WO2018097455A1 - 전극 보호층을 포함하는 이차전지용 전극 - Google Patents

전극 보호층을 포함하는 이차전지용 전극 Download PDF

Info

Publication number
WO2018097455A1
WO2018097455A1 PCT/KR2017/009080 KR2017009080W WO2018097455A1 WO 2018097455 A1 WO2018097455 A1 WO 2018097455A1 KR 2017009080 W KR2017009080 W KR 2017009080W WO 2018097455 A1 WO2018097455 A1 WO 2018097455A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
protective layer
mixture layer
current collector
electrode mixture
Prior art date
Application number
PCT/KR2017/009080
Other languages
English (en)
French (fr)
Inventor
김정길
김효식
하정호
이지은
이솔닢
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to EP17873084.2A priority Critical patent/EP3396743B1/en
Priority to US16/070,979 priority patent/US11296325B2/en
Priority to CN201780009332.8A priority patent/CN108604667B/zh
Priority to PL17873084T priority patent/PL3396743T3/pl
Publication of WO2018097455A1 publication Critical patent/WO2018097455A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/628Inhibitors, e.g. gassing inhibitors, corrosion inhibitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4235Safety or regulating additives or arrangements in electrodes, separators or electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/534Electrode connections inside a battery casing characterised by the material of the leads or tabs
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a secondary battery electrode comprising an electrode protective layer.
  • lithium secondary batteries such as lithium ion batteries and lithium ion polymer batteries is high.
  • secondary batteries are classified according to the structure of an electrode assembly having a structure in which a positive electrode, a negative electrode, and a separator interposed between the positive electrode and the negative electrode are formed.
  • Jelly-roll type electrode assembly having a structure wound in a state where a separator is interposed, a stack type electrode assembly in which a plurality of anodes and cathodes cut in units of a predetermined size are sequentially stacked with a separator therebetween
  • an electrode assembly having an advanced structure which is a mixed form of the jelly-roll type and the stack type has a predetermined unit.
  • Stacked / foldable electrode having a structure in which positive and negative electrodes are sequentially wound in a state in which unit cells stacked on a separator film are stacked with a separator interposed therebetween Developed body lip.
  • the secondary battery is a cylindrical battery and a rectangular battery in which the electrode assembly is embedded in a cylindrical or rectangular metal can according to the shape of the battery case, and a pouch type battery in which the electrode assembly is embedded in a pouch type case of an aluminum laminate sheet. Are classified.
  • such a secondary battery electrode is produced by applying and drying an electrode mixture slurry in which an electrode active material, a conductive material, and a binder are mixed on a current collector to form an electrode mixture layer.
  • the volume change of the electrode occurs as charging and discharging proceeds.
  • the electrode mixture layer is detached from the current collector, and electrons move between the electrode mixture layer and the current collector. This is difficult, there is a problem that the internal resistance is increased, and furthermore, there is a problem that the capacity and life characteristics are rapidly reduced as the charge and discharge cycle of the secondary battery proceeds.
  • the loading amount of the electrode mixture layer is increased, and as the loading amount of the electrode mixture layer increases, the adhesion between the electrode mixture layer and the current collector decreases. The problem is bound to be more serious.
  • the present invention aims to solve the problems of the prior art as described above and the technical problems that have been requested from the past.
  • the electrode protective layer comprising a conductive material and a binder is coated on the electrode mixture layer, so that the electrode protective layer is a current collector Desorption of the electrode mixture layer from the electrode can be prevented, thereby increasing the internal resistance that can occur between the electrode mixture layer and the current collector, thereby preventing the deterioration of the capacity and the life characteristics, and desorption of the electrode mixture layer occurs locally. Even if the electrode protective layer forms a conductive network between the electrode mixture layer and the current collector, it is possible to facilitate the movement of electrons between the electrode mixture layer and the current collector, and thus occurs due to detachment of the electrode mixture layer. It can be seen that the increase in the internal resistance and thereby can effectively prevent the degradation of the secondary battery, the present invention Came to complete.
  • a current collector including an electrode tab protruding outwardly to at least one outer periphery
  • the electrode protective layer may have a structure including a conductive material and a binder to complement conductivity of the electrode mixture layer and to prevent detachment of the electrode mixture layer from the current collector.
  • the electrode protective layer prevents detachment of the electrode mixture layer from the current collector, thereby preventing an increase in internal resistance that may occur between the electrode mixture layer and the current collector, and thereby a decrease in capacity and lifetime characteristics. Even if detachment of the electrode mixture layer occurs locally, the electrode protective layer forms a conductive network between the electrode mixture layer and the current collector, thereby facilitating the movement of electrons between the electrode mixture layer and the current collector, and thus An increase in internal resistance that may occur due to detachment of the electrode mixture layer and a decrease in performance of the secondary battery may be effectively prevented.
  • the electrode mixture layer may have a structure including an uncoated portion that is an electrode mixture layer unformed portion in the outer peripheral portion on the current collector.
  • the electrode mixture layer may be formed at a central portion on the current collector to form a non-coated portion at an outer peripheral portion.
  • the electrode protective layer may be a structure that is coated in a continuous shape that is bonded to the uncoated portion of the current collector while covering the outer surface of the electrode mixture layer.
  • the electrode protective layer is adhered to the non-coated portion of the current collector, thereby stably maintaining the adhesion state of the electrode mixture layer to the current collector, and even if detachment of the electrode mixture layer occurs locally, the electrode protective layer is adhered to the current collector. Since the prepared electrode protective layer faces the electrode mixture layer, a conductive network is formed between the current collector and the electrode mixture layer to prevent the mobility of the electrons from being lowered, and the internal resistance increases, the capacity and the life of the electrons are reduced. The deterioration of properties can be effectively prevented.
  • the area where the electrode protective layer is bonded to the non-coating portion may be 1% to 5% in size based on the area of the current collector portion in contact with the electrode mixture layer, and the non-coating portion except for the electrode tab may be used.
  • the total area it may be in the range of 30% to 100%.
  • the adhesion state of the electrode mixture layer may not be stably maintained or the electrons may be stable between the current collector and the electrode mixture layer. It may not be possible to form a conductive network that can secure mobility.
  • the contact area of the electrode protective layer to the current collector is too large, and the electrode mixture is in a limited current collector space. Since the area of the layer is relatively reduced, there is a problem that the overall capacity of the secondary battery may be relatively smaller than that of the secondary battery of the same size.
  • the mixing ratio of the conductive material and the binder in the electrode protective layer may be 95: 5 to 85:15 by weight.
  • the ratio of the conductive material in the electrode protective layer is too small out of the range or the ratio of the binder is too large, the mobility of electrons between the electrode mixture layer and the current collector through the electrode protective layer may be reduced. .
  • the thickness of the electrode protective layer may be 0.5% to 5% with respect to the thickness of the electrode mixture layer.
  • the thickness of the electrode protective layer is less than 0.5% of the thickness of the electrode mixture layer, when the thickness of the electrode protective layer is too thin, the effect to be exerted through the electrode protective layer may not be sufficiently exhibited. have.
  • the thickness of the electrode protective layer exceeds 5% of the thickness of the electrode mixture layer, the thickness of the electrode protective layer is too thick, and the loading amount of the electrode mixture layer is larger than that of the secondary battery having the same thickness. Relatively small, the capacity may be lowered.
  • the thickness of the electrode protective layer may be a structure that is thickened continuously or discontinuously corresponding to the separation distance from the electrode tab.
  • the mobility of electrons may be relatively lower than that of the region adjacent to the electrode tab, and this problem is a recent trend of increasing the area of the secondary battery electrode. Considering this, it can be larger.
  • the electrode for secondary batteries according to the present invention forms a thick structure in which the thickness of the electrode protective layer corresponds to the separation distance from the electrode tab, so that the electrode mixture layer and the collector are separated even from the distance from the electrode tab. The fall of the mobility of the electron between whole can be prevented effectively.
  • the thickness of the electrode protective layer on the electrode mixture layer maximum spaced apart from the electrode tab may be 101% to 110% of the thickness of the electrode protective layer on the electrode mixture layer maximum adjacent to the electrode tab.
