WO2010101396A2 - 고에너지밀도의 양극 재료 및 이를 포함하는 리튬 이차전지 - Google Patents

고에너지밀도의 양극 재료 및 이를 포함하는 리튬 이차전지 Download PDF

Info

Publication number
WO2010101396A2
WO2010101396A2 PCT/KR2010/001305 KR2010001305W WO2010101396A2 WO 2010101396 A2 WO2010101396 A2 WO 2010101396A2 KR 2010001305 W KR2010001305 W KR 2010001305W WO 2010101396 A2 WO2010101396 A2 WO 2010101396A2
Authority
WO
WIPO (PCT)
Prior art keywords
oxide powder
lithium
material according
cathode material
nickel
Prior art date
Application number
PCT/KR2010/001305
Other languages
English (en)
French (fr)
Other versions
WO2010101396A3 (ko
Inventor
최승은
고은영
이향목
강희경
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to CN201080010713.6A priority Critical patent/CN102341940B/zh
Priority to EP10748938.7A priority patent/EP2405511B1/en
Publication of WO2010101396A2 publication Critical patent/WO2010101396A2/ko
Publication of WO2010101396A3 publication Critical patent/WO2010101396A3/ko
Priority to US13/223,754 priority patent/US8603676B2/en
Priority to US14/071,058 priority patent/US8920974B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • H01M4/623Binders being polymers fluorinated polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/417Polyolefins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/426Fluorocarbon polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/446Composite material consisting of a mixture of organic and inorganic materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/46Separators, membranes or diaphragms characterised by their combination with electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/124Primary casings; Jackets or wrappings characterised by the material having a layered structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/431Inorganic material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to a high energy density positive electrode material and a lithium secondary battery comprising the same, and more particularly, a mixture of an oxide powder (a) of a specific composition and an oxide powder (b) of a specific composition.
  • Oxide powder (a): oxide powder (b)) relates to an anode material having 50:50 to 90:10.
  • lithium secondary batteries capable of charging and discharging have been widely used as energy sources of wireless mobile devices.
  • lithium secondary batteries are frequently used due to advantages such as high energy density, discharge voltage, and output stability.
  • the lithium secondary battery is manufactured by using a metal oxide such as LiCoO 2 as a cathode material and a carbon material as a cathode material, a polyolefin-based porous separator is inserted between the cathode and the anode, and impregnated with a non-aqueous electrolyte having a lithium salt such as LiPF 6 . do.
  • LiCoO 2 is widely used as a cathode material for lithium secondary batteries, but it is relatively expensive and has a low charge / discharge current of about 150 mAh / g.
  • the crystal structure is unstable at a voltage of 4.3 V or higher, and reacts with the electrolyte to ignite.
  • LiCoO 2 has the disadvantage of showing a very large change in physical properties even with some parameter changes in its manufacturing process.
  • cycle characteristics and high temperature storage characteristics tend to change significantly due to some changes in process variables.
  • the conventional anode material in the form of a mixture has a limitation that it is difficult to expect a synergistic effect beyond a simple combination of two components.
  • an object of the present invention is to solve the problems of the prior art as described above and the technical problems that have been requested from the past.
  • Still another object of the present invention is to provide a lithium secondary battery capable of exhibiting excellent rate characteristics by using a positive electrode material having a high energy density.
  • the cathode material according to the present invention for achieving this object is at least one oxide powder selected from the group consisting of an oxide powder (a) defined below, an oxide powder (b1) and an oxide powder (b2) defined below ( As a mixture of b), the mixing ratio (oxide powder (a): oxide powder (b)) of the two oxide powders is composed of 50:50 to 90:10.
  • D is Ti, Zr, Hf, V, Nb, Ta; Cr, Mo, W, Mn, Tc, Re, Fe, Ru, Os, Co, Rh, Ir, Ni, Pd, Pt, Cu, Au, Ag, Zn, Cd, Hg, B, Al, Ga, In, At least one member selected from the group consisting of TI, C, Si, Ge, Sn, Pb, N, P, As, Sb, and Bi;
  • m (Ni) / m (Mn) is the molar ratio of nickel to manganese
  • m (Ni 2+ ) / m (Mn 4+ ) is the molar ratio of Ni 2+ to Mn 4+ .
  • the positive electrode material according to the present invention is a mixture of two kinds of lithium transition metal oxide powders, in which the oxide powder (a) and the oxide powder (b) are mixed at 50:50 to 90:10 to exhibit high energy density and yet have capacity characteristics. It has the advantage of being excellent. More preferred mixing ratio is 50:50 to 70:30.
  • the inventors of the present application have a very good discharge capacity retention rate and a desired rate in C-Rate when the mixing ratio of the oxide powder (b) is 50% or less when mixed with the oxide powder (a). It was confirmed that the characteristics can be exhibited.
  • a lithium secondary battery having an energy density per unit volume (VED) of 478 Wh / l or more and an energy density per unit weight (GED) of 201 Wh / g or more may be manufactured. .
  • the oxide powders may be coated with Al 2 O 3 or the like for performance improvement, or Al 2 O 3 may be mixed together.
  • Preferred examples of the formula 1 there can be a LiCoO 2, but is not limited to this.
  • the oxide powder (b1) may exhibit high capacity and high cycle stability by satisfying specific conditions (see FIG. 1) whose composition is defined by the formula (2), and exhibits excellent storage stability and high temperature safety. Can be exercised.
  • the oxide powder (b1) is explained in full detail.
  • the total mole fraction of Ni (1-a-b) is 0.4 to 0.7 as a composition of nickel excess relative to manganese and cobalt. If the content of nickel is less than 0.4, it is difficult to expect a high capacity, on the contrary, if the content of nickel is more than 0.7, there is a problem that the safety is greatly reduced.
