WO2022119197A1 - 탄소-실리콘 복합체 및 이의 제조방법 - Google Patents

탄소-실리콘 복합체 및 이의 제조방법 Download PDF

Info

Publication number
WO2022119197A1
WO2022119197A1 PCT/KR2021/017124 KR2021017124W WO2022119197A1 WO 2022119197 A1 WO2022119197 A1 WO 2022119197A1 KR 2021017124 W KR2021017124 W KR 2021017124W WO 2022119197 A1 WO2022119197 A1 WO 2022119197A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon
silicon
core
electrode
composite
Prior art date
Application number
PCT/KR2021/017124
Other languages
English (en)
French (fr)
Inventor
강석민
Original Assignee
주식회사 티씨케이
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 티씨케이 filed Critical 주식회사 티씨케이
Priority to CN202180080515.5A priority Critical patent/CN116529908A/zh
Priority to US18/039,762 priority patent/US20240025746A1/en
Priority to JP2023533287A priority patent/JP2023552345A/ja
Publication of WO2022119197A1 publication Critical patent/WO2022119197A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/05Preparation or purification of carbon not covered by groups C01B32/15, C01B32/20, C01B32/25, C01B32/30
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/20Graphite
    • C01B32/21After-treatment
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • C01B33/18Preparation of finely divided silica neither in sol nor in gel form; After-treatment thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/386Silicon or alloys based on silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/02Amorphous compounds
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/90Other properties not specified above
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a carbon-silicon composite and a method for preparing the same.
  • lithium secondary batteries have been widely commercialized and used because of their high energy density and operating potential, long cycle life, and low self-discharge rate. , and is expected to be widely applied to energy storage systems.
  • lithium metal As a negative electrode of a lithium secondary battery, lithium metal was conventionally used, but as the battery short circuit and the risk of explosion due to the formation of dendrite become a problem, reversible intercalation and desorption of lithium ions are possible. , the use of carbon-based active materials that maintain structural and electrical properties has emerged.
  • silicon (Si) or silicon compounds have been studied as high-capacity materials that can replace carbon-based active materials, but most silicon anode materials expand the silicon volume by up to 300% due to lithium insertion, which causes the anode to There was a problem in that it was destroyed and did not exhibit high cycle characteristics.
  • the silicon content is limited to less than 10% at the maximum due to electrode short circuit, cracks, and lifetime decrease due to the swelling of silicon during charging and discharging. There are problems that are difficult to overcome.
  • the present invention is to solve the above problems, and an object of the present invention is as an anode material for realizing a high-capacity lithium secondary battery, which has a high content of silicon particles and can suppress volume expansion due to silicon, carbon-silicon To provide a composite and a method for preparing the same.
  • a core comprising a carbon material and silicon particles; and a shell formed on the surface of the core and including amorphous carbon, crystalline carbon, or both, wherein the silicon particles are uniformly distributed from the center of the core to the surface, carbon-silicon composite provides
  • the content of the silicon particles in the core may be 10 wt% to 50 wt%.
  • the content ratio of the carbon material and the silicon particles may be 9: 1 to 1:1.
  • the silicon particle content ratio in a portion within 20% of the core center of the distance from the core center to the surface, and the silicon particle content ratio in a portion other than 80% from the core center may be less than 5%.
  • the size of the silicon particles may be 20 nm to 100 nm.
  • the carbon material is selected from the group consisting of natural graphite, artificial graphite, soft carbon, hard carbon, carbon black, acetylene black, Ketjen black, carbon fiber, carbon nanotube, graphene, and expanded graphite It may include at least one.
  • crystalline carbon in the shell, may be 40 wt% to 60 wt%.
  • the carbon-silicon composite may have a size of 3 ⁇ m to 12 ⁇ m.
  • the carbon-silicon composite may have a porosity of 1% to 10%.
  • Another aspect of the present invention comprises the steps of mixing a carbon material and silicon particles; forming a core by applying a shear force to the mixed carbon material and silicon particles; forming a shell by applying a coating solution containing amorphous carbon to the surface of the core; And applying heat to the formed shell to crystallize some or all of the amorphous carbon; Containing, it provides a method for producing a carbon-silicon composite.
  • pores may be formed in the carbon material by the shear force, and the silicon particles may penetrate into the carbon material.
  • Another aspect of the present invention provides an electrode for a lithium ion battery, including the carbon-silicon composite or the carbon-silicon composite prepared by the method for preparing the carbon-silicon composite.
  • the volume expansion rate of the electrode is 50% or less, and the volume expansion rate is the thickness of the electrode measured after 100 cycles of discharge based on the thickness of the electrode measured before charging and discharging and 0.5 C-rate It may be measured by comparison.
  • the capacity of the electrode may be 600 mAh/g to 1680 mAh/g.
  • the initial coulombic efficiency of the electrode may be 80% or more.
  • the carbon-silicon composite according to the present invention has a shape including a core in which silicon particles are distributed within a carbon material and uniformly dispersed throughout and an amorphous carbon shell formed on the surface of the core, thereby suppressing the expansion of silicon,
  • the content of silicon in the composite can be increased, and there is an effect of securing mechanical strength.
  • the method for producing a carbon-silicon composite according to the present invention applies a shear force so that silicon particles can be uniformly attached and distributed inside the carbon material, and pores are formed inside the carbon material, so that the silicon in the composite is a simple process. It is possible to increase the content and form a structure capable of suppressing the expansion of silicon particles.
  • the electrode for a lithium ion battery including the carbon-silicon composite according to the present invention has a high silicon content, so it is possible to implement a high capacity of the battery, and there is an effect that the volume expansion of the electrode due to silicon swelling is suppressed.
  • FIG. 1 is a graph analyzing the particle size distribution of a graphite-silicon composite according to an embodiment of the present invention.
  • FIG. 2 is an SEM image showing a cross-section and EDS analysis point of a graphite-silicon composite according to an embodiment of the present invention.
  • FIG. 3 is a cross-sectional SEM image of a graphite-silicon composite according to an embodiment of the present invention.
  • FIG. 4 is an electron image of the graphite-silicon composite in the electrode in the electrode formed of the graphite-silicon composite according to the embodiment of the present invention.
  • FIG 5 is an EDS layered image of the graphite-silicon composite in the electrode formed of the graphite-silicon composite in the electrode according to the embodiment of the present invention, in which blue color represents silicon and red color represents carbon.
  • FIG. 6 is an EDS layered image showing the silicon distribution of the graphite-silicon composite in the electrode in the electrode formed of the graphite-silicon composite according to the embodiment of the present invention.
  • FIG. 7 is an EDS layered image showing the carbon distribution of the graphite-silicon composite in the electrode in the electrode formed of the graphite-silicon composite according to an embodiment of the present invention.
  • FIG. 8 is an SEM image before charging and discharging of an electrode formed of a graphite-silicon composite according to an embodiment of the present invention.
  • FIG. 9 is an SEM image after charging and discharging of an electrode formed of a graphite-silicon composite according to an embodiment of the present invention.
  • a core comprising a carbon material and silicon particles; and a shell formed on the surface of the core and including amorphous carbon, crystalline carbon, or both, wherein the silicon particles are uniformly distributed from the center of the core to the surface, carbon-silicon composite provides
  • the carbon-silicon composite according to the present invention has the effect of effectively suppressing volume expansion due to silicon while increasing the silicon content in the composite by uniformly dispersing the silicon particles into the carbon material.
  • the silicon particles may be uniformly distributed from the center of the core to the surface, and for example, a content ratio of the carbon material from the center of the core to the surface may appear within a uniform range.
  • the content of the silicon particles in the core may be 10 wt% to 50 wt%.
  • the content of the silicon particles may be 20 wt% to 40 wt%.
  • the content of the silicon particles is included below the above range, it may be difficult to realize a high capacity of the battery when used as a negative electrode material for a lithium ion battery. It can increase by more than 50%.
  • the content ratio of the carbon material and the silicon particles may be 9: 1 to 1:1.
  • the content ratio of the carbon material and the silicon particles may be 4:1 to 3:2.
  • the content ratio of the carbon material and the silicon particles is out of the range, when the carbon-silicon composite is used as a negative electrode material for a lithium ion battery, it may be difficult to realize a high capacity of the battery, and the volume expansion rate of the electrode after charging and discharging of the battery is It can increase by more than 50%.
  • the silicon particle content ratio in a portion within 20% of the core center of the distance from the core center to the surface, and the silicon particle content ratio in a portion other than 80% from the core center may be less than 5%.
  • the content ratio of silicon particles may be almost the same.
  • the content ratio of silicon particles is almost the same, so that it is possible to manufacture an electrode material having high capacity and excellent cycle characteristics.
  • the size of the silicon particles may be 20 nm to 100 nm.
  • the size may be a diameter, a radius, a maximum length, etc. depending on the shape of the particle.
  • the size of the silicon particles is less than 20 nm, it is difficult to express a high capacity when forming an electrode, and side reactions with the electrolyte may increase, so that lifespan performance may be reduced, and if the size of the silicon particles exceeds 100 nm, The expansion of the silicone may not be suppressed.