  • the thickness of the electrode protective layer on the electrode mixture layer spaced apart from the electrode tab is too thin out of the above range, it may not fully exhibit the effect to be exhibited through the difference in thickness.
  • the thickness of the electrode protective layer on the electrode mixture layer maximum spaced apart from the electrode tab is too thick out of the above range, on the vertical section, the portion spaced maximum from the electrode tab, from the region closest to the electrode tab Due to the inclined structure formed in the structure, a limitation may occur in a mounting space of a device to which the secondary battery including the electrode may be applied.
  • the thickness of the electrode mixture layer differs depending on the distance from the electrode tab. In the case of configuration, the thickness of the electrode mixture layer becomes relatively thin at a portion spaced apart from the electrode tab, thereby reducing the capacity of the secondary battery.
  • the electrode protective layer may have a uniform structure on all electrode mixture layers.
  • the content of the conductive material included in the electrode protective layer may have a structure that increases continuously or discontinuously as it is spaced apart from the electrode tab.
  • the content of the conductive material included in the electrode protective layer is formed to have a structure that increases continuously or discontinuously as it is spaced apart from the electrode tab, so that even between the electrode mixture layer and the current collector, even at a distance away from the electrode tab. The fall of the electron mobility of can be effectively prevented.
  • the content of the conductive material of the electrode protective layer portion spaced apart from the electrode tab may be 101% to 110% with respect to the conductive material content of the electrode protective layer portion closest to the electrode tab.
  • the desired effect may not be sufficiently exhibited through the configuration.
  • the adhesive force to the current collector may not be sufficiently exhibited at the electrode protective layer portion spaced apart from the electrode tab.
  • the electrode protective layer the thickness of the portion adhered to the non-coated portion of the current collector, may be a size of 101% to 110% with respect to the thickness of the portion applied on the electrode mixture layer.
  • the electrode protective layer, the binder content of the portion adhered to the uncoated portion of the current collector may be 101% to 110% relative to the binder content of the portion applied on the electrode mixture layer.
  • the electrode protective layer may have a desired effect by being coated in a continuous shape adhered to the uncoated portion of the current collector while surrounding the outer surface of the electrode mixture layer in the outer peripheral portion of the electrode mixture layer.
  • the electrode protective layer is formed in a structure in which the thickness of the portion adhered to the non-coated portion is relatively thick with respect to the thickness of the portion coated on the electrode mixture layer, or the binder content of the portion adhered to the non-coated portion is the electrode mixture.
  • the electrode for secondary batteries according to the present invention is configured such that an electrode protective layer containing a conductive material and a binder is coated on the electrode mixture layer, whereby the electrode protective layer prevents detachment of the electrode mixture layer from the current collector.
  • the electrode protective layer may By forming a conductive network between the mixture layer and the current collector, it is possible to facilitate the movement of electrons between the electrode mixture layer and the current collector, thereby increasing the internal resistance that may occur due to detachment of the electrode mixture layer and As a result, there is an effect that can effectively prevent the degradation of the secondary battery.
  • FIG. 1 is a schematic diagram schematically showing a cross-sectional structure of a secondary battery electrode according to an embodiment of the present invention
  • FIG. 2 is a schematic diagram schematically showing a cross-sectional structure when the electrode mixture layer of FIG. 1 is locally detached;
  • FIG. 3 is a schematic diagram schematically showing a cross-sectional structure of a secondary battery electrode according to another embodiment of the present invention.
  • FIG. 1 is a schematic diagram schematically showing the cross-sectional structure of a secondary battery electrode according to an embodiment of the present invention.
  • the secondary battery electrode 100 includes a current collector 110, an electrode mixture layer 120, and an electrode protective layer 130.
  • the electrode tab 111 protrudes outward from one side of the current collector 110.
  • the electrode mixture layer 120 is formed at the center portion of the current collector 110, and thus, the uncoated portion 112, which is an unformed portion of the electrode mixture layer 120, is formed at an outer peripheral portion of the electrode mixture layer 120. It is.
  • the electrode protective layer 130 is coated on the electrode mixture layer 120, and in detail, is continuously bonded to the uncoated portion 112 of the current collector 110 while covering the outer surface of the electrode mixture layer 120. It is applied in a typical shape.
  • the electrode mixture layer 120 maintains a structure stably bonded to the current collector 110 by the electrode protective layer 130 adhered to the current collector 110 at the uncoated portion 112 of the outer peripheral portion. The detachment from the current collector 110 can be effectively prevented.
  • FIG. 2 is a schematic diagram schematically showing a cross-sectional structure when the electrode mixture layer of FIG. 1 is locally detached.
  • the central portion of the electrode mixture layer 120 is partially detached from the current collector 110, and has a structure that does not directly contact the current collector 110.
  • the electrode protective layer 130 coated on the electrode mixture layer 120 is adhered to the uncoated portion 112 of the current collector 110, and thus, between the electrode mixture layer 120 and the current collector 110.
  • a conductive network is formed, whereby electrons between the electrode mixture layer 120 and the current collector 110 can move through the electrode protective layer 130.
  • FIG. 3 is a schematic diagram schematically showing a cross-sectional structure of a secondary battery electrode according to another embodiment of the present invention.
  • the electrode protective layer 330 is continuously thickened from a portion 301 that is closest to the electrode tab 311 to a portion 302 that is spaced apart from the electrode tab 311 at a maximum distance.
  • the electrode mixture layer 320 has a structure in which the electrode mixture layer 320 is continuously thinned from the region 301 which is closest to the electrode tab 311 to the region 302 which is spaced apart from the electrode tab 311 at a maximum distance. consist of.
  • the thickness 332 of the electrode protective layer 330 of the portion 302 spaced from the electrode tab 311 is the thickness of the electrode protective layer 330 of the portion 301 of the largest portion adjacent to the electrode tab 311. It has a relatively thicker structure than 331, and thus the content of the conductive material included in the electrode protective layer 330 increases, so that the mobility of electrons in the portion 302 spaced apart from the electrode tab 311 is reduced. It is possible to effectively prevent the deterioration of life characteristics.
  • the positive electrode active material, the PVdF binder, and the natural graphite conductive material are mixed well in NMP so as to have a weight ratio of 96: 2: 2 (positive active material: binder: conductive material), and then 20 mm thick to form a non-coated portion at an outer peripheral portion. It was coated on Al foil to form an electrode mixture layer, and the natural graphite conductive material and PVdF binder were mixed well with NMP so as to have a weight ratio of 95: 5 (conductive material: binder), and then wrapped around the outer surface of the positive electrode mixture layer. It was applied in a continuous shape in contact with the entire uncoated portion to form a positive electrode protective layer, and dried at 130 degrees Celsius to prepare a positive electrode.
  • a positive electrode was prepared in the same manner as in Example 1 except that the natural graphite conductive material forming the positive electrode protective layer and the PVdF binder were mixed in a weight ratio of 90:10 (conductive material: binder).
  • a positive electrode was prepared in the same manner as in Example 1 except that the natural graphite conductive material forming the positive electrode protective layer and the PVdF binder were mixed in a weight ratio of 85:15 (conductive material: binder).
  • a positive electrode was prepared in the same manner as in Example 1 except that the positive electrode protective layer was not formed.
  • a positive electrode was prepared in the same manner as in Example 1 except that the natural graphite conductive material forming the positive electrode protective layer and the PVdF binder were mixed in a weight ratio of 98: 2 (conductive material: binder).
  • a positive electrode was prepared in the same manner as in Example 1 except that the natural graphite conductive material forming the positive electrode protective layer and the PVdF binder were mixed in a weight ratio of 80:20 (conductive material: binder).
  • the comparative example includes the conductive material and the binder of the electrode protective layer in a ratio outside the above range. It can be seen that the capacity retention rate is excellent compared to 2 and 3.
  • the electrode protective layer containing the conductive material and the binder in a desired range increases the adhesion of the electrode mixture layer to the current collector, thereby preventing detachment of the electrode mixture layer from the current collector, and locally of the electrode mixture layer. Even if phosphorus generation occurs, an electrode protective layer containing a conductive material sufficiently forms a conductive network, thereby preventing a decrease in mobility of electrons between the electrode mixture layer and the current collector, and despite the local detachment of the electrode mixture layer, This indicates that the degradation of lifespan characteristics can be prevented.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)
  • Cell Electrode Carriers And Collectors (AREA)

