WO2020122459A1 - 리튬 이차 전지용 음극 활물질 및 이를 포함하는 이차전지 - Google Patents

리튬 이차 전지용 음극 활물질 및 이를 포함하는 이차전지 Download PDF

Info

Publication number
WO2020122459A1
WO2020122459A1 PCT/KR2019/016155 KR2019016155W WO2020122459A1 WO 2020122459 A1 WO2020122459 A1 WO 2020122459A1 KR 2019016155 W KR2019016155 W KR 2019016155W WO 2020122459 A1 WO2020122459 A1 WO 2020122459A1
Authority
WO
WIPO (PCT)
Prior art keywords
negative electrode
active material
secondary battery
electrode active
lithium secondary
Prior art date
Application number
PCT/KR2019/016155
Other languages
English (en)
French (fr)
Inventor
이관희
류덕현
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to US17/260,941 priority Critical patent/US20210288312A1/en
Priority to EP19896132.8A priority patent/EP3800709A4/en
Priority to JP2021500408A priority patent/JP7118235B2/ja
Priority to CN201980045462.6A priority patent/CN112470308A/zh
Publication of WO2020122459A1 publication Critical patent/WO2020122459A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0422Cells or battery with cylindrical casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/386Silicon or alloys based on silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/483Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides for non-aqueous cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a negative electrode active material for a lithium secondary battery and a secondary battery comprising the same, specifically, to a negative electrode active material including a low expansion artificial graphite that exhibits low expansion characteristics during charge and discharge and a lithium secondary battery comprising the same.
  • the shape of the battery has a high demand for prismatic secondary batteries and pouch-type secondary batteries that can be applied to products such as mobile phones with a thin thickness, and in terms of materials, lithium ion batteries with high energy density, discharge voltage, and output stability, There is a high demand for lithium secondary batteries such as lithium ion polymer batteries.
  • a secondary battery is applied to an electrode mixture containing an electrode active material on the surface of a current collector to constitute an anode and a cathode, and an electrode assembly is formed by interposing a separator therebetween, followed by a cylindrical or square metal can or aluminum laminate sheet. It is mounted inside the pouch-shaped case, and is mainly prepared by injecting or impregnating a liquid electrolyte into the electrode assembly or using a solid electrolyte.
  • carbon-based materials such as graphite are mainly used, but the theoretical capacity density of carbon is 372 mAh/g (833 mAh/cm 3 ). Therefore, silicon (Si), tin (Sn) alloying with lithium to improve the energy density of the negative electrode, and oxides and alloys thereof are considered as the negative electrode material. Among them, silicon-based materials have attracted attention due to their low price and high capacity (4200mAh/g).
  • the silicon-based material exhibits a much higher theoretical capacity than graphite, but when silicon meets lithium ions, the volume expands more than 4 times, and if it contains a certain amount or more, the volume of the entire electrode increases as the cycle progresses, As a result, the conductive network of the battery is lost, and there is a problem in that the charge/discharge capacity rapidly decreases.
  • the advantages of the silicon-based material capable of realizing high energy density may disappear as the initial efficiency of the cycle is lowered. Particularly, in the case of a cylindrical battery, when the volume of the silicon-based material expands and the diameter of the wound cell becomes large, storage becomes difficult, and thus there is a problem that it is difficult to increase energy density.
  • Japanese Patent Laid-Open No. 2018-008405 describes a method of manufacturing a composite of carbon particles having fine irregularities and using them as a cathode material together with silicon oxide, so that the cycle characteristics do not deteriorate even during expansion and contraction of silicon oxide during charging and discharging. have.
  • Korean Patent Publication No. 2017-0136878 discloses a method of improving lifespan characteristics and high-temperature storage characteristics by using a secondary particle artificial graphite containing primary particles having a specific average particle diameter as a negative electrode active material.
  • Korean Patent No. 1704103 discloses a method of suppressing the volume expansion of a negative electrode active material and solving a short circuit problem by including porous silicon-based particles and fine-grained and granulated carbon particles having different average particle diameters, thereby improving the lifespan characteristics.
  • a metal-based material or the like is added to reduce side effects due to volume expansion of the silicon-based material or a new composite is manufactured or particle size
  • Various methods are being studied, such as changing the.
  • the present invention relates to a negative electrode active material for a lithium secondary battery and a secondary battery comprising the same, wherein the negative electrode active material according to the present invention includes a carbon-based material and a silicon-based material while achieving high energy density, and has low expansion properties among the carbon-based materials.
  • the artificial graphite having a constant content it is characterized in that to prevent the loss of the conductive network by suppressing the volume expansion of the electrode.
  • the present invention relates to a negative electrode active material for a lithium secondary battery and a secondary battery comprising the same, wherein the negative electrode active material according to the present invention is a negative electrode active material for a lithium secondary battery comprising a carbon-based material and a silicon-based material, wherein the carbon-based material is a low expansion artificial It is characterized by containing graphite.
  • the low-expansion artificial graphite has low expansion characteristics when charging and discharging the battery, and is characterized in that the volume expands to less than 25%, more preferably less than 23% from the initial state even after repeated charging and discharging cycles.
  • the carbon-based material includes artificial graphite in which the volume is expanded by 25% or more compared to the initial state, or if the natural graphite or another carbon-based material having high expansion properties, cycle characteristics may drop rapidly.
  • the low-expansion artificial graphite may be preferably 65 to 95% by weight based on the total weight of the negative electrode active material, and more preferably 75 to 85% by weight. If less than 65% of low-expansion artificial graphite is contained compared to the total weight of the carbon-based material, the initial efficiency decreases when the charge/discharge cycle is repeated during secondary battery manufacturing, which may lower energy density. On the other hand, even if the content of artificial graphite exceeds 95% by weight, there is no obvious increase in effect, and it is not preferable because the economic efficiency is low when considering the manufacturing cost of low-expansion artificial graphite.
  • the carbon-based material may further include a well-known carbon-based material used for a negative electrode for a lithium secondary battery in addition to the low-expansion artificial graphite. Therefore, when the low-expansion artificial graphite in the above weight percent range is included, it is economically preferable to use natural graphite for the remaining carbon-based materials.
  • the negative electrode active material according to the present invention includes a silicon-based material, and the content of the silicon-based material with respect to the total weight of the negative electrode active material is preferably 1 to 10% by weight, more preferably 3 to 7% by weight.
  • the silicon-based material is included to maximize the energy density property, and when added in an amount of less than 1% by weight, the effect of improving the energy density does not appear, and when it is less than 10% by weight, the energy density is rather low due to the volume expansion property of the silicon-based material. There is an adverse effect on losing.
  • the silicon-based material may include one or two or more silicon oxide-based materials, and specifically, silicon dioxide (SiO 2 ) may be used.
  • the negative electrode active material may be coated on one or both sides of the negative electrode current collector to produce a negative electrode for a lithium secondary battery.
  • a lithium secondary battery with maximized energy density according to the characteristics of the silicon-based negative electrode material can be used. Can be produced.
  • the negative electrode active material for a lithium secondary battery of the present invention and the negative electrode using the same show the best effect when applied to a cylindrical secondary battery mainly using a silicon-based negative electrode material.
  • the present invention is a negative electrode active material containing a carbon-based material and a silicon-based material, as containing at least a certain amount of low-expansion artificial graphite, energy density and cycle due to volume expansion that can appear in the negative electrode active material containing a silicon-based material.
  • This is an improvement in the disadvantages of deterioration in properties.
  • the present invention has a simple manufacturing process and excellent economic efficiency since it is not necessary to reduce the volume expansion rate of the silicon-based material itself, or to change or process the shape, particle size, structure, etc. of the carbon-based material.
  • Figure 1 shows the expansion characteristics of the natural graphite, low-expansion artificial graphite (artificial graphite A) and conventional artificial graphite (artificial graphite B) according to the charge and discharge cycle.
  • FIG. 2 is a view showing a comparison of cycle characteristics according to the type of the carbon-based material used in the negative electrode active material in the secondary battery manufactured according to the Examples and Comparative Examples of the present invention.
  • FIG. 4 is a view showing a comparison of cycle characteristics according to the content of low-expansion artificial graphite used in a negative electrode active material in a secondary battery manufactured according to Examples and Comparative Examples of the present invention.
  • FIG. 5 is a view showing a comparison of cycle characteristics according to a low-expansion artificial graphite content in a secondary battery manufactured according to Examples and Comparative Examples of the present invention.
  • the term “low expansion artificial graphite” refers to artificial graphite having low expansion characteristics during charge/discharge cycles.
  • the negative electrode current collector is formed on the negative electrode current collector by forming an active material layer using artificial graphite as a negative electrode material, and when a secondary battery having such a negative electrode is manufactured, the active material layer is repeated even if the charge/discharge cycle of the secondary battery is repeated.
  • the expansion property of is low, such artificial graphite is referred to as “low expansion artificial graphite" in this specification.