  • the carbon material is selected from the group consisting of natural graphite, artificial graphite, soft carbon, hard carbon, carbon black, acetylene black, Ketjen black, carbon fiber, carbon nanotube, graphene, and expanded graphite It may include at least one.
  • the carbon material may include graphite.
  • the thickness of the shell may be 2 nm to 1 ⁇ m.
  • the thickness of the shell is less than 2 nm, the stability of the carbon-silicon composite may be reduced. It can be difficult to expect.
  • crystalline carbon in the shell, may be 40 wt% to 60 wt%.
  • the mechanical strength of the carbon-silicon composite may be lowered, and if it exceeds 60% by weight, the composite is destroyed by volume expansion during charging and discharging, resulting in capacity reduction and rapid cycle There may be a problem in that properties are deteriorated.
  • the amorphous carbon is, sucrose, phenol resin, naphthalene resin, polyvinyl alcohol resin, furfuryl alcohol resin, polyacrylonitrile resin, poly Amide resin, furan resin, cellulose resin, styrene resin, polyimide resin, epoxy resin or vinyl chloride resin, coal-based pitch, petroleum-based It may be prepared from a carbon precursor including pitch, polyvinyl chloride, mesophase pitch, tar, block-copolymer, polyol, and low molecular weight heavy oil or mixtures thereof.
  • the carbon-silicon composite may have a size of 3 ⁇ m to 12 ⁇ m.
  • the size may be a diameter, a radius, a maximum length, etc. depending on the shape of the composite.
  • the size of the carbon-silicon composite is less than 3 ⁇ m, the composite formation process may not be easy, and the specific surface area increases due to the increase in fine powder, so that the capacity decreases as the amount of binder increases during electrode manufacturing.
  • the electrode density may be lowered due to a space between the composites during electrode formation.
  • the porosity of the carbon-silicon composite may be 1% to 10%, and preferably, 1% to 7%.
  • the porosity of the carbon-silicon composite is less than 1%, the pore structure is not sufficiently formed, so the effect of suppressing volume expansion may be reduced, and if it exceeds 10%, the possibility of side reactions may increase due to excessive pore formation have.
  • the porosity may be defined as follows.
  • Porosity pore volume per unit mass/(specific volume + pore volume per unit mass)
  • the measurement of the porosity is not particularly limited, and according to an embodiment of the present invention, it may be measured by a BET method using an adsorbed gas such as nitrogen.
  • the pores are formed inside the carbon-silicon composite, and serve as a buffer for alleviating silicon volume expansion, thereby suppressing volume expansion of the electrode.
  • lithium ions may be introduced to the inside of the negative active material, so that diffusion of lithium ions occurs efficiently, thereby enabling a high rate of charge and discharge.
  • the pores have a very fine average particle diameter and are uniformly distributed as a whole together with the silicon particles, so that when the silicon particles are alloyed with lithium and expand in volume, it becomes possible to expand while compressing the volume of the pores, thereby causing no significant change in appearance. does not
  • Another aspect of the present invention comprises the steps of mixing a carbon material and silicon particles; forming a core by applying a shear force to the mixed carbon material and silicon particles; forming a shell by applying a coating solution containing amorphous carbon to the surface of the core; And applying heat to the formed shell to crystallize some or all of the amorphous carbon; Containing, it provides a method for producing a carbon-silicon composite.
  • the carbon-silicon composite manufacturing method according to the present invention may apply a shear force to allow the silicon particles to be uniformly attached and distributed inside the carbon material, and to uniformly form pores in the composite.
  • the mixing in the step of mixing the carbon material and the silicon particles, the mixing may be overmixing, and the overmixing may be mixing through a milling process.
  • the milling process is a beads mill, a high energy ball mill, a planetary mill, a stirred ball mill, a vibration mill, a SPEX mill, It may be performed using any one or more of a planetary mill, an attrition mill, a magneto-ball mill, and a vibration mill.
  • the forming of the core by applying a shear force to the mixed carbon material and silicon particles may be performed using equipment to which a mechanical shear force is applied.
  • equipment equipment capable of applying shear force or a high-speed rotary mill may be used.
  • pores may be formed in the carbon material by the shear force, and the silicon particles may penetrate into the carbon material.
  • the pores may serve as a buffer to suppress volume expansion due to swelling of the silicon particles, and the silicon particles may be physically bonded to the inside of the carbon material by shear force.
  • the silicon particles physically bonded to the carbon material are not separated from the carbon material unless a force corresponding to the applied shear force is applied, and thus the silicon particles may be uniformly distributed in the carbon-silicon composite.
  • Another aspect of the present invention provides an electrode for a lithium ion battery, including the carbon-silicon composite or the carbon-silicon composite prepared by the method for preparing the carbon-silicon composite.
  • the volume expansion rate of the electrode is 50% or less, and the volume expansion rate is the thickness of the electrode measured after 100 cycles of discharge based on the thickness of the electrode measured before charging and discharging and 0.5 C-rate It may be measured by comparison.
  • the change in thickness can be measured through SEM image analysis, and the volume expansion rate of the electrode can be calculated using the following equation.
  • volume expansion rate (thickness of electrode after charging and discharging - thickness of electrode before charging and discharging/thickness of electrode before charging and discharging) X 100
  • the capacity of the electrode may be 600 mAh/g to 1680 mAh/g.
  • the capacity of the electrode may be 850 mAh/g to 1500 mAh/g.
  • the capacity of the electrode corresponds to a capacity capable of suppressing the volume expansion rate to 20% or less while maximizing the silicon content.
  • the initial coulombic efficiency of the electrode may be 80% or more.
  • the initial coulombic efficiency of the electrode is, after mixing the carbon-silicon composite: conductive material: binder in a ratio of 90 to 6: 2 to 3: 6 to 8, Loading Mass 3 to 10 mg/ By coating with cm 2 , it can be measured at a rate of 0.1 to 0.5C rate.
  • the electrode for a lithium ion battery may be a negative electrode for a lithium ion battery.
  • the negative electrode may be manufactured by a conventional method known in the art, for example, after preparing a negative electrode active material slurry by mixing and stirring a negative electrode slurry composition including the carbon-silicon composite and additives such as a binder and a conductive material, It can be prepared by applying it to the current collector, drying it, and then compressing it.
  • Graphite (Tokai Carbon, BTR, etc.) was mixed with silicon particles having a diameter of 20 nm to 100 nm in a 7:3 ratio after mechanical grinding.
  • a shear force was applied to the mixture by a high-speed rotation mill to form a core in which silicon was uniformly distributed in the graphite.
  • the surface of the formed core was coated with a pitch to form a surface coating layer (shell), and heat was applied to the surface coating layer to prepare a graphite-silicon composite.
  • the graphite-silicon composite according to an embodiment of the present invention exhibits a particle size distribution with a D10 to D90 range of 2.16 to 11.1 ⁇ m and a D50 of 4.52 ⁇ m.
  • the graphite-silicon composite according to an embodiment of the present invention has a size of less than 3 ⁇ m. It was not used as it was fertilized.
  • Point 1 Point 2 (wt%) Point 3 (wt%) Si 51.84 48.73 48.48 C 48.16 51.27 51.52
  • FIG. 2 and 3 are cross-sectional images of the SEM and the graphite-silicon composite according to the embodiment of the present invention indicating the EDS analysis point.
  • the EDS analysis points correspond to point 1 (left), point 2 (center), and point 3 (right), respectively.
  • the graphite-silicon composite according to the embodiment of the present invention is formed of a core and an outer shell made of graphite and silicon, and silicon from the center of the graphite-silicon composite to the surface It can be seen that the content is almost uniform.
  • FIG. 2 it can be seen that the difference in the content ratio of silicon between point 2, which is the center of the carbon composite, and point 1, which is close to the surface, is only 3.68% difference, and in FIG. 3, silicon particles are white dots inside the core. It can be seen that they are evenly distributed.
  • Table 2 shows the EDS measurement results inside the electrode.
  • FIG. 4 is an electrode formed of a graphite-silicon composite according to an embodiment of the present invention, and is an electronic image of the graphite-silicon composite in the electrode.
  • FIG 5 is an EDS layered image of the graphite-silicon composite in the electrode formed of the graphite-silicon composite in the electrode according to the embodiment of the present invention, blue indicates silicon and red indicates carbon.
  • FIG. 6 is an EDS layered image showing the silicon distribution of the graphite-silicon composite in the electrode in the electrode formed of the graphite-silicon composite according to the embodiment of the present invention.
  • FIG. 7 is an EDS layered image showing the carbon distribution of the graphite-silicon composite in the electrode in the electrode formed of the graphite-silicon composite according to an embodiment of the present invention.
  • the thickness of the electrode formed using the graphite-silicon composite of Example and the thickness of the electrode after 100 cycles of discharge based on 0.5C-rate were measured through SEM image analysis to confirm the volume expansion rate.
  • the thickness was measured using FIB (Forced Ion Beam, TESCAN S9000G/OXFORD EDS Dual beam FIB (Ga LMIS)), and then the length was measured and confirmed through the SEM image.
  • FIB Form Ion Beam, TESCAN S9000G/OXFORD EDS Dual beam FIB (Ga LMIS)
  • FIG. 8 is an SEM image before charging and discharging of an electrode formed of a graphite-silicon composite according to an embodiment of the present invention.
  • FIG. 9 is an SEM image after charging and discharging of an electrode formed of a graphite-silicon composite according to an embodiment of the present invention.
  • the thickness of the electrode before charging and discharging is about 35 ⁇ m
  • the thickness of the electrode after 100 cycles of charging and discharging is about 39 ⁇ m to 42 ⁇ m.
  • the graphite-silicon composite according to the present invention exhibits a volume expansion rate of 10% to 20% after charging and discharging, and it can be seen that the volume expansion due to silicon is significantly suppressed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