Abstract

본 발명은, 적어도 일측 외주변으로 외향 돌출되어 있는 전극 탭을 포함하는 집전체; 상기 집전체 상에 형성되어 있는 전극 합제층; 및 상기 전극 합제층 상에 도포되어 있는 전극 보호층;을 포함하고 있고, 상기 전극 보호층은, 전극 합제층의 도전성을 보완하고 집전체로부터 전극 합제층의 탈리를 방지하도록, 도전재 및 바인더를 포함하는 것을 특징으로 하는 이차전지용 전극을 제공한다.

Description

전극 보호층을 포함하는 이차전지용 전극
본 발명은 전극 보호층을 포함하는 이차전지용 전극에 관한 것이다.
최근, 화석연료의 고갈에 의한 에너지원의 가격 상승, 환경 오염의 관심이 증폭되며, 친환경 대체 에너지원에 대한 요구가 미래생활을 위한 필수 불가결한 요인이 되고 있다. 이에 원자력, 태양광, 풍력, 조력 등 다양한 전력 생산기술들에 대한 연구가 지속되고 있으며, 이렇게 생산된 에너지를 더욱 효율적으로 사용하기 위한 전력저장장치 또한 지대한 관심이 이어지고 있다.
특히, 모바일 기기에 대한 기술 개발과 수요가 증가함에 따라 에너지원으로서의 전지의 수요가 급격히 증가하고 있고, 그에 따라 다양한 요구에 부응할 수 있는 전지에 대한 많은 연구가 행해지고 있다.
대표적으로 전지의 형상 면에서는 얇은 두께로 휴대폰 등과 같은 제품들에 적용될 수 있는 각형 이차전지와 파우치형 이차전지에 대한 수요가 높고, 재료 면에서는 높은 에너지 밀도, 방전 전압, 출력 안정성 등의 장점을 가진 리튬이온 전지, 리튬이온 폴리머 전지 등과 같은 리튬 이차전지에 대한 수요가 높다.
또한, 이차전지는 양극, 음극, 및 양극과 음극 사이에 개재되는 분리막이 적층된 구조의 전극조립체가 어떠한 구조로 이루어져 있는지에 따라 분류되기도 하는 바, 대표적으로는, 긴 시트형의 양극들과 음극들을 분리막이 개재된 상태에서 권취한 구조의 젤리-롤형(권취형) 전극조립체, 소정 크기의 단위로 절취한 다수의 양극과 음극들을 분리막을 개재한 상태로 순차적으로 적층한 스택형(적층형) 전극조립체 등을 들 수 있으며, 최근에는, 상기 젤리-롤형 전극조립체 및 스택형 전극조립체가 갖는 문제점을 해결하기 위해, 상기 젤리-롤형과 스택형의 혼합 형태인 진일보한 구조의 전극조립체로서, 소정 단위의 양극과 음극들을 분리막을 개재한 상태로 적층한 단위셀들을 분리필름 상에 위치시킨 상태에서 순차적으로 권취한 구조의 스택/폴딩형 전극조립체가 개발되었다.
또한, 이차전지는 전지케이스의 형상에 따라, 전극조립체가 원통형 또는 각형의 금속 캔에 내장되어 있는 원통형 전지 및 각형 전지와, 전극조립체가 알루미늄 라미네이트 시트의 파우치형 케이스에 내장되어 있는 파우치형 전지로 분류된다.
일반적으로, 이러한 이차전지용 전극은 집전체 상에 전극 활물질, 도전재 및 바인더가 혼합된 전극 합제용 슬러리가 도포 및 건조되어, 전극 합제층을 형성함으로써 제조된다.
그러나, 이러한 전극을 포함하는 이차전지는 충전 및 방전이 진행됨에 따라 전극의 부피 변화가 발생하고, 이에 따라 전극 합제층이 집전체로부터 탈리되면서, 상기 전극 합제층과 집전체 사이에서의 전자의 이동이 어려워져, 내부 저항이 증가하게 되는 문제점이 있으며, 나아가 이차전지의 충방전 사이클이 진행됨에 따라 용량 및 수명 특성이 급격히 감소하게 되는 문제점이 있다.
특히, 최근에는 고에너지 밀도의 이차전지를 구성하기 위해, 상기 전극 합제층의 로딩량을 증가시키고 있으며, 상기 전극 합제층 로딩량이 증가할수록, 전극 합제층과 집전체 사이의 접착력 저하로 인해 발생하는 상기 문제점은 더욱 심각해질 수 밖에 없다.
따라서, 이러한 문제점을 근본적으로 해결할 수 있는 기술에 대한 필요성이 높은 실정이다.
본 발명은 상기와 같은 종래기술의 문제점과 과거로부터 요청되어온 기술적 과제를 해결하는 것을 목적으로 한다.
본 출원의 발명자들은 심도 있는 연구와 다양한 실험을 거듭한 끝에, 이후 설명하는 바와 같이, 전극 합제층 상에 도전재 및 바인더를 포함하는 전극 보호층이 도포되도록 구성됨으로써, 상기 전극 보호층이 집전체로부터 전극 합제층의 탈리를 방지해, 상기 전극 합제층과 집전체 사이에서 발생할 수 있는 내부 저항의 증가 및 이로 인한 용량, 수명 특성의 저하를 예방할 수 있고, 상기 전극 합제층의 탈리가 국부적으로 발생하더라도, 전극 보호층이 전극 합제층과 집전체 사이의 도전성 네트워크를 형성함으로써, 상기 전극 합제층과 집전체 사이에서 전자의 이동을 원활하게 할 수 있고, 이에 따라 상기 전극 합제층의 탈리로 인해 발생할 수 있는 내부 저항의 증가 및 이로 인한 이차전지의 성능 저하를 효과적으로 방지할 수 있음을 확인하고, 본 발명을 완성하기에 이르렀다.
이러한 목적을 달성하기 위한 본 발명에 따른 이차전지용 전극은,
적어도 일측 외주변으로 외향 돌출되어 있는 전극 탭을 포함하는 집전체;
상기 집전체 상에 형성되어 있는 전극 합제층; 및
상기 전극 합제층 상에 도포되어 있는 전극 보호층;
을 포함하고 있고,
상기 전극 보호층은, 전극 합제층의 도전성을 보완하고 집전체로부터 전극 합제층의 탈리를 방지하도록, 도전재 및 바인더를 포함하는 구조일 수 있다.
따라서, 상기 전극 보호층이 집전체로부터 전극 합제층의 탈리를 방지해, 상기 전극 합제층과 집전체 사이에서 발생할 수 있는 내부 저항의 증가 및 이로 인한 용량, 수명 특성의 저하를 예방할 수 있고, 상기 전극 합제층의 탈리가 국부적으로 발생하더라도, 전극 보호층이 전극 합제층과 집전체 사이의 도전성 네트워크를 형성함으로써, 상기 전극 합제층과 집전체 사이에서 전자의 이동을 원활하게 할 수 있고, 이에 따라 상기 전극 합제층의 탈리로 인해 발생할 수 있는 내부 저항의 증가 및 이로 인한 이차전지의 성능 저하를 효과적으로 방지할 수 있다.