  • expansion characteristics of low-expansion artificial graphite is represented by a change in the thickness of the active material layer of low-expansion artificial graphite according to a charge/discharge cycle. Specifically, after manufacturing a negative electrode using a low-expansion artificial graphite as an active material and a secondary battery having such a negative electrode, the charge and discharge cycle is repeated until there is no change in the thickness of the negative electrode active material layer. Thereafter, the thickness of the negative active material layer is compared with the thickness of the active material layer after the charge/discharge cycle is performed, and the volume of the low-expansion artificial graphite is considered to have expanded by the ratio of the thickness of the active material layer increased.
  • the term "combination(s)" included in the expression of the marki form means one or more mixtures or combinations selected from the group consisting of components described in the expression of the marki form, It means to include one or more selected from the group consisting of the above components.
  • the present invention relates to an anode for electrochemical storage and an electrochemical device comprising the same.
  • the electrochemical device includes all devices that undergo an electrochemical reaction, and specific examples include all types of primary, secondary cells, fuel cells, solar cells, or capacitors.
  • a lithium secondary battery including a lithium metal secondary battery, a lithium ion secondary battery, a lithium polymer secondary battery or a lithium ion polymer secondary battery is preferable among the secondary batteries.
  • the present invention relates to a negative electrode active material for a lithium secondary battery and a secondary battery comprising the same, wherein the negative electrode active material according to the present invention is a negative electrode active material for a lithium secondary battery comprising a carbon-based material and a silicon-based material, wherein the carbon-based material is a low expansion artificial It is characterized by containing graphite.
  • the negative electrode active material is a negative electrode active material for a lithium secondary battery comprising a carbon-based material and a silicon-based material, wherein the carbon-based material is a low expansion artificial It is characterized by containing graphite.
  • the charging/discharging cycle may be repeated, causing a disconnection of the conductive network, and thus, when included in a high content, the energy density is rather lowered or the life property is lowered. .
  • Japanese Patent Publication No. 2018-008405 manufactures a carbon composite in order to modify the shape of the carbon particles to have fine irregularities.
  • the carbon composite and silicon oxide were used together as a negative electrode material, it was described that the cycle characteristics did not deteriorate despite the volume expansion of the silicon-based material, silicon oxide.
  • Korean Patent Publication No. 2017-0136878 describes that a similar effect was produced by preparing a negative electrode active material containing primary particles having a particle size as a carbon-based material and secondary particles including the same.
  • Korean Patent No. 1704103 provides porous silicon-based particles, and these porous silicon particles and fine-grained and granulated carbon particles having different average particle diameters are together. It provides a negative electrode active material containing.
  • the present invention is to solve the problems of the prior art by approaching different methods from the above-mentioned prior art, and provides a negatively active material having a low expansion of artificial graphite having a certain content relative to the total weight of the carbon-based material.
  • the expandability is not high, so the depth expansion of the carbon-based material has not been studied in depth.
  • a negative active material is manufactured by including a low expansion artificial graphite having a relatively low expansion property in a certain content, even if a silicon-based material having a large volume expansion property is included, the initial cycle efficiency decreases. The unexpected effect of this improvement appeared. Accordingly, in the case of a negative electrode to which the negative electrode active material of the present invention is applied and a secondary battery having such a negative electrode, it is possible to realize a high capacity without modifying or further processing the carbon-based material while using the existing known silicon-based material without processing. Do.
  • the negative electrode active material according to the present invention is a negative electrode active material for a lithium secondary battery including a carbon-based material and a silicon-based material, and the carbon-based material is characterized in that it contains a low expansion artificial graphite.
  • the low-expansion artificial graphite is used that has low expansion characteristics when charging and discharging the battery.
  • the low-expansion artificial graphite may be used to expand its volume to less than 25%, more preferably less than 23% from the initial state even after repeating the charge/discharge cycle.
  • the low-expansion artificial graphite may be preferably 65 to 95% by weight based on the total weight of the carbon-based material, more preferably 75 to 85% by weight. If less than 65% of low-expansion artificial graphite is contained compared to the total weight of the carbon-based material, the initial efficiency decreases when the charge/discharge cycle is repeated during secondary battery manufacturing, which may lower energy density. On the other hand, even if the content of artificial graphite exceeds 95% by weight, there is no obvious increase in effect, and it is not preferable because the economic efficiency is low when considering the manufacturing cost of low-expansion artificial graphite.
  • the carbon-based material may further include a well-known carbon-based material used for a negative electrode for a lithium secondary battery in addition to the low-expansion artificial graphite. Therefore, when the low-expansion artificial graphite in the above weight percent range is included, it is economically preferable to use natural graphite which is inexpensive and easy to obtain for the remaining carbon-based materials.
  • the negative electrode active material according to the present invention includes a silicon-based material, and the content of the silicon-based material with respect to the total weight of the negative electrode active material is preferably 1 to 10% by weight, more preferably 3 to 7% by weight.
  • the silicon-based material is included to maximize the energy density property, and when added in an amount of less than 1% by weight, the effect of improving the energy density does not appear, and when it is less than 10% by weight, the energy density is rather low due to the volume expansion property of the silicon-based material. There is an adverse effect on losing. Therefore, in order to obtain excellent energy density properties, it is desirable to adjust the content within the above range to utilize the advantages of the silicon-based material.
  • the silicon-based material may include one or two or more silicon oxide-based materials, and silicon and/or silicon oxide may be used.
  • silicon dioxide SiO 2
  • a desirable effect is exhibited when included according to the composition ratio.
  • the negative electrode active material may be coated on one or both sides of the negative electrode current collector to produce a negative electrode for a lithium secondary battery.
  • a lithium secondary battery with maximized energy density according to the characteristics of the silicon-based negative electrode material can be used. Can be produced.
  • the negative electrode active material for a lithium secondary battery of the present invention and the negative electrode using the same show the best effect when applied to a cylindrical secondary battery mainly using a silicon-based negative electrode material.
  • the application of the negative electrode active material according to the present invention and the negative electrode using the same can be applied to various types of secondary batteries, and is not limited to the above-described cylindrical secondary battery.
  • Natural graphite artificial graphite A, which is a low-expansion artificial graphite with low expansion characteristics, and artificial graphite B, which are commonly used, were prepared.
  • the method of manufacturing a specific coin half battery is as follows.
  • a coin cell was prepared by using a punched negative electrode, a metal lithium having a thickness of 0.3 mm as an opposite electrode, mixing ethylene carbonate and diethyl carbonate in a ratio of 3:7, and using an electrolyte in which 1 mol of LiPF 6 was dissolved. .
  • natural graphite has a constant volume expansion rate of 28% after 10 cycles.
  • Artificial graphite A had a constant volume expansion rate of 22% after 6 cycles, and artificial graphite B had a constant volume expansion rate of 7% after 7 cycles.
  • Example 2 The experiment was conducted in the same manner as in Example 1, except that natural graphite and silicon dioxide were mixed to have a weight ratio of 95: 5 and used as a negative electrode active material.
  • Example 2 The experiment was conducted in the same manner as in Example 1, except that artificial graphite B, natural graphite and silicon oxide were mixed to be 75:20:5 and used as a negative electrode active material.
  • Example 2 The experiment was conducted in the same manner as in Example 1, except that artificial graphite B, natural graphite, and silicon oxide were mixed at 75:10:15 to be used as a negative electrode active material.
  • Example 2 The experiment was conducted in the same manner as in Example 1, except that artificial graphite A, natural graphite and silicon oxide were mixed to be 30:65:5 and used as a negative electrode active material.
  • Example 2 The experiment was conducted in the same manner as in Example 1, except that artificial graphite A, natural graphite and silicon oxide were mixed to be 50:45:5 and used as a negative electrode active material.
  • Example 2 The experiment was conducted in the same manner as in Example 1, except that artificial graphite A, natural graphite and silicon oxide were mixed to be 85:10:5 and used as a negative electrode active material.
  • Example 2 The experimental results according to the above Examples and Comparative Examples are shown in FIGS. 4 and 5 together with Example 1.
  • the capacity characteristics tended to decrease at the beginning.
  • Example 2 which is 85% by weight
  • the capacity characteristics were found to be fine after 200 cycles compared to Example 1. Therefore, if at least low-expansion artificial graphite contains 65 wt% or more, the cycle characteristics are improved, and the higher the content, the more the effect is improved, but the improvement effect is not significant from 75% or more.
  • the content range of low-expansion artificial graphite is preferably 95% by weight or less, and more specifically, most preferably 75% to 85% by weight.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Composite Materials (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