본 발명은 탄소-실리콘 복합체 및 이의 제조방법에 관한 것으로, 본 발명의 일 측면은, 탄소 물질 및 실리콘 입자를 포함하는 코어; 및 상기 코어의 표면에 형성되고, 비정질 탄소를 포함하는 쉘;을 포함하고, 상기 실리콘 입자는, 상기 코어의 중심에서 표면까지 균일하게 분포되어 있는 것인, 탄소-실리콘 복합체를 제공한다.

Description

탄소-실리콘 복합체 및 이의 제조방법
본 발명은 탄소-실리콘 복합체 및 이의 제조방법에 관한 것이다.
화석연료의 고갈에 의한 에너지원의 가격 상승, 환경오염의 관심이 증폭되면서, 친환경 대체 에너지원이 미래생활을 위한 필수 불가결한 요인이 되고 있다. 특히, 모바일 기기에 대한 기술 개발과 수요가 증가함에 따라 친환경 대체 에너지원으로서 이차전지의 수요가 급격히 증가하고 있다.
이 중, 리튬이차전지는 높은 에너지 밀도와 작동 전위를 나타내고, 사이클 수명이 길며, 자기 방전율이 낮아 널리 상용화되어 사용되고 있으며, 현재 노트북과 휴대폰과 같은 디지털 디바이스에서 전기 자동차, 하이브리드 자동차, 우주 및 항공 분야, 에너지 저장 시스템 등으로 확대 적용될 전망이다.
이에 따라, 고용량의 리튬이차전지를 구현하기 위한 연구가 활발히 수행되고 있다.
리튬이차전지의 음극으로는, 종래 리튬 금속이 사용되었으나, 덴드라이트(dendrite) 형성에 따른 전지 단락과 이로 인한 폭발의 위험성이 문제가 되면서, 가역적인 리튬이온의 삽입(intercalation) 및 탈리가 가능하고, 구조적 및 전기적 성질을 유지하는 탄소계 활물질의 사용이 대두되었다.
이러한 탄소계 활물질은, 리튬 전지의 에너지 밀도면에서 많은 이점을 제공하고 있으나, 이론적 최대 용량의 한계, 안전성 문제, 탄소계 화합물의 소수성에 따른 전지 생산성 저하 등에 문제점이 존재한다.
이를 해결하기 위해, 탄소계 활물질을 대체할 수 있는 고용량 재료로 실리콘(Si) 또는 실리콘 화합물이 검토되었으나, 대부분의 실리콘 음극 물질은 리튬 삽입에 의하여 최대 300 %까지 실리콘 부피가 팽창하며 이로 인해 음극이 파괴되어 높은 사이클 특성을 나타내지 못하는 문제점이 발생하였다.
또한, 실리콘 또는 실리콘 화합물을 탄소계 활물질에 첨가하여 사용할 경우에도, 충방전 동안 실리콘의 팽윤에 의한 전극 단락, 크랙, 수명 감소 등으로 인해 실리콘의 함유량이 최대 10 % 이내로 제한될수 밖에 없어 용량의 한계를 극복하기 어려운 문제점이 있다.
본 발명은 상술한 문제점을 해결하기 위한 것으로, 본 발명의 목적은, 고용량 리튬이차전지 구현을 위한 음극재로서, 실리콘 입자의 함유량이 높고, 실리콘에 의한 부피 팽창을 억제할 수 있는, 탄소-실리콘 복합체 및 이의 제조방법을 제공하는 것이다.
그러나, 본 발명이 해결하고자 하는 과제는 이상에서 언급한 과제로 제한되지 않으며, 언급되지 않은 또 다른 과제들은 아래의 기재로부터 통상의 기술자에게 명확하게 이해될 수 있을 것이다.
본 발명의 일 측면은, 탄소 물질 및 실리콘 입자를 포함하는 코어; 및 상기 코어의 표면에 형성되고, 비정질 탄소, 결정질 탄소 또는 이 둘을 포함하는 쉘;을 포함하고, 상기 실리콘 입자는, 상기 코어의 중심에서 표면까지 균일하게 분포되어 있는 것인, 탄소-실리콘 복합체를 제공한다.
일 실시형태에 따르면, 상기 코어 중, 상기 실리콘 입자의 함량은, 10 중량% 내지 50 중량%인 것일 수 있다.
일 실시형태에 따르면, 상기 탄소 물질 및 상기 실리콘 입자의 함량비는 9 : 1 내지 1 : 1인 것일 수 있다.
일 실시형태에 따르면, 상기 코어 중, 상기 코어 중심으로부터 상기 표면까지 거리 중 상기 코어 중심으로부터 20 % 이내 부분에서의 실리콘 입자 함량비율과, 상기 코어 중심으로부터 80 % 이외 부분에서의 실리콘 입자 함량비율의 차이는, 5 % 미만인 것일 수 있다.
일 실시형태에 따르면, 상기 실리콘 입자의 크기는, 20 nm 내지 100 nm인 것일 수 있다.
일 실시형태에 따르면, 상기 탄소 물질은, 천연 흑연, 인조 흑연, 소프트 카본, 하드 카본, 카본블랙, 아세틸렌 블랙, 케첸 블랙, 탄소섬유, 탄소나노튜브, 그래핀 및 팽창흑연으로 이루어진 군에서 선택되는 적어도 어느 하나를 포함하는 것일 수 있다.
일 실시형태에 따르면, 상기 쉘 중, 결정질 탄소가 40 중량% 내지 60 중량%인 것일 수 있다.
일 실시형태에 따르면, 상기 탄소-실리콘 복합체의 크기는, 3 ㎛ 내지 12 ㎛인 것일 수 있다.
일 실시형태에 따르면, 상기 탄소-실리콘 복합체의 기공율은, 1 % 내지 10 %인 것일 수 있다.
본 발명의 다른 측면은, 탄소 물질 및 실리콘 입자를 혼합하는 단계; 상기 혼합된 탄소 물질 및 실리콘 입자에 전단력(shear force)을 가하여 코어를 형성하는 단계; 상기 코어의 표면에 비정질 탄소를 포함하는 코팅액을 도포하여 쉘을 형성하는 단계; 및 상기 형성된 쉘에 열을 가하여 비정질 탄소의 일부 또는 전부를 결정화하는 단계;를 포함하는, 탄소-실리콘 복합체의 제조방법을 제공한다.
일 실시형태에 따르면, 상기 전단력에 의해, 상기 탄소 물질 내부에 기공이 형성되고, 상기 실리콘 입자가 상기 탄소 물질 내부에 침투되는 것일 수 있다.
본 발명의 또 다른 측면은, 상기 탄소-실리콘 복합체 또는 상기 탄소-실리콘 복합체의 제조방법에 의해 제조된 탄소-실리콘 복합체를 포함하는, 리튬 이온 전지용 전극을 제공한다.
일 실시형태에 따르면, 상기 전극의 부피 팽창율은, 50 % 이하이고, 상기 부피 팽창율은, 충방전 이전에 측정된 전극의 두께와 0.5C-rate을 기준으로 100 cycle 방전 후 측정된 전극의 두께를 비교하여 측정된 것일 수 있다.
일 실시형태에 따르면, 상기 전극의 용량은, 600 mAh/g 내지 1680 mAh/g인 것일 수 있다.
일 실시형태에 따르면, 상기 전극의 초기 쿨롱 효율은 80 % 이상인 것일 수 있다.
본 발명에 따른 탄소-실리콘 복합체는, 실리콘 입자가 탄소 물질 내부에 분포되어 전체적으로 균일하게 분산된 코어 및 코어 표면에 형성된 비정질 탄소 쉘을 포함하는 형태를 가짐으로써, 실리콘의 팽창을 억제할 수 있고, 복합체 내에 실리콘의 함유량을 높일 수 있으며, 기계적 강도를 확보할 수 있는 효과가 있다.
또한, 본 발명에 따른 탄소-실리콘 복합체의 제조 방법은, 전단력을 가하여 탄소 물질 내부에 실리콘 입자가 균일하게 부착 및 분포될 수 있게 하고, 탄소 물질 내부에 기공을 형성시킴으로써, 간단한 공정으로 복합체 내에 실리콘 함유량을 증가시키고, 실리콘 입자의 팽창을 억제할 수 있는 구조를 형성시킬 수 있다.
