WO2014027841A1 - 리튬-설퍼 전지용 양극의 제조 방법 및 리튬 설퍼 전지 - Google Patents
리튬-설퍼 전지용 양극의 제조 방법 및 리튬 설퍼 전지 Download PDFInfo
- Publication number
- WO2014027841A1 WO2014027841A1 PCT/KR2013/007330 KR2013007330W WO2014027841A1 WO 2014027841 A1 WO2014027841 A1 WO 2014027841A1 KR 2013007330 W KR2013007330 W KR 2013007330W WO 2014027841 A1 WO2014027841 A1 WO 2014027841A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- lithium
- positive electrode
- carbon
- sulfur battery
- sulfur
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/362—Composites
- H01M4/366—Composites as layered products
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/04—Processes of manufacture in general
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
- H01M10/0564—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
- H01M10/0566—Liquid materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/42—Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
- H01M10/4235—Safety or regulating additives or arrangements in electrodes, separators or electrolyte
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/04—Processes of manufacture in general
- H01M4/043—Processes of manufacture in general involving compressing or compaction
- H01M4/0433—Molding
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/133—Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/136—Electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/139—Processes of manufacture
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/139—Processes of manufacture
- H01M4/1397—Processes of manufacture of electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/58—Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
- H01M4/581—Chalcogenides or intercalation compounds thereof
- H01M4/5815—Sulfides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/58—Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
- H01M4/583—Carbonaceous material, e.g. graphite-intercalation compounds or CFx
- H01M4/587—Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/46—Separators, membranes or diaphragms characterised by their combination with electrodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M2004/026—Electrodes composed of, or comprising, active material characterised by the polarity
- H01M2004/027—Negative electrodes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T29/00—Metal working
- Y10T29/49—Method of mechanical manufacture
- Y10T29/49002—Electrical device making
- Y10T29/49117—Conductor or circuit manufacturing
Definitions
- a method for producing a positive electrode for a lithium-sulfur battery and a lithium sulfur battery is a method for producing a positive electrode for a lithium-sulfur battery and a lithium sulfur battery.
- Lithium-sulfur batteries are inexpensive and environmentally friendly materials, and the energy density of lithium is 3830 mAh / g in terms of energy density, and the energy density of sulfur is expected to be high at 1675 mAh / g. It is emerging as the most promising battery which satisfies the above conditions.
- the lithium-sulfur battery uses a sulfur-based compound having a sulfur-sulfur combination as a positive electrode active material, and an alkali metal such as lithium or a carbon-based material in which insertion and deintercalation of metal ions such as lithium ions occur.
- a negative electrode active material wherein the oxidation number of S decreases as the SS bond is broken during the reduction reaction (discharge), and the oxidation of the SS bond is formed again when the oxidation number of S increases during the oxidation reaction (charging). Reduction reactions are used to store and generate electrical energy.
- the lithium-sulfur battery has an energy density of 3830 mAh / g when lithium metal is used as a negative electrode active material, and an energy density of 1675 mAh / g when elemental sulfur (S8) is used as a positive electrode active material. Is the most promising battery in the world.
- the sulfur-based material used as the positive electrode active material has the advantage that it is cheap and environmentally friendly material.
- lithium-sulfur battery systems there are no examples of successful commercialization with lithium-sulfur battery systems.
- the reason why the lithium-sulfur battery has not been commercialized is that when sulfur is used as an active material, the utilization rate indicating the amount of sulfur participating in the electrochemical redox reaction in the battery relative to the amount of sulfur input is low. Because it represents.
- One embodiment of the present invention is to solve the above problems, to provide a method for manufacturing a positive electrode for a lithium-sulfur battery that can improve the shuttle phenomenon of the lithium-sulfur battery.
- Another embodiment of the present invention may provide a lithium-sulfur battery including the positive electrode manufactured by the above method.
- the step of mixing the carbon raw material and the binder Preparing a carbon raw material mixed with the binder in the form of a layer to obtain a carbon film; Drying the carbon film; Pressing the dried carbon film to produce a carbon thin film; And laminating the carbon thin film on a positive electrode for a lithium-sulfur battery.
- the carbon raw material may be ketjen black, denka black, acetylene black, acetylene black, Super-p, carbon black, graphene, or a combination thereof.
- Drying the carbon film may be performed at 50 to 100 °C.
- the weight ratio (binder / carbon raw material) of the binder with respect to the carbon raw material may be 0.8 to 1.2.
- the carbon film may be 0.8 to 1.2 mm thick.
- the carbon thin film may be 0.1 to 0.3 mm thick.
- the method of manufacturing a positive electrode for a lithium-sulfur battery may further include coating a catalyst on a carbon thin film.
- the catalyst may be coated with 1 to 5% by weight relative to the carbon thin film.
- Mixing the carbon raw material and the binder may be mixed by further adding a catalyst.
- the catalyst may be added in 20 to 60% by weight relative to the carbon raw material.
- the catalyst may be a metal nitride.
- the metal nitride may be titanium nitride (TiN).
- the particle size of the metal nitride may be 1 to 5 ⁇ m.
- the lithium-sulfur battery positive electrode includes a current collector and a positive electrode active material layer, and the carbon thin film may be stacked on the positive electrode active material layer.
- the positive electrode active material layer may include a positive electrode active material, a binder, and a conductive material.
- the positive electrode active material is a cathode, an organic sulfur compound, and a carbon-sulfur polymer [(C 2 Sx) in which sulfur (elemental sulfur, S 8 ), solid Li 2 Sn (n ⁇ 1), and Li 2 Sn (n ⁇ 1) are dissolved.
- n, x 2.5 to 50, n ⁇ 2] and one or more sulfur compounds selected from the group consisting of
- a positive electrode manufactured according to the method described above;
- a negative electrode including a negative electrode active material selected from the group consisting of a material capable of reversibly intercalating or deintercalating lithium ions, a material capable of forming a compound reversibly with lithium, a lithium metal and a lithium alloy; It provides a lithium-sulfur battery comprising a; and an electrolyte comprising a lithium salt and an organic solvent.
- the organic solvent is benzene, fluorobenzene, toluene, trifluorotoluene, xylene, cyclohexane, tetrahydrofuran, 2-methyl tetrahydrofuran, cyclohexanone, ethanol, isopropyl alcohol, dimethyl carbonate, ethylmethyl Carbonate, diethyl carbonate, methylpropyl carbonate, methylpropionate, ethylpropionate, methyl acetate, ethyl acetate, propyl acetate, dimethoxy ethane, 1,3-dioxolane, diglyme, tetraglyme, ethylene carbonate, At least one solvent selected from the group consisting of propylene carbonate, v-butyrolactone and sulfolane.
- the lithium salt is lithium trifluoromethansulfonimide, lithium triflate, lithium perclorate, lithium hexafluoroazate (LiAsF 6 ), lithium trifluoromethanesulfonate (CF 3 SO 3 Li), LiPF 6 , LiBF 4 , tetraalkylammonium, and at least one compound selected from the group consisting of a liquid salt at room temperature.
- the electrolyte may include a lithium salt in a concentration of 0.5 to 2.0M.
- One embodiment of the present invention is to solve the above problems, to provide a method for manufacturing a positive electrode for a lithium-sulfur battery that can improve the shuttle phenomenon of the lithium-sulfur battery.
- Another embodiment of the present invention may provide a lithium-sulfur battery including the positive electrode manufactured by the above method.
- FIG. 1 is a perspective view of a lithium sulfur battery.
- FIG. 2 is a general picture of the carbon thin film prepared in Example 1.
- FIG. 3 is battery characteristic evaluation data of Comparative Examples 3 and 4.
- FIG. 4 is battery characteristic evaluation data of Example 4 and Comparative Example 4.
- 5 is voltage curve data of the battery according to the fourth embodiment.
- FIG. 6 is battery characteristic evaluation data of Example 4 and Example 5.
- the step of mixing the carbon raw material and the binder is performed by:
- polysulfide dissolves in the positive electrode during charging and discharging, and thus a phenomenon of moving between the positive electrode and the negative electrode occurs. This is generally called a shuttle phenomenon.
- a carbon thin film may be laminated on the surface of the anode.
- a method for manufacturing a positive electrode for a lithium-sulfur battery is characterized in that the carbon thin film is manufactured separately from the positive electrode and then laminated on the positive electrode.
- sulfur may be dissolved into polysulfide during charging and discharging, thereby reducing battery characteristics or lifespan.
- sulfur reacts with lithium, non-conductive Li 2 S accumulates on the electrode surface layer and carbon matrix to reduce electrical conductivity.
- polysulfide melts, but directly inhibits the phenomenon of being blocked by the carbon thin film and shuttled toward the lithium-cathode, thereby increasing the characteristics or the life of the battery.
- Li 2 S is formed between the electrode and the carbon thin film to improve the phenomenon that the conductivity is reduced due to the carbon thin film.
- the carbon raw material may be ketjen black, denka black, acetylene black, Super-p, carbon black, graphene, or a combination thereof. However, it is not limited thereto.
- Drying the carbon film may be performed at 50 to 100 °C. If the above range is satisfied, there is an effect of evaporating moisture that may be present in carbon and removing a solvent (for example, ethanol).
- a solvent for example, ethanol
- the weight ratio (binder / carbon raw material) of the binder with respect to the carbon raw material may be 0.8 to 1.2. When satisfy
- the carbon film may be 0.8 to 1.2 mm thick. If this range is satisfied, effective drying is possible in the subsequent drying step.
