, a phenyl group, a benzyl group examples include phenethyl group, 2-methoxyethyl group, 2-ethoxyethyl group and the like.
  • R 43 includes methyl, ethyl, propyl, isopropyl, butyl, t-butyl, cyclohexyl, trifluoromethyl, 2,2,2-trifluoroethyl, pentafluoroethyl, hepta
  • Examples include fluoropropyl group, vinyl group, allyl group, phenyl group, nonafluorobutyl group, 4-tolyl group, 3-tolyl group, 2-tolyl group and the like.
  • R 41 to R 43 is preferably one in which R 41 is an allyl group or a propargyl group from the viewpoint of battery characteristics.
  • R 41 , R 42 allyl group, R 43 ; methyl group R 41 , R 42 ; allyl group, R 43 ; ethyl group R 41 , R 42 ; allyl group, R 43 ; cyclohexyl group R 41 , R 42 ; allyl group , R 43 ; trifluoromethyl group R 41 , R 42 ; allyl group, R 43 ; 2,2,2-trifluoroethyl group R 41 , R 42 ; allyl group, R 43 ; vinyl group R 41 , R 42 ; Allyl group, R 43 ; allyl group R 41 , R 42 ; allyl group, R 43 ; phenyl group R 41 , R 42 ; allyl group, R 43 ; 4-tolyl group R 41 , R
  • R 41 , R 42 allyl group, R 43 ; methyl group R 41 , R 42 ; allyl group, R 43 ; ethyl group R 41 , R 42 ; allyl group, R 43 ; cyclohexyl group R 41 , R 42 ; allyl group , R 43 ; trifluoromethyl group R 41 , R 42 ; allyl group, R 43 ; 2,2,2-trifluoroethyl group R 41 , R 42 ; allyl group, R 43 ; vinyl group R 41 , R 42 ; Allyl group, R 43 ; allyl group R 41 , R 42 ; allyl group, R 43 ; phenyl group R 41 , R 42 ; allyl group, R 43 ; 4-tolyl group R 41 ; allyl group, R 42 ;
  • R 41 , R 42 allyl group, R 43 ; methyl group R 41 , R 42 ; allyl group, R 43 ; ethyl group R 41 , R 42 ; allyl group, R 43 ; cyclohexyl group R 41 , R 42 ; allyl group , R 43 ; trifluoromethyl group R 41 , R 42 ; allyl group, R 43 ; 2,2,2-trifluoroethyl group R 41 , R 42 ; allyl group, R 43 ; vinyl group R 41 , R 42 ; Allyl group, R 43 ; allyl group R 41 , R 42 ; allyl group, R 43 ; phenyl group R 41 , R 42 ; allyl group, R 43 ; 4-tolyl group
  • R 44 includes allyl group, propargyl group, cis-2-butenyl group, trans-2-butenyl group, 3-butenyl group, 2-butynyl group, 3-butynyl group, 4-pentenyl group, 4-pentynyl group, 5-hexenyl group, 5-hexynyl group, 7-octenyl group, 7-octynyl group, 9-decenyl group, 9-decynyl group and the like.
  • allyl group, propargyl group, 3-butenyl group, Those having a carbon-carbon unsaturated bond at the terminal, such as a 3-butynyl group, a 4-pentenyl group, and a 4-pentynyl group, are preferable from the viewpoint of battery characteristics.
  • R 45 includes ethylene, trimethylene, 1-methyltrimethylene, 2-methyltrimethylene, 3-methyltrimethylene, 2,2-dimethyltrimethylene, tetramethylene, 1-methyltetramethylene. Group, 4-methyltetramethylene group, pentamethylene group and the like.
  • R 44 and R 45 are preferably one in which R 44 is an allyl group or a propargyl group from the viewpoint of battery characteristics, and examples thereof include the following.
  • R 44 allyl group, R 45 ; trimethylene group R 44 ; allyl group, R 45 ; tetramethylene group R 44 ; propargyl group, R 45 ; trimethylene group R 44 ; propargyl group, R 45 ; tetramethylene group
  • R 46 includes allyl group, propargyl group, cis-2-butenyl group, trans-2-butenyl group, 3-butenyl group, 2-butynyl group, 3-butynyl group, 4-pentenyl group, 4-pentynyl group, 5-hexenyl group, 5-hexynyl group, 7-octenyl group, 7-octynyl group, 9-decenyl group, 9-decynyl group and the like.
  • allyl group, propargyl group, 3-butenyl group, Those having a carbon-carbon unsaturated bond at the terminal, such as a 3-butynyl group, a 4-pentenyl group, and a 4-pentynyl group, are preferable from the viewpoint of battery characteristics.
  • R 47 to R 49 are allyl group, propargyl group, cis-2-butenyl group, trans-2-butenyl group, 3-butenyl group, 2-butynyl group, 3-butynyl group, 4-pentenyl group, 4- Examples include pentynyl group, 5-hexenyl group, 5-hexynyl group, 7-octenyl group, 7-octynyl group, 9-decenyl group, 9-decynyl group, among which allyl group, propargyl group, 3- Those having a carbon-carbon unsaturated bond at the terminal, such as a butenyl group, a 3-butynyl group, a 4-pentenyl group, and a 4-pentynyl group, are preferable from the viewpoint of battery characteristics.
  • a hydrogen group, a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, a pentyl group, a hexyl group, an octyl group, a decyl group, a cyclopentyl group, a cyclohexyl group, a phenyl group, a benzyl group examples include phenethyl group, 2-methoxyethyl group, 2-ethoxyethyl group and the like.
  • R 50 includes a direct bond group, methylene group, ethylene group, trimethylene group, tetramethylene group, pentamethylene group, hexamethylene group, heptamethylene group, octamethylene group, nonamethylene group, decamethylene group, vinylene group, acetylene group, 1 , 2-phenylene group, 1,3-phenylene group, 1,4-phenylene group, 4,4′-biphenylene group, 1,2-cyclohexanediyl group, 1,3-cyclohexanediyl group, 1,4-cyclohexanediyl Groups and the like.
  • R 46 to R 50 is preferably one in which R 46 is an allyl group or a propargyl group from the viewpoint of battery characteristics, and specific examples are as follows.
  • R 46 to R 49 allyl group, R 50 ; direct bonding group R 46 to R 49 ; allyl group, R 50 ; methylene group R 46 to R 49 ; allyl group, R 50 ; ethylene group R 46 to R 49 ; , R 50 ; trimethylene group R 46 to R 49 ; allyl group, R 50 ; tetramethylene group R 46 to R 49 ; allyl group, R 50 ; pentamethylene group R 46 to R 49 ; allyl group, R 50 ; Group R 46 , R 48 ; allyl group, R 47 , R 49 ; hydrogen group, R 50 ; direct bonding group R 46 , R 48 ; allyl group, R 47 , R 49 ; hydrogen group, R 50 ; methylene group R 46 , R 48 ; allyl group, R 47 , R 47 , R
  • R 46 to R 49 allyl group, R 50 ; direct bonding group R 46 to R 49 ; allyl group, R 50 ; methylene group R 46 to R 49 ; allyl group, R 50 ; ethylene group R 46 to R 49 ; , R 50 ; trimethylene group R 46 to R 49 ; allyl group, R 50 ; tetramethylene group R 46 to R 49 ; allyl group, R 50 ; pentamethylene group R 46 to R 49 ; allyl group, R 50 ; Base
  • R 51 includes allyl group, propargyl group, cis-2-butenyl group, trans-2-butenyl group, 3-butenyl group, 2-butynyl group, 3-butynyl group, 4-pentenyl group, 4-pentynyl group, 5-hexenyl group, 5-hexynyl group, 7-octenyl group, 7-octynyl group, 9-decenyl group, 9-decynyl group and the like.
  • allyl group, propargyl group, 3-butenyl group, Those having a carbon-carbon unsaturated bond at the terminal, such as a 3-butynyl group, a 4-pentenyl group, and a 4-pentynyl group, are preferable from the viewpoint of battery characteristics.
  • R 52 examples include an allyl group, a propargyl group, a hydrogen group, a methyl group, an ethyl group, a propyl group, and an isopropyl group.
  • R 53 and R 54 include a methyl group, an ethyl group, and a trifluoromethyl group.
  • R 55 includes methylene, ethylene, trimethylene, tetramethylene and the like.
  • R 51 to R 55 is preferably one in which R 51 is an allyl group or a propargyl group from the viewpoint of battery characteristics, and examples thereof include the following.
  • R 56 includes an allyl group, propargyl group, cis-2-butenyl group, trans-2-butenyl group, 3-butenyl group, 2-butynyl group, 3-butynyl group, 4-pentenyl group, 4-pentynyl group, 5-hexenyl group, 5-hexynyl group, 7-octenyl group, 7-octynyl group, 9-decenyl group, 9-decynyl group and the like.
  • allyl group, propargyl group, 3-butenyl group, Those having a carbon-carbon unsaturated bond at the terminal, such as a 3-butynyl group, a 4-pentenyl group, and a 4-pentynyl group, are preferable from the viewpoint of battery characteristics.
  • R 57 includes allyl group, propargyl group, cis-2-butenyl group, trans-2-butenyl group, 3-butenyl group, 2-butynyl group, 3-butynyl group, 4-pentenyl group, 4-pentynyl group, 5-hexenyl group, 5-hexynyl group, 7-octenyl group, 7-octynyl group, 9-decenyl group, 9-decynyl group and the like.
  • allyl group, propargyl group, 3-butenyl group, Those having a carbon-carbon unsaturated bond at the terminal, such as a 3-butynyl group, a 4-pentenyl group, and a 4-pentynyl group, are preferable from the viewpoint of battery characteristics.
  • a hydrogen group, a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, a pentyl group, a hexyl group, an octyl group, a decyl group, a cyclopentyl group, a cyclohexyl group, a phenyl group, a benzyl group examples include phenethyl group, 2-methoxyethyl group, 2-ethoxyethyl group and the like.
  • R 58 includes methyl, ethyl, propyl, isopropyl, butyl, t-butyl, pentyl, hexyl, cyclohexyl, 2,2,2-trifluoroethyl, allyl, phenyl, A benzyl group, a phenethyl group and the like can be mentioned, and examples of the substituent containing a hetero atom include methoxyethyl, ethoxyethyl, 2-cyanoethyl group, 2-cyano-1- (cyanomethyl) ethyl and the like.
  • R 56 to R 58 is one in which R 56 is an allyl group or a propargyl group from the viewpoint of battery characteristics. Specific examples are given below.
  • R 56 allyl group, R 57 ; allyl group, R 58 ; methyl group R 56 ; allyl group, R 57 ; allyl group, R 58 ; ethyl group R 56 ; allyl group, R 57 ; allyl group, R 58 ; cyclohexyl Group R 56 ; allyl group, R 57 ; allyl group, R 58 ; phenyl group R 56 ; allyl group, R 57 ; allyl group, R 58 ; 2,2,2-trifluoroethyl group R 56 ; allyl group, R 57 ; allyl group, R 58 ; 2-cyanoethyl group R 56 ; allyl group, R 57 ; hydrogen group, R 58 ; methyl group R 56 ; allyl group, R 57 ; hydrogen group, R 58 ; methyl group R 56 ; allyl group, R 57 ; hydrogen group, R 58
  • R 56 allyl group, R 57 ; allyl group, R 58 ; methyl group R 56 ; allyl group, R 57 ; allyl group, R 58 ; ethyl group R 56 ; allyl group, R 57 ; allyl group, R 58 ; cyclohexyl Group R 56 ; allyl group, R 57 ; allyl group, R 58 ; phenyl group R 56 ; allyl group, R 57 ; allyl group, R 58 ; 2,2,2-trifluoroethyl group R 56 ; allyl group, R 57 ; allyl group, R 58 ; 2-cyanoethyl group
  • R 59 includes allyl group, propargyl group, cis-2-butenyl group, trans-2-butenyl group, 3-butenyl group, 2-butynyl group, 3-butynyl group, 4-pentenyl group, 4-pentynyl group, 5-hexenyl group, 5-hexynyl group, 7-octenyl group, 7-octynyl group, 9-decenyl group, 9-decynyl group and the like.
  • allyl group, propargyl group, 3-butenyl group, Those having a carbon-carbon unsaturated bond at the terminal, such as a 3-butynyl group, a 4-pentenyl group, and a 4-pentynyl group, are preferable from the viewpoint of battery characteristics.
  • R 60 includes ethylene, trimethylene, 1-methyltrimethylene, 2-methyltrimethylene, 3-methyltrimethylene, 2,2-dimethyltrimethylene, tetramethylene, 1-methyltetramethylene. Group, 4-methyltetramethylene group, pentamethylene group and the like.
  • R 59 to R 60 is one in which R 59 is an allyl group or a propargyl group from the viewpoint of improving battery characteristics, and specific examples are given below.
  • R 59 allyl group, R 60 ; ethylene group R 59 ; allyl group, R 60 ; trimethylene group R 59 ; propargyl group, R 60 ; ethylene group R 59 ; propargyl group, R 60 ; trimethylene group
  • R 61 includes allyl group, propargyl group, cis-2-butenyl group, trans-2-butenyl group, 3-butenyl group, 2-butynyl group, 3-butynyl group, 4-pentenyl group, 4-pentynyl group, 5-hexenyl group, 5-hexynyl group, 7-octenyl group, 7-octynyl group, 9-decenyl group, 9-decynyl group and the like.
  • allyl group, propargyl group, 3-butenyl group, Those having a carbon-carbon unsaturated bond at the terminal, such as a 3-butynyl group, a 4-pentenyl group, and a 4-pentynyl group, are preferable from the viewpoint of battery characteristics.
  • R 62 to R 64 include allyl group, propargyl group, cis-2-butenyl group, trans-2-butenyl group, 3-butenyl group, 2-butynyl group, 3-butynyl group, 4-pentenyl group, 4- Examples include pentynyl group, 5-hexenyl group, 5-hexynyl group, 7-octenyl group, 7-octynyl group, 9-decenyl group, 9-decynyl group.
  • allyl group, propargyl group, 3-butenyl group A group having a carbon-carbon unsaturated bond at the terminal such as a group, 3-butynyl group, 4-pentenyl group, 4-pentynyl group, etc. is preferable from the viewpoint of battery characteristics.
  • a hydrogen group, a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, a pentyl group, a hexyl group, an octyl group, a decyl group, a cyclopentyl group, a cyclohexyl group, a phenyl group, a benzyl group examples include phenethyl group, 2-methoxyethyl group, 2-ethoxyethyl group and the like.
  • R 61 to R 64 is preferably one in which R 61 is an allyl group or a propargyl group from the viewpoint of battery characteristics, and examples thereof include the following.
  • R 61 to R 64 allyl group R 61 to R 64 ; propargyl group R 61 and R 63 ; allyl group, R 62 and R 64 ; hydrogen group R 61 and R 63 ; propargyl group, R 62 and R 64 ; hydrogen group R 61 , R 63 ; allyl group, R 62 , R 64 ; methyl group R 61 , R 63 ; propargyl group, R 62 , R 64 ; methyl group R 61 , R 63 ; allyl group, R 62 , R 64 ; ethyl Group R 61 , R 63 ; propargyl group, R 62 , R 64 ; ethyl group R 61 , R 63 ; propargyl group, R 62 ,
  • R 61 to R 64 allyl group R 61 , R 63 ; allyl group, R 62 , R 64 ; hydrogen group R 61 , R 63 ; propargyl group, R 62 , R 64 ; hydrogen group R 61 , R 62 ; allyl group , R 63 , R 64 ; methyl group R 61 ; allyl group, R 62 ; hydrogen group, R 63 , R 64 ; methyl group R 61 ; propargyl group, R 62 ; hydrogen group, R 63, R 64 ; methyl group R 61 , R 62 ; allyl group, R 63 , R 64 ; ethyl group R 61 ; allyl group, R 62 ; hydrogen group, R 63 , R 64 ; ethyl group R 61 ; allyl group, R 62 ; hydrogen group, R 63 , R 64 ; ethyl group R 61 ; ally
  • R 61 to R 64 allyl group R 61 , R 62 ; allyl group, R 63 , R 64 ; methyl group R 61 , R 62 ; allyl group, R 63 , R 64 ; ethyl group R 61 , R 62 ; , R 63 , R 64 ; propyl group
  • R 65 includes an allyl group, a propargyl group, a cis-2-butenyl group, a trans-2-butenyl group, a 3-butenyl group, a 2-butynyl group, a 3-butynyl group, a 4-pentenyl group, a 4-pentynyl group, 5-hexenyl group, 5-hexynyl group, 7-octenyl group, 7-octynyl group, 9-decenyl group, 9-decynyl group and the like.
  • allyl group, propargyl group, 3-butenyl group, Those having a carbon-carbon unsaturated bond at the terminal, such as a 3-butynyl group, a 4-pentenyl group, and a 4-pentynyl group, are preferable from the viewpoint of battery characteristics.
  • R 66 includes allyl group, propargyl group, cis-2-butenyl group, trans-2-butenyl group, 3-butenyl group, 2-butynyl group, 3-butynyl group, 4-pentenyl group, 4-pentynyl group, 5-hexenyl group, 5-hexynyl group, 7-octenyl group, 7-octynyl group, 9-decenyl group, 9-decynyl group and the like are mentioned.
  • Those having a carbon-carbon unsaturated bond at the terminal such as -butynyl group, 4-pentenyl group and 4-pentynyl group, are preferred from the viewpoint of battery characteristics.
  • a hydrogen group, a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, a pentyl group, a hexyl group, an octyl group, a decyl group, a cyclopentyl group, a cyclohexyl group, a phenyl group, a benzyl group examples include phenethyl group, 2-methoxyethyl group, 2-ethoxyethyl group and the like.
  • R 67 examples include an ethylene group, a propylene group, a trimethylene group, a 1-methyltrimethylene group, a 2-methyltrimethylene group, a 3-methyltrimethylene group, and a 2,2-dimethyltrimethylene group.
  • R 65 to R 67 is preferably one in which R 65 is an allyl group or a propargyl group from the viewpoint of battery characteristics, and specific examples are as follows.
  • R 65 , R 66 allyl group, R 67 ; ethylene group R 65 , R 66 ; propargyl group, R 67 ; ethylene group R 65 , R 66 ; allyl group, R 67 ; trimethylene group R 65 , R 66 ; propargyl group , R 67 ; trimethylene group R 65 , R 66 ; allyl group, R 67 ; 2,2-dimethyltrimethylene group R 65 , R 66 ; propargyl group, R 67 ; 2,2-dimethyltrimethylene group
  • R 68 includes allyl group, propargyl group, cis-2-butenyl group, trans-2-butenyl group, 3-butenyl group, 2-butynyl group, 3-butynyl group, 4-pentenyl group, 4-pentynyl group, 5-hexenyl group, 5-hexynyl group, 7-octenyl group, 7-octynyl group, 9-decenyl group, 9-decynyl group and the like.
  • allyl group, propargyl group, 3-butenyl group, Those having a carbon-carbon unsaturated bond at the terminal, such as a 3-butynyl group, a 4-pentenyl group, and a 4-pentynyl group, are preferable from the viewpoint of battery characteristics.
  • R 69 includes an allyl group, a propargyl group, a cis-2-butenyl group, a trans-2-butenyl group, a 3-butenyl group, a 2-butynyl group, a 3-butynyl group, a 4-pentenyl group, a 4-pentynyl group, 5-hexenyl group, 5-hexynyl group, 7-octenyl group, 7-octynyl group, 9-decenyl group, 9-decynyl group and the like.
  • allyl group, propargyl group, 3-butenyl group, Those having a carbon-carbon unsaturated bond at the terminal, such as a 3-butynyl group, a 4-pentenyl group, and a 4-pentynyl group, are preferable from the viewpoint of battery characteristics.
  • a hydrogen group, a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, a pentyl group, a hexyl group, an octyl group, a decyl group, a cyclopentyl group, a cyclohexyl group, a phenyl group, a benzyl group examples include phenethyl group, 2-methoxyethyl group, 2-ethoxyethyl group and the like.
  • R 70 and R 71 include methyl, ethyl group, propyl group, isopropyl group, butyl group, t-butyl group, pentyl group, hexyl group, cyclohexyl group, 2,2,2-trifluoroethyl group, allyl group, Examples thereof include a phenyl group, a benzyl group, and a phenethyl group.
  • the substituent containing a hetero atom include a methoxyethyl group, an ethoxyethyl group, and a 2-cyanoethyl group.
  • R 68 to R 71 is one in which R 68 is an allyl group or a propargyl group from the viewpoint of battery characteristics, and the following specific examples can be given.
  • R 68 allyl group, R 69 ; allyl group, R 70 , R 71 ; methyl group R 68 ; allyl group, R 69 ; allyl group, R 70 , R 71 ; ethyl group R 68 ; allyl group, R 69 ; Group, R 70 , R 71 ; cyclohexyl group R 68 ; allyl group, R 69 ; allyl group, R 70 , R 71 ; phenyl group R 68 ; allyl group, R 69 ; allyl group, R 70 , R 71 ; 2,2-trifluoroethyl group R 68 ; allyl group, R 69 ; allyl group, R 70 , R 71 ; 2-cyanoethyl group R 68 ;
  • R 68 allyl group, R 69 ; allyl group, R 70 , R 71 ; methyl group R 68 ; allyl group, R 69 ; allyl group, R 70 , R 71 ; ethyl group R 68 ; allyl group, R 69 ; Group, R 70 , R 71 ; cyclohexyl group R 68 ; allyl group, R 69 ; allyl group, R 70 , R 71 ; phenyl group R 68 ; allyl group, R 69 ; allyl group, R 70 , R 71 ; 2,2-trifluoroethyl group R 68 ; allyl group, R 69 ; allyl group, R 70 , R 71 ; 2-cyanoethyl group
  • R 72 includes allyl group, propargyl group, cis-2-butenyl group, trans-2-butenyl group, 3-butenyl group, 2-butynyl group, 3-butynyl group, 4-pentenyl group, 4-pentynyl group, 5-hexenyl group, 5-hexynyl group, 7-octenyl group, 7-octynyl group, 9-decenyl group, 9-decynyl group and the like.
  • allyl group, propargyl group, 3-butenyl group, Those having a carbon-carbon unsaturated bond at the terminal, such as a 3-butynyl group, a 4-pentenyl group, and a 4-pentynyl group, are preferable from the viewpoint of battery characteristics.
  • R 73 includes methyl, ethyl, propyl, isopropyl, butyl, t-butyl, pentyl, hexyl, cyclohexyl, 2,2,2-trifluoroethyl, allyl, phenyl, A benzyl group, a phenethyl group and the like can be mentioned, and examples of the substituent containing a hetero atom include methoxyethyl, ethoxyethyl, 2-cyanoethyl group, 2-cyano-1- (cyanomethyl) ethyl and the like.
  • R 74 examples include an ethylene group, a propylene group, a trimethylene group, a 1-methyltrimethylene group, a 2-methyltrimethylene group, a 3-methyltrimethylene group, and a 2,2-dimethyltrimethylene group.
  • R 72 is an allyl group or a propargyl group from the viewpoint of battery characteristics, and the following examples are given.
  • R 72 allyl group, R 73 ; methyl group, R 74 ; ethylene group R 72 ; allyl group, R 73 ; ethyl group, R 74 ; ethylene group R 72 ; propargyl group, R 73 ; methyl group, R 74 ; ethylene Group R 72 ; propargyl group, R 73 ; ethyl group, R 74 ; ethylene group
  • R 75 includes allyl group, propargyl group, cis-2-butenyl group, trans-2-butenyl group, 3-butenyl group, 2-butynyl group, 3-butynyl group, 4-pentenyl group, 4-pentynyl group, 5-hexenyl group, 5-hexynyl group, 7-octenyl group, 7-octynyl group, 9-decenyl group, 9-decynyl group and the like.
  • allyl group, propargyl group, 3-butenyl group, Those having a carbon-carbon unsaturated bond at the terminal, such as a 3-butynyl group, a 4-pentenyl group, and a 4-pentynyl group, are preferable from the viewpoint of battery characteristics.
  • R 76 to R 78 are allyl group, propargyl group, cis-2-butenyl group, trans-2-butenyl group, 3-butenyl group, 2-butynyl group, 3-butynyl group, 4-pentenyl group, 4- Examples include pentynyl group, 5-hexenyl group, 5-hexynyl group, 7-octenyl group, 7-octynyl group, 9-decenyl group, 9-decynyl group, among which allyl group, propargyl group, 3- Those having a carbon-carbon unsaturated bond at the terminal, such as a butenyl group, a 3-butynyl group, a 4-pentenyl group, and a 4-pentynyl group, are preferable from the viewpoint of battery characteristics.
  • a hydrogen group, a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, a pentyl group, a hexyl group, an octyl group, a decyl group, a cyclopentyl group, a cyclohexyl group, a phenyl group, a benzyl group examples include phenethyl group, 2-methoxyethyl group, 2-ethoxyethyl group and the like.
  • R 79 includes methyl, ethyl, propyl, isopropyl, butyl, t-butyl, pentyl, hexyl, cyclohexyl, 2,2,2-trifluoroethyl, allyl, phenyl, A benzyl group, a phenethyl group, etc. are mentioned, As a substituent containing a hetero atom, a methoxyethyl, ethoxyethyl, 2-cyanoethyl group, etc. are mentioned.
  • R 75 to R 79 is one in which R 75 is an allyl group or a propargyl group from the viewpoint of battery characteristics, and specific examples are shown below.
  • R 75 to R 78 allyl group, R 79 ; methyl group R 75 , R 77 ; allyl group, R 76 , R 78 ; hydrogen group, R 79 ; methyl group R 75 , R 77 ; propargyl group, R 76 , R 78 ; hydrogen group, R 79 ; methyl group R 75 to R 78 ; allyl group, R 79 ; ethyl group R 75 , R 77 ; allyl group, R 76 , R 78 ; hydrogen group, R 79 ; ethyl group R 75 , R 77 ; propargyl group, R 76 , R 78 ; hydrogen group, R 79 ; ethyl group R 75 to R 78 ; allyl group, R 79 ; 2,2,2-trifluoro
  • R 80 includes allyl group, propargyl group, cis-2-butenyl group, trans-2-butenyl group, 3-butenyl group, 2-butynyl group, 3-butynyl group, 4-pentenyl group, 4-pentynyl group, 5-hexenyl group, 5-hexynyl group, 7-octenyl group, 7-octynyl group, 9-decenyl group, 9-decynyl group and the like.
  • allyl group, propargyl group, 3-butenyl group, Those having a carbon-carbon unsaturated bond at the terminal, such as a 3-butynyl group, a 4-pentenyl group, and a 4-pentynyl group, are preferable from the viewpoint of battery characteristics.
  • R 81 and R 82 are allyl group, propargyl group, cis-2-butenyl group, trans-2-butenyl group, 3-butenyl group, 2-butynyl group, 3-butynyl group, 4-pentenyl group, 4- Examples include pentynyl group, 5-hexenyl group, 5-hexynyl group, 7-octenyl group, 7-octynyl group, 9-decenyl group, 9-decynyl group, among which allyl group, propargyl group, 3- Those having a carbon-carbon unsaturated bond at the terminal, such as a butenyl group, a 3-butynyl group, a 4-pentenyl group, and a 4-pentynyl group, are preferable from the viewpoint of battery characteristics.
  • a hydrogen group, a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, a pentyl group, a hexyl group, an octyl group, a decyl group, a cyclopentyl group, a cyclohexyl group, a phenyl group, a benzyl group examples include phenethyl group, 2-methoxyethyl group, 2-ethoxyethyl group and the like.
  • R 83 examples include an ethylene group, a propylene group, a trimethylene group, a 1-methyltrimethylene group, a 2-methyltrimethylene group, a 3-methyltrimethylene group, and a 2,2-dimethyltrimethylene group.
  • R 80 is an allyl group or a propargyl group from the viewpoint of battery characteristics, and specific examples are given below.
  • R 80 allyl group, R 81 , R 82 ; methyl group, R 83 ; ethylene group R 80 ; propargyl group, R 81 , R 82 ; methyl group, R 83 ; ethylene group R 80 ; allyl group, R 81 , R 82 ; ethyl group, R 83 ; ethylene group R 80 ; propargyl group, R 81 , R 82 ; ethyl group, R 83 ; ethylene group R 80 ; allyl group, R 81 , R 82 ; allyl group, R 83 ; ethylene group R 80 ; propargyl group, R 81 , R 82 ; allyl group, R 83 ; ethylene group R 80 ; propargyl group, R 81 , R 82 ; allyl group, R
  • R 80 allyl group, R 81 , R 82 ; methyl group, R 83 ; ethylene group R 80 ; allyl group, R 81 , R 82 ; ethyl group, R 83 ; ethylene group R 80 ; allyl group, R 81 , R 82 ; allyl group, R 83 ; ethylene group R 80 ; allyl group, R 81 ; R 82 ; hydrogen group, R 83 ; ethylene group
  • R 84 includes allyl group, propargyl group, cis-2-butenyl group, trans-2-butenyl group, 3-butenyl group, 2-butynyl group, 3-butynyl group, 4-pentenyl group, 4-pentynyl group, 5-hexenyl group, 5-hexynyl group, 7-octenyl group, 7-octynyl group, 9-decenyl group, 9-decynyl group and the like.
  • allyl group, propargyl group, 3-butenyl group, Those having a carbon-carbon unsaturated bond at the terminal, such as a 3-butynyl group, a 4-pentenyl group, and a 4-pentynyl group, are preferable from the viewpoint of battery characteristics.
  • R 85 includes allyl group, propargyl group, cis-2-butenyl group, trans-2-butenyl group, 3-butenyl group, 2-butynyl group, 3-butynyl group, 4-pentenyl group, 4-pentynyl group, 5-hexenyl group, 5-hexynyl group, 7-octenyl group, 7-octynyl group, 9-decenyl group, 9-decynyl group and the like.
  • allyl group, propargyl group, 3-butenyl group, Those having a carbon-carbon unsaturated bond at the terminal, such as a 3-butynyl group, a 4-pentenyl group, and a 4-pentynyl group, are preferable from the viewpoint of battery characteristics.
  • a hydrogen group, a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, a pentyl group, a hexyl group, an octyl group, a decyl group, a cyclopentyl group, a cyclohexyl group, a phenyl group, a benzyl group examples include phenethyl group, 2-methoxyethyl group, 2-ethoxyethyl group and the like.
  • R 86 includes methyl, ethyl, propyl, isopropyl, butyl, t-butyl, pentyl, hexyl, cyclohexyl, 2,2,2-trifluoroethyl, allyl, phenyl, A benzyl group, a phenethyl group, etc. are mentioned, As a substituent containing a hetero atom, a methoxyethyl, ethoxyethyl, 2-cyanoethyl group, etc. are mentioned.
  • R 87 examples include an ethylene group, a propylene group, a trimethylene group, a 1-methyltrimethylene group, a 2-methyltrimethylene group, a 3-methyltrimethylene group, and a 2,2-dimethyltrimethylene group.
  • R 84 is an allyl group or a propargyl group from the viewpoint of battery characteristics, and specific examples are given below.
  • R 88 includes allyl group, propargyl group, cis-2-butenyl group, trans-2-butenyl group, 3-butenyl group, 2-butynyl group, 3-butynyl group, 4-pentenyl group, 4-pentynyl group, 5-hexenyl group, 5-hexynyl group, 7-octenyl group, 7-octynyl group, 9-decenyl group, 9-decynyl group and the like.
  • allyl group, propargyl group, 3-butenyl group, Those having a carbon-carbon unsaturated bond at the terminal, such as a 3-butynyl group, a 4-pentenyl group, and a 4-pentynyl group, are preferable from the viewpoint of battery characteristics.
  • R 89 to R 93 are allyl group, propargyl group, cis-2-butenyl group, trans-2-butenyl group, 3-butenyl group, 2-butynyl group, 3-butynyl group, 4-pentenyl group, 4- Examples include pentynyl group, 5-hexenyl group, 5-hexynyl group, 7-octenyl group, 7-octynyl group, 9-decenyl group, 9-decynyl group, among which allyl group, propargyl group, 3- Those having a carbon-carbon unsaturated bond at the terminal, such as a butenyl group, a 3-butynyl group, a 4-pentenyl group, and a 4-pentynyl group, are preferable from the viewpoint of battery characteristics.
  • a hydrogen group, a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, a pentyl group, a hexyl group, an octyl group, a decyl group, a cyclopentyl group, a cyclohexyl group, a phenyl group, a benzyl group examples include phenethyl group, 2-methoxyethyl group, 2-ethoxyethyl group and the like.
  • R 88 to R 93 is one in which R 88 is an allyl group or a propargyl group from the viewpoint of battery characteristics, and the following examples are given.
  • R 88 to R 93 allyl group R 88 , R 90 , R 92 ; allyl group, R 89 , R 91 , R 93 ; hydrogen group R 88 to R 93 ; propargyl group R 88 , R 90 , R 92 ; propargyl group , R 89 , R 91 , R 93 ; hydrogen group R 88 , R 89 ; allyl group, R 90 to R 93 ; methyl group R 88 ; allyl group, R 89 ; hydrogen group, R 90 to R 93 ; methyl group R 88 ; allyl group, R 89 ; hydrogen group, R 90 to R 93 ; methyl group R 88 to R 91 ; allyl group, R 92 , R 93 ; methyl group
  • R 88 to R 93 allyl group R 88 , R 90 , R 92 ; allyl group, R 89 , R 91 , R 93 ; hydrogen group R 88 , R 90 , R 92 ; propargyl group, R 89 , R 91 , R 93 ; hydrogen group R 88 , R 89 ; allyl group, R 90 to R 93 ; methyl group R 88 ; allyl group, R 89 ; hydrogen group, R 90 to R 93 ; methyl group R 88 to R 91 ; allyl group, R 92 , R 93 ; methyl group R 88 , R 90 ; allyl group, R 89 , R 91 ; hydrogen group, R 92 , R 93 ; methyl group R 88 , R 90 ; allyl group, R 89 , R 91 ; hydrogen group, R 92 , R 93 ; methyl group R 88 , R 90
  • R 88 to R 93 allyl group R 88 , R 90 , R 92 ; allyl group, R 89 , R 91 , R 93 ; hydrogen group R 88 , R 89 ; allyl group, R 90 to R 93 ; methyl group R 88 Allyl group, R 89 ; hydrogen group, R 90 to R 93 ; methyl group R 88 to R 91 ; allyl group, R 92 , R 93 ; methyl group R 88 , R 90 ; allyl group, R 89 , R 91 ; Hydrogen group, R 92 , R 93 ; methyl group R 88 , R 89 ; allyl group, R 90 to R 93 ; ethyl group R 88 ; allyl group, R 89 ; hydrogen group, R 90 to R 93 ; ethyl group R 88 ; allyl group, R 89 ; hydrogen group, R 90 to R 93
  • R 94 includes allyl group, propargyl group, cis-2-butenyl group, trans-2-butenyl group, 3-butenyl group, 2-butynyl group, 3-butynyl group, 4-pentenyl group, 4-pentynyl group, 5-hexenyl group, 5-hexynyl group, 7-octenyl group, 7-octynyl group, 9-decenyl group, 9-decynyl group and the like.
  • allyl group, propargyl group, 3-butenyl group, Those having a carbon-carbon unsaturated bond at the terminal, such as a 3-butynyl group, a 4-pentenyl group, and a 4-pentynyl group, are preferable from the viewpoint of battery characteristics.
  • R 95 to R 97 include allyl group, propargyl group, cis-2-butenyl group, trans-2-butenyl group, 3-butenyl group, 2-butynyl group, 3-butynyl group, 4-pentenyl group, 4- Examples include pentynyl group, 5-hexenyl group, 5-hexynyl group, 7-octenyl group, 7-octynyl group, 9-decenyl group, 9-decynyl group, among which allyl group, propargyl group, 3- Those having a carbon-carbon unsaturated bond at the terminal, such as a butenyl group, a 3-butynyl group, a 4-pentenyl group, and a 4-pentynyl group, are preferable from the viewpoint of battery characteristics.
  • a hydrogen group, a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, a pentyl group, a hexyl group, an octyl group, a decyl group, a cyclopentyl group, a cyclohexyl group, a phenyl group, a benzyl group examples include phenethyl group, 2-methoxyethyl group, 2-ethoxyethyl group and the like.
  • R 97 ′ examples include an ethylene group, a propylene group, a trimethylene group, a 1-methyltrimethylene group, a 2-methyltrimethylene group, a 3-methyltrimethylene group, and a 2,2-dimethyltrimethylene group.
  • R 94 is an allyl group or a propargyl group from the viewpoint of battery characteristics, and the following examples are given.
  • R 94 , R 95 ; allyl group, R 96 , R 97 ; methyl group, R 97 ′ ; ethylene group R 94 , R 95 ; propargyl group, R 96 , R 97 ; methyl group, R 97 ′ ; ethylene group R 94 , R 95 ; allyl group, R 96 , R 97 ; ethyl group, R 97 ′ ; ethylene group R 94 , R 95 ; propargyl group, R 96 , R 97 ; ethyl group, R 97 ′ ; ethylene group R 94 , R 95 ; propargyl group, R 96 , R 97 ; ethyl group, R 97 ′ ; ethylene group R 94 , R 95 ; allyl group, R 96 ,
  • R 98 includes an allyl group, a propargyl group, a cis-2-butenyl group, a trans-2-butenyl group, a 3-butenyl group, a 2-butynyl group, a 3-butynyl group, a 4-pentenyl group, a 4-pentynyl group, 5-hexenyl group, 5-hexynyl group, 7-octenyl group, 7-octynyl group, 9-decenyl group, 9-decynyl group and the like.
  • allyl group, propargyl group, 3-butenyl group, Those having a carbon-carbon unsaturated bond at the terminal, such as a 3-butynyl group, a 4-pentenyl group, and a 4-pentynyl group, are preferable from the viewpoint of battery characteristics.
  • the R 99 allyl group, propargyl group, cis-2-butenyl, trans-2-butenyl, 3-butenyl, 2-butynyl, 3-butynyl group, 4-pentenyl group, 4-pentynyl group, 5-hexenyl group, 5-hexynyl group, 7-octenyl group, 7-octynyl group, 9-decenyl group, 9-decynyl group and the like.
  • allyl group, propargyl group, 3-butenyl group, Those having a carbon-carbon unsaturated bond at the terminal, such as a 3-butynyl group, a 4-pentenyl group, and a 4-pentynyl group, are preferable from the viewpoint of battery characteristics.
  • a hydrogen group, a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, a pentyl group, a hexyl group, an octyl group, a decyl group, a cyclopentyl group, a cyclohexyl group, a phenyl group, a benzyl group examples include phenethyl group, 2-methoxyethyl group, 2-ethoxyethyl group and the like.
  • the R 100 methyl, ethyl, propyl, isopropyl, butyl, t- butyl group, a pentyl group, a hexyl group, a cyclohexyl group, a 2,2,2-trifluoroethyl group, an allyl group, a phenyl group, Examples thereof include a benzyl group and a phenethyl group, and examples of the substituent containing a hetero atom include a methoxyethyl group, an ethoxyethyl group, and a 2-cyanoethyl group.
  • R 101 includes a hydrogen group, methyl, ethyl group, propyl group, isopropyl group, butyl group, t-butyl group, pentyl group, hexyl group, heptyl group, octyl group, nonyl group, decyl group, cyclohexyl group, fluoromethyl.
  • substituent containing a hetero atom include methoxymethyl, ethoxymethyl, acetylmethyl group, cyanomethyl group, 1-cyanoethyl group, 2-cyanoethyl group and the like.
  • R 98 , R 99 allyl group, R 100 ; methyl group, R 101 ; methyl group R 98 , R 99 ; allyl group, R 100 ; ethyl group, R 101 ; methyl group R 98 , R 99 ; allyl group, R 100 ; methyl group, R 101 ; ethyl group R 98 , R 99 ; allyl group, R 100 ; 2,2,2-trifluoroethyl group, R 101 ; methyl group R 98 , R 99 ; allyl group, R 100 ; 2,2,2-trifluoroethyl group, R 101 ; methyl group R 98 , R 99 ; allyl group, R 100 ; 2,2,2-trifluoroethyl group, R 101 ; ethyl group R 98 ; allyl group, R 99 ; hydrogen group, R 100 ; methyl group, R 101 ; methyl group R 98 ;
  • R 98 , R 99 allyl group, R 100 ; methyl group, R 101 ; methyl group R 98 , R 99 ; allyl group, R 100 ; ethyl group, R 101 ; methyl group R 98 , R 99 ; allyl group, R 100 ; methyl group, R 101 ; ethyl group R 98 , R 99 ; allyl group, R 100 ; 2,2,2-trifluoroethyl group, R 101 ; methyl group R 98 , R 99 ; allyl group, R 100 ; 2,2,2-trifluoroethyl group, R 101 ; ethyl group R 98 ; allyl group, R 99 ; hydrogen group, R 100 ; methyl group, R 101 ; methyl group R 98 ; allyl group, R 99 ; hydrogen group, R 100 ; methyl group, R 101 ; methyl group R 98 ; allyl group, R 99 ;
  • R 98 , R 99 allyl group, R 100 ; methyl group, R 101 ; methyl group R 98 , R 99 ; allyl group, R 100 ; ethyl group, R 101 ; methyl group R 98 , R 99 ; allyl group, R 100 ; methyl group, R 101 ; ethyl group R 98 , R 99 ; allyl group, R 100 ; 2,2,2-trifluoroethyl group, R 101 ; methyl group R 98 , R 99 ; allyl group, R 100 ; 2,2,2-trifluoroethyl group, R 101 ; ethyl group R 98 ; allyl group, R 99 ; hydrogen group, R 100 ; methyl group, R 101 ; methyl group R 98 ; allyl group, R 99 ; hydrogen group , R 100; ethyl, R 101; methyl R 98; allyl, R 99 ; hydrogen group , R 100;
  • R 102 includes allyl group, propargyl group, cis-2-butenyl group, trans-2-butenyl group, 3-butenyl group, 2-butynyl group, 3-butynyl group, 4-pentenyl group, 4-pentynyl group, 5-hexenyl group, 5-hexynyl group, 7-octenyl group, 7-octynyl group, 9-decenyl group, 9-decynyl group and the like.
  • allyl group, propargyl group, 3-butenyl group, Those having a carbon-carbon unsaturated bond at the terminal, such as a 3-butynyl group, a 4-pentenyl group, and a 4-pentynyl group, are preferable from the viewpoint of battery characteristics.
  • R 103 is hydrogen, methyl, ethyl, propyl, isopropyl, butyl, t-butyl, pentyl, hexyl, heptyl, octyl, nonyl, decyl, cyclohexyl, fluoromethyl.
  • substituent containing a hetero atom include methoxymethyl, ethoxymethyl, acetylmethyl group, cyanomethyl group, 1-cyanoethyl group, 2-cyanoethyl group and the like.
  • R 104 examples include an ethylene group, a propylene group, a trimethylene group, a 1-methyltrimethylene group, a 2-methyltrimethylene group, a 3-methyltrimethylene group, and a 2,2-dimethyltrimethylene group.
  • R 102 is an allyl group or a propargyl group from the viewpoint of improving battery characteristics, and the following examples are given.
  • R 102 allyl group, R 103 ; methyl group, R 104 ; ethylene group R 102 ; allyl group, R 103 ; ethyl group, R 104 ; ethylene group R 102 ; allyl group, R 103 ; phenyl group, R 104 ; ethylene Group R 102 ; allyl group, R 103 ; vinyl group, R 104 ; ethylene group R 102 ; propargyl group, R 103 ; methyl group, R 104 ; ethylene group R 102 ; propargyl group, R 103 ; ethyl group, R 104 ; Ethylene group R 102 ; propargyl group, R 103 ; phenyl group, R 104 ; ethylene group R 102 ; phenyl group, R 104 ; ethylene group
  • R 102 allyl group, R 103 ; methyl group, R 104 ; ethylene group R 102 ; allyl group, R 103 ; ethyl group, R 104 ; ethylene group R 102 ; allyl group, R 103 ; phenyl group, R 104 ; ethylene group R 102; propargyl group, R 103; methyl, R 104; an ethylene group R 102; propargyl group, R 103; ethyl, R 104; an ethylene group R 102; propargyl group, R 103; a phenyl group, R 104; Ethylene group
  • R 105 includes allyl group, propargyl group, cis-2-butenyl group, trans-2-butenyl group, 3-butenyl group, 2-butynyl group, 3-butynyl group, 4-pentenyl group, 4-pentynyl group, 5-hexenyl group, 5-hexynyl group, 7-octenyl group, 7-octynyl group, 9-decenyl group, 9-decynyl group and the like.
  • allyl group, propargyl group, 3-butenyl group, Those having a carbon-carbon unsaturated bond at the terminal, such as a 3-butynyl group, a 4-pentenyl group, and a 4-pentynyl group, are preferable from the viewpoint of battery characteristics.
  • R 106 to 108 are allyl, propargyl, cis-2-butenyl, trans-2-butenyl, 3-butenyl, 2-butynyl, 3-butynyl, 4-pentenyl, 4-pentynyl.
  • a group having a carbon-carbon unsaturated bond at the terminal such as a group, 3-butynyl group, 4-pentenyl group, 4-pentynyl group, etc. is preferable from the viewpoint of battery characteristics.
  • substituents a hydrogen group, a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, a pentyl group, a hexyl group, an octyl group, a decyl group, a cyclopentyl group, a cyclohexyl group, a phenyl group, a benzyl group, Examples include phenethyl group, 2-methoxyethyl group, 2-ethoxyethyl group and the like.
  • R 109 includes hydrogen, methyl, ethyl, propyl, isopropyl, butyl, t-butyl, pentyl, hexyl, heptyl, octyl, nonyl, decyl, cyclohexyl, fluoromethyl Group, difluoromethyl group, trifluoromethyl group, pentafluoroethyl group, heptafluoropropyl group, vinyl group, allyl group, 1-propenyl group, isopropenyl group, phenyl group, benzyl group, phenethyl group, etc.
  • substituent containing a hetero atom include methoxymethyl, ethoxymethyl, acetylmethyl group, cyanomethyl group, 1-cyanoethyl group, 2-cyanoethyl group and the like.
  • R 105 to R 109 is one in which R 105 is an allyl group or a propargyl group from the viewpoint of improving battery characteristics, and the following examples are given.
  • R 105 to R 108 allyl group, R 109 ; methyl group R 105 , R 107 ; allyl group, R 106 , R 108 ; hydrogen group, R 109 ; methyl group R 105 , R 107 ; propargyl group, R 106 , R 108 ; hydrogen group, R 109 ; methyl group R 105 to R 108 ; allyl group, R 109 ; ethyl group R 105 , R 107 ; allyl group, R 106 , R 108 ; hydrogen group, R 109 ; ethyl group R 105 , R 107 ; propargyl group, R 106 , R 108 ; hydrogen group, R 109 ; ethyl group R 105 to R 108 ; allyl group, R 109 ;
  • R 105 to R 108 allyl group, R 109 ; methyl group R 105 , R 107 ; allyl group, R 106 , R 108 ; hydrogen group, R 109 ; methyl group R 105 to R 108 ; allyl group, R 109 ; ethyl Group R 105 , R 107 ; allyl group, R 106 , R 108 ; hydrogen group, R 109 ; ethyl group R 105 to R 108 ; allyl group, R 109 ; phenyl group R 105 , R 107 ; allyl group, R 106 , R 108 ; hydrogen group, R 109 ; phenyl group R 105 to R 108 ; allyl group, R 109 ; vinyl group R 105 , R 107 ; allyl group, R 106 , R 108 ; hydrogen group, R 109 ; vinyl group R 105 , R 107 ; allyl group, R
  • R 110 includes an allyl group, a propargyl group, a cis-2-butenyl group, a trans-2-butenyl group, a 3-butenyl group, a 2-butynyl group, a 3-butynyl group, a 4-pentenyl group, a 4-pentynyl group, 5-hexenyl group, 5-hexynyl group, 7-octenyl group, 7-octynyl group, 9-decenyl group, 9-decynyl group and the like.
  • allyl group, propargyl group, 3-butenyl group, Those having a carbon-carbon unsaturated bond at the terminal, such as a 3-butynyl group, a 4-pentenyl group, and a 4-pentynyl group, are preferable from the viewpoint of battery characteristics.
  • R 111 includes allyl group, propargyl group, cis-2-butenyl group, trans-2-butenyl group, 3-butenyl group, 2-butynyl group, 3-butynyl group, 4-pentenyl group, 4-pentynyl group, 5-hexenyl group, 5-hexynyl group, 7-octenyl group, 7-octynyl group, 9-decenyl group, 9-decynyl group and the like.
  • allyl group, propargyl group, 3-butenyl group, Those having a carbon-carbon unsaturated bond at the terminal, such as a 3-butynyl group, a 4-pentenyl group, and a 4-pentynyl group, are preferable from the viewpoint of battery characteristics.
  • a hydrogen group, a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, a pentyl group, a hexyl group, an octyl group, a decyl group, a cyclopentyl group, a cyclohexyl group, a phenyl group, a benzyl group examples include phenethyl group, 2-methoxyethyl group, 2-ethoxyethyl group and the like.
  • R 112 is hydrogen, methyl, ethyl, propyl, isopropyl, butyl, t-butyl, pentyl, hexyl, heptyl, octyl, nonyl, decyl, cyclohexyl, fluoromethyl Group, difluoromethyl group, trifluoromethyl group, pentafluoroethyl group, heptafluoropropyl group, vinyl group, allyl group, 1-propenyl group, isopropenyl group, phenyl group, benzyl group, phenethyl group, etc.
  • substituent containing a hetero atom include methoxymethyl, ethoxymethyl, acetylmethyl group, cyanomethyl group, 1-cyanoethyl group, 2-cyanoethyl group and the like.
  • R 113 examples include an ethylene group, a propylene group, a trimethylene group, a 1-methyltrimethylene group, a 2-methyltrimethylene group, a 3-methyltrimethylene group, and a 2,2-dimethyltrimethylene group.
  • R 110 is an allyl group or a propargyl group from the viewpoint of battery characteristics, and the following examples are given.
  • R 114 includes allyl, propargyl, cis-2-butenyl, trans-2-butenyl, 3-butenyl, 2-butynyl, 3-butynyl, 4-pentenyl, 4-pentynyl, 5-hexenyl group, 5-hexynyl group, 7-octenyl group, 7-octynyl group, 9-decenyl group, 9-decynyl group and the like.
  • allyl group, propargyl group, 3-butenyl group, Those having a carbon-carbon unsaturated bond at the terminal, such as a 3-butynyl group, a 4-pentenyl group, and a 4-pentynyl group, are preferable from the viewpoint of battery characteristics.
  • R 115 includes allyl group, propargyl group, cis-2-butenyl group, trans-2-butenyl group, 3-butenyl group, 2-butynyl group, 3-butynyl group, 4-pentenyl group, 4-pentynyl group, 5-hexenyl group, 5-hexynyl group, 7-octenyl group, 7-octynyl group, 9-decenyl group, 9-decynyl group and the like.
  • allyl group, propargyl group, 3-butenyl group, Those having a carbon-carbon unsaturated bond at the terminal, such as a 3-butynyl group, a 4-pentenyl group, and a 4-pentynyl group, are preferable from the viewpoint of battery characteristics.
  • a hydrogen group, a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, a pentyl group, a hexyl group, an octyl group, a decyl group, a cyclopentyl group, a cyclohexyl group, a phenyl group, a benzyl group examples include phenethyl group, 2-methoxyethyl group, 2-ethoxyethyl group and the like.
  • R 116 and R 117 include a hydrogen group, methyl, ethyl group, propyl group, isopropyl group, butyl group, t-butyl group, pentyl group, hexyl group, heptyl group, octyl group, nonyl group, decyl group and cyclohexyl group. , Fluoromethyl group, difluoromethyl group, trifluoromethyl group, pentafluoroethyl group, heptafluoropropyl group, vinyl group, allyl group, 1-propenyl group, isopropenyl group, phenyl group, benzyl group, phenethyl group, etc.
  • substituent containing a hetero atom include methoxymethyl, ethoxymethyl, acetylmethyl group, cyanomethyl group, 1-cyanoethyl group, 2-cyanoethyl group and the like.
  • R 114 to R 117 is one in which R 114 is an allyl group or a propargyl group from the viewpoint of battery characteristics, and the following examples are given.
  • content of the compound represented by the said General formula (1) is not specifically limited, 0.001 mass% or more and 10 mass% or less are preferable with respect to a non-aqueous electrolyte solution. More preferably, it is 0.01 mass% or more, and especially 0.1 mass% or more is preferable. On the other hand, 5 mass% or less is still more preferable, and 3 mass% or less is especially preferable.
  • the content of the compound represented by the general formula (1) is in the above range, the effect of the present invention is easily exhibited, and deterioration of battery characteristics due to an increase in resistance is suppressed.
  • the compound may be one kind or a plurality of kinds may be used in combination, but when a plurality of kinds are used in combination, the content represents a total amount of the plurality of kinds.
  • the compound represented by the general formula (1) is an amide compound having a carbon-carbon unsaturated bond, adsorbed on the surface of the positive electrode at the amide group site, and carbon -It is presumed that a function of protecting the positive electrode is exhibited by a polymerization reaction at the carbon unsaturated bond portion. Therefore, if either of these is missing, the effect of the present invention cannot be obtained.
  • the carbon-carbon unsaturated bond is preferably at the end of the substituent because of the ease of the polymerization reaction.
  • the nonaqueous electrolytic solution according to the present invention includes a cyclic carbonate compound having a carbon-carbon unsaturated bond, a cyclic carbonate compound having a fluorine atom, a monofluorophosphate, and a difluorophosphate within a range not impairing the effects of the present invention.
  • various other compounds such as at least one compound selected from the group consisting of nitrile compounds and isocyanato compounds and conventionally known overcharge inhibitors may be contained as an auxiliary agent.
  • a negative electrode when containing at least one compound selected from the group consisting of a cyclic carbonate compound having a carbon-carbon unsaturated bond, a cyclic carbonate compound having a fluorine atom, a monofluorophosphate and a difluorophosphate, a negative electrode In order to form a highly stable film, cycle characteristics and battery characteristics after high-temperature storage may be improved, which is preferable.
  • Cyclic carbonate compound having a carbon-carbon unsaturated bond examples include vinylene carbonate, methyl vinylene carbonate, ethyl vinylene carbonate, 1,2-dimethyl vinylene carbonate, 1,2-diethyl vinylene carbonate, fluoro vinylene carbonate, trifluoromethyl.
  • Vinylene carbonate compounds such as vinylene carbonate; vinyl ethylene carbonate, 1-methyl-2-vinylethylene carbonate, 1-ethyl-2-vinylethylene carbonate, 1-n-propyl-2-vinylethylene carbonate, 1-methyl-2- Vinyl ethylene carbonate compounds such as vinyl ethylene carbonate, 1,1-divinyl ethylene carbonate, 1,2-divinyl ethylene carbonate; 1,1-dimethyl-2- Chi Ren ethylene carbonate, methylene ethylene carbonate compounds such as 1,1-diethyl-2-methylene-ethylene carbonate.
  • vinylene carbonate, vinyl ethylene carbonate, and 1,2-divinyl ethylene carbonate are preferable from the viewpoint of improving cycle characteristics and capacity maintenance characteristics after high-temperature storage, and vinylene carbonate or vinyl ethylene carbonate is more preferable, and vinylene carbonate is particularly preferable. preferable. These may be used alone or in combination of two or more.
  • the proportion in the non-aqueous electrolyte is usually 0.01% by mass or more, preferably 0.1% by mass or more, particularly preferably 0.3% by mass. % Or more, usually 10% by mass or less, preferably 8% by mass or less, particularly preferably 6% by mass or less.
  • the content of the cyclic carbonate compound having a carbon-carbon unsaturated bond is in the above range, the effect of improving the cycle characteristics of the battery and the capacity maintenance characteristics after high temperature storage is sufficiently exhibited. The increase in the amount of gas generated is suppressed.
  • cyclic carbonate compound having a fluorine atom examples include fluoroethylene carbonate, 1,2-difluoroethylene carbonate, 1,1-difluoroethylene carbonate, 1,1,2-trifluoroethylene carbonate, tetrafluoroethylene carbonate, 1- Fluoro-2-methylethylene carbonate, 1-fluoro-1-methylethylene carbonate, 1,2-difluoro-1-methylethylene carbonate, 1,1,2-trifluoro-2-methylethylene carbonate, trifluoromethylethylene carbonate Etc. Of these, fluoroethylene carbonate, 1,2-difluoroethylene carbonate, and 1-fluoro-2-methylethylene carbonate are preferred from the viewpoint of improving cycle characteristics and high-temperature storage characteristics. These may be used alone or in combination of two or more.
  • the proportion in the non-aqueous electrolytic solution is usually 0.001% by mass or more, preferably 0.1% by mass or more, more preferably 0.8%. It is 3% by mass or more, particularly preferably 0.5% by mass or more, and is usually 10% by mass or less, preferably 5% by mass or less, more preferably 4% by mass or less, and particularly preferably 3% by mass or less.
  • fluoroethylene carbonate [1-2. As described in the section “Nonaqueous solvent”, it may be used as a solvent, and in that case, the content is not limited to the above.
  • the counter cation of monofluorophosphate and difluorophosphate is not particularly limited, but lithium, sodium, potassium, magnesium, calcium, and NR 118 R 119 R 120 R 121 (wherein R 118 to R 121 Each independently represents a hydrogen atom or an organic group having 1 to 12 carbon atoms).
  • the organic group having 1 to 12 carbon atoms represented by R 118 to R 121 of ammonium is not particularly limited.
  • the organic group may be substituted with a halogen atom, a halogen atom or an alkyl group.
  • examples thereof include an cycloalkyl group which may be substituted, an aryl group which may be substituted with a halogen atom or an alkyl group, and a nitrogen atom-containing heterocyclic group which may have a substituent.
  • R 118 to R 121 are each independently preferably a hydrogen atom, an alkyl group, a cycloalkyl group, or a nitrogen atom-containing heterocyclic group.
  • monofluorophosphate and difluorophosphate include lithium monofluorophosphate, sodium monofluorophosphate, potassium monofluorophosphate, tetramethylammonium monofluorophosphate, tetraethylammonium monofluorophosphate, difluoro Examples include lithium phosphate, sodium difluorophosphate, potassium difluorophosphate, tetramethylammonium difluorophosphate, tetraethylammonium difluorophosphate, etc., preferably lithium monofluorophosphate and lithium difluorophosphate, more preferably lithium difluorophosphate. preferable. These may be used alone or in combination of two or more.