또한, 본 발명에 따른 탄소-실리콘 복합체를 포함하는 리튬 이온 전지용 전극은, 실리콘의 함유량이 높아 전지의 고용량 구현이 가능하며, 실리콘 팽윤에 의한 전극의 부피 팽창이 억제되는 효과가 있다.
도 1은 본 발명 실시예에 따른 흑연-실리콘 복합체의 입도분포를 분석한 그래프이다.
도 2는 본 발명 실시예에 따른 흑연-실리콘 복합체의 단면 및 EDS 분석 지점을 표시한 SEM 이미지이다.
도 3은 본 발명 실시예에 따른 흑연-실리콘 복합체의 단면 SEM 이미지이다.도 4는 본 발명 실시예에 따른 흑연-실리콘 복합체로 형성된 전극에서, 전극 내 흑연-실리콘 복합체의 전자 이미지이다.
도 5는 본 발명 실시예에 따른 흑연-실리콘 복합체로 형성된 전극에서, 전극 내 흑연-실리콘 복합체의 EDS layered 이미지로, 푸른색은 실리콘을 나타내고, 붉은색은 탄소를 나타낸다.
도 6은 본 발명 실시예에 따른 흑연-실리콘 복합체로 형성된 전극에서, 전극 내 흑연-실리콘 복합체의 실리콘 분포를 보여주는 EDS layered 이미지이다.
도 7은 본 발명 실시예에 따른 흑연-실리콘 복합체로 형성된 전극에서, 전극 내 흑연-실리콘 복합체의 탄소 분포를 보여주는 EDS layered 이미지이다.
도 8은 본 발명 실시예에 따른 흑연-실리콘 복합체로 형성된 전극의 충방전 전 SEM 이미지이다.
도 9는 본 발명 실시예에 따른 흑연-실리콘 복합체로 형성된 전극의 충방전 후 SEM 이미지이다.
이하에서, 첨부된 도면을 참조하여 실시예들을 상세하게 설명한다. 그러나, 실시예들에는 다양한 변경이 가해질 수 있어서 특허출원의 권리 범위가 이러한 실시예들에 의해 제한되거나 한정되는 것은 아니다. 실시예들에 대한 모든 변경, 균등물 내지 대체물이 권리 범위에 포함되는 것으로 이해되어야 한다.
실시예에서 사용한 용어는 단지 설명을 목적으로 사용된 것으로, 한정하려는 의도로 해석되어서는 안된다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 명세서에서, "포함하다" 또는 "가지다" 등의 용어는 명세서 상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
다르게 정의되지 않는 한, 기술적이거나 과학적인 용어를 포함해서 여기서 사용되는 모든 용어들은 실시예가 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 가지고 있다. 일반적으로 사용되는 사전에 정의되어 있는 것과 같은 용어들은 관련 기술의 문맥 상 가지는 의미와 일치하는 의미를 가지는 것으로 해석되어야 하며, 본 출원에서 명백하게 정의하지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다.
또한, 실시예를 설명함에 있어서 관련된 공지 기술에 대한 구체적인 설명이 실시예의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우 그 상세한 설명을 생략한다.
이하, 본 발명의 탄소-실리콘 복합체 및 이의 제조방법에 대하여 실시예 및 도면을 참조하여 구체적으로 설명하도록 한다. 그러나, 본 발명이 이러한 실시예 및 도면에 제한되는 것은 아니다.
본 발명의 일 측면은, 탄소 물질 및 실리콘 입자를 포함하는 코어; 및 상기 코어의 표면에 형성되고, 비정질 탄소, 결정질 탄소 또는 이 둘을 포함하는 쉘;을 포함하고, 상기 실리콘 입자는, 상기 코어의 중심에서 표면까지 균일하게 분포되어 있는 것인, 탄소-실리콘 복합체를 제공한다.
본 발명에 따른 탄소-실리콘 복합체는, 탄소 물질 내부로 실리콘 입자를 균일하게 분산시킴으로써, 복합체 내에 실리콘 함량을 증가시키면서, 실리콘에 의한 부피 팽창을 효과적으로 억제할 수 있는 효과가 있다.
상기 실리콘 입자는, 상기 코어의 중심에서 표면까지 균일하게 분포되어 있고, 일례로, 상기 코어의 중심에서 표면까지 탄소 물질과의 함량비가 균일한 범위 내로 나타나는 것일 수 있다.
일 실시형태에 따르면, 상기 코어 중, 상기 실리콘 입자의 함량은, 10 중량% 내지 50 중량%인 것일 수 있다.
바람직하게는, 상기 실리콘 입자의 함량은, 20 중량% 내지 40 중량%인 것일 수 있다.
만일, 상기 실리콘 입자의 함량이 상기 범위 미만으로 포함될 경우, 리튬 이온 전지용 음극재로 사용 시 전지의 고용량 구현이 어려울 수 있고, 상기 범위를 초과하여 포함될 경우, 전지의 충방전 후 전극의 부피 팽창율이 50 % 이상으로 증가할 수 있다.
일 실시형태에 따르면, 상기 탄소 물질 및 상기 실리콘 입자의 함량비는 9 : 1 내지 1 : 1인 것일 수 있다.
바람직하게는, 상기 탄소 물질 및 상기 실리콘 입자의 함량비는 4 : 1 내지 3 : 2인 것일 수 있다.
만일, 상기 탄소 물질 및 상기 실리콘 입자의 함량비 범위를 벗어날 경우, 상기 탄소-실리콘 복합체를 리튬 이온 전지용 음극재로 사용 시 전지의 고용량 구현이 어려울 수 있고, 전지의 충방전 후 전극의 부피 팽창율이 50 % 이상으로 증가할 수 있다.
일 실시형태에 따르면, 상기 코어 중, 상기 코어 중심으로부터 상기 표면까지 거리 중 상기 코어 중심으로부터 20 % 이내 부분에서의 실리콘 입자 함량비율과, 상기 코어 중심으로부터 80 % 이외 부분에서의 실리콘 입자 함량비율의 차이는, 5 % 미만인 것일 수 있다.
즉, 상기 코어 중, 상기 코어의 중심에서 표면에 이르기까지, 실리콘 입자의 함량비율이 거의 동일하게 나타나는 것일 수 있다.
본 발명에 따른, 탄소-실리콘 복합체는, 상기 코어의 중심에서 표면에 이르기까지, 실리콘 입자의 함량비율이 거의 동일하게 나타남으로써, 고용량의 우수한 사이클 특성을 갖는 전극 소재를 제조할 수 있다
일 실시형태에 따르면, 상기 실리콘 입자의 크기는, 20 nm 내지 100 nm인 것일 수 있다.
상기 크기는, 입자의 형태에 따라 직경, 반경, 최대 길이 등일 수 있다.
만일, 상기 실리콘 입자의 크기가, 20 nm 미만일 경우, 전극 형성 시 높은 용량을 발현하기 어렵고 전해액과 부반응이 커져 수명 성능이 저하될 수 있고, 상기 실리콘 입자의 크기가, 100 nm를 초과할 경우, 실리콘의 팽창이 억제되지 않을 수 있다.
일 실시형태에 따르면, 상기 탄소 물질은, 천연 흑연, 인조 흑연, 소프트 카본, 하드 카본, 카본블랙, 아세틸렌 블랙, 케첸 블랙, 탄소섬유, 탄소나노튜브, 그래핀 및 팽창흑연으로 이루어진 군에서 선택되는 적어도 어느 하나를 포함하는 것일 수 있다. 바람직하게는, 상기 탄소 물질은 흑연을 포함할 수 있다.
일 실시형태에 따르면, 상기 쉘의 두께는, 2 nm 내지 1 ㎛인 것일 수 있다.
만일, 상기 쉘의 두께까 2 nm 미만일 경우, 탄소-실리콘 복합체의 안정성이 저하될 수 있고, 상기 두께가 1 ㎛를 초과할 경우, 충방전동안 리튬과의 반응이 억제되어 고율 충방전시 고용량을 기대하기 어려울 수 있다.