본 발명은 리튬 이차전지용 음극 활물질 및 이를 포함하는 이차전지에 관한 것으로, 구체적으로는 충방전 시 낮은 팽창 특성을 나타내는 저팽창 인조흑연을 포함하는 음극 활물질 및 이를 포함하는 리튬 이차전지에 관한 것이다. 본 발명은 탄소계 물질 및 규소계 물질을 포함하는 음극 활물질에 있어서, 저팽창 인조흑연을 일정 함량이상 포함하는 것으로서, 규소계 물질을 포함하는 음극 활물질에서 나타날 수 있는 부피 팽장에 의한 에너지 밀도 및 사이클 특성 저하의 단점을 개선한 것이다. 특히 본 발명은 종래 기술과 같이 규소계 물질 자체의 부피 팽창률을 감소시키거나, 탄소계 물질의 형태, 입경, 구조 등을 변경하거나 가공할 필요가 없으므로 제조 공정이 간단하면서 경제성이 우수하다.

Description

리튬 이차 전지용 음극 활물질 및 이를 포함하는 이차전지
본 발명은 리튬 이차전지용 음극 활물질 및 이를 포함하는 이차전지에 관한 것으로, 구체적으로는 충방전 시 낮은 팽창 특성을 나타내는 저팽창 인조흑연을 포함하는 음극 활물질 및 이를 포함하는 리튬 이차전지에 관한 것이다.
본 출원은 2018. 12. 12.자 한국 특허 출원 제10-2018-0160091호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
화석연료의 고갈에 의한 에너지원의 가격이 상승하고, 환경오염에 대한 관심이 증폭되면서 친환경 대체 에너지원에 대한 요구가 미래생활을 위한 필수 불가결한 요인이 되고 있고, 특히, 모바일 기기에 대한 기술 개발과 수요가 증가함에 따라 에너지원으로서의 이차전지에 대해 수요가 급격히 증가하고 있다.
대표적으로 전지의 형상 면에서는 얇은 두께로 휴대폰 등과 같은 제품들에 적용될 수 있는 각형 이차전지와 파우치형 이차전지에 대한 수요가 높고, 재료 면에서는 높은 에너지 밀도, 방전 전압, 출력 안정성의 리튬이온 전지, 리튬이온 폴리머 전지 등과 같은 리튬 이차전지에 대한 수요가 높다.
일반적으로, 이차전지는 집전체의 표면에 전극활물질을 포함하는 전극 합제를 도포하여 양극과 음극을 구성하고 그 사이에 분리막을 개재하여 전극조립체를 만든 후, 원통형 또는 각형의 금속 캔이나 알루미늄 라미네이트 시트의 파우치형 케이스 내부에 장착하고, 상기 전극조립체에 주로 액체 전해질을 주입 또는 함침시키거나 고체 전해질을 사용하여 제조된다.
리튬 이차 전지의 음극은 흑연 등의 탄소계 물질이 주로 사용되나, 탄소의 이론 용량 밀도는 372mAh/g(833mAh/cm 3)이다. 따라서 음극의 에너지 밀도를 향상시키기 위해 리튬과 합금화하는 규소(Si), 주석(Sn)이나 이들의 산화물 및 합금 등이 음극재료로 검토되고 있다. 그 중에서도 규소계 재료는 저렴한 가격 및 높은 용량(4200mAh/g)으로 인하여 주목받아 왔다.
그런데, 규소계 물질은 흑연에 비해 월등히 높은 이론 용량을 나타내고 있음에도 규소가 리튬이온과 만나면 부피가 4배이상 팽창하여, 일정 함량 이상을 포함하는 경우 사이클이 진행될수록 전극 전체의 부피 팽창을 유발하고, 그로 인해 전지의 도전 네트워크가 상실되어 충방전 용량이 급격히 감소하는 문제가 있다. 또한, 사이클 초기 효율이 저하됨에 따라 고 에너지 밀도를 구현이 가능한 규소계 물질의 장점이 사라질 수 있다. 특히 원통형 전지의 경우 규소계 물질의 부피가 팽창하여 권취된 셀의 직경이 커지게 되면 수납이 어려워지므로 결국 에너지 밀도를 높이기 어려워지는 문제가 있다.
따라서, 탄소계 물질 음극 활물질 재료의 낮은 에너지 밀도 한계를 극복하면서도, 규소계 물질의 팽창 특성으로 인한 부작용을 감소시키기 위해 지속적으로 연구가 이루어지고 있다.
일본공개특허 제2018-008405호에서는 미세한 요철을 가지는 탄소 입자의 복합체를 제조하여 산화규소와 함께 음극재료로 사용함으로써, 충방전 시 산화규소의 팽창 수축에도 사이클 특성이 저하되지 않도록 하는 방법을 기재하고 있다.
한편, 한국공개특허 제2017-0136878호에는 특정한 평균 입경을 1차입자를 포함하는 2차 입자 인조흑연을 음극 활물질로 사용하여 수명 특성 및 고온 저장 특성을 향상시키는 방법을 기재하고 있다.
또한 한국등록특허 제1704103호에서는 다공성 실리콘계 입자 및 평균 입경이 서로 다른 미립 및 조립 탄소 입자를 함께 포함함으로써 음극 활물질의 부피 팽창을 억제하고 단락 문제를 해결하여 수명 특성을 향상시키는 방법이 기재되어 있다.
이 외에도 고 에너지 밀도를 구현하기 위하여 탄소계 물질 및 규소계 물질을 포함하는 음극 활물질에 있어서, 규소계 물질의 부피 팽창으로 인한 부작용을 감소시키기 위하여 금속계 물질 등을 첨가하거나 새로운 복합체를 제조 또는 입자 사이즈를 변경하는 등 다양한 방법이 연구되고 있다.
본 발명은 리튬 이차전지용 음극 활물질 및 이를 포함하는 이차전지에 관한 것으로, 본 발명에 의한 음극 활물질은 탄소계 물질과 규소계 물질을 포함하여 고에너지 밀도를 달성하면서도, 상기 탄소계 물질 중에 저팽창 특성을 가지는 인조흑연을 일정 함량으로 포함함으로써, 전극의 부피 팽창을 억제하여 도전 네트워크 상실을 방지하는 것을 특징으로 한다.
본 발명은 리튬 이차전지용 음극 활물질 및 이를 포함하는 이차전지에 관한 것으로, 본 발명에 의한 음극 활물질은 탄소계 물질 및 규소계 물질을 포함하는 리튬 이차전지용 음극 활물질로서, 상기 탄소계 물질은 저팽창 인조흑연을 포함하는 것을 특징으로 한다. 이 때, 상기 저팽창 인조 흑연은 전지 충방전 시 팽창 특성이 낮게 나타나는데, 충방전 사이클을 반복하여도 초기 상태로부터 25% 미만, 더욱 바람직하게는 23% 미만으로 부피가 팽창되는 것을 특징으로 한다.
만약, 상기 탄소계 물질이 초기 상태 대비 25% 이상 부피가 팽창되는 인조흑연을 포함하거나, 또는 천연흑연 또는 팽창 특성이 높은 다른 탄소계 물질인 경우 사이클 특성이 급격히 떨어질 수 있다.
또한, 상기 저팽창 인조흑연은 음극 활물질의 총 중량에 대하여 바람직하게는 65 내지 95중량% 포함될 수 있으며, 더욱 바람직하게는 75 내지 85중량% 포함될 수 있다. 만약 탄소계 물질 총 중량 대비 저팽창 인조흑연이 65% 미만 포함되는 경우 이차전지 제조 시 충방전 사이클 반복 시 초기 효율이 저하되어 에너지 밀도가 낮아질 수 있다. 한편, 인조흑연의 함량이 95중량%을 초과하더라도, 뚜렷한 효과의 상승은 나타나지 않으며, 저팽창 인조흑연의 제조단가를 고려할 때 경제성이 떨어지므로 바람직하지 않다.
