WO2022211282A1 - 리튬 이차전지 - Google Patents

리튬 이차전지 Download PDF

Info

Publication number
WO2022211282A1
WO2022211282A1 PCT/KR2022/002757 KR2022002757W WO2022211282A1 WO 2022211282 A1 WO2022211282 A1 WO 2022211282A1 KR 2022002757 W KR2022002757 W KR 2022002757W WO 2022211282 A1 WO2022211282 A1 WO 2022211282A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium
ether
positive electrode
secondary battery
sulfur
Prior art date
Application number
PCT/KR2022/002757
Other languages
English (en)
French (fr)
Inventor
안지훈
김택경
김봉수
Original Assignee
주식회사 엘지에너지솔루션
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020220024018A external-priority patent/KR20220136099A/ko
Application filed by 주식회사 엘지에너지솔루션 filed Critical 주식회사 엘지에너지솔루션
Priority to EP22781403.5A priority Critical patent/EP4138169A1/en
Priority to JP2022574603A priority patent/JP7498308B2/ja
Priority to CN202280005178.8A priority patent/CN115917828A/zh
Priority to US17/927,641 priority patent/US20230238531A1/en
Publication of WO2022211282A1 publication Critical patent/WO2022211282A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/581Chalcogenides or intercalation compounds thereof
    • H01M4/5815Sulfides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/36Accumulators not provided for in groups H01M10/05-H01M10/34
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/381Alkaline or alkaline earth metals elements
    • H01M4/382Lithium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • H01M2300/0028Organic electrolyte characterised by the solvent
    • H01M2300/0037Mixture of solvents
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a lithium secondary battery, and more particularly, to a lithium secondary battery containing tellurium as a positive electrode additive and bis(2,2,2-trifluoroethyl) ether as an electrolyte additive.
  • the lithium secondary battery has been in the spotlight as a high-performance battery because of its high energy density and high standard electrode potential.
  • a lithium-sulfur (Li-S) battery is a secondary battery that uses a sulfur-based material having an SS bond as a positive electrode active material and lithium metal as a negative electrode active material.
  • Sulfur the main material of the cathode active material, has the advantage of being very abundant in resources, non-toxic, and having a low weight per atom.
  • the theoretical discharge capacity of the lithium-sulfur battery is 1675 mAh/g-sulfur, and the theoretical energy density is 2,600 Wh/kg.
  • Li 2 S lithium polysulfide
  • the discharge behavior of a lithium-sulfur battery by the process of reduction to each lithium polysulfide is characterized in that it shows a discharge voltage in stages, unlike a general lithium ion battery.
  • the biggest problem in the commercialization of lithium-sulfur batteries is the lifespan, and the charging/discharging efficiency decreases during the charging/discharging process, and the lifespan of the battery deteriorates.
  • the causes of such deterioration of the lifespan of lithium-sulfur batteries include side reactions of the electrolyte (deposition of by-products due to the decomposition of the electrolyte), instability of lithium metal (short occurs due to dendrites growing on the lithium anode), and by-products of the positive electrode. deposition (elution of lithium polysulfide from the anode), etc.
  • lithium-sulfur battery in a battery using a sulfur-based compound as a positive electrode active material and an alkali metal such as lithium as a negative electrode active material, dissolution and shuttle phenomena of lithium polysulfide occur during charging and discharging, and lithium polysulfide is transferred to the negative electrode.
  • the capacity of the lithium-sulfur battery is reduced, and accordingly, the lithium-sulfur battery has a major problem in that the lifespan is reduced and the reactivity is reduced.
  • a passivation layer is formed on the surface of the anode. Since this passivation film has weak mechanical strength, the structure collapses as the charging and discharging of the battery progresses, causing a difference in local current density and forming a dendritic lithium dendrite on the surface of the lithium metal.
  • the lithium dendrite formed in this way causes a short circuit inside the battery and dead lithium, which not only increases the physical and chemical instability of the lithium-sulfur battery, but also reduces the capacity of the battery and shortens the cycle life.
  • a coating layer capable of preventing dissolution of lithium polysulfide is formed on the surface of the positive electrode particle, use of a positive electrode additive capable of absorbing lithium polysulfide, and shuttle reaction control Efforts have been made to form an oxide film of the lithium anode for lithium ion anode and to use a functional electrolyte of a novel composition to suppress dissolution of polysulfide into the electrolyte, but the method is somewhat complicated. Therefore, it is necessary to develop a new technology capable of solving these problems and improving the lifespan characteristics of a lithium-sulfur battery.
  • tellurium is included as a positive electrode additive for a lithium secondary battery
  • bis (2,2,2-trifluoroethyl) is included as an electrolyte additive.
  • ether Bis(2,2,2-trifluoroethyl)ether, BTFE
  • an object of the present invention is to provide a lithium secondary battery capable of implementing excellent lifespan characteristics.
  • the present invention is a positive electrode; cathode; a separator interposed therebetween; And a lithium secondary battery comprising an electrolyte,
  • the positive electrode includes a positive electrode active material and a positive electrode additive
  • the positive electrode additive includes tellurium,
  • the electrolyte includes a lithium salt, an organic solvent and an electrolyte additive,
  • the electrolyte solution additive aims to provide a lithium secondary battery containing bis (2,2,2-trifluoroethyl) ether.
  • the positive electrode may include a current collector and a positive active material layer disposed on at least one surface of the current collector, and the positive active material layer may include a positive active material and tellurium.
  • the tellurium may be included in an amount of 1 to 10% by weight based on 100% by weight of the total weight of the positive electrode active material layer.
  • the positive active material may include at least one selected from the group consisting of elemental sulfur and sulfur compounds.
  • the bis(2,2,2-trifluoroethyl)ether may be included in an amount of 1 to 20% by volume based on 100% by volume of the total electrolyte.
  • the organic solvent may include a cyclic ether and an acyclic ether.
  • the cyclic ether is furan, 2-methylfuran, 3-methylfuran, 2-ethylfuran, 2-propylfuran, 2-butylfuran, 2,3-dimethylfuran, 2,4-dimethylfuran, 2,5-dimethyl Furan, pyran, 2-methylpyran, 3-methylpyran, 4-methylpyran, benzofuran, 2-(2-nitrovinyl)furan, tetrahydrofuran, 2-methyl tetrahydrofuran, 2,5-dimethyl tetrahydro group consisting of furan, 2,5-dimethoxy tetrahydrofuran, 2-ethoxy tetrahydrofuran, tetrahydropyran, 1,2-dimethoxy benzene, 1,3-dimethoxy benzene and 1,4-dimethoxy benzene It may include one or more selected from.
  • the acyclic ether is dimethyl ether, diethyl ether, dipropyl ether, methylethyl ether, methylpropyl ether, ethylpropyl ether, dimethoxyethane, diethoxyethane, methoxyethoxyethane, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, diethylene glycol methylethyl ether, triethylene glycol dimethyl ether, triethylene glycol diethyl ether, triethylene glycol methylethyl ether, tetraethylene glycol dimethyl ether, tetraethylene glycol diethyl ether, tetraethylene glycol methylethyl It may include at least one selected from the group consisting of ether, polyethylene glycol dimethyl ether, ethylene glycol diethyl ether, and ethylene glycol ethyl methyl ether.
  • the electrolyte may include lithium salt, 2-methylfuran, dimethoxyethane, and bis(2,2,2-trifluoroethyl)ether.
  • the lithium salt is LiCl, LiBr, LiI, LiClO 4 , LiBF 4 , LiB 10 Cl 10 , LiB(Ph) 4 , LiC 4 BO 8 , LiPF 6 , LiCF 3 SO 3 , LiCF 3 CO 2 , LiAsF 6 , LiSbF 6 , LiAlCl 4 , LiSO 3 CH 3 , LiSO 3 CF 3 , LiSCN, LiC(CF 3 SO 2 ) 3 , LiN(CF 3 SO 2 ) 2 , LiN(C 2 F 5 SO 2 ) 2 , LiN(SO 2 F ) ) 2 , it may include at least one selected from the group consisting of lithium chloroborane, lithium lower aliphatic carboxylate, lithium tetraphenyl borate, and lithium imide.
  • the lithium secondary battery may be a lithium-sulfur battery.
  • the lithium secondary battery of the present invention includes tellurium as a positive electrode additive and bis (2,2,2-trifluoroethyl) ether as an electrolyte additive to improve the efficiency of a negative electrode including lithium metal, and lithium It inhibits the dissolution of polysulfide and can form a protective layer on the surface of the anode, which is lithium metal, to suppress the generation of lithium dendrites, and side reactions with the electrolyte or lithium polysulfide on the surface of the anode and decomposition of the electrolyte can reduce As a result, it is possible to extend the cycle of reaching 80% of the initial discharge capacity of the lithium secondary battery, thereby improving the lifespan characteristics of the lithium secondary battery.
  • Example 5 is a graph measuring the lifespan characteristics of the lithium-sulfur battery of Example 5.
  • FIG. 7 is a graph of measuring initial coulombic efficiencies of lithium-sulfur batteries of Examples 1 to 3 and Comparative Example 3.
  • FIG. 7 is a graph of measuring initial coulombic efficiencies of lithium-sulfur batteries of Examples 1 to 3 and Comparative Example 3.
  • composite refers to a material in which two or more materials are combined to form different phases physically and chemically, while exhibiting more effective functions.
  • lithium-sulfur batteries have high theoretical discharge capacity and theoretical energy density among various secondary batteries, and sulfur, which is used as the main material of the positive electrode active material, is in the spotlight as a next-generation secondary battery due to its abundant reserves, low cost, and environmental friendliness. are receiving
  • Lithium-sulfur batteries exhibit high theoretical discharge capacity and theoretical energy density among various secondary batteries, and lithium metal, which is mainly used as an anode active material, has a very small atomic weight (6.94 g/a.u.) and density (0.534 g/cm 3 ). And it is easy to reduce the weight, so it is spotlighted as a next-generation battery.
  • lithium metal has high reactivity, and as it easily reacts with the electrolyte, a passivation film is formed on the surface of the lithium metal due to the spontaneous decomposition of the electrolyte, which causes a non-uniform electrochemical reaction on the surface of the lithium metal. and lithium dendrites to reduce the efficiency and stability of the negative electrode.
  • the oxidation number of sulfur in lithium polysulfide (Li 2 S x , x 8, 6, 4, 2) formed in the positive electrode when the battery is driven
  • High lithium polysulfide (Li 2 S x , usually x ⁇ 4) has high solubility in the electrolyte, so it continuously dissolves, elutes out of the positive electrode reaction region and moves to the negative electrode.
  • lithium polysulfide eluted from the positive electrode causes a side reaction with lithium metal, which causes lithium sulfide to adhere to the surface of the lithium metal, causing passivation of the electrode. %, and as the cycle progresses, the capacity and charge/discharge efficiency decrease rapidly, resulting in a low battery lifespan.
  • tellurium is included as a positive electrode additive and bis (2,2,2-trifluoroethyl) ether is included as an electrolyte additive to suppress the elution of lithium polysulfide, and lithium metal as a negative electrode in the initial discharge stage
  • a protective film solid electrolyte interface, SEI layer
  • the present invention is a positive electrode; cathode; a separator interposed therebetween; And to a lithium secondary battery comprising an electrolyte,
  • the positive electrode includes a positive electrode active material and a positive electrode additive
  • the positive electrode additive includes tellurium (Te),
  • the electrolyte includes a lithium salt, an organic solvent and an electrolyte additive,
  • the electrolyte additive includes bis(2,2,2-trifluoroethyl)ether (Bis(2,2,2-trifluoroethyl)ether, BTFE).
  • the positive electrode may include a positive electrode current collector and a positive electrode active material layer disposed on at least one surface of the positive electrode current collector, and the positive electrode active material layer includes a positive electrode active material and a positive electrode additive.
  • the positive electrode additive of the present invention includes tellurium (Te).
  • the tellurium reacts with lithium polysulfide to form polytellurosulfide ions (S x Te y 2- ), and the polytellurosulfide ions are dissolved in an electrolyte and move to lithium metal, which is the negative electrode, to form lithium thiotelluride or It contributes to the formation of a protective layer of the negative electrode made of lithium telluride. Accordingly, an improved stripping/plating process may be performed on the surface of the lithium metal, which is an anode.
  • the protective layer allows the lithium metal to be plated at a higher density, and has an effect of suppressing unnecessary decomposition of the electrolyte or loss of lithium. Accordingly, the efficiency and stability of the negative electrode are improved, and the lifespan characteristics of a lithium secondary battery including the same, preferably a lithium-sulfur battery, can be increased.
  • the positive electrode additive tellurium
  • the positive electrode additive may be included in an amount of 1 to 10% by weight, preferably 3 to 7% by weight, based on 100% by weight of the total weight of the positive electrode active material layer.
  • the initial coulombic efficiency may decrease as the content of tellurium increases in the range of 1 to 10% by weight, but even if the initial coulombic efficiency decreases, the lifespan characteristics of the lithium-sulfur battery may be improved. If the tellurium content is less than 1% by weight, the effect of improving the life characteristics of the lithium secondary battery is insignificant. have.
  • the positive electrode current collector is not particularly limited as long as it supports the positive electrode active material and has high conductivity without causing a chemical change in the battery.
  • copper, stainless steel, aluminum, nickel, titanium, palladium, fired carbon, a copper or stainless steel surface treated with carbon, nickel, silver, etc., an aluminum-cadmium alloy, etc. may be used.
  • the positive electrode current collector may form fine irregularities on its surface to enhance bonding strength with the positive electrode active material, and various forms such as films, sheets, foils, meshes, nets, porous bodies, foams, and nonwovens may be used.
  • S 8 elemental sulfur
  • the lithium secondary battery of the present invention may be a lithium-sulfur battery.
  • the sulfur is included in the form of a sulfur-carbon composite, and preferably, the cathode active material may be a sulfur-carbon composite.
  • the sulfur-carbon composite includes a porous carbon material that not only provides a framework in which the above-described sulfur can be uniformly and stably fixed, but also compensates for the low electrical conductivity of sulfur so that the electrochemical reaction can proceed smoothly.
  • the porous carbon material may be generally prepared by carbonizing precursors of various carbon materials.
  • the porous carbon material includes non-uniform pores therein, and the average diameter of the pores is in the range of 1 to 200 nm, and the porosity or porosity may be in the range of 10 to 90% of the total volume of the porous carbon material. If the average diameter of the pores is less than the above range, impregnation of sulfur is impossible because the pore size is only at the molecular level. Not desirable.
  • the shape of the porous carbon material is spherical, rod-shaped, needle-shaped, plate-shaped, tube-shaped or bulk-shaped, as long as it is commonly used in lithium-sulfur batteries, and may be used without limitation.
  • the porous carbon material may have a porous structure or a high specific surface area, so long as it is commonly used in the art.