일 실시형태에 따르면, 상기 쉘 중, 결정질 탄소가 40 중량% 내지 60 중량%인 것일 수 있다.
만일, 상기 결정질 탄소가 40 중량% 미만일 경우, 탄소-실리콘 복합체의 기계적 강도가 저하될 수 있고, 60 중량%를 초과할 경우, 충방전 시 volume expansion에 의한 복합체의 파괴가 일어나 용량 저하 및 급격한 cycle특성 저하가 발생하는 문제점이 발생할 수 있다.
상기 비정질 탄소는, 수크로오스(sucrose), 페놀(phenol) 수지, 나프탈렌(naphthalene) 수지, 폴리비닐알코올(polyvinyl alcohol) 수지, 퍼푸릴 알코올(furfuryl alcohol) 수지, 폴리아크릴로니트릴(polyacrylonitrile) 수지, 폴리아미드(polyamide) 수지, 퓨란(furan) 수지, 셀룰로오스(cellulose) 수지, 스티렌(stylene) 수지, 폴리이미드(polyimide) 수지, 에폭시(epoxy) 수지 또는 염화비닐(vinyl chloride) 수지, 석탄계 핏치, 석유계 핏치, 폴리비닐클로라이드, 메조페이스 핏치, 타르, 블록공중합체(block-copolymer), 폴리올 및 저분자량 중질유 또는 이들의 혼합물을 포함하는 카본 전구체로부터 제조된 것일 수 있다
일 실시형태에 따르면, 상기 탄소-실리콘 복합체의 크기는, 3 ㎛ 내지 12 ㎛인 것일 수 있다.
상기 크기는, 복합체의 형태에 따라 직경, 반경, 최대 길이 등일 수 있다.
만일, 상기 탄소-실리콘 복합체의 크기가, 3 ㎛ 미만인 경우, 복합체 형성 공정이 용이하지 않을 수 있고, 미분의 증가로 비표면적이 넓어져 전극 제조시 바인더의 양이 많아짐에 따라 용량 저하의 원인이 될 수 있다.
또한, 상기 탄소-실리콘 복합체의 크기가, 12 ㎛를 초과할 경우, 전극 형성 시 복합체 사이에 공간으로 인해 전극 밀도가 낮아질 수 있다.
일 실시형태에 따르면, 상기 탄소-실리콘 복합체의 기공율은, 1 % 내지 10 %인 것일 수 있고, 바람직하게는, 1 % 내지 7 %인 것일 수 있다.
만일, 상기 탄소-실리콘 복합체의 기공율이 1 % 미만일 경우, 기공 구조의 형성이 충분치 않아 부피 팽창 억제 효과가 저하될 수 있고, 10 %를 초과할 경우, 과도한 기공의 형성으로 부반응 발생 가능성이 높아질 수 있다.
일 실시형태에 따르면, 상기 기공율은, 아래와 같이 정의할 수 있다.
기공율= 단위 질량당 기공 부피/(비체적 + 단위 질량 당 기공 부피)
상기 기공율의 측정은 특별히 한정되지 않으며, 본 발명의 일 실시예에 따라, 질소 등의 흡착기체를 이용하여 BET 방식으로 측정할 수 있다.
상기 기공은, 탄소-실리콘 복합체의 내부에 형성되어, 실리콘 부피 팽창을 완화하는 버퍼 역할을 수행하는 것으로, 전극의 부피 팽창을 억제할 수 있다.
또한, 상기 기공에 비수 전해액이 함침될 수 있어, 리튬 이온이 음극 활물질 내부까지 투입될 수 있으므로 리튬 이온의 확산이 효율적으로 일어나 고율 충방전이 가능한 효과가 있다.
상기 기공은 평균 입경이 매우 미세하고, 실리콘 입자들과 함께 전체적으로 균일하게 분포되어, 실리콘 입자가 리튬과 합금화되어 부피 팽창할 때 기공의 용적을 압축하면서 팽창하는 것이 가능하게 되어, 외관상 큰 변화를 일으키지 않는다.
본 발명의 다른 측면은, 탄소 물질 및 실리콘 입자를 혼합하는 단계; 상기 혼합된 탄소 물질 및 실리콘 입자에 전단력(shear force)을 가하여 코어를 형성하는 단계; 상기 코어의 표면에 비정질 탄소를 포함하는 코팅액을 도포하여 쉘을 형성하는 단계; 및 상기 형성된 쉘에 열을 가하여 비정질 탄소의 일부 또는 전부를 결정화하는 단계;를 포함하는, 탄소-실리콘 복합체의 제조방법을 제공한다.
본 발명에 따른 탄소-실리콘 복합체의 제조 방법은, 전단력을 가하여 탄소 물질 내부에 실리콘 입자가 균일하게 부착 및 분포될 수 있게 하고, 복합체 내부에 기공을 균일하게 형성시킬 수 있다.
일 실시형태에 따르면, 상기 탄소 물질 및 실리콘 입자를 혼합하는 단계에 있어서, 상기 혼합은 오버믹싱 하는 것일 수 있고, 상기 오버믹싱은 밀링 공정으로 믹싱하는 것일 수 있다.
상기 밀링 공정은 비즈밀(beads mill), 고에너지 볼 밀(high energy ballmill), 유성 밀(planetary mill), 교반 볼밀(stirred ball mill), 진동밀(vibration mill), 스펙스 밀(SPEX mill), 플래너터리 밀(Planetary mill), 어트리션 밀(Attrition mill), 마그네토 볼밀(Magento-ball mill) 및 진동밀(vibrationmill) 중 어느 하나 이상을 사용하여 수행하는 것일 수 있다.
상기 혼합된 탄소 물질 및 실리콘 입자에 전단력(shear force)을 가하여 코어를 형성하는 단계는, 기계적인 전단력(mechanical shear force)이 가해지는 장비를 사용하여 수행할 수 있다. 예를 들어, 상기 장비로는, Shear Force를 인가할수 있는 장비 또는 고속회전밀 등을 사용할 수 있다.
일 실시형태에 따르면, 상기 전단력에 의해, 상기 탄소 물질 내부에 기공이 형성되고, 상기 실리콘 입자가 상기 탄소 물질 내부에 침투되는 것일 수 있다.
상기 기공은, 실리콘 입자의 팽윤에 따른 부피 팽창을 억제하는 버퍼 역할을 할 수 있고, 상기 실리콘 입자는 전단력에 의해 상기 탄소 물질 내부에 물리적으로 결합될 수 있다.
상기 탄소 물질 내부에 물리적으로 결합된 실리콘 입자는, 가해진 전단력에 상응하는 힘이 가해지지 않는 한 탄소 물질과 분리되지 않아, 탄소-실리콘 복합체 내에서 균일하게 분포될 수 있다.
본 발명의 또 다른 측면은, 상기 탄소-실리콘 복합체 또는 상기 탄소-실리콘 복합체의 제조방법에 의해 제조된 탄소-실리콘 복합체를 포함하는, 리튬 이온 전지용 전극을 제공한다.
일 실시형태에 따르면, 상기 전극의 부피 팽창율은, 50 % 이하이고, 상기 부피 팽창율은, 충방전 이전에 측정된 전극의 두께와 0.5C-rate을 기준으로 100 cycle 방전 후 측정된 전극의 두께를 비교하여 측정된 것일 수 있다.
일례로, SEM 이미지 분석을 통해 두께의 변화를 측정할 수 있으며, 아래와 같은 식을 사용하여 전극의 부피 팽창율을 계산할 수 있다.
부피 팽창율=(충방전 이후 전극의 두께-충방전 이전 전극의 두께/충방전 이전 전극의 두께) X 100
일 실시형태에 따르면, 상기 전극의 용량은, 600 mAh/g 내지 1680 mAh/g인 것일 수 있다.
바람직하게는, 상기 전극의 용량은, 850 mAh/g 내지 1500 mAh/g인 것일 수 있다.