  • the content (b) of the cobalt is 0.1 to 0.4, and when the cobalt content is excessively high as b> 0.4, the cost of the raw material is increased due to the high content of cobalt and the reversible capacity is slightly reduced. On the other hand, when the content of cobalt is too low (b ⁇ 0.1), it is difficult to simultaneously achieve sufficient rate characteristics and high powder density of the battery.
  • the oxide powder (b1) is a lithium ion is occluded and released between the mixed transition metal oxide layer ('MO layer'), and the occlusion and release layer of the lithium ion ('reversible lithium layer')
  • the oxide powder (b1) is a lithium ion is occluded and released between the mixed transition metal oxide layer ('MO layer'), and the occlusion and release layer of the lithium ion ('reversible lithium layer')
  • Some Ni derived from the MO layer The ions may be inserted to couple the MO layers together.
  • Ni which is inserted into and bonded to the reversible lithium layer, may be referred to as 'inserted Ni'.
  • the inventors of the present application contrary to the conventional belief that as shown in FIG. 2, when some nickel of the MO layer is lowered and fixed to the reversible lithium layer, the occlusion and release of lithium will be disturbed, rather, the crystal structure is rather It was confirmed that the stabilization prevents the problem that the crystal structure collapses due to occlusion and release of lithium.
  • Ni 2+ and Ni 3+ coexist in the MO layer, and some of the Ni 2+ may be inserted into the reversible lithium layer. That is, the Ni ions inserted into the reversible lithium layer may preferably be Ni 2+ .
  • Ni 2+ is very similar in size to lithium ions (Li + ), it is inserted into a reversible lithium layer and thus prevents structural collapse due to the repulsive force of the MO layer when lithium ions are released during charging without deforming the shape of the crystal structure. Can play a supporting role.
  • the inserted Ni 2+ is intercalated between the MO layers to serve to support them, so that the Ni 2+ may be contained at least enough to stably support the MO layers so that the desired charging and cycle stability can be improved. It is preferable.
  • the mole fraction of Ni 2+ inserted in the reversible lithium layer is too high, the cation mixing is increased to form a rock salt structure that does not react locally electrochemically, thus preventing charging and discharging and thus discharging accordingly. Dose may be reduced.
  • the mole fraction of may be preferably from 0.03 to 0.07 based on the total amount of the transition metal of the oxide (b1).
  • the ratio of Li to Li (M) of the transition metal (M) is lowered, the amount of Ni inserted into the MO layer is gradually increased.
  • the charge and discharge are reduced.
  • the movement of Li + is disturbed in the process and the reversible capacity is reduced or the rate characteristic is lowered.
  • the ratio of Li / M is too high, it is not preferable because the amount of Ni inserted in the MO layer is too small, resulting in structural instability, which may lower the safety of the battery and deteriorate the life characteristics.
  • the ratio of Li: M in the LiNiMO 2 may be 0.95 to 1.04: 1.
  • the oxide (b-1) is an impurity water soluble base, in particular Li 2 CO 3 Is substantially not included.
  • nickel-based lithium mixed transition metal oxides contain a large amount of water-soluble bases such as lithium oxide, lithium sulfate, and lithium carbonate.
  • the water-soluble bases may be, for example, bases such as Li 2 CO 3 and LiOH present in LiNiMO 2 .
  • a base produced by ion exchange H + (water) ⁇ --> Li + (surface, outer surface of the bulk)) on the LiNiMO 2 surface. The latter case is usually negligible.
  • the first water soluble base is mainly formed due to the unreacted lithium raw material upon sintering.
  • the first water soluble base is mainly formed due to the unreacted lithium raw material upon sintering.
  • the conventional nickel-based lithium mixed transition metal oxide since a relatively large amount of lithium is added and sintered at low temperature, it has a relatively larger grain boundary than cobalt-based oxide. This is because lithium ions do not react sufficiently.
  • the oxide (b1) since the layered crystal structure is stably maintained, it is possible to perform a relatively high temperature sintering process in an air atmosphere, thereby having a relatively small grain boundaries.
  • unreacted lithium is prevented from remaining on the particle surface, lithium salts such as lithium carbonate and lithium sulfate are substantially not present on the particle surface.
  • the lithium source does not need to be added excessively during the preparation of the oxide (b1), it is possible to fundamentally prevent a problem that impurities are formed due to the unreacted lithium source remaining in the powder.
  • the oxide powder (b2) of the oxide powder (b) provides a high rate charge and discharge characteristics significantly improved by the excellent layered crystal structure.
  • the oxide powder (b2) is explained in full detail.
  • Preferred examples of the layered crystal structure include ⁇ -NaFeO 2 layered crystal structure.
  • the layered structure can be well formed by making the oxidation number of transition metal ions average +3 by including Ni 2+ and Mn 4+ in the same amount.
  • Ni 2+ has a size almost similar to that of Li + , there is a high probability of forming a rock salt structure by moving to the lithium layer, thereby degrading electrochemical performance.
  • the inventors of the present application have conducted in-depth studies to prepare a positive electrode active material having a stable layered crystal structure and excellent capacity and rate characteristics.
  • the stable layered crystal structure is attributed to Ni 2+ and Mn 4+ . Rather, it was found to be more dependent on the difference between the ion size of lithium and the size of transition metal ions.
  • the two layers are properly separated and well. It was confirmed that it can be developed.
  • a method of using a metal element with a small ion radius in the MO layer may be considered to increase the size difference of the ions, but in this case, the layered structure may be well formed but the number of metal ions capable of transferring electrons is small. There was a limit to the reduction in capacity due to the loss.
  • the inventors of the present application have tried to achieve an excellent layered crystal structure without deterioration of capacity, and as a result, the size difference of the ions may be represented by a distance or binding force to bond with oxygen ions, and in the case of a metal having a cation characteristic.