  • the porous carbon material may include graphite; graphene; carbon black such as denka black, acetylene black, ketjen black, channel black, furnace black, lamp black, and summer black; carbon nanotubes (CNTs) such as single-walled carbon nanotubes (SWCNTs) and multi-walled carbon nanotubes (MWCNTs); carbon fibers such as graphite nanofibers (GNF), carbon nanofibers (CNF), and activated carbon fibers (ACF); It may be at least one selected from the group consisting of graphite and activated carbon, such as natural graphite, artificial graphite, and expanded graphite, but is not limited thereto.
  • the porous carbon material may be carbon nanotubes.
  • the sulfur is located on at least one of the inner and outer surfaces of the porous carbon material, for example, less than 100%, preferably 1 to 95%, of the entire inner and outer surfaces of the porous carbon material, More preferably, it may be present in the region of 40 to 96%.
  • the sulfur is present on the inner and outer surfaces of the porous carbon material within the above range, the maximum effect may be exhibited in terms of electron transport area and wettability with the electrolyte.
  • the sulfur is thinly and evenly impregnated on the inner and outer surfaces of the porous carbon material in the above-mentioned range region, it is possible to increase the electron transport contact area in the charge/discharge process.
  • the porous carbon material is completely covered with sulfur, so the wettability to the electrolyte is lowered and the contact property is lowered, so that the electron transfer is not received and the electrochemical reaction will not be able to participate in
  • the sulfur-carbon composite may include 65 to 90% by weight of the sulfur, preferably 70 to 85% by weight, more preferably 72 to 80% by weight based on 100% by weight of the sulfur-carbon composite.
  • the sulfur content is less than the above-mentioned range, the specific surface area increases as the content of the porous carbon material in the sulfur-carbon composite is relatively increased, so that the content of the binder increases when the positive electrode is manufactured.
  • An increase in the amount of the binder used may eventually increase the sheet resistance of the positive electrode and act as an insulator to prevent electron pass, thereby degrading the performance of the battery.
  • the sulfur which cannot be combined with the porous carbon material, aggregates with each other or re-elutes to the surface of the porous carbon material, making it difficult to receive electrons and thus not participating in the electrochemical reaction of the battery. Capacity loss may occur.
  • the method for preparing the sulfur-carbon composite of the present invention is not particularly limited in the present invention, and methods commonly used in the art may be used. As an example, a method of simply mixing the sulfur and the porous carbon material and then heat-treating the compound may be used.
  • the positive active material may further include one or more selected from transition metal elements, 2 elements, 3 elements, sulfur compounds of these elements, and alloys of these elements and sulfur in addition to the above-described composition.
  • transition metal element examples include Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, Zr, Nb, Mo, Tc, Ru, Rh, Pd, Os, Ir, Pt, Au or Hg and the like are included, and the 2 group element includes Al, Ga, In, Ti, and the like, and the 3 group element may include Ge, Sn, Pb, and the like.
  • the positive active material may be included in an amount of 50 to 95% by weight based on 100% by weight of the total of the positive active material layer constituting the positive electrode of the lithium secondary battery.
  • the content of the positive active material may be, based on 100% by weight of the total of the positive active material layer, a lower limit of 70% by weight or more or 85% by weight or more, and an upper limit of 99% by weight or less or 90% by weight or less.
  • the content of the positive active material may be set as a combination of the lower limit and the upper limit.
  • the positive active material layer may further include a binder and a conductive material in addition to the positive active material and tellurium.
  • the binder may be additionally used to adhere the positive electrode active material and tellurium well to the positive electrode current collector.
  • the binder maintains the positive electrode active material on the positive electrode current collector and organically connects the positive electrode active materials to increase the binding force therebetween, and any binder known in the art may be used.
  • the binder is polyvinylidene fluoride (PVDF), polyvinyl alcohol (PVA), polyacrylic acid (PAA), polyacrylic acid metal salt (Metal-PAA), polymethacrylic acid (PMA), polymethyl methacrylate ( PMMA) polyacrylamide (PAM), polymethacrylamide, polyacrylonitrile (PAN), polymethacrylonitrile, polyimide (PI), chitosan, starch, polyvinylpyrrolidone, tetrafluoro ethylene, polyethylene, polypropylene, ethylene-propylene-diene polymer (EPDM), sulfonated-EPDM, styrene-butadiene rubber (SBR), fluororubber, hydroxypropyl cellulose, regenerated cellulose, and various copolymers thereof.
  • PVDF polyvinylidene fluoride
  • PVA polyvinyl alcohol
  • PAA polyacrylic acid
  • Metal-PAA polyacrylic acid metal salt
  • the content of the binder may be 1 to 10% by weight based on 100% by weight of the total of the positive active material layer constituting the positive electrode for a lithium secondary battery. If the content of the binder is less than the above range, the physical properties of the positive electrode may be deteriorated and the positive electrode active material may fall off, and if it exceeds the above range, the ratio of the positive electrode active material in the positive electrode may be relatively decreased to reduce the battery capacity. It is desirable to determine the appropriate content in
  • the conductive material may be additionally used to further improve the conductivity of the positive electrode active material.
  • the conductive material electrically connects the electrolyte and the positive electrode active material to serve as a path for electrons to move from the current collector to the positive electrode active material, and may be used without limitation as long as it has conductivity.
  • the conductive material may include graphite such as natural graphite and artificial graphite; carbon black such as Super-P (Super-P), Denka Black, Acetylene Black, Ketjen Black, Channel Black, Furnace Black, Lamp Black, and Summer Black; carbon derivatives such as carbon nanotubes and fullerenes; conductive fibers such as carbon fibers and metal fibers; carbon fluoride; A metal powder such as aluminum or nickel powder or a conductive polymer such as polyaniline, polythiophene, polyacetylene, or polypyrrole may be used alone or in combination.
  • graphite such as natural graphite and artificial graphite
  • carbon black such as Super-P (Super-P), Denka Black, Acetylene Black, Ketjen Black, Channel Black, Furnace Black, Lamp Black, and Summer Black
  • carbon derivatives such as carbon nanotubes and fullerenes
  • conductive fibers such as carbon fibers and metal fibers
  • carbon fluoride A metal powder such as aluminum or nickel powder or
  • the conductive material may be included in an amount of 1 to 10% by weight, preferably 4 to 7% by weight, based on 100% by weight of the total weight of the positive electrode active material layer constituting the positive electrode.
  • the content of the conductive material is less than the above range, electron transfer between the positive active material and the current collector is not easy, so that the voltage and capacity decrease.
  • the amount exceeds the above range the proportion of the positive electrode active material is relatively reduced, and thus the total energy (charge amount) of the battery may decrease. Therefore, it is preferable to determine an appropriate content within the above-described range.
  • the method for manufacturing the positive electrode is not particularly limited, and a method known by those skilled in the art or various methods for modifying it may be used.
  • the positive electrode may be prepared by preparing a positive electrode slurry composition including the composition as described above and then applying it on at least one surface of the positive electrode current collector.
  • the positive electrode slurry composition includes the positive electrode active material and tellurium as described above, and may further include a binder, a conductive material, and a solvent.
  • the solvent one capable of uniformly dispersing the positive electrode active material, tellurium, a conductive material, and a binder is used.
  • water is most preferable as an aqueous solvent, and in this case, the water may be distilled water or deionzied water.
  • the present invention is not necessarily limited thereto, and if necessary, a lower alcohol that can be easily mixed with water may be used. Examples of the lower alcohol include methanol, ethanol, propanol, isopropanol and butanol, and preferably, these may be used by mixing with water.
  • the content of the solvent may be contained at a level having a concentration capable of facilitating coating, and the specific content varies depending on the application method and apparatus.
  • the positive electrode slurry composition may additionally include, if necessary, a material commonly used in the relevant technical field for the purpose of improving its function.
  • a viscosity modifier for example, a viscosity modifier, a fluidizing agent, a filler, etc. are mentioned.
  • the method of applying the positive electrode slurry composition is not particularly limited in the present invention, and for example, methods such as doctor blade, die casting, comma coating, screen printing, etc. can
  • the positive electrode slurry may be applied on the positive electrode current collector by pressing or lamination.
  • a drying process for removing the solvent may be performed.
  • the drying process is performed at a temperature and time at a level sufficient to remove the solvent, and the conditions may vary depending on the type of the solvent, so the present invention is not particularly limited.
  • drying by hot air, hot air, low-humidity air, vacuum drying, (far) infrared rays and a drying method by irradiation with an electron beam, etc. are mentioned.
  • the drying rate is usually adjusted to remove the solvent as quickly as possible within a speed range such that the positive electrode active material layer is not cracked or the positive electrode active material layer is not peeled off from the positive electrode current collector due to stress concentration.
  • the density of the positive electrode active material in the positive electrode may be increased by pressing the current collector after drying.
  • Methods, such as a die press and roll press, are mentioned as a press method.
  • the electrolyte includes a lithium salt, an organic solvent, and an electrolyte additive.
  • the electrolyte additive includes bis(2,2,2-trifluoroethyl)ether (Bis(2,2,2-trifluoroethyl)ether, BTFE).
  • the bis(2,2,2-trifluoroethyl)ether has low solubility in lithium polysulfide. Accordingly, the elution of lithium polysulfide is suppressed, and a protective layer can be formed on the surface of the negative electrode in the initial discharge stage of a lithium secondary battery, specifically, a lithium-sulfur battery. Accordingly, a side reaction between lithium polysulfide and lithium metal as an anode can be effectively suppressed, thereby reducing the shuttle phenomenon caused by lithium polysulfide, thereby improving the lifespan characteristics of a lithium-sulfur battery.
  • the bis (2,2,2-trifluoroethyl) ether is included in an amount of 1 to 20% by volume, preferably 5 to 15% by volume, more preferably 7 to 12% by volume based on 100% by volume of the total electrolyte.
  • the bis (2,2,2-trifluoroethyl) ether is contained in an amount of less than 1% by volume, the effect of improving the life characteristics of the lithium-sulfur battery is insignificant, and when it exceeds 20% by volume, an overvoltage is formed, resulting in high rate discharge capacity and There may be a problem that the output characteristics are reduced.
  • the total 100% by volume of the electrolyte means the volume of the liquid excluding the lithium salt.
  • the lithium salt is included as an electrolyte salt of the electrolyte, and the type of the lithium salt is not particularly limited in the present invention, and may be used without limitation as long as it is commonly used in a lithium-sulfur battery.
  • the lithium salt is LiCl, LiBr, LiI, LiClO 4 , LiBF 4 , LiB 10 Cl 10 , LiB(Ph) 4 , LiC 4 BO 8 , LiPF 6 , LiCF 3 SO 3 , LiCF 3 CO 2 , LiAsF 6 , LiSbF 6 , LiAlCl 4 , LiSO 3 CH 3 , LiSO 3 CF 3 , LiSCN, LiC(CF 3 SO 2 ) 3 , LiN(CF 3 SO 2 ) 2 , LiN(C 2 F 5 SO 2 ) 2 , LiN (SO 2 F) 2 , chloroborane lithium, lower aliphatic lithium carboxylate, lithium tetraphenyl borate and at least one selected from the group consisting of lithium imide, preferably (SO 2 F) 2 NLi ( lithium bis(fluorosulfonyl)imide; LiFSI).
  • LiPF 6 LiCF 3 SO 3 , LiCF 3 CO 2 , LiAsF
  • the concentration of the lithium salt may be appropriately determined in consideration of ionic conductivity, solubility, and the like, and may be, for example, 0.1 to 4.0 M, preferably 0.5 to 2.0 M.
  • concentration of the lithium salt is less than the above range, it is difficult to secure ionic conductivity suitable for battery driving. Since the performance of the battery may be deteriorated, it is appropriately adjusted within the above range.
  • the organic solvent is a medium through which ions involved in the electrochemical reaction of the lithium secondary battery can move and includes the organic solvent.
  • the organic solvent includes cyclic ethers and acyclic ethers.
  • the ether-based compound maintains solubility in sulfur or a sulfur-based compound while ensuring electrochemical stability within the driving voltage range of the battery, and relatively less occurrence of side reactions with intermediate products according to the driving of the battery.
  • the cyclic ether is furan, 2-methylfuran, 3-methylfuran, 2-ethylfuran, 2-propylfuran, 2-butylfuran, 2,3-dimethylfuran, 2,4-dimethylfuran, 2,5-dimethyl Furan, pyran, 2-methylpyran, 3-methylpyran, 4-methylpyran, benzofuran, 2-(2-nitrovinyl)furan, tetrahydrofuran, 2-methyl tetrahydrofuran, 2,5-dimethyl tetrahydro group consisting of furan, 2,5-dimethoxy tetrahydrofuran, 2-ethoxy tetrahydrofuran, tetrahydropyran, 1,2-dimethoxy benzene, 1,3-dimethoxy benzene and 1,4-dimethoxy benzene It may include one or more selected from. Preferably, it may contain 2-methylfuran.
  • the dioxolane-based compound mainly used in the cyclic ether has an excessively high solubility in lithium polysulfide, which is very likely to cause a shuttle phenomenon, and accelerates the loss of sulfur, which is a positive electrode active material, thereby reducing the lifespan performance of a lithium secondary battery. . Therefore, the dioxolane-based compound is not preferable for use as an organic solvent of the lithium secondary battery electrolyte of the present invention.
  • the acyclic ether is dimethyl ether, diethyl ether, dipropyl ether, methylethyl ether, methylpropyl ether, ethylpropyl ether, dimethoxyethane, diethoxyethane, methoxyethoxyethane, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, diethylene glycol methylethyl ether, triethylene glycol dimethyl ether, triethylene glycol diethyl ether, triethylene glycol methylethyl ether, tetraethylene glycol dimethyl ether, tetraethylene glycol diethyl ether, tetraethylene glycol methylethyl It may include one or more selected from the group consisting of ether, polyethylene glycol dimethyl ether, ethylene glycol diethyl ether, and ethylene glycol ethyl methyl ether, preferably dimethyl ether.
  • the cyclic ether and the acyclic ether may be mixed and used in a volume ratio of 1:9 to 9:1, preferably 1:2 to 1:5.
  • the electrolyte of the lithium secondary battery of the present invention may preferably include lithium salt, 2-methylfuran, dimethoxyethane and bis(2,2,2-trifluoroethyl)ether.
  • the electrolyte of the lithium secondary battery of the present invention may further include an organic solvent commonly used in the electrolyte of a lithium secondary battery.
  • an organic solvent commonly used in the electrolyte of a lithium secondary battery may further include one or more selected from the group consisting of an ester compound, an amide compound, a linear carbonate compound, and a cyclic carbonate compound.