하나의 구체적인 예에서, 상기 전극 합제층은 집전체 상에서 외주변 부위에 전극 합제층 미형성 부위인 무지부를 포함하고 있는 구조일 수 있다.
다시 말해, 상기 전극 합제층은 외주변 부위에 무지부를 형성하도록, 상기 집전체 상의 중앙 부위에 형성될 수 있다.
이때, 전극 보호층은 상기 전극 합제층의 외면을 감싸면서 집전체의 무지부에 접착되어 있는 연속적인 형상으로 도포되어 있는 구조일 수 있다.
따라서, 상기 전극 보호층은 집전체의 무지부와 접착됨으로써, 집전체에 대한 전극 합제층의 접착 상태를 안정적으로 유지할 수 있으며, 상기 전극 합제층의 탈리가 국부적으로 발생하더라도, 상기 집전체와 접착된 전극 보호층이 전극 합제층과 대면해 있으므로, 상기 집전체와 전극 합제층 사이에서 도전성 네트워크를 형성해, 전자의 이동성 저하를 방지하고, 상기 전자의 이동성 저하에 따른 내부 저항의 증가 및 용량, 수명 특성 저하를 효과적으로 예방할 수 있다.
특히, 상기 전극 보호층이 무지부에 접착되어 있는 면적은, 전극 합제층이 접해 있는 집전체 부위의 면적을 기준으로, 1% 내지 5%의 크기일 수 있으며, 또한, 전극 탭을 제외한 무지부의 전체 면적에 대해, 30% 내지 100%의 크기일 수 있다.
만일, 상기 전극 보호층이 무지부에 접착되어 있는 면적이 상기 범위를 벗어나 지나치게 작을 경우에는, 상기 전극 합제층의 접착 상태를 안정적으로 유지하지 못하거나, 집전체와 전극 합제층 사이에서 전자의 안정적인 이동성을 확보할 수 있을 정도의 도전성 네트워크를 형성하지 못할 수 있다.
이와 반대로, 상기 전극 보호층이 무지부에 접착되어 있는 면적이 상기 범위를 벗어나 지나치게 클 경우에는, 집전체에 대한 상기 전극 보호층의 접촉 면적이 지나치게 큰 경우로서, 한정된 집전체 공간에서, 전극 합제층의 면적이 상대적으로 감소하므로, 이차전지의 전체적인 용량이 동일한 사이즈의 이차전지에 비해 상대적으로 적어질 수 있는 문제점이 있다.
한편, 상기 전극 보호층에서 도전재 및 바인더의 혼합 비율은 중량 기준으로 95:5 내지 85:15일 수 있다.
만일, 상기 전극 보호층에서 도전재의 비율이 상기 범위를 벗어나 지나치게 작거나, 바인더의 비율이 지나치게 클 경우에는, 상기 전극 보호층을 통한 전극 합제층과 집전체 사이의 전자의 이동성이 저하될 수 있다.
이와 반대로, 상기 전극 보호층에서 도전재의 비율이 상기 범위를 벗어나 지나치게 크거나, 바인더의 비율이 지나치게 작을 경우에는, 집전체에 대한 전극 보호층의 접착력이 저하되어, 전극 합제층의 탈리를 효과적으로 예방하지 못할 수 있다.
하나의 구체적인 예에서, 상기 전극 보호층의 두께는 전극 합제층의 두께에 대해 0.5% 내지 5%일 수 있다.
만일, 상기 전극 보호층의 두께가 전극 합제층의 두께에 대해 0.5% 미만일 경우에는, 상기 전극 보호층의 두께가 지나치게 얇은 경우로서, 상기 전극 보호층을 통해 발휘하고자 하는 효과를 충분히 발휘하지 못할 수 있다.
이와 반대로, 상기 전극 보호층의 두께가 전극 합제층의 두께에 대해 5%를 초과할 경우에는, 상기 전극 보호층의 두께가 지나치게 두꺼운 경우로서, 동일한 두께의 이차전지에 비해 전극 합제층의 로딩량이 상대적으로 적어, 용량이 저하될 수 있다.
하나의 구체적인 예에서, 상기 전극 보호층의 두께는 전극 탭으로부터의 이격 거리에 대응하여 연속적 또는 비연속적으로 두꺼워지는 구조일 수 있다.
더욱 구체적으로, 상기 전극 탭으로부터의 거리가 이격된 부위일 수록, 전극 탭에 인접한 부위에 비해 전자의 이동성이 상대적으로 저하될 수 있으며, 이러한 문제점은 이차전지용 전극의 면적이 증가하고 있는 최근의 경향을 고려하였을 때, 더욱 커질 수 있다.
이에 따라, 본 발명에 따른 이차전지용 전극은 상기 전극 보호층의 두께가 전극 탭으로부터의 이격 거리에 대응하여 두꺼운 구조를 형성함으로써, 상기 전극 탭으로부터의 이격 거리가 먼 부위에서도, 전극 합제층과 집전체 사이의 전자의 이동성 저하를 효과적으로 예방할 수 있다.
이때, 상기 전극 탭으로부터 최대 이격된 전극 합제층 상의 전극 보호층의 두께는, 전극 탭에 최대 인접한 전극 합제층 상의 전극 보호층의 두께에 대해, 101% 내지 110%의 크기일 수 있다.
만일, 상기 전극 탭으로부터 최대 이격된 전극 합제층 상의 전극 보호층의 두께가 상기 범위를 벗어나 지나치게 얇을 경우에는, 상기 두께의 차이를 통해 발휘하고자 하는 효과를 충분히 발휘하지 못할 수 있다.
이와 반대로, 상기 전극 탭으로부터 최대 이격된 전극 합제층 상의 전극 보호층의 두께가 상기 범위를 벗어나 지나치게 두꺼울 경우에는, 수직 단면 상에서, 상기 전극 탭에 최대 인접한 부위로부터, 상기 전극 탭으로부터 최대 이격된 부위에 형성되는 경사 구조로 인해, 상기 전극을 포함하는 이차전지가 적용될 수 있는 디바이스의 탑재 공간에 제약이 발생할 수 있으며, 이를 방지하기 위해 전극 합제층의 두께를 전극 탭으로부터의 이격 거리에 따라 상이하게 구성하는 경우, 상기 전극 탭으로부터 최대 이격된 부위에서 전극 합제층의 두께가 상대적으로 얇아짐으로써, 이차전지의 용량이 저하될 수 있는 문제점이 있다.
또 다른 구체적인 예에서, 상기 전극 보호층의 두께는 모든 전극 합제층 상에서 균일한 구조일 수 있다.
이때, 상기 전극 보호층에 포함된 도전재의 함량은 전극 탭으로부터 이격될수록 연속적 또는 비연속적으로 증가하는 구조일 수 있다.