- the carbon thin film may be 0.1 to 0.3 mm thick. When this range is satisfied, the shuttle phenomenon can be effectively suppressed.
- the carbon thin film may further include a catalyst, when including the catalyst, it is possible to effectively suppress the shuttle phenomenon.
- the catalyst may be included in 20 to 60% by weight relative to the carbon raw material. When this range is satisfied, the shuttle phenomenon can be effectively suppressed.
- the method may further include coating the catalyst on the carbon thin film.
- coating the catalyst on the prepared carbon thin film when the catalyst is included, it is possible to effectively suppress the shuttle phenomenon.
- the catalyst may be coated with 1 to 5% by weight relative to the carbon thin film. When this range is satisfied, the shuttle phenomenon can be effectively suppressed.
- the catalyst may be a metal nitride.
- the metal nitride may be one having excellent electrical conductivity.
- the metal nitride may activate the reaction of the metal nitride itself with sulfur.
- sulfur may adhere to the surface of the metal nitride, thereby causing less shuttle phenomenon, thereby increasing sulfur utilization.
- the metal nitride may be titanium nitride (TiN).
- TiN titanium nitride
- the present invention is not limited thereto unless it is limited.
- the particle size of the metal nitride may be 1 to 5 ⁇ m. When the above range is satisfied, the shuttle phenomenon can be effectively suppressed.
- the lithium-sulfur battery positive electrode includes a current collector and a positive electrode active material layer, and the carbon thin film may be stacked on the positive electrode active material layer.
- the cathode active material layer may include a cathode active material, a binder, and a conductive material.
- a conductive material for smoothly moving electrons in the positive electrode active material together with the positive electrode active material is not particularly limited, but a conductive material or a conductive polymer such as a graphite material, a carbon material, or the like may be preferably used.
- the graphite material is KS 6 (manufactured by Timcal) and the carbon material is super P (MMM company), ketjen black, denka black, acetylene black, carbon black, and graphene. (Graphene).
- Examples of the conductive polymer include polyaniline, polythiophene, polyacetylene, polypyrrole, and the like. These conductive conductive materials may be used alone or in combination of two or more thereof.
- binders that serve to attach the positive electrode active material to the current collector include poly (vinyl acetate), polyvinyl alcohol, polyethylene oxide, polyvinyl pyrrolidone, alkylated polyethylene oxide, crosslinked polyethylene oxide, polyvinyl ether , Poly (methyl methacrylate), polyvinylidene fluoride, copolymer of polyhexafluoropropylene and polyvinylidene fluoride (trade name: Kynar), poly (ethyl acrylate), polytetrafluoroethylene, polyvinyl Chloride, polyacrylonitrile, polyvinylpyridine, polystyrene, derivatives thereof, blends, copolymers and the like can be used.
- the positive electrode according to the embodiment of the present invention may be prepared by coating a composition in which a positive electrode active material, a conductive material, and a binder are dispersed in a solvent on a current collector and drying the same.
- a sulfur-based active material, a binder, and a conductive material may be uniformly dispersed, and it is preferable to use an easily evaporated material.
- an easily evaporated material Typically, acetonitrile, methanol, ethanol, tetrahydrofuran, water , Isopropyl alcohol, dimethyl formamide and the like can be used.
- the amount of solvent, sulfur compound or optionally additives included in the slurry does not have a particularly important meaning in the present invention, it is sufficient only to have a suitable viscosity to facilitate the coating of the slurry.
- the current collector is not particularly limited, but conductive materials such as stainless steel, aluminum, copper, titanium, and the like are preferably used, and more preferably, a carbon-coated aluminum current collector is used.
- conductive materials such as stainless steel, aluminum, copper, titanium, and the like are preferably used, and more preferably, a carbon-coated aluminum current collector is used.
- the use of an Al substrate coated with carbon has an advantage in that the adhesion to the active material is excellent, the contact resistance is low, and the corrosion by polysulfide of aluminum can be prevented, compared with the non-carbon coated Al substrate.
- a lithium-sulfur cell 1 comprising the positive electrode is shown in FIG. 1.
- a lithium-sulfur battery includes a battery can 5 including a positive electrode 3, a negative electrode 4, and a separator positioned between the positive electrode 3 and the negative electrode 4.
- a material made of a negative electrode active material including a material capable of reversibly intercalating lithium ions, a material capable of reversibly forming a compound with lithium metal, or a lithium metal or a lithium alloy is used.
- any carbon negative active material generally used in a lithium ion secondary battery may be used, and representative examples thereof include crystalline carbon, amorphous carbon, or a combination thereof. Can be used.
- Representative examples of the material capable of reacting with the lithium ions to form a lithium-containing compound reversibly include tin oxide (SnO 2 ), titanium nitrate, silicon (Si) and the like, but is not limited thereto.
- As the lithium alloy an alloy of a metal selected from the group consisting of lithium and Na, K, Rb, Cs, Fr, Be, Mg, Ca, Sr, Ba, Ra, Al, and Sn may be used.
- An inorganic protective layer, an organic protective layer, or a material in which these layers are stacked on a lithium metal surface may also be used as a cathode.
- the organic protective film is poly (p-phenylene), polyacetylene, poly (p-phenylene vinylene), polyaniline, polypyrrole, polythiophene, poly (2,5-ethylene vinylene), acetylene, poly (ferry) Naphthalene), polyacene, and poly (naphthalene-2,6-diyl), and a monomer, oligomer or polymer having conductivity selected from the group consisting of.
- sulfur used as the positive electrode active material may be changed into an inert material and adhered to the surface of the lithium negative electrode.
- inactive sulfur refers to sulfur in which sulfur can no longer participate in the electrochemical reaction of the anode through various electrochemical or chemical reactions
- inactive sulfur formed on the surface of the lithium anode is a protective layer of the lithium cathode.
- lithium metal and inert sulfur formed on the lithium metal for example lithium sulfide, may be used as the negative electrode.
- the electrolyte used with the positive electrode according to the embodiment of the present invention includes a lithium salt as a supporting electrolytic salt and a non-aqueous organic solvent.
- the organic solvent may be benzene, fluorobenzene, toluene, trifluorotoluene, xylene, cyclohexane, tetrahydrofuran, 2-methyl tetrahydrofuran, cyclohexanone, ethanol, isopropyl alcohol, dimethyl carbonate, ethyl Methyl carbonate, diethyl carbonate, methylpropyl carbonate, methyl propionate, ethyl propionate, methyl acetate, ethyl acetate, propyl acetate, dimethoxy ethane, 1,3-dioxolane, diglyme, tetraglyme, ethylene carbonate At least one solvent selected from the group consisting of propylene carbonate, v-butyrolactone and sulfolane.
- the electrolytic salt lithium salt is lithium trifluoromethansulfonimide (lithium trifluoromethansulfonimide), lithium triflate (lithium triflate), lithium perchlorate (lithium perclorate), lithium hexafluoro azenate (LiAsF 6 ), lithium trifluor Romethanesulfonate (CF 3 SO 3 Li), LiPF 6 , LiBF 4 or tetraalkylammonium, for example tetrabutylammonium tetrafluoroborate, or a liquid salt at room temperature, for example 1-ethyl-3-methyl
- the electrolyte may include a lithium salt in a concentration of 0.5 to 2.0M.
- the electrolyte may be used as a liquid electrolyte, or may be used in the form of a solid electrolyte separator.
- a physical separator having a function of physically separating an electrode further includes a separator made of porous glass, plastic, ceramic, or polymer.
- the electrolyte separator functions as a physical separation of the electrode and a transfer medium for moving metal ions, and both electrochemically stable electric and ion conductive materials may be used.
- an electrically and ion conductive material a glass electrolyte, a polymer electrolyte, or a ceramic electrolyte may be used.
- the supported electrolyte salt is mixed with a polymer electrolyte such as polyether, polyimine, polythioether, or the like.
- the electrolyte separator in a state may include less than about 20% by weight of a non-aqueous organic solvent, and in this case, may further include a suitable gelling agent to reduce the fluidity of the organic solvent.
- the denca-black was added to an appropriate amount of ethanol and sonication was performed for 10 minutes. After sonication, PTFE (PolyTetraFluoroEthylene) binder was added in a 1: 1 weight ratio with denka-black, and then mixed for 20 minutes using a homogenizer. After that, put in a mortar and pestle until the carbon together well.
- PTFE PolyTetraFluoroEthylene
- the agglomerated carbon was put in vinyl, and the carbon film was prepared by spreading the film thinly to a thickness of about 1 mm, and then drying the vacuum oven at 80 ° C. for 12 hours. After drying, using a rolling machine was pressed to a thickness of about 0.2mm to prepare a carbon thin film.
- a sulfur active material slurry (0.18) g, a carbon conductive material (0.09) g, and a binder (0.03) g were mixed and ball milled for 1 hour to prepare a cathode active material slurry.
- PVdF and NMP were used as the binder, and the content of PVdF in the binder was 5% by weight when the total binder was 100% by weight.
- the prepared positive electrode active material slurry was coated on a carbon-coated Al current collector, and then dried in a vacuum oven at 80 ° C. to prepare a positive electrode.
- the carbon thin film prepared on the positive electrode was laminated to prepare a lithium-sulfur positive electrode.
- the denca-black was added to an appropriate amount of ethanol and sonication was performed for 10 minutes. After sonication, PTFE (PolyTetraFluoroEthylene) binder was added in a 1: 1 weight ratio with denka-black, and then mixed for 20 minutes using a homogenizer. After that, put in a mortar and pestle until the carbon together well.
