WO2019004655A1 - 전극 조립체 및 그를 포함하는 리튬 이차전지 - Google Patents

전극 조립체 및 그를 포함하는 리튬 이차전지 Download PDF

Info

Publication number
WO2019004655A1
WO2019004655A1 PCT/KR2018/007033 KR2018007033W WO2019004655A1 WO 2019004655 A1 WO2019004655 A1 WO 2019004655A1 KR 2018007033 W KR2018007033 W KR 2018007033W WO 2019004655 A1 WO2019004655 A1 WO 2019004655A1
Authority
WO
WIPO (PCT)
Prior art keywords
active material
material layer
holes
current collectors
negative electrode
Prior art date
Application number
PCT/KR2018/007033
Other languages
English (en)
French (fr)
Inventor
송주용
이명기
안지희
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to EP18823670.7A priority Critical patent/EP3534450B1/en
Priority to US16/478,764 priority patent/US11081762B2/en
Priority to JP2019526327A priority patent/JP7037015B2/ja
Priority to PL18823670T priority patent/PL3534450T3/pl
Publication of WO2019004655A1 publication Critical patent/WO2019004655A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/46Separators, membranes or diaphragms characterised by their combination with electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/043Processes of manufacture in general involving compressing or compaction
    • H01M4/0433Molding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • H01M4/75Wires, rods or strips
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/463Separators, membranes or diaphragms characterised by their shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/30Batteries in portable systems, e.g. mobile phone, laptop
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to an electrode assembly and a lithium secondary battery including the same, and more particularly, to an electrode assembly in which an anode, a separator, and a cathode are stacked in a novel form, and a lithium secondary battery including the same.
  • the lithium secondary battery includes a positive electrode, a separator, a negative electrode, and an electrolyte.
  • the lithium secondary battery discharges lithium ions from the positive electrode active material through the first charge, So that charge and discharge can be performed.
  • the loading amount is about 6 mAh / cm 2 or more.
  • the loading amount is about 6 mAh / cm 2 or more.
  • an electrode assembly in which a positive electrode current collector, a positive electrode active material layer, a separator, a negative electrode active material layer, and a negative electrode current collector are laminated in order, wherein the positive electrode active material layer, the separator and the negative electrode active material layer Wherein the positive electrode collector is formed extending from the first sheet-like collector and the first sheet-like collector in the thickness direction of the electrode assembly, and the positive electrode collector extends through a part of the plurality of through- Wherein the negative electrode collector is formed extending from the second sheet-like collector and the second sheet-like collector in the thickness direction of the electrode assembly, And a plurality of second columnar current collectors passing through the other through holes except for some through holes.
  • the plurality of first columnar current collectors may be formed to extend in the thickness direction of the electrode assembly and reach the second sheet-like collector.
  • the plurality of second columnar current collectors may be formed to extend in the thickness direction of the electrode assembly and reach the first sheet-like collector.
  • the plurality of first columnar current collectors are in close contact with the inner circumferential surface of the through-holes formed in the cathode active material layer, and the plurality of second columnar current collectors are formed on the inner peripheral surface of the through- As shown in FIG.
  • the plurality of first columnar current collectors may be spaced apart from the inner peripheral surface of the through-holes formed in the negative-electrode active material layer, and the plurality of second columnar collectors may be formed on the inner peripheral surface of the through- And may be spaced apart.
  • the plurality of first columnar current collectors are in close contact with the inner peripheral surface of the through holes formed in the negative electrode active material layer and the plurality of second columnar current collectors are formed on the inner peripheral surface of the through holes formed in the positive active material layer And the plurality of first columnar current collectors include a first insulating layer formed on a surface of a portion contacting the negative electrode active material layer, And a second insulating layer formed on a surface of the portion contacting the layer.
  • the first insulating layer and the second insulating layer may be a varnish coating layer, an insulating polymer coating layer, or an insulating inorganic coating layer, independently of each other.
  • the through holes through which the plurality of first columnar current collectors penetrate and the remaining through holes through which the plurality of second columnar current collectors penetrate may be alternately arranged.
  • the cathode active material layer in which the plurality of through holes are formed may be a result of injecting the cathode active material slurry into an electrode mold having a plurality of pillars formed thereon and then hot-pressing the cathode active material slurry.
  • the negative electrode active material layer in which the plurality of through holes are formed may be a result of injecting the negative electrode active material slurry into an electrode mold having a plurality of pillars formed therein and then hot-pressing the negative electrode active material slurry.
  • a lithium secondary battery including the electrode assembly of the present invention.
  • the electrode assembly is manufactured by passing the columnar current collector through the plurality of through holes formed in the electrode active material layer, it is possible to produce a solid block type electrode assembly.
  • the electrode assembly can be produced by laminating the positive electrode current collector, the positive electrode active material layer, the separator, the negative electrode active material layer and the negative electrode current collector in a block form, so that the process cost can be reduced.
  • the plurality of columnar current collectors passing through the electrode active material layer adhere closely to the inner peripheral surface of the through-holes formed in the electrode active material layer, so that the resistance inside the electrode can be reduced.
  • FIG. 1 is a schematic view illustrating a cathode current collector and an anode current collector according to an embodiment of the present invention.
  • FIG. 2 is a schematic view illustrating a cathode active material layer, a separation membrane, and a negative electrode active material layer having a plurality of through holes according to an embodiment of the present invention.
  • FIG. 3 is a schematic view of an electrode assembly manufactured in accordance with an embodiment of the present invention.
  • FIG. 4 is a schematic view of an electrode mold for manufacturing an electrode active material layer according to an embodiment of the present invention.
  • FIG. 1 is a schematic view of a cathode current collector and a cathode current collector according to an embodiment of the present invention.
  • FIG. 2 is a cross-sectional view of a cathode active material layer having a plurality of through-
  • FIG. 3 is a schematic illustration of an electrode assembly manufactured in accordance with an embodiment of the present invention.
  • an electrode assembly 100 includes a positive electrode current collector 110, a positive electrode active material layer 120, a separator 130, a negative electrode active material layer 140, A plurality of through holes 160 penetrating the positive electrode active material layer 120, the separator 130, and the negative electrode active material layer 140 are formed in the electrode assembly 100, And the positive electrode collector 110 is formed to extend from the first sheet-like collector 111 and the first sheet-like collector 111 in the thickness direction of the electrode assembly 100, And a plurality of first columnar current collectors (112) penetrating a part of the holes (160), and the negative electrode current collector (150) includes a second sheet-like current collector (151) 151) extending in the thickness direction of the electrode assembly (100), and the through holes (160) of the plurality of through holes And a plurality of second columnar current collectors (152) passing through the remaining through holes.
  • a negative electrode comprising a sheet-like positive electrode collector, a positive electrode made of a positive electrode active material layer formed thereon, a sheet-like negative electrode collector, and a negative electrode active material layer formed thereon is simply laminated with a sheet- The electrode assembly was common.
  • the columnar current collectors 112 and 152 penetrate through the plurality of through-holes 160 formed in the electrode active material layers 120 and 140 and the separator 130, It is possible to produce a solid block type electrode assembly.
  • the positive electrode current collector 110, the positive electrode active material layer 120, the separator film 130, the negative electrode active material layer 140, and the negative electrode current collector 150, which are previously prepared in block form, 100) can be produced, so that the process cost can be reduced.