앞서 설명한 바와 마찬가지로, 상기 전극 탭으로부터의 거리가 이격된 부위일 수록, 전자의 이동성이 저하될 수 있는 문제점이 있다.
이에 따라, 상기 전극 보호층에 포함된 도전재의 함량은 전극 탭으로부터 이격될수록 연속적 또는 비연속적으로 증가하는 구조로 형성됨으로써, 상기 전극 탭으로부터의 이격 거리가 먼 부위에서도, 전극 합제층과 집전체 사이의 전자의 이동성 저하를 효과적으로 예방할 수 있다.
특히, 상기 전극 탭으로부터 최대 이격된 전극 보호층 부위의 도전재의 함량은, 전극 탭에 최대 인접한 전극 보호층 부위의 도전재 함량에 대해, 101% 내지 110%일 수 있다.
만일, 상기 전극 탭으로부터 최대 이격된 전극 보호층 부위의 도전재의 함량이 상기 범위를 벗어나 지나치게 적을 경우에는, 상기 구성을 통해 소망하는 효과를 충분히 발휘하지 못할 수 있다.
이와 반대로, 상기 전극 탭으로부터 최대 이격된 전극 보호층 부위의 도전재의 함량이 상기 범위를 벗어나 지나치게 클 경우에는, 상기 도전재의 함량이 지나치게 큰 경우로서, 오히려 상기 전극 보호층에서 바인더의 함량이 감소함에 따라, 상기 전극 탭으로부터 최대 이격된 전극 보호층 부위에서 집전체에 대한 접착력을 충분히 발휘하지 못할 수 있다.
한편, 상기 전극 보호층은, 집전체의 무지부에 접착된 부위의 두께가, 전극 합제층 상에 도포된 부위의 두께에 대해, 101% 내지 110%의 크기일 수 있다.
또한, 상기 전극 보호층은, 집전체의 무지부에 접착된 부위의 바인더 함량이, 전극 합제층 상에 도포된 부위의 바인더 함량에 대해, 101% 내지 110%일 수 있다.
더욱 구체적으로, 상기 전극 보호층은 전극 합제층의 외주변 부위에서, 상기 전극 합제층의 외면을 감싸면서 집전체의 무지부에 접착되어 있는 연속적인 형상으로 도포됨으로써 소망하는 효과를 발휘할 수 있다.
이에 따라, 상기 전극 보호층은 무지부에 접착된 부위의 두께가 전극 합제층 상에 도포된 부위의 두께에 대해 상대적으로 두꺼운 구조로 형성되거나, 상기 무지부에 접착된 부위의 바인더 함량이 전극 합제층 상에 도포된 부위의 바인더 함량에 대해 상대적으로 높은 구조로 형성됨으로써, 상기 무지부에 접착된 전극 보호층 부위에서의 바인더의 함량이 상대적으로 높아져, 집전체에 대한 보다 안정적인 접착력을 발휘해, 전극 합제층의 탈리를 보다 효과적으로 방지할 수 있다.
상기 구성 내지 구조를 제외한 이차전지용 전극의 나머지 구성은 당업계에 공지되어 있으므로, 본 명세서에서는 이에 대한 자세한 설명은 생략한다.
이상에서 설명한 바와 같이, 본 발명에 따른 이차전지용 전극은, 전극 합제층 상에 도전재 및 바인더를 포함하는 전극 보호층이 도포되도록 구성됨으로써, 상기 전극 보호층이 집전체로부터 전극 합제층의 탈리를 방지해, 상기 전극 합제층과 집전체 사이에서 발생할 수 있는 내부 저항의 증가 및 이로 인한 용량, 수명 특성의 저하를 예방할 수 있고, 상기 전극 합제층의 탈리가 국부적으로 발생하더라도, 전극 보호층이 전극 합제층과 집전체 사이의 도전성 네트워크를 형성함으로써, 상기 전극 합제층과 집전체 사이에서 전자의 이동을 원활하게 할 수 있고, 이에 따라 상기 전극 합제층의 탈리로 인해 발생할 수 있는 내부 저항의 증가 및 이로 인한 이차전지의 성능 저하를 효과적으로 방지할 수 있는 효과가 있다.
도 1은 본 발명의 하나의 실시예에 따른 이차전지용 전극의 단면 구조를 개략적으로 나타낸 모식도이다;
도 2는 도 1의 전극 합제층이 국부적으로 탈리된 경우의 단면 구조를 개략적으로 나타낸 모식도이다;
도 3은 본 발명의 또 다른 실시예에 따른 이차전지용 전극의 단면 구조를 개략적으로 나타낸 모식도이다.
이하, 본 발명의 실시예에 따른 도면들을 참조하여 본 발명을 더욱 상술하지만, 본 발명의 범주가 그것에 의해 한정되는 것은 아니다.
도 1에는 본 발명의 하나의 실시예에 따른 이차전지용 전극의 단면 구조를 개략적으로 나타낸 모식도가 도시되어 있다.
도 1을 참조하면, 이차전지용 전극(100)은 집전체(110), 전극 합제층(120) 및 전극 보호층(130)을 포함하고 있다.
집전체(110)의 일측 외주변에는 전극 탭(111)이 외향 돌출되어 있다.
전극 합제층(120)은 집전체(110)의 중앙 부위에 형성되어 있으며, 이에 따라 전극 합제층(120)의 외주변 부위에는 전극 합제층(120) 미형성 부위인 무지부(112)가 형성되어 있다.
전극 보호층(130)은 전극 합제층(120) 상에 도포되어 있으며, 상세하게는, 전극 합제층(120)의 외면을 감싸면서 집전체(110)의 무지부(112)에 접착되어 있는 연속적인 형상으로 도포되어 있다.
따라서, 전극 합제층(120)은 외주변 부위의 무지부(112)에서 집전체(110)와 접착되어 있는 전극 보호층(130)에 의해 집전체(110)에 안정적으로 접착된 구조를 유지함으로써, 집전체(110)로부터의 탈리를 효과적으로 예방할 수 있다.
도 2에는 도 1의 전극 합제층이 국부적으로 탈리된 경우의 단면 구조를 개략적으로 나타낸 모식도가 도시되어 있다.
도 2를 참조하면, 전극 합제층(120)의 중앙 부위는 집전체(110)로부터 부분적으로 탈리가 발생함에 따라, 집전체(110)와 직접 접촉하지 않는 구조로 이루어져 있다.
그러나, 전극 합제층(120) 상에 도포되어 있는 전극 보호층(130)은 집전체(110)의 무지부(112)에 접착되어 있으므로, 전극 합제층(120)과 집전체(110) 사이에서 도전성 네트워크를 형성하며, 이에 따라, 전극 합제층(120)과 집전체(110) 사이의 전자는 전극 보호층(130)을 통해 이동할 수 있다.