  • the proportion in the non-aqueous electrolyte is usually 0.001% by mass or more, preferably 0.01% by mass or more, Especially preferably, it is 0.1 mass% or more, Most preferably, it is 0.2 mass% or more, Usually, 5 mass% or less, Preferably it is 3 mass% or less, Most preferably, it is 2 mass% or less.
  • nitrile compound examples include acetonitrile, propionitrile, butyronitrile, valeronitrile, hexanenitrile, heptanenitrile, octanenitrile, nonanenitrile, decanenitrile, dodecanenitrile (lauronitrile), tridecanenitrile, tetradecanenitrile (myristonitrile), Mononitriles such as hexadecane nitrile, pentadecane nitrile, heptadecane nitrile, octadecane nitrile (steanonitrile), nonadecane nitrile, icosonitrile, etc .; Undecanedinitrile, dodecanedinitrile, methylmalononitrile, ethylmalononitrile, isopropyl Rononitrile, tert-butylmalononitrile, methylsuccinon
  • the non-aqueous electrolyte contains a nitrile compound
  • the proportion in the non-aqueous electrolyte is usually 0.001% by mass or more, preferably 0.01% by mass or more, particularly preferably 0.1% by mass or more, Most preferably, it is 0.2% by mass or more, usually 10% by mass or less, preferably 5% by mass or less, and particularly preferably 2% by mass or less.
  • the content of the nitrile compound is in the above range, the effect of the auxiliary agent is exhibited, the deterioration of the battery characteristics such as high load discharge characteristics is suppressed, and the capacity maintenance characteristics and cycle characteristics after high temperature storage are improved. Is preferable.
  • isocyanato compound examples include 1-isocyanatoethane, 1-isocyanatopropane, 1-isocyanatobutane, 1-isocyanatopentane, 1-isocyanatohexane, 1-isocyanatoheptane, 1-isocyanatooctane, 1-isocyanate.
  • the non-aqueous electrolyte contains an isocyanato compound
  • the proportion in the non-aqueous electrolyte is usually 0.001% by mass or more, preferably 0.01% by mass or more, particularly preferably 0.1% by mass or more, Most preferably, it is 0.2% by mass or more, usually 5% by mass or less, preferably 3% by mass or less, and particularly preferably 1% by mass or less.
  • the content of the isocyanato compound is in the above range, the effect of the auxiliary agent is exhibited, the deterioration of the battery characteristics such as high load discharge characteristics is suppressed, and the capacity maintenance characteristics and cycle characteristics after high temperature storage are improved. Is preferable.
  • the non-aqueous electrolyte solution of the present invention may contain various additives as long as the effects of the present invention are not significantly impaired.
  • a conventionally well-known thing can be arbitrarily used as an additive.
  • an additive may be used individually by 1 type and may use 2 or more types together by arbitrary combinations and / or ratios.
  • Examples of the additive include an overcharge inhibitor and an auxiliary agent for improving capacity maintenance characteristics and cycle characteristics after high temperature storage.
  • overcharge inhibitor examples include alkylbiphenyls such as biphenyl, 2-methylbiphenyl, and 2-ethylbiphenyl, terphenyl, partially hydrogenated terphenyl, cyclopentylbenzene, cyclohexylbenzene, and cis-1-propyl-4.
  • alkylbiphenyl such as biphenyl and 2-methylbiphenyl, terphenyl, partially hydrogenated terphenyl, cyclopentylbenzene, cyclohexylbenzene, cis-1-propyl-4-phenylcyclohexane, trans-1-propyl-4- Phenylcyclohexane, cis-1-butyl-4-phenylcyclohexane, trans-1-butyl-4-phenylcyclohexane, t-butylbenzene, t-amylbenzene, diphenyl ether, dibenzofuran, methylphenyl carbonate, diphenyl carbonate, triphenyl phosphate, Aromatic compounds such as tris (4-t-butylphenyl) phosphate, tris (4-cyclohexylphenyl) phosphate; 2-fluorobiphenyl, 3-fluorobiphe Preferred are partially fluorine flu
  • terphenyl a combination of cyclohexylbenzene and t-butylbenzene or t-amylbenzene
  • a partially hydrogenated biphenyl alkylbiphenyl, terphenyl or terphenyl.
  • the content ratio of these overcharge inhibitors in the non-aqueous electrolyte is usually 0.1% by mass or more, preferably 0.2% by mass or more, more preferably 0.3% by mass or more, and particularly preferably 0.5% by mass. It is usually 5% by mass or less, preferably 3% by mass or less, more preferably 2% by mass or less.
  • concentration is in the above range, the desired effect of the overcharge inhibitor is easily exhibited, and a decrease in battery characteristics such as high-temperature storage characteristics is suppressed.
  • an overcharge inhibitor in the non-aqueous electrolyte, it is possible to suppress the rupture / ignition of the non-aqueous electrolyte secondary battery due to overcharging, and the safety of the non-aqueous electrolyte secondary battery is improved. preferable.
  • auxiliary agents for improving capacity retention characteristics and cycle characteristics after high-temperature storage include acid anhydrides such as succinic anhydride, maleic anhydride, phthalic anhydride, citraconic anhydride; erythritan Carbonate compounds such as carbonate, spiro-bis-dimethylene carbonate; ethylene sulfite, 1,3-propane sultone, 1,3-propene sultone, 1,4-butane sultone, methyl methanesulfonate, busulfan, sulfolane, sulfolene, dimethyl Sulfur-containing compounds such as sulfone, diphenylsulfone, divinylsulfone, methylphenylsulfone, diethyldisulfide, dibutyldisulfide, N, N-dimethylmethanesulfonamide, N, N-diethylmethanesulfonamide; 1-methyl-2-pyrrolidinone
  • these adjuvants may be used individually by 1 type, and may use 2 or more types together by arbitrary combinations and / or ratios.
  • the concentration thereof is arbitrary as long as the effect of the present invention is not significantly impaired. It is preferable to set it as the range of 0.1 to 5 mass% normally with respect to the whole liquid.
  • auxiliaries include carbonate compounds such as erythritan carbonate, spiro-bis-dimethylene carbonate, methoxyethyl-methyl carbonate, methoxyethyl-ethyl carbonate, ethoxyethyl-methyl carbonate, ethoxyethyl-ethyl carbonate; succinic anhydride
  • Carboxylic acids such as glutaric anhydride, maleic anhydride, itaconic anhydride, citraconic anhydride, glutaconic anhydride, diglycolic anhydride, cyclohexanedicarboxylic anhydride, cyclopentanetetracarboxylic dianhydride and phenylsuccinic anhydride
  • Anhydrides dimethyl succinate, diethyl succinate, diallyl succinate, dimethyl maleate, diethyl maleate, diallyl maleate, dipropyl maleate, dibutyl maleate, bis maleate (trif Dicarboxy
  • ethylene sulfite, 1,3-propane sultone, 1,4-butane sultone, 1,3-propene sultone, 1,4-butene sultone, busulfan, 1,4 are used for improving battery characteristics after high-temperature storage.
  • Sulfur-containing compounds such as butanediol bis (2,2,2-trifluoroethanesulfonate) are preferred.
  • the content ratio of these auxiliaries in the non-aqueous electrolyte solution is not particularly limited, but is usually 0.01% by mass or more, preferably 0.1% by mass or more, more preferably 0.2% by mass or more, Usually, it is 8 mass% or less, preferably 5 mass% or less, more preferably 3 mass% or less, and particularly preferably 1 mass% or less.
  • the addition of these auxiliaries is preferable in terms of improving capacity maintenance characteristics and cycle characteristics after high-temperature storage. When this concentration is in the above range, the effect of the auxiliary agent is easily exhibited, and the deterioration of battery characteristics such as high load discharge characteristics is suppressed.
  • the nonaqueous electrolytic solution When used in the lithium secondary battery of the present invention, the nonaqueous electrolytic solution is usually present in a liquid state.
  • the nonaqueous electrolytic solution may be gelled with a polymer to form a semi-solid electrolyte.
  • the polymer used for the gelation is arbitrary, and examples thereof include polyvinylidene fluoride, a copolymer of polyvinylidene fluoride and hexafluoropropylene, polyethylene oxide, polyacrylate, and polymethacrylate.
  • macromolecule used for gelatinization may be used individually by 1 type, and may use 2 or more types together by arbitrary combinations and / or ratios.
  • the ratio of the non-aqueous electrolyte in the semi-solid electrolyte is arbitrary as long as the effects of the present invention are not significantly impaired.
  • the ratio of the non-aqueous electrolyte to the total amount of the semisolid electrolyte is usually 30% by mass or more, preferably 50% by mass or more, more preferably 75% by mass or more, and usually 99.95. It is at most mass%, preferably at most 99 mass%, more preferably at most 98 mass%. If the ratio of the non-aqueous electrolyte is too large, it may be difficult to hold the electrolyte and the liquid may easily leak. Conversely, if it is too small, the charge / discharge efficiency and the capacity may be insufficient.
  • the non-aqueous electrolyte solution of the present invention comprises the above-described electrolyte, the halogen-containing phosphate ester compound represented by the general formula (1) of the present invention, and preferably a carbon-carbon unsaturated bond in the above-described non-aqueous solvent. Dissolves at least one compound selected from the group consisting of cyclic carbonates having a halogen atom, cyclic carbonates having a halogen atom, monofluorophosphates, difluorophosphates and nitrile compounds, and other auxiliary agents used as necessary Can be prepared.
  • the presence of water in the non-aqueous electrolyte solution is not preferable because water electrolysis, water-lithium metal reaction, and lithium salt hydrolysis may occur. Therefore, when preparing the non-aqueous electrolyte solution, it is preferable to dehydrate each component such as a non-aqueous solvent in advance. Specifically, it is preferable to dehydrate until the water content is usually 50 ppm or less, particularly 20 ppm or less.
  • the method of dehydration can be arbitrarily selected, and examples thereof include a method of heating under reduced pressure or passing through a molecular sieve.
  • the non-aqueous electrolyte secondary battery of the present invention is the same as the conventionally known non-aqueous electrolyte secondary battery except for the non-aqueous electrolyte, and is usually impregnated with the non-aqueous electrolyte of the present invention.
  • the positive electrode and the negative electrode are laminated via a porous film (separator), and these are housed in a case (exterior body).
  • the shape of the non-aqueous electrolyte secondary battery of the present invention is not particularly limited, and may be any of a cylindrical shape, a square shape, a laminate shape, a coin shape, a large size, and the like.
  • Non-aqueous electrolyte As the non-aqueous electrolyte, the above-described non-aqueous electrolyte of the present invention is used. It should be noted that other non-aqueous electrolytes can be mixed with the non-aqueous electrolyte of the present invention without departing from the spirit of the present invention.
  • the negative electrode active material constituting the negative electrode used in the non-aqueous electrolyte secondary battery of the present invention is not particularly limited as long as it can electrochemically occlude and release lithium ions. Specific examples thereof include carbonaceous materials, alloy-based materials, lithium-containing metal composite oxide materials, and the like.
  • Carbonaceous material negative electrode As the carbonaceous material used as the negative electrode active material of the carbonaceous material negative electrode (hereinafter sometimes referred to as “carbon negative electrode”), one selected from the following (1) to (4) has an initial irreversible capacity, high Good balance of current density charge / discharge characteristics is preferable. Further, the carbonaceous materials (1) to (4) may be used alone or in combination of two or more in any combination and / or ratio.
  • the negative electrode active material layer has at least two types of different crystallinity.
  • the negative electrode active material layer is composed of carbonaceous materials having at least two or more different orientations and / or has an interface where the different crystalline carbonaceous materials are in contact with each other. Or a carbonaceous material having an interface in contact with carbonaceous materials having different orientations
  • artificial carbonaceous material or artificial graphite material of (2) above include natural graphite, coal-based coke, petroleum-based coke, coal-based pitch, petroleum-based pitch, or those obtained by oxidizing these pitches, Needle coke, pitch coke or carbon materials partially graphitized from these, pyrolytic products of organic substances such as furnace black, acetylene black, pitch-based carbon fiber, carbonizable organic substances or their carbides, or carbonizable organic substances are benzene And a solution dissolved in a low-molecular organic solvent such as toluene, xylene, quinoline, n-hexane, or a carbide thereof.
  • a low-molecular organic solvent such as toluene, xylene, quinoline, n-hexane, or a carbide thereof.
  • carbonizable organic substances include coal tar pitches from soft pitch to hard pitch, heavy coal oils such as dry distillation liquefied oil, normal pressure residual oil, and DC heavy oil of reduced pressure residual oil.
  • Decomposed petroleum heavy oil such as ethylene tar, which is a by-product during thermal decomposition of petroleum oil, crude oil, naphtha, etc., aromatic hydrocarbons such as acenaphthylene, decacyclene, anthracene, phenanthrene, etc., nitrogen atom-containing heterocyclic compounds such as phenazine and acridine , Sulfur-containing heterocyclic compounds such as thiophene and bithiophene, polyphenylene such as biphenyl and terphenyl, polyvinyl chloride, polyvinyl alcohol, polyvinyl butyral, insolubilized products of these, organic compounds such as nitrogen-containing polyacrylonitrile and polypyrrole Polymer, organic polymer such as sulfur-containing polythiophen
  • any known method can be used for producing the carbon negative electrode as long as the effect of the present invention is not significantly limited. For example, it is formed by adding a binder, a solvent, and, if necessary, a thickener, a conductive material, a filler, etc. to a negative electrode active material to form a slurry, which is applied to a current collector, dried and then pressed. Can do.
  • the thickness of the negative electrode active material layer per side in the stage immediately before the non-aqueous electrolyte injection process of the battery is usually 15 ⁇ m or more, preferably 20 ⁇ m or more, more preferably 30 ⁇ m or more, and usually 150 ⁇ m or less. 120 ⁇ m or less is preferable, and 100 ⁇ m or less is more preferable.
  • the thickness of the negative electrode active material exceeds this range, the non-aqueous electrolyte solution hardly penetrates to the vicinity of the current collector interface, and thus the high current density charge / discharge characteristics may be deteriorated.
  • the volume ratio of the current collector to the negative electrode active material increases, and the battery capacity may decrease.
  • the negative electrode active material may be roll-formed to form a sheet electrode, or may be formed into a pellet electrode by compression molding.
  • the current collector for holding the negative electrode active material a known material can be arbitrarily used, and examples thereof include metal materials such as copper, nickel, stainless steel, and nickel-plated steel. In particular, copper is preferable.
  • the shape of the current collector may be, for example, a metal foil, a metal cylinder, a metal coil, a metal plate, a metal thin film, an expanded metal, a punch metal, a foam metal, or the like when the current collector is a metal material.
  • a metal thin film is preferable, and a copper foil is more preferable, and a rolled copper foil by a rolling method and an electrolytic copper foil by an electrolytic method are more preferable, and both can be used as a current collector.
  • a copper alloy (phosphor bronze, titanium copper, Corson alloy, Cu—Cr—Zr alloy, etc.) having higher strength than pure copper can be used.
  • a current collector made of a copper foil produced by a rolling method is suitable for use in a small cylindrical battery because the copper crystals are arranged in the rolling direction so that the negative electrode is hard to crack even if it is rounded sharply or rounded at an acute angle. be able to.
  • Electrolytic copper foil for example, immerses a metal drum in a non-aqueous electrolyte solution in which copper ions are dissolved, and causes the copper to precipitate on the surface of the drum by flowing current while rotating it. Is obtained.
  • Copper may be deposited on the surface of the rolled copper foil by an electrolytic method.
  • One side or both sides of the copper foil may be subjected to a roughening treatment or a surface treatment (for example, a chromate treatment having a thickness of about several nm to 1 ⁇ m, a base treatment such as Ti).
  • the thickness of the metal thin film is arbitrary, but is usually 1 ⁇ m or more, preferably 3 ⁇ m or more, more preferably 5 ⁇ m or more, and usually 100 ⁇ m or less, preferably 50 ⁇ m or less, more preferably 30 ⁇ m or less. If the thickness of the metal thin film is less than 1 ⁇ m, the strength may be reduced, making application difficult. Moreover, when it becomes thicker than 100 micrometers, the shape of electrodes, such as winding, may be changed. The metal thin film may be mesh.
  • the thickness ratio between the current collector and the negative electrode active material layer is not particularly limited, but “(Negative electrode active material layer thickness just before non-aqueous electrolyte injection) / (current collector thickness)”
  • the value is preferably 150 or less, more preferably 20 or less, particularly preferably 10 or less, more preferably 0.1 or more, still more preferably 0.4 or more, and particularly preferably 1 or more.
  • the ratio of the thickness of the current collector to the negative electrode active material layer exceeds the above range, the current collector may generate heat due to Joule heat during high current density charge / discharge.
  • the volume ratio of the current collector to the negative electrode active material increases, and the battery capacity may decrease.
  • the electrode structure when the negative electrode active material is made into an electrode is not particularly limited, but the density of the negative electrode active material present on the current collector is preferably 1 g ⁇ cm ⁇ 3 or more, and 1.2 g ⁇ cm ⁇ 3.
  • the above is more preferable, 1.3 g ⁇ cm ⁇ 3 or more is particularly preferable, 2 g ⁇ cm ⁇ 3 or less is preferable, 1.9 g ⁇ cm ⁇ 3 or less is more preferable, and 1.8 g ⁇ cm ⁇ 3 or less is further more preferable. preferable.
  • the density of the negative electrode active material existing on the current collector exceeds the above range, the negative electrode active material particles are destroyed, and the initial irreversible capacity increases or non-aqueous system near the current collector / negative electrode active material interface. There is a case where high current density charge / discharge characteristics are deteriorated due to a decrease in permeability of the electrolytic solution.
  • the amount is less than the above range, the conductivity between the negative electrode active materials decreases, the battery resistance increases, and the capacity per unit volume may decrease.
  • the binder for binding the negative electrode active material is not particularly limited as long as it is a material that is stable with respect to the non-aqueous electrolyte solution and the solvent used in manufacturing the electrode.
  • resin-based polymers such as polyethylene, polypropylene, polyethylene terephthalate, polymethyl methacrylate, aromatic polyamide, cellulose, and nitrocellulose
  • SBR styrene-butadiene rubber
  • isoprene rubber butadiene rubber, fluorine rubber
  • NBR Acrylonitrile / butadiene rubber
  • rubbery polymers such as ethylene / propylene rubber
  • EPDM ethylene / propylene / diene terpolymer
  • styrene / ethylene / Thermoplastic elastomeric polymer such as butadiene / styrene copolymer,
  • any solvent can be used as long as it can dissolve or disperse the negative electrode active material, the binder (binder), and the thickener and conductive agent used as necessary.
  • an aqueous solvent or a non-aqueous solvent may be used.
  • aqueous solvent examples include water, alcohol and the like
  • non-aqueous solvent examples include N-methylpyrrolidone (NMP), dimethylformamide, dimethylacetamide, methyl ethyl ketone, cyclohexanone, methyl acetate, methyl acrylate, diethyltriamine, N , N-dimethylaminopropylamine, tetrahydrofuran (THF), toluene, acetone, diethyl ether, dimethylacetamide, hexamethylphosphalamide, dimethyl sulfoxide, benzene, xylene, quinoline, pyridine, methylnaphthalene, hexane, etc. .
  • aqueous solvent when used, it is preferable to add a dispersant or the like in addition to the thickener and make a slurry using a latex such as SBR.
  • these solvent may be used individually by 1 type, or may use 2 or more types together by arbitrary combinations and / or ratios.
  • the ratio of the binder to the negative electrode active material is preferably 0.1% by mass or more, more preferably 0.5% by mass or more, particularly preferably 0.6% by mass or more, and preferably 20% by mass or less, 15% by mass. The following is more preferable, 10 mass% or less is still more preferable, and 8 mass% or less is especially preferable.
  • the ratio of the binder with respect to a negative electrode active material exceeds the said range, the binder ratio from which the amount of binders does not contribute to battery capacity may increase, and the fall of battery capacity may be caused. On the other hand, below the above range, the strength of the negative electrode may be reduced.
  • the ratio of the binder to the negative electrode active material is usually 0.1% by mass or more, preferably 0.5% by mass or more, and 0 .6% by mass or more is more preferable, and is usually 5% by mass or less, preferably 3% by mass or less, and more preferably 2% by mass or less.
  • the main component contains a fluorine-based polymer typified by polyvinylidene fluoride
  • the ratio to the negative electrode active material is usually 1% by mass or more, preferably 2% by mass or more, and more preferably 3% by mass or more. Preferably, it is usually 15% by mass or less, preferably 10% by mass or less, and more preferably 8% by mass or less.
  • a thickener is usually used to adjust the viscosity of the slurry.
  • the thickener is not particularly limited, and specific examples include carboxymethyl cellulose, methyl cellulose, hydroxymethyl cellulose, ethyl cellulose, polyvinyl alcohol, oxidized starch, phosphorylated starch, casein, and salts thereof. These may be used individually by 1 type, or may use 2 or more types together by arbitrary combinations and / or ratios.
  • the ratio of the thickener to the negative electrode active material is usually 0.1% by mass or more, preferably 0.5% by mass or more, more preferably 0.6% by mass or more, and usually 5 mass% or less, preferably 3 mass% or less, more preferably 2 mass% or less.
  • the ratio of the thickener to the negative electrode active material is less than the above range, applicability may be significantly reduced. Moreover, when it exceeds the said range, the ratio of the negative electrode active material which occupies for a negative electrode active material layer will fall, and the problem that the capacity
  • the negative electrode of the non-aqueous electrolyte secondary battery of the present invention contains an alloy material, preferably at least one element selected from the group consisting of Si, Sn and Pb, as a negative electrode active material capable of occluding and releasing metal ions May be a negative electrode (hereinafter sometimes referred to as “alloy-based material negative electrode”).
  • Alloy material As the alloy material used as the negative electrode active material of the negative electrode, as long as lithium can be occluded / released, a single metal or alloy that forms a lithium alloy, or oxides / carbides / nitrides / silicides thereof Any compound such as sulfide or phosphide is not particularly limited, but preferably a metal or metalloid element of Group 13 or 14 of the periodic table as long as it is a single metal or alloy that forms a lithium alloy (Ie, excluding carbon) is preferable, and further, a simple metal of Si, Sn, or Pb (these may be referred to as “specific metal elements” hereinafter), or an alloy / compound containing these atoms It is preferable that
  • Examples of the negative electrode active material having at least one kind of atom selected from the specific metal element include a single metal of any one specific metal element, an alloy composed of two or more specific metal elements, one type, or two or more types And an alloy composed of one or more other metal elements and a compound containing one or more specific metal elements.
  • Examples of compounds containing one or more specific metal elements include carbides, oxides, nitrides, silicides, sulfides, phosphides, etc. containing one or more specific metal elements. Examples include complex compounds.
  • compounds in which these complex compounds are complexly bonded to several kinds of elements such as simple metals, alloys, or non-metallic elements can be given as examples. More specifically, for example, in Si and Sn, an alloy of these elements and a metal that does not operate as a negative electrode can be used. In addition, for example, in Sn, there is a complex compound containing 5 to 6 kinds of elements in combination of a metal that acts as a negative electrode other than Sn, Si, Sn, and Pb, a metal that does not operate as a negative electrode, and a nonmetallic element Can be used.
  • Si and / or Sn metals, alloys, oxides, carbides, nitrides, and the like are preferable from the viewpoint of capacity per unit mass and environmental load.
  • the capacity per unit mass is inferior to that of a single metal or an alloy, the following compounds containing Si and / or Sn are also preferable because of excellent cycle characteristics.
  • the element ratio between Si and / or Sn and oxygen is usually 0.5 or more, preferably 0.7 or more, more preferably 0.9 or more, and usually 1.5 or less, preferably 1.
  • -Element ratio of Si and / or Sn and nitrogen is usually 0.5 or more, preferably 0.7 or more, more preferably 0.9 or more, and usually 1.5 or less, preferably 1.
  • -Element ratio of Si and / or Sn and carbon is usually 0.5 or more, preferably 0.7 or more, more preferably 0.9 or more, and usually 1.5 or less, preferably 1.
  • any 1 type may be used independently for the above-mentioned negative electrode active material, and 2 or more types may be used together by arbitrary combinations and / or ratios.
  • the alloy-based material negative electrode can be manufactured using any known method. Specifically, as a method for producing a negative electrode, for example, a method in which a negative electrode active material added with a binder or a conductive material is roll-formed as it is to form a sheet electrode, or a compression-molded pellet electrode In general, the above-mentioned method is applied to a negative electrode current collector (hereinafter also referred to as “negative electrode current collector”) by a method such as a coating method, a vapor deposition method, a sputtering method, or a plating method. A method of forming a thin film layer (negative electrode active material layer) containing a negative electrode active material is used.
  • the material of the negative electrode current collector examples include steel, copper alloy, nickel, nickel alloy, and stainless steel. Of these, copper foil is preferred from the viewpoint of easy processing into a thin film and cost.
  • the thickness of the negative electrode current collector is usually 1 ⁇ m or more, preferably 5 ⁇ m or more, and is usually 100 ⁇ m or less, preferably 50 ⁇ m or less. If the thickness of the negative electrode current collector is too thick, the capacity of the entire battery may be too low, and conversely, if it is too thin, handling may be difficult.
  • the surface of the negative electrode current collector is preferably subjected to a roughening treatment in advance.
  • Surface roughening methods include blasting, rolling with a rough roll, polishing cloth with a fixed abrasive particle, grinder, emery buff, wire brush equipped with steel wire, etc. Examples thereof include a mechanical polishing method, an electrolytic polishing method, and a chemical polishing method.
  • a perforated negative electrode current collector such as an expanded metal or a punching metal can be used. This type of negative electrode current collector can be freely changed in mass by changing its aperture ratio.
  • the negative electrode active material layer is further less likely to peel due to the rivet effect through the hole.
  • the hole area ratio is too high, the contact area between the negative electrode active material layer and the negative electrode current collector becomes small, and thus the adhesive strength may be lowered.
  • the positive electrode active material contained in the positive electrode used in the non-aqueous electrolyte secondary battery of the present invention is not particularly limited as long as it can electrochemically occlude and release lithium ions.
  • Substances containing at least one transition metal are preferred. Specific examples include lithium transition metal composite oxides and lithium-containing transition metal phosphate compounds.
  • Lithium transition metal composite oxides include lithium / cobalt composite oxides such as LiCoO 2 , lithium / nickel composite oxides such as LiNiO 2 , and lithium / manganese composite oxides such as LiMnO 2 , LiMn 2 O 4 , and Li 2 MnO 4. And some of the transition metal atoms that are the main components of these lithium transition metal composite oxides are Al, Ti, V, Cr, Mn, Fe, Co, Li, Ni, Cu, Zn, Mg, Ga, Zr, Si And the like substituted with other metals.
  • substituted ones for example, LiNi 0.5 Mn 0.5 O 2 , LiNi 0.85 Co 0.10 Al 0.05 O 2 , LiNi 0.33 Co 0.33 Mn 0.33 O 2 , LiMn 1.8 Al 0.2 O 4 , LiMn 1.5 Ni 0.5 O 4 and the like.
  • lithium-containing transition metal phosphate compound examples include LiFePO 4 , Li 3 Fe 2 (PO 4 ) 3 , iron phosphates such as LiFeP 2 O 7 and Li 2 FeP 2 O 7 , cobalt phosphates such as LiCoPO 4 , Manganese phosphates such as LiMnPO 4 , some of the transition metal atoms that are the main components of these lithium transition metal phosphate compounds are Al, Ti, V, Cr, Mn, Fe, Co, Li, Ni, Cu, Zn, Examples include those substituted with other metals such as Mg, Ga, Zr, Nb, and Si.
  • the surface of the above-mentioned composite oxide of transition metal and lithium is oxidized on metals such as Al, B, Ti, Zr, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Mg, Ca, and Ga. It is preferable to coat with an object because the oxidation reaction of the solvent at a high voltage is suppressed.
  • metals such as Al, B, Ti, Zr, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Mg, Ca, and Ga.
  • Al 2 O 3 , TiO 2 , ZrO 2 , and MgO are particularly preferable because they have high strength and exhibit a stable coating effect.
  • any one of these positive electrode active materials may be used alone, or two or more of them may be used in any combination and / or ratio.
  • the tap density of the positive electrode active material is usually 1.3 g ⁇ cm ⁇ 3 or more, preferably 1.5 g ⁇ cm ⁇ 3 or more, more preferably 1.6 g ⁇ cm ⁇ 3 or more, and 1.7 g ⁇ cm ⁇ 3. more particularly preferred, and generally not more than 2.5g ⁇ cm -3, 2.4g ⁇ cm -3 or less.
  • the tap density of the positive electrode active material is lower than the above range, the amount of the dispersion medium necessary for forming the positive electrode active material layer increases, and the necessary amount of the conductive material and the binder increases.
  • the filling rate of the positive electrode active material is limited, and the battery capacity may be limited.
  • the tap density is preferably as large as possible, but there is no particular upper limit.
  • diffusion of lithium ions in the positive electrode active material layer as a medium becomes rate-determining, and load characteristics are likely to deteriorate. There is a case.
  • the value of the measured specific surface area using the BET method is usually 0.2 m 2 ⁇ g -1 or more, 0.3 m 2 ⁇ g -1 or more preferably, 0.4 m more preferably 2 ⁇ g -1 or more, generally not more than 4.0 m 2 ⁇ g -1, preferably 2.5 m 2 ⁇ g -1 or less, more preferably 1.5 m 2 ⁇ g -1 or less.
  • the positive electrode is produced by forming a positive electrode active material layer containing positive electrode active material particles and a binder on a current collector.
  • the production of the positive electrode using the positive electrode active material can be produced by any known method.
  • a positive electrode active material, a binder, and, if necessary, a conductive material and / or a thickener mixed in a dry form into a sheet form are pressure-bonded to a positive electrode current collector, or these materials are
  • a positive electrode can be obtained by forming a positive electrode active material layer on the current collector by dissolving or dispersing it in a liquid medium as a slurry, applying this to a positive electrode current collector and drying it.
  • the content of the positive electrode active material in the positive electrode active material layer is usually 10% by mass or more, preferably 30% by mass or more, particularly preferably 50% by mass or more, and usually 99.9% by mass or less, preferably 99% by mass. It is as follows. When the content of the positive electrode active material in the positive electrode active material layer is below the above range, the electric capacity may be insufficient. Moreover, when the said range is exceeded, the intensity
  • the positive electrode active material powder may be used alone, or two or more of different compositions or different powder physical properties may be used in any combination and / or ratio.
  • a known conductive material can be arbitrarily used as the conductive material.
  • Specific examples include metal materials such as copper and nickel; graphite such as natural graphite and artificial graphite (graphite); carbon black such as acetylene black; and carbonaceous materials such as amorphous carbon such as needle coke. These may be used individually by 1 type and may use 2 or more types together by arbitrary combinations and / or ratios.
  • the conductive material is usually 0.01% by mass or more, preferably 0.1% by mass or more, more preferably 1% by mass or more, and usually 50% by mass or less, preferably 30% by mass or less in the positive electrode active material layer. More preferably, it is used so as to contain 15% by mass or less. If the content of the conductive material is lower than the above range, the conductivity may be insufficient. Moreover, when it exceeds the said range, battery capacity may fall.
  • the binder used for manufacturing the positive electrode active material layer is not particularly limited as long as it is a material that is stable with respect to the non-aqueous electrolyte solution and the solvent used when manufacturing the electrode.
  • the binder used in the coating method may be any material that can be dissolved or dispersed in the liquid medium used during electrode production. Specific examples include polyethylene, polypropylene, polyethylene terephthalate, polymethyl methacrylate, and aromatic polyamide.
  • Resin polymers such as cellulose and nitrocellulose; rubbery polymers such as SBR (styrene butadiene rubber), NBR (acrylonitrile butadiene rubber), fluorine rubber, isoprene rubber, butadiene rubber, ethylene propylene rubber; styrene Butadiene / styrene block copolymer or hydrogenated product thereof, EPDM (ethylene / propylene / diene terpolymer), styrene / ethylene / butadiene / ethylene copolymer, styrene / isoprene / styrene block copolymer or hydrogen thereof Additives, etc.
  • SBR styrene butadiene rubber
  • NBR acrylonitrile butadiene rubber
  • fluorine rubber isoprene rubber, butadiene rubber, ethylene propylene rubber
  • Thermoplastic elastomeric polymers soft resinous polymers such as syndiotactic-1,2-polybutadiene, polyvinyl acetate, ethylene / vinyl acetate copolymer, propylene / ⁇ -olefin copolymer; polyvinylidene fluoride (PVdF) ), Fluorinated polymers such as polytetrafluoroethylene, fluorinated polyvinylidene fluoride, polytetrafluoroethylene / ethylene copolymer; polymer compositions having ionic conductivity of alkali metal ions (especially lithium ions), etc. It is done. In addition, these substances may be used individually by 1 type, and may use 2 or more types together by arbitrary combinations and / or ratios.
  • the ratio of the binder in the positive electrode active material layer is usually 0.1% by mass or more, preferably 1% by mass or more, more preferably 3% by mass or more, and usually 80% by mass or less, and 60% by mass. % Or less is preferable, 40% by mass or less is more preferable, and 10% by mass or less is particularly preferable.
  • the ratio of the binder is below the above range, the positive electrode active material cannot be sufficiently retained, the positive electrode has insufficient mechanical strength, and battery performance such as cycle characteristics may be deteriorated. Moreover, when it exceeds the said range, it may lead to a battery capacity or electroconductivity fall.
  • the liquid medium for forming the slurry may be any type of solvent that can dissolve or disperse the positive electrode active material, the conductive agent, the binder, and the thickener used as necessary.
  • aqueous solvent or a non-aqueous solvent may be used.
  • the aqueous solvent include water, a mixed solvent of alcohol and water, and the like.
  • non-aqueous solvents examples include aliphatic hydrocarbons such as hexane; aromatic hydrocarbons such as benzene, toluene, xylene, and methylnaphthalene; heterocyclic compounds such as quinoline and pyridine; ketones such as acetone, methyl ethyl ketone, and cyclohexanone.
  • Esters such as methyl acetate and methyl acrylate; amines such as diethylenetriamine and N ⁇ N-dimethylaminopropylamine; ethers such as diethyl ether and tetrahydrofuran (THF); N-methylpyrrolidone (NMP) and dimethylformamide Amides such as dimethylacetamide; aprotic polar solvents such as hexamethylphosphalamide and dimethylsulfoxide. In addition, these may be used individually by 1 type and may use 2 or more types together by arbitrary combinations and / or ratios.
  • aqueous solvent When an aqueous solvent is used as the liquid solvent for forming the slurry, it is preferable to make a slurry using a thickener and a latex such as styrene butadiene rubber (SBR).
  • a thickener is usually used to adjust the viscosity of the slurry.
  • the thickener is not limited as long as the effects of the present invention are not significantly impaired. Specifically, carboxymethylcellulose, methylcellulose, hydroxymethylcellulose, ethylcellulose, polyvinyl alcohol, oxidized starch, phosphorylated starch, casein, or a salt thereof. Etc. These may be used individually by 1 type, or may use 2 or more types together by arbitrary combinations and / or ratios.
  • the ratio of the thickener to the active material is usually 0.1% by mass or more, preferably 0.5% by mass or more, more preferably 0.6% by mass or more, and usually 5% by mass. % Or less, preferably 3% by mass or less, more preferably 2% by mass or less. If it falls below the above range, applicability may be remarkably reduced, and if it exceeds the above range, the ratio of the active material in the positive electrode active material layer is lowered, the battery capacity is reduced, and the resistance between the positive electrode active materials. May increase.
  • the positive electrode active material layer obtained by applying and drying the slurry is preferably consolidated by a hand press, a roller press or the like in order to increase the packing density of the positive electrode active material.
  • the density of the positive electrode active material layer is preferably 1 g ⁇ cm ⁇ 3 or more, more preferably 1.5 g ⁇ cm ⁇ 3 or more, particularly preferably 2 g ⁇ cm ⁇ 3 or more, and preferably 4 g ⁇ cm ⁇ 3 or less. 3.5 g ⁇ cm ⁇ 3 or less is more preferable, and 3 g ⁇ cm ⁇ 3 or less is particularly preferable.
  • the density of the positive electrode active material layer exceeds the above range, the permeability of the non-aqueous electrolyte solution to the vicinity of the current collector / active material interface may decrease, and the charge / discharge characteristics at a high current density may decrease. Moreover, when less than the said range, the electroconductivity between active materials may fall and battery resistance may increase.
  • a material of a positive electrode electrical power collector A well-known thing can be used arbitrarily. Specific examples include metal materials such as aluminum, stainless steel, nickel plating, titanium, and tantalum; and carbonaceous materials such as carbon cloth and carbon paper. Of these, metal materials, particularly aluminum, are preferred. Examples of the shape of the current collector include metal foil, metal cylinder, metal coil, metal plate, metal thin film, expanded metal, punch metal, foam metal, etc. A carbon thin film, a carbon cylinder, etc. are mentioned. Of these, metal thin films are preferred. In addition, you may shape
  • the thickness of the metal thin film of the current collector is arbitrary, but is usually 1 ⁇ m or more, preferably 3 ⁇ m or more, more preferably 5 ⁇ m or more, and usually 1 mm or less, preferably 100 ⁇ m or less, more preferably 50 ⁇ m or less. . If the metal thin film is thinner than the above range, the strength required for the current collector may be insufficient. On the other hand, if the thin film is thicker than the above range, handleability may be impaired, or the capacity of the entire battery may be reduced.
  • the ratio of the thickness of the current collector to the positive electrode active material layer is not particularly limited, but (the thickness of the active material layer on one side immediately before the nonaqueous electrolyte solution injection) / (thickness of the current collector) is usually 150 or less. It is preferably 20 or less, particularly preferably 10 or less, usually 0.1 or more, preferably 0.4 or more, and particularly preferably 1 or more.
  • the ratio of the thickness of the current collector to the positive electrode active material layer exceeds the above range, the current collector may generate heat due to Joule heat during high current density charge / discharge.
  • the volume ratio of the current collector to the positive electrode active material may increase, and the battery capacity may decrease.
  • a separator is interposed between the positive electrode and the negative electrode in order to prevent a short circuit.
  • a separator There is no restriction
  • a resin, glass fiber, inorganic material, etc. formed of a material that is stable with respect to the non-aqueous electrolyte solution of the present invention is used, and a porous sheet or a nonwoven fabric-like material having excellent liquid retention properties is used. Is preferred.
  • polyolefins such as polyethylene and polypropylene, polytetrafluoroethylene, polyethersulfone, glass filters and the like can be used. Of these, glass filters and polyolefins are preferred, and polyolefins are more preferred. These materials may be used individually by 1 type, and may use 2 or more types together by arbitrary combinations and / or ratios.
  • the thickness of the separator is arbitrary, but is usually 1 ⁇ m or more, preferably 5 ⁇ m or more, more preferably 10 ⁇ m or more, and usually 50 ⁇ m or less, preferably 40 ⁇ m or less, more preferably 30 ⁇ m or less. If the separator is too thin than the above range, the insulating properties and mechanical strength may decrease. On the other hand, if it is thicker than the above range, not only the battery performance such as the rate characteristic may be lowered, but also the energy density of the whole non-aqueous electrolyte secondary battery may be lowered.
  • the porosity of the separator is arbitrary, but is usually 20% or more, preferably 35% or more, more preferably 45% or more, Moreover, it is 90% or less normally, 85% or less is preferable and 75% or less is still more preferable. If the porosity is too smaller than the above range, the membrane resistance tends to increase and the rate characteristics tend to deteriorate. Moreover, when larger than the said range, it exists in the tendency for the mechanical strength of a separator to fall and for insulation to fall.
  • the average pore diameter of the separator is also arbitrary, but is usually 0.5 ⁇ m or less, preferably 0.2 ⁇ m or less, and usually 0.05 ⁇ m or more. If the average pore diameter exceeds the above range, a short circuit tends to occur. On the other hand, below the above range, the film resistance may increase and the rate characteristics may deteriorate.
  • oxides such as alumina and silicon dioxide
  • nitrides such as aluminum nitride and silicon nitride
  • sulfates such as barium sulfate and calcium sulfate
  • Things are used.
  • a thin film shape such as a nonwoven fabric, a woven fabric, or a microporous film is used.
  • the thin film shape those having a pore diameter of 0.01 to 1 ⁇ m and a thickness of 5 to 50 ⁇ m are preferably used.
  • a separator formed by forming a composite porous layer containing inorganic particles on the surface layer of the positive electrode and / or the negative electrode using a resinous binder can be used.
  • a porous layer containing alumina particles having a 90% particle size of less than 1 ⁇ m can be formed on both surfaces of the positive electrode using a fluororesin as a binder.
  • Example A ⁇ Preparation of non-aqueous electrolyte solution> [Examples 1 to 4, Comparative Example 1] Under a dry argon atmosphere, fully dried LiPF 6 was added to a mixture of ethylene carbonate (hereinafter referred to as “EC”) and dimethyl carbonate (capacity ratio 3: 7) as a cyclic carbonate to a concentration of 1 mol / L.
  • EC ethylene carbonate
  • Capacity ratio 3 capacity ratio 3: 7
  • the non-aqueous electrolytes of Examples and Comparative Examples were prepared by dissolving the combinations shown in Table 1 so as to achieve the concentrations shown in the table.
  • Examples 5 to 24, Comparative Examples 2 to 5 Similarly, fully dried LiPF 6 was added to a mixture of monofluoroethylene carbonate (hereinafter referred to as “MFEC”) and dimethyl carbonate (volume ratio 3: 7) as a cyclic carbonate so as to be 1 mol / L.
  • MFEC monofluoroethylene carbonate
  • volume ratio 3: 7 dimethyl carbonate
  • the non-aqueous electrolytes of Examples and Comparative Examples were prepared by dissolving the combinations shown in Tables 2 and 3 so as to achieve the concentrations shown in the table.
  • the obtained slurry was applied to both sides of an aluminum foil having a thickness of 12 ⁇ m so as to have a capacity of 90% of the negative electrode capacity, dried, and rolled to a thickness of 85 ⁇ m with a press machine.
  • the positive electrode, the negative electrode, and the polyethylene separator were laminated in the order of the positive electrode, the separator, the negative electrode, the separator, and the positive electrode to produce a battery element.
  • This battery element was inserted into a bag made of a laminate film in which both surfaces of aluminum (thickness: 40 ⁇ m) were coated with a resin layer while projecting positive and negative terminals, and then 0.6 mL of non-aqueous electrolyte was put into the bag. This was injected and vacuum sealed to produce a sheet battery. Furthermore, in order to improve the adhesion between the electrodes, the sheet-like battery was sandwiched between glass plates and pressurized.
  • Example B ⁇ Preparation of non-aqueous electrolyte solution> [Example 25, Comparative Example 6] Similarly, to the mixture of EC, propylene carbonate, and diethyl carbonate (volume ratio 1: 5: 4) as cyclic carbonates, LiPF 6 that was sufficiently dried was added to 1 mol / L, and the compounds shown in Table-6 were added.
  • the non-aqueous electrolytes of Examples and Comparative Examples were prepared by dissolving so as to achieve the concentrations shown in the table.
  • the obtained slurry was applied to both sides of an aluminum foil having a thickness of 12 ⁇ m so as to have a capacity of 90% of the negative electrode capacity, dried, and rolled to a thickness of 85 ⁇ m with a press machine.
  • the positive electrode, the negative electrode, and the polyethylene separator were laminated in the order of the positive electrode, the separator, the negative electrode, the separator, and the positive electrode to produce a battery element.
  • This battery element was inserted into a bag made of a laminate film in which both surfaces of aluminum (thickness: 40 ⁇ m) were coated with a resin layer while projecting positive and negative terminals, and then 0.6 mL of non-aqueous electrolyte was put into the bag. This was injected and vacuum sealed to produce a sheet battery. Furthermore, in order to improve the adhesion between the electrodes, the sheet-like battery was sandwiched between glass plates and pressurized.
  • the batteries of Examples-1 to 25 have a small amount of gas after high temperature storage and excellent voltage and capacity due to the positive electrode protection effect. Therefore, it can be seen that the battery using the non-aqueous electrolyte according to the present invention has less gas generation during high-temperature storage in the charged state of the battery, and is excellent in charge / discharge characteristics, in particular, high-temperature storage voltage and capacity. .
  • the batteries of Comparative Examples 1 to 3 and 6 have a large amount of gas after high-temperature storage, and have a low voltage and capacity.
  • the battery of Comparative Example 4 is inferior to the amide compound of the present invention because the amide compound in which the carbon-carbon unsaturated bond is directly bonded to the amide group is used. Furthermore, the battery of Comparative Example-5 is inferior to the amide compound of the present invention because an amide compound having no carbon-carbon unsaturated bond in the amide group is used.
  • the decomposition of the electrolyte solution of the non-aqueous electrolyte secondary battery is suppressed, gas generation and battery deterioration are suppressed when the battery is used in a high temperature environment, and high energy
  • a non-aqueous electrolyte secondary battery having a density can be manufactured. Therefore, it can be suitably used in various fields such as an electronic device in which a non-aqueous electrolyte secondary battery is used.
  • the use of the non-aqueous electrolyte for secondary batteries and the non-aqueous electrolyte secondary battery of the present invention is not particularly limited, and can be used for various known applications.
  • notebook computers pen input computers, mobile computers, electronic book players, mobile phones, mobile faxes, mobile copy, mobile printers, headphone stereos, video movies, LCD TVs, handy cleaners, portable CDs, minidiscs, and transceivers.