  • the plurality of first columnar current collectors 112 extend through the plurality of through holes 160 and extend in the thickness direction of the electrode assembly 100 so that the second sheet- And the plurality of second columnar current collectors 152 may extend through the plurality of through holes 160 to extend in the thickness direction of the electrode assembly 100, And it may be formed so as to reach the first sheet-like collector 111 which is the opposite electrode.
  • An insulating layer may be formed on the first sheet-like collector 111 so as to be electrically disconnected.
  • the plurality of first columnar current collectors 112 are in close contact with the inner circumferential surfaces of the through holes 160 formed in the cathode active material layer 120, May be in contact with the inner circumferential surface of the through holes 160 formed in the negative electrode active material layer 140. This increases the contact area between the electrode current collector and the electrode active material layer, Can be reduced.
  • the plurality of first columnar current collectors 112 are in close contact with the inner circumferential surfaces of the through holes 160 formed in the cathode active material layer 120 so that the anode active material layer 140 And the plurality of second columnar current collectors 152 may be spaced apart from the inner circumferential surface of the through holes 160 formed in the anode active material layer 140, But may be spaced apart from the inner circumferential surface of the through-holes 160 formed in the cathode active material layer 120.
  • the plurality of first columnar current collectors 112 are formed on the inner peripheral surface of the through holes 160 formed in the positive electrode active material layer 120 and the inner peripheral surface of the through holes 160 formed in the negative electrode active material layer 140, And the plurality of second columnar current collectors 152 are formed on the inner peripheral surface of the through holes 160 formed in the negative electrode active material layer 140 and the inner peripheral surfaces of the through holes 160 formed in the positive electrode active material layer 120
  • the plurality of first columnar current collectors 112 may be formed on the anode active material layer 140 and the cathode active material layer 160 to prevent short circuiting between the electrodes.
  • a plurality of second columnar current collectors 152 may include a second insulating layer formed on a surface of the portion contacting the cathode active material layer 120 can do.
  • the first insulating layer and the second insulating layer may be a varnish coating layer, an insulating polymer coating layer, or an insulating inorganic coating layer, etc., independently of each other.
  • the through holes and the through- The remaining through holes may be arranged separately at one portion of each other, and the through holes and the remaining through holes may be alternately arranged, though not particularly limited.
  • the force acts uniformly on the plurality of first columnar current collectors and the plurality of second columnar current collectors, so that a more rigid electrode assembly can be assembled.
  • FIG. 4 is a schematic view of an electrode mold for manufacturing an electrode active material layer according to an embodiment of the present invention.
  • an electrode active material layer having a plurality of through holes according to the present invention is obtained by injecting an electrode active material slurry into an electrode mold 200 in which a plurality of columns are formed, It may be the result.
  • the cathode active material slurry according to the present invention is prepared by mixing a cathode active material, a conductive material, a binder and a solvent.
  • the cathode active material may include a lithium-containing oxide, and a lithium-containing transition metal oxide may be preferably used.
  • a lithium-containing transition metal oxide may be preferably used.
  • Li x CoO 2 (0.5 ⁇ x ⁇ 1.3), Li x NiO 2 (0.5 ⁇ x ⁇ 1.3), Li x MnO 2 (0.5 ⁇ x ⁇ 1.3), Li x Mn 2 O 4 1.3), Li x (Ni a Co b Mn c) O 2 (0.5 ⁇ x ⁇ 1.3, 0 ⁇ a ⁇ 1, 0 ⁇ b ⁇ 1, 0 ⁇ c ⁇ 1, a + b + c 1), Li x Ni 1 -y Co y O 2 (0.5 ⁇ x ⁇ 1.3, 0 ⁇ y ⁇ 1), Li x Co 1 - y Mn y O 2 (0.5 ⁇ x ⁇ 1.3, 0 ⁇ y ⁇ 1), Li x Ni 1 -y Mn y O 2 (0.5 ⁇ x ⁇ 1.3,
  • the conductive material is not particularly limited as long as it is an electron conductive material that does not cause a chemical change in an electrochemical device.
  • carbon black, graphite, carbon fiber, carbon nanotube, metal powder, conductive metal oxide, organic conductive material and the like can be used.
  • Commercially available products as the conductive material include acetylene black series (manufactured by Chevron Chemical Co., (Chevron Chemical Company or Gulf Oil Company products), Ketjen Black EC series (Armak Company), Vulcan XC-72 (Cabot Company) and Super P (MM (MMM)).
  • acetylene black, carbon black and graphite are examples of the conductive material.
  • the negative electrode active material slurry according to the present invention is prepared by mixing a negative electrode active material, a conductive material, a binder and a solvent.
  • a lithium metal As the negative electrode active material, a lithium metal, a carbonaceous material, a metal compound, or a mixture of lithium metal, a carbonaceous material, and a metal compound, in which lithium ions can be occluded and released, may be used.
  • both low-crystalline carbon and highly-crystalline carbon may be used.
  • the low crystalline carbon include soft carbon and hard carbon.
  • Examples of highly crystalline carbon include natural graphite, Kish graphite, pyrolytic carbon, liquid crystal pitch carbon fiber high temperature sintered carbon such as mesophase pitch based carbon fiber, meso-carbon microbeads, mesophase pitches and petroleum or coal tar pitch derived cokes.
  • the metal compound examples include metal elements such as Si, Ge, Sn, Pb, P, Sb, Bi, Al, Ga, In, Ti, Mn, Fe, Co, Ni, Cu, Zn, Ag, Mg, , And the like.
  • These metal compounds may be a single substance, an alloy, an oxide (TiO 2 , SnO 2 Or the like), a nitride, a sulfide, a boride, an alloy with lithium, or the like, but an alloy with a single substance, an alloy, an oxide, and lithium can be increased in capacity.
  • it may contain at least one element selected from Si, Ge and Sn, and it may further increase the capacity of the battery including at least one element selected from Si and Sn.
  • the binder used for the positive electrode and the negative electrode has a function of connecting the positive electrode active material and the negative electrode active material, and a commonly used binder may be used without limitation.
  • PVDF-co-HFP polyvinylidene fluoride-hexafluoropropylene
  • PVDF polyvinylidene fluoride
  • SBR styrene butadiene rubber
  • CMC carboxyl methyl cellulose
  • the positive electrode current collector and the negative electrode current collector may be any metal having high conductivity and not reactive in the voltage range of the battery.
  • examples of the cathode current collector include aluminum, nickel, or a combination thereof.
  • examples of the cathode current collector include copper, gold, nickel, or a copper alloy or a combination thereof. Foil to be manufactured, and the like.
  • the current collector may be used by laminating the substrates made of the above materials.
  • any porous polymer substrate used in a general electrochemical device can be used.
  • a polyolefin porous polymer membrane or a nonwoven fabric may be used. no.
  • polystyrene-based porous polymer membrane examples include polymers such as polyethylene, polypropylene, polybutylene, and polypentene, such as high-density polyethylene, linear low density polyethylene, low density polyethylene and ultra high molecular weight polyethylene, And formed membranes.
  • the nonwoven fabric may include, in addition to the polyolefin nonwoven fabric, for example, polyethylene terephthalate, polybutylene terephthalate, polyester, polyacetal, polyamide, polycarbonate ), Polyimide, polyetheretherketone, polyethersulfone, polyphenylene oxide, polyphenylenesulfide, polyethylene naphthalate, and the like are used alone Or a nonwoven fabric formed of a polymer mixed with these.
  • the structure of the nonwoven fabric may be a spun bond nonwoven fabric or a meltblown nonwoven fabric composed of long fibers.
  • the thickness of the porous polymer base material is not particularly limited, but may be 5 to 50 ⁇ .
  • the pore size and porosity present in the porous polymer base material are also not particularly limited, but may be 0.01 to 50 ⁇ and 10 to 95%, respectively.
  • the electrode assembly of the present invention can be used in the manufacture of an electrochemical device, wherein the electrochemical device includes all devices that perform an electrochemical reaction, and specific examples thereof include all kinds of secondary batteries, , A capacitor such as a solar cell or a supercapacitor element, and the like.
  • a lithium secondary battery including a lithium metal secondary battery, a lithium ion secondary battery, a lithium polymer secondary battery, or a lithium ion polymer secondary battery among the above secondary batteries is preferable.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Cell Separators (AREA)
  • Fuel Cell (AREA)