  • the ester compounds include methyl acetate, ethyl acetate, propyl acetate, methyl propionate, ethyl propionate, propyl propionate, ⁇ -butyrolactone, ⁇ -valerolactone, ⁇ -caprolactone, ⁇ -valero At least one selected from the group consisting of lactone and ⁇ -caprolactone may be used, but is not limited thereto.
  • the linear carbonate compound may include at least one selected from the group consisting of dimethyl carbonate, diethyl carbonate, dipropyl carbonate, ethylmethyl carbonate, methylpropyl carbonate, and ethylpropyl carbonate, but is not limited thereto.
  • cyclic carbonate compound examples include ethylene carbonate, propylene carbonate, 1,2-butylene carbonate, 2,3-butylene carbonate, 1,2-pentylene carbonate, 2,3-pentylene carbonate, vinylene carbonate, vinylethylene It may include one or more selected from the group consisting of carbonates and halides thereof, but is not limited thereto.
  • the electrolyte of the lithium secondary battery of the present invention may further include nitric acid or a nitrite-based compound in addition to the above-described composition.
  • the nitric acid or nitrite-based compound has the effect of forming a stable film on the lithium metal electrode, which is the negative electrode, and improving the charge/discharge efficiency.
  • the nitric acid or nitrite-based compound is not particularly limited in the present invention, but lithium nitrate (LiNO 3 ), potassium nitrate (KNO 3 ), cesium nitrate (CsNO 3 ), barium nitrate (Ba(NO 3 ) 2 ), ammonium nitrate (NH 4 NO 3 ), lithium nitrite (LiNO 2 ), potassium nitrite (KNO 2 ), cesium nitrite (CsNO 2 ), ammonium nitrite (NH 4 NO 2 ), such as inorganic nitric acid or nitrite compounds; Organic nitric acids such as methyl nitrate, dialkyl imidazolium nitrate, guanidine nitrate, imidazolium nitrate, pyridinium nitrate, ethyl nitrite, propyl nitrite, butyl nitrite, pentyl nitrite, and oc
  • the electrolyte of the present invention may further include other additives for the purpose of improving charge/discharge characteristics, flame retardancy, and the like.
  • the additive include pyridine, triethylphosphite, triethanolamine, cyclic ether, ethylene diamine, n-glyme, hexaphosphoric acid triamide, nitrobenzene derivative, sulfur, quinone imine dye, N-substituted oxazoli Dinone, N,N-substituted imidazolidine, ethylene glycol dialkyl ether, ammonium salt, pyrrole, 2-methoxy ethanol, aluminum trichloride, fluoroethylene carbonate (FEC), propene sultone (PRS), vinylene carbonate ( VC) and the like.
  • FEC fluoroethylene carbonate
  • PRS propene sultone
  • VC vinylene carbonate
  • the injection of the electrolyte may be performed at an appropriate stage during the manufacturing process of the electrochemical device according to the manufacturing process and required properties of the final product. That is, it may be applied before assembling the electrochemical device or in the final stage of assembling the electrochemical device.
  • the negative electrode of the lithium secondary battery of the present invention may include a negative electrode current collector and a negative electrode active material layer coated on one or both surfaces of the negative electrode current collector.
  • the negative electrode may be a lithium metal plate.
  • the negative electrode current collector is for supporting the negative electrode active material layer, as described in the positive electrode current collector.
  • the anode active material layer may include a conductive material, a binder, etc. in addition to the anode active material.
  • the conductive material and the binder are as described above.
  • the negative active material is a material capable of reversibly intercalating or deintercalating lithium (Li + ), a material capable of reversibly forming a lithium-containing compound by reacting with lithium ions, lithium metal or a lithium alloy.
  • Li + lithium
  • Li alloy a material capable of reversibly forming a lithium-containing compound by reacting with lithium ions, lithium metal or a lithium alloy.
  • the material capable of reversibly intercalating or deintercalating lithium ions may be, for example, crystalline carbon, amorphous carbon, or a mixture thereof.
  • the material capable of reversibly forming a lithium-containing compound by reacting with the lithium ions (Li + ) may be, for example, tin oxide, titanium nitrate, or silicon.
  • the lithium alloy is, for example, lithium (Li) and sodium (Na), potassium (K), rubidium (Rb), cesium (Cs), francium (Fr), beryllium (Be), magnesium (Mg), calcium ( Ca), strontium (Sr), barium (Ba), radium (Ra), aluminum (Al), and may be an alloy of a metal selected from the group consisting of tin (Sn).
  • the anode active material may be lithium metal, and specifically may be in the form of a lithium metal thin film or lithium metal powder.
  • a method of forming the negative active material is not particularly limited, and a method of forming a layer or a film commonly used in the art may be used. For example, a method such as pressing, coating, or vapor deposition may be used.
  • a case in which a metal lithium thin film is formed on a metal plate by initial charging after assembling the battery in a state in which there is no lithium thin film in the current collector is also included in the negative electrode of the present invention.
  • the separator may be positioned between the anode and the cathode.
  • the separator separates or insulates the positive electrode and the negative electrode from each other, and enables lithium ion transport between the positive electrode and the negative electrode, and may be made of a porous non-conductive or insulating material. can be used without
  • the separator may be an independent member such as a film, or may be a coating layer added to the positive electrode and/or the negative electrode.
  • the electrolyte has a low resistance to ion movement and has excellent moisture content to the electrolyte.
  • the separator may be made of a porous substrate.
  • the porous substrate can be used as long as it is a porous substrate commonly used in secondary batteries, and a porous polymer film can be used alone or by laminating them, for example, a high melting point.
  • a nonwoven fabric made of glass fiber, polyethylene terephthalate fiber, or the like, or a polyolefin-based porous membrane may be used, but the present invention is not limited thereto.
  • the porous substrate may include polyolefin such as polyethylene and polypropylene, polyester such as polyethyleneterephthalate, and polybutyleneterephthalate, and poly amide, polyacetal, polycarbonate, polyimide, polyetheretherketone, polyethersulfone, polyphenyleneoxide, polyphenylenesulfide (polyphenylenesulfide), polyethylenenaphthalate (polyethylenenaphthalate), polytetrafluoroethylene (polytetrafluoroethylene), polyvinylidene fluoride (polyvinylidenefluoride), polyvinyl chloride (polyvinyl chloride), polyacrylonitrile, cellulose (cellulose), nylon (nylon), polyparaphenylenebenzobisoxazole (poly(p-phenylene benzobisoxazole) and polyarylate (polyary
  • the thickness of the porous substrate is not particularly limited, but may be 1 to 100 ⁇ m, preferably 5 to 50 ⁇ m.
  • the thickness range of the porous substrate is not limited to the above-mentioned range, when the thickness is too thin than the above-described lower limit, mechanical properties are deteriorated and the separator may be easily damaged during use of the battery.
  • the average diameter and pore size of the pores present in the porous substrate are also not particularly limited, but may be 0.001 to 50 ⁇ m and 10 to 95%, respectively.
  • the lithium secondary battery according to the present invention is capable of lamination, stacking, and folding processes of a separator and an electrode in addition to winding, which is a general process.
  • the shape of the lithium secondary battery is not particularly limited, and may have various shapes such as a cylindrical shape, a stacked type, and a coin type.
  • the lithium secondary battery of the present invention specifically, the lithium-sulfur battery includes tellurium as a positive electrode additive.
  • the tellurium contributes to the formation of a protective layer on the surface of the anode in the initial discharging stage of the lithium-sulfur battery, so that an improved stripping/plating process can be performed on the surface of the anode.
  • the efficiency and stability of the negative electrode may be improved, thereby improving the lifespan characteristics of the lithium-sulfur battery.
  • the lithium-sulfur battery of the present invention includes bis(2,2,2-trifluoroethyl)ether as an electrolyte additive.
  • the bis(2,2,2-trifluoroethyl) ether inhibits the elution of lithium polysulfide, and forms a protective layer on the surface of the negative electrode in the initial discharging stage of the lithium-sulfur battery to form a protective layer on the negative electrode surface with lithium polysulfide and lithium metal as the negative electrode. It is possible to effectively suppress side reactions between the lithium-sulfur batteries, thereby improving the lifespan characteristics of the lithium-sulfur battery.
  • the lithium secondary battery of the present invention has an effect of improving lifespan characteristics, and specifically, it is possible to extend the number of cycles in which the discharge capacity reaches 80% of the initial discharge capacity.
  • CNT sulfur-carbon
  • Li-PAA lithium-polyacrylic acid
  • Te tellurium
  • the positive electrode slurry was applied on an aluminum foil current collector and then coated to a predetermined thickness using a Mathis coater (Mathis Switzerland, SV-M). Thereafter, the cathode was prepared by drying at a temperature of 50° C. for 2 hours.
  • the loading amount of the positive electrode was 3.3 mAh/cm 2 , and the porosity was 73%.
  • LiFSI and 4 wt% of lithium nitrate (LiNO 3 ) were mixed with 2-methylfuran (2-methylfuran, 2-MeF), bis (2,2,2-trifluoroethyl) ether (Bis (2,2,
  • An electrolyte solution was prepared by dissolving 2-trifluoroethyl)ether, BTFE) and 1,2-dimethoxyethane (1,2-dimethoxyethane, DME) in an organic solvent mixed in a volume of 2:1:7.
  • the bis (2,2,2-trifluoroethyl) ether is included in an amount of 10% by volume based on the total volume of the electrolyte.
  • a lithium-sulfur battery is prepared by placing the prepared positive electrode and the negative electrode to face each other, interposing a polyethylene separator having a thickness of 16 ⁇ m and a porosity of 45% between them, putting it in an aluminum pouch, injecting the electrolyte and sealing it did.
  • a lithium metal thin film having a thickness of 30 ⁇ m was used as the negative electrode.
  • a lithium-sulfur battery was prepared in the same manner as in Example 1, except that the weight ratio of the sulfur-carbon composite, lithium-polyacrylic acid, and tellurium was 85:5:10.
  • a lithium-sulfur battery was manufactured in the same manner as in Example 1, except that the weight ratio of the sulfur-carbon composite, lithium-polyacrylic acid and tellurium was 80:5:15.
  • DOL 1,3-dioxolane
  • Bis(2,2,2-trifluoroethyl)ether, BTFE bis(2,2,2-trifluoroethyl)ether
  • BTFE bis(2,2,2-trifluoroethyl)ether
  • 1,2- A lithium-sulfur battery was prepared in the same manner as in Example 1, except that dimethoxyethane (1,2-dimethoxyethane, DME) was mixed in a volume of 40:10:50.
  • CNT sulfur-carbon
  • Li-PAA lithium-polyacrylic acid
  • the positive electrode slurry was applied on an aluminum foil current collector and then coated to a predetermined thickness using a Mathis coater (Mathis Switzerland, SV-M). Thereafter, the cathode was prepared by drying at a temperature of 50° C. for 2 hours.
  • the loading amount of the positive electrode was 3.3 mAh/cm 2 , and the porosity was 73%.
  • LiFSI and 4 wt% of lithium nitrate (LiNO 3 ) were mixed with 2-methylfuran (2-methylfuran, 2-MeF) and 1,2-dimethoxyethane (DME) in a 1:4 ratio
  • An electrolyte solution was prepared by dissolving in an organic solvent mixed by volume.
  • a lithium-sulfur battery was prepared by placing the prepared positive electrode and the negative electrode to face each other and interposing a polyethylene separator having a thickness of 16 ⁇ m and a porosity of 45% therebetween, and then injecting the electrolyte.
  • a lithium metal thin film having a thickness of 30 ⁇ m was used as the negative electrode.
  • LiFSI and 4 wt% of lithium nitrate (LiNO 3 ) were mixed with 2-methylfuran (2-methylfuran, 2-MeF) and 1,2-dimethoxyethane (DME) in a 1:4 ratio
  • LiNO 3 lithium nitrate
  • 2-MeF 2-methylfuran
  • DME 1,2-dimethoxyethane
  • CNT sulfur-carbon
  • Li-PAA lithium-polyacrylic acid
  • the lithium-sulfur battery of Example 1 containing tellurium in an amount of 5% by weight based on 100% by weight of the total positive active material layer, and including bis(2,2,2-trifluoroethyl)ether has a lifespan Characteristics were greatly improved.
  • the lithium-sulfur battery of Example 2 containing tellurium in an amount of 10% by weight based on 100% by weight of the total positive active material layer, and including bis(2,2,2-trifluoroethyl)ether also had a lifespan characteristic. showed improved results.
  • the lithium-sulfur battery of Example 3 containing tellurium in an amount of 15% by weight based on 100% by weight of the total weight of the positive active material layer and including bis(2,2,2-trifluoroethyl)ether As the amount of tellurium exceeded the preferred content range of 1 to 10% by weight, the lifespan characteristics decreased.
  • the lithium-sulfur battery of Comparative Example 2 containing only tellurium showed slight improvement in lifespan characteristics, and the lithium-sulfur battery of Comparative Example 3 containing only bis(2,2,2-trifluoroethyl)ether The battery did not show the effect of improving the lifespan characteristics.
  • tellurium is included as a positive electrode additive
  • bis (2,2,2-trifluoroethyl) ether is included as an electrolyte additive
  • the amount of tellurium is 1 to 10 weight percent based on 100 weight% of the total weight of the positive electrode active material layer. %, it can be seen that the lifetime characteristics of the lithium-sulfur battery can be improved.
  • Example 4 is a lithium-sulfur battery using an electrolyte containing bis (2,2,2-trifluoroethyl) ether in an amount of 25% by volume, and the deterioration of life was accelerated ( FIG. 2 ).
  • the voltages of the 5th, 15th, 25th and 35th cycles of the lithium-sulfur batteries of Examples 1 and 4 were measured.
  • the lithium-sulfur battery of Example 1 maintains a constant cycle capacity ( FIG. 3 ), while the lithium-sulfur battery of Example 4 has a capacity that decreases as the cycle progresses, and the overvoltage at the end gradually worsens, resulting in capacity degradation. Accelerated results were shown ( FIG. 4 ).
  • Example 5 is a lithium-sulfur battery using 1,3-dioxolane (DOL) instead of 2-methylfuran as an electrolyte, in which 1,3-dioxolane/1,2-dimethoxyethane is used as an electrolyte solution.
  • DOL 1,3-dioxolane
  • 1,3-dioxolane/1,2-dimethoxyethane is used as an electrolyte solution.
  • the positive electrode additive contains tellurium in an amount of 1 to 10% by weight based on 100% by weight of the total positive electrode active material layer, and bis(2,2,2-trifluoroethyl)ether is used as an electrolyte additive in 100% by volume of the total electrolyte.
  • the positive electrode additive contains 1 to 20% by volume based on and does not use a dioxolane-based compound as an electrolyte, the effect of improving the lifespan characteristics of a lithium-sulfur battery may be exhibited.
  • the lithium-sulfur battery of Comparative Example 3 not containing tellurium showed no decrease in initial coulombic efficiency. However, the lithium-sulfur batteries of Examples 1 to 3 containing tellurium showed a decrease in initial coulombic efficiency.
  • the lithium-sulfur batteries of Examples 1 and 2 contained tellurium in an amount of 5 and 10% by weight, respectively, based on 100% by weight of the total of the positive active material layer, and although the initial coulombic efficiency decreased, the Experimental Example 1 As shown in the results, the lifespan characteristics of the lithium-sulfur battery were improved.
  • the lithium-sulfur battery of Example 3 contains tellurium in an amount of 15% by weight based on 100% by weight of the total amount of the positive active material layer, exceeding the tellurium content range of 1 to 10% by weight.
  • the lithium-sulfur battery of Example 3 showed an excessive decrease in the initial coulombic efficiency, and the lifespan characteristics of the lithium-sulfur battery were not improved as in the result of Experimental Example 1 due to the excessive decrease in the coulombic efficiency. showed results.