Abstract

 本発明は、電解質と非水溶媒とを含む非水系電解液において、下記一般式(1)で表される化合物を含有する非水系電解液に関する。(R及びRは、水素基、又は炭素数1~10の有機基を表し、Rは、水素基、又は炭素数1~20の有機基を表す。また、R及びRのうち少なくとも一方が、窒素原子に直接結合しない炭素-炭素不飽和結合を有し、炭素数2~10の有機基を表す。XはC、S=O又はP(R)を表し、Rは炭素数1~10の有機基を表す。)

Description

非水系電解液、及びそれを用いた電池
 本発明は、非水系電解液、及びそれを用いた電池に関するものである。
 電子機器の急速な進歩に伴い、二次電池に対する高容量化への要求が高くなっており、ニッケル・カドミウム電池やニッケル・水素電池に比べてエネルギー密度の高いリチウムイオン二次電池が広く使用され、また活発に研究されている。
 非水系電解液電池に用いる電解液は、通常、主として電解質と非水溶媒とから構成されている。リチウムイオン二次電池の電解液としては、LiPF、LiBF、LiN(CFSO等の電解質を、エチレンカーボネート、プロピレンカーボネート、γ-ブチロラクトン等の高誘電率溶媒と、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート等の低粘度溶媒との混合溶媒に溶解させた非水系電解液が用いられている。
 このようなリチウムイオン二次電池は、従来より充電状態において高温条件下で保存するとガスが発生し、電池容量の低下などの劣化が起こり、最悪の場合には電池内部の暴走反応により電池の破裂、発火などの重篤な危険性があることが知られており、それを改善するために非水溶媒や電解質について種々の検討がなされている。
 これまでに、リチウムイオン二次電池の特性を改善する方法として、ビフェニル構造を有する環状リン化合物を含有する非水系電解液が提案されている(特許文献1参照)。特許文献1では、該リン化合物としてリン酸エステル基上の酸素原子とリン原子とが環を形成する化合物を含有する電解液を用いることで、正極での非水系電解液の酸化分解を抑制し、寿命特性の低下を抑制することがなされている。
日本国特開2009-266663号公報
 しかしながら、非水系電解液二次電池において、高温条件下で保存した場合のガス発生の抑制効果は十分とは言えず、改善の余地があった。
 そこで本発明では、非水系電解液二次電池において、充電状態での高温保存時におけるガス発生を抑制し、かつ電池の充放電特性を向上させる二次電池用非水系電解液と、この非水系電解液を用いた二次電池を提供することを課題とする。更に、上記非水系電解液の添加剤として一般式(1)で表される化合物を提供することを課題とする。
Figure JPOXMLDOC01-appb-C000002
(R及びRは、水素基、又はヘテロ原子を含んでいてもよい炭素数1~10の有機基を表し、Rは、水素基、又はヘテロ原子を含んでいてもよい炭素数1~20の有機基を表し、R~Rはそれぞれ同一でも異なってもよく、R~Rのうち2つ又は3つすべてが互いに結合して環を形成してもよい。
 また、R及びRのうち少なくとも一方が、窒素原子に直接結合しない炭素-炭素不飽和結合を有し、ヘテロ原子を含んでいてもよい、炭素数2~10の有機基を表す。
 XはC、S=O又はP(R)を表し、Rはヘテロ原子を含んでもよい炭素数1~10の有機基を表す。)
 本発明者らは、上記課題を解決するために種々の検討を重ねた結果、一般式(1)で表される化合物を電解液中に含有することによって、上記課題を解決できることを見出し、本発明を完成させるに至った。
 即ち、本発明の要旨は、下記に示す通りである。
(a)電解質と非水溶媒とを含む非水系電解液において、下記一般式(1)で表される化合物を含有する非水系電解液。
Figure JPOXMLDOC01-appb-C000003
(R及びRは、水素基、又はヘテロ原子を含んでいてもよい炭素数1~10の有機基を表し、Rは、水素基、又はヘテロ原子を含んでいてもよい炭素数1~20の有機基を表し、R~Rはそれぞれ同一でも異なってもよく、R~Rのうち2つ又は3つすべてが互いに結合して環を形成してもよい。
 また、R及びRのうち少なくとも一方が、窒素原子に直接結合しない炭素-炭素不飽和結合を有し、ヘテロ原子を含んでいてもよい、炭素数2~10の有機基を表す。
 XはC、S=O又はP(R)を表し、Rはヘテロ原子を含んでもよい炭素数1~10の有機基を表す。)
(b)前記一般式(1)のR及びRのうち少なくとも一方が炭素-炭素不飽和結合を末端に有し、ヘテロ原子を含んでいてもよい炭素数2~10の有機基である(a)に記載の非水系電解液。
(c)前記一般式(1)のR及びRのうち少なくとも一方がアリル基またはプロパルギル基である(b)に記載の非水系電解液。
(d)前記一般式(1)で表される化合物を0.001質量%以上10質量%以下含有する(a)乃至(c)のうち何れか1に記載の非水系電解液。
(e)炭素-炭素不飽和結合を有する環状カーボネート、ハロゲン原子を有する環状カーボネート、モノフルオロリン酸塩、ジフルオロリン酸塩、ニトリル化合物及びイソシアナト化合物からなる群より選ばれる少なくとも1つの化合物を含有する(a)乃至(d)のうち何れか1に記載の非水系電解液。
(f)リチウムイオンを吸蔵・放出可能な負極及び正極、並びに非水系電解液を含む非水系電解液電池であって、前記非水系電解液が(a)乃至(e)のうちいずれか1に記載の非水系電解液である非水系電解液電池。
 本発明に係る電解液は、これを電池の電解液として用いることで、電池の充電状態での高温保存時におけるガス発生を抑制し、充放電特性、特に、高温保存時の電圧及び容量に優れた電池を得ることができる。又、本発明に係る化合物は、上記効果を有する電池の電解液の成分として有用である。
 以下に、本発明を実施するための形態を詳細に説明する。ただし、以下に記載する説明は本発明の実施形態の一例(代表例)であり、本発明の要旨を超えない限り、これらの内容に特定されるものではなく、任意に実施することができる。
 ここで“重量%”、“重量部”と“質量%”、“質量部”とは、それぞれ同義である。
〔1.非水系電解液〕
 本発明に係る非水系電解液は、一般的な非水系電解液と同様に、電解質及びこれを溶解する非水溶媒を含有し、更に前記一般式(1)で表される化合物を含有することを特徴とする。
〔1-1.電解質〕
 本発明の非水系電解液に用いる電解質に制限は無く、目的とする非水系電解液二次電池に電解質として用いられるものであれば公知のものを任意に採用することができる。本発明の非水系電解液をリチウムイオン二次電池に用いる場合には、通常は、電解質としてリチウム塩を用いる。
 電解質の具体例としては、LiClO、LiAsF、LiPF、LiCO、LiBF、LiSbF、LiSOF、LiN(FSO等の無機リチウム塩;LiCFSO、LiN(CFSO、LiN(CSO、リチウム環状1,3-ヘキサフルオロプロパンジスルホニルイミド、リチウム環状1,2-テトラフルオロエタンジスルホニルイミド、LiN(CFSO)(CSO)、LiC(CFSO、LiPF(CF、LiPF(C、LiPF(CFSO、LiPF(CSO、LiBF(CF、LiBF(C、LiBF(CFSO、LiBF(CSO等の含フッ素有機リチウム塩;リチウムビス(オキサラト)ボレート、リチウムジフルオロ(オキサラト)ボレート、リチウムトリス(オキサラト)フォスフェート、リチウムジフルオロビス(オキサラト)フォスフェート、リチウムテトラフルオロ(オキサラト)フォスフェート等の含ジカルボン酸錯体リチウム塩などが挙げられる。
 これらのうち、非水溶媒への溶解性・解離度、電気伝導度および得られる電池特性の点からLiPF、LiBF、LiSOF、LiN(FSO、LiCFSO、LiN(CFSO、LiN(CSO、リチウム環状1,3-ヘキサフルオロプロパンジスルホニルイミド、リチウム環状1,2-テトラフルオロエタンジスルホニルイミド、リチウムビス(オキサラト)ボレート、リチウムジフルオロ(オキサラト)ボレート、リチウムトリス(オキサラト)フォスフェート、リチウムジフルオロビス(オキサラト)フォスフェート、リチウムテトラフルオロ(オキサラト)フォスフェートが好ましく、特にLiPF、LiBFが好ましい。
 また、電解質は、1種を単独で用いてもよく、2種以上を任意の組み合わせ及び/又は比率で併用してもよい。中でも、特定の無機リチウム塩の2種を併用したり、無機リチウム塩と含フッ素有機リチウム塩とを併用したりすると、トリクル充電時のガス発生が抑制されたり、高温保存後の劣化が抑制されるので好ましい。特に、LiPFとLiBFとの併用や、LiPF、LiBF等の無機リチウム塩と、LiCFSO、LiN(CFSO、LiN(CSO等の含フッ素有機リチウム塩とを併用することが好ましい。
 更に、LiPFとLiBFとを併用する場合、電解質全体に対してLiBFが通常0.01質量%以上、50質量%以下の比率で含有されていることが好ましい。上記比率は、好ましくは0.05質量%以上、より好ましくは0.1質量%以上であり、一方、好ましくは20質量%以下、より好ましくは10質量%以下、特に好ましくは5質量%以下、最も好ましくは3質量%以下である。比率が上記範囲にあることにより、所望の効果を得やすくなり、また、LiBFの低い解離度により、電解液の抵抗が高くなることを抑制する。
 一方、LiPF、LiBF等の無機リチウム塩と、LiSOF、LiN(FSO等の無機リチウム塩、LiCFSO、LiN(CFSO、LiN(CSO、リチウム環状1,3-ヘキサフルオロプロパンジスルホニルイミド、リチウム環状1,2-テトラフルオロエタンジスルホニルイミド、LiN(CFSO)(CSO)、LiC(CFSO、LiPF(CF、LiPF(C、LiPF(CFSO、LiPF(CSO、LiBF(CF、LiBF(C、LiBF(CFSO、LiBF(CSO等の含フッ素有機リチウム塩、又は、リチウムビス(オキサラト)ボレート、リチウムトリス(オキサラト)フォスフェート、リチウムジフルオロオキサラトボレート、リチウムトリ(オキサラト)フォスフェート、リチウムジフルオロビス(オキサラト)フォスフェート、リチウムテトラフルオロ(オキサラト)フォスフェート等の含ジカルボン酸錯体リチウム塩などとを併用する場合、電解質全体に占める無機リチウム塩の割合は、通常70質量%以上、好ましくは80質量%以上、より好ましくは85質量%以上、また、通常99質量%以下、好ましくは95質量%以下である。
 本発明の非水系電解液中におけるリチウム塩の濃度は、本発明の要旨を損なわない限り任意であるが、通常0.5mol/L以上、好ましくは0.6mol/L以上、より好ましくは0.8mol/L以上である。また、通常3mol/L以下、好ましくは2mol/L以下、より好ましくは1.8mol/L以下、更に好ましくは1.6mol/L以下の範囲である。リチウム塩の濃度が上記範囲にあることにより、非水系電解液の電気伝導率が十分となり、また、粘度上昇による電気伝導率の低下、ひいては、非水系電解液二次電池の性能の低下を抑制する。
〔1-2.非水溶媒〕
 本発明の非水系電解液に含まれる非水溶媒としては、従来から非水系電解液の溶媒として公知のものの中から適宜選択して用いることができる。なお、非水溶媒は、1種を単独で用いてもよく、2種以上を任意の組み合わせ及び/又は比率で併用してもよい。
 通常使用される非水溶媒の例としては、環状カーボネート、鎖状カーボネート、鎖状又は環状カルボン酸エステル、鎖状又は環状エーテル類、含リン有機溶媒、含硫黄有機溶媒、芳香族含フッ素溶媒等が挙げられる。
 環状カーボネートとしては、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート等の環状カーボネート類が挙げられ、環状カーボネート類の炭素数は、通常3以上6以下である。
 これらの中でも、エチレンカーボネート、プロピレンカーボネートは、誘電率が高いため電解質が溶解し易く、非水系電解液二次電池にしたときにサイクル特性が良いという点で好ましく、特にエチレンカーボネートが好ましい。また、これらの化合物の水素の一部をフッ素で置換していてもよい。
 フッ素で置換した環状カーボネート類としては、フルオロエチレンカーボネート、1,2-ジフルオロエチレンカーボネート、1,1-ジフルオロエチレンカーボネート、1,1,2-トリフルオロエチレンカーボネート、テトラフルオロエチレンカーボネート、1-フルオロ-2-メチルエチレンカーボネート、1-フルオロ-1-メチルエチレンカーボネート、1,2-ジフルオロ-1-メチルエチレンカーボネート、1,1,2-トリフルオロ-2-メチルエチレンカーボネート、トリフルオロメチルエチレンカーボネート等のフッ素で置換した炭素数3~5の環状カーボネート類が挙げられ、これらの中でもフルオロエチレンカーボネート、1,2-ジフルオロエチレンカーボネート、トリフルオロメチルエチレンカーボネートが好ましい。
 鎖状カーボネートとしては、ジメチルカーボネート、エチルメチルカーボネート、ジエチルカーボネート、メチル-n-プロピルカーボネート、エチル-n-プロピルカーボネート、ジ-n-プロピルカーボネート等の鎖状カーボネート類が挙げられ、構成するアルキル基の炭素数は、夫々1以上5以下が好ましく、特に好ましくは1以上4以下である。中でも、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネートが電池特性向上の点から好ましい。
 また、アルキル基の水素の一部がフッ素で置換されていてもよい。フッ素で置換した鎖状カーボネート類としては、ビス(フルオロメチル)カーボネート、ビス(ジフルオロメチル)カーボネート、ビス(トリフルオロメチル)カーボネート、ビス(2-フルオロエチル)カーボネート、ビス(2,2-ジフルオロエチル)カーボネート、ビス(2,2,2-トリフルオロエチル)カーボネート、2-フルオロエチルメチルカーボネート、2,2-ジフルオロエチルメチルカーボネート、2,2,2-トリフルオロエチルメチルカーボネート等が挙げられる。
 鎖状カルボン酸エステル類としては、酢酸メチル、酢酸エチル、酢酸プロピル、酢酸イソプロピル、酢酸ブチル、酢酸sec-ブチル、酢酸イソブチル、酢酸t-ブチル、プロピオン酸メチル、プロピオン酸エチル、プロピオン酸プロピル、プロピオン酸イソプロピル、酪酸メチル、酪酸エチル、酪酸プロピル、吉草酸メチル、吉草酸エチル等、及びこれらの化合物の水素の一部をフッ素で置換した化合物等が挙げられる。
 このフッ素で置換した化合物として、トリフルオロ酢酸メチル、トリフルオロ酢酸エチル、トリフルオロ酢酸プロピル、トリフルオロ酢酸ブチル、トリフルオロ酢酸2,2,2-トリフルオロエチル等が挙げられる。この中でも、酢酸メチル、酢酸エチル、酢酸プロピル、酢酸ブチル、プロピオン酸メチル、プロピオン酸エチル、プロピオン酸プロピル、酪酸メチル、酪酸エチル、吉草酸メチルが電池特性向上の点から好ましい。
 環状カルボン酸エステル類としては、γ-ブチロラクトン、γ-バレロラクトン等及びこれらの化合物の水素の一部をフッ素で置換した化合物が挙げられる。これらの中でも、γ-ブチロラクトンがより好ましい。
 更に、鎖状エーテルとしては、ジメトキシメタン、1,1-ジメトキシエタン、1,2-ジメトキシエタン、ジエトキシメタン、1,1-ジエトキシエタン、1,2-ジエトキシエタン、エトキシメトキシメタン、1,1-エトキシメトキシエタン、1,2-エトキシメトキシエタン等、及びこれらの化合物の水素の一部をフッ素で置換した化合物等が挙げられる。
 これらの化合物の水素の一部をフッ素で置換した化合物として、ビス(トリフルオロエトキシ)エタン、エトキシトリフルオロエトキシエタン、メトキシトリフルオロエトキシエタン、1,1,1,2,2,3,4,5,5,5-デカフルオロ-3-メトキシ-4-トリフルオロメチル-ペンタン、1,1,1,2,2,3,4,5,5,5-デカフルオロ-3-エトキシ-4-トリフルオロメチル-ペンタン、1,1,1,2,2,3,4,5,5,5-デカフルオロ-3-プロポキシ-4-トリフルオロメチル-ペンタン、1,1,2,2-テトラフルオロエチル-2,2,3,3-テトラフルオロプロピルエーテル、2,2-ジフルオロエチル-2,2,3,3-テトラフルオロプロピルエーテル等が挙げられる。これらの中でも、1,2-ジメトキシエタン、1,2-ジエトキシエタンがより好ましい。
 環状エーテルとしては、テトラヒドロフラン、2-メチルテトラヒドロフラン等、及びこれらの化合物の水素の一部をフッ素で置換した化合物等が挙げられる。
 更に、含リン有機溶媒としては、リン酸トリメチル、リン酸トリエチル、リン酸ジメチルエチル、リン酸メチルジエチル、リン酸エチレンメチル、リン酸エチレンエチル、リン酸トリフェニル、亜リン酸トリメチル、亜リン酸トリエチル、亜リン酸トリフェニル、トリメチルホスフィンオキシド、トリエチルホスフィンオキシド、トリフェニルホスフィンオキシド等、及びこれらの化合物の水素の一部をフッ素で置換した化合物が挙げられる。
 これらの化合物の水素の一部をフッ素で置換した化合物として、リン酸トリス(2,2,2-トリフルオロエチル)、リン酸トリス(2,2,3,3,3-ペンタフルオロプロピル)などが挙げられる。
 更に、含硫黄有機溶媒としては、スルホラン、2-メチルスルホラン、3-メチルスルホラン、ジメチルスルホン、ジエチルスルホン、エチルメチルスルホン、メチルプロピルスルホン、ジメチルスルホキシド、メタンスルホン酸メチル、メタンスルホン酸エチル、エタンスルホン酸メチル、エタンスルホン酸エチル、硫酸ジメチル、硫酸ジエチル、硫酸ジブチル等、及びこれらの化合物の水素の一部をフッ素で置換した化合物が挙げられる。
 更に、芳香族含フッ素溶媒としては、フルオロベンゼン、ジフルオロベンゼン、トリフルオロベンゼン、テトラフルオロベンゼン、ペンタフルオロベンゼン、ヘキサフルオロベンゼン、ベンゾトリフルオライド等が挙げられる。
 上記の非水溶媒の中でも、環状カーボネートであるエチレンカーボネート及び/又はプロピレンカーボネートを用いることが好ましく、更にこれらの環状カーボネートと鎖状カーボネートとを併用することが電解液の高い電導度と低い粘度を両立できる点から好ましい。
 このように環状カーボネートと鎖状カーボネートとを非水溶媒として併用する場合、本発明の非水系電解液中の非水溶媒中に占める鎖状カーボネートの好適な含有量は、通常20体積%以上、好ましくは40体積%以上、また、通常95体積%以下、好ましくは90体積%以下である。
 一方、本発明の非水系電解液中の非水溶媒中に占める環状カーボネートの好適な含有量は、通常5体積%以上、好ましくは10体積%以上、また、通常80体積%以下、好ましくは60体積%以下である。鎖状カーボネートの割合が上記範囲にあることにより、本発明の非水系電解液の粘度上昇を抑制し、また、電解質であるリチウム塩の解離度の低下による本発明の非水系電解液の電気伝導率低下を抑制する。ただし、フルオロエチレンカーボネートは溶媒として用いても添加剤として用いてもよく、その場合は上記の含有量に限定されない。
 なお、本明細書において、非水溶媒の容量は25℃での測定値であるが、エチレンカーボネートのように25℃で固体のものは融点での測定値を用いる。
 本発明の非水系電解液は、下記一般式(1)で表される化合物を含有することを特徴とする。
Figure JPOXMLDOC01-appb-C000004
(R及びRは、水素基、又はヘテロ原子を含んでいてもよい炭素数1~10の有機基を表し、Rは、水素基、又はヘテロ原子を含んでいてもよい炭素数1~20の有機基を表し、R~Rはそれぞれ同一でも異なってもよく、R~Rのうち2つ又は3つすべてが互いに結合して環を形成してもよい。
 また、R及びRのうち少なくとも一方が、窒素原子に直接結合しない炭素-炭素不飽和結合を有し、ヘテロ原子を含んでいてもよい、炭素数2~10の有機基を表す。
 XはC、S=O又はP(R)を表し、Rはヘテロ原子を含んでもよい炭素数1~10の有機基を表す。)
 なお、本発明において「水素基」とは、水素原子を意味する。
 一般式(1)のR~Rのヘテロ原子を含んでいてもよい有機基のヘテロ原子については、フッ素、塩素、臭素またはヨウ素で挙げられるハロゲン原子、カルボニル基、カルボン酸エステル基、炭酸エステルなどの炭素と酸素からなる官能基、カルボン酸アミド、カーバメート基、尿素基、シアネート基、イソシアナト基などの炭素、酸素、窒素からなる官能基、ニトリル基、イソニトリル基など炭素と窒素からなる官能基、ニトロ基、ニトロソ基などの窒素と酸素からなる官能基、アミノ基などの窒素からなる官能基、エーテル基などの酸素からなる官能基、シリル基などのケイ素からなる官能基、スルホキシド基、スルホニル基、スルホン酸エステル基、硫酸エステル基などの硫黄と酸素からなる官能基、スルホン酸アミド基、硫酸アミド基などの硫黄、酸素、窒素からなる官能基、スルフィド基、ジスルフィド基など硫黄からなる官能基、ホスフィン基、リン酸エステル、ホスホン酸エステル基、ホスフィン酸エステル基、リン酸アミド、ホスホン酸アミド、ホスフィン酸アミドなどリンを含む官能基が挙げられる。
 また、有機基としては、飽和又は不飽和炭化水素基、芳香族炭化水素基が挙げられる。
 飽和炭化水素基としては、メチル基、エチル基、n-プロピル基、i-プロピル基、n-ブチル基、sec-ブチル基等の直鎖状又は分岐鎖状のアルキル基、シクロプロピル基、シクロペンチル基、シクロヘキシル基等の環状アルキル基が挙げられる。
 不飽和炭化水素基としては、ビニル基、アリル基、1-プロペニル基等のアルケニル基、エチニル基、プロパルギル基、1-プロピニル基などのアルキニル基が挙げられる。
 芳香族炭化水素基としては、フェニル基、トリル基等のアリール基、ベンジル基、フェネチル基等のアラルキル基等が挙げられる。
 飽和炭化水素基の炭素数は、通常1以上10以下であり、好ましくは6以下、更に好ましくは、4以下であり、不飽和炭化水素基の炭素数は、通常2以上10以下、好ましくは6以下であり、更に好ましくは4以下であり、芳香族炭化水素基の炭素数は、通常6以上10以下、好ましくは8以下である。
 また、上記一般式(1)のR及びRのうち少なくとも一方は、窒素原子に直接結合しない炭素-炭素不飽和結合を有し、ヘテロ原子を含んでいてもよい、炭素数2~10の有機基である必要がある。
 窒素原子に直接結合しない炭素-炭素不飽和結合とは、-N-C=C-のような窒素原子の隣の炭素原子が不飽和結合する場合は入らない。
 また、炭素-炭素不飽和結合を有さない場合には、電池を高温で保存した際のガスの発生抑制効果が劣り、又高温保存後の容量が劣ることとなる。
 上記の炭素-炭素不飽和結合の中でも、高温保存時のガス発生抑制の点から、一般式(1)のR及びRのうち少なくとも一方は、炭素-炭素不飽和結合を末端に有し、ヘテロ原子を含んでいてもよい炭素数2~10の有機基であることが好ましい。更に、上記炭素-炭素不飽和結合を末端に有し、ヘテロ原子を含んでいてもよい炭素数2~10の有機基は、アリル基またはプロパルギル基であることが好ましい。
 また、一般式(1)のR及びRのうち一方が、窒素原子に直接結合しない炭素-炭素不飽和結合を有せば、他方は窒素原子に直接結合する炭素-炭素不飽和結合を有していてもよい。具体的な組み合わせとしては、以下の例が挙げられる。
  R;ビニル基、R;アリル基
  R;ビニル基、R;プロパルギル基
  R;1-プロペニル基、R;アリル基
  R;1-プロペニル基、R;プロパルギル基
 更に、上記一般式(1)のXはC、S=O、又はP(R)を表し、Rはヘテロ原子を含んでもよい炭素数1~10の有機基を表す。ここで、XとRは環を形成しない。また、XがP(R)の場合、RおよびRのうちいずれか一方が酸素原子を有し、該酸素原子がP(R)のリン原子と直接結合し、もう一方がP(R)のリン原子とP-C結合を有する場合、RとRは互いに結合して環を形成しない。
 前記一般式(1)で表される化合物の具体例としては、次のようなものが挙げられる。
1.鎖状カルボン酸アミド
Figure JPOXMLDOC01-appb-C000005
 Rとしては、アリル基、プロパルギル基、cis-2-ブテニル基、trans-2-ブテニル基、3-ブテニル基、2-ブチニル基、3-ブチニル基、4-ペンテニル基、4-ペンチニル基、5-へキセニル基、5-ヘキシニル基、7-オクテニル基、7-オクチニル基、9-デセニル基、9-デシニル基などが挙げられ、この中で、アリル基、プロパルギル基、3-ブテニル基、3-ブチニル基、4-ペンテニル基、4-ペンチニル基などの末端に炭素-炭素不飽和結合をもつものが電池特性の点から好ましい。
 Rとしては、アリル基、プロパルギル基、cis-2-ブテニル基、trans-2-ブテニル基、3-ブテニル基、2-ブチニル基、3-ブチニル基、4-ペンテニル基、4-ペンチニル基、5-へキセニル基、5-ヘキシニル基、7-オクテニル基、7-オクチニル基、9-デセニル基、9-デシニル基などが挙げられ、この中で、アリル基、プロパルギル基、3-ブテニル基、3-ブチニル基、4-ペンテニル基、4-ペンチニル基などの末端に炭素-炭素不飽和結合をもつものが電池特性の点から好ましい。また、その他の置換基として、水素基、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、ペンチル基、ヘキシル基、オクチル基、デシル基、シクロペンチル基、シクロヘキシル基、フェニル基、ベンジル基、フェネチル基、2-メトキシエチル基、2-エトキシエチル基などが挙げられる。
 Rとしては、水素基、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、t-ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、シクロヘキシル基、フルオロメチル基、ジフルオロメチル基、トリフルオロメチル基、ペンタフルオロエチル基、ヘプタフルオロプロピル基、ビニル基、アリル基、1-プロペニル基、イソプロペニル基、フェニル基、ベンジル基、フェネチル基などが挙げられ、またヘテロ原子を含んだ置換基としては、メトキシメチル、エトキシメチル、アセチルメチル基、シアノメチル基、1-シアノエチル基、2-シアノエチル基などが挙げられる。
 R~Rの中で好ましい組み合わせは、電池特性の観点からRが、アリル基又はプロパルギル基であるものであり、以下の例が挙げられる。
  R;アリル基、R;アリル基、R;水素基
  R;アリル基、R;水素基、R;水素基
  R;プロパルギル基、R;プロパルギル基、R;水素基
  R;プロパルギル基、R;水素基、R;水素基
  R;アリル基、R;メチル基、R;水素基
  R;プロパルギル基、R;メチル基、R;水素基
  R;アリル基、R;エチル基、R;水素基
  R;プロパルギル基、R;エチル基、R;水素基
  R;アリル基、R;アリル基、R;メチル基
  R;アリル基、R;水素基、R;メチル基
  R;プロパルギル基、R;プロパルギル基、R;メチル基
  R;プロパルギル基、R;水素基、R;メチル基
  R;アリル基、R;メチル基、R;メチル基
  R;プロパルギル基、R;メチル基、R;メチル基
  R;アリル基、R;エチル基、R;メチル基
  R;プロパルギル基、R;エチル基、R;メチル基
  R;アリル基、R;アリル基、R;エチル基
  R;アリル基、R;水素基、R;エチル基
  R;プロパルギル基、R;プロパルギル基、R;エチル基
  R;プロパルギル基、R;水素基、R;エチル基
  R;アリル基、R;メチル基、R;エチル基
  R;プロパルギル基、R;メチル基、R;エチル基
  R;アリル基、R;エチル基、R;エチル基
  R;プロパルギル基、R;エチル基、R;エチル基
  R;アリル基、R;アリル基、R;プロピル基
  R;アリル基、R;水素基、R;プロピル基
  R;プロパルギル基、R;プロパルギル基、R;プロピル基
  R;プロパルギル基、R;水素基、R;プロピル基
  R;アリル基、R;メチル基、R;プロピル基
  R;プロパルギル基、R;メチル基、R;プロピル基
  R;アリル基、R;エチル基、R;プロピル基
  R;プロパルギル基、R;エチル基、R;プロピル基
  R;アリル基、R;アリル基、R;イソプロピル基
  R;アリル基、R;水素基、R;イソプロピル基
  R;プロパルギル基、R;プロパルギル基、R;イソプロピル基
  R;プロパルギル基、R;水素基、R;イソプロピル基
  R;アリル基、R;メチル基、R;イソプロピル基
  R;プロパルギル基、R;メチル基、R;イソプロピル基
  R;アリル基、R;エチル基、R;イソプロピル基
  R;プロパルギル基、R;エチル基、R;イソプロピル基
  R;アリル基、R;アリル基、R;ブチル基
  R;アリル基、R;水素基、R;ブチル基
  R;プロパルギル基、R;プロパルギル基、R;ブチル基
  R;プロパルギル基、R;水素基、R;ブチル基
  R;アリル基、R;メチル基、R;ブチル基
  R;プロパルギル基、R;メチル基、R;ブチル基
  R;アリル基、R;エチル基、R;ブチル基
  R;プロパルギル基、R;エチル基、R;ブチル基
  R;アリル基、R;アリル基、R;sec-ブチル基
  R;アリル基、R;水素基、R;sec-ブチル基
  R;プロパルギル基、R;プロパルギル基、R;sec-ブチル基
  R;プロパルギル基、R;水素基、R;sec-ブチル基
  R;アリル基、R;メチル基、R;sec-ブチル基
  R;プロパルギル基、R;メチル基、R;sec-ブチル基
  R;アリル基、R;エチル基、R;sec-ブチル基
  R;プロパルギル基、R;エチル基、R;sec-ブチル基
  R;アリル基、R;アリル基、R;tert-ブチル基
  R;アリル基、R;水素基、R;tert-ブチル基
  R;プロパルギル基、R;プロパルギル基、R;tert-ブチル基
  R;プロパルギル基、R;水素基、R;tert-ブチル基
  R;アリル基、R;メチル基、R;tert-ブチル基
  R;プロパルギル基、R;メチル基、R;tert-ブチル基
  R;アリル基、R;エチル基、R;tert-ブチル基
  R;プロパルギル基、R;エチル基、R;tert-ブチル基
  R;アリル基、R;アリル基、R;ペンチル基
  R;アリル基、R;水素基、R;ペンチル基
  R;プロパルギル基、R;プロパルギル基、R;ペンチル基
  R;プロパルギル基、R;水素基、R;ペンチル基
  R;アリル基、R;メチル基、R;ペンチル基
  R;プロパルギル基、R;メチル基、R;ペンチル基
  R;アリル基、R;エチル基、R;ペンチル基
  R;プロパルギル基、R;エチル基、R;ペンチル基
  R;アリル基、R;アリル基、R;ヘキシル基
  R;アリル基、R;水素基、R;ヘキシル基
  R;プロパルギル基、R;プロパルギル基、R;ヘキシル基
  R;プロパルギル基、R;水素基、R;ヘキシル基
  R;アリル基、R;メチル基、R;ヘキシル基
  R;プロパルギル基、R;メチル基、R;ヘキシル基
  R;アリル基、R;エチル基、R;ヘキシル基
  R;プロパルギル基、R;エチル基、R;ヘキシル基
  R;アリル基、R;アリル基、R;ヘプチル基
  R;アリル基、R;水素基、R;ヘプチル基
  R;プロパルギル基、R;プロパルギル基、R;ヘプチル基
  R;プロパルギル基、R;水素基、R;ヘプチル基
  R;アリル基、R;メチル基、R;ヘプチル基
  R;プロパルギル基、R;メチル基、R;ヘプチル基
  R;アリル基、R;エチル基、R;ヘプチル基
  R;プロパルギル基、R;エチル基、R;ヘプチル基
  R;アリル基、R;アリル基、R;オクチル基
  R;アリル基、R;水素基、R;オクチル基
  R;プロパルギル基、R;プロパルギル基、R;オクチル基
  R;プロパルギル基、R;水素基、R;オクチル基
  R;アリル基、R;メチル基、R;オクチル基
  R;プロパルギル基、R;メチル基、R;オクチル基
  R;アリル基、R;エチル基、R;オクチル基
  R;プロパルギル基、R;エチル基、R;オクチル基
  R;アリル基、R;アリル基、R;ノニル基
  R;アリル基、R;水素基、R;ノニル基
  R;プロパルギル基、R;プロパルギル基、R;ノニル基
  R;プロパルギル基、R;水素基、R;ノニル基
  R;アリル基、R;メチル基、R;ノニル基
  R;プロパルギル基、R;メチル基、R;ノニル基
  R;アリル基、R;エチル基、R;ノニル基
  R;プロパルギル基、R;エチル基、R;ノニル基
  R;アリル基、R;アリル基、R;デシル基
  R;アリル基、R;水素基、R;デシル基
  R;プロパルギル基、R;プロパルギル基、R;デシル基
  R;プロパルギル基、R;水素基、R;デシル基
  R;アリル基、R;メチル基、R;デシル基
  R;プロパルギル基、R;メチル基、R;デシル基
  R;アリル基、R;エチル基、R;デシル基
  R;プロパルギル基、R;エチル基、R;デシル基
  R;アリル基、R;アリル基、R;シクロヘキシル基
  R;アリル基、R;水素基、R;シクロヘキシル基
  R;プロパルギル基、R;プロパルギル基、R;シクロヘキシル基
  R;プロパルギル基、R;水素基、R;シクロヘキシル基
  R;アリル基、R;メチル基、R;シクロヘキシル基
  R;プロパルギル基、R;メチル基、R;シクロヘキシル基
  R;アリル基、R;エチル基、R;シクロヘキシル基
  R;プロパルギル基、R;エチル基、R;シクロヘキシル基
  R;アリル基、R;アリル基、R;フェニル基
  R;アリル基、R;水素基、R;フェニル基
  R;プロパルギル基、R;プロパルギル基、R;フェニル基
  R;プロパルギル基、R;水素基、R;フェニル基
  R;アリル基、R;メチル基、R;フェニル基
  R;プロパルギル基、R;メチル基、R;フェニル基
  R;アリル基、R;エチル基、R;フェニル基
  R;プロパルギル基、R;エチル基、R;フェニル基
  R;アリル基、R;アリル基、R;ビニル基
  R;アリル基、R;水素基、R;ビニル基
  R;プロパルギル基、R;プロパルギル基、R;ビニル基
  R;プロパルギル基、R;水素基、R;ビニル基
  R;アリル基、R;メチル基、R;ビニル基
  R;プロパルギル基、R;メチル基、R;ビニル基
  R;アリル基、R;エチル基、R;ビニル基
  R;プロパルギル基、R;エチル基、R;ビニル基
  R;アリル基、R;アリル基、R;イソプロペニル基
  R;アリル基、R;水素基、R;イソプロペニル基
  R;プロパルギル基、R;プロパルギル基、R;イソプロペニル基
  R;プロパルギル基、R;水素基、R;イソプロペニル基
  R;アリル基、R;メチル基、R;イソプロペニル基
  R;プロパルギル基、R;メチル基、R;イソプロペニル基
  R;アリル基、R;エチル基、R;イソプロペニル基
  R;プロパルギル基、R;エチル基、R;イソプロペニル基
  R;アリル基、R;アリル基、R;1-プロペニル基
  R;アリル基、R;水素基、R;1-プロペニル基
  R;プロパルギル基、R;プロパルギル基、R;1-プロペニル基
  R;プロパルギル基、R;水素基、R;1-プロペニル基
  R;アリル基、R;メチル基、R;1-プロペニル基
  R;プロパルギル基、R;メチル基、R;1-プロペニル基
  R;アリル基、R;エチル基、R;1-プロペニル基
  R;プロパルギル基、R;エチル基、R;1-プロペニル基
  R;アリル基、R;アリル基、R;シアノメチル基
  R;アリル基、R;水素基、R;シアノメチル基
  R;プロパルギル基、R;プロパルギル基、R;シアノメチル基
  R;プロパルギル基、R;水素基、R;シアノメチル基
  R;アリル基、R;メチル基、R;シアノメチル基
  R;プロパルギル基、R;メチル基、R;シアノメチル基
  R;アリル基、R;エチル基、R;シアノメチル基
  R;プロパルギル基、R;エチル基、R;シアノメチル基
  R;アリル基、R;アリル基、R;1-シアノエチル基
  R;アリル基、R;水素基、R;1-シアノエチル基
  R;プロパルギル基、R;プロパルギル基、R;1-シアノエチル基
  R;プロパルギル基、R;水素基、R;1-シアノエチル基
  R;アリル基、R;メチル基、R;1-シアノエチル基
  R;プロパルギル基、R;メチル基、R;1-シアノエチル基
  R;アリル基、R;エチル基、R-シアノエチル基
  R;プロパルギル基、R;エチル基、R;1-シアノエチル基
  R;アリル基、R;アリル基、R;2-シアノエチル基
  R;アリル基、R;水素基、R;2-シアノエチル基
  R;プロパルギル基、R;プロパルギル基、R;2-シアノエチル基
  R;プロパルギル基、R;水素基、R;2-シアノエチル基
  R;アリル基、R;メチル基、R;2-シアノエチル基
  R;プロパルギル基、R;メチル基、R;2-シアノエチル基
  R;アリル基、R;エチル基、R;2-シアノエチル基
  R;プロパルギル基、R;エチル基、R;2-シアノエチル基
 好ましくは、高温保存時におけるガス発生の抑制、電池の充放電特性向上の観点から、以下のものが挙げられる。
  R;アリル基、R;アリル基、R;水素基
  R;アリル基、R;水素基、R;水素基
  R;プロパルギル基、R;水素基、R;水素基
  R;アリル基、R;メチル基、R;水素基
  R;アリル基、R;エチル基、R;水素基
  R;アリル基、R;アリル基、R;メチル基
  R;アリル基、R;水素基、R;メチル基
  R;プロパルギル基、R;水素基、R;メチル基
  R;アリル基、R;メチル基、R;メチル基
  R;アリル基、R;エチル基、R;メチル基
  R;アリル基、R;アリル基、R;エチル基
  R;アリル基、R;水素基、R;エチル基
  R;プロパルギル基、R;水素基、R;エチル基
  R;アリル基、R;メチル基、R;エチル基
  R;アリル基、R;エチル基、R;エチル基
  R;アリル基、R;アリル基、R;プロピル基
  R;アリル基、R;水素基、R;プロピル基
  R;プロパルギル基、R;水素基、R;プロピル基
  R;アリル基、R;メチル基、R;プロピル基
  R;アリル基、R;エチル基、R;プロピル基
  R;アリル基、R;アリル基、R;イソプロピル基
  R;アリル基、R;水素基、R;イソプロピル基
  R;プロパルギル基、R;水素基、R;イソプロピル基
  R;アリル基、R;メチル基、R;イソプロピル基
  R;アリル基、R;エチル基、R;イソプロピル基
  R;アリル基、R;アリル基、R;ブチル基
  R;アリル基、R;水素基、R;ブチル基
  R;プロパルギル基、R;水素基、R;ブチル基
  R;アリル基、R;メチル基、R;ブチル基
  R;アリル基、R;エチル基、R;ブチル基
  R;アリル基、R;アリル基、R;sec-ブチル基
  R;アリル基、R;水素基、R;sec-ブチル基
  R;プロパルギル基、R;水素基、R;sec-ブチル基
  R;アリル基、R;メチル基、R;sec-ブチル基
  R;アリル基、R;エチル基、R;sec-ブチル基
  R;アリル基、R;アリル基、R;tert-ブチル基
  R;アリル基、R;水素基、R;tert-ブチル基
  R;プロパルギル基、R;水素基、R;tert-ブチル基
  R;アリル基、R;メチル基、R;tert-ブチル基
  R;アリル基、R;エチル基、R;tert-ブチル基
  R;アリル基、R;アリル基、R;ペンチル基
  R;アリル基、R;水素基、R;ペンチル基
  R;プロパルギル基、R;水素基、R;ペンチル基
  R;アリル基、R;メチル基、R;ペンチル基
  R;アリル基、R;エチル基、R;ペンチル基
  R;アリル基、R;アリル基、R;ヘキシル基
  R;アリル基、R;水素基、R;ヘキシル基
  R;プロパルギル基、R;水素基、R;ヘキシル基
  R;アリル基、R;メチル基、R;ヘキシル基
  R;アリル基、R;エチル基、R;ヘキシル基
  R;アリル基、R;アリル基、R;ヘプチル基
  R;アリル基、R;水素基、R;ヘプチル基
  R;プロパルギル基、R;水素基、R;ヘプチル基
  R;アリル基、R;メチル基、R;ヘプチル基
  R;アリル基、R;エチル基、R;ヘプチル基
  R;アリル基、R;アリル基、R;オクチル基
  R;アリル基、R;水素基、R;オクチル基
  R;プロパルギル基、R;水素基、R;オクチル基
  R;アリル基、R;メチル基、R;オクチル基
  R;アリル基、R;エチル基、R;オクチル基
  R;アリル基、R;アリル基、R;ノニル基
  R;アリル基、R;水素基、R;ノニル基
  R;プロパルギル基、R;水素基、R;ノニル基
  R;アリル基、R;メチル基、R;ノニル基
  R;アリル基、R;エチル基、R;ノニル基
  R;アリル基、R;アリル基、R;デシル基
  R;アリル基、R;水素基、R;デシル基
  R;プロパルギル基、R;水素基、R;デシル基
  R;アリル基、R;メチル基、R;デシル基
  R;アリル基、R;エチル基、R;デシル基
  R;アリル基、R;アリル基、R;シクロヘキシル基
  R;アリル基、R;水素基、R;シクロヘキシル基
  R;プロパルギル基、R;水素基、R;シクロヘキシル基
  R;アリル基、R;メチル基、R;シクロヘキシル基
  R;アリル基、R;エチル基、R;シクロヘキシル基
  R;アリル基、R;アリル基、R;フェニル基
  R;アリル基、R;水素基、R;フェニル基
  R;プロパルギル基、R;水素基、R;フェニル基
  R;アリル基、R;メチル基、R;フェニル基
  R;アリル基、R;エチル基、R;フェニル基
  R;アリル基、R;アリル基、R;ビニル基
  R;アリル基、R;水素基、R;ビニル基
  R;プロパルギル基、R;水素基、R;ビニル基
  R;アリル基、R;メチル基、R;ビニル基
  R;アリル基、R;エチル基、R;ビニル基
  R;アリル基、R;アリル基、R;イソプロペニル基
  R;アリル基、R;水素基、R;イソプロペニル基
  R;プロパルギル基、R;水素基、R;イソプロペニル基
  R;アリル基、R;メチル基、R;イソプロペニル基
  R;アリル基、R;エチル基、R;イソプロペニル基
  R;アリル基、R;アリル基、R;1-プロペニル基
  R;アリル基、R;水素基、R;1-プロペニル基
  R;プロパルギル基、R;水素基、R;1-プロペニル基
  R;アリル基、R;メチル基、R;1-プロペニル基
  R;アリル基、R;エチル基、R;1-プロペニル基
  R;アリル基、R;アリル基、R;シアノメチル基
  R;アリル基、R;水素基、R;シアノメチル基
  R;プロパルギル基、R;水素基、R;シアノメチル基
  R;アリル基、R;メチル基、R;シアノメチル基
  R;アリル基、R;エチル基、R;シアノメチル基
  R;アリル基、R;アリル基、R;1-シアノエチル基
  R;アリル基、R;水素基、R;1-シアノエチル基
  R;プロパルギル基、R;水素基、R;1-シアノエチル基
  R;アリル基、R;メチル基、R;1-シアノエチル基
  R;アリル基、R;エチル基、R;1-シアノエチル基
  R;アリル基、R;アリル基、R;2-シアノエチル基
  R;アリル基、R;水素基、R;2-シアノエチル基
  R;プロパルギル基、R;水素基、R;2-シアノエチル基
  R;アリル基、R;メチル基、R;2-シアノエチル基
  R;アリル基、R;エチル基、R;2-シアノエチル基
 更に好ましくは、以下のものが挙げられる。
  R;アリル基、R;アリル基、R;水素基
  R;アリル基、R;水素基、R;水素基
  R;プロパルギル基、R;水素基、R;水素基
  R;アリル基、R;アリル基、R;メチル基
  R;アリル基、R;水素基、R;メチル基
  R;プロパルギル基、R;水素基、R;メチル基
  R;アリル基、R;アリル基、R;エチル基
  R;アリル基、R;水素基、R;エチル基
  R;プロパルギル基、R;水素基、R;エチル基
  R;アリル基、R;アリル基、R;プロピル基
  R;アリル基、R;水素基、R;プロピル基
  R;プロパルギル基、R;水素基、R;プロピル基
  R;アリル基、R;アリル基、R;イソプロピル基
  R;アリル基、R;水素基、R;イソプロピル基
  R;プロパルギル基、R;水素基、R;イソプロピル基
  R;アリル基、R;アリル基、R;ブチル基
  R;アリル基、R;水素基、R;ブチル基
  R;プロパルギル基、R;水素基、R;ブチル基
  R;アリル基、R;アリル基、R;sec-ブチル基
  R;アリル基、R;水素基、R;sec-ブチル基
  R;プロパルギル基、R;水素基、R;sec-ブチル基
  R;アリル基、R;アリル基、R;tert-ブチル基
  R;アリル基、R;水素基、R;tert-ブチル基
  R;プロパルギル基、R;水素基、R;tert-ブチル基
  R;アリル基、R;アリル基、R;ペンチル基
  R;アリル基、R;水素基、R;ペンチル基
  R;プロパルギル基、R;水素基、R;ペンチル基
  R;アリル基、R;アリル基、R;ヘキシル基
  R;アリル基、R;水素基、R;ヘキシル基
  R;プロパルギル基、R;水素基、R;ヘキシル基
  R;アリル基、R;アリル基、R;ヘプチル基
  R;アリル基、R;水素基、R;ヘプチル基
  R;プロパルギル基、R;水素基、R;ヘプチル基
  R;アリル基、R;アリル基、R;オクチル基
  R;アリル基、R;水素基、R;オクチル基
  R;プロパルギル基、R;水素基、R;オクチル基
  R;アリル基、R;アリル基、R;ノニル基
  R;アリル基、R;水素基、R;ノニル基
  R;プロパルギル基、R;水素基、R;ノニル基
  R;アリル基、R;アリル基、R;デシル基
  R;アリル基、R;水素基、R;デシル基
  R;プロパルギル基、R;水素基、R;デシル基
  R;アリル基、R;アリル基、R;シクロヘキシル基
  R;アリル基、R;水素基、R;シクロヘキシル基
  R;プロパルギル基、R;水素基、R;シクロヘキシル基
  R;アリル基、R;アリル基、R;フェニル基
  R;アリル基、R;水素基、R;フェニル基
  R;プロパルギル基、R;水素基、R;フェニル基
  R;アリル基、R;アリル基、R;ビニル基
  R;アリル基、R;水素基、R;ビニル基
  R;プロパルギル基、R;水素基、R;ビニル基
  R;アリル基、R;アリル基、R;イソプロペニル基
  R;アリル基、R;水素基、R;イソプロペニル基
  R;プロパルギル基、R;水素基、R;イソプロペニル基
  R;アリル基、R;アリル基、R;1-プロペニル基
  R;アリル基、R;水素基、R;1-プロペニル基
  R;プロパルギル基、R;水素基、R;1-プロペニル基
  R;アリル基、R;アリル基、R;シアノメチル基
  R;アリル基、R;水素基、R;シアノメチル基
  R;プロパルギル基、R;水素基、R;シアノメチル基
  R;アリル基、R;アリル基、R;1-シアノエチル基
  R;アリル基、R;水素基、R;1-シアノエチル基
  R;プロパルギル基、R;水素基、R;1-シアノエチル基
  R;アリル基、R;アリル基、R;2-シアノエチル基
  R;アリル基、R;水素基、R;2-シアノエチル基
  R;プロパルギル基、R;水素基、R;2-シアノエチル基
 上記組み合わせ中のR~Rはヘテロ原子で置換されていてもよく、ヘテロ原子で置換される場合、該へテロ原子は、好ましくはフッ素、塩素、臭素またはヨウ素で挙げられるハロゲン原子であり、更に好ましくはフッ素原子である。R~Rがヘテロ原子で置換されたものとして、以下のものが挙げられる。
  R;アリル基、R;アリル基、R;トリフルオロメチル基
  R;アリル基、R;水素基、R;トリフルオロメチル基
  R;プロパルギル基、R;水素基、R;トリフルオロメチル基
  R;アリル基、R;アリル基、R;トリフルオロメチル基
 好ましくは、以下のものが挙げられる。
  R;アリル基、R;アリル基、R;トリフルオロメチル基
2.環状カルボン酸アミド
Figure JPOXMLDOC01-appb-C000006
 Rとしては、アリル基、プロパルギル基、cis-2-ブテニル基、trans-2-ブテニル基、3-ブテニル基、2-ブチニル基、3-ブチニル基、4-ペンテニル基、4-ペンチニル基、5-へキセニル基、5-ヘキシニル基、7-オクテニル基、7-オクチニル基、9-デセニル基、9-デシニル基などが挙げられ、この中で、アリル基、プロパルギル基、3-ブテニル基、3-ブチニル基、4-ペンテニル基、4-ペンチニル基などの末端に炭素-炭素不飽和結合をもつものが電池特性の点から好ましい。
 Rとしては、エチレン基、トリメチレン基、1-メチルトリメチレン基、2-メチルトリメチレン基、3-メチルトリメチレン基、1-メチルテトラメチレン基、4-メチルテトラメチレン基、ペンタメチレン基などが挙げられる。
 R及びRの中で好ましい組み合わせは、電池特性の観点からRが、アリル基又はプロパルギル基であるものである。
 Rがアリル基であるものとして、N-アリル-β-プロピオラクタム、N-アリルー2-ピロリドン、N-アリル-3-メチル-2-ピロリドン、N-アリル-5-メチル-2-ピロリドン、N-アリル-2-ピペリドン、N-アリル-3-メチル-2-ピペリドン、N-アリル-6-メチル-2-ピペリドン、N-アリル-ε-カプロラクタムなどが挙げられる。
 また、Rがプロパルギル基であるものとして、N-プロパルギル-β-プロピオラクタム、N-プロパルギル2-ピロリドン、N-プロパルギル3-メチル-2-ピロリドン、N-プロパルギル5-メチル-2-ピロリドン、N-プロパルギル2-ピペリドン、N-プロパルギル3-メチル-2-ピペリドン、N-プロパルギル6-メチル-2-ピペリドン、N-プロパルギルε-カプロラクタムなどが挙げられる。
 好ましくは、高温保存時におけるガス発生の抑制、電池の充放電特性向上の観点から、N-アリル-β-プロピオラクタム、N-アリル-2-ピロリドン、N-アリル-2-ピペリドン、N-アリル-ε-カプロラクタム、N-プロパルギル-β-プロピオラクタム、N-プロパルギル-2-ピロリドン、N-プロパルギル-2-ピペリドン、N-プロパルギル-ε-カプロラクタムが挙げられる。
3.ジカルボン酸アミド
Figure JPOXMLDOC01-appb-C000007
 Rとしては、アリル基、プロパルギル基、cis-2-ブテニル基、trans-2-ブテニル基、3-ブテニル基、2-ブチニル基、3-ブチニル基、4-ペンテニル基、4-ペンチニル基、5-へキセニル基、5-ヘキシニル基、7-オクテニル基、7-オクチニル基、9-デセニル基、9-デシニル基などが挙げられ、この中で、アリル基、プロパルギル基、3-ブテニル基、3-ブチニル基、4-ペンテニル基、4-ペンチニル基などの末端に炭素-炭素不飽和結合をもつものが電池特性の点から好ましい。
 R10~R12としては、アリル基、プロパルギル基、cis-2-ブテニル基、trans-2-ブテニル基、3-ブテニル基、2-ブチニル基、3-ブチニル基、4-ペンテニル基、4-ペンチニル基、5-へキセニル基、5-ヘキシニル基、7-オクテニル基、7-オクチニル基、9-デセニル基、9-デシニル基などが挙げられ、この中で、アリル基、プロパルギル基、3-ブテニル基、3-ブチニル基、4-ペンテニル基、4-ペンチニル基などの末端に炭素-炭素不飽和結合をもつものが電池特性の点から好ましい。また、その他の置換基として、水素基、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、ペンチル基、ヘキシル基、オクチル基、デシル基、シクロペンチル基、シクロヘキシル基、フェニル基、ベンジル基、フェネチル基、2-メトキシエチル基、2-エトキシエチル基などが挙げられる。
 R13としては、直結基、メチレン基、エチレン基、トリメチレン基、テトラメチレン基、ペンタメチレン基、ヘキサメチレン基、ヘプタメチレン基、オクタメチレン基、ノナメチレン基、デカメチレン基、ビニレン基、アセチレン基、1,2-フェニレン基、1,3-フェニレン基、1,4-フェニレン基、4,4’-ビフェニレン基、1,2-シクロヘキサンジイル基、1,3-シクロヘキサンジイル基、1,4-シクロヘキサンジイル基などが挙げられる。
 R~R13の中で好ましい組み合わせは、電池特性の観点から、Rがアリル基又はプロパルギル基であるものであり、以下の例が挙げられる。
  R~R12;アリル基、R13;直結基
  R~R12;アリル基、R13;メチレン基
  R~R12;アリル基、R13;エチレン基
  R~R12;アリル基、R13;トリメチレン基
  R~R12;アリル基、R13;テトラメチレン基
  R~R12;アリル基、R13;ペンタメチレン基
  R~R12;アリル基、R13;ヘキサメチレン基
  R~R12;アリル基、R13;1,2-フェニレン基
  R~R12;アリル基、R13;1,3-フェニレン基
  R~R12;アリル基、R13;1,4-フェニレン基
  R~R12;アリル基、R13;1,2-シクロヘキサンジイル基
  R~R12;アリル基、R13;1,3-シクロヘキサンジイル基
  R~R12;アリル基、R13;1,4-シクロヘキサンジイル基
  R~R12;アリル基、R13;cis-ビニレン基
  R~R12;アリル基、R13;trans-ビニレン基
  R~R12;アリル基、R13;アセチレン基
  R~R12;プロパルギル基、R13;直結基
  R~R12;プロパルギル基、R13;メチレン基
  R~R12;プロパルギル基、R13;エチレン基
  R~R12;プロパルギル基、R13;トリメチレン基
  R~R12;プロパルギル基、R13;テトラメチレン基
  R~R12;プロパルギル基、R13;ペンタメチレン基
  R~R12;プロパルギル基、R13;ヘキサメチレン基
  R~R12;プロパルギル基、R13;1,2-フェニレン基
  R~R12;プロパルギル基、R13;1,3-フェニレン基
  R~R12;プロパルギル基、R13;1,4-フェニレン基
  R~R12;プロパルギル基、R13;1,2-シクロヘキサンジイル基
  R~R12;プロパルギル基、R13;1,3-シクロヘキサンジイル基
  R~R12;プロパルギル基、R13;1,4-シクロヘキサンジイル基
  R~R12;プロパルギル基、R13;cis-ビニレン基
  R~R12;プロパルギル基、R13;trans-ビニレン基
  R~R12;プロパルギル基、R13;アセチレン基
  R、R11;アリル基、R10、R12;水素基、R13;直結基
  R、R11;アリル基、R10、R12;水素基、R13;メチレン基
  R、R11;アリル基、R10、R12;水素基、R13;エチレン基
  R、R11;アリル基、R10、R12;水素基、R13;トリメチレン基
  R、R11;アリル基、R10、R12;水素基、R13;テトラメチレン基
  R、R11;アリル基、R10、R12;水素基、R13;ペンタメチレン基
  R、R11;アリル基、R10、R12;水素基、R13;ヘキサメチレン基
  R、R11;アリル基、R10、R12;水素基、R13;1,2-フェニレン基
  R、R11;アリル基、R10、R12;水素基、R13;1,3-フェニレン基
  R、R11;アリル基、R10、R12;水素基、R13;1,4-フェニレン基
  R、R11;アリル基、R10、R12;水素基、R13;1,2-シクロヘキサンジイル基
  R、R11;アリル基、R10、R12;水素基、R13;1,3-シクロヘキサンジイル基
  R、R11;アリル基、R10、R12;水素基、R13;1,4-シクロヘキサンジイル基
  R、R11;アリル基、R10、R12;水素基、R13;cis-ビニレン基
  R、R11;アリル基、R10、R12;水素基、R13;trans-ビニレン基
  R、R11;アリル基、R10、R12;水素基、R13;アセチレン基
  R、R11;プロパルギル基、R10、R12;水素基、R13;直結基
  R、R11;プロパルギル基、R10、R12;水素基、R13;メチレン基
  R、R11;プロパルギル基、R10、R12;水素基、R13;エチレン基
  R、R11;プロパルギル基、R10、R12;水素基、R13;トリメチレン基
  R、R11;プロパルギル基、R10、R12;水素基、R13;テトラメチレン基
  R、R11;プロパルギル基、R10、R12;水素基、R13;ペンタメチレン基
  R、R11;プロパルギル基、R10、R12;水素基、R13;ヘキサメチレン基
  R、R11;プロパルギル基、R10、R12;水素基、R13;1,2-フェニレン基
  R、R11;プロパルギル基、R10、R12;水素基、R13;1,3-フェニレン基
  R、R11;プロパルギル基、R10、R12;水素基、R13;1,4-フェニレン基
  R、R11;プロパルギル基、R10、R12;水素基、R13;1,2-シクロヘキサンジイル基
  R、R11;プロパルギル基、R10、R12;水素基、R13;1,3-シクロヘキサンジイル基
  R、R11;プロパルギル基、R10、R12;水素基、R13;1,4-シクロヘキサンジイル基
  R、R11;プロパルギル基、R10、R12;水素基、R13;cis-ビニレン基
  R、R11;プロパルギル基、R10、R12;水素基、R13;trans-ビニレン基
  R、R11;プロパルギル基、R10、R12;水素基、R13;アセチレン基
  R、R11;アリル基、R10、R12;メチル基、R13;直結基
  R、R11;アリル基、R10、R12;メチル基、R13;メチレン基
  R、R11;アリル基、R10、R12;メチル基、R13;エチレン基
  R、R11;アリル基、R10、R12;メチル基、R13;トリメチレン基
  R、R11;アリル基、R10、R12;メチル基、R13;テトラメチレン基
  R、R11;アリル基、R10、R12;メチル基、R13;ペンタメチレン基
  R、R11;アリル基、R10、R12;メチル基、R13;ヘキサメチレン基
  R、R11;アリル基、R10、R12;メチル基、R13;1,2-フェニレン基
  R、R11;アリル基、R10、R12;メチル基、R13;1,3-フェニレン基
  R、R11;アリル基、R10、R12;メチル基、R13;1,4-フェニレン基
  R、R11;アリル基、R10、R12;メチル基、R13;1,2-シクロヘキサンジイル基
  R、R11;アリル基、R10、R12;メチル基、R13;1,3-シクロヘキサンジイル基
  R、R11;アリル基、R10、R12;メチル基、R13;1,4-シクロヘキサンジイル基
  R、R11;アリル基、R10、R12;メチル基、R13;cis-ビニレン基
  R、R11;アリル基、R10、R12;メチル基、R13;trans-ビニレン基
  R、R11;アリル基、R10、R12;メチル基、R13;アセチレン基
  R、R11;アリル基、R10、R12;エチル基、R13;直結基
  R、R11;アリル基、R10、R12;エチル基、R13;メチレン基
  R、R11;アリル基、R10、R12;エチル基、R13;エチレン基
  R、R11;アリル基、R10、R12;エチル基、R13;トリメチレン基
  R、R11;アリル基、R10、R12;エチル基、R13;テトラメチレン基
  R、R11;アリル基、R10、R12;エチル基、R13;ペンタメチレン基
  R、R11;アリル基、R10、R12;エチル基、R13;ヘキサメチレン基
  R、R11;アリル基、R10、R12;エチル基、R13;1,2-フェニレン基
  R、R11;アリル基、R10、R12;エチル基、R13;1,3-フェニレン基
  R、R11;アリル基、R10、R12;エチル基、R13;1,4-フェニレン基
  R、R11;アリル基、R10、R12;エチル基、R13;1,2-シクロヘキサンジイル基
  R、R11;アリル基、R10、R12;エチル基、R13;1,3-シクロヘキサンジイル基
  R、R11;アリル基、R10、R12;エチル基、R13;1,4-シクロヘキサンジイル基
  R、R11;アリル基、R10、R12;エチル基、R13;cis-ビニレン基
  R、R11;アリル基、R10、R12;エチル基、R13;trans-ビニレン基
  R、R11;アリル基、R10、R12;エチル基、R13;アセチレン基
  R、R10;アリル基、R11、R12;メチル基、R13;直結基
  R、R10;アリル基、R11、R12;メチル基、R13;メチレン基
  R、R10;アリル基、R11、R12;メチル基、R13;エチレン基
  R、R10;アリル基、R11、R12;メチル基、R13;トリメチレン基
  R、R10;アリル基、R11、R12;メチル基、R13;テトラメチレン基
  R、R10;アリル基、R11、R12;メチル基、R13;ペンタメチレン基
  R、R10;アリル基、R11、R12;メチル基、R13;ヘキサメチレン基
  R、R10;アリル基、R11、R12;エチル基、R13;直結基
  R、R10;アリル基、R11、R12;エチル基、R13;メチレン基
  R、R10;アリル基、R11、R12;エチル基、R13;エチレン基
  R、R10;アリル基、R11、R12;エチル基、R13;トリメチレン基
  R、R10;アリル基、R11、R12;エチル基、R13;テトラメチレン基
  R、R10;アリル基、R11、R12;エチル基、R13;ペンタメチレン基
  R、R10;アリル基、R11、R12;エチル基、R13;ヘキサメチレン基
  R;アリル基、R10;水素基、R11、R12;メチル基、R13;直結基
  R;アリル基、R10;水素基、R11、R12;メチル基、R13;メチレン基
  R;アリル基、R10;水素基、R11、R12;メチル基、R13;エチレン基
  R;アリル基、R10;水素基、R11、R12;メチル基、R13;トリメチレン基
  R;アリル基、R10;水素基、R11、R12;メチル基、R13;テトラメチレン基
  R;アリル基、R10;水素基、R11、R12;メチル基、R13;ペンタメチレン基
  R;アリル基、R10;水素基、R11、R12;メチル基、R13;ヘキサメチレン基
  R;アリル基、R10;水素基、R11、R12;エチル基、R13;直結基
  R;アリル基、R10;水素基、R11、R12;エチル基、R13;メチレン基
  R;アリル基、R10;水素基、R11、R12;エチル基、R13;エチレン基
  R;アリル基、R10;水素基、R11、R12;エチル基、R13;トリメチレン基
  R;アリル基、R10;水素基、R11、R12;エチル基、R13;テトラメチレン基
  R;アリル基、R10;水素基、R11、R12;エチル基、R13;ペンタメチレン基
  R;アリル基、R10;水素基、R11、R12;エチル基、R13;ヘキサメチレン基
 好ましくは、高温保存時におけるガス発生の抑制、電池の充放電特性向上の観点から、以下のものが挙げられる。
  R~R12;アリル基、R13;直結基
  R~R12;アリル基、R13;メチレン基
  R~R12;アリル基、R13;エチレン基
  R~R12;アリル基、R13;トリメチレン基
  R~R12;アリル基、R13;テトラメチレン基
  R~R12;アリル基、R13;ペンタメチレン基
  R~R12;アリル基、R13;ヘキサメチレン基
  R~R12;アリル基、R13;1,2-フェニレン基
  R~R12;アリル基、R13;1,3-フェニレン基
  R~R12;アリル基、R13;1,4-フェニレン基
  R~R12;アリル基、R13;1,2-シクロヘキサンジイル基
  R~R12;アリル基、R13;1,3-シクロヘキサンジイル基
  R~R12;アリル基、R13;1,4-シクロヘキサンジイル基
  R~R12;アリル基、R13;cis-ビニレン基
  R~R12;アリル基、R13;trans-ビニレン基
  R~R12;アリル基、R13;アセチレン基
  R、R11;アリル基、R10、R12;水素基、R13;直結基
  R、R11;アリル基、R10、R12;水素基、R13;メチレン基
  R、R11;アリル基、R10、R12;水素基、R13;エチレン基
  R、R11;アリル基、R10、R12;水素基、R13;トリメチレン基
  R、R11;アリル基、R10、R12;水素基、R13;テトラメチレン基
  R、R11;アリル基、R10、R12;水素基、R13;ペンタメチレン基
  R、R11;アリル基、R10、R12;水素基、R13;ヘキサメチレン基
  R、R11;アリル基、R10、R12;水素基、R13;1,2-フェニレン基
  R、R11;アリル基、R10、R12;水素基、R13;1,3-フェニレン基
  R、R11;アリル基、R10、R12;水素基、R13;1,4-フェニレン基
  R、R11;アリル基、R10、R12;水素基、R13;1,2-シクロヘキサンジイル基
  R、R11;アリル基、R10、R12;水素基、R13;1,3-シクロヘキサンジイル基
  R、R11;アリル基、R10、R12;水素基、R13;1,4-シクロヘキサンジイル基
  R、R11;アリル基、R10、R12;水素基、R13;cis-ビニレン基
  R、R11;アリル基、R10、R12;水素基、R13;trans-ビニレン基
  R、R11;アリル基、R10、R12;水素基、R13;アセチレン基
  R、R11;プロパルギル基、R10、R12;水素基、R13;直結基
  R、R11;プロパルギル基、R10、R12;水素基、R13;メチレン基
  R、R11;プロパルギル基、R10、R12;水素基、R13;エチレン基
  R、R11;プロパルギル基、R10、R12;水素基、R13;トリメチレン基
  R、R11;プロパルギル基、R10、R12;水素基、R13;テトラメチレン基
  R、R11;プロパルギル基、R10、R12;水素基、R13;ペンタメチレン基
  R、R11;プロパルギル基、R10、R12;水素基、R13;ヘキサメチレン基
  R、R11;プロパルギル基、R10、R12;水素基、R13;1,2-フェニレン基
  R、R11;プロパルギル基、R10、R12;水素基、R13;1,3-フェニレン基
  R、R11;プロパルギル基、R10、R12;水素基、R13;1,4-フェニレン基
  R、R11;プロパルギル基、R10、R12;水素基、R13;1,2-シクロヘキサンジイル基
  R、R11;プロパルギル基、R10、R12;水素基、R13;1,3-シクロヘキサンジイル基
  R、R11;プロパルギル基、R10、R12;水素基、R13;1,4-シクロヘキサンジイル基
  R、R11;プロパルギル基、R10、R12;水素基、R13;cis-ビニレン基
  R、R11;プロパルギル基、R10、R12;水素基、R13;trans-ビニレン基
  R、R11;プロパルギル基、R10、R12;水素基、R13;アセチレン基
  R、R11;アリル基、R10、R12;メチル基、R13;直結基
  R、R11;アリル基、R10、R12;メチル基、R13;メチレン基
  R、R11;アリル基、R10、R12;メチル基、R13;エチレン基
  R、R11;アリル基、R10、R12;メチル基、R13;トリメチレン基
  R、R11;アリル基、R10、R12;メチル基、R13;テトラメチレン基
  R、R11;アリル基、R10、R12;メチル基、R13;ペンタメチレン基
  R、R11;アリル基、R10、R12;メチル基、R13;ヘキサメチレン基
  R、R11;アリル基、R10、R12;メチル基、R13;1,2-フェニレン基
  R、R11;アリル基、R10、R12;メチル基、R13;1,3-フェニレン基
  R、R11;アリル基、R10、R12;メチル基、R13;1,4-フェニレン基
  R、R11;アリル基、R10、R12;メチル基、R13;1,2-シクロヘキサンジイル基
  R、R11;アリル基、R10、R12;メチル基、R13;1,3-シクロヘキサンジイル基
  R、R11;アリル基、R10、R12;メチル基、R13;1,4-シクロヘキサンジイル基
  R、R11;アリル基、R10、R12;メチル基、R13;cis-ビニレン基
  R、R11;アリル基、R10、R12;メチル基、R13;trans-ビニレン基
  R、R11;アリル基、R10、R12;メチル基、R13;アセチレン基
  R、R11;アリル基、R10、R12;エチル基、R13;直結基
  R、R11;アリル基、R10、R12;エチル基、R13;メチレン基
  R、R11;アリル基、R10、R12;エチル基、R13;エチレン基
  R、R11;アリル基、R10、R12;エチル基、R13;トリメチレン基
  R、R11;アリル基、R10、R12;エチル基、R13;テトラメチレン基
  R、R11;アリル基、R10、R12;エチル基、R13;ペンタメチレン基
  R、R11;アリル基、R10、R12;エチル基、R13;ヘキサメチレン基
  R、R11;アリル基、R10、R12;エチル基、R13;1,2-フェニレン基
  R、R11;アリル基、R10、R12;エチル基、R13;1,3-フェニレン基
  R、R11;アリル基、R10、R12;エチル基、R13;1,4-フェニレン基
  R、R11;アリル基、R10、R12;エチル基、R13;1,2-シクロヘキサンジイル基
  R、R11;アリル基、R10、R12;エチル基、R13;1,3-シクロヘキサンジイル基
  R、R11;アリル基、R10、R12;エチル基、R13;1,4-シクロヘキサンジイル基
  R、R11;アリル基、R10、R12;エチル基、R13;cis-ビニレン基
  R、R11;アリル基、R10、R12;エチル基、R13;trans-ビニレン基
  R、R11;アリル基、R10、R12;エチル基、R13;アセチレン基
  R、R10;アリル基、R11、R12;メチル基、R13;直結基
  R、R10;アリル基、R11、R12;メチル基、R13;メチレン基
  R、R10;アリル基、R11、R12;メチル基、R13;エチレン基
  R、R10;アリル基、R11、R12;メチル基、R13;トリメチレン基
  R、R10;アリル基、R11、R12;メチル基、R13;テトラメチレン基
  R、R10;アリル基、R11、R12;メチル基、R13;ペンタメチレン基
  R、R10;アリル基、R11、R12;メチル基、R13;ヘキサメチレン基
  R、R10;アリル基、R11、R12;エチル基、R13;直結基
  R、R10;アリル基、R11、R12;エチル基、R13;メチレン基
  R、R10;アリル基、R11、R12;エチル基、R13;エチレン基
  R、R10;アリル基、R11、R12;エチル基、R13;トリメチレン基
  R、R10;アリル基、R11、R12;エチル基、R13;テトラメチレン基
  R、R10;アリル基、R11、R12;エチル基、R13;ペンタメチレン基
  R、R10;アリル基、R11、R12;エチル基、R13;ヘキサメチレン基
  R;アリル基、R10;水素基、R11、R12;メチル基、R13;直結基
  R;アリル基、R10;水素基、R11、R12;メチル基、R13;メチレン基
  R;アリル基、R10;水素基、R11、R12;メチル基、R13;エチレン基
  R;アリル基、R10;水素基、R11、R12;メチル基、R13;トリメチレン基
  R;アリル基、R10;水素基、R11、R12;メチル基、R13;テトラメチレン基
  R;アリル基、R10;水素基、R11、R12;メチル基、R13;ペンタメチレン基
  R;アリル基、R10;水素基、R11、R12;メチル基、R13;ヘキサメチレン基
  R;アリル基、R10;水素基、R11、R12;エチル基、R13;直結基
  R;アリル基、R10;水素基、R11、R12;エチル基、R13;メチレン基
  R;アリル基、R10;水素基、R11、R12;エチル基、R13;エチレン基
  R;アリル基、R10;水素基、R11、R12;エチル基、R13;トリメチレン基
  R;アリル基、R10;水素基、R11、R12;エチル基、R13;テトラメチレン基
  R;アリル基、R10;水素基、R11、R12;エチル基、R13;ペンタメチレン基
  R;アリル基、R10;水素基、R11、R12;エチル基、R13;ヘキサメチレン基
 更に好ましくは、以下のものが挙げられる。
  R~R12;アリル基、R13;直結基
  R~R12;アリル基、R13;メチレン基
  R~R12;アリル基、R13;エチレン基
  R~R12;アリル基、R13;トリメチレン基
  R~R12;アリル基、R13;テトラメチレン基
  R~R12;アリル基、R13;ペンタメチレン基
  R~R12;アリル基、R13;ヘキサメチレン基
  R~R12;アリル基、R13;1,2-フェニレン基
  R~R12;アリル基、R13;1,3-フェニレン基
  R~R12;アリル基、R13;1,4-フェニレン基
  R~R12;アリル基、R13;1,2-シクロヘキサンジイル基
  R~R12;アリル基、R13;1,3-シクロヘキサンジイル基
  R~R12;アリル基、R13;1,4-シクロヘキサンジイル基
  R~R12;アリル基、R13;cis-ビニレン基
  R~R12;アリル基、R13;trans-ビニレン基
  R~R12;アリル基、R13;アセチレン基
  R、R11;アリル基、R10、R12;水素基、R13;直結基
  R、R11;アリル基、R10、R12;水素基、R13;メチレン基
  R、R11;アリル基、R10、R12;水素基、R13;エチレン基
  R、R11;アリル基、R10、R12;水素基、R13;トリメチレン基
  R、R11;アリル基、R10、R12;水素基、R13;テトラメチレン基
  R、R11;アリル基、R10、R12;水素基、R13;ペンタメチレン基
  R、R11;アリル基、R10、R12;水素基、R13;ヘキサメチレン基
  R、R11;アリル基、R10、R12;水素基、R13;1,2-フェニレン基
  R、R11;アリル基、R10、R12;水素基、R13;1,3-フェニレン基
  R、R11;アリル基、R10、R12;水素基、R13;1,4-フェニレン基
  R、R11;アリル基、R10、R12;水素基、R13;1,2-シクロヘキサンジイル基
  R、R11;アリル基、R10、R12;水素基、R13;1,3-シクロヘキサンジイル基
  R、R11;アリル基、R10、R12;水素基、R13;1,4-シクロヘキサンジイル基
  R、R11;アリル基、R10、R12;水素基、R13;cis-ビニレン基
  R、R11;アリル基、R10、R12;水素基、R13;trans-ビニレン基
  R、R11;アリル基、R10、R12;水素基、R13;アセチレン基
  R、R11;プロパルギル基、R10、R12;水素基、R13;直結基
  R、R11;プロパルギル基、R10、R12;水素基、R13;メチレン基
  R、R11;プロパルギル基、R10、R12;水素基、R13;エチレン基
  R、R11;プロパルギル基、R10、R12;水素基、R13;トリメチレン基
  R、R11;プロパルギル基、R10、R12;水素基、R13;テトラメチレン基
  R、R11;プロパルギル基、R10、R12;水素基、R13;ペンタメチレン基
  R、R11;プロパルギル基、R10、R12;水素基、R13;ヘキサメチレン基
  R、R11;プロパルギル基、R10、R12;水素基、R13;1,2-フェニレン基
  R、R11;プロパルギル基、R10、R12;水素基、R13;1,3-フェニレン基
  R、R11;プロパルギル基、R10、R12;水素基、R13;1,4-フェニレン基
  R、R11;プロパルギル基、R10、R12;水素基、R13;1,2-シクロヘキサンジイル基
  R、R11;プロパルギル基、R10、R12;水素基、R13;1,3-シクロヘキサンジイル基
  R、R11;プロパルギル基、R10、R12;水素基、R13;1,4-シクロヘキサンジイル基
  R、R11;プロパルギル基、R10、R12;水素基、R13;cis-ビニレン基
  R、R11;プロパルギル基、R10、R12;水素基、R13;trans-ビニレン基
  R、R11;プロパルギル基、R10、R12;水素基、R13;アセチレン基
4.ジアミンのジカルボン酸アミド
Figure JPOXMLDOC01-appb-C000008
 R14としては、アリル基、プロパルギル基、cis-2-ブテニル基、trans-2-ブテニル基、3-ブテニル基、2-ブチニル基、3-ブチニル基、4-ペンテニル基、4-ペンチニル基、5-へキセニル基、5-ヘキシニル基、7-オクテニル基、7-オクチニル基、9-デセニル基、9-デシニル基などが挙げられ、この中で、アリル基、プロパルギル基、3-ブテニル基、3―ブチニル基、4-ペンテニル基、4-ペンチニル基などの末端に炭素-炭素不飽和結合をもつものが電池特性の点から好ましい。
 R15としては、アリル基、プロパルギル基、水素基、メチル基、エチル基、プロピル基、イソプロピル基などが挙げられる。
 R16及びR17としては、水素基、メチル基、エチル基、トリフルオロメチル基などが挙げられる。
 R18としては、メチレン、エチレン、トリメチレン、テトラメチレンなどが挙げられる。
 R14~R18の中で好ましい組み合わせは、電池特性の観点から、R14が、アリル基又はプロパルギル基であるものが望ましく、以下の例が挙げられる。
  R14、R15;アリル基、R16、R17;水素基、R18;メチレン
  R14、R15;アリル基、R16、R17;水素基、R18;エチレン
  R14、R15;アリル基、R16、R17;水素基、R18;トリメチレン
  R14、R15;アリル基、R16、R17;水素基、R18;テトラメチレン
  R14、R15;アリル基、R16、R17;メチル基、R18;メチレン
  R14、R15;アリル基、R16、R17;メチル基、R18;エチレン
  R14、R15;アリル基、R16、R17;メチル基、R18;トリメチレン
  R14、R15;アリル基、R16、R17;メチル基、R18;テトラメチレン
  R14、R15;アリル基、R16、R17;エチル基、R18;メチレン
  R14、R15;アリル基、R16、R17;エチル基、R18;エチレン
  R14、R15;アリル基、R16、R17;エチル基、R18;トリメチレン
  R14、R15;アリル基、R16、R17;エチル基、R18;テトラメチレン
  R14、R15;アリル基、R16、R17;トリフルオロメチル基、R18;メチレン
  R14、R15;アリル基、R16、R17;トリフルオロメチル基、R18;エチレン
  R14、R15;アリル基、R16、R17;トリフルオロメチル基、R18;トリメチレン
  R14、R15;アリル基、R16、R17;トリフルオロメチル基、R18;テトラメチレン
  R14、R15;プロパルギル基、R16、R17;水素基、R18;メチレン
  R14、R15;プロパルギル基、R16、R17;水素基、R18;エチレン
  R14、R15;プロパルギル基、R16、R17;水素基、R18;トリメチレン
  R14、R15;プロパルギル基、R16、R17;水素基、R18;テトラメチレン
  R14、R15;プロパルギル基、R16、R17;メチル基、R18;メチレン
  R14、R15;プロパルギル基、R16、R17;メチル基、R18;エチレン
  R14、R15;プロパルギル基、R16、R17;メチル基、R18;トリメチレン
  R14、R15;プロパルギル基、R16、R17;メチル基、R18;テトラメチレン
  R14、R15;プロパルギル基、R16、R17;エチル基、R18;メチレン
  R14、R15;プロパルギル基、R16、R17;エチル基、R18;エチレン
  R14、R15;プロパルギル基、R16、R17;エチル基、R18;トリメチレン
  R14、R15;プロパルギル基、R16、R17;エチル基、R18;テトラメチレン
  R14、R15;プロパルギル基、R16、R17;トリフルオロメチル基、R18;メチレン
  R14、R15;プロパルギル基、R16、R17;トリフルオロメチル基、R18;エチレン
  R14、R15;プロパルギル基、R16、R17;トリフルオロメチル基、R18;トリメチレン
  R14、R15;プロパルギル基、R16、R17;トリフルオロメチル基、R18;テトラメチレン
 好ましくは、高温保存時におけるガス発生の抑制、電池の充放電特性向上の観点から、以下のものが挙げられる。
  R14、R15;アリル基、R16、R17;水素基、R18;メチレン
  R14、R15;アリル基、R16、R17;水素基、R18;エチレン
  R14、R15;アリル基、R16、R17;水素基、R18;トリメチレン
  R14、R15;アリル基、R16、R17;水素基、R18;テトラメチレン
  R14、R15;アリル基、R16、R17;メチル基、R18;メチレン
  R14、R15;アリル基、R16、R17;メチル基、R18;エチレン
  R14、R15;アリル基、R16、R17;メチル基、R18;トリメチレン
  R14、R15;アリル基、R16、R17;メチル基、R18;テトラメチレン
  R14、R15;アリル基、R16、R17;エチル基、R18;メチレン
  R14、R15;アリル基、R16、R17;エチル基、R18;エチレン
  R14、R15;アリル基、R16、R17;エチル基、R18;トリメチレン
  R14、R15;アリル基、R16、R17;エチル基、R18;テトラメチレン
  R14、R15;アリル基、R16、R17;トリフルオロメチル基、R18;メチレン
  R14、R15;アリル基、R16、R17;トリフルオロメチル基、R18;エチレン
  R14、R15;アリル基、R16、R17;トリフルオロメチル基、R18;トリメチレン
  R14、R15;アリル基、R16、R17;トリフルオロメチル基、R18;テトラメチレン
5.鎖状カルバミン酸エステル
Figure JPOXMLDOC01-appb-C000009
 R19としては、アリル基、プロパルギル基、cis-2-ブテニル基、trans-2-ブテニル基、3-ブテニル基、2-ブチニル基、3-ブチニル基、4-ペンテニル基、4-ペンチニル基、5-へキセニル基、5-ヘキシニル基、7-オクテニル基、7-オクチニル基、9-デセニル基、9-デシニル基などが挙げられ、この中で、アリル基、プロパルギル基、3-ブテニル基、3-ブチニル基、4-ペンテニル基、4-ペンチニル基などの末端に炭素-炭素不飽和結合をもつものが電池特性の点から好ましい。
 R20としては、アリル基、プロパルギル基、cis-2-ブテニル基、trans-2-ブテニル基、3-ブテニル基、2-ブチニル基、3-ブチニル基、4-ペンテニル基、4-ペンチニル基、5-へキセニル基、5-ヘキシニル基、7-オクテニル基、7-オクチニル基、9-デセニル基、9-デシニル基などが挙げられ、この中で、アリル基、プロパルギル基、3-ブテニル基、3-ブチニル基、4-ペンテニル基、4-ペンチニル基などの末端に炭素-炭素不飽和結合をもつものが電池特性の点から好ましい。
 また、その他の置換基として、水素基、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、ペンチル基、ヘキシル基、オクチル基、デシル基、シクロペンチル基、シクロヘキシル基、フェニル基、ベンジル基、フェネチル基、2-メトキシエチル基、2-エトキシエチル基などが挙げられる。
 R21としては、メチル、エチル基、プロピル基、イソプロピル基、ブチル基、t-ブチル基、ペンチル基、ヘキシル基、シクロヘキシル基、2,2,2-トリフルオロエチル基、アリル基、フェニル基、ベンジル基、フェネチル基などが挙げられ、またヘテロ原子を含んだ置換基としては、メトキシエチル、エトキシエチル、2-シアノエチル基、2-シアノ-1-(シアノメチル)エチルなどが挙げられる。
 R19~R21の中で好ましい組み合わせは、電池特性の観点からR19が、アリル基又はプロパルギル基であるものであり、以下の具体例が挙げられる。
  R19;アリル基、R20;アリル基、R21;メチル基
  R19;アリル基、R20;アリル基、R21;エチル基
  R19;アリル基、R20;アリル基、R21;シクロヘキシル基
  R19;アリル基、R20;アリル基、R21;フェニル基
  R19;アリル基、R20;アリル基、R21;2,2,2-トリフルオロエチル基
  R19;アリル基、R20;アリル基、R21;2-シアノエチル基
  R19;プロパルギル基、R20;プロパルギル基、R21;メチル基
  R19;プロパルギル基、R20;プロパルギル基、R21;エチル基
  R19;プロパルギル基、R20;プロパルギル基、R21;シクロヘキシル基
  R19;プロパルギル基、R20;プロパルギル基、R21;フェニル基
  R19;プロパルギル基、R20;プロパルギル基、R21;2,2,2-トリフルオロエチル基
  R19;プロパルギル基、R20;プロパルギル基、R21;2-シアノエチル基
  R19;アリル基、R20;水素基、R21;メチル基
  R19;アリル基、R20;水素基、R21;エチル基
  R19;アリル基、R20;水素基、R21;シクロヘキシル基
  R19;アリル基、R20;水素基、R21;フェニル基
  R19;アリル基、R20;水素基、R21;2,2,2-トリフルオロエチル基
  R19;アリル基、R20;水素基、R21;2-シアノエチル基
  R19;プロパルギル基、R20;水素基、R21;メチル基
  R19;プロパルギル基、R20;水素基、R21;エチル基
  R19;プロパルギル基、R20;水素基、R21;シクロヘキシル基
  R19;プロパルギル基、R20;水素基、R21;フェニル基
  R19;プロパルギル基、R20;水素基、R21;2,2,2-トリフルオロエチル基
  R19;プロパルギル基、R20;水素基、R21;2-シアノエチル基
 好ましくは、高温保存時におけるガス発生の抑制、電池の充放電特性向上の観点から、以下のものが挙げられる。
  R19;アリル基、R20;アリル基、R21;メチル基
  R19;アリル基、R20;アリル基、R21;エチル基
  R19;アリル基、R20;アリル基、R21;シクロヘキシル基
  R19;アリル基、R20;アリル基、R21;フェニル基
  R19;アリル基、R20;アリル基、R21;2,2,2-トリフルオロエチル基
  R19;アリル基、R20;アリル基、R21;2-シアノエチル基
  R19;アリル基、R20;水素基、R21;メチル基
  R19;アリル基、R20;水素基、R21;エチル基
  R19;アリル基、R20;水素基、R21;シクロヘキシル基
  R19;アリル基、R20;水素基、R21;フェニル基
  R19;アリル基、R20;水素基、R21;2,2,2-トリフルオロエチル基
  R19;アリル基、R20;水素基、R21;2-シアノエチル基
  R19;プロパルギル基、R20;水素基、R21;メチル基
  R19;プロパルギル基、R20;水素基、R21;エチル基
  R19;プロパルギル基、R20;水素基、R21;シクロヘキシル基
  R19;プロパルギル基、R20;水素基、R21;フェニル基
  R19;プロパルギル基、R20;水素基、R21;2,2,2-トリフルオロエチル基
  R19;プロパルギル基、R20;水素基、R21;2-シアノエチル基
6.環状カルバミン酸エステル
Figure JPOXMLDOC01-appb-C000010
 R22としては、アリル基、プロパルギル基、cis-2-ブテニル基、trans-2-ブテニル基、3-ブテニル基、2-ブチニル基、3-ブチニル基、4-ペンテニル基、4-ペンチニル基、5-へキセニル基、5-ヘキシニル基、7-オクテニル基、7-オクチニル基、9-デセニル基、9-デシニル基などが挙げられ、この中で、アリル基、プロパルギル基、3-ブテニル基、3-ブチニル基、4-ペンテニル基、4-ペンチニル基などの末端に炭素-炭素不飽和結合をもつものが電池特性の点から好ましい。
 R23としては、エチレン基、トリメチレン基、1-メチルトリメチレン基、2-メチルトリメチレン基、3-メチルトリメチレン基、2,2-ジメチルトリメチレン基、テトラメチレン基、1-メチルテトラメチレン基、4-メチルテトラメチレン基、ペンタメチレン基などが挙げられる。
 R22及びR23の中で好ましい組み合わせは、電池特性向上の観点からR22が、アリル基又はプロパルギル基であるものである。
 R22がアリル基であるものとして、N-アリル-2-オキサゾリドン、N-アリル-1,3-オキサジン-2-オン、またR23がプロパルギル基であるものとして、N-プロパルギル-2-オキサゾリドン、N-プロパルギル-1,3-オキサジン-2-オンが挙げられる。
 好ましくは、高温保存時におけるガス発生の抑制、電池の充放電特性向上の観点から、N-アリル-2-オキサゾリドン、N-アリル-1,3-オキサジン-2-オンが挙げられる。
7.ジカーバメート
Figure JPOXMLDOC01-appb-C000011
 