  • Mn 4+ ions induce the formation of Ni 2+ ions, whereby a large amount of Ni 2+ is added to the lithium layer in the compound containing a large amount of Mn. It is not desirable to be located.
  • the inventors of the present application as a method of increasing the oxidation number of the transition metal, it is most effective to reduce the amount of Ni 2+ that can be easily introduced into the lithium layer to make the overall oxidation number, that is, the average oxidation to +3 or more. Judging In addition, as the amount of Ni 3+ having a smaller size than that of Ni 2+ increases, it was determined that the difference in size of ions could be further increased.
  • the oxide powder (b2) is composed of a relatively large amount of nickel compared to manganese (see formula (3)), and a relatively small amount of Ni 2+ compared to Mn 4+ (see formula (4)) It is.
  • the oxide powder (b2) is a lithium nickel-manganese-cobalt oxide, and (i) the average oxidation number of nickel-manganese-cobalt, which is the entire transition metal except lithium, is greater than +3, and (ii) nickel is more than manganese. It is included in a relatively large amount, and (iii) it is characterized in that it contains a relatively small amount of Ni 2+ compared to Mn 4+ .
  • the lithium nickel-manganese-cobalt oxide has an average oxidation number of the transition metal of +3, the amount of transition metal present in the reversible lithium layer can be remarkably reduced based on the stable crystal structure of the oxide. Accordingly, there is an advantage that the mobility and rate characteristics of lithium ions can be improved and the capacity can be improved.
  • the oxide powder (b2) has a larger average oxidation number of the transition metal except lithium than +3, so that the overall size of the transition metal ions becomes smaller than that of the average oxidation number +3.
  • the size difference with the lithium ions increases, so that the interlayer separation is well performed, thereby forming a stable layered crystal structure.
  • the average oxidation number of the transition metal is preferably more than 3.0 to 3.5 or less, more preferably It is preferably 3.01 to 3.3, particularly preferably 3.1 to 3.3.
  • the total average oxidation number of nickel in an amount corresponding to the content of manganese and manganese may be more than 3.0 to 3.5 or less, preferably 3.1 to 3.3.
  • the 'average oxidation number of the transition metal excluding lithium' means that the average oxidation number of lithium ions is not taken into consideration, for example, even when a part of lithium ions is included at the site of the transition metal.
  • Control of the average oxidation number of the transition metal as described above can be achieved by adjusting the proportion of the transition metal of the transition metal precursor and the reaction amount of the lithium precursor in the process of producing a lithium transition metal oxide.
  • the oxide powder (b2) has a molar ratio of nickel to manganese of greater than 1.1 and less than 1.5, as in the following formula (3).
  • Ni 3+ becomes at least as much as the content of manganese in nickel, and the size of ions becomes relatively small. Therefore, the difference between the size of lithium ions and the average size of transition metal ions is increased, and the insertion of Ni 2+ into the lithium layer can be minimized, thereby increasing the stability of the layered crystal structure.
  • the m (Ni) / m (Mn) when m (Ni) / m (Mn) is greater than 1.5, it is not preferable because the relative safety deteriorates due to the decrease in Mn content and the manufacturing cost of the active material is increased.
  • the m (Ni) / m (Mn) may be 1.2 to 1.4.
  • the nickel may be distinguished into an excess of nickel (1) relative to manganese content and nickel (2) in an amount corresponding to manganese content. Can be.
  • the nickel has an average oxidation number greater than +2.
  • the excess nickel (1) relative to the manganese content is preferably Ni 3+
  • the nickel (2) of the content corresponding to the manganese content includes both Ni 2+ and Ni 3+ .
  • Ni 2+ And Ni 3+ Ni in the nickel (2) containing 3+ The ratio of is preferably 11 to 60%. In other words, if the ratio is less than 11%, the desired electrochemical properties are difficult to be obtained. If the ratio is larger than 60%, the amount of oxidation water change is too small, the capacity decreases and the lithium dispersion is large, which is not preferable. In this case, the average oxidation number of manganese and nickel is approximately 3.05 to 3.35.
  • the oxide powder (b2) is composed of a molar ratio of Ni 2+ to Mn 4+ of greater than 0.4 and less than 1, as in the following formula (4). That is, Ni 2+ and Mn 4+ are not contained in the same amount, but a relatively small amount of Ni 2+ is contained in comparison with Mn 4+ .
  • the content of cobalt (Co) in the transition metal in the oxide powder (b2) is preferably less than 10 mol% of the total transition metal content.
  • the oxide powder (b2) contains a large amount of nickel than manganese, and the average oxidation number of the transition metal is greater than +3, thereby increasing the size difference between lithium ions and transition metal ions, thereby promoting interlayer separation.
  • the insertion of Ni 2+ into the lithium layer can be minimized.
  • the content of nickel inserted in the lithium site in the cathode material may be less than 5 mol% as a proportion of sites occupied by Ni (Ni 2+ ) in all Li sites.
  • the transition metals nickel, manganese and cobalt may be partially substituted with other metal element (s) within a range capable of maintaining a layered crystal structure, and preferably, a small amount of metal within 5%. It may be substituted with an element, a cationic element and the like. In this case as well, as long as the characteristics according to the present invention are satisfied, it is obvious that it belongs to the scope of the present invention.
  • the oxide powder (a) may be preferably composed of a single phase (monolithic) structure. Accordingly, almost no inner porosity, and as the size of the particles increases, the stability of the crystal grains is improved, and battery manufacturing including the same may be facilitated, thereby increasing the efficiency of the manufacturing process.
  • the oxide powder (a) is a single particle in the form of a potato (potato shaped), which may have a D50 of 10 ⁇ m or more, preferably 15 ⁇ m or more.
  • the oxide powder (b) preferably has an agglomerated structure, that is, in the form of agglomerates of fine powders, it may be a structure having an internal void.