Abstract

본 발명은 양극 집전체, 양극 활물질층, 분리막, 음극 활물질층 및 음극 집전체가 차례대로 적층된 전극 조립체로서, 상기 양극 활물질층, 상기 분리막 및 상기 음극 활물질층을 아울러 관통하는 복수의 관통공들이 형성되어 있으며, 상기 양극 집전체는, 제1 시트형 집전체 및 상기 제1 시트형 집전체로부터 상기 전극 조립체의 두께 방향으로 연장 형성되고, 상기 복수의 관통공들 중 일부를 관통하는 복수의 제1 기둥형 집전체를 포함하고, 상기 음극 집전체는, 제2 시트형 집전체 및 상기 제2 시트형 집전체로부터 상기 전극 조립체의 두께 방향으로 연장 형성되고, 상기 복수의 관통공들 중 상기 일부 관통공들을 제외한 나머지 관통공들을 관통하는 복수의 제2 기둥형 집전체를 포함하는 것을 특징으로 하는 전극 조립체 및 그를 포함하는 리튬 이차전지에 관한 것이다.

Description

전극 조립체 및 그를 포함하는 리튬 이차전지
본 발명은 전극 조립체 및 그를 포함하는 리튬 이차전지에 관한 것으로, 더욱 자세하게는 양극, 분리막 및 음극이 신규한 형태로 적층된 전극 조립체 및 그를 포함하는 리튬 이차전지에 관한 것이다.
본 출원은 2017년 6월 27일에 출원된 한국특허출원 제10-2017-0081480호에 기초한 우선권을 주장하며, 해당 출원의 명세서 및 도면에 개시된 모든 내용은 본 출원에 원용된다.
최근 에너지 저장 기술에 대한 관심이 갈수록 높아지고 있다. 휴대폰, 캠코더 및 노트북 PC, 나아가서는 전기 자동차의 에너지까지 적용분야가 확대되면서 전지의 연구와 개발에 대한 노력이 점점 구체화되고 있다. 전기화학소자는 이러한 측면에서 가장 주목 받고 있는 분야이고, 특히 최근 전자기기의 소형화 및 경량화 추세에 따라, 소형 경량화 및 고용량으로 충방전 가능한 전지로서 이차전지의 개발은 관심의 초점이 되고 있다.
이차전지는 지속적인 연구에 의해 전극활물질로서 그의 여러 성능, 특히 출력이 크게 개선된 것들이 개발되어 왔다. 현재 적용되고 있는 이차전지 중에서 1990년대 초에 개발된 리튬 이차전지는 Ni-MH 등의 재래식 전지에 비해서 작동 전압이 높고 에너지 밀도가 크다는 장점으로 각광을 받고 있다.
이러한, 리튬 이차전지는 양극, 분리막, 음극, 전해액으로 구성되며, 첫번째 충전에 의해 양극 활물질로부터 나온 리튬 이온이 음극활물질, 예컨대 카본 입자 내에 삽입되고 방전시 다시 탈리되는 등의 양쪽 전극을 왕복하면서 에너지를 전달하는 역할을 하기 때문에 충방전이 가능하게 된다.
모바일 기기에 대한 기술 개발과 수요가 증가함에 따라 에너지원으로서의 이차전지의 수요가 급격히 증가하고 있다. 이러한 이차전지 중 높은 에너지 밀도와 전압을 갖고 사이클 수명이 길며, 자가 방전율이 낮은 리튬 이차전지가 상용화되어 널리 사용되고 있다. 또한, 환경 문제에 대한 관심이 커짐에 따라 대기 오염의 주요 원인 중 하나인 가솔린 차량, 디젤 차량 등 화석 연료를 사용하는 차량을 대체할 수 있는 전기 자동차, 하이브리드 전기 자동차 등 고용량 배터리 채용 장치 시장의 성장에 따른 고용량 배터리 수요기반이 확대되면서 이들 장치의 동력원으로 높은 에너지 밀도, 고출력 및 높은 방전 전압을 갖는 리튬 이차 전지의 제조를 위한 전극의 고용량화 설계가 요구되고 있는 실정이다.
한편, 전극의 고용량화 설계를 위해 전극 활물질의 양을 증가시켜, 전극의 두께가 두꺼운 고로딩 전극(로딩량이 대략 6 mAh/cm2 이상)이 시도되고 있지만, 이러한 고로딩 전극 구현시, 고로딩에 따른 코팅부 균열, 전극 활물질 슬러리의 점도에 따른 로딩의 불균일성 및 전극 권취시 전극 활물질층의 탈리 현상 등이 문제가 되고 있다.
따라서 본 발명이 해결하고자 하는 과제는, 전극 활물질층의 균열 및 탈리 현상을 방지하기 위한 신규한 형태의 전극 조립체 및 그를 포함하는 리튬 이차전지를 제공하는 것이다.
본 발명의 일 측면에 따르면, 양극 집전체, 양극 활물질층, 분리막, 음극 활물질층 및 음극 집전체가 차례대로 적층된 전극 조립체로서, 상기 양극 활물질층, 상기 분리막 및 상기 음극 활물질층을 아울러 관통하는 복수의 관통공들이 형성되어 있으며, 상기 양극 집전체는, 제1 시트형 집전체 및 상기 제1 시트형 집전체로부터 상기 전극 조립체의 두께 방향으로 연장 형성되고, 상기 복수의 관통공들 중 일부를 관통하는 복수의 제1 기둥형 집전체를 포함하고, 상기 음극 집전체는, 제2 시트형 집전체 및 상기 제2 시트형 집전체로부터 상기 전극 조립체의 두께 방향으로 연장 형성되고, 상기 복수의 관통공들 중 상기 일부 관통공들을 제외한 나머지 관통공들을 관통하는 복수의 제2 기둥형 집전체를 포함하는 것을 특징으로 하는 전극 조립체가 제공된다.
이때, 상기 복수의 제1 기둥형 집전체는, 상기 전극 조립체의 두께 방향으로 연장되어, 상기 제2 시트형 집전체에 도달하도록 형성된 것일 수 있다.
그리고, 상기 복수의 제2 기둥형 집전체는, 상기 전극 조립체의 두께 방향으로 연장되어, 상기 제1 시트형 집전체에 도달하도록 형성된 것일 수 있다.
한편, 상기 복수의 제1 기둥형 집전체는, 상기 양극 활물질층에 형성된 관통공들의 내주면에 밀착하여 관통하고, 상기 복수의 제2 기둥형 집전체는, 상기 음극 활물질층에 형성된 관통공들의 내주면에 밀착하여 관통하는 것일 수 있다.
여기서, 상기 복수의 제1 기둥형 집전체는, 상기 음극 활물질층에 형성된 관통공들의 내주면과 이격되어 관통하고, 상기 복수의 제2 기둥형 집전체는, 상기 양극 활물질층에 형성된 관통공들의 내주면과 이격되어 관통하는 것일 수 있다.
그리고, 상기 복수의 제1 기둥형 집전체는, 상기 음극 활물질층에 형성된 관통공들의 내주면에 밀착하여 관통하고, 상기 복수의 제2 기둥형 집전체는, 상기 양극 활물질층에 형성된 관통공들의 내주면에 밀착하여 관통하며, 상기 복수의 제1 기둥형 집전체는, 상기 음극 활물질층과 맞닿는 부분의 표면에 형성된 제1 절연층을 포함하고, 상기 복수의 제2 기둥형 집전체는, 상기 양극 활물질층과 맞닿는 부분의 표면에 형성된 제2 절연층을 포함하는 것일 수 있다.