상기 전극의 용량은, 실리콘 함량을 최대화하면서, 부피 팽창율을 20 % 이하로 억제할 수 있는 용량에 해당한다.
일 실시형태에 따르면, 상기 전극의 초기 쿨롱 효율은 80 % 이상인 것일 수 있다.
일례로, 상기 전극의 초기 쿨롱 효율은, 상기 탄소-실리콘 복합체 : 도전재 : 바인더를 90 ~ 6 : 2 ~ 3 : 6 ~ 8 비율로 혼합한 뒤, 구리박 호일에 Loading Mass 3 ~ 10 mg/cm2로 코팅하여, 0.1 ~ 0.5C rate의 속도로 측정될 수 있다.
일 실시형태에 따르면, 상기 리튬 이온 전지용 전극은, 리튬 이온 전지용 음극일 수 있다.
상기 음극은 당 분야에 알려져 있는 통상적인 방법으로 제조될 수 있으며, 예컨대 상기 탄소-실리콘 복합체 및 바인더 및 도전재 등의 첨가제들을 포함하는 음극 슬러리 조성물을 혼합 및 교반하여 음극 활물질 슬러리를 제조한 후, 이를 집전체에 도포하고 건조한 후 압축하여 제조할 수 있다
이하, 실시예 및 비교예에 의하여 본 발명을 더욱 상세히 설명하고자 한다.
단, 하기 실시예는 본 발명을 예시하기 위한 것일 뿐, 본 발명의 내용이 하기 실시예에 한정되는 것은 아니다.
실시예.
흑연(도카이 카본, BTR 등)은 기계적 분쇄과정을 거친 후, 20 nm 내지 100 nm의 직경을 가진 실리콘 입자 와 7:3 비율로 혼합하였다.
상기 혼합물에 고속회전밀로 전단력(shear force)을 가하여, 흑연 내부에 실리콘이 균일하게 분포된 코어를 형성시켰다.
형성된 코어의 표면을 피치(Pitch)로 코팅하여 표면 코팅층(쉘)을 형성시키고, 표면 코팅층에 열을 가하여 흑연-실리콘 복합체를 제조하였다.
실험예 1. 흑연- 실리콘 복합체 입도 분포 분석
실시예에 따른 흑연-실리콘 복합체에 대하여 입도 분포 분석을 실시하였다.
도 1을 참조하면, 본 발명 실시예에 따른 흑연-실리콘 복합체는 D10 내지 D90의 범위가 2.16 내지 11.1㎛ 이고, D50이 4.52㎛인 입도분포를 나타내는 것을 확인할 수 있다.
앞서 설명한 바와 같이, 탄소-실리콘 복합체의 크기가, 3 ㎛ 미만인 경우, 용량 저하의 원인이 될 수 있으므로, 본 발명의 실시예에 따른 흑연-실리콘 복합체는 크기가 3 ㎛ 미만인 탄소-실리콘 복합체를 체거름하여 사용하지 않았다.
실험예 2. 흑연- 실리콘 복합체의 SEM-EDS 분석
실시예에 따른 흑연-실리콘 복합체에 대하여 SEM-EDS 분석을 실시하였다.
SEM 분석은 JEOL사의 JSM-7600F를 이용하여 수행하였고, 복합체 내부에 임의의 지점에서의 EDS 측정결과를 표 1에 나타내었다.
Point 1(wt%) Point 2(wt%) Point 3(wt%)
Si 51.84 48.73 48.48
C 48.16 51.27 51.52
도 2 및 도 3은, EDS 분석 지점을 표시한 SEM 및 본 발명 실시예에 따른 흑연-실리콘 복합체의 단면 이미지이다. 도 2의 SEM 이미지에서 EDS 분석 지점은, 각각, point 1(왼쪽), point 2(중심부), point 3(오른쪽)에 해당한다.
표 1 및 도 2 내지 3을 참조하면, 본 발명 실시예에 따른 흑연-실리콘 복합체는 흑연 및 실리콘으로 이루어진 코어와 외부 쉘로 형성되어 있는 형태임을 확인할 수 있으며, 흑연-실리콘 복합체의 중심에서 표면까지 실리콘의 함량이 거의 균일하게 나타나는 것을 확인할 수 있다.
구체적으로 살펴보면, 도 2에서는 탄소 복합체의 중심부인 point 2와 표면에 가까운 point 1에서 실리콘의 함량비 차이는 3.68 % 차이에 불과한 것을 확인할 수 있고, 도 3에서는 실리콘 입자가 하얀색의 점으로 코어 내부에 균일하게 분포되어 있는 것을 확인할 수 있다.
실험예 3. 흑연-실리콘 복합체로 형성된 전극의 EDS 분석
실시예의 흑연-실리콘 복합체를 사용하여 전극을 형성시킨 뒤, EDS 분석을 수행하였다.
전극 내부의 EDS 측정 결과를 표 2에 나타내었다.
wt%
Si 51.10
C 48.90
TOTAL 100
도 4는, 본 발명 실시예에 따른 흑연-실리콘 복합체로 형성된 전극에서, 전극 내 흑연-실리콘 복합체의 전자 이미지이다.
도 5는, 본 발명 실시예에 따른 흑연-실리콘 복합체로 형성된 전극에서, 전극 내 흑연-실리콘 복합체의 EDS layered 이미지로, 푸른색은 실리콘을 나타내고, 붉은색은 탄소를 나타낸다.
도 6은, 본 발명 실시예에 따른 흑연-실리콘 복합체로 형성된 전극에서, 전극 내 흑연-실리콘 복합체의 실리콘 분포를 보여주는 EDS layered 이미지이다.
도 7은, 본 발명 실시예에 따른 흑연-실리콘 복합체로 형성된 전극에서, 전극 내 흑연-실리콘 복합체의 탄소 분포를 보여주는 EDS layered 이미지이다.
표 2 및 도 4 내지 도 7을 참조하면, 전극 형성 후, 전극 내에 있는 흑연-실리콘 복합체에서도 균일한 실리콘 분포가 유지되며, 약 50 % 정도의 실리콘 함유량이 나타나는 것을 확인할 수 있다.
실험예 4. 흑연-실리콘 복합체로 형성된 전극의 부피팽창율 측정
실시예의 흑연-실리콘 복합체를 사용하여 형성된 전극의 두께 및 0.5C-rate을 기준으로 100 cycle 방전 후 전극의 두께를 SEM 이미지 분석을 통해 측정하여 부피 팽창율을 확인하였다.
이 때, 상기 두께는, FIB(Forced Ion Beam, TESCAN S9000G/OXFORD EDS Dual beam FIB(Ga LMIS))을 이용하여 단면 절단 후 길이를 측정하였으며, SEM 이미지를 통해 확인하였다.
도 8은, 본 발명 실시예에 따른 흑연-실리콘 복합체로 형성된 전극의 충방전 전 SEM 이미지이다.
도 9는, 본 발명 실시예에 따른 흑연-실리콘 복합체로 형성된 전극의 충방전 후 SEM 이미지이다.
도 8 및 도 9를 참조하면, 충방전 전 전극의 두께는 약 35 ㎛ 이고, 100 cycle 충방전 후 전극의 두께는 약 39 ㎛ 내지 42 ㎛ 임을 확인할 수 있다.
즉, 본 발명에 따른 흑연-실리콘 복합체는, 충방전 후 부피 팽창률이 10 % 내지 20 %로 나타나, 실리콘에 의한 부피 팽창이 현저히 억제되는 것을 알 수 있다.
이상과 같이 실시예들이 비록 한정된 도면에 의해 설명되었으나, 해당 기술분야에서 통상의 지식을 가진 자라면 상기를 기초로 다양한 기술적 수정 및 변형을 적용할 수 있다. 예를 들어, 설명된 기술들이 설명된 방법과 다른 순서로 수행되거나, 및/또는 설명된 구성요소들이 설명된 방법과 다른 형태로 결합 또는 조합되거나, 다른 구성요소 또는 균등물에 의하여 대치되거나 치환되더라도 적절한 결과가 달성될 수 있다. 그러므로, 다른 구현들, 다른 실시예들 및 특허청구범위와 균등한 것들도 후술하는 청구범위의 범위에 속한다.