  • agglomerated particle structure is characterized in that it maximizes the surface area reacting with the electrolyte solution, exerts high rate characteristics, and at the same time expands the reversible capacity of the positive electrode.
  • the oxide powder (b) having an agglomerated structure is agglomerated with fine particles of 1 ⁇ m to 5 ⁇ m, and its D50 is 10 ⁇ m or less, preferably 8 ⁇ m or less, more preferably 4 to 7. May be ⁇ m.
  • the oxide powder (b) may be constituted as an aggregate of fine particles having at least 90% having a size (D50) of 1 to 4 ⁇ m.
  • the present invention also provides a lithium secondary battery comprising the positive electrode material.
  • a lithium secondary battery is composed of a lithium-containing non-aqueous electrolyte in a state where a separator is interposed between a positive electrode and a negative electrode.
  • the positive electrode is prepared by, for example, applying a mixture of the positive electrode material, the conductive agent and the binder onto a positive electrode current collector, followed by drying and pressing, and optionally adding a filler to the mixture.
  • the positive electrode current collector is generally made of 3 to 500 ⁇ m thick. Such a positive electrode current collector is not particularly limited as long as it has high conductivity without causing chemical changes in the battery.
  • a positive electrode current collector is not particularly limited as long as it has high conductivity without causing chemical changes in the battery.
  • the surface of stainless steel, aluminum, nickel, titanium, calcined carbon, or aluminum or stainless steel Surface treated with carbon, nickel, titanium, silver or the like can be used.
  • the current collector may form fine irregularities on its surface to increase the adhesion of the positive electrode material, and may be in various forms such as a film, a sheet, a foil, a net, a porous body, a foam, and a nonwoven fabric.
  • the conductive agent is typically added in an amount of 1 to 30% by weight based on the total weight of the mixture including the positive electrode material.
  • a conductive agent is not particularly limited as long as it has conductivity without causing chemical change in the battery.
  • the conductive agent include graphite such as natural graphite and artificial graphite; Carbon blacks such as carbon black, acetylene black, Ketjen black, channel black, furnace black, lamp black, and summer black; Conductive fibers such as carbon fibers and metal fibers; Metal powders such as carbon fluoride powder, aluminum powder and nickel powder; Conductive whiskeys such as zinc oxide and potassium titanate; Conductive metal oxides such as titanium oxide; Conductive materials such as polyphenylene derivatives and the like can be used.
  • the binder is a component that assists the bonding of the electrode material, the conductive agent, and the like to the current collector, and is generally added in an amount of 1 to 30 wt% based on the total weight of the mixture including the positive electrode material.
  • binders include polyvinylidene fluoride, polyvinyl alcohol, carboxymethyl cellulose (CMC), starch, hydroxypropyl cellulose, regenerated cellulose, polyvinylpyrrolidone, tetrafluoroethylene, polyethylene , Polypropylene, ethylene-propylene-diene terpolymer (EPDM), sulfonated EPDM, styrene butylene rubber, fluorine rubber, various copolymers and the like.
  • the filler is optionally used as a component for inhibiting expansion of the positive electrode, and is not particularly limited as long as it is a fibrous material without causing chemical change in the battery.
  • the filler include olefinic polymers such as polyethylene and polypropylene; Fibrous materials, such as glass fiber and carbon fiber, are used.
  • the negative electrode is manufactured by coating and drying a negative electrode material on a negative electrode current collector, and if necessary, the components as described above may be further included.
  • the negative electrode current collector is generally made of 3 to 500 ⁇ m thick. Such a negative electrode current collector is not particularly limited as long as it has conductivity without causing chemical change in the battery.
  • a negative electrode current collector is not particularly limited as long as it has conductivity without causing chemical change in the battery.
  • the surface of copper, stainless steel, aluminum, nickel, titanium, calcined carbon, copper or stainless steel Surface-treated with carbon, nickel, titanium, silver, and the like, aluminum-cadmium alloy, and the like can be used.
  • fine concavities and convexities may be formed on the surface to enhance the bonding force of the negative electrode material, and may be used in various forms such as films, sheets, foils, nets, porous bodies, foams, and nonwoven fabrics.
  • the negative electrode material may be, for example, carbon such as hardly graphitized carbon or graphite carbon; Li x Fe 2 O 3 (0 ⁇ x ⁇ 1), Li x WO 2 (0 ⁇ x ⁇ 1), Sn x Me 1-x Me ' y O z (Me: Mn, Fe, Pb, Ge; Me' Metal complex oxides such as Al, B, P, Si, Group 1, Group 2, Group 3 elements of the periodic table, halogen, 0 ⁇ x ⁇ 1; 1 ⁇ y ⁇ 3; 1 ⁇ z ⁇ 8); Lithium metal; Lithium alloys; Silicon-based alloys; Tin-based alloys; SnO, SnO 2 , PbO, PbO 2 , Pb 2 O 3 , Pb 3 O 4 , Sb 2 O 3 , Sb 2 O 4 , Sb 2 O 5 , GeO, GeO 2 , Bi 2 O 3 , Bi 2 O 4 , and metal oxides such as Bi 2 O 5 ;
  • the separator is an insulating thin film having high ion permeability and mechanical strength, and has a pore diameter of 0.01 to 10 ⁇ m and a thickness of 5 to 300 ⁇ m.
  • Preferred examples of the separator material include polyethylene having a microporous structure, polypropylene, polytetrafluoroethylene, polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, and a mixture of two or more thereof. It is not limited to that.
  • the separator may be coated on one or both sides with an inorganic material.
  • the lithium-containing non-aqueous electrolyte solution consists of a non-aqueous electrolyte solution and a lithium salt.
  • At least one organic solvent may be used as an aprotic organic solvent such as tetrahydrofuran derivative, ether, methyl pyroionate, and
  • At least one cyclic carbonate solvent and linear carbonate solvent may be mixed and used.