한편, 상기 탄소계 물질은 상기 저팽창 인조흑연 외에 리튬 이차전지용 음극에 사용되는 공지된 탄소계 물질을 추가로 포함될 수 있는데, 일반적으로 널리 사용되는 천연흑연을 선택하여도 무방하다. 따라서, 상기한 중량% 범위의 저팽창 인조흑연을 포함하는 경우, 나머지 탄소계 물질은 천연흑연을 사용하는 것이 경제적으로 바람직하다.
본 발명에 의한 음극 활물질은 규소계 물질을 포함하는데, 음극 활물질의 총 중량에 대하여 규소계 물질의 함량은 바람직하게는 1 내지 10중량%, 더욱 바람직하게는 3 내지 7중량%일 수 있다. 규소계 물질은 에너지 밀도 특성을 극대화하기 위해 포함되는 것으로 1중량% 미만으로 첨가하는 경우 에너지 밀도 향상 효과가 나타나지 않으며, 10중량% 미만인 경우 규소계 물질의 부피 팽창 특성으로 인하여, 오히려 에너지 밀도가 낮아지는 역효과가 나타난다.
이 때, 상기 규소계 물질은 산화규소계 물질을 1종 또는 2종 이상 포함할 수 있으며, 구체적으로는 이산화규소(SiO 2)를 사용할 수 있다.
상기한 음극 활물질을 음극 집전체의 일면 또는 양면에 도포하여 리튬 이차전지용 음극을 제조할 수 있으며, 이러한 리튬 이차전지용 음극을 적용할 경우 규소 계열 음극재의 특성에 따라 에너지 밀도가 극대화된 리튬 이차전지를 제조할 수 있다. 특히 본 발명의 리튬 이차전지용 음극 활물질 및 이를 이용한 음극은 규소계열 음극재를 주로 사용하는 원통형 이차전지에 적용할 때 가장 효과가 우수하게 나타난다.
본 발명은 탄소계 물질 및 규소계 물질을 포함하는 음극 활물질에 있어서, 저팽창 인조흑연을 일정 함량 이상 포함하는 것으로서, 규소계 물질을 포함하는 음극 활물질에서 나타날 수 있는 부피 팽장에 의한 에너지 밀도 및 사이클 특성 저하의 단점을 개선한 것이다. 특히 본 발명은 종래 기술과 같이 규소계 물질 자체의 부피 팽창률을 감소시키거나, 탄소계 물질의 형태, 입경, 구조 등을 변경하거나 가공할 필요가 없으므로 제조 공정이 간단하면서 경제성이 우수하다.
도 1은 천연흑연, 저팽창 인조흑연(인조흑연 A) 및 통상적인 인조흑연(인조흑연 B)의 충방전 사이클에 따른 팽창 특성을 도시한 것이다.
도 2는 본 발명의 실시예 및 비교예 따라 제조된 이차전지에 있어서, 음극 활물질에 사용된 탄소계 물질의 종류에 따른 사이클 특성을 비교하여 도시한 것이다.
도 3은 본 발명의 실시예 및 비교예에 따라 제조된 이차전지에 있어서, 음극 활물질에 사용된 규소계 물질의 함량에 따른 사이클 특성을 비교하여 도시한 것이다.
도 4는 본 발명의 실시예 및 비교예에 따라 제조된 이차전지에 있어서, 음극 활물질에 사용된 저팽창 인조흑연 함량에 따른 사이클 특성을 비교하여 도시한 것이다.
도 5는 본 발명의 실시예 및 비교예에 따라 제조된 이차전지에 있어서, 저팽창 인조흑연 함량에 따른 사이클 특성을 비교하여 도시한 것이다.
본 명세서 및 특허청구범위에 사용된 용어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다. 따라서 본 명세서에 기재된 실시예에 도시된 구성은 본 발명의 가장 바람직한 하나의 실시양태에 불과하고 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 출원 시점에 있어서 이들을 대체할 수 있는 다양한 균등물 및 변형예가 있을 수 있음을 이해하여야 한다.
본원 명세서 전체에서, 「저팽창 인조흑연」이라 함은 충방전 사이클 시 낮은 팽창 특성을 가지는 인조 흑연을 의미한다. 구체적으로, 음극 집전체 상에 인조흑연을 음극 재료로 적용한 활물질층을 형성하여 음극을 제조하고, 이러한 음극을 구비하는 이차 전지를 제조하였을 때, 이차 전지의 충방전 사이클을 반복하여도 상기 활물질층의 팽창 특성이 낮게 나타날 경우, 이러한 인조 흑연을 본 명세서 상에서 「저팽창 인조흑연」이라고 한다.
본원 명세서 전체에서, 「저팽창 인조흑연의 팽창 특성」은 충방전 사이클에 따른 저팽창 인조흑연의 활물질층 두께 변화로 나타낸다. 구체적으로 저팽창 인조흑연을 활물질로 이용하는 음극 및 이러한 음극을 구비하는 이차전지를 제조한 후, 음극 활물질 층 두께에 변화가 없을 때까지 충방전 사이클을 반복한다. 이후 충방전 사이클 진행 전 음극 활물질층의 두께와 충방전 사이클 진행 후 활물질층의 두께를 비교하여, 활물질층의 두께가 증가한 비율만큼 저팽창 인조흑연의 부피가 팽창한 것으로 간주한다.
본원 명세서 전체에서, 어떤 부분이 어떤 구성 요소를 「포함한다」고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성 요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있는 것을 의미한다.
본원 명세서 전체에서 사용되는 용어 「약」, 「실질적으로」 등은 언급된 의미에 고유한 제조 및 물질 허용 오차가 제시될 때 그 수치에서 또는 그 수치에 근접한 의미로서 사용되고 본원의 이해를 돕기 위해 정확하거나 절대적인 수치가 언급된 개시 내용을 비양심적인 침해자가 부당하게 이용하는 것을 방지하기 위해 사용된다.
본원 명세서 전체에서, 마쿠시 형식의 표현에 포함된 「이들의 조합(들)」의 용어는 마쿠시 형식의 표현에 기재된 구성 요소들로 이루어지는 군에서 선택되는 하나 이상의 혼합 또는 조합을 의미하는 것으로서, 상기 구성 요소들로 이루어지는 군에서 선택되는 하나 이상을 포함하는 것을 의미한다.
본 발명은 전기화학소장용 음극 및 이를 포함하는 전기화학소자에 대한 것이다. 본 발명에서 상기 전기화학소자는 전기 화학 반응을 하는 모든 소자를 포함하며, 구체적인 예를 들면, 모든 종류의 1차, 2차 전지, 연료 전지, 태양 전지 또는 캐퍼시터(capacitor) 등이 있다. 특히, 상기 2차 전지 중 리튬 금속 이차 전지, 리튬 이온 이차 전지, 리튬 폴리머 이차 전지 또는 리튬 이온 폴리머 이차 전지 등을 포함하는 리튬 이차 전지가 바람직하다.
본원 명세서 전체에서 「A 및/또는 B」의 기재는 「A 또는 B 또는 이들 모두」를 의미한다.