Claims (15)

  1. 탄소 물질 및 실리콘 입자를 포함하는 코어; 및
    상기 코어의 표면에 형성되고, 비정질 탄소, 결정질 탄소 또는 이 둘을 포함하는 쉘;을 포함하고,
    상기 실리콘 입자는, 상기 코어의 중심에서 표면까지 균일하게 분포되어 있는 것인,
    탄소-실리콘 복합체.
  2. 제1항에 있어서,
    상기 코어 중, 상기 실리콘 입자의 함량은, 10 중량% 내지 50 중량%인 것인,
    탄소-실리콘 복합체.
  3. 제1항에 있어서,
    상기 탄소 물질 및 상기 실리콘 입자의 함량비는 9 : 1 내지 1 : 1인 것인,
    탄소-실리콘 복합체.
  4. 제1항에 있어서,
    상기 코어 중, 상기 코어 중심으로부터 상기 표면까지 거리 중 상기 코어 중심으로부터 20 % 이내 부분에서의 실리콘 입자 함량비율과, 상기 코어 중심으로부터 80 % 이외 부분에서의 실리콘 입자 함량비율의 차이는, 5 % 미만인 것인,
    탄소-실리콘 복합체.
  5. 제1항에 있어서,
    상기 실리콘 입자의 크기는, 20 nm 내지 100 nm인 것인,
    탄소-실리콘 복합체.
  6. 제1항에 있어서,
    상기 탄소 물질은, 천연 흑연, 인조 흑연, 소프트 카본, 하드 카본, 카본블랙, 아세틸렌 블랙, 케첸 블랙, 탄소섬유, 탄소나노튜브, 그래핀 및 팽창흑연으로 이루어진 군에서 선택되는 적어도 어느 하나를 포함하는 것인,
    탄소-실리콘 복합체.
  7. 제1항에 있어서,
    상기 쉘 중, 결정질 탄소가 40 중량% 내지 60 중량%인 것인,
    탄소-실리콘 복합체.
  8. 제1항에 있어서,
    상기 탄소-실리콘 복합체의 크기는, 3 ㎛ 내지 12 ㎛인 것인,
    탄소-실리콘 복합체.
  9. 제1항에 있어서,
    상기 탄소-실리콘 복합체의 기공율은, 1 % 내지 10 %인 것인,
    탄소-실리콘 복합체.
  10. 탄소 물질 및 실리콘 입자를 혼합하는 단계;
    상기 혼합된 탄소 물질 및 실리콘 입자에 전단력(shear force)을 가하여 코어를 형성하는 단계;
    상기 코어의 표면에 비정질 탄소를 포함하는 코팅액을 도포하여 쉘을 형성하는 단계; 및
    상기 형성된 쉘에 열을 가하여 비정질 탄소의 일부 또는 전부를 결정화하는 단계;를 포함하는,
    탄소-실리콘 복합체의 제조방법.
  11. 제10항에 있어서,
    상기 전단력에 의해, 상기 탄소 물질 내부에 기공이 형성되고, 상기 실리콘 입자가 상기 탄소 물질 내부에 침투되는 것인,
    탄소-실리콘 복합체의 제조방법.
  12. 제1항 내지 제9항 중 어느 한 항의 탄소-실리콘 복합체 또는 제10항 및 제11항 중 어느 한 항에 의해 제조된 탄소-실리콘 복합체를 포함하는,
    리튬 이온 전지용 전극.
  13. 제12항에 있어서,
    상기 전극의 부피 팽창율은, 50 % 이하이고,
    상기 부피 팽창율은, 충방전 이전에 측정된 전극의 두께와 0.5C-rate을 기준으로 100 cycle 방전 후 측정된 전극의 두께를 비교하여 측정된 것인,
    리튬 이온 전지용 전극.
  14. 제12항에 있어서,
    상기 전극의 용량은, 600 mAh/g 내지 1680 mAh/g인 것인,
    리튬 이온 전지용 전극.
  15. 제12항에 있어서,
    상기 전극의 초기 쿨롱 효율은 80 % 이상인 것인,
    리튬 이온 전지용 전극.
PCT/KR2021/017124 2020-12-01 2021-11-22 탄소-실리콘 복합체 및 이의 제조방법 WO2022119197A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202180080515.5A CN116529908A (zh) 2020-12-01 2021-11-22 碳-硅复合材料及其制备方法
US18/039,762 US20240025746A1 (en) 2020-12-01 2021-11-22 Carbon-silicon composite and preparation method therefor
JP2023533287A JP2023552345A (ja) 2020-12-01 2021-11-22 炭素-シリコン複合体及びその製造方法{carbon-silicon composite and preparation method thereof}