  • a mixed solvent of ethylene carbonate or a linear carbonate such as ethylene carbonate and ethylmethyl carbonate can be used.
  • the lithium salt is a material that is easy to dissolve in the non-aqueous electrolyte, for example, LiCl, LiBr, LiI, LiClO 4 , LiBF 4 , LiB 10 Cl 10 , LiPF 6 , LiCF 3 SO 3 , LiCF 3 CO 2 , LiAsF 6, LiSbF 6, LiAlCl 4, CH 3 SO 3 Li, CF 3 SO 3 Li, (CF 3 SO 2) 2 NLi, chloroborane lithium, lower aliphatic carboxylic acid lithium, lithium tetraphenyl borate, imide, etc. At least one More than one species can be used.
  • an organic solid electrolyte an inorganic solid electrolyte, or the like may be used.
  • organic solid electrolyte examples include polyethylene derivatives, polyethylene oxide derivatives, polypropylene oxide derivatives, phosphate ester polymers, polyedgetion lysine, polyester sulfides, polyvinyl alcohols, polyvinylidene fluorides, Polymers containing ionic dissociating groups and the like can be used.
  • Examples of the inorganic solid electrolyte include Li 3 N, LiI, Li 5 NI 2 , Li 3 N-LiI-LiOH, LiSiO 4 , LiSiO 4 -LiI-LiOH, Li 2 SiS 3 , Li 4 SiO 4 , Nitrides, halides, sulfates and the like of Li, such as Li 4 SiO 4 -LiI-LiOH, Li 3 PO 4 -Li 2 S-SiS 2 , and the like, may be used.
  • the non-aqueous electrolyte solution includes, for example, pyridine, triethyl phosphite, triethanolamine, cyclic ether, ethylene diamine, n-glyme, and hexaphosphate triamide. , At least one nitrobenzene derivative, sulfur, quinone imine dye, N-substituted oxazolidinone, N, N-substituted imidazolidine, ethylene glycol dialkyl ether, ammonium salt, pyrrole, 2-methoxy ethanol, aluminum trichloride, etc. More than one species may be added. In some cases, in order to impart nonflammability, halogen-containing solvents such as carbon tetrachloride and ethylene trifluoride may be further included, and carbon dioxide gas may be further included to improve high temperature storage characteristics.
  • halogen-containing solvents such as carbon tetrachloride and ethylene trifluoride may be further included, and carbon dioxide gas may be further included
  • the secondary battery may be a pouch battery in which the electrode assembly is sealed in a pouch type case of a laminate sheet including a resin layer and a metal layer.
  • the laminate sheet may be formed, for example, of a structure including an inner resin layer, a barrier metal layer, and an outer resin layer. Since the outer resin layer must have excellent resistance from the external environment, it is necessary to have a tensile strength and weather resistance of a predetermined or more.
  • PET polyethylene terephthalate
  • the barrier metal layer is preferably aluminum may be used to exhibit a function of improving the strength of the battery case in addition to the function of preventing the inflow or leakage of foreign substances such as gas, moisture.
  • a polyolefin-based resin having heat sealability (heat adhesiveness), low hygroscopicity to suppress invasion of the electrolyte solution, and which is not expanded or eroded by the electrolyte solution is preferably used. More preferably unstretched polypropylene (CPP) may be used.
  • FIG. 1 is a schematic diagram of an oxide (b) crystal structure according to an embodiment of the present invention.
  • LiCoO 2 with a D50 of approximately 15-20 ⁇ m as a single-phase structure and LiNi 0.53 Co 0.2 Mn 0.27 O 2 with a D50 of about 5-8 ⁇ m which is an aggregate of the fine particles of about 1-2 ⁇ m obtained in Preparation Example 1 was mixed at a ratio of 50:50 to prepare a mixed cathode material.
  • the prepared positive electrode material was mixed with Super P as a conductive material and polyvinylidene fluoride as a binder in a weight ratio of 92: 4: 4, and NMP (N-methyl pyrrolidone) was added to prepare a slurry.
  • the positive electrode slurry was applied to an aluminum current collector and then dried in a vacuum oven at 120 ° C. to prepare a positive electrode.
  • MCMB meocarbon microbead
  • super P is used as a conductive material
  • PVdF is used as a binder, respectively, in a ratio (weight ratio) of 92: 2: 6, and dispersed in NMP, followed by copper foil. It was coated on to prepare a negative electrode.
  • An electrode assembly was prepared using a porous separator made of polypropylene between the cathode and the anode thus prepared.
  • the electrode assembly was placed in a pouch type case and the electrode leads were connected. Then, a volume ratio of 1: 1 ethylene carbonate (EC) and dimethyl carbonate (DMC) solution in which 1 M LiPF 6 was dissolved was injected into the electrolyte, and then sealed. To assemble a lithium secondary battery.
  • EC ethylene carbonate
  • DMC dimethyl carbonate
  • a mixed cathode material and a lithium secondary battery were manufactured in the same manner as in Example 1, except that the weight ratio of LiCoO 2 and LiNi 0.53 Co 0.2 Mn 0.27 O 2 in the mixture was 70:30.
  • a mixed cathode material and a lithium secondary battery were manufactured in the same manner as in Example 1, except that the weight ratio of LiCoO 2 and LiNi 0.53 Co 0.2 Mn 0.27 O 2 in the mixture was 40:60.
  • a mixed cathode material and a lithium secondary battery were prepared in the same manner as in Example 1 except that LiNi 1/3 Co 1/3 Mn 1/3 O 2 was used instead of LiNi 0.53 Co 0.2 Mn 0.27 O 2 in the mixture. Prepared.
  • the discharge capacity of the battery according to Comparative Example 1 decreases rapidly as C-rate increases, whereas the batteries of Examples 1 and 2 according to the present invention have excellent C-rate characteristics.