이하 본 발명을 더욱 상세히 설명한다.
본 발명은 리튬 이차전지용 음극 활물질 및 이를 포함하는 이차전지에 관한 것으로, 본 발명에 의한 음극 활물질은 탄소계 물질 및 규소계 물질을 포함하는 리튬 이차전지용 음극 활물질로서, 상기 탄소계 물질은 저팽창 인조흑연을 포함하는 것을 특징으로 한다. 상술한 바와 같이 음극 활물질에 있어서, 탄소계 물질만을 음극 활물질 재료로 사용하는 경우 에너지 밀도가 낮아 전지 용량 설계에 한계가 있다. 이러한 한계를 극복하기 위하여 리튬과 규소계 물질을 음극 활물질에 포함하는 경우 에너지 밀도가 높아져 고용량 전지를 구현할 수 있다. 그런데, 규소계 물질은 높은 팽창 특성을 가지기 때문에, 충방전 사이클이 반복되면서, 도전 네트워크의 단절을 야기시킬 수 있으므로, 고함량으로 포함 시 에너지 밀도가 오히려 낮아지거나, 수명 특성이 저하되는 부작용이 있다.
이처럼 탄소계 물질과 규소계 물질을 포함하는 음극 활물질의 사이클 특성을 개선하기 위해서 다양한 연구가 이루어지고 있는데, 상술한 바와 같이 종래 기술에서는 탄소계 입자 또는 규소계 입자를 개질하거나 추가 물질을 첨가하는 방법을 제시하고 있다.
구체적으로, 탄소계 물질의 경우 입자 표면 형태의 변경, 입경 조절, 2차 입자의 제조, 복합체 제조 등의 방법으로 규소계 물질의 부피 팽창에 의한 단절 현상을 방지하고 수명 특성을 연장시키는 방법이 선행발명들에 개시되어 있다.
일례로 일본공개특허 제2018-008405호에는 미세한 요철을 가지도록 탄소 입자 형태를 변형시키기 위하여, 탄소 복합체를 제조하고 있다. 이러한 탄소 복합체와 산화규소를 함께 음극재료로 사용함하는 경우, 규소계 물질인 산화규소의 부피 팽창에도 불구하고 사이클 특성이 저하되지 않는 효과가 나타났다고 기재하고 있다.
또한, 한국공개특허 제2017-0136878호에는 탄소계 물질로서 입경을 조절한 1차 입자와 이를 포함하는 2차 입자를 포함하는 음극활물질을 제조하여 유사한 효과가 나타났다고 기재하고 있다.
한편, 규소계 입자의 부피 팽창을 직접적으로 억제하는 방법과 관련하여, 한국등록특허 제1704103호에서는 다공성 실리콘계 입자를 제공하고 있으며, 이러한 다공성 실리콘 입자와 평균 입경이 서로 다른 미립 및 조립 탄소 입자를 함께 포함하는 음극 활물질을 제공하고 있다.
본 발명은 종래 기술의 문제점을 상기한 선행문헌과는 다른 방법으로 접근하여 해결한 것으로, 저팽창 인조흑연을 탄소계 물질 총 중량 대비 일정함량을 포함하는 음극 활물질을 제공한다.
탄소계 물질의 경우 규소계 물질과는 달리 팽창성이 높지 않아 그동안 탄소계 물질의 부피 팽창에 대하여는 심도 깊이 연구된 바가 없다. 그러나, 본 출원인이 실험한 바에 의하면, 팽창 특성이 상대적으로 낮은 저팽창 인조흑연을 일정 함량으로 포함하여 음극 활물질을 제조할 경우, 부피 팽창 특성이 큰 규소계 물질을 포함하더라도, 초기 사이클 효율 저하 현상이 개선되는 예상하지 못한 효과가 나타났다. 이에 따라, 본 발명의 음극 활물질을 적용한 음극 및 이러한 음극을 구비한 이차전지의 경우 기존의 공지된 규소계 물질을 가공 없이 그대로 사용하면서, 탄소계 물질의 개질이나 추가 가공 없이도 고용량을 구현하는 것이 가능하다.
구체적으로 본 발명에 의한 음극 활물질은 탄소계 물질 및 규소계 물질을 포함하는 리튬 이차전지용 음극 활물질로서, 상기 탄소계 물질은 저팽창 인조흑연을 포함하는 것을 특징으로 한다. 이 때, 상기 저팽창 인조 흑연은 전지 충방전 시 팽창 특성이 낮게 나타나는 것을 사용한다. 본 발명의 일 실시형태에 따르면, 상기 저팽창 인조흑연은 충방전 사이클을 반복하여도 초기 상태로부터 25% 미만, 더욱 바람직하게는 23% 미만으로 부피가 팽창되는 것을 사용할 수 있다. 후술하는 실시예 및 비교예에 나타난 바와 같이 25% 이상 팽창되는 흑연 또는 천연흑연을 사용하는 경우, 규소계 물질을 포함하는 음극 활물질의 특성인 전지의 에너지 밀도가 낮아지는 현상이 나타난다.
또한, 상기 저팽창 인조흑연은 탄소계 물질의 총 중량에 대하여 바람직하게는 65 내지 95중량% 포함될 수 있으며, 더욱 바람직하게는 75 내지 85중량% 포함될 수 있다. 만약 탄소계 물질 총 중량 대비 저팽창 인조흑연이 65% 미만 포함되는 경우 이차전지 제조 시 충방전 사이클 반복 시 초기 효율이 저하되어 에너지 밀도가 낮아질 수 있다. 한편, 인조흑연의 함량이 95중량%을 초과하더라도, 뚜렷한 효과의 상승은 나타나지 않으며, 저팽창 인조흑연의 제조단가를 고려할 때 경제성이 떨어지므로 바람직하지 않다.
한편, 상기 탄소계 물질은 상기 저팽창 인조흑연 외에 리튬 이차전지용 음극에 사용되는 공지된 탄소계 물질을 추가로 포함될 수 있는데, 일반적으로 널리 사용되는 천연흑연을 선택하여도 무방하다. 따라서, 상기한 중량% 범위의 저팽창 인조흑연을 포함하는 경우, 나머지 탄소계 물질은 저렴하고 구하기 쉬운 천연흑연을 사용하는 것이 경제적으로 바람직하다.
본 발명에 의한 음극 활물질은 규소계 물질을 포함하는데, 음극 활물질의 총 중량에 대하여 규소계 물질의 함량은 바람직하게는 1 내지 10중량%, 더욱 바람직하게는 3 내지 7중량%일 수 있다. 규소계 물질은 에너지 밀도 특성을 극대화하기 위해 포함되는 것으로 1중량% 미만으로 첨가하는 경우 에너지 밀도 향상 효과가 나타나지 않으며, 10중량% 미만인 경우 규소계 물질의 부피 팽창 특성으로 인하여, 오히려 에너지 밀도가 낮아지는 역효과가 나타난다. 따라서, 우수한 에너지 밀도 특성을 얻기 위해서는 규소계 물질의 장점을 활용할 수 있는 상기 범위 이내로 함량을 조절하는 것이 바람직하다.
이 때, 상기 규소계 물질은 산화규소계 물질을 1종 또는 2종 이상 포함할 수 있으며, 실리콘 및/또는 산화규소를 사용할 수 있다. 본 발명의 일 실시예에 의하면 바람직하게는 이산화규소(SiO 2)를 사용할 수 있으며, 상기 조성비율에 따라 포함되는 경우 바람직한 효과가 나타났다.