- PTFE PolyTetraFluoroEthylene
- the agglomerated carbon was put in vinyl, and the carbon film was prepared by spreading the film thinly to a thickness of about 1 mm, and then drying the vacuum oven at 80 ° C. for 12 hours. After drying, using a rolling machine was pressed to a thickness of about 0.2mm to prepare a carbon thin film.
- a sulfur active material slurry (0.18) g, a carbon conductive material (0.09) g, and a binder (0.03) g were mixed and ball milled for 1 hour to prepare a cathode active material slurry.
- PVdF and NMP were used as the binder, and the content of PVdF in the binder was 5% by weight when the total binder was 100% by weight.
- the prepared positive electrode active material slurry was coated on a carbon-coated Al current collector, and then dried in a vacuum oven at 80 ° C. to prepare a positive electrode.
- the anode for lithium-sulfur was prepared by stacking the TiN-coated carbon thin film on the anode.
- a positive electrode was prepared in the same manner as in Example 1 except that 50% by weight of TiN powder compared to the denka black was mixed with the denka black and the PTFE binder.
- a cathode active material slurry 0.18 g of elemental sulfur (S8) powder, 0.09 g of carbon conductive material, and 0.03 g of binder were mixed and ball milled for 1 hour to prepare a cathode active material slurry.
- PVdF and NMP were used as the binder, and the content of PVdF in the binder was 5% by weight when the total binder was 100% by weight.
- the prepared positive electrode active material slurry was coated on a carbon-coated Al current collector, and then dried in a vacuum oven at 80 ° C. to prepare a positive electrode.
- the carbon conductive material and 0.06 g of the binder were mixed and ball milled for 1 hour to prepare a carbon slurry.
- PVdF and NMP were used as the binder, and the PVdF content in the binder was 5% by weight when the total binder was 100% by weight.
- the prepared carbon slurry was coated on the prepared electrode, and dried in a vacuum oven at 80 ° C. to prepare a positive electrode.
- a cathode active material slurry 0.18 g of elemental sulfur (S8) powder, 0.09 g of carbon conductive material, and 0.03 g of binder were mixed and ball milled for 1 hour to prepare a cathode active material slurry.
- PVdF and NMP were used as the binder, and the content of PVdF in the binder was 5% by weight when the total binder was 100% by weight.
- the prepared positive electrode active material slurry was coated on a carbon-coated Al current collector, and then dried in a vacuum oven at 80 ° C. to prepare a positive electrode.
- a coin cell evaluation battery was manufactured using the positive electrode prepared in Example 1.
- an unoxidized lithium metal foil (thickness 160 ⁇ m) was used, and the electrolyte was lithium in a solvent in which 50:50 of tetraethyleneglycol dimethylether and 1,3-dioxolane were mixed at 50:50.
- Salt 1M trifluoromethansulfonimide and 0.2M lithium nitrate were dissolved and used, and the separator was SK polyethylene (20 ⁇ m thick).
- Example 4 a coin cell was manufactured in the same manner as in Example 4, except that the anode prepared in Example 2 was used instead of the anode manufactured in Example 1.
- Example 4 a coin cell was manufactured in the same manner as in Example 4, except that the anode prepared in Example 3 was used instead of the cathode manufactured in Example 1.
- Example 4 a coin cell was prepared in the same manner as in Example 4 except for using the cathode prepared in Comparative Example 1, instead of the anode manufactured in Example 1.
- Example 4 a coin cell was manufactured in the same manner as in Example 4 except for using the cathode prepared in Comparative Example 2, instead of the anode manufactured in Example 1.
- Figure 2 is a general picture of the carbon thin film prepared in Example 1. When visually confirmed, it was found that a carbon thin film having a uniform surface was produced.
- the battery of Examples 4, Comparative Examples 3 and 4 was charged in 0.1C discharge and 0.1C in a cut-off voltage range of 1.5V to measure 50 or 100 charge and discharge cycle life characteristics and are shown in FIGS. 3 and 4. .
- FIG. 3 is battery characteristic evaluation data of Comparative Examples 3 and 4
- FIG. 4 is battery characteristic evaluation data of Example 4 and Comparative Example 4.
- Example 4 in which the carbon coating layer was prepared from another carbon thin film were superior to those of Comparative Example 3.
- 5 is voltage curve data of the battery according to the fourth embodiment.
- the battery of Examples 4 and 5 was charged with 0.1 C discharge and 0.1 C in a cut-off voltage range of 1.5 V to measure 15 charge and discharge cycle life characteristics and are shown in FIG. 6.
- Example 5 As can be seen in FIG. 6, it was found that the battery characteristics of Example 5 in which TiN was additionally coated on the carbon thin film were superior to those of Example 4 not otherwise. This is because the coating method of the catalyst on the carbon thin film is considered to be the result of applying all the roles of capturing lithium polysulfide by the carbon thin film and at the same time causing the activation reaction due to the catalyst.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Inorganic Chemistry (AREA)
- Materials Engineering (AREA)
- Composite Materials (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Physics & Mathematics (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Secondary Cells (AREA)
Abstract
본 발명은 리튬-설퍼 전지용 양극의 제조 방법 및 리튬 설퍼 전지에 관한 것으로, 탄소 원료 물질 및 바인더를 혼합하는 단계; 상기 바인더와 혼합된 탄소 원료 물질을 막(layer) 형태로 제조하여 탄소 막을 수득하는 단계; 상기 탄소 막을 건조시키는 단계; 상기 건조된 탄소 막을 압착하여 탄소 박막을 제조하는 단계; 및 리튬-설퍼 전지용 양극 상에 상기 탄소 박막을 적층하는 단계;를 포함하는 리튬-설퍼 전지용 양극의 제조 방법을 제공할 수 있다.
Description
리튬-설퍼 전지용 양극의 제조 방법 및 리튬 설퍼 전지에 관한 것이다.
휴대용 전자기기의 급속한 발전에 따라 이차 전지의 수요가 증가되고 있다. 특히, 휴대용 전자기기의 작고, 가볍고, 얇고, 작아지는 추세에 부응할 수 있는 고 에너지 밀도의 전지의 등장이 지속적으로 요구되고 있으며, 또한, 값싸고 안전하며 환경친화적인 면을 만족시켜야 하는 전지가 요구되고 있다.
리튬-설퍼 전지는 사용되는 활물질 자체가 값싸고 환경친화적인 물질이며, 에너지 밀도 측면에서 리튬의 에너지 밀도는 3830 mAh/g이고, 황의 에너지 밀도는 1675 mAh/g으로 에너지 밀도가 높을 것으로 예상됨에 따라 상기 조건을 만족시키는 가장 유망한 전지로 부각되고 있다.
이러한 리튬-설퍼 전지는 황-황 결합(Sulfur-Sulfur combination)을 가지는 황 계열 화합물을 양극 활물질로 사용하고, 리튬과 같은 알카리 금속 또는 리튬 이온 등과 같은 금속 이온의 삽입 및 탈삽입이 일어나는 탄소계 물질을 음극 활물질로 사용하는 이차 전지로서, 환원 반응시(방전시) S-S 결합이 끊어지면서 S의 산화수가 감소하고, 산화 반응시(충전시) S의 산화수가 증가하면서 S-S 결합이 다시 형성되는 산화-환원 반응을 이용하여 전기적 에너지를 저장 및 생성한다.
리튬-설퍼 전지는 음극 활물질로 리튬 금속을 사용할 경우 에너지 밀도가 3830mAh/g이고, 양극 활물질로 원소 황(S8)을 사용할 경우 에너지 밀도가 1675mAh/g으로, 현재까지 개발되고 있는 전지 중에서 에너지 밀도면에서 가장 유망한 전지이다. 또한 양극 활물질로 사용되는 황계 물질은 자체가 값싸고 환경친화적인 물질이라는 장점이 있다.
그러나 아직 리튬-설퍼 전지 시스템으로 상용화에 성공한 예는 없는 실정이다. 리튬-설퍼 전지가 상용화되지 못한 이유는 우선 황을 활물질로 사용하면 투입된 황의 양에 대한 전지 내 전기화학적 산화환원 반응에 참여하는 황의 양을 나타내는 이용률이 낮아, 이론 용량과 달리 실제로는 극히 낮은 전지 용량을 나타내기 때문이다.
또한, 리튬-설퍼 전지는 충방전시 양극에서 폴리설파이드(polysulfide)가 녹아나 양극과 음극 사이를 이동하는 셔틀 현상이 발생하여 용량 및 사이클 특성에 영향을 미칠 수 있다.
본 발명의 일 구현예는 상술한 문제점을 해결하기 위한 것으로서, 상기 리튬-설퍼 전지의 셔틀 현상을 개선할 수 있는 리튬-설퍼 전지용 양극의 제조 방법을 제공하는 것이다.
본 발명의 다른 일 구현예는 상기 방법에 의해 제조된 양극을 포함하는 리튬-설퍼 전지를 제공할 수 있다.
본 발명의 일 구현예에서는, 탄소 원료 물질 및 바인더를 혼합하는 단계; 상기 바인더와 혼합된 탄소 원료 물질을 막(layer) 형태로 제조하여 탄소 막을 수득하는 단계; 상기 탄소 막을 건조시키는 단계; 상기 건조된 탄소 막을 압착하여 탄소 박막을 제조하는 단계; 및 리튬-설퍼 전지용 양극 상에 상기 탄소 박막을 적층하는 단계;를 포함하는 리튬-설퍼 전지용 양극의 제조 방법을 제공한다.