이때, 상기 제1 절연층 및 상기 제2 절연층은, 서로 독립적으로 바니쉬 코팅층, 절연성 고분자 코팅층 또는 절연성 무기물 코팅층일 수 있다.
한편, 상기 복수의 제1 기둥형 집전체가 관통하는 일부의 관통공들 및 상기 복수의 제2 기둥형 집전체가 관통하는 나머지의 관통공들은 상호 교번되어 배치되는 것일 수 있다.
그리고, 상기 복수의 관통공들이 형성되어 있는 양극 활물질층은, 복수의 기둥들이 형성되어 있는 전극 몰드에 양극 활물질 슬러리를 주입한 다음, 상기 양극 활물질 슬러리를 가열 압착한 결과물일 수 있다.
또한, 상기 복수의 관통공들이 형성되어 있는 음극 활물질층은, 복수의 기둥들이 형성되어 있는 전극 몰드에, 음극 활물질 슬러리를 주입한 다음, 상기 음극 활물질 슬러리를 가열 압착한 결과물일 수 있다.
한편, 본 발명의 다른 측면에 따르면, 전술한 본 발명의 전극 조립체를 포함하는 리튬 이차전지가 제공된다.
본 발명에 따르면, 전극 활물질층에 형성된 복수의 관통공들에, 기둥형 집전체가 관통되어 전극 조립체가 제조되기 때문에, 견고한 블록 형태의 전극 조립체를 생산할 수 있다.
그리고, 양극 집전체, 양극 활물질층, 분리막, 음극 활물질층 및 음극 집전체를 블록 형태로 적층하여 전극 조립체를 생산할 수 있으므로 공정비용이 감소될 수 있다.
나아가, 전극 활물질층을 관통하는 복수의 기둥형 집전체가 전극 활물질층에 형성된 관통공들의 내주면에 밀착하고 있어, 전극 내부의 저항이 감소될 수 있다.
본 명세서에 첨부되는 다음의 도면들은 본 발명의 바람직한 실시예를 예시하는 것이며, 전술한 발명의 내용과 함께 본 발명의 기술사상을 더욱 이해시키는 역할을 하는 것이므로, 본 발명은 그러한 도면에 기재된 사항에만 한정되어 해석되어서는 아니 된다.
도 1은 본 발명의 일 실시예에 따른 양극 집전체 및 음극 집전체를 개략적으로 나타낸 도면이다.
도 2는 본 발명의 일 실시예에 따른 복수의 관통공들이 형성된 양극 활물질층, 분리막 및 음극 활물질층을 개략적으로 나타낸 도면이다.
도 3은 본 발명의 일 실시예에 따라 제조된 전극 조립체를 개략적으로 나타낸 도면이다.
도 4는 본 발명의 일 실시예에 따른 전극 활물질층을 제조하는 전극 몰드를 개략적으로 나타낸 도면이다.
[부호의 설명]
100: 전극 조립체
110: 양극 집전체
111: 제1 시트형 집전체
112: 제1 기둥형 집전체
120: 양극 활물질층
130: 분리막
140: 음극 활물질층
150: 음극 집전체
151: 제2 시트형 집전체
152: 제2 기둥형 집전체
160: 관통공
200: 전극 몰드
이하, 본 발명을 도면을 참조하여 상세히 설명하기로 한다. 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.
따라서, 본 명세서에 기재된 구성은 본 발명의 가장 바람직한 일 실시예에 불과할 뿐이고 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 출원시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형예들이 있을 수 있음을 이해하여야 한다.
도 1은 본 발명의 일 실시예에 따른 양극 집전체 및 음극 집전체를 개략적으로 나타낸 도면이고, 도 2는 본 발명의 일 실시예에 따른 복수의 관통공들이 형성된 양극 활물질층, 분리막 및 음극 활물질층을 개략적으로 나타낸 도면이며, 도 3은 본 발명의 일 실시예에 따라 제조된 전극 조립체를 개략적으로 나타낸 도면이다.
도 1 내지 도 3을 참고하면, 본 발명의 일 측면에 따른 전극 조립체(100)는, 양극 집전체(110), 양극 활물질층(120), 분리막(130), 음극 활물질층(140) 및 음극 집전체(150)가 차례대로 적층된 전극 조립체(100)로서, 상기 양극 활물질층(120), 상기 분리막(130) 및 상기 음극 활물질층(140)을 아울러 관통하는 복수의 관통공(160)들이 형성되어 있으며, 상기 양극 집전체(110)는, 제1 시트형 집전체(111) 및 상기 제1 시트형 집전체(111)로부터 상기 전극 조립체(100)의 두께 방향으로 연장 형성되고, 상기 복수의 관통공(160)들 중 일부를 관통하는 복수의 제1 기둥형 집전체(112)를 포함하고, 상기 음극 집전체(150)는, 제2 시트형 집전체(151) 및 상기 제2 시트형 집전체(151)로부터 상기 전극 조립체(100)의 두께 방향으로 연장 형성되고, 상기 복수의 관통공(160)들 중 상기 일부 관통공들을 제외한 나머지 관통공들을 관통하는 복수의 제2 기둥형 집전체(152)를 포함하는 것을 특징으로 한다.
종래에는 시트형의 양극 집전체와, 그 위에 형성된 양극 활물질층으로 이루어진 양극과, 시트형의 음극 집전체와, 그 위에 형성된 음극 활물질층으로 이루어진 음극이, 시트형의 분리막을 사이에 두고 단순히 적층된 형태의 전극 조립체가 일반적이었다.
이러한 일반적인 형태의 전극 조립체에 대해, 전극의 고용량화 설계를 위해 전극 활물질의 양을 증가시켜, 전극의 두께가 두꺼운 고로딩 전극을 구현하게 되면, 고로딩에 따른 코팅부 균열, 전극 활물질 슬러리의 점도에 따른 로딩의 불균일성 및 전극 권취시 전극 활물질층의 탈리 현상 등이 발생하여 문제가 되어왔다.
하지만, 본 발명에 따르면, 전극 활물질층(120, 140) 및 분리막(130)에 형성된 복수의 관통공(160)들에, 기둥형 집전체(112, 152)가 관통됨으로써 전극 조립체(100)가 제조되기 때문에, 견고한 블록 형태의 전극 조립체를 생산할 수 있다.
그리고, 각각 미리 제조되어 있는 블록 형태의 양극 집전체(110), 양극 활물질층(120), 분리막(130), 음극 활물질층(140) 및 음극 집전체(150)를 차례대로 적층하여 전극 조립체(100)를 생산할 수 있으므로 공정비용이 감소되는 효과도 발생할 수 있다.