상기한 음극 활물질을 음극 집전체의 일면 또는 양면에 도포하여 리튬 이차전지용 음극을 제조할 수 있으며, 이러한 리튬 이차전지용 음극을 적용할 경우 규소 계열 음극재의 특성에 따라 에너지 밀도가 극대화된 리튬 이차전지를 제조할 수 있다. 특히 본 발명의 리튬 이차전지용 음극 활물질 및 이를 이용한 음극은 규소계열 음극재를 주로 사용하는 원통형 이차전지에 적용할 때 가장 효과가 우수하게 나타난다. 다만, 본 발명에 의한 음극 활물질 및 이를 이용한 음극의 적용은 다양한 형태의 이차전지에 적용이 가능하며, 상기한 원통형 이차전지 형태로 제한되지는 않는다.
이하, 본 발명의 이해를 돕기 위하여 실시예를 들어 상세하게 설명하기로 한다. 그러나, 본 발명에 따른 실시예들은 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 하기 실시예에 의해 한정되는 것으로 해석되어서는 아니된다. 본 발명의 실시예들은 당업계에서 평균적인 지식을 가지 자에게 본 발명을 보다 완전하게 설명하기 위해 제공되는 것이다.
<탄소계 물질의 종류에 따른 팽창 특성 측정>
탄소계 물질의 준비
천연흑연, 팽창 특성이 낮은 저팽창 인조흑연인 인조흑연 A, 통상적으로 사용되는 인조흑연 B를 각각 준비하였다.
코인셀의 제조
팽창 특성을 비교하기 위하여, 상기 천연흑연, 인조흑연 A, 인조흑연 B를 각각 독립적으로 음극 활물질로 사용하는 코인 반쪽 전지를 1개씩 제조하였다.
구체적인 코인 반쪽 전지의 제조방법은 하기와 같다.
음극 활물질 94 wt%, 도전재로서 평균 직경 20 ㎚, 평균 길이 2 ㎛인 다층 카본나노튜브 2 wt%, 결착제로서 폴리비닐리덴플루오라이드 4wt%를 혼합하고, N-메틸2-피롤리돈을 이용해 슬러리화한 다음, 두께 20 ㎛의 동박에 약 100 ㎛의 두께가 되도록 도포하고, 120 ℃에서 진공 건조 및 프레스한 후, 직경 13 ㎜의 원형으로 펀칭하여, 음극을 제조했다. 펀칭한 음극과, 두께 0.3 ㎜의 금속 리튬을 반대극으로 이용하고, 에틸렌카보네이트와 디에틸카보네이트를 3:7의 비율로 혼합하고 LiPF 6가 1몰 용해되어 있는 전해액을 이용해, 코인셀을 제조하였다.
충방전 사이클에 따른 팽창 특성의 측정
상기 코인셀 각각에 대하여 이러한 전지에 대해, 4.25V까지 충전 후 2.5V까지 방전하는 충방전 사이클을 반복하였으며, 각 사이클마다 음극 활물질 두께를 측정하여 각각의 음극 활물질에 대한 팽창 비율을 도출하였으며, 그 결과를 도 1에 나타내었다.
도 1에 도시된 바와 같이, 천연흑연은 10사이클 이후 부피 팽창률이 28%로 일정하게 나타났다. 인조흑연 A는 6사이클 이후 부피 팽창률이 22%, 인조흑연 B는 7 사이클 이후 부피 팽창률이 25%로 일정하게 나타났다.
<탄소계 물질의 조성 및 함량에 따른 전지 사이클 특성 실험>
실시예 1
인조흑연 A, 천연흑연 및 산화규소를 중량비가 75 : 20 : 5가 되도록 혼합하여 음극 활물질로 사용하였다. 그 외에는 상기한 탄소계 물질 팽창 특성 측정 시와 동일한 방법으로 코인셀을 제조하여, 4.25V까지 충전 후 2.5V까지 방전하는 충방전 사이클을 200회 반복하였다.
비교예 1
천연흑연 및 이산화규소를 중량비가 95 : 5가 되도록 혼합하여 음극 활물질로 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 실험을 진행하였다.
비교예 2
인조흑연 B, 천연흑연 및 산화규소를 75 : 20: 5가 되도록 혼합하여 음극활물질로 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 실험을 진행하였다.
결과 및 고찰
상기 각 실시예 및 비교예에 의한 사이클 특성을 도 2에 도시하였다. 음극 활물질의 총 중량에 대하여 팽창 특성이 22%인 인조흑연 A를 75중량% 포함하는 실시예 1의 경우 사이클 특성이 우수하게 나타났다. 반면, 천연흑연 및 팽창특성이 25%인 인조흑연 B를 적용한 비교예 1, 2의 경우 불과 50사이클 만에 용량이 저하되는 경향이 두드러지며, 200사이클 만에 전지 용량에 큰 차이가 발생하였다.
<이산화규소 함량에 따른 전지 사이클 특성 실험>
비교예 3
인조흑연 B, 천연흑연 및 산화규소를 75 : 10: 15가 되도록 혼합하여 음극활물질로 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 실험을 진행하였다.
결과 및 고찰
상기 비교예 3과 실시예 1의 사이클 특성을 함께 도 3에 도시하였다. 도 2와 도 3을 함께 비교해 보면, 음극 활물질 총 중량에 대하여 이산화규소의 함량이 10중량%를 초과하는 비교예 3의 경우, 비교예 2보다도 사이클 특성이 더욱 저하되는 것으로 나타난다. 이로부터 이산화규소의 함량이 10중량%를 초과하여 포함될 경우 오히려 사이클 특성이 저하된다는 것을 알 수 있다.
<인조흑연 A의 함량에 따른 사이클 특성 실험>
비교예 4
인조흑연 A, 천연흑연 및 산화규소를 30 : 65: 5가 되도록 혼합하여 음극활물질로 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 실험을 진행하였다.
비교예 5
인조흑연 A, 천연흑연 및 산화규소를 50 : 45: 5가 되도록 혼합하여 음극활물질로 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 실험을 진행하였다.
실시예 2
인조흑연 A, 천연흑연 및 산화규소를 85 : 10: 5가 되도록 혼합하여 음극활물질로 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 실험을 진행하였다.
결과 및 고찰
상기 실시예 및 비교예에 의한 실험 결과를 실시예 1과 함께 도 4 및 도 5에 나타내었다. 우선 인조 흑연 함량이 음극 활물질 총 중량에 대하여 30중량%, 50중량%인 비교예 4,5의 경우 초반에 용량 특성이 저하되는 경향이 나타났다. 또한, 85중량%인 실시예 2의 경우 실시예 1에 비하여 200회 사이클 이후 용량 특성이 미세하게 우수한 것으로 나타났다. 따라서, 적어도 저팽창 인조흑연은 65중량% 이상 포함할 경우 사이클 특성 개선이 나타나며, 고함량일수록 효과가 더욱 개선되나, 75%이상부터는 개선 효과가 크지는 않았다. 이러한 경향으로 볼 때 경제성을 고려하면, 저팽창 인조흑연의 함량범위는 95중량%이하인 것이 바람직하며, 더욱 구체적으로 75중량% 내지 85중량%일 때가 가장 바람직하다.