 
 R24としては、アリル基、プロパルギル基、cis-2-ブテニル基、trans-2-ブテニル基、3-ブテニル基、2-ブチニル基、3-ブチニル基、4-ペンテニル基、4-ペンチニル基、5-へキセニル基、5-ヘキシニル基、7-オクテニル基、7-オクチニル基、9-デセニル基、9-デシニル基などが挙げられ、この中で、アリル基、プロパルギル基、3-ブテニル基、3-ブチニル基、4-ペンテニル基、4-ペンチニル基などの末端に炭素-炭素不飽和結合をもつものが電池特性の点から好ましい。
 R25~R27としては、アリル基、プロパルギル基、cis-2-ブテニル基、trans-2-ブテニル基、3-ブテニル基、2-ブチニル基、3-ブチニル基、4-ペンテニル基、4-ペンチニル基、5-へキセニル基、5-ヘキシニル基、7-オクテニル基、7-オクチニル基、9-デセニル基、9-デシニル基などが挙げられ、この中で、アリル基、プロパルギル基、3-ブテニル基、3-ブチニル基、4-ペンテニル基、4-ペンチニル基などの末端に炭素-炭素不飽和結合をもつものが電池特性の点から好ましい。
 また、その他の置換基として、水素基、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、ペンチル基、ヘキシル基、オクチル基、デシル基、シクロペンチル基、シクロヘキシル基、フェニル基、ベンジル基、フェネチル基、2-メトキシエチル基、2-エトキシエチル基などが挙げられる。
 R28としては、メチレン基、エチレン基、プロピレン基、トリメチレン基、テトラメチレン基、ペンタメチレン基、ヘキサメチレン基、ヘプタメチレン基、オクタメチレン基、ノナメチレン基、デカメチレン基、ビニレン基、アセチレン基、1,2-フェニレン基、1,3-フェニレン基、1,4-フェニレン基、1,1’-ビフェニレン基、3,3’-ビフェニレン基、4,4’-ビフェニレン基、1,2-シクロヘキサンジイル基、1,3-シクロヘキサンジイル基、1,4-シクロヘキサンジイル基などが挙げられる。
 R24~R28の中で好ましい組み合わせは、電池特性の観点から、R24がアリル基又はプロパルギル基であるものが好ましい。
  R24~R27;アリル基、R28;メチレン基
  R24~R27;アリル基、R28;エチレン基
  R24~R27;アリル基、R28;トリメチレン基
  R24~R27;アリル基、R28;テトラメチレン基
  R24~R27;アリル基、R28;ペンタメチレン基
  R24~R27;アリル基、R28;ヘキサメチレン基
  R24~R27;アリル基、R28;1,2-フェニレン基
  R24~R27;アリル基、R28;1,3-フェニレン基
  R24~R27;アリル基、R28;1,4-フェニレン基
  R24~R27;アリル基、R28;1,2-シクロヘキサンジイル基
  R24~R27;アリル基、R28;1,3-シクロヘキサンジイル基
  R24~R27;アリル基、R28;1,4-シクロヘキサンジイル基
  R24~R27;プロパルギル基、R28;メチレン基
  R24~R27;プロパルギル基、R28;エチレン基
  R24~R27;プロパルギル基、R28;トリメチレン基
  R24~R27;プロパルギル基、R28;テトラメチレン基
  R24~R27;プロパルギル基、R28;ペンタメチレン基
  R24~R27;プロパルギル基、R28;ヘキサメチレン基
  R24~R27;プロパルギル基、R28;1,2-フェニレン基
  R24~R27;プロパルギル基、R28;1,3-フェニレン基
  R24~R27;プロパルギル基、R28;1,4-フェニレン基
  R24~R27;プロパルギル基、R28;1,2-シクロヘキサンジイル基
  R24~R27;プロパルギル基、R28;1,3-シクロヘキサンジイル基
  R24~R27;プロパルギル基、R28;1,4-シクロヘキサンジイル基
  R24、R26;アリル基、R25、R27;水素基、R28;メチレン基
  R24、R26;アリル基、R25、R27;水素基、R28;エチレン基
  R24、R26;アリル基、R25、R27;水素基、R28;トリメチレン基
  R24、R26;アリル基、R25、R27;水素基、R28;テトラメチレン基
  R24、R26;アリル基、R25、R27;水素基、R28;ペンタメチレン基
  R24、R26;アリル基、R25、R27;水素基、R28;ヘキサメチレン基
  R24、R26;アリル基、R25、R27;水素基、R28;1,2-フェニレン基
  R24、R26;アリル基、R25、R27;水素基、R28;1,3-フェニレン基
  R24、R26;アリル基、R25、R27;水素基、R28;1,4-フェニレン基
  R24、R26;アリル基、R25、R27;水素基、R28;1,2-シクロヘキサンジイル基
  R24、R26;アリル基、R25、R27;水素基、R28;1,3-シクロヘキサンジイル基
  R24、R26;アリル基、R25、R27;水素基、R28;1,4-シクロヘキサンジイル基
  R24、R26;プロパルギル基、R25、R27;水素基、R28;メチレン基
  R24、R26;プロパルギル基、R25、R27;水素基、R28;エチレン基
  R24、R26;プロパルギル基、R25、R27;水素基、R28;トリメチレン基
  R24、R26;プロパルギル基、R25、R27;水素基、R28;テトラメチレン基
  R24、R26;プロパルギル基、R25、R27;水素基、R28;ペンタメチレン基
  R24、R26;プロパルギル基、R25、R27;水素基、R28;ヘキサメチレン基
  R24、R26;プロパルギル基、R25、R27;水素基、R28;1,2-フェニレン基
  R24、R26;プロパルギル基、R25、R27;水素基、R28;1,3-フェニレン基
  R24、R26;プロパルギル基、R25、R27;水素基、R28;1,4-フェニレン基
  R24、R26;プロパルギル基、R25、R27;水素基、R28;1,2-シクロヘキサンジイル基
  R24、R26;プロパルギル基、R25、R27;水素基、R28;1,3-シクロヘキサンジイル基
  R24、R26;プロパルギル基、R25、R27;水素基、R28;1,4-シクロヘキサンジイル基
 好ましくは、高温保存時におけるガス発生の抑制、電池の充放電特性向上の観点から、以下のものが挙げられる。
  R24~R27;アリル基、R28;メチレン基
  R24~R27;アリル基、R28;エチレン基
  R24~R27;アリル基、R28;トリメチレン基
  R24~R27;アリル基、R28;テトラメチレン基
  R24~R27;アリル基、R28;ペンタメチレン基
  R24~R27;アリル基、R28;ヘキサメチレン基
  R24~R27;アリル基、R28;1,2-フェニレン基
  R24~R27;アリル基、R28;1,3-フェニレン基
  R24~R27;アリル基、R28;1,4-フェニレン基
  R24~R27;アリル基、R28;1,2-シクロヘキサンジイル基
  R24~R27;アリル基、R28;1,3-シクロヘキサンジイル基
  R24~R27;アリル基、R28;1,4-シクロヘキサンジイル基
  R24、R26;アリル基、R25、R27;水素基、R28;メチレン基
  R24、R26;アリル基、R25、R27;水素基、R28;エチレン基
  R24、R26;アリル基、R25、R27;水素基、R28;トリメチレン基
  R24、R26;アリル基、R25、R27;水素基、R28;テトラメチレン基
  R24、R26;アリル基、R25、R27;水素基、R28;ペンタメチレン基
  R24、R26;アリル基、R25、R27;水素基、R28;ヘキサメチレン基
  R24、R26;アリル基、R25、R27;水素基、R28;1,2-フェニレン基
  R24、R26;アリル基、R25、R27;水素基、R28;1,3-フェニレン基
  R24、R26;アリル基、R25、R27;水素基、R28;1,4-フェニレン基
  R24、R26;アリル基、R25、R27;水素基、R28;1,2-シクロヘキサンジイル基
  R24、R26;アリル基、R25、R27;水素基、R28;1,3-シクロヘキサンジイル基
  R24、R26;アリル基、R25、R27;水素基、R28;1,4-シクロヘキサンジイル基
  R24、R26;プロパルギル基、R25、R27;水素基、R28;メチレン基
  R24、R26;プロパルギル基、R25、R27;水素基、R28;エチレン基
  R24、R26;プロパルギル基、R25、R27;水素基、R28;トリメチレン基
  R24、R26;プロパルギル基、R25、R27;水素基、R28;テトラメチレン基
  R24、R26;プロパルギル基、R25、R27;水素基、R28;ペンタメチレン基
  R24、R26;プロパルギル基、R25、R27;水素基、R28;ヘキサメチレン基
  R24、R26;プロパルギル基、R25、R27;水素基、R28;1,2-フェニレン基
  R24、R26;プロパルギル基、R25、R27;水素基、R28;1,3-フェニレン基
  R24、R26;プロパルギル基、R25、R27;水素基、R28;1,4-フェニレン基
  R24、R26;プロパルギル基、R25、R27;水素基、R28;1,2-シクロヘキサンジイル基
  R24、R26;プロパルギル基、R25、R27;水素基、R28;1,3-シクロヘキサンジイル基
  R24、R26;プロパルギル基、R25、R27;水素基、R28;1,4-シクロヘキサンジイル基
 更に好ましくは、以下のものが挙げられる。
  R24~R27;アリル基、R28;メチレン基
  R24~R27;アリル基、R28;エチレン基
  R24~R27;アリル基、R28;トリメチレン基
  R24~R27;アリル基、R28;テトラメチレン基
  R24~R27;アリル基、R28;ペンタメチレン基
  R24~R27;アリル基、R28;ヘキサメチレン基
  R24~R27;アリル基、R28;1,2-フェニレン基
  R24~R27;アリル基、R28;1,3-フェニレン基
  R24~R27;アリル基、R28;1,4-フェニレン基
  R24~R27;アリル基、R28;1,2-シクロヘキサンジイル基
  R24~R27;アリル基、R28;1,3-シクロヘキサンジイル基
  R24~R27;アリル基、R28;1,4-シクロヘキサンジイル基
  R24、R26;アリル基、R25、R27;水素基、R28;メチレン基
  R24、R26;アリル基、R25、R27;水素基、R28;エチレン基
  R24、R26;アリル基、R25、R27;水素基、R28;トリメチレン基
  R24、R26;アリル基、R25、R27;水素基、R28;テトラメチレン基
  R24、R26;アリル基、R25、R27;水素基、R28;ペンタメチレン基
  R24、R26;アリル基、R25、R27;水素基、R28;ヘキサメチレン基
  R24、R26;アリル基、R25、R27;水素基、R28;1,2-フェニレン基
  R24、R26;アリル基、R25、R27;水素基、R28;1,3-フェニレン基
  R24、R26;アリル基、R25、R27;水素基、R28;1,4-フェニレン基
  R24、R26;アリル基、R25、R27;水素基、R28;1,2-シクロヘキサンジイル基
  R24、R26;アリル基、R25、R27;水素基、R28;1,3-シクロヘキサンジイル基
  R24、R26;アリル基、R25、R27;水素基、R28;1,4-シクロヘキサンジイル基
Figure JPOXMLDOC01-appb-C000012
 R29としては、アリル基、プロパルギル基、cis-2-ブテニル基、trans-2-ブテニル基、3-ブテニル基、2-ブチニル基、3-ブチニル基、4-ペンテニル基、4-ペンチニル基、5-へキセニル基、5-ヘキシニル基、7-オクテニル基、7-オクチニル基、9-デセニル基、9-デシニル基などが挙げられ、この中で、アリル基、プロパルギル基、3-ブテニル基、3-ブチニル基、4-ペンテニル基、4-ペンチニル基などの末端に炭素-炭素不飽和結合をもつものが電池特性の点から好ましい。
 R30としては、アリル基、プロパルギル基、水素基、メチル基、エチル基、プロピル基、イソプロピル基などが挙げられる。
 R31及びR32としては、メチル基、エチル基、2,2,2-トリフルオロエチル基などが挙げられる。
 R33としては、メチレン、エチレン、トリメチレン、テトラメチレンなどが挙げられる。
 R29~R33の中で好ましい組み合わせは、電池特性の観点から、R29が、アリル基又はプロパルギル基であるものが望ましく、以下の例が挙げられる。
  R29、R30;アリル基、R31、R32;メチル基、R33;メチレン基
  R29、R30;アリル基、R31、R32;エチル基、R33;メチレン基
  R29、R30;アリル基、R31、R32;2,2,2-トリフルオロエチル基、R33;メチレン基
  R29、R30;アリル基、R31、R32;メチル基、R33;エチレン基
  R29、R30;アリル基、R31、R32;エチル基、R33;エチレン基
  R29、R30;アリル基、R31、R32;2,2,2-トリフルオロエチル基、R33;エチレン基
  R29、R30;アリル基、R31、R32;メチル基、R33;トリメチレン基
  R29、R30;アリル基、R31、R32;エチル基、R33;トリメチレン基
  R29、R30;アリル基、R31、R32;2,2,2-トリフルオロエチル基、R33;トリメチレン基
  R29、R30;アリル基、R31、R32;メチル基、R33;テトラメチレン基
  R29、R30;アリル基、R31、R32;エチル基、R33;テトラメチレン基
  R29、R30;アリル基、R31、R32;2,2,2-トリフルオロエチル基、R33;テトラメチレン基
  R29、R30;プロパルギル基、R31、R32;メチル基、R33;メチレン基
  R29、R30;プロパルギル基、R31、R32;エチル基、R33;メチレン基
  R29、R30;プロパルギル基、R31、R32;2,2,2-トリフルオロエチル基、R33;メチレン基
  R29、R30;プロパルギル基、R31、R32;メチル基、R33;エチレン基
  R29、R30;プロパルギル基、R31、R32;エチル基、R33;エチレン基
  R29、R30;プロパルギル基、R31、R32;2,2,2-トリフルオロエチル基、R33;エチレン基
  R29、R30;プロパルギル基、R31、R32;メチル基、R33;トリメチレン基
  R29、R30;プロパルギル基、R31、R32;エチル基、R33;トリメチレン基
  R29、R30;プロパルギル基、R31、R32;2,2,2-トリフルオロエチル基、R33;トリメチレン基
  R29、R30;プロパルギル基、R31、R32;メチル基、R33;テトラメチレン基
  R29、R30;プロパルギル基、R31、R32;エチル基、R33;テトラメチレン基
  R29、R30;プロパルギル基、R31、R32;2,2,2-トリフルオロエチル基、R33;テトラメチレン基
 好ましくは、高温保存時におけるガス発生の抑制、電池の充放電特性向上の観点から、以下のものが挙げられる。
  R29、R30;アリル基、R31、R32;メチル基、R33;メチレン基
  R29、R30;アリル基、R31、R32;エチル基、R33;メチレン基
  R29、R30;アリル基、R31、R32;2,2,2-トリフルオロエチル基、R33;メチレン基
  R29、R30;アリル基、R31、R32;メチル基、R33;エチレン基
  R29、R30;アリル基、R31、R32;エチル基、R33;エチレン基
  R29、R30;アリル基、R31、R32;2,2,2-トリフルオロエチル基、R33;エチレン基
  R29、R30;アリル基、R31、R32;メチル基、R33;トリメチレン基
  R29、R30;アリル基、R31、R32;エチル基、R33;トリメチレン基
  R29、R30;アリル基、R31、R32;2,2,2-トリフルオロエチル基、R33;トリメチレン基
  R29、R30;アリル基、R31、R32;メチル基、R33;テトラメチレン基
  R29、R30;アリル基、R31、R32;エチル基、R33;テトラメチレン基
  R29、R30;アリル基、R31、R32;2,2,2-トリフルオロエチル基、R33;テトラメチレン基
 更に好ましくは、以下のものが挙げられる。
  R29、R30;アリル基、R31、R32;メチル基、R33;エチレン基
  R29、R30;アリル基、R31、R32;エチル基、R33;エチレン基
  R29、R30;アリル基、R31、R32;2,2,2-トリフルオロエチル基、R33;エチレン基
  R29、R30;アリル基、R31、R32;メチル基、R33;トリメチレン基
  R29、R30;アリル基、R31、R32;エチル基、R33;トリメチレン基
  R29、R30;アリル基、R31、R32;2,2,2-トリフルオロエチル基、R33;トリメチレン基
  R29、R30;アリル基、R31、R32;メチル基、R33;テトラメチレン基
  R29、R30;アリル基、R31、R32;エチル基、R33;テトラメチレン基
  R29、R30;アリル基、R31、R32;2,2,2-トリフルオロエチル基、R33;テトラメチレン基
8.尿素
Figure JPOXMLDOC01-appb-C000013
 R34としては、アリル基、プロパルギル基、cis-2-ブテニル基、trans-2-ブテニル基、3-ブテニル基、2-ブチニル基、3-ブチニル基、4-ペンテニル基、4-ペンチニル基、5-へキセニル基、5-ヘキシニル基、7-オクテニル基、7-オクチニル基、9-デセニル基、9-デシニル基などが挙げられ、この中で、アリル基、プロパルギル基、3-ブテニル基、3-ブチニル基、4-ペンテニル基、4-ペンチニル基などの末端に炭素-炭素不飽和結合をもつものが電池特性の点から好ましい。
 R35~R37としては、アリル基、プロパルギル基、cis-2-ブテニル基、trans-2-ブテニル基、3-ブテニル基、2-ブチニル基、3―ブチニル基、4-ペンテニル基、4-ペンチニル基、5-へキセニル基、5-ヘキシニル基、7-オクテニル基、7-オクチニル基、9-デセニル基、9-デシニル基などが挙げられ、この中で、アリル基、プロパルギル基、3-ブテニル基、3―ブチニル基、4-ペンテニル基、4-ペンチニル基などの末端に炭素-炭素不飽和結合をもつものが電池特性の点から好ましい。
 また、その他の置換基として、水素基、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、ペンチル基、ヘキシル基、オクチル基、デシル基、シクロペンチル基、シクロヘキシル基、フェニル基、ベンジル基、フェネチル基、2-メトキシエチル基、2-エトキシエチル基などが挙げられる。
 R34~R37の中で好ましい組み合わせは、電池特性の観点から、R34がアリル基又はプロパルギル基であるものが望ましく、以下の例が挙げられる。
  R34~R37;アリル基
  R34~R37;プロパルギル基
  R34、R36;アリル基、R35、R37;水素基
  R34、R36;プロパルギル基、R35、R37;水素基
  R34、R36;アリル基、R35、R37;メチル基
  R34、R36;プロパルギル基、R35、R37;メチル基
  R34、R36;アリル基、R35、R37;エチル基
  R34、R36;プロパルギル基、R35、R37;エチル基
  R34、R36;アリル基、R35、R37;プロピル基
  R34、R36;プロパルギル基、R35、R37;プロピル基
  R34、R35;アリル基、R36、R37;メチル基
  R34;アリル基、R35;水素基、R36、R37;メチル基
  R34、R35;プロパルギル基、R36、R37;メチル基
  R34;プロパルギル基、R35;水素基、R36、R37;メチル基
  R34、R35;アリル基、R36、R37;エチル基
  R34;アリル基、R35;水素基、R36、R37;エチル基
  R34、R35;プロパルギル基、R36、R37;エチル基
  R34;プロパルギル基、R35;水素基、R36、R37;エチル基
  R34、R35;アリル基、R36、R37;プロピル基
  R34;アリル基、R35;水素基、R36、R37;プロピル基
  R34、R35;プロパルギル基、R36、R37;プロピル基
  R34;プロパルギル基、R35;水素基、R36、R37;プロピル基
 好ましくは、高温保存時におけるガス発生の抑制、電池の充放電特性向上の観点から、以下のものが挙げられる。
34~R37;アリル基
34、R36;アリル基、R35、R37;水素基
34、R36;プロパルギル基、R35、R37;水素基
34、R35;アリル基、R36、R37;メチル基
34;アリル基、R35;水素基、R36、R37;メチル基
34;プロパルギル基、R35;水素基、R36、R37;メチル基
34、R35;アリル基、R36、R37;エチル基
34;アリル基、R35;水素基、R36、R37;エチル基
34;プロパルギル基、R35;水素基、R36、R37;エチル基
34、R35;アリル基、R36、R37;プロピル基
34;アリル基、R35;水素基、R36、R37;プロピル基
34;プロパルギル基、R35;水素基、R36、R37;プロピル基
9.環状尿素
Figure JPOXMLDOC01-appb-C000014
 R38としては、アリル基、プロパルギル基、cis-2-ブテニル基、trans-2-ブテニル基、3-ブテニル基、2-ブチニル基、3-ブチニル基、4-ペンテニル基、4-ペンチニル基、5-へキセニル基、5-ヘキシニル基、7-オクテニル基、7-オクチニル基、9-デセニル基、9-デシニル基などが挙げられ、この中で、アリル基、プロパルギル基、3-ブテニル基、3-ブチニル基、4-ペンテニル基、4-ペンチニル基などの末端に炭素-炭素不飽和結合をもつものが電池特性の点から好ましい。
 R39としては、アリル基、プロパルギル基、cis-2-ブテニル基、trans-2-ブテニル基、3-ブテニル基、2-ブチニル基、3-ブチニル基、4-ペンテニル基、4-ペンチニル基、5-へキセニル基、5-ヘキシニル基、7-オクテニル基、7-オクチニル基、9-デセニル基、9-デシニル基などが挙げられ、この中で、アリル基、プロパルギル基、3-ブテニル基、3-ブチニル基、4-ペンテニル基、4-ペンチニル基などの末端に炭素-炭素不飽和結合をもつものが電池特性の点から好ましい。
 また、その他の置換基として、水素基、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、ペンチル基、ヘキシル基、オクチル基、デシル基、シクロペンチル基、シクロヘキシル基、フェニル基、ベンジル基、フェネチル基、2-メトキシエチル基、2-エトキシエチル基などが挙げられる。
 R40としては、エチレン基、プロピレン基、トリメチレン基、1-メチルトリメチレン基、2-メチルトリメチレン基、3-メチルトリメチレン基、2,2-ジメチルトリメチレン基などが挙げられる。
 R38~R40の中で好ましい組み合わせは、電池特性の観点から、R38がアリル基又はプロパルギル基であるものが望ましく、以下のような例が挙げられる。
  R38、R39;アリル基、R40;エチレン基
  R38、R39;プロパルギル基、R40;エチレン基
  R38;アリル基、R39;水素基、R40;エチレン基
  R38;プロパルギル基、R39;水素基、R40;エチレン基
  R38、R39;アリル基、R40;トリメチレン基
  R38、R39;プロパルギル基、R40;トリメチレン基
  R38;アリル基、R39;水素基、R40;トリメチレン基
  R38;プロパルギル基、R39;水素基、R40;トリメチレン基
  R38、R39;アリル基、R40;2,2-ジメチルトリメチレン基
  R38、R39;プロパルギル基、R40;2,2-ジメチルトリメチレン基
  R38;アリル基、R39;水素基、R40;2,2-ジメチルトリメチレン基
  R38;プロパルギル基、R39;水素基、R40;2,2-ジメチルトリメチレン基
 好ましくは、高温保存時におけるガス発生の抑制、電池の充放電特性向上の観点から、以下のものが挙げられる。
  R38、R39;アリル基、R40;エチレン基
  R38、R39;プロパルギル基、R40;エチレン基
  R38、R39;アリル基、R40;トリメチレン基
  R38、R39;プロパルギル基、R40;トリメチレン基
  R38、R39;アリル基、R40;2,2-ジメチルトリメチレン基
  R38、R39;プロパルギル基、R40;2,2-ジメチルトリメチレン基
10.スルホンアミド
Figure JPOXMLDOC01-appb-C000015
 R41としては、アリル基、プロパルギル基、cis-2-ブテニル基、trans-2-ブテニル基、3-ブテニル基、2-ブチニル基、3-ブチニル基、4-ペンテニル基、4-ペンチニル基、5-へキセニル基、5-ヘキシニル基、7-オクテニル基、7-オクチニル基、9-デセニル基、9-デシニル基などが挙げられ、この中で、アリル基、プロパルギル基、3-ブテニル基、3-ブチニル基、4-ペンテニル基、4-ペンチニル基などの末端に炭素-炭素不飽和結合をもつものが電池特性の点から好ましい。
 R42としては、アリル基、プロパルギル基、cis-2-ブテニル基、trans-2-ブテニル基、3-ブテニル基、2-ブチニル基、3-ブチニル基、4-ペンテニル基、4-ペンチニル基、5-へキセニル基、5-ヘキシニル基、7-オクテニル基、7-オクチニル基、9-デセニル基、9-デシニル基などが挙げられ、この中で、アリル基、プロパルギル基、3-ブテニル基、3-ブチニル基、4-ペンテニル基、4-ペンチニル基などの末端に炭素-炭素不飽和結合をもつものが電池特性の点から好ましい。
 また、その他の置換基として、水素基、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、ペンチル基、ヘキシル基、オクチル基、デシル基、シクロペンチル基、シクロヘキシル基、フェニル基、ベンジル基、フェネチル基、2-メトキシエチル基、2-エトキシエチル基などが挙げられる。
 R43としては、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、t-ブチル基、シクロヘキシル基、トリフルオロメチル基、2,2,2-トリフルオロエチル基、ペンタフルオロエチル基、ヘプタフルオロプロピル基、ビニル基、アリル基、フェニル基、ノナフルオロブチル基、4-トリル基、3-トリル基、2-トリル基などが挙げられる。
 R41~R43の中で好ましい組み合わせは、電池特性の観点からR41が、アリル基又はプロパルギル基であるものが好ましい。具体例として以下のものが挙げられる。
  R41、R42;アリル基、R43;メチル基
  R41、R42;アリル基、R43;エチル基
  R41、R42;アリル基、R43;シクロヘキシル基
  R41、R42;アリル基、R43;トリフルオロメチル基
  R41、R42;アリル基、R43;2,2,2-トリフルオロエチル基
  R41、R42;アリル基、R43;ビニル基
  R41、R42;アリル基、R43;アリル基
  R41、R42;アリル基、R43;フェニル基
  R41、R42;アリル基、R43;4-トリル基
  R41、R42;プロパルギル基、R43;メチル基
  R41、R42;プロパルギル基、R43;エチル基
  R41、R42;プロパルギル基、R43;シクロヘキシル基
  R41、R42;プロパルギル基、R43;トリフルオロメチル基
  R41、R42;プロパルギル基、R43;2,2,2-トリフルオロエチル基
  R41、R42;プロパルギル基、R43;ビニル基
  R41、R42;プロパルギル基、R43;アリル基
  R41、R42;プロパルギル基、R43;フェニル基
  R41、R42;プロパルギル基、R43;4-トリル基
  R41;アリル基、R42;水素基、R43;メチル基
  R41;アリル基、R42;水素基、R43;エチル基
  R41;アリル基、R42;水素基、R43;シクロヘキシル基
  R41;アリル基、R42;水素基、R43;トリフルオロメチル基
  R41;アリル基、R42;水素基、R43;2,2,2-トリフルオロエチル基
  R41;アリル基、R42;水素基、R43;ビニル基
  R41;アリル基、R42;水素基、R43;アリル基
  R41;アリル基、R42;水素基、R43;フェニル基
  R41;アリル基、R42;水素基、R43;4-トリル基
  R41;プロパルギル基、R42;水素基、R43;メチル基
  R41;プロパルギル基、R42;水素基、R43;エチル基
  R41;プロパルギル基、R42;水素基、R43;シクロヘキシル基
  R41;プロパルギル基、R42;水素基、R43;トリフルオロメチル基
  R41;プロパルギル基、R42;水素基、R43;2,2,2-トリフルオロエチル基
  R41;プロパルギル基、R42;水素基、R43;ビニル基
  R41;プロパルギル基、R42;水素基、R43;アリル基
  R41;プロパルギル基、R42;水素基、R43;フェニル基
  R41;プロパルギル基、R42;水素基、R43;4-トリル基
 好ましくは、高温保存時におけるガス発生の抑制、電池の充放電特性向上の観点から、以下のものが挙げられる。
  R41、R42;アリル基、R43;メチル基
  R41、R42;アリル基、R43;エチル基
  R41、R42;アリル基、R43;シクロヘキシル基
  R41、R42;アリル基、R43;トリフルオロメチル基
  R41、R42;アリル基、R43;2,2,2-トリフルオロエチル基
  R41、R42;アリル基、R43;ビニル基
  R41、R42;アリル基、R43;アリル基
  R41、R42;アリル基、R43;フェニル基
  R41、R42;アリル基、R43;4-トリル基
  R41;アリル基、R42;水素基、R43;メチル基
  R41;アリル基、R42;水素基、R43;エチル基
  R41;アリル基、R42;水素基、R43;シクロヘキシル基
  R41;アリル基、R42;水素基、R43;トリフルオロメチル基
  R41;アリル基、R42;水素基、R43;2,2,2-トリフルオロエチル基
  R41;アリル基、R42;水素基、R43;ビニル基
  R41;アリル基、R42;水素基、R43;アリル基
  R41;アリル基、R42;水素基、R43;フェニル基
  R41;アリル基、R42;水素基、R43;4-トリル基
  R41;プロパルギル基、R42;水素基、R43;メチル基
  R41;プロパルギル基、R42;水素基、R43;エチル基
  R41;プロパルギル基、R42;水素基、R43;シクロヘキシル基
  R41;プロパルギル基、R42;水素基、R43;トリフルオロメチル基
  R41;プロパルギル基、R42;水素基、R43;2,2,2-トリフルオロエチル基
  R41;プロパルギル基、R42;水素基、R43;ビニル基
  R41;プロパルギル基、R42;水素基、R43;アリル基
  R41;プロパルギル基、R42;水素基、R43;フェニル基
  R41;プロパルギル基、R42;水素基、R43;4-トリル基
 更に好ましくは、以下のものが挙げられる。
  R41、R42;アリル基、R43;メチル基
  R41、R42;アリル基、R43;エチル基
  R41、R42;アリル基、R43;シクロヘキシル基
  R41、R42;アリル基、R43;トリフルオロメチル基
  R41、R42;アリル基、R43;2,2,2-トリフルオロエチル基
  R41、R42;アリル基、R43;ビニル基
  R41、R42;アリル基、R43;アリル基
  R41、R42;アリル基、R43;フェニル基
  R41、R42;アリル基、R43;4-トリル基
11.スルタム
Figure JPOXMLDOC01-appb-C000016
 