이때, 상기 복수의 제1 기둥형 집전체(112)는, 상기 복수의 관통공(160)들을 관통하여, 상기 전극 조립체(100)의 두께 방향으로 연장되어, 반대쪽 전극인 상기 제2 시트형 집전체(151)에 도달하도록 형성될 수 있고, 상기 복수의 제2 기둥형 집전체(152)는, 상기 복수의 관통공(160)들을 관통하여, 상기 전극 조립체(100)의 두께 방향으로 연장되어, 반대쪽 전극인 상기 제1 시트형 집전체(111)에 도달하도록 형성될 수 있다.
이 경우, 전극들간의 단락 방지를 위해, 상기 복수의 제1 기둥형 집전체(112)가 상기 제2 시트형 집전체(151)와 맞닿는 부위 및 상기 복수의 제2 기둥형 집전체(152)가 상기 제1 시트형 집전체(111)와 맞닿는 부위에는, 전기적 연결이 차단되도록 절연층이 형성될 수 있다.
한편, 상기 복수의 제1 기둥형 집전체(112)는, 상기 양극 활물질층(120)에 형성된 관통공(160)들의 내주면에 밀착하여 관통하고, 상기 복수의 제2 기둥형 집전체(152)는, 상기 음극 활물질층(140)에 형성된 관통공(160)들의 내주면에 밀착하여 관통하는 것일 수 있는데, 이로써, 각각의 전극 집전체와 전극 활물질층이 맞닿는 면적이 증가하게 되므로 전극 내부의 저항이 감소될 수 있다.
여기서, 전극들간의 단락 방지를 위해, 상기 복수의 제1 기둥형 집전체(112)는, 상기 양극 활물질층(120)에 형성된 관통공(160)들의 내주면에는 밀착하되, 상기 음극 활물질층(140)에 형성된 관통공(160)들의 내주면과는 이격되어 관통하는 것일 수 있고, 상기 복수의 제2 기둥형 집전체(152)는, 상기 음극 활물질층(140)에 형성된 관통공(160)들의 내주면에는 밀착하되, 상기 양극 활물질층(120)에 형성된 관통공(160)들의 내주면과는 이격되어 관통하는 것일 수 있다.
또한, 상기 복수의 제1 기둥형 집전체(112)는, 상기 양극 활물질층(120)에 형성된 관통공(160)들의 내주면과, 상기 음극 활물질층(140)에 형성된 관통공(160)들의 내주면에 밀착하여 관통하는 것을 수 있고, 상기 상기 복수의 제2 기둥형 집전체(152)는, 상기 음극 활물질층(140)에 형성된 관통공(160)들의 내주면과, 상기 양극 활물질층(120)에 형성된 관통공(160)들의 내주면에 밀착하여 관통하는 것일 수 있는데, 이때, 상기 전극들간의 단락 방지를 위해, 상기 복수의 제1 기둥형 집전체(112)는, 상기 음극 활물질층(140)과 맞닿는 부분의 표면에 형성된 제1 절연층을 포함할 수 있고, 상기 복수의 제2 기둥형 집전체(152)는, 상기 양극 활물질층(120)과 맞닿는 부분의 표면에 형성된 제2 절연층을 포함할 수 있다.
이때, 상기 제1 절연층 및 상기 제2 절연층은, 서로 독립적으로 바니쉬 코팅층, 절연성 고분자 코팅층 또는 절연성 무기물 코팅층 등일 수 있다.
한편, 상기 복수의 제1 기둥형 집전체가 관통하는 일부의 관통공들 및 상기 복수의 제2 기둥형 집전체가 관통하는 나머지의 관통공들의 배치와 관련하여, 상기 일부의 관통공들 및 상기 나머지의 관통공들은 각각 서로 한 부위에 따로 모여 배치될 수 있는 등, 특별하게 한정되는 것은 아니지만, 상기 일부의 관통공들과 상기 나머지의 관통공들은 상호 교번되어 배치될 수 있다. 이로써, 상기 복수의 제1 기둥형 집전체와 상기 복수의 제2 기둥형 집전체에 힘이 균일하게 작용하게 되므로, 더욱 견고한 전극 조립체의 조립이 가능하다.
도 4는 본 발명의 일 실시예에 따른 전극 활물질층을 제조하는 전극 몰드를 개략적으로 나타낸 도면이다.
도 4를 참조하면, 본원발명의 복수의 관통공들이 형성되어 있는 전극 활물질층은, 복수의 기둥들이 형성되어 있는 전극 몰드(200)에 전극 활물질 슬러리를 주입한 다음, 전극 활물질 슬러리를 가열 압착한 결과물일 수 있다.
이와 같이 전극 몰드를 통해 블록형의 전극 활물질층을 제조하게 되면, 보관시 권취할 필요가 없이, 적층해 놓으면 되므로, 종래 전극 시트의 보관을 위해 권취시킴에 따라 발생할 수 있는 전극 활물질층의 탈리 현상을 근본적으로 방지할 수 있다.
이때, 본 발명에 따른 양극 활물질 슬러리는, 양극 활물질, 도전재, 바인더 및 용매를 혼합하여 제조된다.
상기 양극 활물질로는 리튬 함유 산화물을 포함할 수 있으며, 리튬 함유 전이금속 산화물이 바람직하게 사용될 수 있다. 예를 들면 LixCoO2(0.5<x<1.3), LixNiO2(0.5<x<1.3), LixMnO2(0.5<x<1.3), LixMn2O4(0.5<x<1.3), Lix(NiaCobMnc)O2(0.5<x<1.3, 0<a<1, 0<b<1, 0<c<1, a+b+c=1), LixNi1 -yCoyO2(0.5<x<1.3, 0<y<1), LixCo1 - yMnyO2(0.5<x<1.3, 0≤y<1), LixNi1 -yMnyO2(0.5<x<1.3, O≤y<1), Lix(NiaCobMnc)O4(0.5<x<1.3, 0<a<2, 0<b<2, 0<c<2, a+b+c=2), LixMn2 - zNizO4(0.5<x<1.3, 0<z<2), LixMn2 - zCozO4(0.5<x<1.3, 0<z<2), LixCoPO4(0.5<x<1.3) 및 LixFePO4(0.5<x<1.3)로 이루어진 군으로부터 선택되는 어느 하나 또는 이들 중 2종 이상의 혼합물을 사용할 수 있으며, 상기 리튬 함유 전이금속 산화물은 알루미늄(Al) 등의 금속이나 금속산화물로 코팅될 수도 있다. 또한, 상기 리튬 함유 전이금속 산화물 외에 황화물(sulfide), 셀렌화물(selenide) 및 할로겐화물(halide) 등도 사용될 수 있다.
상기 도전재로서는 전기화학소자에서 화학변화를 일으키지 않는 전자 전도성 물질이면 특별한 제한이 없다. 일반적으로 카본블랙(carbon black), 흑연, 탄소섬유, 카본 나노튜브, 금속분말, 도전성 금속산화물, 유기 도전재 등을 사용할 수 있고, 현재 도전재로 시판되고 있는 상품으로는 아세틸렌 블랙계열 (쉐브론 케미컬 컴퍼니(Chevron Chemical Company) 또는 걸프 오일 컴퍼니 (Gulf Oil Company) 제품 등), 케트젠블랙 (Ketjen Black) EC 계열(아르막 컴퍼니 (Armak Company) 제품), 불칸 (Vulcan) XC-72(캐보트 컴퍼니(Cabot Company) 제품) 및 수퍼 P (엠엠엠(MMM)사 제품)등이 있다. 예를 들면 아세틸렌블랙, 카본블랙, 흑연 등을 들 수 있다.