상기 탄소 원료 물질은 케첸 블랙(ketjen black), 덴카 블랙(denka black), 아세틸렌 블랙(acetylene black), Super-p, 카본 블랙, 그래핀(Graphene) 또는 이들의 조합일 수 있다.
상기 탄소 막을 건조시키는 단계;는, 50 내지 100℃에서 수행될 수 있다.
상기 탄소 원료 물질에 대한 바인더의 중량 비율(바인더/탄소 원료 물질)은 0.8 내지 1.2일 수 있다.
상기 탄소 막은 0.8 내지 1.2mm 두께일 수 있다.
상기 탄소 박막은 0.1 내지 0.3mm 두께일 수 있다.
상기 리튬-설퍼 전지용 양극의 제조 방법은 탄소 박막 상에 촉매제를 코팅시키는 단계;를 더 포함할 수 있다.
상기 촉매제는 상기 탄소 박막 대비 1 내지 5 중량%로 코팅될 수 있다.
상기 탄소 원료 물질 및 바인더를 혼합하는 단계;는 촉매제를 더 첨가하여 혼합할 수 있다.
상기 촉매제는 상기 탄소 원료 물질 대비 20 내지 60 중량%로 첨가될 수 있다.
상기 촉매제는 금속질화물일 수 있다.
상기 금속질화물은 티타늄 질화물(titanium nitride, TiN)일 수 있다.
상기 금속질화물의 입도는 1 내지 5㎛일 수 있다.
상기 리튬-설퍼 전지용 양극은 집전체 및 양극 활물질층을 포함하며, 상기 양극 활물질층 상에 상기 탄소 박막이 적층될 수 있다.
상기 양극 활물질층은 양극 활물질, 바인더 및 도전재를 포함할 수 있다.
상기 양극 활물질은 황(elemental sulfur, S8), 고체 Li2Sn(n ≥ 1), Li2Sn(n ≥ 1)가 용해된 캐쏠라이트, 유기황 화합물 및 탄소-황 폴리머[(C2Sx)n, x = 2.5 내지 50, n ≥ 2]로 이루어진 군에서 선택되는 하나 이상의 황 화합물을 포함할 수 있다.
본 발명의 다른 일 구현예에서는, 전술한 방법에 따라 제조된 양극; 리튬 이온을 가역적으로 인터칼레이션 또는 디인터칼레이션할 수 있는 물질, 리튬과 가역적으로 화합물을 형성할 수 있는 물질, 리튬 금속 및 리튬 합금으로 이루어진 군에서 선택되는 음극 활물질을 포함하는 음극; 및 리튬염과 유기 용매를 포함하는 전해질;을 포함하는 리튬-설퍼 전지를 제공한다.
상기 유기 용매는 벤젠, 플루오로벤젠, 톨루엔, 트리플루오로톨루엔, 자일렌, 사이클로헥산, 테트라하이드로퓨란, 2-메틸 테트라하이드로퓨란, 사이클록헥사논, 에탄올, 이소프로필알콜, 디메틸 카보네이트, 에틸메틸 카보네이트, 디에틸 카보네이트, 메틸프로필 카보네이트, 메틸프로피오네이트, 에틸프로피오네이트, 메틸 아세테이트, 에틸 아세테이트, 프로필 아세테이트, 디메톡시 에탄, 1,3-디옥솔란, 디글라임, 테트라글라임, 에틸렌 카보네이트, 프로필렌 카보네이트, ν-부티로락톤 및 설포란으로 이루어진 군에서 선택되는 하나 이상의 용매일 수 있다.
상기 리튬염은 리튬 트리플루오로메탄설폰이미드(lithium trifluoromethansulfonimide), 리튬 트리플레이트(lithium triflate), 리튬 퍼클로레이트(lithium perclorate), 리튬 헥사플루오로아제네이트(LiAsF6), 리튬 트리플루오로메탄설포네이트(CF3SO3Li), LiPF6, LiBF4, 테트라알킬암모늄, 및 상온에서 액상인 염으로 이루어진 군에서 선택되는 화합물 하나 이상일 수 있다.
상기 전해질은 리튬염을 0.5 내지 2.0M의 농도로 포함할 수 있다.
본 발명의 일 구현예는 상술한 문제점을 해결하기 위한 것으로서, 상기 리튬-설퍼 전지의 셔틀 현상을 개선할 수 있는 리튬-설퍼 전지용 양극의 제조 방법을 제공하는 것이다.
본 발명의 다른 일 구현예는 상기 방법에 의해 제조된 양극을 포함하는 리튬-설퍼 전지를 제공할 수 있다.
도 1은 리튬 설퍼 전지의 사시도이다.
도 2는 실시예 1에서 제조한 탄소 박막의 일반 사진이다.
도 3은 비교예 3 및 4의 전지 특성 평가 데이터이다.
도 4는 실시예 4 및 비교예 4의 전지 특성 평가 데이터이다.
도 5는 실시예 4에 따른 전지의 전압 커브 데이터이다.
도 6은 실시예 4 및 실시예 5의 전지 특성 평가 데이터이다.
이하, 본 발명의 구현예를 상세히 설명하기로 한다. 다만, 이는 예시로서 제시되는 것으로, 이에 의해 본 발명이 제한되지는 않으며 본 발명은 후술할 청구범위의 범주에 의해 정의될 뿐이다.
본 발명의 일 구현예에서는, 탄소 원료 물질 및 바인더를 혼합하는 단계;
상기 바인더와 혼합된 탄소 원료 물질을 막(layer) 형태로 제조하여 탄소 막을 수득하는 단계; 상기 탄소 막을 건조시키는 단계; 상기 건조된 탄소 막을 압착하여 탄소 박막을 제조하는 단계; 및 리튬-설퍼 전지용 양극 상에 상기 탄소 박막을 적층하는 단계; 를 포함하는 리튬-설퍼 전지용 양극의 제조 방법을 제공한다.
기존 리튬-설퍼 전지에서는 충방전 시 양극에서 폴리설파이드(polysulfide)가 녹아나 양극과 음극 사이를 이동하는 현상이 발생한다. 이를 일반적으로 셔틀(shuttle) 현상이라 부른다.
이 때문에 전지의 용량 및 사이클 특성에 문제가 생길 수 있다.
이를 해결하기 위해서는 본 발명의 일 구현예에서는, 양극의 표면에 탄소 박막을 적층시킬 수 있다.
보다 구체적으로, 본 발명의 일 구현예에 따른, 리튬-설퍼 전지용 양극의 제조 방법은 탄소 박막을 상기 양극과 별도로 제조한 후 이를 상기 양극 상에 적층시키는 것을 특징으로 한다.
일반적으로 탄소, 유황 및 바인더를 볼 믹싱(ball-mixing)하여 전극으로 만들어 사용할 경우 충방전 동안 유황이 폴리설파이드(polysulfide)로 되어 녹아 나오는 문제가 발생하여 전지의 특성이나 수명이 줄어든다. 그리고 유황이 리튬과 반응하면서 비전도성을 지닌 Li2S가 전극 표면층과 탄소 층(matrix) 에 쌓여 전기 전도성을 감소시킨다.
이에 본 발명의 일 구현예와 같이 별도로 탄소 박막을 제조하는 경우, 폴리설파이드가 녹아 나오기는 하나, 탄소박막에 의해 방해되어 리튬-음극쪽으로 셔틀되는 현상을 직접적으로 억제하여 전지의 특성이나 수명을 증가시키고, Li2S가 전극과 탄소박막 사이에 생기는데 탄소박막으로 인해 전도성이 감소되는 현상도 개선할 수 있다.
보다 구체적으로, 상기 탄소 원료 물질은 케첸 블랙(ketjen black), 덴카 블랙(denka black), 아세틸렌 블랙(acetylene black), Super-p, 카본 블랙, 그래핀(Graphene) 또는 이들의 조합일 수 있다. 다만, 이에 제한되는 것은 아니다.
상기 탄소 막을 건조시키는 단계;는, 50 내지 100℃에서 수행될 수 있다. 상기 범위를 만족시키는 경우, 탄소 내에 존재할 수 있는 수분을 증발시키고, 용매(예를 들어, 에탄올 등)을 제거하는 효과가 있다.
상기 탄소 원료 물질에 대한 바인더의 중량 비율(바인더/탄소 원료 물질)은 0.8 내지 1.2일 수 있다. 이러한 범위를 만족하는 경우, 탄소간의 결합이 충분히 이루어져서 탄소 막의 부서짐을 방지할 수 있다.
상기 탄소 막은 0.8 내지 1.2mm 두께일 수 있다. 이러한 범위를 만족하는 경우, 이후 건조 단계에서 효과적인 건조가 가능하다.
상기 탄소 박막은 0.1 내지 0.3mm 두께일 수 있다. 이러한 범위를 만족하는 경우, 효과적으로 셔틀 현상을 억제할 수 있다.
상기 탄소 원료 물질 및 바인더를 혼합하는 단계;는 촉매제를 더 첨가하여 혼합할 수 있다. 탄소 박막의 제조단계에서 촉매제를 탄소 원료 물질과 혼합하여 제조함으로써, 상기 탄소 박막은 촉매제를 더 포함할 수 있으며, 촉매제를 포함하는 경우, 효과적으로 셔틀 현상을 억제할 수 있다. 상기 촉매제는 상기 탄소 원료 물질 대비 20 내지 60 중량%로 포함될 수 있다. 이러한 범위를 만족하는 경우, 효과적으로 셔틀 현상을 억제할 수 있다.