 
 R44としては、アリル基、プロパルギル基、cis-2-ブテニル基、trans-2-ブテニル基、3-ブテニル基、2-ブチニル基、3-ブチニル基、4-ペンテニル基、4-ペンチニル基、5-へキセニル基、5-ヘキシニル基、7-オクテニル基、7-オクチニル基、9-デセニル基、9-デシニル基などが挙げられ、この中で、アリル基、プロパルギル基、3-ブテニル基、3―ブチニル基、4-ペンテニル基、4-ペンチニル基などの末端に炭素-炭素不飽和結合をもつものが電池特性の点から好ましい。
 R45としては、エチレン基、トリメチレン基、1-メチルトリメチレン基、2-メチルトリメチレン基、3-メチルトリメチレン基、2,2-ジメチルトリメチレン基、テトラメチレン基、1-メチルテトラメチレン基、4-メチルテトラメチレン基、ペンタメチレン基などが挙げられる。
 R44及びR45の中で好ましい組み合わせは、電池特性の観点からR44が、アリル基又はプロパルギル基であるものが好ましく、以下の例が挙げられる。
  R44;アリル基、R45;トリメチレン基
  R44;アリル基、R45;テトラメチレン基
  R44;アリル基、R45;ペンタメチレン基
  R44;プロパルギル基、R45;トリメチレン基
  R44;プロパルギル基、R45;テトラメチレン基
  R44;プロパルギル基、R45;ペンタメチレン基
 より好ましくは、高温保存時におけるガス発生の抑制、電池の充放電特性向上の観点から、以下のものが挙げられる。
  R44;アリル基、R45;トリメチレン基
  R44;アリル基、R45;テトラメチレン基
  R44;プロパルギル基、R45;トリメチレン基
  R44;プロパルギル基、R45;テトラメチレン基
12.ジスルホン酸アミド
Figure JPOXMLDOC01-appb-C000017
 R46としては、アリル基、プロパルギル基、cis-2-ブテニル基、trans-2-ブテニル基、3-ブテニル基、2-ブチニル基、3-ブチニル基、4-ペンテニル基、4-ペンチニル基、5-へキセニル基、5-ヘキシニル基、7-オクテニル基、7-オクチニル基、9-デセニル基、9-デシニル基などが挙げられ、この中で、アリル基、プロパルギル基、3-ブテニル基、3-ブチニル基、4-ペンテニル基、4-ペンチニル基などの末端に炭素-炭素不飽和結合をもつものが電池特性の点から好ましい。
 R47~R49としては、アリル基、プロパルギル基、cis-2-ブテニル基、trans-2-ブテニル基、3-ブテニル基、2-ブチニル基、3-ブチニル基、4-ペンテニル基、4-ペンチニル基、5-へキセニル基、5-ヘキシニル基、7-オクテニル基、7-オクチニル基、9-デセニル基、9-デシニル基などが挙げられ、この中で、アリル基、プロパルギル基、3-ブテニル基、3-ブチニル基、4-ペンテニル基、4-ペンチニル基などの末端に炭素-炭素不飽和結合をもつものが電池特性の点から好ましい。
 また、その他の置換基として、水素基、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、ペンチル基、ヘキシル基、オクチル基、デシル基、シクロペンチル基、シクロヘキシル基、フェニル基、ベンジル基、フェネチル基、2-メトキシエチル基、2-エトキシエチル基などが挙げられる。
 R50としては、直結基、メチレン基、エチレン基、トリメチレン基、テトラメチレン基、ペンタメチレン基、ヘキサメチレン基、ヘプタメチレン基、オクタメチレン基、ノナメチレン基、デカメチレン基、ビニレン基、アセチレン基、1,2-フェニレン基、1,3-フェニレン基、1,4-フェニレン基、4,4’-ビフェニレン基、1,2-シクロヘキサンジイル基、1,3-シクロヘキサンジイル基、1,4-シクロヘキサンジイル基などが挙げられる。
 R46~R50の中で好ましい組み合わせは、電池特性の観点からR46が、アリル基又はプロパルギル基であるものが好ましく、以下の具体例が挙げられる。
  R46~R49;アリル基、R50;直結基
  R46~R49;アリル基、R50;メチレン基
  R46~R49;アリル基、R50;エチレン基
  R46~R49;アリル基、R50;トリメチレン基
  R46~R49;アリル基、R50;テトラメチレン基
  R46~R49;アリル基、R50;ペンタメチレン基
  R46~R49;アリル基、R50;ヘキサメチレン基
  R46~R49;プロパルギル基、R50;直結基
  R46~R49;プロパルギル基、R50;メチレン基
  R46~R49;プロパルギル基、R50;エチレン基
  R46~R49;プロパルギル基、R50;トリメチレン基
  R46~R49;プロパルギル基、R50;テトラメチレン基
  R46~R49;プロパルギル基、R50;ペンタメチレン基
  R46~R49;プロパルギル基、R50;ヘキサメチレン基
  R46、R48;アリル基、R47、R49;水素基、R50;直結基
  R46、R48;アリル基、R47、R49;水素基、R50;メチレン基
  R46、R48;アリル基、R47、R49;水素基、R50;エチレン基
  R46、R48;アリル基、R47、R49;水素基、R50;トリメチレン基
  R46、R48;アリル基、R47、R49;水素基、R50;テトラメチレン基
  R46、R48;アリル基、R47、R49;水素基、R50;ペンタメチレン基
  R46、R48;アリル基、R47、R49;水素基、R50;ヘキサメチレン基
  R46、R48;プロパルギル基、R47、R49;水素基、R50;直結基
  R46、R48;プロパルギル基、R47、R49;水素基、R50;メチレン基
  R46、R48;プロパルギル基、R47、R49;水素基、R50;エチレン基
  R46、R48;プロパルギル基、R47、R49;水素基、R50;トリメチレン基
  R46、R48;プロパルギル基、R47、R49;水素基、R50;テトラメチレン基
  R46、R48;プロパルギル基、R47、R49;水素基、R50;ペンタメチレン基
  R46、R48;プロパルギル基、R47、R49;水素基、R50;ヘキサメチレン基
  R46、R48;アリル基、R47、R49;メチル基、R50;直結基
  R46、R48;アリル基、R47、R49;メチル基、R50;メチレン基
  R46、R48;アリル基、R47、R49;メチル基、R50;エチレン基
  R46、R48;アリル基、R47、R49;メチル基、R50;トリメチレン基
  R46、R48;アリル基、R47、R49;メチル基、R50;テトラメチレン基
  R46、R48;アリル基、R47、R49;メチル基、R50;ペンタメチレン基
  R46、R48;アリル基、R47、R49;メチル基、R50;ヘキサメチレン基
  R46、R48;アリル基、R47、R49;エチル基、R50;直結基
  R46、R48;アリル基、R47、R49;エチル基、R50;メチレン基
  R46、R48;アリル基、R47、R49;エチル基、R50;エチレン基
  R46、R48;アリル基、R47、R49;エチル基、R50;トリメチレン基
  R46、R48;アリル基、R47、R49;エチル基、R50;テトラメチレン基
  R46、R48;アリル基、R47、R49;エチル基、R50;ペンタメチレン基
  R46、R48;アリル基、R47、R49;エチル基、R50;ヘキサメチレン基
 好ましくは、高温保存時におけるガス発生の抑制、電池の充放電特性向上の観点から、以下のものが挙げられる。
  R46~R49;アリル基、R50;直結基
  R46~R49;アリル基、R50;メチレン基
  R46~R49;アリル基、R50;エチレン基
  R46~R49;アリル基、R50;トリメチレン基
  R46~R49;アリル基、R50;テトラメチレン基
  R46~R49;アリル基、R50;ペンタメチレン基
  R46~R49;アリル基、R50;ヘキサメチレン基
  R46、R48;アリル基、R47、R49;水素基、R50;直結基
  R46、R48;アリル基、R47、R49;水素基、R50;メチレン基
  R46、R48;アリル基、R47、R49;水素基、R50;エチレン基
  R46、R48;アリル基、R47、R49;水素基、R50;トリメチレン基
  R46、R48;アリル基、R47、R49;水素基、R50;テトラメチレン基
  R46、R48;アリル基、R47、R49;水素基、R50;ペンタメチレン基
  R46、R48;アリル基、R47、R49;水素基、R50;ヘキサメチレン基
  R46、R48;プロパルギル基、R47、R49;水素基、R50;直結基
  R46、R48;プロパルギル基、R47、R49;水素基、R50;メチレン基
  R46、R48;プロパルギル基、R47、R49;水素基、R50;エチレン基
  R46、R48;プロパルギル基、R47、R49;水素基、R50;トリメチレン基
  R46、R48;プロパルギル基、R47、R49;水素基、R50;テトラメチレン基
  R46、R48;プロパルギル基、R47、R49;水素基、R50;ペンタメチレン基
  R46、R48;プロパルギル基、R47、R49;水素基、R50;ヘキサメチレン基
 更に好ましくは、以下のものが挙げられる。
  R46~R49;アリル基、R50;直結基
  R46~R49;アリル基、R50;メチレン基
  R46~R49;アリル基、R50;エチレン基
  R46~R49;アリル基、R50;トリメチレン基
  R46~R49;アリル基、R50;テトラメチレン基
  R46~R49;アリル基、R50;ペンタメチレン基
  R46~R49;アリル基、R50;ヘキサメチレン基
Figure JPOXMLDOC01-appb-C000018
 R51としては、アリル基、プロパルギル基、cis-2-ブテニル基、trans-2-ブテニル基、3-ブテニル基、2-ブチニル基、3-ブチニル基、4-ペンテニル基、4-ペンチニル基、5-へキセニル基、5-ヘキシニル基、7-オクテニル基、7-オクチニル基、9-デセニル基、9-デシニル基などが挙げられ、この中で、アリル基、プロパルギル基、3-ブテニル基、3-ブチニル基、4-ペンテニル基、4-ペンチニル基などの末端に炭素-炭素不飽和結合をもつものが電池特性の点から好ましい。
 R52としては、アリル基、プロパルギル基、水素基、メチル基、エチル基、プロピル基、イソプロピル基などが挙げられる。
 R53及びR54としては、メチル基、エチル基、トリフルオロメチル基などが挙げられる。
 R55としては、メチレン、エチレン、トリメチレン、テトラメチレンなどが挙げられる。
 R51~R55の中で好ましい組み合わせは、電池特性の観点から、R51が、アリル基又はプロパルギル基であるものが望ましく、以下の例が挙げられる。
  R51、R52;アリル基、R53、R54;メチル基、R55;メチレン
  R51、R52;アリル基、R53、R54;メチル基、R55;エチレン
  R51、R52;アリル基、R53、R54;メチル基、R55;トリメチレン
  R51、R52;アリル基、R53、R54;メチル基、R55;テトラメチレン
  R51、R52;アリル基、R53、R54;エチル基、R55;メチレン
  R51、R52;アリル基、R53、R54;エチル基、R55;エチレン
  R51、R52;アリル基、R53、R54;エチル基、R55;トリメチレン
  R51、R52;アリル基、R53、R54;エチル基、R55;テトラメチレン
  R51、R52;アリル基、R53、R54;トリフルオロメチル基、R55;メチレン
  R51、R52;アリル基、R53、R54;トリフルオロメチル基、R55;エチレン
  R51、R52;アリル基、R53、R54;トリフルオロメチル基、R55;トリメチレン
  R51、R52;アリル基、R53、R54;トリフルオロメチル基、R55;テトラメチレン
  R51、R52;プロパルギル基、R53、R54;メチル基、R55;メチレン
  R51、R52;プロパルギル基、R53、R54;メチル基、R55;エチレン
  R51、R52;プロパルギル基、R53、R54;メチル基、R55;トリメチレン
  R51、R52;プロパルギル基、R53、R54;メチル基、R55;テトラメチレン
  R51、R52;プロパルギル基、R53、R54;エチル基、R55;メチレン
  R51、R52;プロパルギル基、R53、R54;エチル基、R55;エチレン
  R51、R52;プロパルギル基、R53、R54;エチル基、R55;トリメチレン
  R51、R52;プロパルギル基、R53、R54;エチル基、R55;テトラメチレン
  R51、R52;プロパルギル基、R53、R54;トリフルオロメチル基、R55;メチレン
  R51、R52;プロパルギル基、R53、R54;トリフルオロメチル基、R55;エチレン
  R51、R52;プロパルギル基、R53、R54;トリフルオロメチル基、R55;トリメチレン
  R51、R52;プロパルギル基、R53、R54;トリフルオロメチル基、R55;テトラメチレン
 好ましくは、高温保存時におけるガス発生の抑制、電池の充放電特性向上の観点から、以下のものが挙げられる。
  R51、R52;アリル基、R53、R54;メチル基、R55;メチレン
  R51、R52;アリル基、R53、R54;メチル基、R55;エチレン
  R51、R52;アリル基、R53、R54;メチル基、R55;トリメチレン
  R51、R52;アリル基、R53、R54;メチル基、R55;テトラメチレン
  R51、R52;アリル基、R53、R54;エチル基、R55;メチレン
  R51、R52;アリル基、R53、R54;エチル基、R55;エチレン
  R51、R52;アリル基、R53、R54;エチル基、R55;トリメチレン
  R51、R52;アリル基、R53、R54;エチル基、R55;テトラメチレン
  R51、R52;アリル基、R53、R54;トリフルオロメチル基、R55;メチレン
  R51、R52;アリル基、R53、R54;トリフルオロメチル基、R55;エチレン
  R51、R52;アリル基、R53、R54;トリフルオロメチル基、R55;トリメチレン
  R51、R52;アリル基、R53、R54;トリフルオロメチル基、R55;テトラメチレン
13.スルファミン酸エステル
Figure JPOXMLDOC01-appb-C000019
 R56としては、アリル基、プロパルギル基、cis-2-ブテニル基、trans-2-ブテニル基、3-ブテニル基、2-ブチニル基、3-ブチニル基、4-ペンテニル基、4-ペンチニル基、5-へキセニル基、5-ヘキシニル基、7-オクテニル基、7-オクチニル基、9-デセニル基、9-デシニル基などが挙げられ、この中で、アリル基、プロパルギル基、3-ブテニル基、3-ブチニル基、4-ペンテニル基、4-ペンチニル基などの末端に炭素-炭素不飽和結合をもつものが電池特性の点から好ましい。
 R57としては、アリル基、プロパルギル基、cis-2-ブテニル基、trans-2-ブテニル基、3-ブテニル基、2-ブチニル基、3-ブチニル基、4-ペンテニル基、4-ペンチニル基、5-へキセニル基、5-ヘキシニル基、7-オクテニル基、7-オクチニル基、9-デセニル基、9-デシニル基などが挙げられ、この中で、アリル基、プロパルギル基、3-ブテニル基、3-ブチニル基、4-ペンテニル基、4-ペンチニル基などの末端に炭素-炭素不飽和結合をもつものが電池特性の点から好ましい。
 また、その他の置換基として、水素基、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、ペンチル基、ヘキシル基、オクチル基、デシル基、シクロペンチル基、シクロヘキシル基、フェニル基、ベンジル基、フェネチル基、2-メトキシエチル基、2-エトキシエチル基などが挙げられる。
 R58としては、メチル、エチル基、プロピル基、イソプロピル基、ブチル基、t-ブチル基、ペンチル基、ヘキシル基、シクロヘキシル基、2,2,2-トリフルオロエチル基、アリル基、フェニル基、ベンジル基、フェネチル基などが挙げられ、またヘテロ原子を含んだ置換基としては、メトキシエチル、エトキシエチル、2-シアノエチル基、2-シアノ-1-(シアノメチル)エチルなどが挙げられる。
 R56~58の中で好ましい組み合わせは、電池特性の観点からR56が、アリル基又はプロパルギル基であるものである。以下に具体例を挙げる。
  R56;アリル基、R57;アリル基、R58;メチル基
  R56;アリル基、R57;アリル基、R58;エチル基
  R56;アリル基、R57;アリル基、R58;シクロヘキシル基
  R56;アリル基、R57;アリル基、R58;フェニル基
  R56;アリル基、R57;アリル基、R58;2,2,2-トリフルオロエチル基
  R56;アリル基、R57;アリル基、R58;2-シアノエチル基
  R56;プロパルギル基、R57;プロパルギル基、R58;メチル基
  R56;プロパルギル基、R57;プロパルギル基、R58;エチル基
  R56;プロパルギル基、R57;プロパルギル基、R58;シクロヘキシル基
  R56;プロパルギル基、R57;プロパルギル基、R58;フェニル基
  R56;プロパルギル基、R57;プロパルギル基、R58;2,2,2-トリフルオロエチル基
  R56;プロパルギル基、R57;プロパルギル基、R58;2-シアノエチル基
  R56;アリル基、R57;水素基、R58;メチル基
  R56;アリル基、R57;水素基、R58;エチル基
  R56;アリル基、R57;水素基、R58;シクロヘキシル基
  R56;アリル基、R57;水素基、R58;フェニル基
  R56;アリル基、R57;水素基、R58;2,2,2-トリフルオロエチル基
  R56;アリル基、R57;水素基、R58;2-シアノエチル基
  R56;プロパルギル基、R57;水素基、R58;メチル基
  R56;プロパルギル基、R57;水素基、R58;エチル基
  R56;プロパルギル基、R57;水素基、R58;シクロヘキシル基
  R56;プロパルギル基、R57;水素基、R58;フェニル基
  R56;プロパルギル基、R57;水素基、R58;2,2,2-トリフルオロエチル基
  R56;プロパルギル基、R57;水素基、R58;2-シアノエチル基
 好ましくは、高温保存時におけるガス発生の抑制、電池の充放電特性向上の観点から、以下のものが挙げられる。
  R56;アリル基、R57;アリル基、R58;メチル基
  R56;アリル基、R57;アリル基、R58;エチル基
  R56;アリル基、R57;アリル基、R58;シクロヘキシル基
  R56;アリル基、R57;アリル基、R58;フェニル基
  R56;アリル基、R57;アリル基、R58;2,2,2-トリフルオロエチル基
  R56;アリル基、R57;アリル基、R58;2-シアノエチル基
  R56;アリル基、R57;水素基、R58;メチル基
  R56;アリル基、R57;水素基、R58;エチル基
  R56;アリル基、R57;水素基、R58;シクロヘキシル基
  R56;アリル基、R57;水素基、R58;フェニル基
  R56;アリル基、R57;水素基、R58;2,2,2-トリフルオロエチル基
  R56;アリル基、R57;水素基、R58;2-シアノエチル基
  R56;プロパルギル基、R57;水素基、R58;メチル基
  R56;プロパルギル基、R57;水素基、R58;エチル基
  R56;プロパルギル基、R57;水素基、R58;シクロヘキシル基
  R56;プロパルギル基、R57;水素基、R58;フェニル基
  R56;プロパルギル基、R57;水素基、R58;2,2,2-トリフルオロエチル基
  R56;プロパルギル基、R57;水素基、R58;2-シアノエチル基
 更に好ましくは、以下のものが挙げられる。
  R56;アリル基、R57;アリル基、R58;メチル基
  R56;アリル基、R57;アリル基、R58;エチル基
  R56;アリル基、R57;アリル基、R58;シクロヘキシル基
  R56;アリル基、R57;アリル基、R58;フェニル基
  R56;アリル基、R57;アリル基、R58;2,2,2-トリフルオロエチル基
  R56;アリル基、R57;アリル基、R58;2-シアノエチル基
14.環状スルファミン酸エステル
Figure JPOXMLDOC01-appb-C000020
 R59としては、アリル基、プロパルギル基、cis-2-ブテニル基、trans-2-ブテニル基、3-ブテニル基、2-ブチニル基、3-ブチニル基、4-ペンテニル基、4-ペンチニル基、5-へキセニル基、5-ヘキシニル基、7-オクテニル基、7-オクチニル基、9-デセニル基、9-デシニル基などが挙げられ、この中で、アリル基、プロパルギル基、3-ブテニル基、3-ブチニル基、4-ペンテニル基、4-ペンチニル基などの末端に炭素-炭素不飽和結合をもつものが電池特性の点から好ましい。
 R60としては、エチレン基、トリメチレン基、1-メチルトリメチレン基、2-メチルトリメチレン基、3-メチルトリメチレン基、2,2-ジメチルトリメチレン基、テトラメチレン基、1-メチルテトラメチレン基、4-メチルテトラメチレン基、ペンタメチレン基などが挙げられる。
 R59~R60の中で好ましい組み合わせは、電池特性向上の観点からR59が、アリル基又はプロパルギル基であるものであり、以下に具体例を挙げる。
  R59;アリル基、R60;エチレン基
  R59;アリル基、R60;トリメチレン基
  R59;アリル基、R60;テトラメチレン基
  R59;プロパルギル基、R60;エチレン基
  R59;プロパルギル基、R60;トリメチレン基
  R59;プロパルギル基、R60;テトラメチレン基
 好ましくは、高温保存時におけるガス発生の抑制、電池の充放電特性向上の観点から、以下のものが挙げられる。
  R59;アリル基、R60;エチレン基
  R59;アリル基、R60;トリメチレン基
  R59;プロパルギル基、R60;エチレン基
  R59;プロパルギル基、R60;トリメチレン基
15.スルファミド
Figure JPOXMLDOC01-appb-C000021
 R61としては、アリル基、プロパルギル基、cis-2-ブテニル基、trans-2-ブテニル基、3-ブテニル基、2-ブチニル基、3-ブチニル基、4-ペンテニル基、4-ペンチニル基、5-へキセニル基、5-ヘキシニル基、7-オクテニル基、7-オクチニル基、9-デセニル基、9-デシニル基などが挙げられ、この中で、アリル基、プロパルギル基、3-ブテニル基、3-ブチニル基、4-ペンテニル基、4-ペンチニル基などの末端に炭素-炭素不飽和結合をもつものが電池特性の点から好ましい。
 R62~R64としては、アリル基、プロパルギル基、cis-2-ブテニル基、trans-2-ブテニル基、3-ブテニル基、2-ブチニル基、3-ブチニル基、4-ペンテニル基、4-ペンチニル基、5-へキセニル基、5-ヘキシニル基、7-オクテニル基、7-オクチニル基、9-デセニル基、9-デシニル基などが挙げられこの中で、アリル基、プロパルギル基、3-ブテニル基、3-ブチニル基、4-ペンテニル基、4-ペンチニル基などの末端に炭素-炭素不飽和結合をもつものが電池特性の点から好ましい。
 また、その他の置換基として、水素基、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、ペンチル基、ヘキシル基、オクチル基、デシル基、シクロペンチル基、シクロヘキシル基、フェニル基、ベンジル基、フェネチル基、2-メトキシエチル基、2-エトキシエチル基などが挙げられる。
 R61~R64の中で好ましい組み合わせは、電池特性の観点から、R61がアリル基又はプロパルギル基であるものが望ましく、以下の例が挙げられる。
  R61~R64;アリル基
  R61~R64;プロパルギル基
  R61、R63;アリル基、R62、R64;水素基
  R61、R63;プロパルギル基、R62、R64;水素基
  R61、R63;アリル基、R62、R64;メチル基
  R61、R63;プロパルギル基、R62、R64;メチル基
  R61、R63;アリル基、R62、R64;エチル基
  R61、R63;プロパルギル基、R62、R64;エチル基
  R61、R63;アリル基、R62、R64;プロピル基
  R61、R63;プロパルギル基、R62、R64;プロピル基
  R61、R62;アリル基、R63、R64;メチル基
  R61;アリル基、R62;水素基、R63、R64;メチル基
  R61、R62;プロパルギル基、R63、R64;メチル基
  R61;プロパルギル基、R62;水素基、R63、R64;メチル基
  R61、R62;アリル基、R63、R64;エチル基
  R61;アリル基、R62;水素基、R63、R64;エチル基
  R61、R62;プロパルギル基、R63、R64;エチル基
  R61;プロパルギル基、R62;水素基、R63、R64;エチル基
  R61、R62;アリル基、R63、R64;プロピル基
  R61;アリル基、R62;水素基、R63、R64;プロピル基
  R61、R62;プロパルギル基、R63、R64;プロピル基
  R61;プロパルギル基、R62;水素基、R63、R64;プロピル基
 好ましくは、高温保存時におけるガス発生の抑制、電池の充放電特性向上の観点から、以下のものが挙げられる。
  R61~R64;アリル基
  R61、R63;アリル基、R62、R64;水素基
  R61、R63;プロパルギル基、R62、R64;水素基
  R61、R62;アリル基、R63、R64;メチル基
  R61;アリル基、R62;水素基、R63、R64;メチル基
  R61;プロパルギル基、R62;水素基、R63、64;メチル基
  R61、R62;アリル基、R63、R64;エチル基
  R61;アリル基、R62;水素基、R63、R64;エチル基
  R61;プロパルギル基、R62;水素基、R63、R64;エチル基
  R61、R62;アリル基、R63、R64;プロピル基
  R61;アリル基、R62;水素基、R63、R64;プロピル基
  R61;プロパルギル基、R62;水素基、R63、R64;プロピル基
 更に好ましくは、以下のものが挙げられる。
  R61~R64;アリル基
  R61、R62;アリル基、R63、R64;メチル基
  R61、R62;アリル基、R63、R64;エチル基
  R61、R62;アリル基、R63、R64;プロピル基
16.環状スルファミド
Figure JPOXMLDOC01-appb-C000022
 R65としては、アリル基、プロパルギル基、cis-2-ブテニル基、trans-2-ブテニル基、3-ブテニル基、2-ブチニル基、3-ブチニル基、4-ペンテニル基、4-ペンチニル基、5-へキセニル基、5-ヘキシニル基、7-オクテニル基、7-オクチニル基、9-デセニル基、9-デシニル基などが挙げられ、この中で、アリル基、プロパルギル基、3-ブテニル基、3-ブチニル基、4-ペンテニル基、4-ペンチニル基などの末端に炭素-炭素不飽和結合をもつものが電池特性の点から好ましい。
 R66としては、アリル基、プロパルギル基、cis-2-ブテニル基、trans-2-ブテニル基、3-ブテニル基、2-ブチニル基、3-ブチニル基、4-ペンテニル基、4-ペンチニル基、5-へキセニル基、5-ヘキシニル基、7-オクテニル基、7-オクチニル基、9-デセニル基、9-デシニル基などが挙げられこの中で、アリル基、プロパルギル基、3-ブテニル基、3-ブチニル基、4-ペンテニル基、4-ペンチニル基などの末端に炭素-炭素不飽和結合をもつものが電池特性の点から好ましい。
 また、その他の置換基として、水素基、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、ペンチル基、ヘキシル基、オクチル基、デシル基、シクロペンチル基、シクロヘキシル基、フェニル基、ベンジル基、フェネチル基、2-メトキシエチル基、2-エトキシエチル基などが挙げられる。
 R67としては、エチレン基、プロピレン基、トリメチレン基、1-メチルトリメチレン基、2-メチルトリメチレン基、3-メチルトリメチレン基、2,2-ジメチルトリメチレン基などが挙げられる。
 R65~R67の中で好ましい組み合わせは、電池特性の観点から、R65がアリル基又はプロパルギル基であるものが望ましく、以下の具体例が挙げられる。
  R65、R66;アリル基、R67;エチレン基
  R65、R66;プロパルギル基、R67;エチレン基
  R65;アリル基、R66;水素基、R67;エチレン基
  R65;プロパルギル基、R66;水素基、R67;エチレン基
  R65、R66;アリル基、R67;トリメチレン基
  R65、R66;プロパルギル基、R67;トリメチレン基
  R65;アリル基、R66;水素基、R67;トリメチレン基
  R65;プロパルギル基、R66;水素基、R67;トリメチレン基
  R65、R66;アリル基、R67;2,2-ジメチルトリメチレン基
  R65、R66;プロパルギル基、R67;2,2-ジメチルトリメチレン基
  R65;アリル基、R66;水素基、R67;2,2-ジメチルトリメチレン基
  R65;プロパルギル基、R66;水素基、R67;2,2-ジメチルトリメチレン基
 好ましくは、高温保存時におけるガス発生の抑制、電池の充放電特性向上の観点から、以下のものが挙げられる。
  R65、R66;アリル基、R67;エチレン基
  R65、R66;プロパルギル基、R67;エチレン基
  R65、R66;アリル基、R67;トリメチレン基
  R65、R66;プロパルギル基、R67;トリメチレン基
  R65、R66;アリル基、R67;2,2-ジメチルトリメチレン基
  R65、R66;プロパルギル基、R67;2,2-ジメチルトリメチレン基
17.リン酸モノアミド
Figure JPOXMLDOC01-appb-C000023
 R68としては、アリル基、プロパルギル基、cis-2-ブテニル基、trans-2-ブテニル基、3-ブテニル基、2-ブチニル基、3-ブチニル基、4-ペンテニル基、4-ペンチニル基、5-へキセニル基、5-ヘキシニル基、7-オクテニル基、7-オクチニル基、9-デセニル基、9-デシニル基などが挙げられ、この中で、アリル基、プロパルギル基、3-ブテニル基、3-ブチニル基、4-ペンテニル基、4-ペンチニル基などの末端に炭素-炭素不飽和結合をもつものが電池特性の点から好ましい。
 R69としては、アリル基、プロパルギル基、cis-2-ブテニル基、trans-2-ブテニル基、3-ブテニル基、2-ブチニル基、3-ブチニル基、4-ペンテニル基、4-ペンチニル基、5-へキセニル基、5-ヘキシニル基、7-オクテニル基、7-オクチニル基、9-デセニル基、9-デシニル基などが挙げられ、この中で、アリル基、プロパルギル基、3-ブテニル基、3-ブチニル基、4-ペンテニル基、4-ペンチニル基などの末端に炭素-炭素不飽和結合をもつものが電池特性の点から好ましい。
 また、その他の置換基として、水素基、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、ペンチル基、ヘキシル基、オクチル基、デシル基、シクロペンチル基、シクロヘキシル基、フェニル基、ベンジル基、フェネチル基、2-メトキシエチル基、2-エトキシエチル基などが挙げられる。
 R70、R71としては、メチル、エチル基、プロピル基、イソプロピル基、ブチル基、t-ブチル基、ペンチル基、ヘキシル基、シクロヘキシル基、2,2,2-トリフルオロエチル基、アリル基、フェニル基、ベンジル基、フェネチル基などが挙げられ、またヘテロ原子を含んだ置換基としては、メトキシエチル、エトキシエチル、2-シアノエチル基などが挙げられる。
 R68~R71の中で好ましい組み合わせは、電池特性の観点からR68が、アリル基又はプロパルギル基であるものであり、以下の具体例が挙げられる。
  R68;アリル基、R69;アリル基、R70、R71;メチル基
  R68;アリル基、R69;アリル基、R70、R71;エチル基
  R68;アリル基、R69;アリル基、R70、R71;シクロヘキシル基
  R68;アリル基、R69;アリル基、R70、R71;フェニル基
  R68;アリル基、R69;アリル基、R70、R71;2,2,2-トリフルオロエチル基
  R68;アリル基、R69;アリル基、R70、R71;2-シアノエチル基
  R68;プロパルギル基、R69;プロパルギル基、R70、R71;メチル基
  R68;プロパルギル基、R69;プロパルギル基、R70、R71;エチル基
  R68;プロパルギル基、R69;プロパルギル基、R70、R71;シクロヘキシル基
  R68;プロパルギル基、R69;プロパルギル基、R70、R71;フェニル基
  R68;プロパルギル基、R69;プロパルギル基、R70、R71;2,2,2-トリフルオロエチル基
  R68;プロパルギル基、R69;プロパルギル基、R70、R71;2-シアノエチル基
  R68;アリル基、R69;水素基、R70、R71;メチル基
  R68;アリル基、R69;水素基、R70、R71;エチル基
  R68;アリル基、R69;水素基、R70、R71;シクロヘキシル基
  R68;アリル基、R69;水素基、R70、R71;フェニル基
  R68;アリル基、R69;水素基、R70、R71;2,2,2-トリフルオロエチル基
  R68;アリル基、R69;水素基、R70、R71;2-シアノエチル基
  R68;プロパルギル基、R69;水素基、R70、R71;メチル基
  R68;プロパルギル基、R69;水素基、R70、R71;エチル基
  R68;プロパルギル基、R69;水素基、R70、R71;シクロヘキシル基
  R68;プロパルギル基、R69;水素基、R70、R71;フェニル基
  R68;プロパルギル基、R69;水素基、R70、R71;2,2,2-トリフルオロエチル基
  R68;プロパルギル基、R69;水素基、R70、R71;2-シアノエチル基
 好ましくは、高温保存時におけるガス発生の抑制、電池の充放電特性向上の観点から、以下のものが挙げられる。
  R68;アリル基、R69;アリル基、R70、R71;メチル基
  R68;アリル基、R69;アリル基、R70、R71;エチル基
  R68;アリル基、R69;アリル基、R70、R71;シクロヘキシル基
  R68;アリル基、R69;アリル基、R70、R71;フェニル基
  R68;アリル基、R69;アリル基、R70、R71;2,2,2-トリフルオロエチル基
  R68;アリル基、R69;アリル基、R70、R71;2-シアノエチル基
  R68;アリル基、R69;水素基、R70、R71;メチル基
  R68;アリル基、R69;水素基、R70、R71;エチル基
  R68;アリル基、R69;水素基、R70、R71;シクロヘキシル基
  R68;アリル基、R69;水素基、R70、R71;フェニル基
  R68;アリル基、R69;水素基、R70、R71;2,2,2-トリフルオロエチル基
  R68;アリル基、R69;水素基、R70、R71;2-シアノエチル基
  R68;プロパルギル基、R69;水素基、R70、R71;メチル基
  R68;プロパルギル基、R69;水素基、R70、R71;エチル基
  R68;プロパルギル基、R69;水素基、R70、R71;シクロヘキシル基
  R68;プロパルギル基、R69;水素基、R70、R71;フェニル基
  R68;プロパルギル基、R69;水素基、R70、R71;2,2,2-トリフルオロエチル基
  R68;プロパルギル基、R69;水素基、R70、R71;2-シアノエチル基
 更に好ましくは、以下のものが挙げられる。
  R68;アリル基、R69;アリル基、R70、R71;メチル基
  R68;アリル基、R69;アリル基、R70、R71;エチル基
  R68;アリル基、R69;アリル基、R70、R71;シクロヘキシル基
  R68;アリル基、R69;アリル基、R70、R71;フェニル基
  R68;アリル基、R69;アリル基、R70、R71;2,2,2-トリフルオロエチル基
  R68;アリル基、R69;アリル基、R70、R71;2-シアノエチル基
18.環状リン酸モノアミド
Figure JPOXMLDOC01-appb-C000024
 R72としては、アリル基、プロパルギル基、cis-2-ブテニル基、trans-2-ブテニル基、3-ブテニル基、2-ブチニル基、3-ブチニル基、4-ペンテニル基、4-ペンチニル基、5-へキセニル基、5-ヘキシニル基、7-オクテニル基、7-オクチニル基、9-デセニル基、9-デシニル基などが挙げられ、この中で、アリル基、プロパルギル基、3-ブテニル基、3-ブチニル基、4-ペンテニル基、4-ペンチニル基などの末端に炭素-炭素不飽和結合をもつものが電池特性の点から好ましい。
 R73としては、メチル、エチル基、プロピル基、イソプロピル基、ブチル基、t-ブチル基、ペンチル基、ヘキシル基、シクロヘキシル基、2,2,2-トリフルオロエチル基、アリル基、フェニル基、ベンジル基、フェネチル基などが挙げられ、またヘテロ原子を含んだ置換基としては、メトキシエチル、エトキシエチル、2-シアノエチル基、2-シアノ-1-(シアノメチル)エチルなどが挙げられる。
 R74としては、エチレン基、プロピレン基、トリメチレン基、1-メチルトリメチレン基、2-メチルトリメチレン基、3-メチルトリメチレン基、2,2-ジメチルトリメチレン基などが挙げられる。
 R72~R74の中で好ましい組み合わせは、電池特性の観点からR72が、アリル基又はプロパルギル基であるものであり、以下の例が挙げられる。
  R72;アリル基、R73;メチル基、R74;エチレン基
  R72;アリル基、R73;エチル基、R74;エチレン基
  R72;アリル基、R73;メチル基、R74;トリメチレン基
  R72;アリル基、R73;エチル基、R74;トリメチレン基
  R72;アリル基、R73;メチル基、R74;2,2-ジメチルトリメチレン基
  R72;アリル基、R73;エチル基、R74;2,2-ジメチルトリメチレン基
  R72;プロパルギル基、R73;メチル基、R74;エチレン基
  R72;プロパルギル基、R73;エチル基、R74;エチレン基
  R72;プロパルギル基、R73;メチル基、R74;トリメチレン基
  R72;プロパルギル基、R73;エチル基、R74;トリメチレン基
  R72;プロパルギル基、R73;メチル基、R74;2,2-ジメチルトリメチレン基
  R72;プロパルギル基、R73;エチル基、R74;2,2-ジメチルトリメチレン基
 好ましくは、高温保存時におけるガス発生の抑制、電池の充放電特性向上の観点から、以下のものが挙げられる。
  R72;アリル基、R73;メチル基、R74;エチレン基
  R72;アリル基、R73;エチル基、R74;エチレン基
  R72;プロパルギル基、R73;メチル基、R74;エチレン基
  R72;プロパルギル基、R73;エチル基、R74;エチレン基
19.リン酸ジアミド
Figure JPOXMLDOC01-appb-C000025
 R75としては、アリル基、プロパルギル基、cis-2-ブテニル基、trans-2-ブテニル基、3-ブテニル基、2-ブチニル基、3-ブチニル基、4-ペンテニル基、4-ペンチニル基、5-へキセニル基、5-ヘキシニル基、7-オクテニル基、7-オクチニル基、9-デセニル基、9-デシニル基などが挙げられ、この中で、アリル基、プロパルギル基、3-ブテニル基、3-ブチニル基、4-ペンテニル基、4-ペンチニル基などの末端に炭素-炭素不飽和結合をもつものが電池特性の点から好ましい。
 R76~R78としては、アリル基、プロパルギル基、cis-2-ブテニル基、trans-2-ブテニル基、3-ブテニル基、2-ブチニル基、3-ブチニル基、4-ペンテニル基、4-ペンチニル基、5-へキセニル基、5-ヘキシニル基、7-オクテニル基、7-オクチニル基、9-デセニル基、9-デシニル基などが挙げられ、この中で、アリル基、プロパルギル基、3-ブテニル基、3-ブチニル基、4-ペンテニル基、4-ペンチニル基などの末端に炭素-炭素不飽和結合をもつものが電池特性の点から好ましい。
 また、その他の置換基として、水素基、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、ペンチル基、ヘキシル基、オクチル基、デシル基、シクロペンチル基、シクロヘキシル基、フェニル基、ベンジル基、フェネチル基、2-メトキシエチル基、2-エトキシエチル基などが挙げられる。
 R79としては、メチル、エチル基、プロピル基、イソプロピル基、ブチル基、t-ブチル基、ペンチル基、ヘキシル基、シクロヘキシル基、2,2,2-トリフルオロエチル基、アリル基、フェニル基、ベンジル基、フェネチル基などが挙げられ、またヘテロ原子を含んだ置換基としては、メトキシエチル、エトキシエチル、2-シアノエチル基などが挙げられる。
 R75~R79の中で好ましい組み合わせは、電池特性の観点からR75が、アリル基又はプロパルギル基であるものであり、以下に具体例を示す。
  R75~R78;アリル基、R79;メチル基
  R75、R77;アリル基、R76、R78;水素基、R79;メチル基
  R75~R78;プロパルギル基、R79;メチル基
  R75、R77;プロパルギル基、R76、R78;水素基、R79;メチル基
  R75~R78;アリル基、R79;エチル基
  R75、R77;アリル基、R76、R78;水素基、R79;エチル基
  R75~R78;プロパルギル基、R79;エチル基
  R75、R77;プロパルギル基、R76、R78;水素基、R79;エチル基
  R75~R78;アリル基、R79;2,2,2-トリフルオロエチル基
  R75、R77;アリル基、R76、R78;水素基、R79;2,2,2-トリフルオロエチル基
  R75~R78;プロパルギル基、R79;2,2,2-トリフルオロエチル基
  R75、R77;プロパルギル基、R76、R78;水素基、R79;2,2,2-トリフルオロエチル基
 好ましくは、高温保存時におけるガス発生の抑制、電池の充放電特性向上の観点から、以下のものが挙げられる。
  R75~R78;アリル基、R79;メチル基
  R75、R77;アリル基、R76、R78;水素基、R79;メチル基
  R75、R77;プロパルギル基、R76、R78;水素基、R79;メチル基
  R75~R78;アリル基、R79;エチル基
  R75、R77;アリル基、R76、R78;水素基、R79;エチル基
  R75、R77;プロパルギル基、R76、R78;水素基、R79;エチル基
  R75~R78;アリル基、R79;2,2,2-トリフルオロエチル基
  R75、R77;アリル基、R76、R78;水素基、R79;2,2,2-トリフルオロエチル基
  R75、R77;プロパルギル基、R76、R78;水素基、R79;2,2,2-トリフルオロエチル基
20.環状リン酸ジアミド
Figure JPOXMLDOC01-appb-C000026
 R80としては、アリル基、プロパルギル基、cis-2-ブテニル基、trans-2-ブテニル基、3-ブテニル基、2-ブチニル基、3-ブチニル基、4-ペンテニル基、4-ペンチニル基、5-へキセニル基、5-ヘキシニル基、7-オクテニル基、7-オクチニル基、9-デセニル基、9-デシニル基などが挙げられ、この中で、アリル基、プロパルギル基、3-ブテニル基、3-ブチニル基、4-ペンテニル基、4-ペンチニル基などの末端に炭素-炭素不飽和結合をもつものが電池特性の点から好ましい。
 R81、R82としては、アリル基、プロパルギル基、cis-2-ブテニル基、trans-2-ブテニル基、3-ブテニル基、2-ブチニル基、3-ブチニル基、4-ペンテニル基、4-ペンチニル基、5-へキセニル基、5-ヘキシニル基、7-オクテニル基、7-オクチニル基、9-デセニル基、9-デシニル基などが挙げられ、この中で、アリル基、プロパルギル基、3-ブテニル基、3―ブチニル基、4-ペンテニル基、4-ペンチニル基などの末端に炭素-炭素不飽和結合をもつものが電池特性の点から好ましい。
 また、その他の置換基として、水素基、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、ペンチル基、ヘキシル基、オクチル基、デシル基、シクロペンチル基、シクロヘキシル基、フェニル基、ベンジル基、フェネチル基、2-メトキシエチル基、2-エトキシエチル基などが挙げられる。
 R83としては、エチレン基、プロピレン基、トリメチレン基、1-メチルトリメチレン基、2-メチルトリメチレン基、3-メチルトリメチレン基、2,2-ジメチルトリメチレン基などが挙げられる。
 R80~R83の中で好ましい組み合わせは、電池特性の観点からR80が、アリル基又はプロパルギル基であるものであり、以下に具体例を挙げる。
  R80;アリル基、R81、R82;メチル基、R83;エチレン基
  R80;プロパルギル基、R81、R82;メチル基、R83;エチレン基
  R80;アリル基、R81、R82;エチル基、R83;エチレン基
  R80;プロパルギル基、R81、R82;エチル基、R83;エチレン基
  R80;アリル基、R81、R82;アリル基、R83;エチレン基
  R80;プロパルギル基、R81、R82;アリル基、R83;エチレン基
  R80;アリル基、R81、R82;プロパルギル基、R83;エチレン基
  R80;プロパルギル基、R81、R82;プロパルギル基、R83;エチレン基
  R80;アリル基、R81;アリル基、R82;水素基、R83;エチレン基
  R80;プロパルギル基、R81;アリル基、R82;水素基、R83;エチレン基
  R80;アリル基、R81;プロパルギル基、R82;水素基、R83;エチレン基
  R80;プロパルギル基、R81;プロパルギル基、R82;水素基、R83;エチレン基
 好ましくは、高温保存時におけるガス発生の抑制、電池の充放電特性向上の観点から、以下のものが挙げられる。
  R80;アリル基、R81、R82;メチル基、R83;エチレン基
  R80;アリル基、R81、R82;エチル基、R83;エチレン基
  R80;アリル基、R81、R82;アリル基、R83;エチレン基
  R80;アリル基、R81;アリル基、R82;水素基、R83;エチレン基
Figure JPOXMLDOC01-appb-C000027
 R84としては、アリル基、プロパルギル基、cis-2-ブテニル基、trans-2-ブテニル基、3-ブテニル基、2-ブチニル基、3-ブチニル基、4-ペンテニル基、4-ペンチニル基、5-へキセニル基、5-ヘキシニル基、7-オクテニル基、7-オクチニル基、9-デセニル基、9-デシニル基などが挙げられ、この中で、アリル基、プロパルギル基、3-ブテニル基、3-ブチニル基、4-ペンテニル基、4-ペンチニル基などの末端に炭素-炭素不飽和結合をもつものが電池特性の点から好ましい。
 R85としては、アリル基、プロパルギル基、cis-2-ブテニル基、trans-2-ブテニル基、3-ブテニル基、2-ブチニル基、3-ブチニル基、4-ペンテニル基、4-ペンチニル基、5-へキセニル基、5-ヘキシニル基、7-オクテニル基、7-オクチニル基、9-デセニル基、9-デシニル基などが挙げられ、この中で、アリル基、プロパルギル基、3-ブテニル基、3-ブチニル基、4-ペンテニル基、4-ペンチニル基などの末端に炭素-炭素不飽和結合をもつものが電池特性の点から好ましい。
 また、その他の置換基として、水素基、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、ペンチル基、ヘキシル基、オクチル基、デシル基、シクロペンチル基、シクロヘキシル基、フェニル基、ベンジル基、フェネチル基、2-メトキシエチル基、2-エトキシエチル基などが挙げられる。
 R86としては、メチル、エチル基、プロピル基、イソプロピル基、ブチル基、t-ブチル基、ペンチル基、ヘキシル基、シクロヘキシル基、2,2,2-トリフルオロエチル基、アリル基、フェニル基、ベンジル基、フェネチル基などが挙げられ、またヘテロ原子を含んだ置換基としては、メトキシエチル、エトキシエチル、2-シアノエチル基などが挙げられる。
 R87としては、エチレン基、プロピレン基、トリメチレン基、1-メチルトリメチレン基、2-メチルトリメチレン基、3-メチルトリメチレン基、2,2-ジメチルトリメチレン基などが挙げられる。
 R84~R87の中で好ましい組み合わせは、電池特性の観点からR84が、アリル基又はプロパルギル基であるものであり、以下に具体例を挙げる。
  R84、R85;アリル基、R86;メチル基、R87;エチレン基
  R84、R85;プロパルギル基、R86;メチル基、R87;エチレン基
  R84;アリル基、R85;水素基、R86;メチル基、R87;エチレン基
  R84;プロパルギル基、R85;水素基、R86;メチル基、R87;エチレン基
  R84、R85;アリル基、R86;エチル基、R87;エチレン基
  R84、R85;プロパルギル基、R86;エチル基、R87;エチレン基
  R84;アリル基、R85;水素基、R86;エチル基、R87;エチレン基
  R84;プロパルギル基、R85;水素基、R86;エチル基、R87;エチレン基
  R84、R85;アリル基、R86;2,2,2-トリフルオロエチル基、R87;エチレン基
  R84、R85;プロパルギル基、R86;2,2,2-トリフルオロエチル基、R87;エチレン基
  R84;アリル基、R85;水素基、R86;2,2,2-トリフルオロエチル基、R87;エチレン基
  R84;プロパルギル基、R85;水素基、R86;2,2,2-トリフルオロエチル基、R87;エチレン基
 好ましくは、高温保存時におけるガス発生の抑制、電池の充放電特性向上の観点から、以下のものが挙げられる。
  R84、R85;アリル基、R86;メチル基、R87;エチレン基
  R84;アリル基、R85;水素基、R86;メチル基、R87;エチレン基
  R84、R85;アリル基、R86;エチル基、R87;エチレン基
  R84;アリル基、R85;水素基、R86;エチル基、R87;エチレン基
  R84、R85;アリル基、R86;2,2,2-トリフルオロエチル基、R87;エチレン基
  R84;アリル基、R85;水素基、R86;2,2,2-トリフルオロエチル基、R87;エチレン基
21.リン酸トリアミド
Figure JPOXMLDOC01-appb-C000028
 R88としては、アリル基、プロパルギル基、cis-2-ブテニル基、trans-2-ブテニル基、3-ブテニル基、2-ブチニル基、3-ブチニル基、4-ペンテニル基、4-ペンチニル基、5-へキセニル基、5-ヘキシニル基、7-オクテニル基、7-オクチニル基、9-デセニル基、9-デシニル基などが挙げられ、この中で、アリル基、プロパルギル基、3-ブテニル基、3-ブチニル基、4-ペンテニル基、4-ペンチニル基などの末端に炭素-炭素不飽和結合をもつものが電池特性の点から好ましい。
 R89~R93としては、アリル基、プロパルギル基、cis-2-ブテニル基、trans-2-ブテニル基、3-ブテニル基、2-ブチニル基、3―ブチニル基、4-ペンテニル基、4-ペンチニル基、5-へキセニル基、5-ヘキシニル基、7-オクテニル基、7-オクチニル基、9-デセニル基、9-デシニル基などが挙げられ、この中で、アリル基、プロパルギル基、3-ブテニル基、3-ブチニル基、4-ペンテニル基、4-ペンチニル基などの末端に炭素-炭素不飽和結合をもつものが電池特性の点から好ましい。