따라서, 전극 합제층(120)의 국부적인 탈리에도 불구하고, 전극 합제층(120)과 집전체(110) 사이의 전자의 이동성 저하와 내부 저항 증가 및 이에 따른 용량 및 수명 특성 저하를 방지할 수 있다.
도 3에는 본 발명의 또 다른 실시예에 따른 이차전지용 전극의 단면 구조를 개략적으로 나타낸 모식도이다.
도 3을 참조하면, 전극 보호층(330)은 전극 탭(311)에 최대 인접한 부위(301)로부터, 이에 대향해 전극 탭(311)으로부터 최대 이격된 부위(302)까지 연속적으로 두꺼워지는 구조로 이루어져 있으며, 이에 대응하여 전극 합제층(320)은 전극 탭(311)에 최대 인접한 부위(301)로부터, 이에 대향해 전극 탭(311)으로부터 최대 이격된 부위(302)까지 연속적으로 얇아지는 구조로 이루어져 있다.
따라서, 전극 탭(311)으로부터 최대 이격된 부위(302)의 전극 보호층(330)의 두께(332)는 전극 탭(311)에 최대 인접한 부위(301)의 전극 보호층(330)의 두께(331)에 비해 상대적으로 두꺼운 구조로 이루어져 있어, 상대적으로 전극 보호층(330)에 포함되는 도전재의 함량이 증가하므로, 전극 탭(311)으로부터 이격된 부위(302)에서의 전자의 이동성 저하 및 이에 따른 수명 특성 저하를 효과적으로 방지할 수 있다.
상기 구조를 제외한 이차전지용 전극(300)의 나머지 구성은 도 1의 전극과 동일하므로, 이에 대한 자세한 설명은 생략한다.
이하, 본 발명의 실시예를 참조하여 본 발명을 더욱 상술하지만, 본 발명의 범주가 그것에 의해 한정되는 것은 아니다.
<실시예 1>
양극 활물질과, PVdF 바인더, 천연 흑연 도전재를, 중량비로 96 : 2 : 2 (양극 활물질: 바인더: 도전재)가 되도록 NMP에 잘 섞어 준 후 외주변 부위에 무지부가 형성되도록, 20 ㎛ 두께의 Al 호일에 도포하여 전극 합제층을 형성하였으며, 천연 흑연 도전재와 PVdF 바인더를, 중량비로 95:5(도전재 : 바인더)가 되도록 NMP에 잘 섞어 준 후 상기 양극 합제층의 외면을 감싸면서 집전체의 무지부에 접촉되는 연속적인 형상으로 도포해 양극 보호층을 형성하고, 섭씨 130도에서 건조하여 양극을 제조하였다.
<실시예 2>
양극 보호층을 형성하는 천연 흑연 도전재와 PVdF 바인더를, 중량비로 90:10 (도전재 : 바인더)이 되도록 혼합한 점을 제외하고, 실시예 1과 동일한 양극을 제조하였다.
<실시예 3>
양극 보호층을 형성하는 천연 흑연 도전재와 PVdF 바인더를, 중량비로 85:15 (도전재 : 바인더)이 되도록 혼합한 점을 제외하고, 실시예 1과 동일한 양극을 제조하였다.
<비교예 1>
양극 보호층을 형성하지 않은 것을 제외하고, 실시예 1과 동일한 양극을 제조하였다.
<비교예 2>
양극 보호층을 형성하는 천연 흑연 도전재와 PVdF 바인더를, 중량비로 98:2 (도전재 : 바인더)가 되도록 혼합한 점을 제외하고, 실시예 1과 동일한 양극을 제조하였다.
<비교예 3>
양극 보호층을 형성하는 천연 흑연 도전재와 PVdF 바인더를, 중량비로 80:20 (도전재 : 바인더)이 되도록 혼합한 점을 제외하고, 실시예 1과 동일한 양극을 제조하였다.
이차전지 제조
실시예 1 내지 3, 비교예 1 내지 3에서 제조된 양극과, 음극으로는 리튬 호일을 사용하고, EC : DMC : DEC = 1 : 2 : 1 인 용매에 1M의 LiPF6가 들어있는 전해액을 사용하여 하프 코인 셀을 제조하였다.
<실험예 1>
수명 특성 분석
상기에서 제조된 하프 코인 셀들을, 25℃에서 0.5C로 상한 전압을 4.50V로 각각 충전하고 다시 1.0C으로 하한 전압 3V까지 방전하는 것을 1회 사이클로 하여, 100회 사이클의 용량 유지율을 측정하였고, 그 결과를 표 1에 나타내었다.
1 사이클 후 잔여용량 (mAh/cm2) 100 사이클 후 잔여용량 (mAh/cm2) 100 사이클 후 용량 유지율 (%)
실시예 1 5.20 4.65 89.5
실시예 2 5.19 4.71 90.8
실시예 3 5.20 4.74 91.2
비교예 1 5.16 3.68 71.4
비교예 2 5.18 3.90 75.2
비교예 3 5.22 3.85 73.8
표 1을 참조하면, 전극 보호층을 포함하고 있는 실시예 1 내지 3의 경우, 상기 전극 보호층을 포함하고 있지 않은 비교예 1에 비해 우수한 용량 유지율을 발휘함을 확인할 수 있다.
또한, 전극 보호층을 포함하는 도전재와 바인더를 소망하는 범위 내의 비율로 포함하고 있는 실시예 1 내지 3의 경우, 전극 보호층의 도전재와 바인더를 상기 범위를 벗어나는 비율로 포함하고 있는 비교예 2 및 3에 비해 우수한 용량 유지율을 발휘함을 확인할 수 있다.
이는 도전재와 바인더를 소망하는 범위 내로 포함하고 있는 전극 보호층이 집전체에 대한 전극 합제층의 접착력을 증가시킴으로써, 상기 집전체로부터 전극 합제층의 탈리를 방지할 수 있으며, 전극 합제층의 국부적인 탈리가 발생하더라도, 도전재를 충분히 포함하는 전극 보호층이 도전성 네트워크를 형성함으로써, 전극 합제층과 집전체 사이의 전자의 이동성 저하를 방지해, 상기 전극 합제층의 국부적인 탈리에도 불구하고, 이에 따른 수명 특성 저하를 예방할 수 있다는 점을 나타낸다.
이상 본 발명의 실시예 및 실시예에 따른 도면을 참조하여 설명하였지만, 본 발명이 속한 분야에서 통상의 지식을 가진 자라면, 상기 내용을 바탕을 본 발명의 범주 내에서 다양한 응용 및 변형을 행하는 것이 가능할 것이다.