상기 탄소 박막에 촉매제를 더 포함시키기 위하여, 탄소 박막 상에 촉매제를 코팅시키는 단계를 더 포함할 수도 있다. 제조된 탄소 박막 상에 촉매제를 코팅하여, 촉매제를 포함하는 경우, 효과적으로 셔틀 현상을 억제할 수 있다. 상기 촉매제는 상기 탄소 박막 대비 1 내지 5 중량%로 코팅될 수 있다. 이러한 범위를 만족하는 경우, 효과적으로 셔틀 현상을 억제할 수 있다.
상기 촉매제는 금속질화물일 수 있다.
보다 구체적인 예로 상기 금속질화물은 전기 전도성이 우수한 것일 수 있다.
상기 금속질화물은 금속질화물 자체가 황과의 반응을 활성화시킬 수 있다.
또한, 금속질화물 표면에 황이 붙어서 셔틀 현상이 덜 일어나 황의 이용률이 높아질 수 있다.
상기 금속질화물은 티타늄 질화물(titanium nitride, TiN)일 수 있다. 다만, 본 발명의 효과를 제한하지 않는다면 이에 제한되지는 않는다.
상기 금속질화물의 입도는 1 내지 5㎛일 수 있다. 상기 범위를 만족하는 경우, 효과적으로 상기 셔틀 현상을 억제할 수 있다.
상기 리튬-설퍼 전지용 양극은 집전체 및 양극 활물질층을 포함하며, 상기 양극 활물질층 상에 상기 탄소 박막이 적층될 수 있다.
또한, 상기 양극 활물질층은 양극 활물질, 바인더 및 도전재를 포함할 수 있다.
상기 양극 활물질로는 황(elemental sulfur, S8) 고체 Li2Sn(n≥ 1), Li 2Sn(n≥ 1)가 용해된 캐쏠라이트, 유기황 화합물 및 탄소-황 폴리머[(C2Sx)n , x = 2.5 내지 50, n ≥ 2]로 이루어진 군에서 선택되는 하나 이상의 황계 물질이 사용될 수 있다.
상기 양극 활물질과 함께 전자가 양극활물질 내에서 원활하게 이동하도록 하기 위한 도전재로는 특히 한정하지 않으나, 흑연계 물질, 카본계 물질 등과 같은 전도성 물질 또는 전도성 고분자가 바람직하게 사용될 수 있다. 상기 흑연계 물질로는 KS 6(Timcal사 제품)가 있고 카본계 물질로는 수퍼 P(MMM사 제품), 케첸 블랙(ketjen black), 덴카 블랙(denka black), 아세틸렌 블랙, 카본 블랙, 그래핀(Graphene) 등이 있다. 상기 전도성 고분자의 예로는 폴리아닐린, 폴리티오펜, 폴리아세틸렌, 폴리피롤 등이 있다. 이들 전도성 도전재들은 단독으로 사용하거나 둘 이상을 혼합하여 사용할 수도 있다.
또한, 양극 활물질을 집전체에 부착시키는 역할을 하는 바인더로는 폴리(비닐 아세테이트), 폴리비닐 알콜, 폴리에틸렌 옥사이드, 폴리비닐 피롤리돈, 알킬레이티드 폴리에틸렌 옥사이드, 가교 결합된 폴리에틸렌 옥사이드, 폴리비닐 에테르, 폴리(메틸 메타크릴레이트), 폴리비닐리덴 플루오라이드, 폴리헥사플루오로프로필렌과 폴리비닐리덴 플루오라이드의 코폴리머(상품명: Kynar), 폴리(에틸 아크릴레이트), 폴리테트라플루오로에틸렌, 폴리비닐클로라이드, 폴리아크릴로니트릴, 폴리비닐피리딘, 폴리스티렌, 이들의 유도체, 블랜드, 코폴리머 등이 사용될 수 있다.
본 발명의 일 구현예에 따른 양극은 양극 활물질, 도전재 및 바인더를 용매에 분산시킨 조성물을 집전체에 코팅하고 건조하여 제조할 수 있다.
상기 조성물 슬러리를 제조하기 위한 용매로는 황계 활물질, 바인더 및 도전재를 균일하게 분산시킬 수 있으며, 쉽게 증발되는 것을 사용하는 것이 바람직하며, 대표적으로는 아세토니트릴, 메탄올, 에탄올, 테트라하이드로퓨란, 물, 이소프로필알콜, 디메틸 포름아마이드 등을 사용할 수 있다.
상기 슬러리에 포함되는 용매, 황 화합물 또는 선택적으로 첨가제의 양은 본 발명에 있어서 특별히 중요한 의미를 가지지 않으며, 단지 슬러리의 코팅이 용이하도록 적절한 점도를 가지면 충분하다.
상기 집전체로는 특히 제한하지 않으나 스테인레스 스틸, 알루미늄, 구리, 티타늄 등의 도전성 물질을 사용하는 것이 바람직하며, 카본-코팅된 알루미늄 집전체를 사용하면 더욱 바람직하다. 탄소가 코팅된 Al 기판을 사용하는 것이 탄소가 코팅되지 않은 것에 비해 활물질에 대한 접착력이 우수하고, 접촉 저항이 낮으며, 알루미늄의 폴리설파이드에 의한 부식을 방지할 수 있는 장점이 있다.
상기 양극을 포함하는 리튬-설퍼 전지(1)는 도 1에 도시되어 있다. 도 1에서 보는 바와 같이 리튬-설퍼 전지는 양극(3), 음극(4), 및 상기 양극(3)과 음극(4) 사이에 위치한 세퍼레이터를 포함하는 전지 캔(5)을 포함한다.
상기 음극으로는 리튬 이온을 가역적으로 인터칼레이션할 수 있는 물질, 리튬 금속과 가역적으로 화합물을 형성할 수 있는 물질, 리튬 금속 또는 리튬 합금을 포함하는 음극 활물질로 제조된 것을 사용한다.
상기 리튬 이온을 가역적으로 인터칼레이션할 수 있는 물질로는 탄소 물질로서, 리튬 이온 이차 전지에서 일반적으로 사용되는 탄소 음극 활물질은 어떠한 것도 사용할 수 있으며, 그 대표적인 예로는 결정질 탄소, 비정질 탄소 또는 이들을 함께 사용할 수 있다. 상기 리튬 이온과 반응하여 가역적으로 리튬 함유 화합물을 형성할 수 있는 물질의 대표적인 예로는 산화주석(SnO2), 티타늄 나이트레이트, 실리콘(Si) 등을 들 수 있으나 이에 한정되는 것은 아니다. 리튬 합금으로는 리튬과 Na, K, Rb, Cs, Fr, Be, Mg, Ca, Sr, Ba, Ra, Al 및 Sn으로 이루어진 군에서 선택되는 금속의 합금이 사용될 수 있다.
리튬 금속 표면에 무기질 보호막(protective layer), 유기질 보호막 또는 이들이 적층된 물질도 음극으로 사용될 수 있다.
상기 무기질 보호막으로는 Mg, Al, B, C, Sn, Pb, Cd, Si, In, Ga, 리튬 실리케이트, 리튬 보레이트, 리튬 포스페이트, 리튬 포스포로나이트라이드, 리튬 실리코설파이드, 리튬 보로설파이드, 리튬 알루미노설파이드 및 리튬 포스포설파이드로 이루어진 군에서 선택되는 물질로 이루어진다. 상기 유기질 보호막으로는 폴리(p-페닐렌), 폴리아세틸렌, 폴리(p-페닐렌 비닐렌), 폴리아닐린, 폴리피롤, 폴리티오펜, 폴리(2,5-에틸렌 비닐렌), 아세틸렌, 폴리(페리나프탈렌), 폴리아센, 및 폴리(나프탈렌-2,6-디일)로 이루어진 군에서 선택되는 도전성을 가지는 모노머, 올리고머 또는 고분자로 이루어진다.
또한, 리튬-설퍼 전지를 충방전하는 과정에서, 양극 활물질로 사용되는 황이 비활성 물질로 변화되어, 리튬 음극 표면에 부착될 수 있다. 이와 같이 비활성 황(inactive sulfur)은 황이 여러 가지 전기화학적 또는 화학적 반응을 거쳐 양극의 전기 화학 반응에 더이상 참여할 수 없는 상태의 황을 말하며, 리튬 음극 표면에 형성된 비활성 황은 리튬 음극의 보호막(protective layer)으로서 역할을 하는 장점도 있다. 따라서, 리튬 금속과 이 리튬 금속 위에 형성된 비활성 황, 예를 들어 리튬 설파이드를 음극으로 사용할 수도 있다.