그리고, 본 발명에 따른 음극 활물질 슬러리는, 음극 활물질, 도전재, 바인더 및 용매를 혼합하여 제조된다.
상기 음극 활물질로는 통상적으로 리튬 이온이 흡장 및 방출될 수 있는 리튬 금속, 탄소재, 금속 화합물 또는 이들의 혼합물을 사용할 수 있다.
구체적으로는 상기 탄소재로는 저결정 탄소 및 고결정성 탄소 등이 모두 사용될 수 있다. 저결정성 탄소로는 연화탄소(soft carbon) 및 경화탄소(hard carbon)가 대표적이며, 고결정성 탄소로는 천연 흑연, 키시흑연(Kish graphite), 열분해 탄소(pyrolytic carbon), 액정 피치계 탄소섬유(mesophase pitch based carbon fiber), 탄소 미소구체(meso-carbon microbeads), 액정피치(Mesophase pitches) 및 석유와 석탄계 코크스(petroleum or coal tar pitch derived cokes) 등의 고온 소성탄소가 대표적이다.
상기 금속 화합물로는 Si, Ge, Sn, Pb, P, Sb, Bi, Al, Ga, In, Ti, Mn, Fe, Co, Ni, Cu, Zn, Ag, Mg, Sr, Ba 등의 금속 원소를 1종 이상 함유하는 화합물을 들 수 있다. 이들 금속 화합물은 단체, 합금, 산화물(TiO2, SnO2 등), 질화물, 황화물, 붕화물, 리튬과의 합금 등, 어떤 형태로도 사용할 수 있지만, 단체, 합금, 산화물, 리튬과의 합금은 고용량화될 수 있다. 그 중에서도, Si, Ge 및 Sn으로부터 선택되는 1종 이상의 원소를 함유할 수 있고, Si 및 Sn으로부터 선택되는 1종 이상의 원소를 포함하는 것이 전지를 더 고용량화할 수 있다.
상기 양극 및 음극에 사용되는 바인더는 양극 활물질 및 음극 활물질들 사이를 이어주는 기능을 갖는 것으로서, 통상적으로 사용되는 바인더가 제한 없이 사용될 수 있다.
예를 들면, 폴리비닐리덴 풀루오라이드-헥사풀루오로프로필렌 (PVDF-co-HFP), 폴리비닐리덴 풀루오라이드 (polyvinylidene fluoride, PVDF), 폴리아크릴로니트릴 (polyacrylonitrile), 폴리메틸 메타크릴레이트 (polymethyl methacrylate), 스티렌-부타디엔 고무 (SBR, styrene butadiene rubber), 카르복실 메틸 셀룰로오스 (CMC, carboxyl methyl cellulose) 등의 다양한 종류의 바인더가 사용될 수 있다.
한편, 상기 양극 집전체 및 상기 음극 집전체는 전도성이 높은 금속으로, 전지의 전압 범위에서 반응성이 없는 것이면 어느 것이라도 사용할 수 있다. 구체적으로 양극 집전체의 비제한적인 예로는 알루미늄, 니켈 또는 이들의 조합에 의하여 제조되는 호일 등이 있으며, 음극 집전체의 비제한적인 예로는 구리, 금, 니켈 또는 구리 합금 또는 이들의 조합에 의하여 제조되는 호일 등이 있다. 또한, 상기 집전체는 상기 물질들로 이루어진 기재들을 적층하여 사용할 수도 있다.
그리고, 본 발명에 따른 분리막으로는, 일반적인 전기화학소자에 사용되는 다공성 고분자 기재라면 모두 사용이 가능하고, 예를 들면 폴리올레핀계 다공성 고분자 막(membrane) 또는 부직포를 사용할 수 있으나, 이에 특별히 한정되는 것은 아니다.
상기 폴리올레핀계 다공성 고분자 막의 예로는, 고밀도 폴리에틸렌, 선형 저밀도 폴리에틸렌, 저밀도 폴리에틸렌, 초고분자량 폴리에틸렌과 같은 폴리에틸렌, 폴리프로필렌, 폴리부틸렌, 폴리펜텐 등의 폴리올레핀계 고분자를 각각 단독으로 또는 이들을 혼합한 고분자로 형성한 막(membrane)을 들 수 있다.
상기 부직포로는 폴리올레핀계 부직포 외에 예를 들어, 폴리에틸렌테레프탈레이트(polyethyleneterephthalate), 폴리부틸렌테레프탈레이트(polybutyleneterephthalate), 폴리에스테르(polyester), 폴리아세탈(polyacetal), 폴리아미드(polyamide), 폴리카보네이트(polycarbonate), 폴리이미드(polyimide), 폴리에테르에테르케톤(polyetheretherketone), 폴리에테르설폰(polyethersulfone), 폴리페닐렌옥사이드(polyphenyleneoxide), 폴리페닐렌설파이드(polyphenylenesulfide), 폴리에틸렌나프탈레이트(polyethylenenaphthalate) 등을 각각 단독으로 또는 이들을 혼합한 고분자로 형성한 부직포를 들 수 있다. 부직포의 구조는 장섬유로 구성된 스폰본드 부직포 또는 멜트 블로운 부직포일 수 있다.
상기 다공성 고분자 기재의 두께는 특별히 제한되지 않으나, 5 내지 50 ㎛일 수 있고, 다공성 고분자 기재에 존재하는 기공 크기 및 기공도 역시 특별히 제한되지 않으나 각각 0.01 내지 50 ㎛ 및 10 내지 95 %일 수 있다.
한편, 본 발명의 전극 조립체는 전기화학소자의 제조에 사용될 수 있는데, 이때, 상기 전기화학소자는, 전기화학 반응을 하는 모든 소자를 포함하며, 구체적인 예를 들면, 모든 종류의 이차전지, 연료전지, 태양전지 또는 슈퍼 커패시터 소자와 같은 커패시터(capacitor) 등이 있다. 특히, 상기 이차전지 중 리튬 금속 이차전지, 리튬 이온 이차전지, 리튬 폴리머 이차전지 또는 리튬 이온 폴리머 이차전지 등을 포함하는 리튬 이차전지가 바람직하다.
본 명세서와 도면에 개시된 본 발명의 실시예들은 이해를 돕기 위해 특정 예를 제시한 것에 지나지 않으며, 본 발명의 범위를 한정하고자 하는 것은 아니다. 여기에 개시된 실시예들 이외에도 본 발명의 기술적 사상에 바탕을 둔 다른 변형예들이 실시 가능하다는 것은 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 자명한 것이다.