Claims (14)

  1. 적어도 일측 외주변으로 외향 돌출되어 있는 전극 탭을 포함하는 집전체;
    상기 집전체 상에 형성되어 있는 전극 합제층; 및
    상기 전극 합제층 상에 도포되어 있는 전극 보호층;
    을 포함하고 있고,
    상기 전극 보호층은, 전극 합제층의 도전성을 보완하고 집전체로부터 전극 합제층의 탈리를 방지하도록, 도전재 및 바인더를 포함하는 것을 특징으로 하는 이차전지용 전극.
  2. 제 1 항에 있어서, 상기 전극 합제층은 집전체 상에서 외주변 부위에 전극 합제층 미형성 부위인 무지부를 포함하고 있는 것을 특징으로 하는 이차전지용 전극.
  3. 제 2 항에 있어서, 전극 보호층은 상기 전극 합제층의 외면을 감싸면서 집전체의 무지부에 접착되어 있는 연속적인 형상으로 도포되어 있는 것을 특징으로 하는 이차전지용 전극.
  4. 제 3 항에 있어서, 상기 전극 보호층이 무지부에 접착되어 있는 면적은, 전극 합제층이 접해 있는 집전체 부위의 면적을 기준으로, 1% 내지 5%의 크기인 것을 특징으로 하는 이차전지용 전극.
  5. 제 3 항에 있어서, 상기 전극 보호층이 무지부에 접착되어 있는 면적은, 전극 탭을 제외한 무지부의 전체 면적에 대해, 30% 내지 100%의 크기인 것을 특징으로 하는 이차전지용 전극.
  6. 제 1 항에 있어서, 상기 전극 보호층에서 도전재 및 바인더의 혼합 비율은 중량 기준으로 95:5 내지 85:15인 것을 특징으로 하는 이차전지용 전극.
  7. 제 1 항에 있어서, 상기 전극 보호층의 두께는 전극 합제층의 두께에 대해 0.5% 내지 5%인 것을 특징으로 하는 이차전지용 전극.
  8. 제 1 항에 있어서, 상기 전극 보호층의 두께는 전극 탭으로부터의 이격 거리에 대응하여 연속적 또는 비연속적으로 두꺼워지는 것을 특징으로 하는 이차전지용 전극.
  9. 제 8 항에 있어서, 상기 전극 탭으로부터 최대 이격된 전극 합제층 상의 전극 보호층의 두께는, 전극 탭에 최대 인접한 전극 합제층 상의 전극 보호층의 두께에 대해, 101% 내지 110%의 크기인 것을 특징으로 하는 이차전지용 전극.
  10. 제 1 항에 있어서, 상기 전극 보호층의 두께는 모든 전극 합제층 상에서 균일한 것을 특징으로 하는 이차전지용 전극.
  11. 제 10 항에 있어서, 상기 전극 보호층에 포함된 도전재의 함량은 전극 탭으로부터 이격될수록 연속적 또는 비연속적으로 증가하는 것을 특징으로 하는 이차전지용 전극.
  12. 제 11 항에 있어서, 상기 전극 탭으로부터 최대 이격된 전극 보호층 부위의 도전재의 함량은, 전극 탭에 최대 인접한 전극 보호층 부위의 도전재 함량에 대해, 101% 내지 110%인 것을 특징으로 하는 이차전지용 전극.
  13. 제 1 항에 있어서, 상기 전극 보호층은, 집전체의 무지부에 접착된 부위의 두께가, 전극 합제층 상에 도포된 부위의 두께에 대해, 101% 내지 110%의 크기인 것을 특징으로 하는 이차전지용 전극.
  14. 제 1 항에 있어서, 상기 전극 보호층은, 집전체의 무지부에 접착된 부위의 바인더 함량이, 전극 합제층 상에 도포된 부위의 바인더 함량에 대해, 101% 내지 110%인 것을 특징으로 하는 이차전지용 전극.
PCT/KR2017/009080 2016-11-24 2017-08-21 전극 보호층을 포함하는 이차전지용 전극 WO2018097455A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP17873084.2A EP3396743B1 (en) 2016-11-24 2017-08-21 Electrode for secondary battery including electrode protection layer
US16/070,979 US11296325B2 (en) 2016-11-24 2017-08-21 Electrode for secondary battery including electrode protecting layer
CN201780009332.8A CN108604667B (zh) 2016-11-24 2017-08-21 包括电极保护层的用于二次电池的电极
PL17873084T PL3396743T3 (pl) 2016-11-24 2017-08-21 Elektroda dla akumulatora zawierająca warstwę ochronną elektrody

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020160157137A KR102044692B1 (ko) 2016-11-24 2016-11-24 전극 보호층을 포함하는 이차전지용 전극
KR10-2016-0157137 2016-11-24

Publications (1)

Publication Number Publication Date
WO2018097455A1 true WO2018097455A1 (ko) 2018-05-31

Family

ID=62195482

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/009080 WO2018097455A1 (ko) 2016-11-24 2017-08-21 전극 보호층을 포함하는 이차전지용 전극

Country Status (6)

Country Link
US (1) US11296325B2 (ko)
EP (1) EP3396743B1 (ko)
KR (1) KR102044692B1 (ko)
CN (1) CN108604667B (ko)
PL (1) PL3396743T3 (ko)
WO (1) WO2018097455A1 (ko)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210021844A (ko) * 2019-08-19 2021-03-02 삼성에스디아이 주식회사 이차전지
EP4024600A4 (en) * 2020-03-19 2024-05-01 Lg Energy Solution Ltd POSITIVE ELECTRODE CURRENT COLLECTOR HAVING A CONDUCTIVE ANTI-CORROSION LAYER FORMED ON A TAB, POSITIVE ELECTRODE COMPRISING THE SAME, AND LITHIUM SECONDARY BATTERY
CN112701246B (zh) * 2020-12-29 2022-04-12 珠海冠宇电池股份有限公司 电极片和电池
CN114725312A (zh) * 2022-04-29 2022-07-08 三一技术装备有限公司 干法极片及其制备方法
WO2024040471A1 (zh) * 2022-08-24 2024-02-29 宁德时代新能源科技股份有限公司 正极极片及其制备方法、二次电池和用电装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011216242A (ja) * 2010-03-31 2011-10-27 Sanyo Electric Co Ltd 非水電解質二次電池用正極の製造方法及び非水電解質二次電池の製造方法
JP2014203771A (ja) * 2013-04-09 2014-10-27 日本ゼオン株式会社 二次電池用電極積層体及び二次電池
US20160126555A1 (en) * 2014-10-31 2016-05-05 Lg Chem, Ltd. Electrode composite, and secondary battery and cable type secondary battery including the same
KR20160091732A (ko) * 2015-01-26 2016-08-03 주식회사 엘지화학 절연 코팅부를 포함하는 양극의 제조 방법 및 이를 사용하여 제조되는 양극
KR20160111673A (ko) * 2015-03-17 2016-09-27 주식회사 엘지화학 다층 구조 전극 및 이를 포함하는 리튬 이차전지