본 발명의 일 구현예에 따른 양극과 함께 사용되는 전해질은 지지 전해염으로 리튬염을 포함하고, 비수성 유기 용매를 포함한다. 리튬-설퍼 전지에서 사용되는 전해질의 유기 용매는 적절히 황 원소(S8), 리튬 설파이드(Li2S), 리튬 폴리설파이드(Li2Sn, n = 2, 4, 6, 8...)를 잘 용해시키는 것을 사용한다. 상기 유기 용매로는 벤젠, 플루오로벤젠, 톨루엔, 트리플루오로톨루엔, 자일렌, 사이클로헥산, 테트라하이드로퓨란, 2-메틸 테트라하이드로퓨란, 사이클록헥사논, 에탄올, 이소프로필알콜, 디메틸 카보네이트, 에틸메틸 카보네이트, 디에틸 카보네이트, 메틸프로필 카보네이트, 메틸프로피오네이트, 에틸프로피오네이트, 메틸아세테이트, 에틸 아세테이트, 프로필 아세테이트, 디메톡시 에탄, 1,3-디옥솔란, 디글라임, 테트라글라임, 에틸렌 카보네이트, 프로필렌 카보네이트, ν-부티로락톤 및 설포란으로 이루어진 군에서 선택되는 용매를 하나 이상 사용한다.
상기 전해염인 리튬염으로는 리튬 트리플루오로메탄설폰이미드(lithium trifluoromethansulfonimide), 리튬 트리플레이트(lithium triflate), 리튬 퍼클로레이트(lithium perclorate), 리튬 헥사플루오로아제네이트(LiAsF6), 리튬 트리플루오로메탄설포네이트(CF3SO3Li), LiPF6, LiBF4 또는 테트라알킬암모늄, 예를 들어 테트라부틸암모늄 테트라플루오로보레이트, 또는 상온에서 액상인 염, 예를 들어 1-에틸-3-메틸이미다졸리움 비스(퍼플루오로에틸 설포닐) 이미드와 같은 이미다졸리움 염 등을 하나 이상 사용할 수 있다. 상기 전해질은 리튬염을 0.5 내지 2.0M의 농도로 포함할 수 있다.
상기 전해질은 액상 전해질로 사용할 수도 있고, 고체 상태의 전해질 세퍼레이터 형태로도 사용할 수 있다. 액상 전해질로 사용할 경우에는 전극을 물리적으로 분리하는 기능을 갖는 물리적인 분리막으로서 다공성 유리, 플라스틱, 세라믹 또는 고분자 등으로 이루어진 세퍼레이터를 더욱 포함한다.
상기 전해질 세퍼레이터는 전극을 물리적으로 분리하는 기능과 금속 이온을 이동시키기 위한 이동 매질의 기능을 하는 것으로서, 전기 화학적으로 안정한 전기 및 이온 도전성 물질이 모두 사용될 수 있다. 이와 같은 전기 및 이온 전도성 물질로는 유리 전해질(glass electrolyte), 고분자 전해질 또는 세라믹 전해질 등이 사용될 수 있다. 특히 바람직한 고체 전해질로는 폴리에테르, 폴리이민, 폴리티오에테르 등과 같은 고분자 전해질에 상기 지지 전해염을 혼합하여 사용한다. 상기 고체
상태의 전해질 세퍼레이터는 약 20 중량% 미만의 비수성 유기 용매를 포함할 수 도 있으며, 이 경우에는 유기 용매의 유동성을 줄이기 위하여 적절한 겔 형성 화합물(gelling agent)을 더욱 포함할 수 도 있다.
이하에서는 본 발명의 구체적인 실시예들을 제시한다. 다만, 하기에 기재된 실시예들은 본 발명을 구체적으로 예시하거나 설명하기 위한 것에 불과하며, 이로서 본 발명이 제한되어서는 아니된다.
실시예 1: 양극의 제조-탄소 박막 별도 제조
우선 덴카-블랙을 잘 분산시키기 위해 적정량의 에탄올에 덴카-블랙을 넣은 후 초음파분해(sonication)를 10분 동안 실시하였다. 초음파 분해 후에 PTFE (PolyTetraFluoroEthylene) 바인더를 덴카-블랙과 1:1 중량 비율로 되도록 넣은 후, 호모제나이져(homogenizer)를 사용하여 20분 동안 섞었다. 이후, 막자 사발에 넣고 탄소끼리 잘 뭉쳐질 때까지 다졌다.
이후 뭉쳐진 탄소를 비닐에 넣고 어느 정도 약 두께 1mm 정도로 얇게 펴 탄소 막을 제조한 다음, 진공오븐에서 80℃로 12시간 건조시켰다. 건조가 끝나면 롤링기를 사용하여 약 0.2mm의 두께로 압착시켜 탄소 박막을 제조하였다.
이와는 별도로 황 원소(S8) 분말 (0.18)g, 탄소 도전재 (0.09 )g 및 바인더 (0.03 )g을 혼합한 후 1 시간 동안 볼밀링을 하여 양극 활물질 슬러리를 제조 하였다. 상기 바인더로는 PVdF 및 NMP를 사용하였으며, 상기 바인더 내 PVdF의 함량은 전체 바인더를 100중량%로 하였을 때 5중량%였다. 제조된 양극 활물질 슬러리를 카본 코팅된 Al 전류 집전체에 코팅한 후, 80℃의 진공오븐에서 건조하여 양극을 제조하였다.
상기 양극 상에 제조한 탄소 박막을 적층하여 리튬-설퍼용 양극을 제조하였다.
실시예 2: 양극의 제조-탄소 박막 별도 제조 후 TiN 코팅
우선 덴카-블랙을 잘 분산시키기 위해 적정량의 에탄올에 덴카-블랙을 넣은 후 초음파분해(sonication)를 10분 동안 실시하였다. 초음파 분해 후에 PTFE (PolyTetraFluoroEthylene) 바인더를 덴카-블랙과 1:1 중량 비율로 되도록 넣은 후, 호모제나이져(homogenizer)를 사용하여 20분 동안 섞었다. 이후, 막자 사발에 넣고 탄소끼리 잘 뭉쳐질 때까지 다졌다.
이후 뭉쳐진 탄소를 비닐에 넣고 어느 정도 약 두께 1mm 정도로 얇게 펴 탄소 막을 제조한 다음, 진공오븐에서 80℃로 12시간 건조시켰다. 건조가 끝나면 롤링기를 사용하여 약 0.2mm의 두께로 압착시켜 탄소 박막을 제조하였다.
이와는 별도로, 적정량의 에탄올에 분산된 TiN powder (0.1)g을 넣은 후 초음파분해(sonication)를 10분 동안 실시하여 분산된 TiN powder를 얻은 후, 이를 상기 실시예 1에서 제조한 탄소 박막 상에 스프레이 코팅 방법을 이용하여 탄소 박막 대비 3 중량%가 되도록 코팅하였다.
이와는 별도로 황 원소(S8) 분말 (0.18)g, 탄소 도전재 (0.09 )g 및 바인더 (0.03 )g을 혼합한 후 1 시간 동안 볼밀링을 하여 양극 활물질 슬러리를 제조 하였다. 상기 바인더로는 PVdF 및 NMP를 사용하였으며, 상기 바인더 내 PVdF의 함량은 전체 바인더를 100중량%로 하였을 때 5중량%였다. 제조된 양극 활물질 슬러리를 카본 코팅된 Al 전류 집전체에 코팅한 후, 80℃의 진공오븐에서 건조하여 양극을 제조하였다.
상기 양극 상에 상기에서 제조한 TiN이 코팅된 탄소 박막을 적층하여 리튬-설퍼용 양극을 제조하였다.
실시예 3: 양극의 제조-TiN을 포함한 탄소 박막 별도 제조
덴카 블랙 대비 50 중량%의 TiN powder를 덴카 블랙 및 PTFE 바인더와 함께 섞는 것을 제외하고는 실시예 1과 동일하게 양극을 제조하였다.
비교예 1: 양극의 제조-탄소 박막 동시 제조
황 원소(S8) 분말 0.18g, 탄소 도전재 0.09g 및 바인더 0.03g을 혼합한 후 1 시간 동안 볼밀링을 하여 양극 활물질 슬러리를 제조하였다. 상기 바인더로는 PVdF 및 NMP를 사용하였으며, 상기 바인더 내 PVdF의 함량은 전체 바인더를 100중량%로 하였을 때 5중량%였다. 제조된 양극 활물질 슬러리를 카본 코팅된 Al 전류 집전체에 코팅한 후, 80℃의 진공오븐에서 건조하여 양극을 제조하였다.
이후, 탄소 도전재 0.24g와 바인더 0.06g을 혼합한 후 1 시간 동안 볼밀링하여 탄소 슬러리를 제조하였다. 상기 바인더로는 PVdF 및 NMP를 사용하였으며, 상기 바인더 내 PVdF 함량은 전체 바인더를 100중량%로 하였을 때 5중량%였다. 제조된 탄소 슬러리를 상기 제조된 전극 위에 도포한 후 80℃의 진공오븐에서 건조하여 양극을 제조하였다.
비교예 2: 양극의 제조-탄소 코팅 없음
황 원소(S8) 분말 0.18g, 탄소 도전재 0.09g 및 바인더 0.03g을 혼합한 후 1 시간 동안 볼밀링을 하여 양극 활물질 슬러리를 제조 하였다. 상기 바인더로는 PVdF 및 NMP를 사용하였으며, 상기 바인더 내 PVdF의 함량은 전체 바인더를 100중량%로 하였을 때 5중량%였다. 제조된 양극 활물질 슬러리를 카본 코팅된 Al 전류 집전체에 코팅한 후, 80℃의 진공오븐에서 건조하여 양극을 제조하였다.