Claims (11)

  1. 양극 집전체, 양극 활물질층, 분리막, 음극 활물질층 및 음극 집전체가 차례대로 적층된 전극 조립체로서,
    상기 양극 활물질층, 상기 분리막 및 상기 음극 활물질층을 아울러 관통하는 복수의 관통공들이 형성되어 있으며,
    상기 양극 집전체는, 제1 시트형 집전체 및 상기 제1 시트형 집전체로부터 상기 전극 조립체의 두께 방향으로 연장 형성되고, 상기 복수의 관통공들 중 일부를 관통하는 복수의 제1 기둥형 집전체를 포함하고,
    상기 음극 집전체는, 제2 시트형 집전체 및 상기 제2 시트형 집전체로부터 상기 전극 조립체의 두께 방향으로 연장 형성되고, 상기 복수의 관통공들 중 상기 일부 관통공들을 제외한 나머지 관통공들을 관통하는 복수의 제2 기둥형 집전체를 포함하는 것을 특징으로 하는 전극 조립체.
  2. 제1항에 있어서,
    상기 복수의 제1 기둥형 집전체는, 상기 전극 조립체의 두께 방향으로 연장되어, 상기 제2 시트형 집전체에 도달하도록 형성된 것을 특징으로 하는 전극 조립체.
  3. 제1항에 있어서,
    상기 복수의 제2 기둥형 집전체는, 상기 전극 조립체의 두께 방향으로 연장되어, 상기 제1 시트형 집전체에 도달하도록 형성된 것을 특징으로 하는 전극 조립체.
  4. 제1항에 있어서,
    상기 복수의 제1 기둥형 집전체는, 상기 양극 활물질층에 형성된 관통공들의 내주면에 밀착하여 관통하고,
    상기 복수의 제2 기둥형 집전체는, 상기 음극 활물질층에 형성된 관통공들의 내주면에 밀착하여 관통하는 것을 특징으로 하는 전극 조립체.
  5. 제4항에 있어서,
    상기 복수의 제1 기둥형 집전체는, 상기 음극 활물질층에 형성된 관통공들의 내주면과 이격되어 관통하고,
    상기 복수의 제2 기둥형 집전체는, 상기 양극 활물질층에 형성된 관통공들의 내주면과 이격되어 관통하는 것을 특징으로 하는 전극 조립체.
  6. 제4항에 있어서,
    상기 복수의 제1 기둥형 집전체는, 상기 음극 활물질층에 형성된 관통공들의 내주면에 밀착하여 관통하고,
    상기 복수의 제2 기둥형 집전체는, 상기 양극 활물질층에 형성된 관통공들의 내주면에 밀착하여 관통하며,
    상기 복수의 제1 기둥형 집전체는, 상기 음극 활물질층과 맞닿는 부분의 표면에 형성된 제1 절연층을 포함하고,
    상기 복수의 제2 기둥형 집전체는, 상기 양극 활물질층과 맞닿는 부분의 표면에 형성된 제2 절연층을 포함하는 것을 특징으로 하는 전극 조립체.
  7. 제6항에 있어서,
    상기 제1 절연층 및 상기 제2 절연층은, 서로 독립적으로 바니쉬 코팅층, 절연성 고분자 코팅층 또는 절연성 무기물 코팅층인 것을 특징으로 하는 전극 조립체.
  8. 제1항에 있어서,
    상기 복수의 제1 기둥형 집전체가 관통하는 일부의 관통공들 및 상기 복수의 제2 기둥형 집전체가 관통하는 나머지의 관통공들은 상호 교번되어 배치되는 것을 특징으로 하는 전극 조립체.
  9. 제1항에 있어서,
    상기 복수의 관통공들이 형성되어 있는 양극 활물질층은, 복수의 기둥들이 형성되어 있는 전극 몰드에 양극 활물질 슬러리를 주입한 다음, 상기 양극 활물질 슬러리를 가열 압착한 결과물인 것을 특징으로 하는 전극 조립체.
  10. 제1항에 있어서,
    상기 복수의 관통공들이 형성되어 있는 음극 활물질층은, 복수의 기둥들이 형성되어 있는 전극 몰드에, 음극 활물질 슬러리를 주입한 다음, 상기 음극 활물질 슬러리를 가열 압착한 결과물인 것을 특징으로 하는 전극 조립체.
  11. 제1항 내지 제10항 중 어느 한 항에 따른 전극 조립체를 포함하는 리튬 이차전지.
PCT/KR2018/007033 2017-06-27 2018-06-21 전극 조립체 및 그를 포함하는 리튬 이차전지 WO2019004655A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP18823670.7A EP3534450B1 (en) 2017-06-27 2018-06-21 Electrode assembly and lithium secondary battery including the same
US16/478,764 US11081762B2 (en) 2017-06-27 2018-06-21 Electrode assembly and lithium secondary battery including the same
JP2019526327A JP7037015B2 (ja) 2017-06-27 2018-06-21 電極組立体及びこれを含むリチウム二次電池
PL18823670T PL3534450T3 (pl) 2017-06-27 2018-06-21 Zespół elektrodowy i zawierająca go litowa bateria akumulatorowa

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020170081480A KR102208515B1 (ko) 2017-06-27 2017-06-27 전극 조립체 및 그를 포함하는 리튬 이차전지
KR10-2017-0081480 2017-06-27

Publications (1)

Publication Number Publication Date
WO2019004655A1 true WO2019004655A1 (ko) 2019-01-03

Family

ID=64742386

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/007033 WO2019004655A1 (ko) 2017-06-27 2018-06-21 전극 조립체 및 그를 포함하는 리튬 이차전지

Country Status (7)

Country Link
US (1) US11081762B2 (ko)
EP (1) EP3534450B1 (ko)
JP (1) JP7037015B2 (ko)
KR (1) KR102208515B1 (ko)
CN (2) CN208400926U (ko)
PL (1) PL3534450T3 (ko)
WO (1) WO2019004655A1 (ko)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102208515B1 (ko) * 2017-06-27 2021-01-26 주식회사 엘지화학 전극 조립체 및 그를 포함하는 리튬 이차전지
JP7067019B2 (ja) * 2017-10-30 2022-05-16 セイコーエプソン株式会社 二次電池用電極、二次電池、電子機器、二次電池用電極の製造方法、二次電池の製造方法
CN114008851A (zh) * 2019-05-22 2022-02-01 赛昂能源有限公司 电耦接电极以及相关的制品和方法
KR20210140881A (ko) 2020-05-14 2021-11-23 서강대학교산학협력단 탄피 계수 장치