Claims (11)

  1. 탄소계 물질 및 규소계 물질을 포함하는 리튬 이차전지용 음극 활물질로서,
    상기 탄소계 물질은 저팽창 인조흑연을 포함하고,
    상기 저팽창 인조흑연은 전지 충방전 시 부피가 25% 미만으로 팽창하는 것인 리튬 이차전지용 음극 활물질.
  2. 제1항에 있어서,
    상기 저팽창 인조흑연은 음극 활물질의 총 중량에 대하여 65 내지 95중량% 포함되는 것인 리튬 이차전지용 음극 활물질.
  3. 제1항에 있어서,
    상기 저팽창 인조흑연은 음극 활물질의 총 중량에 대하여 75 내지 85중량% 포함되는 것인 리튬 이차전지용 음극 활물질.
  4. 제1항에 있어서,
    상기 탄소계 물질은 천연흑연 및 인조흑연으로 이루어진 것인 리튬 이차전지용 음극 활물질.
  5. 제1항에 있어서,
    상기 규소계 물질은 음극 활물질의 총 중량에 대하여 1 내지 10중량% 포함되는 것인 리튬 이차전지용 음극 활물질.
  6. 제1항에 있어서,
    상기 규소계 물질은 음극 활물질 총 중량에 대하여 3 내지 7중량% 포함되는 것인 리튬 이차전지용 음극 활물질.
  7. 제1항에 있어서,
    상기 규소계 물질은 이산화규소(SiO 2)인 것인 리튬 이차전지용 음극 활물질.
  8. 제1항에 있어서,
    상기 저팽창 인조흑연은 전지 충방전 시 부피가 23% 미만으로 팽창하는 것인 리튬 이차전지용 음극 활물질.
  9. 집전체; 및
    상기 집전체의 적어도 일면에 형성되며 음극 활물질을 포함하는 음극 활물질 층을 구비한 리튬 이차전지의 음극에 있어서,
    상기 음극 활물질이 제1항에 따른 음극 활물질인 것인 리튬 이차전지용 음극.
  10. 양극, 음극 및 상기 양극과 음극 사이에 개재된 분리막을 포함하는 리튬 이차전지에 있어서,
    상기 음극이 제8항에 따른 음극인 것인 리튬 이차전지.
  11. 제10항에 있어서,
    상기 리튬 이차전지는 원통형 이차전지인 것인 리튬 이차전지.
PCT/KR2019/016155 2018-12-12 2019-11-22 리튬 이차 전지용 음극 활물질 및 이를 포함하는 이차전지 WO2020122459A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US17/260,941 US20210288312A1 (en) 2018-12-12 2019-11-22 Anode active material for lithium secondary battery and secondary battery comprising same
EP19896132.8A EP3800709A4 (en) 2018-12-12 2019-11-22 ANODE ACTIVE MATERIAL FOR LITHIUM SECONDARY BATTERY AND SECONDARY BATTERY WITH IT
JP2021500408A JP7118235B2 (ja) 2018-12-12 2019-11-22 リチウム二次電池用負極活物質及びそれを含む二次電池
CN201980045462.6A CN112470308A (zh) 2018-12-12 2019-11-22 锂二次电池用负极活性材料以及包含其的二次电池

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020180160091A KR102647045B1 (ko) 2018-12-12 2018-12-12 리튬 이차 전지용 음극 활물질 및 이를 포함하는 이차전지
KR10-2018-0160091 2018-12-12

Publications (1)

Publication Number Publication Date
WO2020122459A1 true WO2020122459A1 (ko) 2020-06-18

Family

ID=71075448

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/016155 WO2020122459A1 (ko) 2018-12-12 2019-11-22 리튬 이차 전지용 음극 활물질 및 이를 포함하는 이차전지

Country Status (6)

Country Link
US (1) US20210288312A1 (ko)
EP (1) EP3800709A4 (ko)
JP (1) JP7118235B2 (ko)
KR (1) KR102647045B1 (ko)
CN (1) CN112470308A (ko)
WO (1) WO2020122459A1 (ko)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113013394A (zh) * 2021-03-26 2021-06-22 蜂巢能源科技有限公司 一种负极材料及其制备方法和应用
CN117317126A (zh) * 2022-06-21 2023-12-29 比亚迪股份有限公司 负极片及其应用
CN116364860B (zh) * 2023-06-01 2023-11-10 宁德时代新能源科技股份有限公司 二次电池及其制备方法和用电装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103647056A (zh) * 2013-11-29 2014-03-19 深圳市贝特瑞新能源材料股份有限公司 一种SiOX基复合负极材料、制备方法及电池
KR20150060513A (ko) * 2013-11-26 2015-06-03 삼성에스디아이 주식회사 리튬 이차 전지용 음극 활물질층, 이의 제조방법, 및 리튬 이차 전지
JP2015165482A (ja) * 2014-02-07 2015-09-17 信越化学工業株式会社 非水電解質二次電池用負極及び非水電解質二次電池
KR101704103B1 (ko) 2013-09-17 2017-02-07 주식회사 엘지화학 다공성 실리콘계 음극 활물질 및 이를 포함하는 리튬 이차전지
CN106495144A (zh) * 2015-11-17 2017-03-15 宁波杉杉新材料科技有限公司 一种低膨胀长循环人造石墨锂离子电池负极材料
KR20170136878A (ko) 2016-06-02 2017-12-12 에스케이이노베이션 주식회사 리튬 이차 전지용 음극 활물질, 이를 포함하는 음극 및 리튬 이차 전지
JP2018008405A (ja) 2016-07-12 2018-01-18 信越ポリマー株式会社 非晶性熱可塑性樹脂フィルムの製造方法
KR20180124659A (ko) * 2017-05-12 2018-11-21 주식회사 엘지화학 리튬 이차전지용 음극, 및 이를 포함하는 리튬 이차전지