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

본 발명은 양극 첨가제로 텔루륨을 포함하고, 전해액 첨가제로 비스(2,2,2-트리플루오로에틸)에테르를 포함하는 리튬 이차전지에 관한 것으로, 리튬 이차전지의 수명 특성 향상 효과를 갖는다.

Description

리튬 이차전지
본 출원은 2021년 3월 31일자 한국 특허출원 제10-2021-0042148호 및 2022년 2월 24일자 한국 특허출원 제10-2022-0024018호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용을 본 명세서의 일부로서 포함한다.
본 발명은 리튬 이차전지에 관한 것으로, 보다 자세하게는 양극 첨가제로 텔루륨을 포함하고, 전해액 첨가제로 비스(2,2,2-트리플루오로에틸)에테르를 포함하는 리튬 이차전지에 관한 것이다.
최근 전자제품, 전자기기, 통신기기 등의 소형 경량화가 급속히 진행되고 있으며, 환경 문제와 관련하여 전기 자동차의 필요성이 크게 대두됨에 따라 이들 제품의 동력원으로 사용되는 이차전지의 성능 개선에 대한 요구도 증가하는 실정이다. 그 중 리튬 이차전지는 고 에너지밀도 및 높은 표준전극 전위 때문에 고성능 전지로서 상당한 각광을 받고 있다.
특히 리튬-황(Li-S) 전지는 S-S 결합(Sulfur-sulfur bond)을 갖는 황 계열 물질을 양극 활물질로 사용하고, 리튬 금속을 음극 활물질로 사용하는 이차전지다. 양극 활물질의 주재료인 황은 자원이 매우 풍부하고, 독성이 없으며, 낮은 원자당 무게를 가지고 있는 장점이 있다. 또한 리튬-황 전지의 이론 방전용량은 1675mAh/g-sulfur이며, 이론 에너지밀도가 2,600Wh/kg로서, 현재 연구되고 있는 다른 전지시스템의 이론 에너지밀도(Ni-MH 전지: 450Wh/kg, Li-FeS 전지: 480Wh/kg, Li-MnO2 전지: 1,000Wh/kg, Na-S 전지: 800Wh/kg)에 비하여 매우 높기 때문에 현재까지 개발되고 있는 전지 중에서 가장 유망한 전지이다.
리튬-황 전지의 방전 반응 중 음극(Negative electrode)에서는 리튬의 산화 반응이 발생하고, 양극(Positive electrode)에서는 황의 환원 반응이 발생한다. 방전 전의 황은 환형의 S8 구조를 가지고 있는데, 환원 반응(방전)시 S-S 결합이 끊어지면서 S의 산화수가 감소하고, 산화 반응(충전)시 S-S 결합이 다시 형성되면서 S의 산화수가 증가하는 산화-환원 반응을 이용하여 전기 에너지를 저장 및 생성한다. 이런 반응 중 황은 환형의 S8에서 환원 반응에 의해 선형 구조의 리튬 폴리설파이드(Lithium polysulfide, Li2Sx, x=8, 6, 4, 2)로 변환하게 되며, 결국 이러한 리튬 폴리설파이드가 완전히 환원되면 최종적으로 리튬 설파이드(Lithium sulfide, Li2S)가 생성되게 된다. 각각의 리튬 폴리설파이드로 환원되는 과정에 의해 리튬-황 전지의 방전 거동은 일반적인 리튬 이온전지와는 달리 단계적으로 방전 전압을 나타내는 것이 특징이다.
하지만, 리튬-황 전지의 상업화에 있어서 가장 큰 문제는 수명으로, 충·방전 과정 중 충전/방전 효율(Efficiency)이 줄어들며 전지의 수명이 퇴화하게 된다. 이와 같은 리튬-황 전지의 수명이 퇴화하는 원인으로는, 전해액의 부반응(전해액의 분해에 따른 부산물의 퇴적), 리튬 메탈의 불안정성(리튬 음극 상에 덴드라이트가 성장하여 쇼트 발생) 및 양극 부산물의 퇴적(양극으로부터의 리튬 폴리설파이드 용출) 등으로 다양하다.
즉, 황 계열의 화합물을 양극 활물질로 사용하고 리튬과 같은 알칼리 금속을 음극 활물질로 사용하는 전지에서, 충·방전시 리튬 폴리설파이드의 용출 및 셔틀현상이 발생하고, 리튬 폴리설파이드가 음극으로 전달되어 리튬-황 전지의 용량이 감소되며, 이에 따라 리튬-황 전지는 수명이 감소되고 반응성이 감소하는 커다란 문제점을 가지고 있다. 즉, 양극에서 용출된 리튬 폴리설파이드는 유기 전해액으로의 용해도가 높기 때문에, 전해액을 통해 음극 쪽으로 원치 않는 이동(PS shuttling)이 일어날 수 있으며, 그에 따라 양극 활물질의 비가역적 손실로 인한 용량의 감소 및 부반응에 의한 리튬 메탈 표면에의 황 입자 증착으로 인한 전지 수명의 감소가 발생하게 되는 것이다.
또한, 리튬 금속은 높은 화학적/전기화학적 반응성으로 인해 전해질과 쉽게 반응함에 따라 음극 표면에 부동태 피막(passivation layer)이 형성된다. 이러한 부동태 피막은 기계적 강도가 약하기 때문에 전지의 충·방전이 진행됨에 따라 구조가 붕괴되면서 국부상의 전류밀도 차이를 초래하여 리튬 금속 표면에 수지상의 리튬 덴드라이트 형성시킨다. 또한, 이렇게 형성된 리튬 덴드라이트는 전지 내부 단락과 불활성 리튬(dead lithium)을 야기하여 리튬-황 전지의 물리적, 화학적 불안정성을 가중시킬 뿐만 아니라 전지의 용량을 감소시키고 사이클 수명을 단축시키는 문제를 발생시킨다.
이와 같은 문제점을 해결하고 리튬-황 전지의 수명특성을 개선하기 위하여 양극 입자 표면에 리튬 폴리설파이드의 용해를 막을 수 있는 코팅층을 형성, 리튬 폴리설파이드를 흡수할 수 있는 양극 첨가제의 사용, 셔틀 반응 제어를 위한 리튬 음극의 산화막 형성, 폴리 설파이드의 전해질로의 용해를 억제하기 위한 신규한 조성의 기능성 전해질 사용 등의 노력이 진행되고는 있으나, 방법이 다소 복잡한 문제가 있다. 따라서 이러한 문제들을 해결하고, 리튬-황 전지의 수명 특성을 개선할 수 있는 새로운 기술의 개발이 필요한 실정이다.
[선행기술문헌]
[특허문헌]
대한민국 공개특허 제10-2017-0121047호
이에 본 발명자들은 상기 문제를 해결하고자 다각적으로 연구를 수행한 결과, 리튬 이차전지의 양극 첨가제로 텔루륨(Tellurium, Te)을 포함하고, 전해액 첨가제로 비스(2,2,2-트리플루오로에틸)에테르(Bis(2,2,2-trifluoroethyl)ether, BTFE)를 포함하는 경우 리튬 이차전지의 수명 특성이 개선되는 것을 확인하여 본 발명을 완성하였다.
따라서, 본 발명의 목적은 우수한 수명 특성을 구현할 수 있는 리튬 이차전지를 제공하는데 있다.
상기 목적을 달성하기 위하여,
본 발명은 양극; 음극; 이들 사이에 개재된 분리막; 및 전해액을 포함하는 리튬 이차전지로,
상기 양극은 양극 활물질 및 양극 첨가제를 포함하며,
상기 양극 첨가제는 텔루륨을 포함하며,
상기 전해액은 리튬염, 유기용매 및 전해액 첨가제를 포함하며,
상기 전해액 첨가제는 비스(2,2,2-트리플루오로에틸)에테르를 포함하는 리튬 이차전지를 제공하는 것을 목적으로 한다.
상기 양극은 집전체 및 상기 집전체의 적어도 일면에 배치된 양극 활물질층을 포함하며, 상기 양극 활물질층은 양극 활물질 및 텔루륨을 포함할 수 있다.
상기 텔루륨은 양극 활물질층 전체 100 중량%를 기준으로 1 내지 10 중량%로 포함될 수 있다.
상기 양극 활물질은 황 원소 및 황 화합물로 이루어진 군으로부터 선택되는 1종 이상을 포함할 수 있다.
상기 비스(2,2,2-트리플루오로에틸)에테르는 전해액 전체 100 부피%를 기준으로 1 내지 20 부피%로 포함될 수 있다.
상기 유기용매는 환형 에테르 및 비환형 에테르를 포함할 수 있다.
상기 환형 에테르는 퓨란, 2-메틸퓨란, 3-메틸퓨란, 2-에틸퓨란, 2-프로필퓨란, 2-부틸퓨란, 2,3-디메틸퓨란, 2,4-디메틸퓨란, 2,5-디메틸퓨란, 피란, 2-메틸피란, 3-메틸피란, 4-메틸피란, 벤조퓨란, 2-(2-니트로비닐)퓨란, 테트라하이드로퓨란, 2-메틸 테트라하이드로퓨란, 2,5-디메틸 테트라하이드로퓨란, 2,5-디메톡시 테트라하이드로퓨란, 2-에톡시 테트라하이드로퓨란, 테트라하이드로파이란, 1,2-디메톡시 벤젠, 1,3-디메톡시 벤젠 및 1,4-디메톡시 벤젠으로 이루어진 군으로부터 선택되는 1종 이상을 포함할 수 있다.
상기 비환형 에테르는 디메틸 에테르, 디에틸 에테르, 디프로필 에테르, 메틸에틸 에테르, 메틸프로필 에테르, 에틸프로필 에테르, 디메톡시에탄, 디에톡시에탄, 메톡시에톡시에탄, 디에틸렌 글리콜 디메틸 에테르, 디에틸렌 글리콜 디에틸 에테르, 디에틸렌 글리콜 메틸에틸 에테르, 트리에틸렌 글리콜 디메틸 에테르, 트리에틸렌 글리콜 디에틸 에테르, 트리에틸렌 글리콜 메틸에틸 에테르, 테트라에틸렌 글리콜 디메틸 에테르, 테트라에틸렌 글리콜 디에틸 에테르, 테트라에틸렌 글리콜 메틸에틸 에테르, 폴리에틸렌 글리콜 디메틸 에테르, 에틸렌 글리콜 디에틸 에테르 및 에틸렌 글리콜 에틸 메틸 에테르로 이루어진 군으로부터 선택되는 1종 이상을 포함할 수 있다.
상기 전해액은 리튬염, 2-메틸퓨란, 디메톡시에탄 및 비스(2,2,2-트리플루오로에틸)에테르를 포함할 수 있다.
상기 리튬염은 LiCl, LiBr, LiI, LiClO4, LiBF4, LiB10Cl10, LiB(Ph)4, LiC4BO8, LiPF6, LiCF3SO3, LiCF3CO2, LiAsF6, LiSbF6, LiAlCl4, LiSO3CH3, LiSO3CF3, LiSCN, LiC(CF3SO2)3, LiN(CF3SO2)2, LiN(C2F5SO2)2, LiN(SO2F)2, 클로로 보란 리튬, 저급 지방족 카르본산 리튬, 테트라 페닐 붕산 리튬 및 리튬 이미드로 이루어진 군으로부터 선택되는 1종 이상을 포함할 수 있다.
상기 리튬 이차전지는 리튬-황 전지일 수 있다.
본 발명의 리튬 이차전지는 양극 첨가제로 텔루륨을 포함하고, 전해액 첨가제로 비스(2,2,2-트리플루오로에틸)에테르를 포함함에 따라 리튬 금속을 포함하는 음극의 효율을 향상시키고, 리튬 폴리설파이드의 용출을 억제하며, 리튬 금속인 음극 표면에 보호층을 형성할 수 있어 리튬 덴드라이트의 생성을 억제시킬 수 있으며, 음극 표면에서의 전해액 또는 리튬 폴리설파이드와의 부반응 및 이에 따른 전해액의 분해를 감소시킬 수 있다. 그로 인해 리튬 이차전지의 초기 방전용량 대비 80% 수준에 도달하는 싸이클을 연장시킬 수 있어 리튬 이차전지의 수명 특성을 향상시킬 수 있다.
도 1은 실시예 1 내지 3 및 비교예 1 내지 3의 리튬-황 전지의 수명 특성을 측정한 그래프이다.
도 2는 실시예 4의 리튬-황 전지의 수명 특성을 평가한 그래프이다.
도 3은 실시예 1의 리튬-황 전지의 사이클 전압을 측정한 그래프이다.
도 4는 실시예 4의 리튬-황 전지의 사이클 전압을 측정한 그래프이다.
도 5는 실시예 5의 리튬-황 전지의 수명 특성을 측정한 그래프이다.
도 6은 실시예 3의 리튬-황 전지의 초기 쿨롱 효율을 측정한 그래프이다.
도 7은 실시예 1 내지 3 및 비교예 3의 리튬-황 전지의 초기 쿨롱 효율을 측정한 그래프이다.
이하, 본 발명을 보다 자세히 설명한다.
본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 해석되어서는 아니되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.
본 발명에서 사용한 용어는 단지 특정한 실시예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 발명에서, '포함하다' 또는 '가지다' 등의 용어는 명세서 상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조랍한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
본 명세서에서 사용되고 있는 용어 "복합체(composite)"란 두 가지 이상의 재료가 조합되어 물리적·화학적으로 서로 다른 상(phase)를 형성하면서 보다 유효한 기능을 발현하는 물질을 의미한다.
본 명세서에서 사용되고 있는 용어 "폴리설파이드"는 "폴리설파이드 이온 (Sx 2-, x = 8, 6, 4, 2))" 및 "리튬 폴리설파이드(Li2Sx 또는 LiSx -, x = 8, 6, 4, 2)"를 모두 포함하는 개념이다.
리튬 이차전지 중에서도 리튬-황 전지는 여러 이차전지 중에서 높은 이론 방전용량 및 이론 에너지 밀도를 가지고, 양극 활물질의 주재료로 사용되는 황은 매장량이 풍부하여 저가이고, 환경친화적이라는 이점으로 인해 차세대 이차전지로 각광받고 있다.
리튬-황 전지는 여러 이차전지 중에서 높은 이론 방전용량 및 이론 에너지 밀도를 나타낼 뿐만 아니라 음극 활물질로 주로 사용되는 리튬 금속은 원자량(6.94g/a.u.) 및 밀도(0.534 g/㎤)가 매우 작기 때문에 소형화 및 경량화가 용이하여 차세대 전지로 각광받고 있다.
그러나, 전술한 바와 같이 리튬 금속은 반응성이 높아 전해질과 쉽게 반응함에 따라 전해질의 자발적 분해로 인하여 리튬 금속 표면에 부동태 피막이 형성되며, 이는 리튬 금속 표면에서의 불균일한 전기화학적 반응을 일으킴에 따라 불활성 리튬 및 리튬 덴드라이트를 형성시켜 음극의 효율 및 안정성을 저하시킨다. 또한, 황 계열 물질을 양극 활물질로 사용하는 리튬-황 전지에 있어서, 전지 구동 시 양극에서 형성된 리튬 폴리설파이드(lithium polysulfide, Li2Sx, x = 8, 6, 4, 2) 중 황의 산화수가 높은 리튬 폴리설파이드(Li2Sx, 보통 x≥4)는 전해질에 대한 용해도가 높아 지속적으로 녹아나며, 양극 반응 영역 밖으로 용출되어 음극으로 이동하게 된다. 이때 양극으로부터 용출된 리튬 폴리설파이드는 리튬 금속과 부반응을 일으켜 리튬 금속 표면에 리튬 설파이드가 고착됨에 따라 전극의 부동화를 야기할 뿐만 아니라 리튬 폴리설파이드의 용출로 인해 황의 이용률이 낮아져 이론 방전용량의 최대 70% 정도까지만 구현이 가능하고, 사이클이 진행됨에 따라 용량 및 충·방전 효율이 빠르게 저하되어 전지의 수명 특성이 낮은 문제가 있다.
이를 위해 종래 기술에서는 리튬 금속 표면의 균일한 반응성을 확보하고, 리튬 덴드라이트의 성장을 억제하기 위해 리튬 금속 표면에 보호층을 형성하거나 전해질의 조성을 변경하는 방법 등이 시도되고 있다. 그러나, 리튬 금속 표면에 도입하는 보호층의 경우 리튬 덴드라이트를 억제하기 위한 높은 기계적 강도와 리튬 이온 전달을 위한 높은 이온 전도도가 동시에 요구되지만, 상기 기계적 강도 및 이온 전도도는 서로 상충 관계(trade-off)에 있어 기계적 강도 및 이온 전도도를 동시에 향상시키기에는 어려움이 있어, 현재까지 제안된 리튬 금속 보호층의 리튬 안정성 개선 효과는 우수하지 못한 실정이다. 또한, 전지를 구성하는 다른 요소와의 호환성 문제로 인해 전지의 성능 및 구동 안정성에 심각한 문제를 야기하기 때문에 실제 적용은 쉽지 않다.