실시예 4: 전지의 제조
상기 실시예 1에서 제조한 양극을 이용하여 코인셀(Coin cell) 평가용 전지를 제조하였다. 음극은 산화되지 않은 리튬 금속 호일(두께 160㎛)을 사용하였으며, 전해질은 테트라에틸렌글리콜디메틸에테르(Tetraethyleneglycol dimethylether)와 1,3-디옥솔란(1,3Dioxoalne)을 50:50으로 혼합한 용매 내에 리튬 염 1M 트리플루오로메탄설폰이미드(lithium trifluoromethansulfonimide)와 0.2M 리튬나이트레이트(Lithium nitrate)를 용해하여 사용하였고, 세퍼레이터는 SK사의 폴리에틸렌(두께 20㎛)을 사용하였다.
실시예 5: 전지의 제조
상기 실시예 4에서, 실시예 1에서 제조한 양극을 대신하여, 실시예 2에서 제조한 양극을 사용한 점을 제외하고는, 상기 실시예 4와 동일하게 코인셀을 제조하였다.
실시예 6: 전지의 제조
상기 실시예 4에서, 실시예 1에서 제조한 양극을 대신하여, 실시예 3에서 제조한 양극을 사용한 점을 제외하고는, 상기 실시예 4와 동일하게 코인셀을 제조하였다.
비교예 3: 전지의 제조
상기 실시예 4에서, 실시예 1에서 제조한 양극을 대신하여, 비교예 1에서 제조한 양극을 사용한 점을 제외하고는, 상기 실시예 4와 동일하게 코인셀을 제조하였다.
비교예 4: 전지의 제조
상기 실시예 4에서, 실시예 1에서 제조한 양극을 대신하여, 비교예 2에서 제조한 양극을 사용한 점을 제외하고는, 상기 실시예 4와 동일하게 코인셀을 제조하였다.
(실험예)
탄소 박막 사진
도 2는 상기 실시예 1에서 제조한 탄소 박막의 일반 사진이다. 육안으로 확인할 때 균일한 표면의 탄소 박막이 제조된 것을 알 수 있었다.
전지 특성 평가
상기 실시예 4, 비교예 3 및 4의 전지를 1.5V의 컷-오프 전압범위에서 0.1C 방전, 0.1C 충전하여 50회 또는 100회의 충방전 사이클 수명 특성을 측정하여 도 3 및 4에 도시하였다.
도 3은 비교예 3 및 4의 전지 특성 평가 데이터이고, 도 4는 실시예 4 및 비교예 4의 전지 특성 평가 데이터이다.
도 3 및 4에서 알 수 있듯이, 탄소 코팅층이 존재하는 실시예 4 및 비교예 3의 전지 특성이 그렇지 않은 비교예 4보다 우수한 것을 알 수 있었다.
또한, 탄소 코팅층을 별도의 탄소 박막으로부터 제조한 실시예 4의 특성이 비교예 3보다 우수한 것을 알 수 있었다.
도 5는 실시예 4에 따른 전지의 전압 커브 데이터이다.
도 5로부터 방전 시, 2.4V와 2.1V에서 평탄전압이 뜨는 것을 볼 수 있는데, 일반 유황 전극의 반응과 유사한 것을 알 수 있다. 그러므로 유황 양극과 분리막 사이에 탄소 박막이 있어도 Li이온이 잘 전달되어 유황 양극과 반응하는데 아무런 방해도 없다는 것을 알 수 있다.
실시예 4 및 실시예 5의 전지를 1.5V의 컷-오프 전압범위에서 0.1C 방전, 0.1C 충전하여 15회의 충방전 사이클 수명 특성을 측정하여 도 6에 도시하였다.
도 6에서 알 수 있듯이, 탄소 박막 상에 TiN을 추가로 코팅한 실시예 5의 전지 특성이 그렇지 않은 실시예 4 보다 우수한 것을 알 수 있었다. 이는 탄소 박막 상에 촉매제를 코팅하는 방법은 탄소 박막에 의해 리튬 폴리설파이드(lithium polysulfide)를 포획함과 동시에 촉매제로 인한 활성화반응을 일으키는 역할이 모두 적용된 결과로 생각된다.
이상에서 본 발명의 바람직한 실시예들에 대하여 상세하게 설명하였지만 본 발명의 권리 범위는 이에 한정되는 것은 아니고 다음의 청구 범위에서 정의하고 있는 본 발명의 기본 개념을 이용한 당업자의 여러 변형 및 개량 형태 또한 본 발명의 권리 범위에 속하는 것이다.
Claims (20)
- 탄소 원료 물질 및 바인더를 혼합하는 단계;상기 바인더와 혼합된 탄소 원료 물질을 막(layer) 형태로 제조하여 탄소 막을 수득하는 단계;상기 탄소 막을 건조시키는 단계;상기 건조된 탄소 막을 압착하여 탄소 박막을 제조하는 단계; 및리튬-설퍼 전지용 양극 상에 상기 탄소 박막을 적층하는 단계;를 포함하는 리튬-설퍼 전지용 양극의 제조 방법.
- 제1항에 있어서,상기 탄소 원료 물질은 케첸 블랙(ketjen black), 덴카 블랙(denka black), 아세틸렌 블랙(acetylene black), Super-p, 카본 블랙, 그래핀(Graphene) 또는 이들의 조합인 것인 리튬-설퍼 전지용 양극의 제조 방법.
- 제1항에 있어서,상기 탄소 막을 건조시키는 단계;는, 50 내지 100℃에서 수행되는 것인 리튬-설퍼 전지용 양극의 제조 방법.
- 제1항에 있어서,상기 탄소 원료 물질에 대한 바인더의 중량 비율(바인더/탄소 원료 물질)은 0.8 내지 1.2인 것인 리튬-설퍼 전지용 양극의 제조 방법.
- 제1항에 있어서,상기 탄소 막은 0.8 내지 1.2mm 두께인 것인 리튬-설퍼 전지용 양극의 제조 방법.
- 제1항에 있어서,상기 탄소 박막은 0.1 내지 0.3mm 두께인 것인 리튬-설퍼 전지용 양극의 제조 방법.
- 제1항에 있어서,탄소 박막 상에 촉매제를 코팅시키는 단계;를 더 포함하는 것인 리튬-설퍼 전지용 양극의 제조 방법.
- 제1항에 있어서,상기 탄소 원료 물질 및 바인더를 혼합하는 단계;는 촉매제를 더 첨가하여 혼합하는 것인 리튬-설퍼 전지용 양극의 제조 방법.
- 제7항 또는 제8항에 있어서,상기 촉매제는 금속질화물인 것인 리튬-설퍼 전지용 양극의 제조 방법.
- 제9항에 있어서,상기 금속질화물은 티타늄 질화물(titanium nitride, TiN)인 것인 리튬-설퍼 전지용 양극의 제조 방법.
- 제9항에 있어서,상기 금속질화물의 입도는 1 내지 5㎛인 것인 리튬-설퍼 전지용 양극의 제조 방법.
- 제7항에 있어서,상기 촉매제는 상기 탄소 박막 대비 1 내지 5 중량%로 코팅되는 것인 리튬-설퍼 전지용 양극의 제조 방법.
- 제8항에 있어서,상기 촉매제는 상기 탄소 원료 물질 대비 20 내지 60 중량%인 것인 리튬-설퍼 전지용 양극의 제조 방법.
- 제1항에 있어서,상기 리튬-설퍼 전지용 양극은 집전체 및 양극 활물질층을 포함하며, 상기 양극 활물질층 상에 상기 탄소 박막이 적층되는 것인 리튬-설퍼 전지용 양극의 제조 방법.
- 제14항에 있어서,상기 양극 활물질층은 양극 활물질, 바인더 및 도전재를 포함하는 것인 리튬-설퍼 전지용 양극의 제조 방법.
- 제15항에 있어서,상기 양극 활물질은 황(elemental sulfur, S8), 고체 Li2Sn(n ≥ 1), Li2Sn(n ≥ 1)가 용해된 캐쏠라이트, 유기황 화합물 및 탄소-황 폴리머[(C2Sx)n, x = 2.5 내지 50, n ≥ 2]로 이루어진 군에서 선택되는 하나 이상의 황 화합물을 포함하는 것인 리튬-설퍼 전지용 양극의 제조 방법.
- 제1항, 제7항 또는 제8항 중 어느 하나의 방법에 따라 제조된 양극;리튬 이온을 가역적으로 인터칼레이션 또는 디인터칼레이션할 수 있는 물질, 리튬과 가역적으로 화합물을 형성할 수 있는 물질, 리튬 금속 및 리튬 합금으로 이루어진 군에서 선택되는 음극 활물질을 포함하는 음극; 및리튬염과 유기 용매를 포함하는 전해질;을 포함하는 리튬-설퍼 전지.
- 제17항에 있어서,상기 유기 용매는 벤젠, 플루오로벤젠, 톨루엔, 트리플루오로톨루엔, 자일렌, 사이클로헥산, 테트라하이드로퓨란, 2-메틸 테트라하이드로퓨란, 사이클록헥사논, 에탄올, 이소프로필알콜, 디메틸 카보네이트, 에틸메틸 카보네이트, 디에틸 카보네이트, 메틸프로필 카보네이트, 메틸프로피오네이트, 에틸프로피오네이트, 메틸 아세테이트, 에틸 아세테이트, 프로필 아세테이트, 디메톡시 에탄, 1,3-디옥솔란, 디글라임, 테트라글라임, 에틸렌 카보네이트, 프로필렌 카보네이트, ν-부티로락톤 및 설포란으로 이루어진 군에서 선택되는 하나 이상의 용매인 리튬-설퍼 전지.