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4354723B2 (ja) * 2003-03-31 2009-10-28 Jfeケミカル株式会社 黒鉛質粒子の製造方法
KR20070069188A (ko) 2005-03-31 2007-07-02 마쯔시다덴기산교 가부시키가이샤 리튬 2차 전지
KR101708360B1 (ko) * 2011-10-05 2017-02-21 삼성에스디아이 주식회사 음극 활물질 및 이를 채용한 리튬 전지
JP6006662B2 (ja) 2013-03-05 2016-10-12 信越化学工業株式会社 珪素含有粒子の製造方法、非水電解質二次電池の負極材の製造方法、および、非水電解質二次電池の製造方法
PL3007261T3 (pl) * 2013-06-05 2020-02-28 Lg Chem, Ltd. Nowy akumulator
CN204391191U (zh) * 2015-02-13 2015-06-10 洛阳月星新能源科技有限公司 锂离子电池负极极片及锂离子电池
EP4286355A3 (en) 2015-08-28 2024-05-01 Group14 Technologies, Inc. Novel materials with extremely durable intercalation of lithium and manufacturing methods thereof
CN105938906B (zh) * 2016-06-18 2019-06-07 湖南中科星城石墨有限公司 一种锂离子电池用人造石墨复合负极材料及其制备方法
CN106159266B (zh) * 2016-08-31 2018-11-30 合肥国轩高科动力能源有限公司 一种降低锂离子电池膨胀的负极浆料制备方法
JP7067029B2 (ja) 2016-11-22 2022-05-16 三菱ケミカル株式会社 非水系二次電池用負極材、非水系二次電池用負極及び非水系二次電池
KR102256479B1 (ko) * 2017-03-06 2021-05-27 주식회사 엘지에너지솔루션 리튬 이차전지용 음극 활물질 및 이의 제조방법

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101704103B1 (ko) 2013-09-17 2017-02-07 주식회사 엘지화학 다공성 실리콘계 음극 활물질 및 이를 포함하는 리튬 이차전지
KR20150060513A (ko) * 2013-11-26 2015-06-03 삼성에스디아이 주식회사 리튬 이차 전지용 음극 활물질층, 이의 제조방법, 및 리튬 이차 전지
CN103647056A (zh) * 2013-11-29 2014-03-19 深圳市贝特瑞新能源材料股份有限公司 一种SiOX基复合负极材料、制备方法及电池
JP2015165482A (ja) * 2014-02-07 2015-09-17 信越化学工業株式会社 非水電解質二次電池用負極及び非水電解質二次電池
CN106495144A (zh) * 2015-11-17 2017-03-15 宁波杉杉新材料科技有限公司 一种低膨胀长循环人造石墨锂离子电池负极材料
KR20170136878A (ko) 2016-06-02 2017-12-12 에스케이이노베이션 주식회사 리튬 이차 전지용 음극 활물질, 이를 포함하는 음극 및 리튬 이차 전지
JP2018008405A (ja) 2016-07-12 2018-01-18 信越ポリマー株式会社 非晶性熱可塑性樹脂フィルムの製造方法
KR20180124659A (ko) * 2017-05-12 2018-11-21 주식회사 엘지화학 리튬 이차전지용 음극, 및 이를 포함하는 리튬 이차전지

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3800709A4

Also Published As

Publication number Publication date
KR102647045B1 (ko) 2024-03-14
KR20200072184A (ko) 2020-06-22
CN112470308A (zh) 2021-03-09
EP3800709A1 (en) 2021-04-07
US20210288312A1 (en) 2021-09-16
EP3800709A4 (en) 2021-11-03
JP7118235B2 (ja) 2022-08-15
JP2021531619A (ja) 2021-11-18

Similar Documents

Publication Publication Date Title
WO2015041450A1 (ko) 다공성 실리콘계 음극 활물질 및 이를 포함하는 리튬 이차전지
WO2019108039A2 (ko) 음극 및 이를 포함하는 이차전지
WO2012165758A1 (ko) 리튬 이차전지
WO2014014274A1 (ko) 탄소-실리콘 복합체, 이의 제조방법 및 이를 포함하는 음극 활물질
WO2019182364A1 (ko) 리튬-함유 복합체의 코팅층을 구비한 세퍼레이터, 이를 포함하는 리튬 이차전지 및 상기 이차전지의 제조방법
WO2020122459A1 (ko) 리튬 이차 전지용 음극 활물질 및 이를 포함하는 이차전지
WO2019022422A1 (ko) 이차전지용 양극 및 이를 포함하는 리튬 이차전지
WO2016137147A1 (ko) 이차 전지용 분리막, 그 제조 방법, 및 이를 포함하는 리튬 이차 전지
WO2019078544A1 (ko) 리튬 이차전지용 음극, 및 이를 포함하는 리튬 이차전지
WO2019078702A2 (ko) 음극 활물질 및 이를 포함하는 전고체 전지용 음극
WO2018217071A1 (ko) 이차전지용 양극의 제조방법, 이와 같이 제조된 이차전지용 양극 및 이를 포함하는 리튬 이차전지
WO2014098419A1 (ko) 리튬 이차 전지용 음극재, 이의 제조 방법 및 이를 포함하는 리튬 이차 전지
WO2018088735A1 (ko) 음극 및 상기 음극의 제조방법
WO2019240496A1 (ko) 리튬 이차전지용 음극활물질 및 이를 포함하는 리튬 이차전지
WO2019103311A1 (ko) 전고상 리튬-폴리머 이차전지용 양극 및 그의 제조방법, 이를 포함한 이차전지
WO2018097455A1 (ko) 전극 보호층을 포함하는 이차전지용 전극
WO2020111649A1 (ko) 리튬 이차전지용 양극 및 이를 포함하는 리튬 이차전지
WO2019168308A1 (ko) 양극 및 상기 양극을 포함하는 이차 전지
WO2019221410A1 (ko) 전극 보호층을 포함하는 음극 및 이를 적용한 리튬 이차전지
WO2020162708A1 (ko) 음극 및 이를 포함하는 리튬 이차전지
WO2019013511A2 (ko) 리튬 이차전지용 양극, 그 제조방법 및 이를 포함하는 리튬 이차전지
WO2019022423A1 (ko) 이차전지용 양극 및 이를 포함하는 리튬 이차전지
WO2020153728A1 (ko) 리튬 이차전지용 음극활물질, 이를 포함하는 음극 및 리튬 이차전지
WO2019009560A1 (ko) 전극 및 이를 포함하는 리튬 이차전지
WO2022086098A1 (ko) 그래핀-실리콘 복합체를 포함하는 음극 활물질, 이의 제조방법 및 이를 포함하는 리튬 이차전지

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19896132

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021500408

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019896132

Country of ref document: EP

Effective date: 20210104

NENP Non-entry into the national phase

Ref country code: DE