이에 본 발명에서는 양극 첨가제로 텔루륨을 포함하고, 전해액 첨가제로 비스(2,2,2-트리플루오로에틸)에테르를 포함하여 리튬 폴리설파이드의 용출을 억제하고, 초기 방전단계에서 음극인 리튬 금속 표면에 보호막(solid electrolyte interface, SEI층)을 형성하여 상기의 문제점을 해결하여 리튬 이차전지, 바람직하게는 리튬-황 전지의 수명 특성을 향상시키고자 하였다.
본 발명은 양극; 음극; 이들 사이에 개재된 분리막; 및 전해액을 포함하는 리튬 이차전지에 관한 것으로,
상기 양극은 양극 활물질 및 양극 첨가제를 포함하며,
상기 양극 첨가제는 텔루륨(Tellurium, Te)을 포함하며,
상기 전해액은 리튬염, 유기용매 및 전해액 첨가제를 포함하며,
상기 전해액 첨가제는 비스(2,2,2-트리플루오로에틸)에테르(Bis(2,2,2-trifluoroethyl)ether, BTFE)를 포함한다.
상기 양극은 양극 집전체와 상기 양극 집전체의 적어도 일면에 배치된 양극 활물질층을 포함할 수 있으며, 상기 양극 활물질층은 양극 활물질 및 양극 첨가제를 포함한다.
상기 본 발명의 양극 첨가제는 텔루륨(Tellurium, Te)을 포함한다.
상기 텔루륨은 리튬 폴리설파이드와 반응하여 폴리텔루로설파이드 이온(SxTey 2-)을 형성하며, 상기 폴리텔루로설파이드 이온은 전해액에 용해되어 음극인 리튬 금속으로 이동하여 리튬 티오텔루레이드 또는 리튬 텔루라이드로 이루어진 음극의 보호층 형성에 기여한다. 그에 따라 음극인 리튬 금속 표면에서 향상된 스트리핑/도금(stripping/plating) 과정을 수행할 수 있다. 상기 보호층은 리튬 금속이 더욱 밀도 높게 도금될 수 있도록 하며, 불필요한 전해액의 분해 또는 리튬의 손실을 억제하는 효과를 갖는다. 따라서, 음극의 효율 및 안정성이 개선되어 이를 포함하는 리튬 이차전지, 바람직하게는 리튬-황 전지의 수명 특성을 높일 수 있다.
본 발명의 리튬 이차전지의 양극에서, 상기 양극 첨가제인 텔루륨은 상기 양극 활물질층 전제 100 중량%를 기준으로 1 내지 10 중량%, 바람직하게는 3 내지 7 중량%로 포함될 수 있다. 상기 텔루륨은 1 내지 10 중량%의 범위에서 텔루륨의 함량이 높아질수록 초기 쿨롱 효율이 감소할 수 있으나, 초기 쿨롱 효율이 감소하더라도 리튬-황 전지의 수명 특성은 개선되는 결과를 보일 수 있다. 만약, 상기 텔루륨이 1 중량% 미만으로 포함되면 리튬 이차전지의 수명 특성 향상 효과가 미미하며, 10 중량%를 초과하여 포함되면 초기 쿨롱 효율이 과도하게 감소하여 수명 특성까지 저하되는 문제가 생길 수 있다.
상기 양극 집전체는 양극 활물질을 지지하며, 당해 전지에 화학적 변화를 유발하지 않으면서 높은 도전성을 가지는 것이라면 특별히 제한되는 것은 아니다. 예를 들어, 구리, 스테인리스 스틸, 알루미늄, 니켈, 티타늄, 팔라듐, 소성 탄소, 구리나 스테인리스 스틸 표면에 카본, 니켈, 은 등으로 표면 처리한 것, 알루미늄-카드뮴 합금 등이 사용될 수 있다.
상기 양극 집전체는 그것의 표면에 미세한 요철을 형성하여 양극 활물질과의 결합력을 강화시킬 수 있으며, 필름, 시트, 호일, 메쉬, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태를 사용할 수 있다.
상기 양극 활물질은 황 원소(S8) 및 황 화합물로 이루어진 군으로부터 선택되는 1종 이상을 포함할 수 있다. 바람직하게는 무기 황, Li2Sn(n≥1), 디설파이드 화합물, 유기황 화합물 및 탄소-황 폴리머((C2Sx)n, x=2.5 내지 50, n≥2)로 이루어진 군으로부터 선택되는 1종 이상을 포함할 수 있으며, 가장 바람직하게는 양극 활물질은 무기 황을 포함할 수 있다.
따라서, 본 발명의 리튬 이차전지는 리튬-황 전지일 수 있다.
상기 양극 활물질에 포함되는 황의 경우 단독으로는 전기 전도성이 없기 때문에 탄소재와 같은 전도성 소재와 복합화하여 사용된다. 이에 따라, 상기 황은 황-탄소 복합체의 형태로 포함되며, 바람직하게는 상기 양극 활물질은 황-탄소 복합체일 수 있다.
상기 황-탄소 복합체는 전술한 황이 균일하고 안정적으로 고정될 수 있는 골격을 제공할 뿐만 아니라 황의 낮은 전기 전도도를 보완하여 전기화학적 반응이 원활하게 진행될 수 있도록 다공성 탄소재를 포함한다.
상기 다공성 탄소재는 일반적으로 다양한 탄소 재질의 전구체를 탄화시킴으로써 제조될 수 있다. 상기 다공성 탄소재는 내부에 일정하지 않은 기공을 포함하며, 상기 기공의 평균 직경은 1 내지 200 ㎚ 범위이며, 기공도 또는 공극률은 다공성 탄소재 전체 체적의 10 내지 90 % 범위일 수 있다. 만일 상기 기공의 평균 직경이 상기 범위 미만인 경우 기공 크기가 분자 수준에 불과하여 황의 함침이 불가능하며, 이와 반대로 상기 범위를 초과하는 경우 다공성 탄소재의 기계적 강도가 약화되어 전극의 제조공정에 적용하기에 바람직하지 않다.
상기 다공성 탄소재의 형태는 구형, 봉형, 침상형, 판상형, 튜브형 또는 벌크형으로 리튬-황 전지에 통상적으로 사용되는 것이라면 제한없이 사용될 수 있다.
상기 다공성 탄소재는 다공성 구조이거나 비표면적이 높은 것으로 당업계에서 통상적으로 사용되는 것이라면 어느 것이든 무방하다. 예를 들어, 상기 다공성 탄소재로는 그래파이트(graphite); 그래핀(graphene); 덴카 블랙, 아세틸렌 블랙, 케첸 블랙, 채널 블랙, 퍼네이스 블랙, 램프 블랙, 서머 블랙 등의 카본 블랙; 단일벽 탄소 나노튜브(SWCNT), 다중벽 탄소 나노튜브(MWCNT) 등의 탄소 나노튜브(CNT); 그라파이트 나노파이버(GNF), 카본 나노파이버(CNF), 활성화 탄소 파이버(ACF) 등의 탄소 섬유; 천연 흑연, 인조 흑연, 팽창 흑연 등의 흑연 및 활성탄소로 이루어진 군으로부터 선택된 1종 이상일 수 있으나, 이에 제한되지 않는다. 바람직하기로 상기 다공성 탄소재는 탄소 나노튜브일 수 있다.
상기 황-탄소 복합체에서 상기 황은 상기 다공성 탄소재의 내부 및 외부 표면 중 적어도 어느 한 곳에 위치하며, 일례로 상기 다공성 탄소재의 내부 및 외부 전체 표면의 100 % 미만, 바람직하게는 1 내지 95 %, 보다 바람직하게는 40 내지 96 % 영역에 존재할 수 있다. 상기 황이 상기 다공성 탄소재의 내부 및 외부 표면에 상기 범위 내로 존재할 때 전자 전달 면적 및 전해질과의 젖음성 면에 서 최대 효과를 나타낼 수 있다. 구체적으로, 상기 황이 전술한 범위 영역에서 상기 다공성 탄소재의 내부 및 외부 표면에 얇고 고르게 함침되므로 충·방전 과정에서 전자 전달 접촉 면적을 증가시킬 수 있다. 만약, 상기 황이 상기 다공성 탄소재의 내부 및 외부 전체 표면의 100% 영역에 위치하는 경우, 상기 다공성 탄소재가 완전히 황으로 덮여 전해질에 대한 젖음성이 떨어지고 접촉성이 저하되어 전자 전달을 받지 못해 전기화학 반응에 참여할 수 없게 된다.
상기 황-탄소 복합체는 황-탄소 복합체 100 중량%를 기준으로 상기 황을 65 내지 90 중량%, 바람직하기로 70 내지 85 중량%, 보다 바람직하기로 72 내지 80 중량%로 포함할 수 있다. 상기 황의 함량이 전술한 범위 미만인 경우 황-탄소 복합체내 다공성 탄소재의 함량이 상대적으로 많아짐에 따라 비표면적이 증가하여 양극 제조 시에 바인더의 함량이 증가한다. 이러한 바인더의 사용량 증가는 결국 양극의 면저항을 증가시키고 전자 이동(electron pass)을 막는 절연체 역할을 하게 되어 전지의 성능을 저하시킬 수 있다. 이와 반대로 상기 황의 함량이 전술한 범위를 초과하는 경우 다공성 탄소재와 결합하지 못한 황이 그들끼리 뭉치거나 다공성 탄소재의 표면으로 재용출됨에 따라 전자를 받기 어려워져 전기화학적 반응에 참여하지 못하게 되어 전지의 용량 손실이 발생할 수 있다.
본 발명의 황-탄소 복합체의 제조방법은 본 발명에서 특별히 한정하지 않으며 당 업계에서 통상적으로 사용되는 방법이 사용될 수 있다. 일례로, 상기 황과 다공성 탄소재를 단순 혼합한 다음 열처리하여 복합화하는 방법이 사용될 수 있다.
상기 양극 활물질은 전술한 조성 이외에 전이금속 원소, ²족 원소, ₃족 원소, 이들 원소들의 황 화합물, 및 이들 원소들과 황의 합금 중에서 선택되는 하나 이상을 더 포함할 수 있다.
상기 전이금속 원소로는 Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, Zr, Nb, Mo, Tc, Ru, Rh, Pd, Os, Ir, Pt, Au 또는 Hg 등이 포함되고, 상기 ²족 원소로는 Al, Ga, In, Ti 등이 포함되며, 상기 ₃족 원소로는 Ge, Sn, Pb 등이 포함될 수 있다.
본 발명의 리튬 이차전지의 양극에서 상기 양극 활물질은 리튬 이차전지의 양극을 구성하는 양극 활물질층 전체 100 중량%를 기준으로 50 내지 95 중량%로 포함될 수 있다. 상기 양극 활물질의 함량은, 상기 양극 활물질층 전체 100 중량%를 기준으로, 하한치는 70 중량% 이상 또는 85 중량% 이상일 수 있으며, 상한치는 99 중량% 이하 또는 90 중량% 이하일 수 있다. 상기 양극 활물질의 함량은 상기 하한치와 상한치의 조합으로 설정할 수 있다. 상기 양극 활물질의 함량이 상기 범위 미만인 경우 전극의 전기화학적 반응을 충분하게 발휘하기 어렵고, 이와 반대로 상기 범위를 초과하는 경우 바인더의 함량이 상대적으로 부족하여 전극의 물리적 성질이 저하되는 문제가 있다.
또한, 상기 양극 활물질층은 양극 활물질 및 텔루륨 이외에 바인더 및 도전재 등을 추가로 포함할 수 있다.
상기 바인더는 양극 활물질 및 텔루륨을 양극 집전체에 잘 부착시키기 위해 추가로 사용되는 것일 수 있다.
상기 바인더는 양극 활물질을 양극 집전체에 유지시키고, 양극 활물질 사이를 유기적으로 연결시켜 이들 간의 결착력을 보다 높이는 것으로, 당해 업계에서 공지된 모든 바인더를 사용할 수 있다.
예를 들어 상기 바인더는 폴리비닐리덴플로라이드(PVDF), 폴리비닐알코올(PVA), 폴리아크릴산(PAA) 폴리아크릴산 금속염(Metal-PAA), 폴리메타크릴산(PMA), 폴리메틸메타크릴레이트(PMMA) 폴리아크릴아미드(PAM), 폴리메타크릴아미드, 폴리아크릴로니트릴(PAN), 폴리메타크릴로니트릴, 폴리이미드(PI), 키토산(Chitosan), 전분, 폴리비닐피롤리돈, 테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 에틸렌-프로필렌-디엔 폴리머(EPDM), 술폰화-EPDM, 스티렌-부타디엔 고무(SBR), 불소 고무, 하이드록시프로필셀룰로오스, 재생 셀룰로오스 및 이들의 다양한 공중합체 등을 들 수 있으나, 이에 제한되는 것은 아니다.
상기 바인더의 함량은 리튬 이차전지용 양극을 구성하는 양극 활물질층 전체 100 중량%를 기준으로 1 내지 10 중량%일 수 있다. 상기 바인더의 함량이 상기 범위 미만이면 양극의 물리적 성질이 저하되어 양극 활물질이 탈락할 수 있고, 상기 범위 초과이면 양극에서 양극 활물질의 비율이 상대적으로 감소되어 전지 용량이 감소될 수 있으므로 상술한 범위 내에서 적정 함량을 결정하는 것이 바람직하다.
또한, 상기 도전재는 양극 활물질의 도전성을 더욱 향상시키기 위해 추가로 사용하는 것일 수 있다.
상기 도전재는 전해질과 양극 활물질을 전기적으로 연결시켜 주어 집전체(current collector)로부터 전자가 양극 활물질까지 이동하는 경로의 역할을 하는 물질로서, 도전성을 갖는 것이라면 제한없이 사용할 수 있다.
예를 들어, 상기 도전재로는 천연 흑연, 인조 흑연 등의 흑연; 슈퍼 P(Super-P), 덴카 블랙, 아세틸렌 블랙, 케첸 블랙, 채널 블랙, 퍼네이스 블랙, 램프 블랙, 서머 블랙 등의 카본 블랙; 탄소 나노튜브, 플러렌 등의 탄소 유도체; 탄소 섬유, 금속 섬유 등의 도전성 섬유; 불화 카본; 알루미늄, 니켈 분말 등의 금속 분말 또는 폴리아닐린, 폴리티오펜, 폴리아세틸렌, 폴리피롤 등의 전도성 고분자를 단독 또는 혼합하여 사용할 수 있다.
상기 도전재는 상기 양극을 구성하는 양극 활물질층 전제 100 중량%를 기준으로 1 내지 10 중량%, 바람직하게는 4 내지 7 중량%로 포함할 수 있다. 상기 도전재의 함량이 상기 범위 미만이면 양극 활물질과 집전체 간의 전자 전달이 용이하지 않아 전압 및 용량이 감소한다. 이와 반대로, 상기 범위 초과이면 상대적으로 양극 활물질의 비율이 감소하여 전지의 총 에너지(전하량)이 감소할 수 있으므로 상술한 범위 내에서 적정 함량을 결정하는 것이 바람직하다.
본 발명에서 상기 양극의 제조방법은 특별히 한정되지 않으며, 통상의 기술자에 의해 공지의 방법 또는 이를 변형하는 다양한 방법이 사용 가능하다.
일례로, 상기 양극은 상술한 바의 조성을 포함하는 양극 슬러리 조성물을 제조한 후, 이를 상기 양극 집전체의 적어도 일면에 도포함으로써 제조된 것일 수 있다.
상기 양극 슬러리 조성물은 전술한 바의 양극 활물질 및 텔루륨을 포함하며, 추가로 바인더, 도전재 및 용매를 더 포함할 수 있다.
상기 용매로는 양극 활물질, 텔루륨, 도전재 및 바인더를 균일하게 분산시킬 수 있는 것을 사용한다. 이러한 용매로는 수계 용매로서 물이 가장 바람직하며, 이때 물은 증류수(distilled water), 탈이온수(deionzied water)일 수 있다. 다만 반드시 이에 한정하는 것은 아니며, 필요한 경우 물과 쉽게 혼합이 가능한 저급 알코올이 사용될 수 있다. 상기 저급 알코올로는 메탄올, 에탄올, 프로판올, 이소프로판올 및 부탄올 등이 있으며, 바람직하기로 이들은 물과 함께 혼합하여 사용될 수 있다.
상기 용매의 함량은 코팅을 용이하게 할 수 있는 정도의 농도를 갖는 수준으로 함유될 수 있으며, 구체적인 함량은 도포 방법 및 장치에 따라 달라진다.