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2020-0165741 2020-12-01
KR1020200165741A KR102536073B1 (ko) 2020-12-01 2020-12-01 탄소-실리콘 복합체 및 이의 제조방법

Publications (1)

Publication Number Publication Date
WO2022119197A1 true WO2022119197A1 (ko) 2022-06-09

Family

ID=81854139

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/017124 WO2022119197A1 (ko) 2020-12-01 2021-11-22 탄소-실리콘 복합체 및 이의 제조방법

Country Status (5)

Country Link
US (1) US20240025746A1 (ko)
JP (1) JP2023552345A (ko)
KR (1) KR102536073B1 (ko)
CN (1) CN116529908A (ko)
WO (1) WO2022119197A1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115101741B (zh) * 2022-08-10 2023-04-07 胜华新能源科技(东营)有限公司 氮掺杂石墨烯包覆硅碳复合材料及其制备方法和应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140082036A (ko) * 2012-12-21 2014-07-02 주식회사 포스코 이차전지용 음극 활물질, 이를 구비한 이차전지, 및 그 제조방법
KR20150015086A (ko) * 2013-07-31 2015-02-10 주식회사 엘지화학 젖음성이 향상된 이차전지용 음극 활물질 및 이를 포함하는 리튬 이차전지
KR20150075207A (ko) * 2013-12-24 2015-07-03 주식회사 포스코 리튬 이차 전지용 음극 활물질, 이의 제조 방법, 그리고 이를 포함하는 음극 및 리튬 이차 전지
KR101563358B1 (ko) * 2013-11-11 2015-10-27 재단법인 철원플라즈마 산업기술연구원 리튬 이차전지용 음극 활물질 제조방법 그리고 리튬 이차 전지
KR20160128279A (ko) * 2016-10-27 2016-11-07 삼성에스디아이 주식회사 리튬 이차 전지용 음극 활물질, 및 이를 포함하는 음극 및 리튬 이차 전지

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140082036A (ko) * 2012-12-21 2014-07-02 주식회사 포스코 이차전지용 음극 활물질, 이를 구비한 이차전지, 및 그 제조방법
KR20150015086A (ko) * 2013-07-31 2015-02-10 주식회사 엘지화학 젖음성이 향상된 이차전지용 음극 활물질 및 이를 포함하는 리튬 이차전지
KR101563358B1 (ko) * 2013-11-11 2015-10-27 재단법인 철원플라즈마 산업기술연구원 리튬 이차전지용 음극 활물질 제조방법 그리고 리튬 이차 전지
KR20150075207A (ko) * 2013-12-24 2015-07-03 주식회사 포스코 리튬 이차 전지용 음극 활물질, 이의 제조 방법, 그리고 이를 포함하는 음극 및 리튬 이차 전지
KR20160128279A (ko) * 2016-10-27 2016-11-07 삼성에스디아이 주식회사 리튬 이차 전지용 음극 활물질, 및 이를 포함하는 음극 및 리튬 이차 전지

Also Published As

Publication number Publication date
KR20220077281A (ko) 2022-06-09
US20240025746A1 (en) 2024-01-25
KR102536073B1 (ko) 2023-05-30
JP2023552345A (ja) 2023-12-15
CN116529908A (zh) 2023-08-01

Similar Documents

Publication Publication Date Title
WO2019108039A2 (ko) 음극 및 이를 포함하는 이차전지
WO2014116029A1 (ko) 리튬 이차 전지용 음극 및 이를 포함하는 리튬 이차 전지
WO2014104842A1 (ko) 이차전지용 음극활물질, 이차전지용 도전성 조성물, 이를 포함하는 음극재료, 이를 포함하는 음극구조체 및 이차전지, 및 이들의 제조방법
WO2017135794A1 (ko) 음극활물질 및 이를 포함하는 이차전지
WO2012165884A2 (ko) 카본-황 복합체의 제조 방법, 이에 의하여 제조된 카본-황 복합체 및 이를 포함하는 리튬-황 전지
WO2010041907A2 (en) Negative active material for rechargeable lithium battery, method of preparing the same, and rechargeable lithium battery comprising the same
WO2019103311A1 (ko) 전고상 리튬-폴리머 이차전지용 양극 및 그의 제조방법, 이를 포함한 이차전지
WO2019194613A1 (ko) 양극 활물질, 상기 양극 활물질의 제조 방법, 상기 양극 활물질을 포함하는 양극, 및 상기 양극을 포함하는 이차 전지
WO2019156461A1 (ko) 양극 및 상기 양극을 포함하는 이차 전지
WO2019098660A2 (ko) 음극 활물질, 그의 제조 방법 및 이러한 음극 활물질을 구비한 비수계 리튬이차전지 및 그의 제조 방법
WO2019225879A1 (ko) 리튬 이차전지용 음극활물질 및 이의 제조방법
WO2020166792A1 (ko) 리튬 이차 전지 음극활물질 첨가제용 탄소질 재료
WO2022231243A1 (ko) 탄소-실리콘 복합체 분말의 제조 방법, 이에 의하여 제조된 탄소-실리콘 복합체 분말 및 이를 포함하는 리튬 이차전지
WO2018186559A1 (ko) 이차 전지용 음극 및 이의 제조 방법
WO2019088628A2 (ko) 황-탄소 복합체, 그의 제조방법 및 이를 포함하는 리튬 이차전지
WO2022119197A1 (ko) 탄소-실리콘 복합체 및 이의 제조방법
WO2020122459A1 (ko) 리튬 이차 전지용 음극 활물질 및 이를 포함하는 이차전지
WO2022086098A1 (ko) 그래핀-실리콘 복합체를 포함하는 음극 활물질, 이의 제조방법 및 이를 포함하는 리튬 이차전지
WO2014084636A1 (ko) 다공성 규소 산화물-탄소재 복합체를 포함하는 음극 활물질 및 이의 제조방법
WO2019108050A1 (ko) 규소산화물복합체를 포함하는 비수전해질 이차전지용 음극활물질 및 이의 제조방법
WO2019045553A2 (ko) 금속-황 전지용 양극, 이의 제조방법 및 이를 포함하는 금속-황 전지
WO2022045852A1 (ko) 음극 및 상기 음극을 포함하는 이차 전지
WO2020159207A1 (ko) 이차전지 및 이의 제조방법
WO2018186558A1 (ko) 이차 전지용 음극 및 이의 제조 방법
WO2022092661A1 (ko) 실리콘 복합체를 포함하는 음극 활물질, 이의 제조방법 및 이를 포함하는 리튬 이차전지

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21900885

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202180080515.5

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2023533287

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 18039762

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21900885

Country of ref document: EP

Kind code of ref document: A1