  • the C-rate characteristic shows a high discharge capacity of 90% or more even at 2C rate.
  • the improvement of the C-rate characteristics is also expressed in the low C-rate of 1C, it can be seen that the higher the C-rate in the cells of Examples 1 and 2, respectively, the degree of improvement of the discharge characteristics is much higher. .
  • the positive electrode material according to the present invention uses a mixture of oxides (a) and (b) of a specific composition, and by adjusting their mixing ratio in a specific range to produce a high capacity secondary battery while exhibiting a high energy density.
  • the oxide (b) has a stable layered structure, the stability of the crystal structure during charging and discharging is improved, and thus a battery including the positive electrode material has a high capacity and a high cycle stability material, thereby improving overall battery performance. There is an advantage that it can.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

본 발명은 본 명세서에서 정의하는 산화물 분말(a)와, 본 명세서에서 정의하는 산화물 분말(b1) 및 산화물 분말(b2)로 이루어진 군에서 선택되는 1종 이상의 산화물 분말(b)의 혼합물로서, 두 산화물 분말들의 혼합비(산화물 분말(a): 산화물 분말(b))가 50: 50 내지 90: 10인 양극 재료를 제공한다. 본 발명에 따른 양극 재료는 고용량이고 높은 사이클 안정성을 발휘할 수 있으며, 우수한 저장 안정성 및 고온 안전성을 발휘할 수 있는 소정의 조성식을 갖는 산화물 분말(b)를 50% 이하로 산화물 분말(a)와 혼합 사용함으로써 높은 에너지밀도를 발휘하면서도 고용량 전지를 구현할 수 있다는 장점이 있다.

Description

고에너지밀도의 양극 재료 및 이를 포함하는 리튬 이차전지
본 발명은 고에너지 밀도의 양극 재료 및 이를 포함하는 리튬 이차전지에 관한 것으로, 더욱 상세하게는 특정한 조성의 산화물 분말(a)과 특정한 조성의 산화물 분말(b)의 혼합물로서, 두 산화물 분말들의 혼합비(산화물 분말(a): 산화물 분말(b))가 50: 50 내지 90: 10 인 양극 재료에 관한 것이다.
최근, 충방전이 가능한 이차전지는 와이어리스 모바일 기기의 에너지원으로 광범위하게 사용되고 있다. 그 중, 리튬 이차전지는 높은 에너지 밀도, 방전 전압, 출력 안정성 등의 이점으로 인해 많이 사용되고 있다.
리튬 이차전지는 양극 재료로 LiCoO2 등의 금속 산화물과 음극 재료로 탄소 재료를 사용하며, 음극과 양극 사이에 폴리올레핀계 다공성 분리막을 넣고, LiPF6 등의 리튬염을 가진 비수성 전해액을 함침시켜 제조된다. 리튬 이차전지의 양극 재료로는 LiCoO2이 많이 사용되고 있지만, 상대적으로 고가이고, 충방전 전류량이 약 150 mAh/g 정도로 낮으며, 4.3 V 이상의 전압에서는 결정구조가 불안정하고, 전해액과 반응을 일으켜 발화의 위험성을 갖고 있는 등 여러 가지 문제점을 갖고 있다. 더욱이, LiCoO2은 그것의 제조 공정상에서 일부 변수(parameter)의 변화에도 매우 큰 물성 변화를 나타내는 단점을 가지고 있다. 특히, 고전위에서 사이클 특성과 고온 저장 특성은 공정 변수의 일부 변화로 인해 크게 변하는 경향이 있다.
이와 관련하여, 고전위에서 작동할 수 있도록 LiCoO2의 외면을 금속(알루미늄 등)으로 코팅하는 기술, LiCoO2를 열처리하거나 다른 물질과 혼합 시키는 기술 등이 제시되기도 하였으나, 이러한 양극 재료로 구성된 이차전지는 고전위에서 취약한 안전성을 나타내거나, 양산 공정에의 적용에 한계가 있다.
최근에는, 이차전지가 화석 연료를 사용하는 기존의 가솔린 차량, 디젤 차량 등의 대기오염 등을 해결하기 위한 방안으로 제시되고 있는 전기자동차(EV), 하이브리드 전기자동차(HEV) 등의 동력원으로서도 주목받고 있음에 따라, 그것의 사용량이 더욱 증가할 것으로 예상되고 있으므로, 상기와 같은 문제점들뿐만 아니라, 고전위 상태에서 전지의 안전성과 고온 저장 특성에 대한 문제점이 부각되고 있다.
LiCoO2의 이러한 문제점을 해결하기 위한 방안들 중의 하나로서, 둘 이상의 서로 다른 리튬 전이금속 산화물들의 혼합물을 양극 재료로 사용하는 기술들이 제시되었는 바, 이들은 각각의 리튬 전이금속 산화물 단독으로 양극 재료를 구성할 때의 단점을 보완한다.
그러나, 종래의 혼합물 형태의 양극 재료는 두 성분의 단순한 조합 이상의 상승 효과를 기대하기 어렵다는 한계를 가지고 있다.
따라서, 본 발명은 상기와 같은 종래기술의 문제점과 과거로부터 요청되어온 기술적 과제를 해결하는 것을 목적으로 한다.
본 발명의 목적은 높은 에너지 밀도를 가지면서도 용량 특성이 우수한 양극 재료를 제공하는 것이다.
본 발명의 또 다른 목적은 높은 에너지 밀도를 갖는 양극 재료를 사용함으로써 우수한 레이트 특성을 발휘할 수 있는 리튬 이차전지를 제공하는 것이다.