- 제17항에 있어서,상기 리튬염은 리튬 트리플루오로메탄설폰이미드(lithium trifluoromethansulfonimide), 리튬 트리플레이트(lithium triflate), 리튬 퍼클로레이트(lithium perclorate), 리튬 헥사플루오로아제네이트(LiAsF6), 리튬 트리플루오로메탄설포네이트(CF3SO3Li), LiPF6, LiBF4, 테트라알킬암모늄, 및 상온에서 액상인 염으로 이루어진 군에서 선택되는 화합물 하나 이상인 것인 리튬-설퍼 전지.
- 제17항에 있어서,상기 전해질은 리튬염을 0.5 내지 2.0M의 농도로 포함하는 것인 리튬-설퍼 전지.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/421,989 US9853285B2 (en) | 2012-08-16 | 2013-08-14 | Method for manufacturing electrode for lithium-sulfur battery and lithium-sulfur battery |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020120089628A KR101365679B1 (ko) | 2012-08-16 | 2012-08-16 | 리튬-설퍼 전지용 양극의 제조 방법 및 리튬 설퍼 전지 |
KR10-2012-0089628 | 2012-08-16 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014027841A1 true WO2014027841A1 (ko) | 2014-02-20 |
Family
ID=50101327
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2013/007330 WO2014027841A1 (ko) | 2012-08-16 | 2013-08-14 | 리튬-설퍼 전지용 양극의 제조 방법 및 리튬 설퍼 전지 |
Country Status (3)
Country | Link |
---|---|
US (1) | US9853285B2 (ko) |
KR (1) | KR101365679B1 (ko) |
WO (1) | WO2014027841A1 (ko) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112072067A (zh) * | 2020-09-18 | 2020-12-11 | 北京理工大学 | 一种锂硫电池用碳硫复合正极及其制备方法 |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015141952A1 (ko) * | 2014-03-19 | 2015-09-24 | (주)오렌지파워 | 리튬 설퍼 전지 |
US11133522B2 (en) | 2015-12-14 | 2021-09-28 | King Abdullah University Of Science And Technology | Lithium-sulfur battery, a dual blocking layer, methods of making, and methods of use thereof |
US11024840B2 (en) * | 2019-01-07 | 2021-06-01 | Global Graphene Group, Inc. | Alkali metal-sulfur secondary battery containing a non-electronically conductive anode-protecting layer |
KR20230018795A (ko) * | 2021-07-30 | 2023-02-07 | 주식회사 엘지에너지솔루션 | 리튬-황 전지용 전해질 및 이를 포함하는 리튬-황 전지 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0878016A (ja) * | 1994-09-03 | 1996-03-22 | Dowa Mining Co Ltd | 負極材およびその製造方法、それを利用した負極電極体並びに二次電池 |
KR20020004053A (ko) * | 2000-06-30 | 2002-01-16 | 김성욱 | 양극 및 이를 포함하는 에너지 저장 장치 |
KR20020011562A (ko) * | 2000-08-02 | 2002-02-09 | 김순택 | 고용량 리튬-황 전지 |
KR20050022567A (ko) * | 2003-08-27 | 2005-03-08 | 대한민국 (경상대학교 총장) | 그라파이트 나노섬유 막을 적용한 리튬/유황 이차전지 |
JP2011029199A (ja) * | 1999-06-24 | 2011-02-10 | Mitsubishi Chemicals Corp | リチウム二次電池用正極材料、リチウム二次電池用正極及びリチウム二次電池 |
US20120088154A1 (en) * | 2010-10-07 | 2012-04-12 | Battelle Memorial Institute | Graphene-Sulfur Nanocomposites for Rechargeable Lithium-Sulfur Battery Electrodes |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6632569B1 (en) * | 1998-11-27 | 2003-10-14 | Mitsubishi Chemical Corporation | Carbonaceous material for electrode and non-aqueous solvent secondary battery using this material |
KR100484642B1 (ko) * | 2002-09-23 | 2005-04-20 | 삼성에스디아이 주식회사 | 리튬-설퍼 전지용 양극 활물질 및 그 제조방법 |
JP4284348B2 (ja) * | 2006-09-27 | 2009-06-24 | 株式会社東芝 | 非水電解質電池、電池パック及び自動車 |
DE102010030887A1 (de) * | 2010-07-02 | 2012-01-05 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Kathodeneinheit für Alkalimetall-Schwefel-Batterie |
-
2012
- 2012-08-16 KR KR1020120089628A patent/KR101365679B1/ko not_active IP Right Cessation
-
2013
- 2013-08-14 WO PCT/KR2013/007330 patent/WO2014027841A1/ko active Application Filing
- 2013-08-14 US US14/421,989 patent/US9853285B2/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0878016A (ja) * | 1994-09-03 | 1996-03-22 | Dowa Mining Co Ltd | 負極材およびその製造方法、それを利用した負極電極体並びに二次電池 |
JP2011029199A (ja) * | 1999-06-24 | 2011-02-10 | Mitsubishi Chemicals Corp | リチウム二次電池用正極材料、リチウム二次電池用正極及びリチウム二次電池 |
KR20020004053A (ko) * | 2000-06-30 | 2002-01-16 | 김성욱 | 양극 및 이를 포함하는 에너지 저장 장치 |
KR20020011562A (ko) * | 2000-08-02 | 2002-02-09 | 김순택 | 고용량 리튬-황 전지 |
KR20050022567A (ko) * | 2003-08-27 | 2005-03-08 | 대한민국 (경상대학교 총장) | 그라파이트 나노섬유 막을 적용한 리튬/유황 이차전지 |
US20120088154A1 (en) * | 2010-10-07 | 2012-04-12 | Battelle Memorial Institute | Graphene-Sulfur Nanocomposites for Rechargeable Lithium-Sulfur Battery Electrodes |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112072067A (zh) * | 2020-09-18 | 2020-12-11 | 北京理工大学 | 一种锂硫电池用碳硫复合正极及其制备方法 |
CN112072067B (zh) * | 2020-09-18 | 2022-10-14 | 北京理工大学 | 一种锂硫电池用碳硫复合正极及其制备方法 |
Also Published As
Publication number | Publication date |
---|---|
US9853285B2 (en) | 2017-12-26 |
KR101365679B1 (ko) | 2014-02-20 |
US20150221937A1 (en) | 2015-08-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2014109523A1 (ko) | 리튬-황 전지용 양극 활물질 및 이의 제조방법 | |
WO2019103465A1 (ko) | 리튬 이차전지용 음극 및 이의 제조 방법 | |
WO2015016496A1 (ko) | 리튬-황 전지용 양극 및 이의 제조방법 | |
WO2017131377A1 (ko) | 폴리도파민을 포함하는 복합 코팅층이 형성된 리튬-황 전지용 분리막, 이의 제조방법 및 이를 포함하는 리튬-황 전지 | |
WO2019093634A1 (ko) | 리튬 이차 전지용 음극 및 이를 포함하는 리튬 이차 전지 | |
WO2015023154A1 (ko) | 리튬-황 전지용 양극 및 이의 제조방법 | |
KR100612227B1 (ko) | 리튬 설퍼 전지용 양극 및 이를 포함하는 리튬 설퍼 전지 | |
WO2010137889A2 (ko) | 양극 활물질, 및 이를 포함하는 양극, 리튬 이차 전지 | |
WO2010137862A2 (ko) | 고에너지 밀도 리튬이차전지 | |
WO2019182364A1 (ko) | 리튬-함유 복합체의 코팅층을 구비한 세퍼레이터, 이를 포함하는 리튬 이차전지 및 상기 이차전지의 제조방법 | |
WO2010117219A2 (en) | Lithium-sulfur battery | |
WO2019132394A1 (ko) | 리튬-황 전지용 바인더, 이를 포함하는 양극 및 리튬-황 전지 | |
WO2019147082A1 (ko) | 리튬 이차전지용 음극 및 상기 음극을 포함하는 리튬 이온 이차 전지 | |
WO2020185014A1 (ko) | 음극 및 이를 포함하는 이차전지 | |
WO2019093709A1 (ko) | 리튬-황 전지용 전해질 복합체, 이를 포함하는 전기화학소자 및 그 제조방법 | |
WO2019013557A2 (ko) | 리튬 이차전지용 음극, 이를 포함하는 리튬 이차전지, 및 이의 제조 방법 | |
WO2014027841A1 (ko) | 리튬-설퍼 전지용 양극의 제조 방법 및 리튬 설퍼 전지 | |
WO2019103311A1 (ko) | 전고상 리튬-폴리머 이차전지용 양극 및 그의 제조방법, 이를 포함한 이차전지 | |
KR20140007128A (ko) | 리튬 설퍼 전지용 양극 및 이를 포함하는 리튬 설퍼 전지 | |
WO2022164107A1 (ko) | 리튬-황 전지용 전해액 및 이를 포함하는 리튬-황 전지 | |
WO2020105981A1 (ko) | 리튬-황 전지용 전해액 및 이를 포함하는 리튬-황 전지 | |
KR20050038254A (ko) | 리튬-설퍼 전지용 양극 및 이를 포함하는 리튬-설퍼 전지 | |
WO2019221410A1 (ko) | 전극 보호층을 포함하는 음극 및 이를 적용한 리튬 이차전지 | |
WO2019059662A2 (ko) | 금속 전극을 구비하는 금속이차전지 | |
WO2019009560A1 (ko) | 전극 및 이를 포함하는 리튬 이차전지 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13829627 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14421989 Country of ref document: US |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 13829627 Country of ref document: EP Kind code of ref document: A1 |