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012059396A (ja) * 2010-09-06 2012-03-22 Mitsubishi Electric Corp 蓄電デバイス用負極及び蓄電デバイス並びにそれらの製造方法
JP2013182810A (ja) * 2012-03-02 2013-09-12 Tdk Corp 集電体、およびそれを用いたリチウムイオン二次電池
JP2013206705A (ja) * 2012-03-28 2013-10-07 Toyota Industries Corp 蓄電装置及び二次電池並びに蓄電装置の製造方法
JP2015195144A (ja) * 2014-03-31 2015-11-05 積水化学工業株式会社 電極の製造方法、リチウムイオン二次電池の製造方法及びリチウムイオン二次電池
KR20160004737A (ko) * 2014-07-04 2016-01-13 주식회사 엘지화학 전해액 함침용 홀을 포함하고 있는 전지셀
KR20160050403A (ko) * 2014-10-29 2016-05-11 에스케이이노베이션 주식회사 이차 전지용 집전체와 전극 및 이를 포함한 이차 전지

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070037209A (ko) 2005-09-30 2007-04-04 삼성에스디아이 주식회사 액상의 연료를 사용하는 연료전지
JP5135746B2 (ja) 2006-09-21 2013-02-06 トヨタ自動車株式会社 リチウムイオン二次電池とその製造方法
JP2008270153A (ja) * 2006-11-15 2008-11-06 Matsushita Electric Ind Co Ltd 非水電解質二次電池用集電体の製造方法、非水電解質二次電池用電極の製造方法および非水電解質二次電池
JP5224020B2 (ja) * 2007-06-18 2013-07-03 エス・イー・アイ株式会社 リチウム二次電池
JP2009076289A (ja) 2007-09-20 2009-04-09 Seiko Epson Corp 発光管の製造方法、光源装置及びプロジェクタ
US8927156B2 (en) * 2009-02-19 2015-01-06 Semiconductor Energy Laboratory Co., Ltd. Power storage device
JP2011151279A (ja) 2010-01-25 2011-08-04 Sony Corp 複合体電極及びこれを用いた電子デバイス
US8962190B1 (en) * 2010-12-17 2015-02-24 Hrl Laboratories, Llc Three-dimensional electrodes with conductive foam for electron and lithium-ion transport
US20130084495A1 (en) 2011-09-30 2013-04-04 Semiconductor Energy Laboratory Co., Ltd. Power storage device
JP6050106B2 (ja) 2011-12-21 2016-12-21 株式会社半導体エネルギー研究所 非水二次電池用シリコン負極の製造方法
US20130236781A1 (en) 2012-03-06 2013-09-12 Semiconductor Energy Laboratory Co., Ltd. Negative electrode for secondary battery and secondary battery
KR101562435B1 (ko) 2013-10-23 2015-10-22 전남대학교산학협력단 양극산화 템플릿을 이용한 3차원 구조의 광흡수층을 가지는 태양전지 제조 방법
KR102208515B1 (ko) * 2017-06-27 2021-01-26 주식회사 엘지화학 전극 조립체 및 그를 포함하는 리튬 이차전지

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012059396A (ja) * 2010-09-06 2012-03-22 Mitsubishi Electric Corp 蓄電デバイス用負極及び蓄電デバイス並びにそれらの製造方法
JP2013182810A (ja) * 2012-03-02 2013-09-12 Tdk Corp 集電体、およびそれを用いたリチウムイオン二次電池
JP2013206705A (ja) * 2012-03-28 2013-10-07 Toyota Industries Corp 蓄電装置及び二次電池並びに蓄電装置の製造方法
JP2015195144A (ja) * 2014-03-31 2015-11-05 積水化学工業株式会社 電極の製造方法、リチウムイオン二次電池の製造方法及びリチウムイオン二次電池
KR20160004737A (ko) * 2014-07-04 2016-01-13 주식회사 엘지화학 전해액 함침용 홀을 포함하고 있는 전지셀
KR20160050403A (ko) * 2014-10-29 2016-05-11 에스케이이노베이션 주식회사 이차 전지용 집전체와 전극 및 이를 포함한 이차 전지

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3534450A4 *

Also Published As

Publication number Publication date
JP7037015B2 (ja) 2022-03-16
JP2019536230A (ja) 2019-12-12
KR20190001461A (ko) 2019-01-04
US11081762B2 (en) 2021-08-03
CN208400926U (zh) 2019-01-18
CN109148797A (zh) 2019-01-04
EP3534450A4 (en) 2019-11-13
US20200052276A1 (en) 2020-02-13
EP3534450A1 (en) 2019-09-04
CN109148797B (zh) 2021-10-01
KR102208515B1 (ko) 2021-01-26
EP3534450B1 (en) 2020-11-25
PL3534450T3 (pl) 2021-04-19

Similar Documents

Publication Publication Date Title
KR102025033B1 (ko) 나노다공성 세퍼레이터 상의 애노드 직접 코팅을 이용한 배터리
WO2012050407A2 (ko) 금속 장섬유를 포함하는 전극 구조를 갖는 전지 및 이의 제조 방법
WO2015080305A1 (ko) 전극조립체 및 이를 포함하는 전기화학소자
WO2012138115A2 (ko) 금속 섬유를 포함하는 전극 구조체를 갖는 전지 및 상기 전극 구조의 제조 방법
WO2015065127A1 (ko) 스택-폴딩형 전극 조립체
WO2019004655A1 (ko) 전극 조립체 및 그를 포함하는 리튬 이차전지
WO2013002504A2 (ko) 신규한 폴리머 전해질 및 이를 포함하는 리튬 이차전지
WO2012177016A2 (ko) 신규 구조 전극조립체 및 이를 이용한 이차전지
WO2013073795A1 (ko) 전극 조립체, 이의 제조 방법, 및 전지의 충전 및 방전 방법
WO2015002390A1 (ko) 도전성이 개선된 양극 합제, 그를 구비하는 양극 및 전기화학소자
WO2019093709A1 (ko) 리튬-황 전지용 전해질 복합체, 이를 포함하는 전기화학소자 및 그 제조방법
WO2017146555A1 (ko) 리튬 이차전지
WO2018097455A1 (ko) 전극 보호층을 포함하는 이차전지용 전극
WO2017171294A1 (ko) 전극의 제조방법
WO2014200214A1 (ko) 내진동 특성이 향상된 전기화학소자 및 전지 모듈
WO2021187726A1 (ko) 전극 조립체 및 그의 제조 방법
KR20170090720A (ko) 리튬 이차전지용 전극 및 이를 포함하는 리튬 이차전지
US11075397B2 (en) Bipolar secondary battery
WO2019221450A1 (ko) 음극, 및 상기 음극을 포함하는 리튬 이차 전지
WO2021177681A1 (ko) 전극 조립체 및 그의 제조 방법
WO2021125694A1 (ko) 내부 단락 평가용 전지 셀 및 이를 이용한 전지 셀의 내부 단락 평가 방법
EP3993089A1 (en) Method for manufacturing electrode on which resistance layer is formed
WO2017126918A1 (ko) 전극조립체 및 이의 제조방법
WO2021141367A1 (ko) 테이핑 영역을 포함하는 전극 집전체용 금속 박막 및 이를 이용한 전극 제조방법
WO2014142523A1 (ko) 리튬의 프리도핑 방법, 상기 방법을 포함하는 리튬 이차전지의 제조방법, 및 상기 제조방법으로부터 제조된 리튬 이차전지

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18823670

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019526327

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018823670

Country of ref document: EP

Effective date: 20190529

NENP Non-entry into the national phase

Ref country code: DE