이러한 목적을 달성하기 위한 본 발명에 따른 양극 재료는, 하기에서 정의한 산화물 분말(a)과, 하기에서 정의한 산화물 분말(b1) 및 산화물 분말(b2)로 이루어진 군에서 선택되는 1종 이상의 산화물 분말(b)의 혼합물로서, 두 산화물 분말들의 혼합비(산화물 분말(a): 산화물 분말(b))가 50: 50 내지 90: 10로 구성되어 있다.
[산화물 분말(a)]
하기 식(1)로 표현되는 산화물 분말:
Lix(CoyAmDz)Ot (1)
상기 식에서, 0.8≤x≤1.2, D≤z≤0.3, 1.8≤t≤4.2, (0.8-m-z)≤y≤(2.2-m-z), 0≤m≤0.3이고, A는 Mg 및 Ca으로부터 선택되는 1종 이상이며, D는 Ti, Zr, Hf, V, Nb, Ta; Cr, Mo, W, Mn, Tc, Re, Fe, Ru, Os, Co, Rh, Ir, Ni, Pd, Pt, Cu, Au, Ag, Zn, Cd, Hg, B, Al, Ga, In, TI, C, Si, Ge, Sn, Pb, N, P, As, Sb 및 Bi로 이루어진 군으로부터 선택되는 1종 이상이고;
[산화물 분말(b1)]
하기 식(2)로 표현되는 산화물 분말:
Lix(Ni1-a-bMnaCob)yO2 (2)
상기 식에서, 0.05≤a≤0.4, 0.1≤b≤0.4, 0.4≤1-a-b≤0.7, 0.95≤x≤1.05, 1.9≤x+y≤2.3이며;
[산화물 분말(b2)]
Ni, Mn 및 Co의 혼합 전이금속을 포함하며 리튬을 제외한 전체 전이금속의 평균 산화수가 +3가 보다 크고, 하기 식 3 및 4의 조건을 만족하는 산화물 분말:
1.1<m(Ni)/m(Mn)<1.5 (3)
0.4<m(Ni2+)/m(Mn4+)<1 (4)
상기 식에서, m(Ni)/m(Mn)는 망간 대비 니켈의 몰비이고, m(Ni2+)/m(Mn4+)는 Mn4+ 대비 Ni2+의 몰비이다.
본 발명에 따른 양극 재료는 2 종의 리튬 전이금속 산화물 분말의 혼합물로서, 산화물 분말(a)와 산화물 분말(b)가 50: 50 내지 90: 10로 혼합됨으로써 높은 에너지 밀도를 발휘하면서도 용량 특성이 우수하다는 장점이 있다. 더욱 바람직한 혼합비는 50: 50 내지 70: 30이다.
본 출원의 발명자들은 다양한 실험을 거듭한 끝에, 산화물 분말(a)와의 혼합 사용시 산화물 분말(b)의 혼합비가 50% 이하로 포함되는 경우, C-Rate에서 방전 용량 유지율이 매우 우수하고 소망하는 레이트 특성을 발휘할 수 있음을 확인하였다. 구체적으로, 본 발명에 따른 양극 재료를 사용하는 경우 단위 부피당 에너지 밀도(VED)가 478 Wh/l 이상이고, 단위 무게당 에너지 밀도(GED)가 201 Wh/g 이상인 리튬 이차전지를 제조할 수 있다.
반면, 산화물 분말(b)의 혼합비가 50%를 초과하는 경우에는 방전용량이 현저히 감소되고 특히 C-Rate가 높아질수록 이러한 감소율이 크게 나타나는 문제가 있고, 10% 미만이면 고용량 특성을 발휘할 수 없다는 문제가 있다.
상기 산화물 분말들은 성능향상을 위해 Al2O3 등으로 표면이 코팅될 수도 있고, 또는 Al2O3 등이 함께 혼합될 수도 있음은 물론이다.
상기 식 1의 바람직한 예로는 LiCoO2를 들 수 있지만, 이것으로 한정되는 것은 아니다.
상기 산화물 분말(b)에서 산화물 분말(b1)은 조성이 상기 식(2)로 정의되는 특정 조건(도 1 참조)을 만족시킴으로써 고용량이고 높은 사이클 안정성을 발휘할 수 있으며, 우수한 저장 안정성 및 고온 안전성을 발휘할 수 있다. 이하에서는 산화물 분말(b1)에 대해 상술한다.
상기 Ni의 전체 몰분율(1-a-b)은 망간 및 코발트에 비해 상대적으로 니켈 과잉의 조성으로서 0.4 ~ 0.7 이다. 니켈의 함량이 0.4 미만인 경우에는 높은 용량을 기대하기 어렵고, 반대로 0.7을 초과하는 경우에는 안전성이 크게 저하되는 문제가 있다.
상기 코발트의 함량(b)은 0.1 ~ 0.4인 바, b>0.4으로 코발트의 함량이 지나치게 높은 경우, 코발트의 높은 함량으로 인해 원료 물질의 비용이 전체적으로 증가하고 가역 용량이 다소 감소한다. 반면에, 코발트의 함량이 지나치게 낮은 경우(b<0.1)에는 충분한 레이트 특성과 전지의 높은 분말 밀도를 동시에 달성하기 어렵다.
상기 리튬의 함량이 지나치게 높은 경우, 즉, x>1.05인 경우, 특히 T=60℃에서 고전압(U = 4.35 V)으로 사이클 동안에 안전성이 낮아질 수 있으므로 문제가 있다. 반면에, 리튬의 함량이 지나치게 낮으면, 즉, x<0.95인 경우에는 낮은 레이트 특성을 나타내고, 가역 용량이 감소될 수 있다.
하나의 바람직한 예에서, 상기 산화물 분말(b1)은 혼합 전이금속 산화물 층('MO층')들 사이로 리튬 이온이 흡장 및 방출되며, 상기 리튬 이온의 흡장 및 방출 층('가역적 리튬층')에는 MO층으로부터 유래된 일부 Ni 이온이 삽입되어 MO층들을 상호 결합하고 있는 구조일 수 있다.