상기 양극 슬러리 조성물은 필요에 따라 해당 해당 기술분야에서 그 기능의 향상 등을 목적으로 통상적으로 사용되는 물질을 필요에 따라 추가적으로 포함할 수 있다. 예를 들어 점도 조정제, 유동화제, 충진제 등을 들 수 있다.
상기 양극 슬러리 조성물의 도포 방법은 본 발명에서 특별히 한정하지 않으며, 예컨대, 닥터 블레이드(doctor blade), 다이 캐스팅(die casting), 콤마 코팅(comma coating), 스크린 프린팅(screen printing) 등의 방법을 들 수 있다. 또한, 별도의 기재(substrate) 위에 성형한 후 프레싱(pressing) 또는 라미네이션(lamination) 방법에 의해 양극 슬러리를 양극 집전체 상에 도포할 수도 있다.
상기 도포 후, 용매 제거를 위한 건조 공정을 수행할 수 있다. 상기 건조 공정은 용매를 충분히 제거할 수 있는 수준의 온도 및 시간에서 수행하며, 그 조건은 용매의 종류에 따라 달라질 수 있으므로 본 발명에 특별히 제한되지 않는다. 일례로, 온풍, 열풍, 저습풍에 의한 건조, 진공 건조, (원)적외선 및 전자선 등의 조사에 의한 건조법을 들 수 있다. 건조 속도는 통상 응력 집중에 의해 양극 활물질층에 균열이 생기거나 양극 활물질층이 양극 집전체로부터 박리되지 않을 정도의 속도 범위 내에서 가능한 한 빨리 용매를 제거할 수 있도록 조정한다.
추가적으로, 상기 건조 후 집전체를 프레스함으로써 양극 내 양극 활물질의 밀도를 높일 수도 있다. 프레스 방법으로는 금형 프레스 및 롤 프레스 등의 방법을 들 수 있다.
상기 전해액은 리튬염, 유기용매 및 전해액 첨가제를 포함한다.
상기 전해액 첨가제는 비스(2,2,2-트리플루오로에틸)에테르(Bis(2,2,2-trifluoroethyl)ether, BTFE)를 포함한다.
상기 비스(2,2,2-트리플루오로에틸)에테르는 리튬 폴리설파이드에 대해 낮은 용해도를 갖는다. 그에 따라 리튬 폴리설파이드의 용출을 억제하며, 리튬 이차전지, 구체적으로 리튬-황 전지의 초기 방전 단계에서 음극 표면에 보호층을 형성할 수 있다. 따라서, 리튬 폴리설파이드와 음극인 리튬 금속 사이의 부반응을 효과적으로 억제할 수 있어 리튬 폴리설파이드에 의한 셔틀 현상을 저감시키는 효과를 나타내어 리튬-황 전지의 수명 특성을 향상시킬 수 있다.
상기 비스(2,2,2-트리플루오로에틸)에테르는 전해액 전체 100 부피%를 기준으로 1 내지 20 부피%, 바람직하게는 5 내지 15 부피%, 더욱 바람직하게는 7 내지 12 부피% 로 포함될 수 있다.
상기 비스(2,2,2-트리플루오로에틸)에테르가 1 부피% 미만으로 포함되면 리튬-황 전지의 수명특성 향상 효과가 미미하며, 20 부피%를 초과하면 과전압이 형성되어 고율방전 용량 및 출력 특성이 감소하는 문제가 발생할 수 있다.
상기 전해액 전체 100 부피%는 리튬염을 제외한 액체의 부피를 의미한다.
상기 리튬염은 상기 전해액의 전해질염으로 포함되며, 상기 리튬염의 종류는 본 발명에서 특별히 한정하지 않으며, 리튬-황 전지에 통상적으로 사용 가능한 것이라면 제한없이 사용될 수 있다.
예를 들어, 상기 리튬염은 LiCl, LiBr, LiI, LiClO4, LiBF4, LiB10Cl10, LiB(Ph)4, LiC4BO8, LiPF6, LiCF3SO3, LiCF3CO2, LiAsF6, LiSbF6, LiAlCl4, LiSO3CH3, LiSO3CF3, LiSCN, LiC(CF3SO2)3, LiN(CF3SO2)2, LiN(C2F5SO2)2, LiN(SO2F)2, 클로로 보란 리튬, 저급 지방족 카르본산 리튬, 테트라 페닐 붕산 리튬 및 리튬 이미드로 이루어진 군으로부터 선택되는 1종 이상을 포함할 수 있으며, 바람직하게는 (SO2F)2NLi(lithium bis(fluorosulfonyl)imide; LiFSI)일 수 있다.
상기 리튬염의 농도는 이온 전도도, 용해도 등을 고려하여 적절하게 결정될 수 있으며, 예를 들어 0.1 내지 4.0 M, 바람직하게는 0.5 내지 2.0 M 일 수 있다. 상기 리튬염의 농도가 상기 범위 미만인 경우 전지 구동에 적합한 이온 전도도의 확보가 어려우며, 이와 반대로 상기 범위를 초과하는 경우 전해액의 점도가 증가하여 리튬 이온의 이동성을 저하되며 리튬염 자체의 분해 반응이 증가하여 전지의 성능이 저하될 수 있으므로 상기 범위 내에서 적절히 조절한다.
상기 유기용매는 리튬 이차전지의 전기화학적 반응에 관여하는 이온들이 이동할 수 있는 매질로 유기용매를 포함한다.
상기 유기용매는 환형 에테르 및 비환형 에테르를 포함한다.
상기 에테르계 화합물은 황 또는 황 계열 화합물에 대한 용해도를 유지하면서 전기화학적 안정성이 전지의 구동전압 범위 내에서 확보되며, 상대적으로 전지의 구동에 따른 중간 생성물과의 부반응 발생이 적다.
상기 환형 에테르는 퓨란, 2-메틸퓨란, 3-메틸퓨란, 2-에틸퓨란, 2-프로필퓨란, 2-부틸퓨란, 2,3-디메틸퓨란, 2,4-디메틸퓨란, 2,5-디메틸퓨란, 피란, 2-메틸피란, 3-메틸피란, 4-메틸피란, 벤조퓨란, 2-(2-니트로비닐)퓨란, 테트라하이드로퓨란, 2-메틸 테트라하이드로퓨란, 2,5-디메틸 테트라하이드로퓨란, 2,5-디메톡시 테트라하이드로퓨란, 2-에톡시 테트라하이드로퓨란, 테트라하이드로파이란, 1,2-디메톡시 벤젠, 1,3-디메톡시 벤젠 및 1,4-디메톡시 벤젠으로 이루어진 군으로부터 선택되는 1종 이상을 포함할 수 있다. 바람직하게는 2-메틸퓨란을 포함할 수 있다.
상기 환형 에테르에 주로 사용되는 디옥솔란계 화합물은 리튬 폴리설파이드에 대한 용해도가 과도하게 높아 셔틀 현상을 유발할 가능성이 매우 높고, 양극 활물질인 황의 손실을 가속화하여 리튬 이차전지의 수명 성능을 저하시킬 수 있다. 따라서, 상기 디옥솔란계 화합물은 본 발명의 리튬 이차전지 전해액의 유기용매로 사용하기에는 바람직하지 않다.
상기 비환형 에테르는 디메틸 에테르, 디에틸 에테르, 디프로필 에테르, 메틸에틸 에테르, 메틸프로필 에테르, 에틸프로필 에테르, 디메톡시에탄, 디에톡시에탄, 메톡시에톡시에탄, 디에틸렌 글리콜 디메틸 에테르, 디에틸렌 글리콜 디에틸 에테르, 디에틸렌 글리콜 메틸에틸 에테르, 트리에틸렌 글리콜 디메틸 에테르, 트리에틸렌 글리콜 디에틸 에테르, 트리에틸렌 글리콜 메틸에틸 에테르, 테트라에틸렌 글리콜 디메틸 에테르, 테트라에틸렌 글리콜 디에틸 에테르, 테트라에틸렌 글리콜 메틸에틸 에테르, 폴리에틸렌 글리콜 디메틸 에테르, 에틸렌 글리콜 디에틸 에테르 및 에틸렌 글리콜 에틸 메틸 에테르로 이루어진 군으로부터 선택되는 1종 이상을 포함할 수 있으며, 바람직하게는 디메틸 에테르를 포함할 수 있다.
상기 환형 에테르 및 비환형 에테르는 1:9 내지 9:1의 부피비, 바람직하게는 1:2 내지 1:5의 부피비로 혼합하여 사용할 수 있다.
본 발명의 리튬 이차전지의 전해액은 바람직하게는 리튬염, 2-메틸퓨란, 디메톡시에탄 및 비스(2,2,2-트리플루오로에틸)에테르를 포함하는 것일 수 있다.
또한, 본 발명의 리튬 이차전지의 전해액은 리튬 이차전지의 전해액에 통상적으로 사용되는 유기용매를 더 포함할 수 있다. 예를 들어 에스테르 화합물, 아미드 화합물, 선형 카보네이트 화합물 및 환형 카보네이트 화합물로 이루어진 군으로부터 선택되는 1종 이상을 추가로 포함할 수 있다.
상기 에스테르 화합물로는 메틸 아세테이트, 에틸 아세테이트, 프로필 아세테이트, 메틸 프로피오 네이트, 에틸 프로피오네이트, 프로필 프로피오네이트, γ-부티로락톤, γ-발레로락톤, γ-카프로락톤, σ-발레로락톤 및 ε-카프로락톤으로 이루어진 군으로부터 선택되는 1종 이상을 사용할 수 있으나, 이에 한정되는 것은 아니다.
상기 선형 카보네이트 화합물로는 디메틸 카보네이트, 디에틸 카보네이트, 디프로필 카보네이트, 에틸메틸 카보네이트, 메틸프로필 카보네이트 및 에틸프로필 카보네이트로 이루어진 군으로부터 선택되는 1종 이상을 포함할 수 있으나, 이에 한정되는 것은 아니다.
상기 환형 카보네이트 화합물로는 에틸렌 카보네이트, 프로필렌 카보네이트, 1,2-부틸렌 카보네이트, 2,3-부틸렌 카보네이트, 1,2-펜틸렌 카보네이트, 2,3-펜틸렌 카보네이트, 비닐렌 카보네이트, 비닐에틸렌 카보네이트 및 이들의 할로겐화물로 이루어진 군으로부터 선택되는 1종 이상을 포함할 수 있으나, 이에 한정되는 것은 아니다.
본 발명의 리튬 이차전지의 전해액은 전술한 조성 이외에 질산 또는 아질산계 화합물을 더 포함할 수 있다. 상기 질산 또는 아질산계 화합물은 음극인 리튬 금속 전극에 안정적인 피막을 형성하고 충·방전 효율을 향상시키는 효과가 있다.
이러한 질산 또는 아질산계 화합물로는 본 발명에서 특별히 한정하지는 않으나, 질산리튬(LiNO3), 질산칼륨(KNO3), 질산세슘(CsNO3), 질산바륨(Ba(NO3)2), 질산 암모늄(NH4NO3), 아질산리튬(LiNO2), 아질산칼륨(KNO2), 아질산세슘(CsNO2), 아질산 암모늄(NH4NO2) 등의 무기계 질산 또는 아질산 화합물; 메틸 니트레이트, 디알킬 이미다졸륨 니트레이트, 구아니딘 니트레이트, 이미다졸륨 니트레이트, 피리디늄 니트레이트, 에틸 니트라이트, 프로필 니트라이트, 부틸 니트라이트, 펜틸 니트라이트, 옥틸 니트라이트 등의 유기계 질산 또는 아질산 화합물; 니트로메탄, 니트로프로판, 니트로부탄, 니트로벤젠, 디니트로벤젠, 니트로 피리딘, 디니트로피리딘, 니트로톨루엔, 디니트로톨루엔 등의 유기 니트로 화합물 및 이들의 조합으로 이루어진 군에서 선택된 1종이 가능하며, 바람직하게는 질산리튬을 사용한다.
또한, 본 발명의 전해액은 충·방전 특성, 난연성 등의 개선을 목적으로 기타 첨가제를 더 포함할 수 있다. 상기 첨가제의 예시로는 피리딘, 트리에틸포스파이트, 트리에탄올아민, 환상 에테르, 에틸렌 디아민, n-글라임(glyme), 헥사 인산 트리 아마이드, 니트로벤젠 유도체, 유황, 퀴논 이민 염료, N-치환 옥사졸리디논, N,N-치환 이미다졸리딘, 에틸렌 글리콜 디알킬 에테르, 암모늄염, 피롤, 2-메톡시 에탄올, 삼염화 알루미늄, 플루오로에틸렌 카보네이트(FEC), 프로펜 설톤(PRS), 비닐렌 카보네이트(VC) 등을 들 수 있다.
상기 전해액의 주입은 최종 제품의 제조 공정 및 요구 물성에 따라, 전기화학소자의 제조 공정 중 적절한 단계에서 행해질 수 있다. 즉, 전기화학소자 조립전 또는 전기화학소자 조립 최종 단계 등에서 적용될 수 있다.
본 발명의 리튬 이차전지의 음극은 음극 집전체 및 상기 음극 집전체의 일면 또는 양면에 도포된 음극 활물질층을 포함할 수 있다. 또는 상기 음극은 리튬 금속판일 수 있다.
상기 음극 집전체는 음극 활물질층의 지지를 위한 것으로, 양극 집전체에서 설명한 바와 같다.
상기 음극 활물질층은 음극 활물질 이외에 도전재, 바인더 등을 포함할 수 있다. 이때 상기 도전재 및 바인더는 전술한 바를 따른다.
상기 음극 활물질은 리튬 (Li+)을 가역적으로 삽입(intercalation) 또는 탈삽입(deintercalation)할 수 있는 물질, 리튬 이온과 반응하여 가역적으로 리튬 함유 화합물을 형성할 수 있는 물질, 리튬 금속 또는 리튬 합금을 포함할 수 있다.
상기 리튬 이온(Li+)을 가역적으로 삽입 또는 탈삽입할 수 있는 물질은 예컨대 결정질 탄소, 비정질 탄소 또는 이들의 혼합물일 수 있다. 상기 리튬 이온(Li+)과 반응하여 가역적으로 리튬 함유 화합물을 형성할 수 있는 물질은 예를 들어, 산화주석, 티타늄나이트레이트 또는 실리콘일 수 있다. 상기 리튬 합금은 예를 들어, 리튬(Li)과 나트륨(Na), 칼륨(K), 루비듐(Rb), 세슘(Cs), 프랑슘(Fr), 베릴륨(Be), 마그네슘(Mg), 칼슘(Ca), 스트론튬(Sr), 바륨(Ba), 라듐(Ra), 알루미늄(Al) 및 주석(Sn)으로 이루어지는 군에서 선택되는 금속의 합금일 수 있다.
바람직하게는 상기 음극 활물질은 리튬 금속일 수 있으며, 구체적으로 리튬 금속 박막 또는 리튬 금속 분말의 형태일 수 있다.
상기 음극 활물질의 형성방법은 특별히 제한되지 않으며, 당업계에서 통상적으로 사용되는 층 또는 막의 형성방법을 이용할 수 있다. 예컨대 압착, 코팅, 증착 등의 방법을 이용할 수 있다. 또한, 집전체에 리튬 박막이 없는 상태로 전지를 조립한 후 초기 충전에 의해 금속판 상에 금속 리튬 박막이 형성되는 경우도 본 발명의 음극에 포함된다.
상기 분리막은 양극과 음극 사이에 위치할 수 있다.
상기 분리막은 상기 양극과 음극을 서로 분리 또는 절연시키고, 양극과 음극 사이에 리튬이온 수송을 가능하게 하는 것으로 다공성 비전도성 또는 절연성 물질로 이루어질 수 있고, 통상 리튬 이차전지에서 분리막으로 사용되는 것이라면 특별한 제한없이 사용 가능하다. 이러한 분리막은 필름과 같은 독립적인 부재일 수도 있고, 양극 및/또는 음극에 부가된 코팅층일 수도 있다.
상기 분리막으로는 전해액의 이온 이동에 대하여 저저항이면서 전해액에 대한 함습 능력이 우수한 것이 바람직하다.
상기 분리막은 다공성 기재로 이루어질 수 있는데 상기 다공성 기재는 통상적으로 이차전지에 사용되는 다공성 기재라면 모두 사용이 가능하고, 다공성 고분자 필름을 단독으로 또는 이들을 적층하여 사용할 수 있으며, 예를 들어, 고융점의 유리 섬유, 폴리에틸렌테레프탈레이트 섬유 등으로 된 부직포 또는 폴리올레핀계 다공성 막을 사용할 수 있으나, 이에 한정되는 것은 아니다.
상기 다공성 기재의 재질로는 본 발명에서 특별히 한정하지 않고, 통상적으로 전기화학소자에 사용되는 다공성 기재라면 모두 사용이 가능하다. 예를 들어, 상기 다공성 기재는 폴리에틸렌(polyethylene), 폴리프로필렌(polypropylene) 등의 폴리올레핀(polyolefin), 폴리에틸렌테레프탈레이트(polyethyleneterephthalate), 폴리부틸렌테레프탈레이트(polybutyleneterephthalate) 등의 폴리에스테 르(polyester), 폴리아미드(polyamide), 폴리아세탈(polyacetal), 폴리카보네이트(polycarbonate), 폴리이미드(polyimide), 폴리에테르에테르케톤(polyetheretherketone), 폴리에테르설폰(polyethersulfone), 폴리페닐렌옥사이드(polyphenyleneoxide), 폴리페닐렌설파이드(polyphenylenesulfide), 폴리에틸렌나프탈렌(polyethylenenaphthalate), 폴리테트라플루오로에틸렌(polytetrafluoroethylene), 폴리비닐리덴 플루오라이드(polyvinylidenefluoride), 폴리염화비닐(polyvinyl chloride), 폴리아크릴로니트릴(polyacrylonitrile), 셀룰로오스(cellulose), 나일론(nylon), 폴리파라페닐렌벤조비스옥사졸(poly(p-phenylene benzobisoxazole) 및 폴리아릴레이트(polyarylate)로 이루어진 군에서 선택된 1종 이상의 재질을 포함할 수 있다.