 また、その他の置換基として、水素基、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、ペンチル基、ヘキシル基、オクチル基、デシル基、シクロペンチル基、シクロヘキシル基、フェニル基、ベンジル基、フェネチル基、2-メトキシエチル基、2-エトキシエチル基などが挙げられる。
 R88~R93の中で好ましい組み合わせは、電池特性の観点からR88が、アリル基又はプロパルギル基であるものであり、以下の例が挙げられる。
  R88~R93;アリル基
  R88、R90、R92;アリル基、R89、R91、R93;水素基
  R88~R93;プロパルギル基
  R88、R90、R92;プロパルギル基、R89、R91、R93;水素基
  R88、R89;アリル基、R90~R93;メチル基
  R88;アリル基、R89;水素基、R90~R93;メチル基
  R88~R91;アリル基、R92、R93;メチル基
  R88、R90;アリル基、R89、R91;水素基、R92、R93;メチル基
  R88、R89;プロパルギル基、R90~R93;メチル基
  R88;プロパルギル基、R89;水素基、R90~R93;メチル基
  R88~R91;プロパルギル基、R92、R93;メチル基
  R88、R90;プロパルギル基、R89、R91;水素基、R92、R93;メチル基
  R88、R89;アリル基、R90~R93;エチル基
  R88;アリル基、R89;水素基、R90~R93;エチル基
  R88~R91;アリル基、R92、R93;エチル基
  R88、R90;アリル基、R89、R91;水素基、R92、R93;エチル基
  R88、R89;プロパルギル基、R90~R93;エチル基
  R88;プロパルギル基、R89;水素基、R90~R93;エチル基
  R88~R91;プロパルギル基、R92、R93;エチル基
  R88、R90;プロパルギル基、R89、R91;水素基、R92、 R93;エチル基
 好ましくは、高温保存時におけるガス発生の抑制、電池の充放電特性向上の観点から、以下のものが挙げられる。
  R88~R93;アリル基
  R88、R90、R92;アリル基、R89、R91、R93;水素基
  R88、R90、R92;プロパルギル基、R89、R91、R93;水素基
  R88、R89;アリル基、R90~R93;メチル基
  R88;アリル基、R89;水素基、R90~R93;メチル基
  R88~R91;アリル基、R92、R93;メチル基
  R88、R90;アリル基、R89、R91;水素基、R92、R93;メチル基
  R88;プロパルギル基、R89;水素基、R90~R93;メチル基
  R88、R90;プロパルギル基、R89、R91;水素基、R92、R93;メチル基
  R88、R89;アリル基、R90~R93;エチル基
  R88;アリル基、R89;水素基、R90~R93;エチル基
  R88~R91;アリル基、R92、R93;エチル基
  R88、R90;アリル基、R89、R91;水素基、R92、R93;エチル基
  R88;プロパルギル基、R89;水素基、R90~R93;エチル基
  R88、R90;プロパルギル基、R89、R91;水素基、R92、R93;エチル基
 更に好ましくは、以下のものが挙げられる。
  R88~R93;アリル基
  R88、R90、R92;アリル基、R89、R91、R93;水素基
  R88、R89;アリル基、R90~R93;メチル基
  R88;アリル基、R89;水素基、R90~R93;メチル基
  R88~R91;アリル基、R92、R93;メチル基
  R88、R90;アリル基、R89、R91;水素基、R92、R93;メチル基
  R88、R89;アリル基、R90~R93;エチル基
  R88;アリル基、R89;水素基、R90~R93;エチル基
  R88~R91;アリル基、R92、R93;エチル基
  R88、R90;アリル基、R89、R91;水素基、R92、R93;エチル基
22.環状リン酸トリアミド
Figure JPOXMLDOC01-appb-C000029
 R94としては、アリル基、プロパルギル基、cis-2-ブテニル基、trans-2-ブテニル基、3-ブテニル基、2-ブチニル基、3-ブチニル基、4-ペンテニル基、4-ペンチニル基、5-へキセニル基、5-ヘキシニル基、7-オクテニル基、7-オクチニル基、9-デセニル基、9-デシニル基などが挙げられ、この中で、アリル基、プロパルギル基、3-ブテニル基、3-ブチニル基、4-ペンテニル基、4-ペンチニル基などの末端に炭素-炭素不飽和結合をもつものが電池特性の点から好ましい。
 R95~R97としては、アリル基、プロパルギル基、cis-2-ブテニル基、trans-2-ブテニル基、3-ブテニル基、2-ブチニル基、3-ブチニル基、4-ペンテニル基、4-ペンチニル基、5-へキセニル基、5-ヘキシニル基、7-オクテニル基、7-オクチニル基、9-デセニル基、9-デシニル基などが挙げられ、この中で、アリル基、プロパルギル基、3-ブテニル基、3-ブチニル基、4-ペンテニル基、4-ペンチニル基などの末端に炭素-炭素不飽和結合をもつものが電池特性の点から好ましい。
 また、その他の置換基として、水素基、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、ペンチル基、ヘキシル基、オクチル基、デシル基、シクロペンチル基、シクロヘキシル基、フェニル基、ベンジル基、フェネチル基、2-メトキシエチル基、2-エトキシエチル基などが挙げられる。
 R97’としては、エチレン基、プロピレン基、トリメチレン基、1-メチルトリメチレン基、2-メチルトリメチレン基、3-メチルトリメチレン基、2,2-ジメチルトリメチレン基などが挙げられる。
 R94~R97’の中で好ましい組み合わせは、電池特性の観点からR94が、アリル基又はプロパルギル基であるものであり、以下の例が挙げられる。
  R94、R95;アリル基、R96、R97;メチル基、R97’;エチレン基
  R94、R95;プロパルギル基、R96、R97;メチル基、R97’;エチレン基
  R94、R95;アリル基、R96、R97;エチル基、R97’;エチレン基
  R94、R95;プロパルギル基、R96、R97;エチル基、R97’;エチレン基
  R94、R95;アリル基、R96、R97;アリル基、R97’;エチレン基
  R94、R95;プロパルギル基、R96、R97;アリル基、R97’;エチレン基
  R94、R95;アリル基、R96;アリル基、R97;水素基、R97’;エチレン基
  R94、R95;プロパルギル基、R96;アリル基、R97;水素基、R97’;エチレン基
  R94、R95;アリル基、R96;プロパルギル基、R97;水素基、R97’;エチレン基
  R94、R95;プロパルギル基、R96;プロパルギル基、R97;水素基、R97’;エチレン基
 好ましくは、高温保存時におけるガス発生の抑制、電池の充放電特性向上の観点から、以下のものが挙げられる。
  R94、R95;アリル基、R96、R97;メチル基、R97’;エチレン基
  R94、R95;アリル基、R96、R97;エチル基、R97’;エチレン基
  R94、R95;アリル基、R96、R97;アリル基、R97’;エチレン基
  R94、R95;アリル基、R96;アリル基、R97;水素基、R97’;エチレン基
23.ホスホン酸モノアミド
Figure JPOXMLDOC01-appb-C000030
 R98としては、アリル基、プロパルギル基、cis-2-ブテニル基、trans-2-ブテニル基、3-ブテニル基、2-ブチニル基、3-ブチニル基、4-ペンテニル基、4-ペンチニル基、5-へキセニル基、5-ヘキシニル基、7-オクテニル基、7-オクチニル基、9-デセニル基、9-デシニル基などが挙げられ、この中で、アリル基、プロパルギル基、3-ブテニル基、3-ブチニル基、4-ペンテニル基、4-ペンチニル基などの末端に炭素-炭素不飽和結合をもつものが電池特性の点から好ましい。
 R99としては、アリル基、プロパルギル基、cis-2-ブテニル基、trans-2-ブテニル基、3-ブテニル基、2-ブチニル基、3-ブチニル基、4-ペンテニル基、4-ペンチニル基、5-へキセニル基、5-ヘキシニル基、7-オクテニル基、7-オクチニル基、9-デセニル基、9-デシニル基などが挙げられ、この中で、アリル基、プロパルギル基、3-ブテニル基、3-ブチニル基、4-ペンテニル基、4-ペンチニル基などの末端に炭素-炭素不飽和結合をもつものが電池特性の点から好ましい。
 また、その他の置換基として、水素基、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、ペンチル基、ヘキシル基、オクチル基、デシル基、シクロペンチル基、シクロヘキシル基、フェニル基、ベンジル基、フェネチル基、2-メトキシエチル基、2-エトキシエチル基などが挙げられる。
 R100としては、メチル、エチル基、プロピル基、イソプロピル基、ブチル基、t-ブチル基、ペンチル基、ヘキシル基、シクロヘキシル基、2,2,2-トリフルオロエチル基、アリル基、フェニル基、ベンジル基、フェネチル基などが挙げられ、またヘテロ原子を含んだ置換基としては、メトキシエチル、エトキシエチル、2-シアノエチル基などが挙げられる。
 R101としては、水素基、メチル、エチル基、プロピル基、イソプロピル基、ブチル基、t-ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、シクロヘキシル基、フルオロメチル基、ジフルオロメチル基、トリフルオロメチル基、ペンタフルオロエチル基、ヘプタフルオロプロピル基、ビニル基、アリル基、1-プロペニル基、イソプロペニル基、フェニル基、ベンジル基、フェネチル基などが挙げられ、またヘテロ原子を含んだ置換基としては、メトキシメチル、エトキシメチル、アセチルメチル基、シアノメチル基、1-シアノエチル基、2-シアノエチル基などが挙げられる。
 R98~R101の中で好ましい組み合わせは、電池特性の観点からR98が、アリル基又はプロパルギル基であるものであり、以下の例が挙げられる。
  R98、R99;アリル基、R100;メチル基、R101;メチル基
  R98、R99;アリル基、R100;エチル基、R101;メチル基
  R98、R99;アリル基、R100;メチル基、R101;エチル基
  R98、R99;アリル基、R100;2,2,2-トリフルオロエチル基、R101;メチル基
  R98、R99;アリル基、R100;2,2,2-トリフルオロエチル基、R101;エチル基
  R98;アリル基、R99;水素基、R100;メチル基、R101;メチル基
  R98;アリル基、R99;水素基、R100;エチル基、R101;メチル基
  R98;アリル基、R99;水素基、R100;メチル基、R101;エチル基
  R98;アリル基、R99;水素基、R100;2,2,2-トリフルオロエチル基、R101;メチル基
  R98;アリル基、R99;水素基、R100;2,2,2-トリフルオロエチル基、R101;エチル基
  R98、R99;プロパルギル基、R100;メチル基、R101;メチル基
  R98、R99;プロパルギル基、R100;エチル基、R101;メチル基
  R98、R99;プロパルギル基、R100;メチル基、R101;エチル基
  R98、R99;プロパルギル基、R100;2,2,2-トリフルオロエチル基、R101;メチル基
  R98、R99;プロパルギル基、R100;2,2,2-トリフルオロエチル基、R101;エチル基
  R98;プロパルギル基、R99;水素基、R100;メチル基、R101;メチル基
  R98;プロパルギル基、R99;水素基、R100;エチル基、R101;メチル基
  R98;プロパルギル基、R99;水素基、R100;メチル基、R101;エチル基
  R98;プロパルギル基、R99;水素基、R100;2,2,2-トリフルオロエチル基、R101;メチル基
  R98;プロパルギル基、R99;水素基、R100;2,2,2-トリフルオロエチル基、R101;エチル基
  R98、R99;アリル基、R100;メチル基、R101;フェニル基
  R98、R99;アリル基、R100;エチル基、R101;フェニル基
  R98、R99;アリル基、R100;メチル基、R101;フェニル基
  R98、R99;アリル基、R100;エチル基、R101;フェニル基
  R98;アリル基、R99;水素基、R100;メチル基、R101;フェニル基
  R98;アリル基、R99;水素基、R100;エチル基、R101;フェニル基
  R98、R99;プロパルギル基、R100;メチル基、R101;フェニル基
  R98、R99;プロパルギル基、R100;エチル基、R101;フェニル基
  R98、R99;プロパルギル基、R100;メチル基、R101;フェニル基
  R98、R99;プロパルギル基、R100;エチル基、R101;フェニル基
  R98;プロパルギル基、R99;水素基、R100;メチル基、R101;フェニル基
  R98;プロパルギル基、R99;水素基、R100;エチル基、R101;フェニル基
  R98、R99;アリル基、R100;メチル基、R101;ビニル基
  R98、R99;アリル基、R100;エチル基、R101;ビニル基
  R98、R99;アリル基、R100;メチル基、R101;ビニル基
  R98、R99;アリル基、R100;エチル基、R101;ビニル基
  R98;アリル基、R99;水素基、R100;メチル基、R101;ビニル基
  R98;アリル基、R99;水素基、R100;エチル基、R101;ビニル基
  R98、R99;プロパルギル基、R100;メチル基、R101;ビニル基
  R98、R99;プロパルギル基、R100;エチル基、R101;ビニル基
  R98、R99;プロパルギル基、R100;メチル基、R101;ビニル基
  R98、R99;プロパルギル基、R100;エチル基、R101;ビニル基
  R98;プロパルギル基、R99;水素基、R100;メチル基、R101;ビニル基
  R98;プロパルギル基、R99;水素基、R100;エチル基、R101;フェニル基
 好ましくは、高温保存時におけるガス発生の抑制、電池の充放電特性向上の観点から、以下のものが挙げられる。
  R98、R99;アリル基、R100;メチル基、R101;メチル基
  R98、R99;アリル基、R100;エチル基、R101;メチル基
  R98、R99;アリル基、R100;メチル基、R101;エチル基
  R98、R99;アリル基、R100;2,2,2-トリフルオロエチル基、R101;メチル基
  R98、R99;アリル基、R100;2,2,2-トリフルオロエチル基、R101;エチル基
  R98;アリル基、R99;水素基、R100;メチル基、R101;メチル基
  R98;アリル基、R99;水素基、R100;エチル基、R101;メチル基
  R98;アリル基、R99;水素基、R100;メチル基、R101;エチル基
  R98;アリル基、R99;水素基、R100;2,2,2-トリフルオロエチル基、R101;メチル基
  R98;アリル基、R99;水素基、R100;2,2,2-トリフルオロエチル基、R101;エチル基
  R98;プロパルギル基、R99;水素基、R100;メチル基、R101;メチル基
  R98;プロパルギル基、R99;水素基、R100;エチル基、R101;メチル基
  R98;プロパルギル基、R99;水素基、R100;メチル基、R101;エチル基
  R98;プロパルギル基、R99;水素基、R100;2,2,2-トリフルオロエチル基、R101;メチル基
  R98;プロパルギル基、R99;水素基、R100;2,2,2-トリフルオロエチル基、R101;エチル基
  R98、R99;アリル基、R100;メチル基、R101;フェニル基
  R98、R99;アリル基、R100;エチル基、R101;フェニル基
  R98、R99;アリル基、R100;メチル基、R101;フェニル基
  R98、R99;アリル基、R100;エチル基、R101;フェニル基
  R98、R99;アリル基、R100;メチル基、R101;フェニル基
  R98、R99;アリル基、R100;エチル基、R101;フェニル基
  R98;プロパルギル基、R99;水素基、R100;メチル基、R101;フェニル基
  R98;プロパルギル基、R99;水素基、R100;エチル基、R101;フェニル基
  R98、R99;アリル基、R100;メチル基、R101;ビニル基
  R98、R99;アリル基、R100;エチル基、R101;ビニル基
  R98、R99;アリル基、R100;メチル基、R101;ビニル基
  R98、R99;アリル基、R100;エチル基、R101;ビニル基
  R98;アリル基、R99;水素基、R100;メチル基、R101;ビニル基
  R98;アリル基、R99;水素基、R100;エチル基、R101;ビニル基
  R98;プロパルギル基、R99;水素基、R100;メチル基、R101;ビニル基
  R98;プロパルギル基、R99;水素基、R100;エチル基、R101;フェニル基
 更に好ましくは、以下のものが挙げられる。
  R98、R99;アリル基、R100;メチル基、R101;メチル基
  R98、R99;アリル基、R100;エチル基、R101;メチル基
  R98、R99;アリル基、R100;メチル基、R101;エチル基
  R98、R99;アリル基、R100;2,2,2-トリフルオロエチル基、R101;メチル基
  R98、R99;アリル基、R100;2,2,2-トリフルオロエチル基、R101;エチル基
  R98;アリル基、R99;水素基、R100;メチル基、R101;メチル基
  R98;アリル基、R99;水素基、R100;エチル基、R101;メチル基
  R98;アリル基、R99;水素基、R100;メチル基、R101;エチル基
  R98;アリル基、R99;水素基、R100;2,2,2-トリフルオロエチル基、R101;メチル基
  R98;アリル基、R99;水素基、R100;2,2,2-トリフルオロエチル基、R101;エチル基
  R98、R99;アリル基、R100;メチル基、R101;フェニル基
  R98、R99;アリル基、R100;エチル基、R101;フェニル基
  R98、R99;アリル基、R100;メチル基、R101;フェニル基
  R98、R99;アリル基、R100;エチル基、R101;フェニル基
  R98;アリル基、R99;水素基、R100;メチル基、R101;フェニル基
  R98;アリル基、R99;水素基、R100;エチル基、R101;フェニル基
24.環状ホスホン酸モノアミド
Figure JPOXMLDOC01-appb-C000031
 R102としては、アリル基、プロパルギル基、cis-2-ブテニル基、trans-2-ブテニル基、3-ブテニル基、2-ブチニル基、3-ブチニル基、4-ペンテニル基、4-ペンチニル基、5-へキセニル基、5-ヘキシニル基、7-オクテニル基、7-オクチニル基、9-デセニル基、9-デシニル基などが挙げられ、この中で、アリル基、プロパルギル基、3-ブテニル基、3-ブチニル基、4-ペンテニル基、4-ペンチニル基などの末端に炭素-炭素不飽和結合をもつものが電池特性の点から好ましい。
 R103としては、水素基、メチル、エチル基、プロピル基、イソプロピル基、ブチル基、t-ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、シクロヘキシル基、フルオロメチル基、ジフルオロメチル基、トリフルオロメチル基、ペンタフルオロエチル基、ヘプタフルオロプロピル基、ビニル基、アリル基、1-プロペニル基、イソプロペニル基、フェニル基、ベンジル基、フェネチル基などが挙げられ、またヘテロ原子を含んだ置換基としては、メトキシメチル、エトキシメチル、アセチルメチル基、シアノメチル基、1-シアノエチル基、2-シアノエチル基などが挙げられる。
 R104としては、エチレン基、プロピレン基、トリメチレン基、1-メチルトリメチレン基、2-メチルトリメチレン基、3-メチルトリメチレン基、2,2-ジメチルトリメチレン基などが挙げられる。
 R102~R104の中で好ましい組み合わせは、電池特性向上の観点からR102が、アリル基又はプロパルギル基であるものであり、以下の例が挙げられる。
  R102;アリル基、R103;メチル基、R104;エチレン基
  R102;アリル基、R103;エチル基、R104;エチレン基
  R102;アリル基、R103;フェニル基、R104;エチレン基
  R102;アリル基、R103;ビニル基、R104;エチレン基
  R102;プロパルギル基、R103;メチル基、R104;エチレン基
  R102;プロパルギル基、R103;エチル基、R104;エチレン基
  R102;プロパルギル基、R103;フェニル基、R104;エチレン基
  R102;プロパルギル基、R103;ビニル基、R104;エチレン基
 好ましくは、高温保存時におけるガス発生の抑制、電池の充放電特性向上の観点から、以下のものが挙げられる。
  R102;アリル基、R103;メチル基、R104;エチレン基
  R102;アリル基、R103;エチル基、R104;エチレン基
  R102;アリル基、R103;フェニル基、R104;エチレン基
  R102;プロパルギル基、R103;メチル基、R104;エチレン基
  R102;プロパルギル基、R103;エチル基、R104;エチレン基
  R102;プロパルギル基、R103;フェニル基、R104;エチレン基
25.ホスホン酸ジアミド
Figure JPOXMLDOC01-appb-C000032
 R105としては、アリル基、プロパルギル基、cis-2-ブテニル基、trans-2-ブテニル基、3-ブテニル基、2-ブチニル基、3-ブチニル基、4-ペンテニル基、4-ペンチニル基、5-へキセニル基、5-ヘキシニル基、7-オクテニル基、7-オクチニル基、9-デセニル基、9-デシニル基などが挙げられ、この中で、アリル基、プロパルギル基、3-ブテニル基、3-ブチニル基、4-ペンテニル基、4-ペンチニル基などの末端に炭素-炭素不飽和結合をもつものが電池特性の点から好ましい。
 R106108としては、アリル基、プロパルギル基、cis-2-ブテニル基、trans-2-ブテニル基、3-ブテニル基、2-ブチニル基、3-ブチニル基、4-ペンテニル基、4-ペンチニル基、5-へキセニル基、5-ヘキシニル基、7-オクテニル基、7-オクチニル基、9-デセニル基、9-デシニル基などが挙げられ、この中で、アリル基、プロパルギル基、3-ブテニル基、3-ブチニル基、4-ペンテニル基、4-ペンチニル基などの末端に炭素-炭素不飽和結合をもつものが電池特性の点から好ましい。
 また、その他の置換基として、水素基、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、ペンチル基、ヘキシル基、オクチル基、デシル基、シクロペンチル基、シクロヘキシル基、フェニル基、ベンジル基、フェネチル基、2-メトキシエチル基、2-エトキシエチル基などが挙げられる。
 R109としては、水素基、メチル、エチル基、プロピル基、イソプロピル基、ブチル基、t-ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、シクロヘキシル基、フルオロメチル基、ジフルオロメチル基、トリフルオロメチル基、ペンタフルオロエチル基、ヘプタフルオロプロピル基、ビニル基、アリル基、1-プロペニル基、イソプロペニル基、フェニル基、ベンジル基、フェネチル基などが挙げられ、またヘテロ原子を含んだ置換基としては、メトキシメチル、エトキシメチル、アセチルメチル基、シアノメチル基、1-シアノエチル基、2-シアノエチル基などが挙げられる。
 R105~R109の中で好ましい組み合わせは、電池特性向上の観点からR105が、アリル基又はプロパルギル基であるものであり、以下の例が挙げられる。
  R105~R108;アリル基、R109;メチル基
  R105、R107;アリル基、R106、R108;水素基、R109;メチル基
  R105~R108;プロパルギル基、R109;メチル基
  R105、R107;プロパルギル基、R106、R108;水素基、R109;メチル基
  R105~R108;アリル基、R109;エチル基
  R105、R107;アリル基、R106、R108;水素基、R109;エチル基
  R105~R108;プロパルギル基、R109;エチル基
  R105、R107;プロパルギル基、R106、R108;水素基、R109;エチル基
  R105~R108;アリル基、R109;フェニル基
  R105、R107;アリル基、R106、R108;水素基、R109;フェニル基
  R105~R108;プロパルギル基、R109;フェニル基
  R105、R107;プロパルギル基、R106、R108;水素基、R109;フェニル基
  R105~R108;アリル基、R109;ビニル基
  R105、R107;アリル基、R106、R108;水素基、R109;ビニル基
  R105~R108;プロパルギル基、R109;ビニル基
  R105、R107;プロパルギル基、R106、R108;水素基、R109;ビニル基
 好ましくは、高温保存時におけるガス発生の抑制、電池の充放電特性向上の観点から、以下のものが挙げられる。
  R105~R108;アリル基、R109;メチル基
  R105、R107;アリル基、R106、R108;水素基、R109;メチル基
  R105、R107;プロパルギル基、R106、R108;水素基、R109;メチル基
  R105~R108;アリル基、R109;エチル基
  R105、R107;アリル基、R106、R108;水素基、R109;エチル基
  R105、R107;プロパルギル基、R106、R108;水素基、R109;エチル基
  R105~R108;アリル基、R109;フェニル基
  R105、R107;アリル基、R106、R108;水素基、R109;フェニル基
  R105、R107;プロパルギル基、R106、R108;水素基、R109;フェニル基
  R105~R108;アリル基、R109;ビニル基
  R105、R107;アリル基、R106、R108;水素基、R109;ビニル基
  R105、R107;プロパルギル基、R106、R108;水素基、R109;ビニル基
 更に好ましくは、以下のものが挙げられる。
  R105~R108;アリル基、R109;メチル基
  R105、R107;アリル基、R106、R108;水素基、R109;メチル基
  R105~R108;アリル基、R109;エチル基
  R105、R107;アリル基、R106、R108;水素基、R109;エチル基
  R105~R108;アリル基、R109;フェニル基
  R105、R107;アリル基、R106、R108;水素基、R109;フェニル基
  R105~R108;アリル基、R109;ビニル基
  R105、R107;アリル基、R106、R108;水素基、R109;ビニル基
26.環状ホスホン酸ジアミド
Figure JPOXMLDOC01-appb-C000033
 R110としては、アリル基、プロパルギル基、cis-2-ブテニル基、trans-2-ブテニル基、3-ブテニル基、2-ブチニル基、3-ブチニル基、4-ペンテニル基、4-ペンチニル基、5-へキセニル基、5-ヘキシニル基、7-オクテニル基、7-オクチニル基、9-デセニル基、9-デシニル基などが挙げられ、この中で、アリル基、プロパルギル基、3-ブテニル基、3-ブチニル基、4-ペンテニル基、4-ペンチニル基などの末端に炭素-炭素不飽和結合をもつものが電池特性の点から好ましい。
 R111としては、アリル基、プロパルギル基、cis-2-ブテニル基、trans-2-ブテニル基、3-ブテニル基、2-ブチニル基、3-ブチニル基、4-ペンテニル基、4-ペンチニル基、5-へキセニル基、5-ヘキシニル基、7-オクテニル基、7-オクチニル基、9-デセニル基、9-デシニル基などが挙げられ、この中で、アリル基、プロパルギル基、3-ブテニル基、3-ブチニル基、4-ペンテニル基、4-ペンチニル基などの末端に炭素-炭素不飽和結合をもつものが電池特性の点から好ましい。
 また、その他の置換基として、水素基、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、ペンチル基、ヘキシル基、オクチル基、デシル基、シクロペンチル基、シクロヘキシル基、フェニル基、ベンジル基、フェネチル基、2-メトキシエチル基、2-エトキシエチル基などが挙げられる。
 R112としては、水素基、メチル、エチル基、プロピル基、イソプロピル基、ブチル基、t-ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、シクロヘキシル基、フルオロメチル基、ジフルオロメチル基、トリフルオロメチル基、ペンタフルオロエチル基、ヘプタフルオロプロピル基、ビニル基、アリル基、1-プロペニル基、イソプロペニル基、フェニル基、ベンジル基、フェネチル基などが挙げられ、またヘテロ原子を含んだ置換基としては、メトキシメチル、エトキシメチル、アセチルメチル基、シアノメチル基、1-シアノエチル基、2-シアノエチル基などが挙げられる。
 R113としては、エチレン基、プロピレン基、トリメチレン基、1-メチルトリメチレン基、2-メチルトリメチレン基、3-メチルトリメチレン基、2,2-ジメチルトリメチレン基などが挙げられる。
 R110~R113の中で好ましい組み合わせは、電池特性の観点からR110が、アリル基又はプロパルギル基であるものであり、以下の例が挙げられる。
  R110、R111;アリル基、R112;メチル基、R113;エチレン基
  R110、R111;アリル基、R112;エチル基、R113;エチレン基
  R110、R111;アリル基、R112;フェニル基、R113;エチレン基
  R110、R111;アリル基、R112;ビニル基、R113;エチレン基
  R110、R111;プロパルギル基、R112;メチル基、R113;エチレン基
  R110、R111;プロパルギル基、R112;エチル基、R113;エチレン基
  R110、R111;プロパルギル基、R112;フェニル基、R113;エチレン基
  R110、R111;プロパルギル基、R112;ビニル基、R113;エチレン基
 好ましくは、高温保存時におけるガス発生の抑制、電池の充放電特性向上の観点から、以下のものが挙げられる。
  R110、R111;アリル基、R112;メチル基、R113;エチレン基
  R110、R111;アリル基、R112;エチル基、R113;エチレン基
  R110、R111;アリル基、R112;フェニル基、R113;エチレン基
  R110、R111;アリル基、R112;ビニル基、R113;エチレン基
27.ホスフィン酸アミド
Figure JPOXMLDOC01-appb-C000034
 R114としては、アリル基、プロパルギル基、cis-2-ブテニル基、trans-2-ブテニル基、3-ブテニル基、2-ブチニル基、3-ブチニル基、4-ペンテニル基、4-ペンチニル基、5-へキセニル基、5-ヘキシニル基、7-オクテニル基、7-オクチニル基、9-デセニル基、9-デシニル基などが挙げられ、この中で、アリル基、プロパルギル基、3-ブテニル基、3-ブチニル基、4-ペンテニル基、4-ペンチニル基などの末端に炭素-炭素不飽和結合をもつものが電池特性の点から好ましい。
 R115としては、アリル基、プロパルギル基、cis-2-ブテニル基、trans-2-ブテニル基、3-ブテニル基、2-ブチニル基、3-ブチニル基、4-ペンテニル基、4-ペンチニル基、5-へキセニル基、5-ヘキシニル基、7-オクテニル基、7-オクチニル基、9-デセニル基、9-デシニル基などが挙げられ、この中で、アリル基、プロパルギル基、3-ブテニル基、3-ブチニル基、4-ペンテニル基、4-ペンチニル基などの末端に炭素-炭素不飽和結合をもつものが電池特性の点から好ましい。
 また、その他の置換基として、水素基、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、ペンチル基、ヘキシル基、オクチル基、デシル基、シクロペンチル基、シクロヘキシル基、フェニル基、ベンジル基、フェネチル基、2-メトキシエチル基、2-エトキシエチル基などが挙げられる。
 R116、R117としては、水素基、メチル、エチル基、プロピル基、イソプロピル基、ブチル基、t-ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、シクロヘキシル基、フルオロメチル基、ジフルオロメチル基、トリフルオロメチル基、ペンタフルオロエチル基、ヘプタフルオロプロピル基、ビニル基、アリル基、1-プロペニル基、イソプロペニル基、フェニル基、ベンジル基、フェネチル基などが挙げられ、またヘテロ原子を含んだ置換基としては、メトキシメチル、エトキシメチル、アセチルメチル基、シアノメチル基、1-シアノエチル基、2-シアノエチル基などが挙げられる。
 R114~R117の中で好ましい組み合わせは、電池特性の観点からR114が、アリル基又はプロパルギル基であるものであり、以下の例が挙げられる。
  R114、R115;アリル基、R116、R117;メチル基
  R114;アリル基、R115;水素基、R116、R117;メチル基
  R114、R115;プロパルギル基、R116、R117;メチル基
  R114;プロパルギル基、R115;水素基、R116、R117;メチル基
  R114、R115;アリル基、R116、R117;エチル基
  R114;アリル基、R115;水素基、R116、R117;エチル基
  R114、R115;プロパルギル基、R116、R117;エチル基
  R114;プロパルギル基、R115;水素基、R116、R117;エチル基
  R114、R115;アリル基、R116、R117;フェニル基
  R114;アリル基、R115;水素基、R116、R117;フェニル基
  R114、R115;プロパルギル基、R116、R117;フェニル基
  R114;プロパルギル基、R115;水素基、R116、R117;フェニル基
 好ましくは、高温保存時におけるガス発生の抑制、電池の充放電特性向上の観点から、以下のものが挙げられる。
  R114、R115;アリル基、R116、R117;メチル基
  R114;アリル基、R115;水素基、R116、R117;メチル基
  R114;プロパルギル基、R115;水素基、R116、R117;メチル基
  R114、R115;アリル基、R116、R117;エチル基
  R114;アリル基、R115;水素基、R116、R117;エチル基
  R114;プロパルギル基、R115;水素基、R116、R117;エチル基
  R114、R115;アリル基、R116、R117;フェニル基
  R114;アリル基、R115;水素基、R116、R117;フェニル基
  R114;プロパルギル基、R115;水素基、R116、R117;フェニル基
 更に好ましくは、以下のものが挙げられる。
  R114、R115;アリル基、R116、R117;メチル基
  R114;アリル基、R115;水素基、R116、R117;メチル基
  R114;プロパルギル基、R115;水素基、R116、R117;メチル基
  R114、R115;アリル基、R116、R117;エチル基
  R114;アリル基、R115;水素基、R116、R117;エチル基
  R114;プロパルギル基、R115;水素基、R116、R117;エチル基
 前記一般式(1)で表される化合物の含有量は特に限定されるものではないが、非水系電解液に対し、0.001質量%以上、10質量%以下が好ましい。0.01質量%以上であることが更に好ましく、特に0.1質量%以上が好ましい。一方、5質量%以下が更に好ましく、3質量%以下が特に好ましい。前記一般式(1)で表される化合物の含有量が上記範囲にあることにより、本発明の効果が発現しやすくなり、また、抵抗増加による電池特性の悪化を抑制する。
 尚、前記一般式(1)で化合物は、1種であっても、複数種を併用してもよいが、複数種を併用する場合、上記含有量は、複数種の合計量を表す。
 前記一般式(1)で表される化合物を含有する電解液を用いた場合、高温保存時のガス発生量が減少し、電池特性も向上する。その詳細な機構は明らかになっていないが、前記一般式(1)で表される化合物は、炭素-炭素不飽和結合を有するアミド化合物であり、アミド基の部位で正極表面に吸着し、炭素-炭素不飽和結合部分で重合反応をして、正極を保護する機能を発現すると推察される。従って、このどちらかが欠けると、本発明のような効果が得られない。また、炭素-炭素不飽和結合は、アミド基に隣接するとその影響により反応性が低下すると推察されるので、ビニル基のような炭素-炭素不飽和結合は好ましくない。また、炭素-炭素不飽和結合は、重合反応の起きやすさから置換基の末端にあることが望ましい。
〔1-3.一般式(1)で表される化合物と併用することが好適な化合物群〕
 本発明では、前記一般式(1)で表される化合物に加えて、特定の化合物を電解液中に含有させることによって、更に効果を向上させることが出来る。本発明に係る非水系電解液は、本発明の効果を損ねない範囲で、炭素-炭素不飽和結合を有する環状カーボネート化合物、フッ素原子を有する環状カーボネート化合物、モノフルオロリン酸塩、ジフルオロリン酸塩、ニトリル化合物及びイソシアナト化合物からなる群から選ばれる少なくとも一種の化合物や従来公知の過充電防止剤などの種々の他の化合物を助剤として含有していてもよい。
 これらの中でも、炭素-炭素不飽和結合を有する環状カーボネート化合物、フッ素原子を有する環状カーボネート化合物、モノフルオロリン酸塩及びジフルオロリン酸塩からなる群より選ばれる少なくとも一種の化合物を含有する場合、負極に安定な皮膜を形成するため、サイクル特性や高温保存後の電池特性が向上することがあり、好ましい。
(炭素-炭素不飽和結合を有する環状カーボネート化合物)
 炭素-炭素不飽和結合を有する環状カーボネート化合物としては、例えば、ビニレンカーボネート、メチルビニレンカーボネート、エチルビニレンカーボネート、1,2-ジメチルビニレンカーボネート、1,2-ジエチルビニレンカーボネート、フルオロビニレンカーボネート、トリフルオロメチルビニレンカーボネート等のビニレンカーボネート化合物;ビニルエチレンカーボネート、1-メチル-2-ビニルエチレンカーボネート、1-エチル-2-ビニルエチレンカーボネート、1-n-プロピル-2-ビニルエチレンカーボネート、1-メチル-2-ビニルエチレンカーボネート、1,1-ジビニルエチレンカーボネート、1,2-ジビニルエチレンカーボネート等のビニルエチレンカーボネート化合物;1,1-ジメチル-2-メチレンエチレンカーボネート、1,1-ジエチル-2-メチレンエチレンカーボネート等のメチレンエチレンカーボネート化合物等が挙げられる。
 これらのうち、ビニレンカーボネート、ビニルエチレンカーボネート、1,2-ジビニルエチレンカーボネートがサイクル特性や高温保存後の容量維持特性向上の点から好ましく、中でもビニレンカーボネート又はビニルエチレンカーボネートがより好ましく、特にビニレンカーボネートが好ましい。これらは単独で用いても、2種以上を併用してもよい。
 2種類以上を併用する場合は、ビニレンカーボネートとビニルエチレンカーボネートとを併用することが好ましい。
 炭素-炭素不飽和結合を有する環状カーボネート化合物を含有する場合、非水系電解液中におけるその割合は、通常0.01質量%以上、好ましくは0.1質量%以上、特に好ましくは0.3質量%以上、また、通常10質量%以下、好ましくは8質量%以下、特に好ましくは6質量%以下である。炭素-炭素不飽和結合を有する環状カーボネート化合物の含有量が上記範囲にあることにより、電池のサイクル特性や高温保存後の容量維持特性を向上させるという効果を十分に発揮し、また、高温保存時のガス発生量の増大を抑制する。
(フッ素原子を有する環状カーボネート化合物)
 フッ素原子を有する環状カーボネート化合物としては、例えば、フルオロエチレンカーボネート、1,2-ジフルオロエチレンカーボネート、1,1-ジフルオロエチレンカーボネート、1,1,2-トリフルオロエチレンカーボネート、テトラフルオロエチレンカーボネート、1-フルオロ-2-メチルエチレンカーボネート、1-フルオロ-1-メチルエチレンカーボネート、1,2-ジフルオロ-1-メチルエチレンカーボネート、1,1,2-トリフルオロ-2-メチルエチレンカーボネート、トリフルオロメチルエチレンカーボネート等が挙げられる。これらのうち、フルオロエチレンカーボネート、1,2-ジフルオロエチレンカーボネート、1-フルオロ-2-メチルエチレンカーボネートがサイクル特性向上や高温保存特性向上の点から好ましい。これらは単独で用いても、2種類以上を併用してもよい。
 非水系電解液がフッ素原子を有する環状カーボネート化合物を含有する場合、非水系電解液中におけるその割合は、通常、0.001質量%以上、好ましくは0.1質量%以上、より好ましくは0.3質量%以上、特に好ましくは0.5質量%以上であり、通常、10質量%以下、好ましくは5質量%以下、より好ましくは4質量%以下、特に好ましくは3質量%以下である。ただし、フルオロエチレンカーボネートは〔1-2.非水溶媒〕の項で説明したように、溶媒として用いてもよく、その場合は上記の含有量に限定されない。
(モノフルオロリン酸塩およびジフルオロリン酸塩)
 モノフルオロリン酸塩およびジフルオロリン酸塩のカウンターカチオンとしては特に限定はないが、リチウム、ナトリウム、カリウム、マグネシウム、カルシウム、及び、NR118119120121(式中、R118~R121は、各々独立に、水素原子又は炭素数1~12の有機基を表す。)で表されるアンモニウム等が例として挙げられる。
 上記アンモニウムのR118~R121で表わされる炭素数1~12の有機基としては特に限定はないが、例えば、ハロゲン原子で置換されていてもよいアルキル基、ハロゲン原子又はアルキル基で置換されていてもよいシクロアルキル基、ハロゲン原子又はアルキル基で置換されていてもよいアリール基、置換基を有していてもよい窒素原子含有複素環基等が挙げられる。中でもR118~R121として、それぞれ独立に、水素原子、アルキル基、シクロアルキル基、又は窒素原子含有複素環基等が好ましい。
 モノフルオロリン酸塩およびジフルオロリン酸塩の具体例としては、モノフルオロリン酸リチウム、モノフルオロリン酸ナトリウム、モノフルオロリン酸カリウム、モノフルオロリン酸テトラメチルアンモニウム、モノフルオロリン酸テトラエチルアンモニウム、ジフルオロリン酸リチウム、ジフルオロリン酸ナトリウム、ジフルオロリン酸カリウム、ジフルオロリン酸テトラメチルアンモニウム、ジフルオロリン酸テトラエチルアンモニウム等が挙げられ、モノフルオロリン酸リチウム、ジフルオロリン酸リチウムが好ましく、ジフルオロリン酸リチウムがより好ましい。これらは単独で用いても、2種類以上を併用してもよい。
 非水系電解液がモノフルオロリン酸塩および/またはジフルオロリン酸塩を含有する場合、非水系電解液中におけるその割合は、通常、0.001質量%以上、好ましくは0.01質量%以上、特に好ましくは0.1質量%以上、最も好ましくは0.2質量%以上であり、通常5質量%以下、好ましくは3質量%以下、特に好ましくは2質量%以下である。
 なお、モノフルオロリン酸塩及びジフルオロリン酸塩は、非水系電解液として実際に二次電池作製に供すると、その電池を解体して再び非水系電解液を抜き出した場合、非水系電解液中のそれらフルオロリン酸塩の含有量が著しく低下している場合が多い。従って、電池から抜き出した非水系電解液から、少なくとも1種のモノフルオロリン酸塩及び/又はジフルオロリン酸塩が検出できるものは、その検出量に関わらず、非水系電解液中にこれらフルオロリン酸塩を本発明で規定する所定割合で含む非水系電解液であるとみなされる。
(ニトリル化合物)
 ニトリル化合物としては、アセトニトリル、プロピオニトリル、ブチロニトリル、バレロニトリル、ヘキサンニトリル、ヘプタンニトリル、オクタンニトリル、ノナンニトリル、デカンニトリル、ドデカンニトリル(ラウロニトリル)、トリデカンニトリル、テトラデカンニトリル(ミリストニトリル)、ヘキサデカンニトリル、ペンタデカンニトリル、ヘプタデカンニトリル、オクタデカンニトリル(ステアノニトリル)、ノナデカンニトリル、イコサンニトリル等のモノニトリル;マロノニトリル、スクシノニトリル、グルタロニトリル、アジポニトリル、ピメロニトリル、スベロニトリル、アゼラニトリル、セバコニトリル、ウンデカンジニトリル、ドデカンジニトリル、メチルマロノニトリル、エチルマロノニトリル、イソプロピルマロノニトリル、tert-ブチルマロノニトリル、メチルスクシノニトリル、2,2-ジメチルスクシノニトリル、2,3-ジメチルスクシノニトリル、トリメチルスクシノニトリル、テトラメチルスクシノニトリル、3,3’-オキシジプロピオニトリル、3,3’-チオジプロピオニトリル、3,3’-(エチレンジオキシ)ジプロピオニトリル、3,3’-(エチレンジチオ)ジプロピオニトリル、1,2,3-プロパントリカルボニトリル、1,3,5-ペンタントリカルボニトリル、1,2,3-トリス(2-シアノエトキシ)プロパン、トリス(2-シアノエチル)アミン、3,9-ビス(2-シアノエチル)-2,4,8,10-テトラオキサスピロ[5,5]ウンデカン等のジニトリルが挙げられ、これらの中でも、ラウロニトリル、スクシノニトリル、グルタロニトリル、アジポニトリル、ピメロニトリル、スベロニトリルが好ましい。
 これらは単独で用いても、2種類以上を併用してもよい。
 非水系電解液がニトリル化合物を含有する場合、非水系電解液中におけるその割合は、通常、0.001質量%以上、好ましくは0.01質量%以上、特に好ましくは0.1質量%以上、最も好ましくは0.2質量%以上であり、通常10質量%以下、好ましくは5質量%以下、特に好ましくは2質量%以下である。ニトリル化合物の含有量が上記範囲にあることにより、助剤の効果が発現し、高負荷放電特性等の電池の特性の低下を抑制し、高温保存後の容量維持特性やサイクル特性を向上させる点で好ましい。
(イソシアナト化合物)
 イソシアナト化合物としては、1-イソシアナトエタン、1-イソシアナトプロパン、1-イソシアナトブタン、1-イソシアナトペンタン、1-イソシアナトヘキサン、1-イソシアナトヘプタン、1-イソシアナトオクタン、1-イソシアナトノナン、1-イソシアナトデカン、1,4-ジイソシアナトブタン、1,5-ジイソシアナトペンタン、1,6-ジイソシアナトヘキサン、1,7-ジイソシアナトヘプタン、1,8-ジイソシアナトオクタン、1,9-ジイソシアナトノナン、1,10-ジイソシアナトデカン、1,3-ジイソシアナトプロペン、1,4-ジイソシアナト-2-ブテン、1,4-ジイソシアナト-2-フルオロブタン、1,4-ジイソシアナト-2,3-ジフルオロブタン、1,5-ジイソシアナト-2-ペンテン、1,5-ジイソシアナト-2-メチルペンタン、1,6-ジイソシアナト-2-ヘキセン、1,6-ジイソシアナト-3-ヘキセン、1,6-ジイソシアナト-3-フルオロヘキサン、1,6-ジイソシアナト-3,4-ジフルオロヘキサン、トルエンジイソシアナト、キシレンジイソシアナト、トリレンジイソシアナト、1,2-ビス(イソシアナトメチル)シクロヘキサン、1,3-ビス(イソシアナトメチル)シクロヘキサン、1,4-ビス(イソシアナトメチル)シクロヘキサン、1,2-ジイソシアナトシクロヘキサン、1,3-ジイソシアナトシクロヘキサン、1,4-ジイソシアナトシクロヘキサン、ジシクロヘキシルメタン-1,1’-ジイソシアナト、ジシクロヘキシルメタン-2,2’-ジイソシアナト、ジシクロヘキシルメタン-3,3’-ジイソシアナト、ジシクロヘキシルメタン-4,4’-ジイソシアナト、イソホロンジイソシアナト、1,6,11-トリイソシアナトウンデカン、4-イソシアナトメチル-1,8-オクタメチレンジイソシアナト、1,3,5-トリイソシアナトメチルベンゼン、ビシクロ[2.2.1]ヘプタン-2,5-ジイルビス(メチル=イソシアナト)、ビシクロ[2.2.1]ヘプタン-2,6-ジイルビス(メチル=イソシアナト)等のイソシアナト化合物が挙げられる。
 これらは単独で用いても、2種類以上を併用してもよい。
 非水系電解液がイソシアナト化合物を含有する場合、非水系電解液中におけるその割合は、通常、0.001質量%以上、好ましくは0.01質量%以上、特に好ましくは0.1質量%以上、最も好ましくは0.2質量%以上であり、通常5質量%以下、好ましくは3質量%以下、特に好ましくは1質量%以下である。イソシアナト化合物の含有量が上記範囲にあることにより、助剤の効果が発現し、高負荷放電特性等の電池の特性の低下を抑制し、高温保存後の容量維持特性やサイクル特性を向上させる点で好ましい。
〔1-4.その他の添加剤〕
 本発明の非水系電解液は、本発明の効果を著しく損なわない範囲において、各種の添加剤を含有していても良い。添加剤としては、従来公知のものを任意に用いることができる。尚、添加剤は、1種を単独で用いてもよく、2種以上を任意の組み合わせ及び/又は比率で併用してもよい。
 添加剤の例としては、過充電防止剤や、高温保存後の容量維持特性やサイクル特性を改善するための助剤などが挙げられる。
 過充電防止剤の具体例としては、ビフェニル、2-メチルビフェニル、2-エチルビフェニル等のアルキルビフェニル、ターフェニル、ターフェニルの部分水素化体、シクロペンチルベンゼン、シクロヘキシルベンゼン、シス-1-プロピル-4-フェニルシクロヘキサン、トランス-1-プロピル-4-フェニルシクロヘキサン、シス-1-ブチル-4-フェニルシクロヘキサン、トランス-1-ブチル-4-フェニルシクロヘキサン、t-ブチルベンゼン、t-アミルベンゼン、ジフェニルエーテル、ジベンゾフラン、メチルフェニルカーボネート、エチルフェニルカーボネート、ジフェニルカーボネート、トリフェニルホスフェート、トリス(2-t-ブチルフェニル)ホスフェート、トリス(3-t-ブチルフェニル)ホスフェート、トリス(4-t-ブチルフェニル)ホスフェート、トリス(2-t-アミルフェニル)ホスフェート、トリス(3-t-アミルフェニル)ホスフェート、トリス(4-t-アミルフェニル)ホスフェート、トリス(2-シクロヘキシルフェニル)ホスフェート、トリス(3-シクロヘキシルフェニル)ホスフェート、トリス(4-シクロヘキシルフェニル)ホスフェート等の芳香族化合物;2-フルオロビフェニル、3-フルオロビフェニル、4-フルオロビフェニル、4,4’-ジフルオロビフェニル、2,4-ジフルオロビフェニル、o-シクロヘキシルフルオロベンゼン、p-シクロヘキシルフルオロベンゼン等の上記芳香族化合物の部分フッ素化物;2,4-ジフルオロアニソール、2,5-ジフルオロアニソール、2,6-ジフルオロアニソール、3,5-ジフルオロアニソール等の含フッ素アニソール化合物等が挙げられる。