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5173181B2 (ja) * 2006-11-01 2013-03-27 パナソニック株式会社 リチウムイオン二次電池及びリチウムイオン二次電池用負極板の製造方法
JP4766348B2 (ja) 2008-10-10 2011-09-07 トヨタ自動車株式会社 リチウム二次電池およびその製造方法
US9263730B2 (en) * 2010-05-12 2016-02-16 Kabushiki Kaisha Toyota Jidoshokki Electrode for lithium-ion secondary battery and manufacturing process for the same
JP6044083B2 (ja) * 2011-06-21 2016-12-14 日産自動車株式会社 積層型電池およびその製造方法
JP5896218B2 (ja) 2012-02-23 2016-03-30 トヨタ自動車株式会社 密閉型非水電解質二次電池
KR20130136131A (ko) 2012-06-04 2013-12-12 고려대학교 산학협력단 리튬 이차 전지용 전극, 이의 형성 방법 및 리튬 이차 전지
US20140023919A1 (en) 2012-07-17 2014-01-23 Sanyo Electric Co., Ltd. Non-aqueous electrolyte secondary cell
KR101590217B1 (ko) * 2012-11-23 2016-01-29 주식회사 엘지화학 전극조립체의 제조 방법 및 이를 이용하여 제조된 전극조립체
CN204375848U (zh) * 2013-05-07 2015-06-03 株式会社Lg化学 二次电池用电极以及包含其的二次电池和线缆型二次电池
JP6400888B2 (ja) 2013-06-19 2018-10-03 株式会社Gsユアサ 蓄電素子
US10439225B2 (en) 2014-06-13 2019-10-08 Lg Chem, Ltd. Lithium electrode and lithium battery including same
KR20160002252A (ko) 2014-06-30 2016-01-07 주식회사 엘지화학 바인더 층을 포함하는 전극, 이를 포함하는 전극조립체 및 상기 전극의 제조방법
KR101859251B1 (ko) 2014-12-08 2018-05-17 주식회사 엘지화학 전극 복합체, 이를 포함하는 전기화학 소자 및 상기 전극 복합체의 제조방법
JP6602130B2 (ja) * 2014-12-26 2019-11-06 パナソニック株式会社 非水電解質二次電池用正極及び非水電解質二次電池

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011216242A (ja) * 2010-03-31 2011-10-27 Sanyo Electric Co Ltd 非水電解質二次電池用正極の製造方法及び非水電解質二次電池の製造方法
JP2014203771A (ja) * 2013-04-09 2014-10-27 日本ゼオン株式会社 二次電池用電極積層体及び二次電池
US20160126555A1 (en) * 2014-10-31 2016-05-05 Lg Chem, Ltd. Electrode composite, and secondary battery and cable type secondary battery including the same
KR20160091732A (ko) * 2015-01-26 2016-08-03 주식회사 엘지화학 절연 코팅부를 포함하는 양극의 제조 방법 및 이를 사용하여 제조되는 양극
KR20160111673A (ko) * 2015-03-17 2016-09-27 주식회사 엘지화학 다층 구조 전극 및 이를 포함하는 리튬 이차전지

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3396743A4 *

Also Published As

Publication number Publication date
EP3396743B1 (en) 2020-06-24
EP3396743A4 (en) 2019-09-11
PL3396743T3 (pl) 2020-11-02
KR20180058333A (ko) 2018-06-01
US20190020036A1 (en) 2019-01-17
CN108604667B (zh) 2021-07-09
CN108604667A (zh) 2018-09-28
EP3396743A1 (en) 2018-10-31
US11296325B2 (en) 2022-04-05
KR102044692B1 (ko) 2019-11-14

Similar Documents

Publication Publication Date Title
WO2018097455A1 (ko) 전극 보호층을 포함하는 이차전지용 전극
JP4649993B2 (ja) リチウム二次電池およびその製造方法
WO2016093589A1 (ko) 안전성이 향상된 전극조립체, 그의 제조방법 및 상기 전극조립체를 포함하는 전기화학소자
WO2012165758A1 (ko) 리튬 이차전지
KR101664244B1 (ko) 전극의 표면에 패턴을 형성하는 방법, 이 방법을 이용해 제조된 전극 및 이 전극을 포함하는 이차전지
WO2015005652A1 (ko) 전극 조립체, 이를 포함하는 전지 및 디바이스
WO2019093709A1 (ko) 리튬-황 전지용 전해질 복합체, 이를 포함하는 전기화학소자 및 그 제조방법
WO2012044035A2 (ko) 부식방지용 보호층을 포함하는 전극리드, 및 이를 포함하는 이차전지
WO2017099333A1 (ko) 가스 흡착제가 포함되어 있는 전극 리드를 구비한 전지셀
WO2016056764A1 (ko) 양 방향으로 권취되어 있는 전극조립체 및 이를 포함하는 리튬 이차전지
WO2020122459A1 (ko) 리튬 이차 전지용 음극 활물질 및 이를 포함하는 이차전지
WO2019004655A1 (ko) 전극 조립체 및 그를 포함하는 리튬 이차전지
WO2016111605A1 (ko) 전극, 이의 제조방법, 이에 의해 제조된 전극 및 이를 포함하는 이차전지
WO2021187726A1 (ko) 전극 조립체 및 그의 제조 방법
WO2018026117A1 (ko) 이차 전지
WO2019088345A1 (ko) 리튬 이차전지용 양극 활물질 및 이를 포함하는 리튬 이차전지
WO2018038479A1 (ko) 미세 홀들을 포함하고 있는 이차전지용 전극
WO2020171376A1 (ko) 단위셀 및 그 제조방법
WO2019108017A1 (ko) 전극 및 전극조립체
WO2021177681A1 (ko) 전극 조립체 및 그의 제조 방법
WO2021261754A1 (ko) 저항층이 형성된 전극의 제조방법
WO2021141367A1 (ko) 테이핑 영역을 포함하는 전극 집전체용 금속 박막 및 이를 이용한 전극 제조방법
WO2014084610A1 (ko) 음극 활물질용 복합체 및 이의 제조방법
WO2018117407A1 (ko) 장변 부위에 결합된 전극 리드를 포함하는 전극조립체
WO2019139397A1 (ko) 양극 슬러리 조성물, 이를 사용하여 제조된 양극 및 이를 포함하는 전지

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2017873084

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017873084

Country of ref document: EP

Effective date: 20180716

NENP Non-entry into the national phase

Ref country code: DE