상기 다공성 기재의 두께는 특별히 제한되지 않으나, 1 내지 100 ㎛, 바람직하게는 5 내지 50 ㎛일 수 있다. 상기 다공성 기재의 두께 범위가 전술한 범위로 한정되는 것은 아니지만, 두께가 전술한 하한보다 지나치게 얇을 경우에는 기계적 물성이 저하되어 전지 사용 중 분리막이 쉽게 손상될 수 있다.
상기 다공성 기재에 존재하는 기공의 평균 직경 및 기공도 역시 특별히 제한되지 않으나 각각 0.001 내지 50 ㎛ 및 10 내지 95 %일 수 있다.
본 발명에 따른 리튬 이차전지는 일반적인 공정인 권취(winding) 이외에도 세퍼레이터와 전극의 적층(lamination, stack) 및 접음(folding) 공정이 가능하다.
상기 리튬 이차전지의 형상은 특별히 제한되지 않으며, 원통형, 적층형, 코인형 등 다양한 형상으로 할 수 있다.
본 발명의 리튬 이차전지, 구체적으로 리튬-황 전지는 양극 첨가제로 텔루륨을 포함한다. 상기 텔루륨은 리튬-황 전지의 초기 방전 단계에서 음극 표면에 보호층 형성에 기여하여 음극 표면에서 향상된 스트리핑/도금(stripping/plating) 과정을 수행할 수 있다. 그로 인해 음극의 효율 및 안정성이 개선되어 리튬-황 전지의 수명 특성을 향상시킬 수 있다.
또한, 본 발명의 리튬-황 전지는 전해액 첨가제로 비스(2,2,2-트리플루오로에틸)에테르를 포함한다. 상기 비스(2,2,2-트리플루오로에틸)에테르는 리튬 폴리설파이드의 용출을 억제하며, 리튬-황 전지의 초기 방전 단계에서 음극 표면에 보호층을 형성함으로써 리튬 폴리설파이드와 음극인 리튬 금속 사이의 부반응을 효과적으로 억제할 수 있어 리튬-황 전지의 수명 특성을 향상시킬 수 있다.
따라서, 본 발명의 리튬 이차전지는 수명 특성 향상 효과를 지니며, 구체적으로 방전 용량이 초기 방전용량 대비 80%에 도달하게 되는 사이클의 수를 연장시킬 수 있다.
이하, 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시하나, 하기 실시예는 본 발명을 예시하는 것일 뿐 본 발명의 범주 및 기술사상 범위 내에서 다양한 변경 및 수정이 가능함은 당업자에게 있어서 명백한 것이며, 이러한 변형 및 수정이 첨부된 특허청구범위에 속하는 것도 당연한 것이다.
<리튬-황 전지의 제조>
실시예 1.
양극 활물질로 황-탄소(CNT) 복합체(S:C=75:25(중량비)) 및 3 중량%의 리튬-폴리아크릴산(Li-PAA) 수용액을 혼합하여 혼합용액을 제조하였다. 그 후 상기 혼합용액에 텔루륨(Te) 분말을 첨가하였다. 이 때 황-탄소 복합체, 리튬-폴리아크릴산의 고형분 및 텔루륨의 중량비는 90:5:5이었다. 여기에 추가로 물을 첨가한 뒤 혼합하여 고형분이 32 중량%인 양극 슬러리를 제조하였다.
상기 양극 슬러리를 알루미늄 호일 집전체 위에 도포한 뒤 Mathis coater(Mathis Switzerland, SV-M)을 이용하여 일정 두께로 코팅하였다. 그 후 50℃의 온도에서 2시간 동안 건조하여 양극을 제조하였다.
상기 양극의 로딩양은 3.3mAh/cm2이고, 기공도는 73%이었다.
0.75 M LiFSI와 4 중량%의 질산리튬(LiNO3)을 2-메틸퓨란(2-methylfuran, 2-MeF), 비스(2,2,2-트리플루오로에틸)에테르(Bis(2,2,2-trifluoroethyl)ether, BTFE) 및 1,2-디메톡시에탄(1,2-dimethoxyethane, DME)을 2:1:7의 부피로 혼합한 유기용매에 용해시켜 전해액을 제조하였다. 이 때 상기 비스(2,2,2-트리플루오로에틸)에테르는 전해액 총 부피에 대하여 10 부피%로 포함된 것이다.
상기 제조된 양극과 음극을 대면하도록 위치시키고 그 사이에 두께 16 ㎛, 기공도 45 %의 폴리에틸렌 분리막을 개재한 후, 이를 알루미늄 파우치에 넣은 뒤, 상기 전해액을 주입 후 밀봉하여 리튬-황 전지를 제조하였다.
이때 음극으로 30 ㎛ 두께의 리튬 금속 박막을 사용하였다.
실시예 2.
황-탄소 복합체, 리튬-폴리아크릴산의 고형분 및 텔루륨의 중량비가 85:5:10인 것을 제외하고는 상기 실시예 1과 동일하게 실시하여 리튬-황 전지를 제조하였다.
실시예 3.
황-탄소 복합체, 리튬-폴리아크릴산의 고형분 및 텔루륨의 중량비가 80:5:15인 것을 제외하고는 상기 실시예 1과 동일하게 실시하여 리튬-황 전지를 제조하였다.
실시예 4.
2-메틸퓨란(2-methylfuran, 2-MeF), 비스(2,2,2-트리플루오로에틸)에테르(Bis(2,2,2-trifluoroethyl)ether, BTFE) 및 1,2-디메톡시에탄(1,2-dimethoxyethane, DME)을 20:25:55의 부피로 혼합한 것을 제외하고는 상기 실시예 1과 동일하게 실시하여 리튬-황 전지를 제조하였다.
실시예 5.
1,3-디옥솔란(1,3-dioxolane, DOL), 비스(2,2,2-트리플루오로에틸)에테르(Bis(2,2,2-trifluoroethyl)ether, BTFE) 및 1,2-디메톡시에탄(1,2-dimethoxyethane, DME)을 40:10:50의 부피로 혼합한 것을 제외하고는 상기 실시예 1과 동일하게 실시하여 리튬-황 전지를 제조하였다.
비교예 1.
양극 활물질로 황-탄소(CNT) 복합체(S:C=75:25(중량비)) 및 3 중량%의 리튬-폴리아크릴산(Li-PAA) 수용액을 혼합하여 혼합용액을 제조하였다. 이 때 황-탄소 복합체 및 리튬-폴리아크릴산의 고형분의 중량비는 95:5이었다. 여기에 추가로 물을 첨가한 뒤 혼합하여 고형분이 32 중량%인 양극 슬러리를 제조하였다.
상기 양극 슬러리를 알루미늄 호일 집전체 위에 도포한 뒤 Mathis coater(Mathis Switzerland, SV-M)을 이용하여 일정 두께로 코팅하였다. 그 후 50℃의 온도에서 2시간 동안 건조하여 양극을 제조하였다.
상기 양극의 로딩양은 3.3mAh/cm2이고, 기공도는 73%이었다.
0.75 M LiFSI와 4 중량%의 질산리튬(LiNO3)을 2-메틸퓨란(2-methylfuran, 2-MeF) 및 1,2-디메톡시에탄(1,2-dimethoxyethane, DME)을 1:4의 부피로 혼합한 유기용매에 용해시켜 전해액을 제조하였다.
상기 제조된 양극과 음극을 대면하도록 위치시키고 그 사이에 두께 16 ㎛, 기공도 45 %의 폴리에틸렌 분리막을 개재한 후, 상기 전해액을 주입하여 리튬-황 전지를 제조하였다.
이때 음극으로 30 ㎛ 두께의 리튬 금속 박막을 사용하였다.
비교예 2.
0.75 M LiFSI와 4 중량%의 질산리튬(LiNO3)을 2-메틸퓨란(2-methylfuran, 2-MeF) 및 1,2-디메톡시에탄(1,2-dimethoxyethane, DME)을 1:4의 부피로 혼합한 유기용매에 용해시켜 전해액을 제조한 것을 제외하고는 상기 실시예 1과 동일하게 실시하여 리튬-황 전지를 제조하였다.
비교예 3.
양극 활물질로 황-탄소(CNT) 복합체(S:C=75:25(중량비)) 및 3 중량%의 리튬-폴리아크릴산(Li-PAA) 수용액을 혼합하여 혼합용액을 제조하였다. 이 때 황-탄소 복합체 및 리튬-폴리아크릴산의 고형분의 중량비는 95:5이었다. 여기에 추가로 물을 첨가한 뒤 혼합하여 고형분이 32 중량%인 양극 슬러리를 제조하였다.
이를 제외하고는 상기 실시예 1과 동일하게 실시하여 리튬-황 전지를 제조하였다.
실험예 1. 리튬-황 전지의 수명 특성 평가
실시예 1 내지 3 및 비교예 1 내지 3에서 제조한 전지에 대해, 충·방전 측정장치(PESCO5-0.01, PNE solution 한국)를 사용하여 성능을 평가하였다.
초기 3 사이클에서는 0.1C 전류밀도로 2.5에서 1.8V까지의 충·방전 용량을 측정하였으며, 4번째 사이클부터는 0.3C로 방전하고, 0.2C로 충전하여 충·방전 용량을 측정하였다. Capacity retention 결과는 비교예 1의 리튬-황 전지의 4번째 사이클의 방전용량을 100%로 하여 이후 사이클의 상대적인 용량을 계산하였으며, 방전 용량이 80% 도달(cycle@80%)할때까지 측정하였다.
그 결과를 하기 표 1 및 도 1에 나타내었다.
cycle@80% 개선율(%)
비교예 1 164 cycle -
비교예 2 174 cycle 6.1%
비교예 3 163 cycle -
실시예 1 202 cycle 23.2%
실시예 2 198 cycle 20.7%
실시예 3 147 cycle -
상기 결과에서, 텔루륨을 양극 활물질층 전체 100 중량%를 기준으로 5 중량%로 포함하고, 비스(2,2,2-트리플루오로에틸)에테르를 포함한 실시예 1의 리튬-황 전지는 수명 특성이 매우 향상된 결과를 보였다. 또한, 텔루륨을 양극 활물질층 전체 100 중량%를 기준으로 10 중량%로 포함하고, 비스(2,2,2-트리플루오로에틸)에테르를 포함한 실시예 2의 리튬-황 전지도 수명 특성이 개선된 결과를 보였다.
반면, 텔루륨을 양극 활물질층 전체 100 중량%를 기준으로 15 중량%로 포함하고, 비스(2,2,2-트리플루오로에틸)에테르를 포함한 실시예 3의 리튬-황 전지는 텔루륨의 바람직한 함량 범위인 1 내지 10 중량%을 초과한 양의 텔루륨을 포함함에 따라 수명 특성이 감소하는 결과를 보였다. 또한, 텔루륨만을 포함한 비교예 2의 리튬-황 전지는 수명 특성이 미미하게 개선된 결과를 보였으며, 비스(2,2,2-트리플루오로에틸)에테르만을 포함한 비교예 3의 리튬-황 전지는 수명 특성 향상 효과를 보이지 못하였다.
따라서, 양극 첨가제로 텔루륨을 포함하고, 전해액 첨가제로 비스(2,2,2-트리플루오로에틸)에테르를 포함하며, 상기 텔루륨을 양극 활물질층 전체 100 중량%를 기준으로 1 내지 10 중량%로 포함하면 리튬-황 전지의 수명 특성을 향상시킬 수 있다는 것을 알 수 있다.
또한, 상기와 동일한 방법으로 실시예 4 및 5의 리튬-황 전지의 수명 특성을 측정하였다.
실시예 4는 비스(2,2,2-트리플루오로에틸)에테르를 25 부피%로 포함하는 전해액을 사용한 리튬-황 전지로, 수명 열화가 가속화되는 결과를 보였다(도 2). 또한, 실시예 1 및 4의 리튬-황 전지의 5, 15, 25 및 35번째 사이클의 전압을 측정하였다. 실시예 1의 리튬-황 전지는 사이클 용량이 일정하게 유지되는 반면(도 3), 실시예 4의 리튬-황 전지는 사이클이 진행될수록 용량이 감소하며, 말단부의 과전압이 점차 심화되어 용량 퇴화가 가속화되는 결과가 나타났다(도 4).
상기 결과로부터, 양극 첨가제로 텔루륨을 포함하고, 전해액 첨가제로 비스(2,2,2-트리플루오로에틸)에테르를 포함하며, 상기 비스(2,2,2-트리플루오로에틸)에테르는 전해액 전체 100 부피%를 기준으로 1 내지 20 부피%로 포함하면 수명 특성을 보다 향상시킬 수 있는 것을 알 수 있다.
실시예 5는 전해액으로 2-메틸퓨란 대신 1,3-디옥솔란(DOL)을 사용한 리튬-황 전지로, 1,3-디옥솔란/1,2-디메톡시에탄을 전해액 기반으로 사용한 것이다. 상기 실시예 5의 리튬-황 전지의 수명 특성 결과, 퇴화가 빠르게 나타나는 것을 볼 수 있었다(도 5).
상기 결과로부터, 양극 첨가제로 텔루륨을 포함하고, 전해액 첨가제로 비스(2,2,2-트리플루오로에틸)에테르를 포함하더라도, 전해액으로 1,3-디옥솔란을 사용하면 수명 특성 개선 효과를 보이지 못하는 것을 알 수 있다.
즉, 양극 첨가제로 텔루륨을 양극 활물질층 전체 100 중량%를 기준으로 1 내지 10 중량%로 포함하고, 전해액 첨가제로 비스(2,2,2-트리플루오로에틸)에테르를 전해액 전체 100 부피%를 기준으로 1 내지 20 부피%로 포함하고, 전해액으로 디옥솔란계 화합물을 사용하지 않으면, 리튬-황 전지의 수명 특성 개선 효과를 보일 수 있다.
실험예 2. 리튬-황 전지의 초기 쿨롱 효율 평가
실시예 1 내지 3 및 비교예 3에서 제조한 전지에 대해, 충·방전 측정장치(PESCO5-0.01, PNE solution 한국)를 사용하여, 텔루륨 함량에 따른 초기 쿨롱 효율을 평가하였다.
초기 3 사이클에서는 0.1C 전류밀도로 2.5에서 1.8V까지의 충·방전 용량을 측정하였으며, 4번째 사이클부터는 0.3C로 방전하고, 0.2C로 충전하여 초기 쿨롱 효율을 측정하였으며, 결과를 도 6 및 도 7에 나타내었다.
텔루륨을 포함하지 않은 비교예 3의 리튬-황 전지는 초기 쿨롱 효율이 감소하지 않는 결과를 보였다. 그러나 텔루륨을 포함하는 실시예 1 내지 3의 리튬-황 전지는 초기 쿨롱 효율이 감소하는 결과를 보였다. 실시예 1 및 2의 리튬-황 전지는 텔루륨을 양극 활물질층 전체 100 중량%를 기준으로 각각 5 및 10 중량%로 포함하는 것으로, 초기 쿨롱 효율이 감소하는 결과를 보였더라도, 상기 실험예 1의 결과와 같이 리튬-황 전지의 수명 특성은 개선되는 결과를 보였다. 실시예 3의 리튬-황 전지는 텔루륨을 양극 활물질층 전체 100 중량%를 기준으로 15 중량%로 포함하는 것으로, 텔루륨의 함량 범위인 1 내지 10 중량%를 초과한 것이다. 그에 따라 실시예 3의 리튬-황 전지는 초기 쿨롱 효율이 과도하게 감소하는 결과를 보였으며, 쿨롱 효율의 지나친 감소로 인하여 상기 실험예 1의 결과와 같이 리튬-황 전지의 수명 특성이 개선되지 못하는 결과를 보였다.
이로부터 텔루륨을 양극 활물질층 전체 100 중량%를 기준으로 10 중량%를 초과하여 포함하면 쿨롱 효율이 감소하는 것을 알 수 있었으며, 텔루륨을 1 내지 10 중량%로 포함하는 것이 바람직하다는 것을 알 수 있었다.