 これらの中でもビフェニル、2-メチルビフェニル等のアルキルビフェニル、ターフェニル、ターフェニルの部分水素化体、シクロペンチルベンゼン、シクロヘキシルベンゼン、シス-1-プロピル-4-フェニルシクロヘキサン、トランス-1-プロピル-4-フェニルシクロヘキサン、シス-1-ブチル-4-フェニルシクロヘキサン、トランス-1-ブチル-4-フェニルシクロヘキサン、t-ブチルベンゼン、t-アミルベンゼン、ジフェニルエーテル、ジベンゾフラン、メチルフェニルカーボネート、ジフェニルカーボネート、トリフェニルホスフェート、トリス(4-t-ブチルフェニル)ホスフェート、トリス(4-シクロヘキシルフェニル)ホスフェート等の芳香族化合物;2-フルオロビフェニル、3-フルオロビフェニル、4-フルオロビフェニル、4,4’-ジフルオロビフェニル、o-シクロヘキシルフルオロベンゼン、p-シクロヘキシルフルオロベンゼン等の上記芳香族化合物の部分フッ素化物が好ましく、ターフェニルの部分水素化体、シクロペンチルベンゼン、シクロヘキシルベンゼン、シス-1-プロピル-4-フェニルシクロヘキサン、トランス-1-プロピル-4-フェニルシクロヘキサン、シス-1-ブチル-4-フェニルシクロヘキサン、トランス-1-ブチル-4-フェニルシクロヘキサン、t-ブチルベンゼン、t-アミルベンゼン、メチルフェニルカーボネート、ジフェニルカーボネート、トリフェニルホスフェート、トリス(4-t-ブチルフェニル)ホスフェート、トリス(4-シクロヘキシルフェニル)ホスフェート、o-シクロヘキシルフルオロベンゼン、p-シクロヘキシルフルオロベンゼンがより好ましく、ターフェニルの部分水素化体及びシクロヘキシルベンゼンが特に好ましい。
 これらは2種以上併用してもよい。2種以上併用する場合は、特に、ターフェニルの部分水素化体やシクロヘキシルベンゼンとt-ブチルベンゼンやt-アミルベンゼンとの組み合わせや、ビフェニル、アルキルビフェニル、ターフェニル、ターフェニルの部分水素化体、シクロヘキシルベンゼン、t-ブチルベンゼン、t-アミルベンゼン等の酸素を含有しない芳香族化合物から選ばれるものと、ジフェニルエーテル、ジベンゾフラン等の含酸素芳香族化合物から選ばれるものとを併用するのが過充電防止特性と高温保存特性のバランスの点から好ましい。
 非水系電解液中におけるこれらの過充電防止剤の含有割合は、通常0.1質量%以上、好ましくは0.2質量%以上、より好ましくは0.3質量%以上、特に好ましくは0.5質量%以上、また、通常5質量%以下、好ましくは3質量%以下、より好ましくは2質量%以下である。濃度が上記範囲にあることにより、所望する過充電防止剤の効果が発現しやすくなり、また、高温保存特性等の電池の特性の低下を抑制する。非水系電解液に過充電防止剤を含有させることによって、過充電による非水系電解液二次電池の破裂・発火を抑制することができ、非水系電解液二次電池の安全性が向上するので好ましい。
 高温保存後の容量維持特性やサイクル特性を改善するための助剤の具体例としては、コハク酸無水物、マレイン酸無水物、フタル酸無水物、シトラコン酸無水物等の酸無水物;エリスリタンカーボネート、スピロ-ビス-ジメチレンカーボネート等のカーボネート化合物;エチレンサルファイト、1,3-プロパンスルトン、1,3-プロペンスルトン、1,4-ブタンスルトン、メタンスルホン酸メチル、ブスルファン、スルホラン、スルホレン、ジメチルスルホン、ジフェニルスルホン、ジビニルスルホン、メチルフェニルスルホン、ジエチルジスルフィド、ジブチルジスルフィド、N,N-ジメチルメタンスルホンアミド、N,N-ジエチルメタンスルホンアミド等の含硫黄化合物;1-メチル-2-ピロリジノン、1-メチル-2-ピペリドン、3-メチル-2-オキサゾリジノン、1,3-ジメチル-2-イミダゾリジノン、N-メチルスクシイミド等の含窒素化合物;ヘプタン、オクタン、シクロヘプタン等の炭化水素化合物;フルオロベンゼン、ジフルオロベンゼン、ベンゾトリフルオライド等の含フッ素芳香族化合物;などが挙げられる。
 なお、これらの助剤は、1種を単独で用いてもよく、2種以上を任意の組み合わせ及び/又は比率で併用してもよい。
 本発明の非水系電解液が高温保存後の容量維持特性やサイクル特性を改善するための助剤を含有する場合、その濃度は本発明の効果を著しく損なわない限り任意であるが、非水系電解液全体に対して通常0.1質量%以上、5質量%以下の範囲とすることが好ましい。
 他の助剤としては、エリスリタンカーボネート、スピロ-ビス-ジメチレンカーボネート、メトキシエチル-メチルカーボネート、メトキシエチル-エチルカーボネート、エトキシエチル-メチルカーボネート、エトキシエチル-エチルカーボネート等のカーボネート化合物;無水コハク酸、無水グルタル酸、無水マレイン酸、無水イタコン酸、無水シトラコン酸、無水グルタコン酸、無水ジグリコール酸、シクロヘキサンジカルボン酸無水物、シクロペンタンテトラカルボン酸二無水物及びフェニルコハク酸無水物等のカルボン酸無水物;コハク酸ジメチル、コハク酸ジエチル、コハク酸ジアリル、マレイン酸ジメチル、マレイン酸ジエチル、マレイン酸ジアリル、マレイン酸ジプロピル、マレイン酸ジブチル、マレイン酸ビス(トリフルオロメチル)、マレイン酸ビス(ペンタフルオロエチル)、マレイン酸ビス(2,2,2-トリフルオロエチル)等のジカルボン酸ジエステル化合物;2,4,8,10-テトラオキサスピロ[5.5]ウンデカン、3,9-ジビニル-2,4,8,10-テトラオキサスピロ[5.5]ウンデカン等のスピロ化合物;エチレンサルファイト、プロピレンサルファイト、1,3-プロパンスルトン、1,4-ブタンスルトン、1,3-プロペンスルトン、1,4-ブテンスルトン、メチルメタンスルホネート、エチルメタンスルホネート、メチル-メトキシメタンスルホネート、メチル-2-メトキシエタンスルホネート、ブスルファン、ジエチレングリコールジメタンスルホネート、1,2-エタンジオールビス(2,2,2-トリフルオロエタンスルホネート)、1,4-ブタンジオールビス(2,2,2-トリフルオロエタンスルホネート)、スルホラン、3-スルホレン、2-スルホレン、ジメチルスルホン、ジエチルスルホン、ジビニルスルホン、ジフェニルスルホン、ビス(メチルスルホニル)メタン、ビス(メチルスルホニル)エタン、ビス(エチルスルホニル)メタン、ビス(エチルスルホニル)エタン、ビス(ビニルスルホニル)メタン、ビス(ビニルスルホニル)エタン、N,N-ジメチルメタンスルホンアミド、N,N-ジエチルメタンスルホンアミド、N,N-ジメチルトリフルオロメタンスルホンアミド、N,N-ジエチルトリフルオロメタンスルホンアミド等の含硫黄化合物;1-メチル-2-ピロリジノン、1-メチル-2-ピペリドン、3-メチル-2-オキサゾリジノン、1,3-ジメチル-2-イミダゾリジノン及びN-メチルスクシイミド等の含窒素化合物;ヘプタン、オクタン、ノナン、デカン、シクロヘプタン、メチルシクロヘキサン、エチルシクロヘキサン、プロピルシクロヘキサン、n-ブチルシクロヘキサン、t-ブチルシクロヘキサン、ジシクロヘキシル等の炭化水素化合物;フルオロベンゼン、ジフルオロベンゼン、ペンタフルオロベンゼン、ヘキサフルオロベンゼン等のフッ化ベンゼン;2-フルオロトルエン、3-フルオロトルエン、4-フルオロトルエン、ベンゾトリフルオライド等のフッ化トルエン;メチルジメチルホスフィネート、エチルジメチルホスフィネート、エチルジエチルホスフィネート、トリメチルホスホノフォルメート、トリエチルホスホノフォルメート、トリメチルホスホノアセテート、トリエチルホスホノアセテート、トリメチル-3-ホスホノプロピオネート、トリエチル-3-ホスホノプロピオネート等の含リン化合物等が挙げられる。
 これらの中で、高温保存後の電池特性向上の点からエチレンサルファイト、1,3-プロパンスルトン、1,4-ブタンスルトン、1,3-プロペンスルトン、1,4-ブテンスルトン、ブスルファン、1,4-ブタンジオールビス(2,2,2-トリフルオロエタンスルホネート)等の含硫黄化合物が好ましい。
 これらは2種以上併用して用いてもよい。
 非水系電解液中におけるこれらの助剤の含有割合は、特に制限はないが、通常0.01質量%以上、好ましくは0.1質量%以上、より好ましくは0.2質量%以上、また、通常8質量%以下、好ましくは5質量%以下、より好ましくは3質量%以下、特に好ましくは1質量%以下である。これらの助剤を添加することは、高温保存後の容量維持特性やサイクル特性を向上させる点で好ましい。この濃度が上記範囲にあることにより、助剤の効果が発現しやすくなり、また、高負荷放電特性等の電池の特性の低下を抑制する。
〔1-5.ゲル化剤〕
 非水系電解液は、本発明のリチウム二次電池に用いる際、通常は液体状態で存在するが、例えば、これを高分子によってゲル化して、半固体状電解質にしてもよい。ゲル化に用いる高分子は任意であるが、例えばポリフッ化ビニリデン、ポリフッ化ビニリデンとヘキサフルオロプロピレンとの共重合体、ポリエチレンオキサイド、ポリアクリレート、ポリメタクリレートなどが挙げられる。なお、ゲル化に用いる高分子は1種を単独で用いてもよく、2種以上を任意の組み合わせ及び/又は比率で併用しても良い。
 また、非水系電解液を半固体状電解質として用いる場合、半固体状電解質に占める非水系電解液の比率は、本発明の効果を著しく損なわない限り任意である。好適な範囲としては、半固体状電解質の総量に対する非水系電解液の比率が、通常30質量%以上、好ましくは50質量%以上、より好ましくは75質量%以上であり、また、通常99.95質量%以下、好ましくは99質量%以下、より好ましくは98質量%以下である。
 非水系電解液の比率が大きすぎると、電解液の保持が困難となり液漏れが生じやすくなる虞があり、逆に少なすぎると充放電効率や容量の点で不十分となることがある。
〔1-6.非水系電解液の製造方法〕
 本発明の非水系電解液は、上述した非水溶媒に、上述した電解質と、本発明の前記一般式(1)で表されるハロゲン含有リン酸エステル化合物と、好ましくは炭素-炭素不飽和結合を有する環状カーボネート、ハロゲン原子を有する環状カーボネート、モノフルオロリン酸塩、ジフルオロリン酸塩及びニトリル化合物からなる群から選ばれる少なくとも1つの化合物と、必要に応じて用いられるその他の助剤などを溶解させることにより、調製することができる。
 尚、非水系電解液中に水が存在すると、水の電気分解、水とリチウム金属との反応、リチウム塩の加水分解などが起こる可能性があり、好ましくない。従って、非水系電解液の調製に際して、非水溶媒などの各成分は、予め脱水しておくのが好ましい。具体的には、その水分含有率が通常50ppm以下、中でも20ppm以下の値となるまで脱水しておくことが好ましい。脱水の手法は任意に選択することが可能であるが、例えば減圧下で加熱したり、モレキュラーシーブを通過させたりする等の手法が挙げられる。
〔2.非水系電解液二次電池〕
 本発明の非水系電解液二次電池は、非水系電解液以外の構成については、従来公知の非水系電解液二次電池と同様であり、通常は、本発明の非水系電解液が含浸されている多孔膜(セパレータ)を介して正極と負極とが積層され、これらがケース(外装体)に収納された形態を有する。本発明の非水系電解液二次電池の形状は特に制限されるものではなく、円筒型、角形、ラミネート型、コイン型、大型等の何れであってもよい。
〔2-1.非水系電解液〕
 非水系電解液としては、上述の本発明の非水系電解液を用いる。なお、本発明の趣旨を逸脱しない範囲において、本発明の非水系電解液に対し、その他の非水系電解液を混合して用いることも可能である。
〔2-2.負極〕
 本発明の非水系電解液二次電池に用いられる負極を構成する負極活物質としては、電気化学的にリチウムイオンを吸蔵・放出可能なものであれば、特に制限はない。その具体例としては、炭素質材料、合金系材料、リチウム含有金属複合酸化物材料等が挙げられる。
(炭素質材料負極)
 炭素質材料負極(以下「炭素負極」と称す場合がある。)の負極活物質として用いられる炭素質材料としては、以下の(1)~(4)から選ばれるものが、初期不可逆容量、高電流密度充放電特性のバランスが良く好ましい。また、(1)~(4)の炭素質材料は1種を単独で用いてもよく、2種以上を任意の組み合わせ及び/又は比率で併用しても良い。
 (1)天然黒鉛
 (2)人造炭素質物質又は人造黒鉛質物質を400から3200℃の範囲で1回以上熱処理した炭素質材料
 (3)負極活物質層が少なくとも2種類以上の異なる結晶性を有する炭素質から成り立ちかつ/又はその異なる結晶性の炭素質が接する界面を有している炭素質材料
 (4)負極活物質層が少なくとも2種類以上の異なる配向性を有する炭素質から成り立ちかつ/又はその異なる配向性の炭素質が接する界面を有している炭素質材料
 上記(2)の人造炭素質物質又は人造黒鉛質物質の具体的な例としては、天然黒鉛、石炭系コークス、石油系コークス、石炭系ピッチ、石油系ピッチ、若しくはこれらピッチを酸化処理したもの、ニードルコークス、ピッチコークス若しくはこれらを一部黒鉛化した炭素材、ファーネスブラック、アセチレンブラック、ピッチ系炭素繊維等の有機物の熱分解物、炭化可能な有機物若しくはこれらの炭化物、又は炭化可能な有機物をベンゼン、トルエン、キシレン、キノリン、n-へキサン等の低分子有機溶媒に溶解させた溶液若しくはこれらの炭化物等が挙げられる。
 なお、上記の炭化可能な有機物の具体的な例としては、軟ピッチから硬ピッチまでのコールタールピッチ、乾留液化油等の石炭系重質油、常圧残油、減圧残油の直流系重質油、原油、ナフサ等の熱分解時に副生するエチレンタール等分解系石油重質油、アセナフチレン、デカシクレン、アントラセン、フェナントレン等の芳香族炭化水素、フェナジンやアクリジン等の窒素原子含有複素環式化合物、チオフェン、ビチオフェン等の硫黄原子含有複素環式化合物、ビフェニル、テルフェニル等のポリフェニレン、ポリ塩化ビニル、ポリビニルアルコール、ポリビニルブチラール、これらのものの不溶化処理品、含窒素性のポリアクリロニトリル、ポリピロール等の有機高分子、含硫黄性のポリチオフェン、ポリスチレン等の有機高分子、セルロース、リグニン、マンナン、ポリガラクトウロン酸、キトサン、サッカロースに代表される多糖類等の天然高分子、ポリフェニレンサルファイド、ポリフェニレンオキシド等の熱可塑性樹脂、フルフリルアルコール樹脂、フェノール-ホルムアルデヒド樹脂、イミド樹脂等の熱硬化性樹脂等が挙げられる。
 炭素負極の製造は、本発明の効果を著しく制限しない限り、公知のいずれの方法をも用いることができる。例えば、負極活物質に、バインダー、溶媒、必要に応じて、増粘剤、導電材、充填材等を加えてスラリーとし、これを集電体に塗布、乾燥した後にプレスすることによって形成することができる。
 電池の非水系電解液注液工程直前の段階での片面あたりの負極活物質層の厚さは、通常15μm以上であり、20μm以上が好ましく、30μm以上が更に好ましく、また、通常150μm以下であり、120μm以下が好ましく、100μm以下が更に好ましい。負極活物質の厚さが、この範囲を上回ると、非水系電解液が集電体界面付近まで浸透しにくいため、高電流密度充放電特性が低下する場合がある。またこの範囲を下回ると、負極活物質に対する集電体の体積比が増加し、電池の容量が減少する場合がある。また、負極活物質をロール成形してシート電極としてもよく、圧縮成形によりペレット電極としてもよい。
 負極活物質を保持させる集電体としては、公知のものを任意に用いることができ、例えば、銅、ニッケル、ステンレス鋼、ニッケルメッキ鋼等の金属材料が挙げられるが、加工し易さとコストの点から特に銅が好ましい。
 また、集電体の形状は、集電体が金属材料の場合は、例えば、金属箔、金属円柱、金属コイル、金属板、金属薄膜、エキスパンドメタル、パンチメタル、発泡メタル等が挙げられる。中でも、好ましくは金属薄膜、より好ましくは銅箔であり、更に好ましくは圧延法による圧延銅箔と、電解法による電解銅箔があり、どちらも集電体として用いることができる。
 また、銅箔の厚さが25μmよりも薄い場合、純銅よりも強度の高い銅合金(リン青銅、チタン銅、コルソン合金、Cu-Cr-Zr合金等)を用いることができる。
 圧延法により作製した銅箔からなる集電体は、銅結晶が圧延方向に並んでいるため、負極を密に丸めても、鋭角に丸めても割れにくく、小型の円筒状電池に好適に用いることができる。
 電解銅箔は、例えば、銅イオンが溶解された非水系電解液中に金属製のドラムを浸漬し、これを回転させながら電流を流すことにより、ドラムの表面に銅を析出させ、これを剥離して得られるものである。上記の圧延銅箔の表面に、電解法により銅を析出させていても良い。銅箔の片面又は両面には、粗面化処理や表面処理(例えば、厚さが数nm~1μm程度までのクロメート処理、Ti等の下地処理等)がなされていても良い。
 金属薄膜の厚さは任意であるが、通常1μm以上であり、3μm以上が好ましく、5μm以上が更に好ましく、また、通常100μm以下であり、50μm以下が好ましく、30μm以下が更に好ましい。
 金属薄膜の厚さが、1μmより薄くなると、強度が低下するため塗布が困難となる場合がある。また、100μmより厚くなると、捲回等の電極の形を変形させる場合がある。
なお、金属薄膜は、メッシュ状でもよい。
 集電体と負極活物質層の厚さの比は特には限定されないが、「(非水系電解液注液直前の片面の負極活物質層厚さ)/(集電体の厚さ)」の値が、150以下が好ましく、20以下が更に好ましく、10以下が特に好ましく、また、0.1以上が好ましく、0.4以上が更に好ましく、1以上が特に好ましい。
 集電体と負極活物質層の厚さの比が、上記範囲を上回ると、高電流密度充放電時に集電体がジュール熱による発熱を生じる場合がある。また、上記範囲を下回ると、負極活物質に対する集電体の体積比が増加し、電池の容量が減少する場合がある。
 負極活物質を電極化した際の電極構造は特には限定されないが、集電体上に存在している負極活物質の密度は、1g・cm-3以上が好ましく、1.2g・cm-3以上が更に好ましく、1.3g・cm-3以上が特に好ましく、また、2g・cm-3以下が好ましく、1.9g・cm-3以下がより好ましく、1.8g・cm-3以下が更に好ましい。集電体上に存在している負極活物質の密度が、上記範囲を上回ると、負極活物質粒子が破壊され、初期不可逆容量の増加や、集電体/負極活物質界面付近への非水系電解液の浸透性低下による高電流密度充放電特性悪化を招く場合がある。また、上記範囲を下回ると、負極活物質間の導電性が低下し、電池抵抗が増大し、単位容積当たりの容量が低下する場合がある。
 負極活物質を結着するバインダーとしては、非水系電解液や電極製造時に用いる溶媒に対して安定な材料であれば、特に制限されない。
 具体例としては、ポリエチレン、ポリプロピレン、ポリエチレンテレフタレート、ポリメチルメタクリレート、芳香族ポリアミド、セルロース、ニトロセルロース等の樹脂系高分子;SBR(スチレン・ブタジエンゴム)、イソプレンゴム、ブタジエンゴム、フッ素ゴム、NBR(アクリロニトリル・ブタジエンゴム)、エチレン・プロピレンゴム等のゴム状高分子;スチレン・ブタジエン・スチレンブロック共重合体又はその水素添加物;EPDM(エチレン・プロピレン・ジエン三元共重合体)、スチレン・エチレン・ブタジエン・スチレン共重合体、スチレン・イソプレン・スチレンブロック共重合体又はその水素添加物等の熱可塑性エラストマー状高分子;シンジオタクチック-1,2-ポリブタジエン、ポリ酢酸ビニル、エチレン・酢酸ビニル共重合体、プロピレン・α-オレフィン共重合体等の軟質樹脂状高分子;ポリフッ化ビニリデン、ポリテトラフルオロエチレン、フッ素化ポリフッ化ビニリデン、ポリテトラフルオロエチレン・エチレン共重合体等のフッ素系高分子;アルカリ金属イオン(特にリチウムイオン)のイオン伝導性を有する高分子組成物等が挙げられる。これらは、1種を単独で用いても、2種以上を任意の組み合わせ及び/又は比率で併用しても良い。
 スラリーを形成するための溶媒としては、負極活物質、バインダー(結着剤)、並びに必要に応じて使用される増粘剤及び導電剤を溶解又は分散することが可能な溶媒であれば、その種類に特に制限はなく、水系溶媒と非水溶媒のどちらを用いても良い。
 水系溶媒の例としては水、アルコール等が挙げられ、非水溶媒の例としてはN-メチルピロリドン(NMP)、ジメチルホルムアミド、ジメチルアセトアミド、メチルエチルケトン、シクロヘキサノン、酢酸メチル、アクリル酸メチル、ジエチルトリアミン、N,N-ジメチルアミノプロピルアミン、テトラヒドロフラン(THF)、トルエン、アセトン、ジエチルエーテル、ジメチルアセトアミド、ヘキサメチルホスファルアミド、ジメチルスルフォキシド、ベンゼン、キシレン、キノリン、ピリジン、メチルナフタレン、ヘキサン等が挙げられる。
 特に水系溶媒を用いる場合、増粘剤に併せて分散剤等を含有させ、SBR等のラテックスを用いてスラリー化することが好ましい。なお、これらの溶媒は、1種を単独で用いても、2種以上を任意の組み合わせ及び/又は比率で併用しても良い。
 負極活物質に対するバインダーの割合は、0.1質量%以上が好ましく、0.5質量%以上が更に好ましく、0.6質量%以上が特に好ましく、また、20質量%以下が好ましく、15質量%以下がより好ましく、10質量%以下が更に好ましく、8質量%以下が特に好ましい。負極活物質に対するバインダーの割合が、上記範囲を上回ると、バインダー量が電池容量に寄与しないバインダー割合が増加して、電池容量の低下を招く場合がある。また、上記範囲を下回ると、負極電極の強度低下を招く場合がある。
 特に、SBRに代表されるゴム状高分子を主要成分に含有する場合には、負極活物質に対するバインダーの割合は、通常0.1質量%以上であり、0.5質量%以上が好ましく、0.6質量%以上が更に好ましく、また、通常5質量%以下であり、3質量%以下が好ましく、2質量%以下が更に好ましい。
 また、ポリフッ化ビニリデンに代表されるフッ素系高分子を主要成分に含有する場合には負極活物質に対する割合は、通常1質量%以上であり、2質量%以上が好ましく、3質量%以上が更に好ましく、また、通常15質量%以下であり、10質量%以下が好ましく、8質量%以下が更に好ましい。
 増粘剤は、通常、スラリーの粘度を調整するために使用される。増粘剤としては、特に制限はないが、具体的には、カルボキシメチルセルロース、メチルセルロース、ヒドロキシメチルセルロース、エチルセルロース、ポリビニルアルコール、酸化スターチ、リン酸化スターチ、カゼイン及びこれらの塩等が挙げられる。これらは、1種を単独で用いても、2種以上を任意の組み合わせ及び/又は比率で併用しても良い。
 増粘剤を用いる場合、負極活物質に対する増粘剤の割合は、通常0.1質量%以上であり、0.5質量%以上が好ましく、0.6質量%以上が更に好ましく、また、通常5質量%以下であり、3質量%以下が好ましく、2質量%以下が更に好ましい。
 負極活物質に対する増粘剤の割合が、上記範囲を下回ると、著しく塗布性が低下する場合がある。また、上記範囲を上回ると、負極活物質層に占める負極活物質の割合が低下し、電池の容量が低下する問題や負極活物質間の抵抗が増大する場合がある。
(合金系材料負極)
 本発明の非水系電解液二次電池の負極は、金属イオンを吸蔵・放出しうる負極活物質として合金系材料、好ましくはSi、Sn及びPbからなる群より選ばれる少なくとも1種の元素を含有する負極(以下「合金系材料負極」と称す場合がある。)であってもよい。
 合金系材料負極の負極活物質として用いられる合金系材料としては、リチウムを吸蔵・放出可能であれば、リチウム合金を形成する単体金属若しくは合金、またはそれらの酸化物・炭化物・窒化物・珪化物・硫化物・燐化物等の化合物のいずれであっても特に限定はされないが、好ましくはリチウム合金を形成する単体金属又は合金であれば、周期表第13族又は14族の金属・半金属元素(即ち炭素を除く)を含む材料であることが好ましく、更にはSi、Sn、若しくはPb(これらを以下「特定金属元素」という場合がある。)の単体金属、又はこれら原子を含む合金・化合物である事が好ましい。
 特定金属元素から選ばれる少なくとも1種の原子を有する負極活物質の例としては、何れか1種の特定金属元素の金属単体、2種以上の特定金属元素からなる合金、1種又は2種以上の特定金属元素とその他の1種又は2種以上の金属元素とからなる合金、及び、1種又は2種以上の特定金属元素を含有する化合物が挙げられる。負極活物質としてこれらの金属単体、合金又は金属化合物を用いることで、電池の高容量化が可能である。
 1種又は2種以上の特定金属元素を含有する化合物の例としては、1種又は2種以上の特定金属元素を含有する炭化物、酸化物、窒化物、珪化物、硫化物、燐化物等の複合化合物が挙げられる。
 また、これらの複合化合物が、金属単体、合金、又は非金属元素等の数種の元素と複雑に結合した化合物も例として挙げることができる。より具体的には、例えばSiやSnでは、これらの元素と負極として動作しない金属との合金を用いることができる。また例えばSnでは、SnとSi、Sn、Pb以外で負極として作用する金属と、更に負極として動作しない金属と、非金属元素との組み合わせで5~6種の元素を含むような複雑な化合物も用いることができる。
 これらの負極活物質の中でも、電池にしたときに単位質量当りの容量が大きいことから、何れか1種の特定金属元素の金属単体、2種以上の特定金属元素の合金、特定金属元素の酸化物や炭化物、窒化物等が好ましく、特に、Si及び/又はSnの金属単体、合金、酸化物や炭化物、窒化物等が、単位質量当りの容量及び環境負荷の観点から好ましい。
 また、金属単体又は合金を用いるよりは単位質量当りの容量には劣るものの、サイクル特性に優れることから、Si及び/又はSnを含有する以下の化合物も好ましい。
 ・Si及び/又はSnと酸素との元素比が通常0.5以上であり、好ましくは0.7以上、更に好ましくは0.9以上、また、通常1.5以下であり、好ましくは1.3以下、更に好ましくは1.1以下のSi及び/又はSnの酸化物。
 ・Si及び/又はSnと窒素との元素比が通常0.5以上であり、好ましくは0.7以上、更に好ましくは0.9以上、また、通常1.5以下であり、好ましくは1.3以下、更に好ましくは1.1以下のSi及び/又はSnの窒化物。
 ・Si及び/又はSnと炭素との元素比が通常0.5以上であり、好ましくは0.7以上、更に好ましくは0.9以上、また、通常1.5以下であり、好ましくは1.3以下、更に好ましくは1.1以下のSi及び/又はSnの炭化物。
 なお、上述の負極活物質は、何れか1種を単独で用いてもよく、2種以上を任意の組み合わせ及び/又は比率で併用してもよい。
 合金系材料負極は、公知のいずれの方法をも用いて製造することが可能である。具体的には、負極の製造方法としては、例えば、上述の負極活物質に結着剤や導電材等を加えたものをそのままロール成型してシート電極とする方法や、圧縮成形してペレット電極とする方法も挙げられるが、通常は負極用の集電体(以下「負極集電体」という場合がある。)上に塗布法、蒸着法、スパッタ法、メッキ法等の手法により、上述の負極活物質を含有する薄膜層(負極活物質層)を形成する方法が用いられる。この場合、上述の負極活物質に結着剤、増粘剤、導電材、溶媒等を加えてスラリー状とし、これを負極集電体に塗布、乾燥した後にプレスして高密度化することにより、負極集電体上に負極活物質層を形成する。
 負極集電体の材質としては、鋼、銅合金、ニッケル、ニッケル合金、ステンレス等が挙げられる。これらのうち、薄膜に加工し易いという点及びコストの点から、銅箔が好ましい。
 負極集電体の厚さは、通常1μm以上、好ましくは5μm以上であり、通常100μm以下、好ましくは50μm以下である。負極集電体の厚さが厚過ぎると、電池全体の容量が低下し過ぎることがあり、逆に薄過ぎると取り扱いが困難になることがある。
 なお、集電体表面に形成される負極活物質層との結着効果を向上させるため、これら負極集電体の表面は、予め粗面化処理をしておくことが好ましい。表面の粗面化方法としては、ブラスト処理、粗面ロールによる圧延、研磨剤粒子を固着した研磨布紙、砥石、エメリバフ、鋼線などを備えたワイヤーブラシなどで集電体表面を研磨する機械的研磨法、電解研磨法、化学研磨法等が挙げられる。
 また、負極集電体の質量を低減させて電池の質量当たりのエネルギー密度を向上させるために、エキスパンドメタルやパンチングメタルのような穴あきタイプの負極集電体を使用することもできる。このタイプの負極集電体は、その開孔率を変更することで、質量も自在に変更可能である。また、このタイプの負極集電体の両面に負極活物質層を形成させた場合、この穴を通してのリベット効果により、負極活物質層の剥離が更に起こり難くなる。しかし、開孔率があまりに高くなった場合には、負極活物質層と負極集電体との接触面積が小さくなるため、かえって接着強度は低くなることがある。
〔2-3.正極〕
 本発明の非水系電解液二次電池に使用される正極に含まれる正極活物質としては、電気化学的にリチウムイオンを吸蔵・放出可能なものであれば特に制限はないが、例えば、リチウムと少なくとも1種の遷移金属を含有する物質が好ましい。具体例としては、リチウム遷移金属複合酸化物、リチウム含有遷移金属リン酸化合物が挙げられる。
 リチウム遷移金属複合酸化物としては、LiCoO等のリチウム・コバルト複合酸化物、LiNiO等のリチウム・ニッケル複合酸化物、LiMnO、LiMn、LiMnO等のリチウム・マンガン複合酸化物、これらのリチウム遷移金属複合酸化物の主体となる遷移金属原子の一部をAl、Ti、V、Cr、Mn、Fe、Co、Li、Ni、Cu、Zn、Mg、Ga、Zr、Si等の他の金属で置換したもの等が挙げられる。
 置換されたものの具体例としては、例えば、LiNi0.5Mn0.5、LiNi0.85Co0.10Al0.05、LiNi0.33Co0.33Mn0.33、LiMn1.8Al0.2、LiMn1.5Ni0.5等が挙げられる。
 リチウム含有遷移金属リン酸化合物としては、LiFePO、LiFe(PO、LiFeP、LiFeP等のリン酸鉄類、LiCoPO等のリン酸コバルト類、LiMnPO等のリン酸マンガン類、これらのリチウム遷移金属リン酸化合物の主体となる遷移金属原子の一部をAl、Ti、V、Cr、Mn、Fe、Co、Li、Ni、Cu、Zn、Mg、Ga、Zr、Nb、Si等の他の金属で置換したもの等が挙げられる。
 更に、上述した遷移金属とリチウムとの複合酸化物の表面をAl、B、Ti、Zr、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Mg、Ca、Ga等の金属の酸化物で被覆すると、高電圧における溶媒の酸化反応が抑制されて好ましい。なかでもAl、TiO、ZrO、MgOは強度が高く、安定した被覆効果を発現させるため特に好ましい。
 なお、これらの正極活物質は、何れか1種を単独で用いても良く、2種以上を任意の組み合わせ及び/又は比率で併用しても良い。
 正極活物質のタップ密度は、通常1.3g・cm-3以上であり、1.5g・cm-3以上が好ましく、1.6g・cm-3以上が更に好ましく、1.7g・cm-3以上が特に好ましく、また、通常2.5g・cm-3以下であり、2.4g・cm-3以下が好ましい。
 タップ密度の高い金属複合酸化物粉体を用いることにより、高密度の正極活物質層を形成することができる。従って、正極活物質のタップ密度が上記範囲を下回ると、正極活物質層形成時に必要な分散媒量が増加すると共に、導電材や結着剤の必要量が増加し、正極活物質層への正極活物質の充填率が制約され、電池容量が制約される場合がある。また、タップ密度は一般に大きいほど好ましく特に上限はないが、上記範囲を上回ると、正極活物質層内における非水系電解液を媒体としたリチウムイオンの拡散が律速となり、負荷特性が低下しやすくなる場合がある。
 正極活物質のBET比表面積は、BET法を用いて測定した比表面積の値が、通常0.2m・g-1以上であり、0.3m・g-1以上が好ましく、0.4m・g-1以上が更に好ましく、また、通常4.0m・g-1以下であり、2.5m・g-1以下が好ましく、1.5m・g-1以下が更に好ましい。BET比表面積の値が、上記範囲を下回ると、電池性能が低下しやすくなる。また、上記範囲を上回ると、タップ密度が上がりにくくなり、正極活物質形成時の塗布性が低下する場合がある。
 正極活物質の製造法としては、本発明の要旨を超えない範囲で特には制限されないが、いくつかの方法が挙げられ、無機化合物の製造法として一般的な方法が用いられる。
 以下に、本発明に使用される正極の構成及びその作製法について説明する。
 正極は、正極活物質粒子と結着剤とを含有する正極活物質層を、集電体上に形成して作製される。
 正極活物質を用いる正極の製造は、公知の何れの方法でも作製することができる。すなわち、正極活物質と結着剤、並びに必要に応じて導電材及び/又は増粘剤等を乾式で混合してシート状にしたものを正極集電体に圧着するか、又はこれらの材料を液体媒体に溶解又は分散させてスラリーとして、これを正極集電体に塗布し、乾燥することにより、正極活物質層を集電体上に形成させることにより正極を得ることができる。
 正極活物質の正極活物質層中の含有量は、通常10質量%以上、好ましくは30質量%以上、特に好ましくは50質量%以上、また、通常99.9質量%以下、好ましくは99質量%以下である。正極活物質層中の正極活物質の含有量が、上記範囲を下回ると、電気容量が不十分となる場合がある。また、上記範囲を上回ると、正極の強度が不足する場合がある。なお、正極活物質粉体は1種を単独で用いても良く、異なる組成又は異なる粉体物性の2種以上を任意の組み合わせ及び/又は比率で併用しても良い。
 導電材としては、公知の導電材を任意に用いることができる。具体例としては、銅、ニッケル等の金属材料;天然黒鉛、人造黒鉛等の黒鉛(グラファイト);アセチレンブラック等のカーボンブラック;ニードルコークス等の無定形炭素等の炭素質材料等が挙げられる。これらは、1種を単独で用いてもよく、2種以上を任意の組み合わせ及び/又は比率で併用してもよい。
 導電材は、正極活物質層中に、通常0.01質量%以上、好ましくは0.1質量%以上、より好ましくは1質量%以上、また、通常50質量%以下、好ましくは30質量%以下、より好ましくは15質量%以下含有するように用いられる。導電材の含有量が上記範囲よりも下回ると、導電性が不十分となる場合がある。また、上記範囲よりも上回ると、電池容量が低下する場合がある。
 正極活物質層の製造に用いる結着剤は、非水系電解液や電極製造時に用いる溶媒に対して安定な材料であれば、特に限定されない。
 塗布法による場合の結着剤は、電極製造時に用いる液体媒体に対して溶解又は分散される材料であれば良いが、具体例としては、ポリエチレン、ポリプロピレン、ポリエチレンテレフタレート、ポリメチルメタクリレート、芳香族ポリアミド、セルロース、ニトロセルロース等の樹脂系高分子;SBR(スチレン・ブタジエンゴム)、NBR(アクリロニトリル・ブタジエンゴム)、フッ素ゴム、イソプレンゴム、ブタジエンゴム、エチレン・プロピレンゴム等のゴム状高分子;スチレン・ブタジエン・スチレンブロック共重合体又はその水素添加物、EPDM(エチレン・プロピレン・ジエン三元共重合体)、スチレン・エチレン・ブタジエン・エチレン共重合体、スチレン・イソプレン・スチレンブロック共重合体又はその水素添加物等の熱可塑性エラストマー状高分子;シンジオタクチック-1,2-ポリブタジエン、ポリ酢酸ビニル、エチレン・酢酸ビニル共重合体、プロピレン・α-オレフィン共重合体等の軟質樹脂状高分子;ポリフッ化ビニリデン(PVdF)、ポリテトラフルオロエチレン、フッ素化ポリフッ化ビニリデン、ポリテトラフルオロエチレン・エチレン共重合体等のフッ素系高分子;アルカリ金属イオン(特にリチウムイオン)のイオン伝導性を有する高分子組成物等が挙げられる。なお、これらの物質は、1種を単独で用いても良く、2種以上を任意の組み合わせ及び/又は比率で併用しても良い。
 正極活物質層中の結着剤の割合は、通常0.1質量%以上であり、1質量%以上が好ましく、3質量%以上が更に好ましく、また、通常80質量%以下であり、60質量%以下が好ましく、40質量%以下が更に好ましく、10質量%以下が特に好ましい。
 結着剤の割合が、上記範囲を下回ると、正極活物質を十分保持できずに正極の機械的強度が不足し、サイクル特性等の電池性能を悪化させてしまう場合がある。また、上記範囲を上回ると、電池容量や導電性の低下につながる場合がある。
 スラリーを形成するための液体媒体としては、正極活物質、導電剤、結着剤、及び必要に応じて使用される増粘剤を溶解又は分散することが可能な溶媒であれば、その種類に特に制限はなく、水系溶媒と非水溶媒のどちらを用いても良い。
 水系溶媒の例としては、例えば、水、アルコールと水との混合溶媒等が挙げられる。非水溶媒の例としては、ヘキサン等の脂肪族炭化水素類;ベンゼン、トルエン、キシレン、メチルナフタレン等の芳香族炭化水素類;キノリン、ピリジン等の複素環化合物;アセトン、メチルエチルケトン、シクロヘキサノン等のケトン類;酢酸メチル、アクリル酸メチル等のエステル類;ジエチレントリアミン、N・N-ジメチルアミノプロピルアミン等のアミン類;ジエチルエーテル、テトラヒドロフラン(THF)等のエーテル類;N-メチルピロリドン(NMP)、ジメチルホルムアミド、ジメチルアセトアミド等のアミド類;ヘキサメチルホスファルアミド、ジメチルスルホキシド等の非プロトン性極性溶媒等を挙げることができる。なお、これらは、1種を単独で用いてもよく、また2種以上を任意の組み合わせ及び/又は比率で併用してもよい。
 スラリーを形成するための液体溶媒として水系溶媒を用いる場合、増粘剤と、スチレンブタジエンゴム(SBR)等のラテックスを用いてスラリー化することが好ましい。増粘剤は、通常、スラリーの粘度を調整するために使用される。
 増粘剤としては、本発明の効果を著しく損なわない限り制限はないが、具体的には、カルボキシメチルセルロース、メチルセルロース、ヒドロキシメチルセルロース、エチルセルロース、ポリビニルアルコール、酸化スターチ、リン酸化スターチ、カゼイン又はこれらの塩等が挙げられる。これらは、1種を単独で用いても、2種以上を任意の組み合わせ及び/又は比率で併用しても良い。
 増粘剤を使用する場合、活物質に対する増粘剤の割合は、通常0.1質量%以上、好ましくは0.5質量%以上、より好ましくは0.6質量%以上、また、通常5質量%以下、好ましくは3質量%以下、より好ましくは2質量%以下が望ましい。上記範囲を下回ると著しく塗布性が低下する場合があり、また上記範囲を上回ると、正極活物質層に占める活物質の割合が低下し、電池の容量が低下する問題や正極活物質間の抵抗が増大する場合がある。
 スラリーの塗布、乾燥によって得られた正極活物質層は、正極活物質の充填密度を上げるために、ハンドプレス、ローラープレス等により圧密化することが好ましい。正極活物質層の密度は、1g・cm-3以上が好ましく、1.5g・cm-3以上が更に好ましく、2g・cm-3以上が特に好ましく、また、4g・cm-3以下が好ましく、3.5g・cm-3以下が更に好ましく、3g・cm-3以下が特に好ましい。正極活物質層の密度が、上記範囲を上回ると集電体/活物質界面付近への非水系電解液の浸透性が低下し、特に高電流密度での充放電特性が低下する場合がある。また上記範囲を下回ると、活物質間の導電性が低下し、電池抵抗が増大する場合がある。
 正極集電体の材質としては特に制限は無く、公知のものを任意に用いることができる。
具体例としては、アルミニウム、ステンレス鋼、ニッケルメッキ、チタン、タンタル等の金属材料;カーボンクロス、カーボンペーパー等の炭素質材料が挙げられる。中でも金属材料、特にアルミニウムが好ましい。
 集電体の形状としては、金属材料の場合、金属箔、金属円柱、金属コイル、金属板、金属薄膜、エキスパンドメタル、パンチメタル、発泡メタル等が挙げられ、炭素質材料の場合、炭素板、炭素薄膜、炭素円柱等が挙げられる。これらのうち、金属薄膜が好ましい。なお、薄膜は適宜メッシュ状に成型してもよい。
 集電体の金属薄膜の厚さは任意であるが、通常1μm以上であり、3μm以上が好ましく、5μm以上が更に好ましく、また、通常1mm以下であり、100μm以下が好ましく、50μm以下が更に好ましい。金属薄膜が、上記範囲よりも薄いと、集電体として必要な強度が不足する場合がある。また、薄膜が上記範囲よりも厚いと、取り扱い性が損なわれたり、電池全体の容量が低下する場合がある。
 集電体と正極活物質層の厚さの比は特には限定されないが、(非水系電解液注液直前の片面の活物質層厚さ)/(集電体の厚さ)が通常150以下であり、20以下が好ましく、10以下が特に好ましく、また、通常0.1以上であり、0.4以上が好ましく、1以上が特に好ましい。集電体と正極活物質層の厚さの比が、上記範囲を上回ると、高電流密度充放電時に集電体がジュール熱による発熱を生じる場合がある。また、上記範囲を下回ると、正極活物質に対する集電体の体積比が増加し、電池の容量が減少する場合がある。
〔2-4.セパレータ〕
 正極と負極との間には、短絡を防止するために、通常はセパレータを介在させる。
 セパレータの材料や形状については特に制限は無く、本発明の効果を著しく損なわない限り、公知のものを任意に採用することができる。中でも、本発明の非水系電解液に対し安定な材料で形成された、樹脂、ガラス繊維、無機物等が用いられ、保液性に優れた多孔性シート又は不織布状の形態の物等を用いるのが好ましい。
 樹脂、ガラス繊維セパレータの材料としては、例えば、ポリエチレン、ポリプロピレン等のポリオレフィン、ポリテトラフルオロエチレン、ポリエーテルスルホン、ガラスフィルター等を用いることができる。中でも好ましくはガラスフィルター、ポリオレフィンであり、更に好ましくはポリオレフィンである。これらの材料は1種を単独で用いてもよく、2種以上を任意の組み合わせ及び/又は比率で併用してもよい。
 上記セパレータの厚さは任意であるが、通常1μm以上であり、5μm以上が好ましく、10μm以上が更に好ましく、また、通常50μm以下であり、40μm以下が好ましく、30μm以下が更に好ましい。セパレータが、上記範囲より薄過ぎると、絶縁性や機械的強度が低下する場合がある。また、上記範囲より厚過ぎると、レート特性等の電池性能が低下する場合があるばかりでなく、非水系電解液二次電池全体としてのエネルギー密度が低下する場合がある。
 更に、セパレータとして多孔性シートや不織布等の多孔質のものを用いる場合、セパレータの空孔率は任意であるが、通常20%以上であり、35%以上が好ましく、45%以上が更に好ましく、また、通常90%以下であり、85%以下が好ましく、75%以下が更に好ましい。空孔率が、上記範囲より小さ過ぎると、膜抵抗が大きくなってレート特性が悪化する傾向がある。また、上記範囲より大き過ぎると、セパレータの機械的強度が低下し、絶縁性が低下する傾向にある。
 また、セパレータの平均孔径も任意であるが、通常0.5μm以下であり、0.2μm以下が好ましく、また、通常0.05μm以上である。平均孔径が、上記範囲を上回ると、短絡が生じ易くなる。また、上記範囲を下回ると、膜抵抗が大きくなりレート特性が低下する場合がある。
 一方、無機物の材料としては、例えば、アルミナや二酸化珪素等の酸化物類、窒化アルミや窒化珪素等の窒化物類、硫酸バリウムや硫酸カルシウム等の硫酸塩類が用いられ、粒子形状又は繊維形状のものが用いられる。 その形態としては、不織布、織布、微多孔性フィルム等の薄膜形状のものが用いられる。薄膜形状では、孔径が0.01~1μm、厚さが5~50μmのものが好適に用いられる。前記の独立した薄膜形状以外に、樹脂性の結着剤を用いて前記無機物の粒子を含有する複合多孔層を正極及び/又は負極の表層に形成させてなるセパレータを用いることができる。例えば、正極の両面に、フッ素樹脂を結着剤として、90%粒径が1μm未満のアルミナ粒子を含む多孔層を形成させることが挙げられる。
 以下、実施例及び比較例を挙げて本発明を更に具体的に説明するが、本発明は、その要旨を超えない限り、これらの実施例に限定されるものではない。
[実施例A]
 <非水系電解液の調製>
[実施例1~4、比較例1]
 乾燥アルゴン雰囲気下、環状カーボネートとしてエチレンカーボネート(以降、「EC」と称する)と、ジメチルカーボネートの混合物(容量比3:7)に、それぞれ十分に乾燥したLiPFを1mol/Lとなるように加え、表-1で示す化合物の組み合わせで、表に記載の濃度となるように溶解して、実施例及び比較例の非水系電解液を調製した。
[実施例5~24、比較例2~5]
 同様に、環状カーボネートとしてモノフルオロエチレンカーボネート(以降、「MFEC」と称する)と、ジメチルカーボネートの混合物(容量比3:7)に、それぞれ十分に乾燥したLiPFを1mol/Lとなるように加え、表-2及び表-3で示す化合物の組み合わせで、表に記載の濃度となるように溶解して、実施例及び比較例の非水系電解液を調製した。
<正極の作製>
 正極活物質としてのコバルト酸リチウム(LiCoO)97質量%と、導電材としてのアセチレンブラック1.5質量%と、結着剤としてのポリフッ化ビニリデン(PVdF)1.5質量%とを、N-メチルピロリドン溶媒中で混合して、スラリー化した。得られたスラリーを負極容量の90%の容量となるように、厚さ12μmのアルミ箔の両面に塗布して乾燥し、プレス機で厚さ85μmに圧延したものを、活物質が幅30mm、長さ40mmとなるように切り出して正極とした。作製した正極は摂氏80度において12時間減圧乾燥をして用いた。
<炭素負極の作製>
 負極活物質として黒鉛粉末98質量部に、増粘剤、バインダーとしてそれぞれ、カルボキシメチルセルロースナトリウムの水性ディスパージョン(カルボキシメチルセルロースナトリウムの濃度1質量%)1質量部、及び、スチレン-ブタジエンゴムの水性ディスパージョン(スチレン-ブタジエンゴムの濃度50質量%)1質量部を加え、ディスパーザーで混合してスラリー化した。得られたスラリーを厚さ12μmの銅箔の両面に塗布して乾燥し、プレス機で厚さ75μmに圧延した。これを、活物質が幅30mm、長さ40mmとなるように切り出して負極とした。作製した負極は摂氏60度で12時間減圧乾燥して用いた。
<二次電池の作製>
 上記の正極、負極、及びポリエチレン製のセパレータを、正極、セパレータ、負極、セパレータ、正極の順に積層して電池要素を作製した。この電池要素をアルミニウム(厚さ40μm)の両面を樹脂層で被覆したラミネートフィルムからなる袋内に正・負極の端子を突設させながら挿入した後、非水系電解液を袋内に0.6mL注入し、真空封止を行ない、シート状電池を作製した。更に、電極間の密着性を高めるために、ガラス板でシート状電池を挟んで加圧した。
<電池の評価>
〔4.33Vにおける高温保存試験〕
 上記シート状の電池を、25℃において0.2Cに相当する定電流で充電終止電圧4.33V、放電終止電圧3Vで充放電を数サイクル行って安定させた。その後、4.33V-定電流-定電圧充電(0.05Cカット)を行った後、85℃、1日間の条件で高温保存試験を行った。この高温保存の前後で、シート状電池をエタノール浴中に浸して、体積の変化から発生したガス量(高温保存ガス量)を求めた。また、高温保存後の電池電圧と、残存した容量を測定した。
Figure JPOXMLDOC01-appb-T000035
Figure JPOXMLDOC01-appb-T000036
Figure JPOXMLDOC01-appb-T000037
Figure JPOXMLDOC01-appb-T000038
Figure JPOXMLDOC01-appb-T000039
[実施例B]
 <非水系電解液の調製>
[実施例25、比較例6]
 同様に、環状カーボネートとしてEC、プロピレンカーボネートと、ジエチルカーボネートの混合物(容量比1:5:4)に、それぞれ十分に乾燥したLiPFを1mol/Lとなるように加え、表-6で示す化合物の組み合わせで、表記載の濃度となるように溶解して、実施例及び比較例の非水系電解液を調製した。
<正極の作製>
 正極活物質としてのコバルト酸リチウム(LiCoO)97質量%と、導電材としてのアセチレンブラック1.5質量%と、結着剤としてのポリフッ化ビニリデン(PVdF)1.5質量%とを、N-メチルピロリドン溶媒中で混合して、スラリー化した。得られたスラリーを負極容量の90%の容量となるように、厚さ12μmのアルミ箔の両面に塗布して乾燥し、プレス機で厚さ85μmに圧延したものを、活物質が幅30mm、長さ40mmとなるように切り出して正極とした。作成した正極は摂氏80度において12時間減圧乾燥をして用いた。
<炭素負極の作製>
 負極活物質として黒鉛粉末98質量部に、増粘剤、バインダーとしてそれぞれ、カルボキシメチルセルロースナトリウムの水性ディスパージョン(カルボキシメチルセルロースナトリウムの濃度1質量%)1質量部、及び、スチレン-ブタジエンゴムの水性ディスパージョン(スチレン-ブタジエンゴムの濃度50質量%)1質量部を加え、ディスパーザーで混合してスラリー化した。得られたスラリーを厚さ12μmの銅箔の両面に塗布して乾燥し、プレス機で厚さ75μmに圧延した。これを、活物質が幅30mm、長さ40mmとなるように切り出して負極とした。作成した負極は摂氏60度で12時間減圧乾燥して用いた。
<二次電池の作製>
 上記の正極、負極、及びポリエチレン製のセパレータを、正極、セパレータ、負極、セパレータ、正極の順に積層して電池要素を作製した。この電池要素をアルミニウム(厚さ40μm)の両面を樹脂層で被覆したラミネートフィルムからなる袋内に正・負極の端子を突設させながら挿入した後、非水系電解液を袋内に0.6mL注入し、真空封止を行ない、シート状電池を作製した。更に、電極間の密着性を高めるために、ガラス板でシート状電池を挟んで加圧した。
<電池の評価>
[4.2Vにおける高温保存試験]
 上記シート状の電池を、25℃において0.2Cに相当する定電流で充電終止電圧4.2V、放電終止電圧3Vで充放電を数サイクル行って安定させた。その後、4.2V-定電流-定電圧充電(0.05Cカット)を行った後、80℃、3日間の条件で高温保存試験を行った。この高温保存の前後で、シート状電池をエタノール浴中に浸して、体積の変化から発生したガス量(高温保存ガス量)を求めた。また、高温保存後の電池電圧と、残存した容量を測定した。
Figure JPOXMLDOC01-appb-T000040
Figure JPOXMLDOC01-appb-T000041
 表-4、表-5及び表-7から明らかなように、実施例-1~25の電池は、正極保護効果により高温保存後のガス量が少なく、電圧及び容量が優れる。従って、本発明に係る非水電解液を用いた電池は、電池の充電状態での高温保存時におけるガス発生が少なく、充放電特性、特に、高温保存の電圧及び容量に優れていることがわかる。
 それに対して、比較例-1~3、6の電池は高温保存後のガス量が多く、電圧及び容量も低くなっている。また、比較例-4の電池では、炭素-炭素不飽和結合がアミド基に直接結合するアミド化合物を用いているので、本発明のアミド化合物よりも劣る。さらに、比較例-5の電池では、アミド基に炭素-炭素不飽和結合をもたないアミド化合物を用いているので、本発明のアミド化合物よりも劣る。
 本発明を詳細に、また特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。
 本出願は2011年2月22日出願の日本特許出願(特願2011-036427)に基づくものであり、その内容はここに参照として取り込まれる。
 本発明の非水系電解液によれば、非水系電解液二次電池の電解液の分解を抑制し、電池を高温環境下で使用した際にガス発生及び電池の劣化を抑制すると共に、高エネルギー密度の非水系電解液二次電池を製造することができる。従って、非水系電解液二次電池が用いられる電子機器等の各種の分野において好適に利用できる。
 本発明の二次電池用非水系電解液や非水系電解液二次電池の用途は特に限定されず、公知の各種の用途に用いることが可能である。具体例としては、ノートパソコン、ペン入力パソコン、モバイルパソコン、電子ブックプレーヤー、携帯電話、携帯ファックス、携帯コピー、携帯プリンター、ヘッドフォンステレオ、ビデオムービー、液晶テレビ、ハンディークリーナー、ポータブルCD、ミニディスク、トランシーバー、電子手帳、電卓、メモリーカード、携帯テープレコーダー、ラジオ、バックアップ電源、モーター、自動車、バイク、原動機付自転車、自転車、照明器具、玩具、ゲーム機器、時計、電動工具、ストロボ、カメラ等を挙げることができる。

Claims (6)

  1. 電解質と非水溶媒とを含む非水系電解液において、下記一般式(1)で表される化合物を含有する非水系電解液。
    Figure JPOXMLDOC01-appb-C000001
    (R及びRは、水素基、又はヘテロ原子を含んでいてもよい炭素数1~10の有機基を表し、Rは、水素基、又はヘテロ原子を含んでいてもよい炭素数1~20の有機基を表し、R~Rはそれぞれ同一でも異なってもよく、R~Rのうち2つ又は3つすべてが互いに結合して環を形成してもよい。
     また、R及びRのうち少なくとも一方が、窒素原子に直接結合しない炭素-炭素不飽和結合を有し、ヘテロ原子を含んでいてもよい、炭素数2~10の有機基を表す。
     XはC、S=O又はP(R)を表し、Rはヘテロ原子を含んでもよい炭素数1~10の有機基を表す。)
  2. 前記一般式(1)のR及びRのうち少なくとも一方が炭素-炭素不飽和結合を末端に有し、ヘテロ原子を含んでいてもよい炭素数2~10の有機基である請求項1に記載の非水系電解液。
  3. 前記一般式(1)のR及びRのうち少なくとも一方がアリル基またはプロパルギル基である請求項2に記載の非水系電解液。
  4. 前記一般式(1)で表される化合物を0.001質量%以上10質量%以下含有する請求項1乃至3のうち何れか1項に記載の非水系電解液。
  5. 炭素-炭素不飽和結合を有する環状カーボネート、ハロゲン原子を有する環状カーボネート、モノフルオロリン酸塩、ジフルオロリン酸塩、ニトリル化合物及びイソシアナト化合物からなる群より選ばれる少なくとも1つの化合物を含有する請求項1乃至4のうち何れか1項に記載の非水系電解液。
  6. リチウムイオンを吸蔵・放出可能な負極及び正極、並びに非水系電解液を含む非水系電解液電池であって、前記非水系電解液が請求項1乃至5のうちいずれか1項に記載の非水系電解液である非水系電解液電池。
PCT/JP2012/054173 2011-02-22 2012-02-21 非水系電解液、及びそれを用いた電池 WO2012115119A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/973,286 US20130337317A1 (en) 2011-02-22 2013-08-22 Nonaqueous electrolytic solution, and battery using same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-036427 2011-02-22
JP2011036427 2011-02-22

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/973,286 Continuation US20130337317A1 (en) 2011-02-22 2013-08-22 Nonaqueous electrolytic solution, and battery using same

Publications (1)

Publication Number Publication Date
WO2012115119A1 true WO2012115119A1 (ja) 2012-08-30

Family

ID=46720895

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/054173 WO2012115119A1 (ja) 2011-02-22 2012-02-21 非水系電解液、及びそれを用いた電池

Country Status (3)

Country Link
US (1) US20130337317A1 (ja)
JP (1) JP5880124B2 (ja)
WO (1) WO2012115119A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014090877A1 (de) * 2012-12-12 2014-06-19 Rockwood Lithium GmbH (hetero)aromatische iso(thio)cyanate als redoxshuttle-additive für galvanische zellen
WO2015060156A1 (ja) * 2013-10-22 2015-04-30 三洋化成工業株式会社 リチウムイオン二次電池用添加剤、それを用いた電極及び電解液、並びにリチウムイオン二次電池
US9472829B2 (en) 2012-06-15 2016-10-18 Tosoh F-Tech, Inc. Method for stabilizing LiPF6, electrolyte solution for nonaqueous secondary batteries having excellent thermal stability, and nonaqueous secondary battery having excellent thermal stability
CN108352572A (zh) * 2015-11-06 2018-07-31 住友精化株式会社 非水电解液用添加剂、非水电解液及蓄电装置
CN109643792A (zh) * 2016-08-11 2019-04-16 株式会社Lg化学 硫碳复合物、其制备方法和包含其的锂硫电池

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6066645B2 (ja) * 2012-09-26 2017-01-25 住友精化株式会社 非水電解液用添加剤、非水電解液、及び、蓄電デバイス
JP5928293B2 (ja) * 2012-10-22 2016-06-01 富士通株式会社 化合物、及びリチウムイオン電池
JP6201363B2 (ja) * 2013-03-25 2017-09-27 三菱ケミカル株式会社 非水系電解液及びそれを用いた非水系電解液電池
JP6081262B2 (ja) * 2013-03-28 2017-02-15 住友精化株式会社 非水電解液用添加剤、非水電解液、及び、蓄電デバイス
US10637054B2 (en) * 2013-06-06 2020-04-28 Nec Corporation Positive electrode material for lithium ion secondary batteries, and method for producing same
JP6159602B2 (ja) * 2013-07-05 2017-07-05 東ソ−・エフテック株式会社 非水電解液二次電池
JP6319024B2 (ja) * 2013-09-27 2018-05-09 三菱ケミカル株式会社 非水系電解液及びそれを用いた非水系電解液二次電池
WO2015179831A1 (en) * 2014-05-23 2015-11-26 Battelle Energy Alliance, Llc Electrolyte solutions including a phosphoranimine compound, and energy storage devices including same
KR102209828B1 (ko) 2014-07-16 2021-01-29 삼성에스디아이 주식회사 리튬 전지용 전해질 첨가제, 이를 포함하는 전해질 및 상기 전해질을 채용한 리튬 전지
KR102562683B1 (ko) 2015-06-01 2023-08-03 삼성에스디아이 주식회사 리튬 전지용 전해질 첨가제, 및 이를 포함하는 리튬 전지용 전해질 및 리튬 전지
WO2017010255A1 (ja) * 2015-07-15 2017-01-19 日本電気株式会社 リチウムイオン二次電池
DE102015218653A1 (de) * 2015-09-28 2017-03-30 Wacker Chemie Ag Cyclische Phosphonamide als Elektrolytbestandteil für Lithium-Ionen-Batterien
JP6848504B2 (ja) * 2017-02-15 2021-03-24 株式会社村田製作所 二次電池用電解液、二次電池、電池パック、電動車両、電力貯蔵システム、電動工具および電子機器
WO2018179884A1 (ja) * 2017-03-30 2018-10-04 パナソニックIpマネジメント株式会社 非水電解液及び非水電解液二次電池
KR102270869B1 (ko) 2017-07-14 2021-07-01 주식회사 엘지에너지솔루션 비수전해액 첨가제, 이를 포함하는 리튬 이차전지용 비수전해액 및 리튬 이차전지
JP7094601B2 (ja) * 2018-02-12 2022-07-04 エルジー エナジー ソリューション リミテッド リチウム二次電池用非水電解液およびそれを含むリチウム二次電池
KR102130029B1 (ko) 2018-03-16 2020-07-03 삼성에스디아이 주식회사 리튬 이차 전지용 전해액 및 이를 포함하는 리튬 이차 전지
CN109950612A (zh) * 2019-04-08 2019-06-28 珠海冠宇电池有限公司 一种非水电解液和锂离子电池
KR102411934B1 (ko) 2019-05-31 2022-06-22 삼성에스디아이 주식회사 리튬 이차전지용 전해액 및 이를 포함하는 리튬 이차전지
US11600861B2 (en) 2019-06-20 2023-03-07 Samsung Sdi Co., Ltd. Additive, electrolyte for rechargeable lithium battery and rechargeable lithium battery including the same
CN113690489B (zh) * 2019-09-09 2022-11-08 宁德时代新能源科技股份有限公司 一种电解液及包含该电解液的锂金属电池
WO2022032583A1 (zh) * 2020-08-13 2022-02-17 宁德新能源科技有限公司 电解液和包含电解液的电化学装置及电子装置
WO2022127796A1 (zh) * 2020-12-16 2022-06-23 华为技术有限公司 电池电解液、二次电池和终端
CN113871712B (zh) * 2021-09-24 2024-01-26 远景动力技术(江苏)有限公司 锂离子电池电解液及其制备方法和锂离子电池
CN116154108B (zh) * 2023-03-30 2024-01-23 宁德新能源科技有限公司 一种二次电池以及包括该二次电池的用电装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003234127A (ja) * 2001-12-06 2003-08-22 Mitsubishi Chemicals Corp 非水系電解液及びそれを用いたリチウム二次電池
JP2009087934A (ja) * 2007-09-12 2009-04-23 Mitsubishi Chemicals Corp 二次電池用非水系電解液及びそれを用いた非水系電解液二次電池
JP2010090068A (ja) * 2008-10-09 2010-04-22 Ube Ind Ltd 非水電解液及びそれを用いたリチウム電池
JP2011049097A (ja) * 2009-08-28 2011-03-10 Nissan Motor Co Ltd 二次電池用電解質およびこれを用いた非水電解質二次電池

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07192758A (ja) * 1993-12-24 1995-07-28 Sanyo Electric Co Ltd 非水系電解液電池
CN1317790C (zh) * 2001-01-04 2007-05-23 三菱化学株式会社 非水系电解液及其二次锂电池
JP2004103433A (ja) * 2002-09-10 2004-04-02 Mitsubishi Chemicals Corp 非水系電解液二次電池およびそれに用いる電解液
JP4770118B2 (ja) * 2003-02-06 2011-09-14 三菱化学株式会社 非水系電解液およびリチウム二次電池
JP4288976B2 (ja) * 2003-03-25 2009-07-01 三菱化学株式会社 二次電池用非水系電解液及び非水系電解液二次電池
JP4524543B2 (ja) * 2003-03-25 2010-08-18 三洋電機株式会社 二次電池用非水系電解液及び非水系電解液二次電池
KR101213475B1 (ko) * 2005-08-20 2012-12-20 삼성에스디아이 주식회사 중형 다공성 탄소 복합체, 그 제조방법 및 이를 이용한연료전지
JP5066807B2 (ja) * 2005-12-21 2012-11-07 ソニー株式会社 リチウム二次電池用電解質およびリチウム二次電池
JP5217400B2 (ja) * 2007-06-28 2013-06-19 三菱化学株式会社 二次電池用非水系電解液及びそれを用いた非水系電解液二次電池
JP5329453B2 (ja) * 2010-01-28 2013-10-30 三洋電機株式会社 非水系二次電池
JP5238748B2 (ja) * 2010-04-19 2013-07-17 シャープ株式会社 非水系二次電池およびその難燃剤

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003234127A (ja) * 2001-12-06 2003-08-22 Mitsubishi Chemicals Corp 非水系電解液及びそれを用いたリチウム二次電池
JP2009087934A (ja) * 2007-09-12 2009-04-23 Mitsubishi Chemicals Corp 二次電池用非水系電解液及びそれを用いた非水系電解液二次電池
JP2010090068A (ja) * 2008-10-09 2010-04-22 Ube Ind Ltd 非水電解液及びそれを用いたリチウム電池
JP2011049097A (ja) * 2009-08-28 2011-03-10 Nissan Motor Co Ltd 二次電池用電解質およびこれを用いた非水電解質二次電池

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9472829B2 (en) 2012-06-15 2016-10-18 Tosoh F-Tech, Inc. Method for stabilizing LiPF6, electrolyte solution for nonaqueous secondary batteries having excellent thermal stability, and nonaqueous secondary battery having excellent thermal stability
WO2014090877A1 (de) * 2012-12-12 2014-06-19 Rockwood Lithium GmbH (hetero)aromatische iso(thio)cyanate als redoxshuttle-additive für galvanische zellen
WO2015060156A1 (ja) * 2013-10-22 2015-04-30 三洋化成工業株式会社 リチウムイオン二次電池用添加剤、それを用いた電極及び電解液、並びにリチウムイオン二次電池
CN108352572A (zh) * 2015-11-06 2018-07-31 住友精化株式会社 非水电解液用添加剂、非水电解液及蓄电装置
CN108352572B (zh) * 2015-11-06 2021-02-02 住友精化株式会社 非水电解液用添加剂、非水电解液及蓄电装置
CN109643792A (zh) * 2016-08-11 2019-04-16 株式会社Lg化学 硫碳复合物、其制备方法和包含其的锂硫电池
US11239465B2 (en) 2016-08-11 2022-02-01 Lg Energy Solution, Ltd. Sulfur-carbon composite, preparation method therefor, and lithium-sulfur battery comprising same
CN109643792B (zh) * 2016-08-11 2022-05-24 株式会社Lg新能源 硫碳复合物、其制备方法和包含其的锂硫电池

Also Published As

Publication number Publication date
US20130337317A1 (en) 2013-12-19
JP2012190791A (ja) 2012-10-04
JP5880124B2 (ja) 2016-03-08

Similar Documents

Publication Publication Date Title
JP5880124B2 (ja) 非水系電解液、及びそれを用いた電池
JP6187566B2 (ja) 非水系電解液及び非水系電解液二次電池
JP6372561B2 (ja) 非水系電解液及びそれを用いた非水系電解液二次電池
JP5217400B2 (ja) 二次電池用非水系電解液及びそれを用いた非水系電解液二次電池
JP5472041B2 (ja) 非水系電解液およびそれを用いた非水系電解液二次電池
KR102522750B1 (ko) 이차 전지용 비수계 전해액 및 그것을 사용한 비수계 전해액 이차 전지
JP5720325B2 (ja) 非水系電解液及びそれを用いた非水系電解液二次電池
JP7399626B2 (ja) 非水系電解液及びそれを用いたエネルギーデバイス
JP2012059715A (ja) 非水系電解液及び非水系電解液二次電池
JP6433486B2 (ja) 電解液及び電気化学デバイス
JP6031873B2 (ja) 非水系電解液及びそれを用いた非水系電解液二次電池
WO2018186068A1 (ja) 電解液、電気化学デバイス、リチウムイオン二次電池及びモジュール
JP2013051202A (ja) 非水系電解液及びそれを用いた非水系電解液二次電池
JP5387333B2 (ja) 非水系電解液、それを用いた電池及びリン酸エステル化合物
JP6459695B2 (ja) 非水系電解液二次電池
JP2023130374A (ja) 非水系電解液及びそれを用いたエネルギーデバイス
JP2017174543A (ja) 非水系電解液、及びそれを用いた非水系電解液二次電池
JP5633400B2 (ja) 非水系電解液、それを用いた電池
JP5589312B2 (ja) 二次電池用非水系電解液およびそれを用いた二次電池
US20170018809A1 (en) Electrolyte and electrochemical device
JP6582730B2 (ja) 非水系電解液及びそれを用いた非水系電解液二次電池
JP2018181657A (ja) 電解液、電気化学デバイス、リチウムイオン二次電池及びモジュール
JP2023546079A (ja) 電気化学装置及び電子装置
JP2020102451A (ja) 非水系電解液及びそれを用いたエネルギーデバイス
JP5782718B2 (ja) 非水電解液、およびそれを用いた非水電解液電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12749305

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12749305

Country of ref document: EP

Kind code of ref document: A1