Claims (11)

  1. 양극; 음극; 이들 사이에 개재된 분리막; 및 전해액을 포함하는 리튬 이차전지로,
    상기 양극은 양극 활물질 및 양극 첨가제를 포함하며,
    상기 양극 첨가제는 텔루륨을 포함하며,
    상기 전해액은 리튬염, 유기용매 및 전해액 첨가제를 포함하며,
    상기 전해액 첨가제는 비스(2,2,2-트리플루오로에틸)에테르를 포함하는 리튬 이차전지.
  2. 제1항에 있어서,
    상기 양극은 양극 집전체 및 상기 양극 집전체의 적어도 일면에 배치된 양극 활물질층을 포함하며,
    상기 양극 활물질층은 양극 활물질 및 텔루륨을 포함하는 것을 특징으로 하는 리튬 이차전지.
  3. 제2항에 있어서,
    상기 텔루륨은 양극 활물질층 전체 100 중량%를 기준으로 1 내지 10 중량%로 포함되는 것을 특징으로 하는 리튬 이차전지.
  4. 제1항에 있어서,
    상기 양극 활물질은 황 원소 및 황 화합물로 이루어진 군으로부터 선택되는 1종 이상을 포함하는 것을 특징으로 하는 리튬 이차전지.
  5. 제1항에 있어서,
    상기 비스(2,2,2-트리플루오로에틸)에테르는 전해액 전체 100 부피%를 기준으로 1 내지 20 부피%로 포함되는 것을 특징으로 하는 리튬 이차전지.
  6. 제1항에 있어서,
    상기 유기용매는 환형 에테르 및 비환형 에테르를 포함하는 것을 특징으로 하는 리튬 이차전지.
  7. 제6항에 있어서,
    상기 환형 에테르는 퓨란, 2-메틸퓨란, 3-메틸퓨란, 2-에틸퓨란, 2-프로필퓨란, 2-부틸퓨란, 2,3-디메틸퓨란, 2,4-디메틸퓨란, 2,5-디메틸퓨란, 피란, 2-메틸피란, 3-메틸피란, 4-메틸피란, 벤조퓨란, 2-(2-니트로비닐)퓨란, 테트라하이드로퓨란, 2-메틸 테트라하이드로퓨란, 2,5-디메틸 테트라하이드로퓨란, 2,5-디메톡시 테트라하이드로퓨란, 2-에톡시 테트라하이드로퓨란, 테트라하이드로파이란, 1,2-디메톡시 벤젠, 1,3-디메톡시 벤젠 및 1,4-디메톡시 벤젠으로 이루어진 군으로부터 선택되는 1종 이상을 포함하는 것을 특징으로 하는 리튬 이차전지.
  8. 제6항에 있어서,
    상기 비환형 에테르는 디메틸 에테르, 디에틸 에테르, 디프로필 에테르, 메틸에틸 에테르, 메틸프로필 에테르, 에틸프로필 에테르, 디메톡시에탄, 디에톡시에탄, 메톡시에톡시에탄, 디에틸렌 글리콜 디메틸 에테르, 디에틸렌 글리콜 디에틸 에테르, 디에틸렌 글리콜 메틸에틸 에테르, 트리에틸렌 글리콜 디메틸 에테르, 트리에틸렌 글리콜 디에틸 에테르, 트리에틸렌 글리콜 메틸에틸 에테르, 테트라에틸렌 글리콜 디메틸 에테르, 테트라에틸렌 글리콜 디에틸 에테르, 테트라에틸렌 글리콜 메틸에틸 에테르, 폴리에틸렌 글리콜 디메틸 에테르, 에틸렌 글리콜 디에틸 에테르 및 에틸렌 글리콜 에틸 메틸 에테르로 이루어진 군으로부터 선택되는 1종 이상을 포함하는 것을 특징으로 하는 리튬 이차전지.
  9. 제1항에 있어서,
    상기 전해액은 리튬염, 2-메틸퓨란, 디메톡시에탄 및 비스(2,2,2-트리플루오로에틸)에테르를 포함하는 것을 특징으로 하는 리튬 이차전지.
  10. 제1항에 있어서,
    상기 리튬염은 LiCl, LiBr, LiI, LiClO4, LiBF4, LiB10Cl10, LiB(Ph)4, LiC4BO8, LiPF6, LiCF3SO3, LiCF3CO2, LiAsF6, LiSbF6, LiAlCl4, LiSO3CH3, LiSO3CF3, LiSCN, LiC(CF3SO2)3, LiN(CF3SO2)2, LiN(C2F5SO2)2, LiN(SO2F)2, 클로로 보란 리튬, 저급 지방족 카르본산 리튬, 테트라 페닐 붕산 리튬 및 리튬 이미드로 이루어진 군으로부터 선택되는 1종 이상을 포함하는 것을 특징으로 하는 리튬 이차전지.
  11. 제1항에 있어서,
    상기 리튬 이차전지는 리튬-황 전지인 것을 특징으로 하는 리튬 이차전지.
PCT/KR2022/002757 2021-03-31 2022-02-25 리튬 이차전지 WO2022211282A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP22781403.5A EP4138169A1 (en) 2021-03-31 2022-02-25 Lithium secondary battery
JP2022574603A JP7498308B2 (ja) 2021-03-31 2022-02-25 リチウム二次電池
CN202280005178.8A CN115917828A (zh) 2021-03-31 2022-02-25 锂二次电池
US17/927,641 US20230238531A1 (en) 2021-03-31 2022-02-25 Lithium secondary battery

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2021-0042148 2021-03-31
KR20210042148 2021-03-31
KR10-2022-0024018 2022-02-24
KR1020220024018A KR20220136099A (ko) 2021-03-31 2022-02-24 리튬 이차전지

Publications (1)

Publication Number Publication Date
WO2022211282A1 true WO2022211282A1 (ko) 2022-10-06

Family

ID=83459301

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/002757 WO2022211282A1 (ko) 2021-03-31 2022-02-25 리튬 이차전지

Country Status (5)

Country Link
US (1) US20230238531A1 (ko)
EP (1) EP4138169A1 (ko)
JP (1) JP7498308B2 (ko)
CN (1) CN115917828A (ko)
WO (1) WO2022211282A1 (ko)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160005897A (ko) * 2014-07-08 2016-01-18 금오공과대학교 산학협력단 텔루륨 금속 또는 텔루륨-탄소 복합체를 이용한 이차전지
KR20170121047A (ko) 2016-04-22 2017-11-01 주식회사 엘지화학 리튬-설퍼 전지용 전해액 및 이를 포함하는 리튬-설퍼 전지
KR20180057437A (ko) * 2016-11-22 2018-05-30 주식회사 엘지화학 리튬이차전지용 전해질 및 이를 포함하는 리튬이차전지
KR20190116534A (ko) * 2017-03-02 2019-10-14 바텔리 메모리얼 인스티튜트 전기화학 장치의 안정적인 사이클링을 위한 국소화된 초농축 전해질
KR20210042148A (ko) 2018-08-10 2021-04-16 코닝 인코포레이티드 유리 리본을 제조하기 위한 장치 및 방법들
KR20220024018A (ko) 2019-06-18 2022-03-03 주식회사 프로텍바이오 p62 리간드 화합물 및 이의 ER-파지 촉진 용도

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160005897A (ko) * 2014-07-08 2016-01-18 금오공과대학교 산학협력단 텔루륨 금속 또는 텔루륨-탄소 복합체를 이용한 이차전지
KR20170121047A (ko) 2016-04-22 2017-11-01 주식회사 엘지화학 리튬-설퍼 전지용 전해액 및 이를 포함하는 리튬-설퍼 전지
KR20180057437A (ko) * 2016-11-22 2018-05-30 주식회사 엘지화학 리튬이차전지용 전해질 및 이를 포함하는 리튬이차전지
KR20190116534A (ko) * 2017-03-02 2019-10-14 바텔리 메모리얼 인스티튜트 전기화학 장치의 안정적인 사이클링을 위한 국소화된 초농축 전해질
KR20210042148A (ko) 2018-08-10 2021-04-16 코닝 인코포레이티드 유리 리본을 제조하기 위한 장치 및 방법들
KR20220024018A (ko) 2019-06-18 2022-03-03 주식회사 프로텍바이오 p62 리간드 화합물 및 이의 ER-파지 촉진 용도

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
NANDA SANJAY, BHARGAV AMRUTH, MANTHIRAM ARUMUGAM: "Anode-free, Lean-Electrolyte Lithium-Sulfur Batteries Enabled by Tellurium-Stabilized Lithium Deposition", JOULE, CELL PRESS, vol. 4, no. 5, 1 May 2020 (2020-05-01), pages 1121 - 1135, XP055972546, ISSN: 2542-4351, DOI: 10.1016/j.joule.2020.03.020 *

Also Published As

Publication number Publication date
JP7498308B2 (ja) 2024-06-11
US20230238531A1 (en) 2023-07-27
JP2023528055A (ja) 2023-07-03
CN115917828A (zh) 2023-04-04
EP4138169A1 (en) 2023-02-22

Similar Documents

Publication Publication Date Title
WO2021172879A1 (ko) 리튬 금속 음극의 제조방법, 이에 의해 제조된 리튬 금속 음극 및 이를 포함하는 리튬-황 전지
WO2022035120A1 (ko) 리튬-황 전지용 양극 활물질, 이의 제조방법 및 이를 포함하는 리튬-황 전지
WO2021010625A1 (ko) 리튬-황 이차전지
WO2022060021A1 (ko) 리튬 금속 전극의 제조방법, 이에 의해 제조된 리튬 금속 전극, 및 이를 포함하는 리튬 이차 전지
WO2020105980A1 (ko) 리튬-황 이차전지
WO2022164107A1 (ko) 리튬-황 전지용 전해액 및 이를 포함하는 리튬-황 전지
WO2021010626A1 (ko) 리튬-황 이차전지
WO2021251663A1 (ko) 음극 및 이를 포함하는 이차전지
WO2018236046A1 (ko) 리튬-황 전지
WO2023121368A1 (ko) 리튬 이차전지용 전해액 및 이를 포함하는 리튬 이차전지
WO2020032454A1 (ko) 황-탄소 복합체, 이의 제조방법, 이를 포함하는 양극 및 리튬 이차전지
WO2022255672A1 (ko) 리튬 전극 및 이를 포함하는 리튬 이차전지
WO2022149913A1 (ko) 황-탄소 복합체, 이의 제조방법, 및 이를 포함하는 리튬-황 전지
WO2021177723A1 (ko) 리튬-황 전지용 전해질 및 이를 포함하는 리튬-황 전지
WO2022019698A1 (ko) 리튬-황 전지용 음극 및 이를 포함하는 리튬-황 전지
WO2020242247A1 (ko) 황-탄소 복합체, 이를 포함하는 리튬-황 전지용 양극, 및 상기 양극을 포함하는 리튬-황 전지
WO2022211282A1 (ko) 리튬 이차전지
WO2020226321A1 (ko) 리튬 이차전지용 분리막 및 이를 포함하는 리튬 이차전지
WO2024136282A1 (ko) 리튬 이차전지용 전해액 및 이를 포함하는 리튬 이차전지
WO2021210854A1 (ko) 리튬-황 전지용 전해질 및 이를 포함하는 리튬-황 전지
WO2020009333A1 (ko) 황-탄소 복합체, 이의 제조방법, 이를 포함하는 리튬-황 전지용 양극 및 리튬-황 전지
WO2024143939A1 (ko) 리튬-황 전지용 전해질 및 이를 포함하는 리튬-황 전지
WO2023287110A1 (ko) 리튬 이차전지
WO2023177204A1 (ko) 리튬 이차전지용 음극 및 이의 제조방법
WO2021194231A1 (ko) 리튬-황 전지용 전해질 및 이를 포함하는 리튬-황 전지

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22781403

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022574603

Country of ref document: JP

Kind code of ref document: A

Ref document number: 2022781403

Country of ref document: EP

Effective date: 20221118

NENP Non-entry into the national phase

Ref country code: DE