이하, 본 명세서에서는 경우에 따라, 가역적 리튬층에 삽입되어 결합되는 Ni를 '삽입된 Ni'로 표현하기도 한다.
구체적으로 본 출원의 발명자들은 도 2에서와 같이, MO층의 일부 니켈이 가역적 리튬층으로 내려와 고정되는 경우, 리튬의 흡장 및 방출이 방해를 받게 될 것이라는 종래의 통념과는 달리, 오히려 결정구조가 안정화되어 리튬의 흡장 및 방출에 의해 결정구조가 붕괴되는 문제점을 방지할 수 있음을 확인하였다.
이에 따라, 산소 탈리에 의한 추가적인 구조 붕괴가 일어나지 않고 더 이상의 Ni2+의 발생을 방지함으로써 수명특성과 안전성이 동시에 향상되는 바, 전지 용량 및 사이클 특성이 크게 향상될 수 있고, 소망하는 수준의 레이트 특성을 발휘할 수 있다. 이러한 본 발명의 개념은 종래의 관념을 완전히 뒤엎는 획기적인 것이라 할 수 있다.
상기 산화물 분말(b1)에서 MO층에는 바람직하게는 Ni2+와 Ni3+가 공존하고 있고, 그 중 일부 Ni2+가 가역적 리튬층에 삽입되어 있는 구조일 수 있다. 즉, 가역적 리튬층에 삽입된 Ni 이온은 바람직하게는 Ni2+일 수 있다.
이러한 Ni2+는 리튬 이온(Li+)과 크기가 매우 유사하므로, 가역적 리튬층에 삽입되어 결정 구조의 형태를 변형시키지 않으면서 충전시 리튬 이온이 탈리되었을 때 MO층의 반발력에 의한 구조 붕괴를 지지하는 역할을 수행할 수 있다.
또한, 상기 삽입된 Ni2+는 MO층들 간에 삽입되어 이들을 지지하는 역할을 수행하는 바 소망하는 충전 안정성 및 사이클 안정성의 향상을 발휘할 수 있도록, 적어도 MO층 사이를 안정적으로 지지할 수 있는 정도로 함유되는 것이 바람직하다. 이와 동시에, 가역적 리튬층에서 리튬 이온의 흡장 및 방출에 방해가 되지 않을 정도로 삽입됨으로써 레이트 특성을 저하시키지 않을 필요가 있다. 즉, 가역적 리튬층에 삽입된 Ni2+의 몰분율이 너무 높으면 양이온 혼합이 증가하여 국부적으로 전기화학적으로 반응이 없는 암염구조(rock salt structure)가 형성되므로 충전 및 방전을 방해할 뿐만 아니라 이에 따라 방전 용량이 감소될 수 있다.
이러한 점을 종합적으로 고려할 때, 상기 가역적 리튬층에 삽입되어 결합되는 Ni2+의 몰분율은 바람직하게는 산화물(b1)의 전이금속 전체량을 기준으로 0.03 ~ 0.07 일 수 있다.
한편, 상기 전이금속(M)에 대한 Li의 비(Li/M)가 낮아질수록 MO층에 삽입된 Ni의 양이 점점 증가하게 되는 바, 너무 많은 양이 가역적 리튬층으로 내려올 경우, 충전 및 방전 과정에서 Li+의 움직임이 방해를 받아 가역 용량이 감소되거나 레이트 특성이 저하되는 문제점이 있다. 반대로, Li/M의 비가 너무 높은 경우, MO층에 삽입된 Ni의 양이 너무 작아 구조적 불안정이 유발되어 전지의 안전성이 저하하고 수명 특성이 나빠질 수 있으므로 바람직하지 않다. 더욱이, 지나치게 높은 Li/M의 값에서는 미반응 Li2CO3의 양이 많아지는 바, 즉, 불순물이 다량 생성되므로 내화학성 및 고온 안정성이 저하될 수 있다. 따라서, 하나의 바람직한 예에서, 상기 LiNiMO2에서 Li: M의 비율은 0.95 ~ 1.04: 1 일 수 있다.
하나의 바람직한 예에서, 상기 산화물(b-1)는 불순물로서 수용성 염기, 특히 Li2CO3가 실질적으로 포함되어 있지 않다.
일반적으로 니켈계 리튬 혼합 전이금속 산화물에는 리튬 산화물, 황산 리튬, 탄산 리튬 등의 수용성 염기가 다량 포함되어 있는 바, 이러한 수용성 염기는 첫째, LiNiMO2에 존재하는 Li2CO3, LiOH 등과 같은 염기일 수 있고, 둘째, LiNiMO2 표면에서의 이온교환(H+ (물) <- -> Li+ (표면, 벌크의 외면))에 의해 생성된 염기일 수 있다. 후자의 경우는 통상 무시할 수 있는 수준이다.
상기 첫 번째 수용성 염기는 주로 소결시의 미반응 리튬 원료로 인해 형성된다. 이는, 종래 니켈계 리튬 혼합 전이금속 산화물의 층상 결정 구조의 붕괴를 방지하기 위해 상대적으로 많은 양의 리튬을 첨가하고 저온에서 소결하였는 바, 코발트계 산화물에 비해 상대적으로 많은 입계를 가지게 되고, 소결시 리튬 이온이 충분하게 반응하지 못하기 때문이다.
반면에, 산화물(b1)에는, 앞서 설명한 바와 같이, 층상 결정구조가 안정적으로 유지되므로, 공기 분위기에서 상대적으로 고온의 소결 공정을 수행할 수 있어서, 상대적으로 적은 결정 입계를 갖는다. 또한, 미반응 리튬이 입자 표면에 잔류하는 것이 방지됨으로써, 입자 표면에 탄산 리튬, 황산 리튬 등의 리튬염이 실질적으로 존재하지 않는다. 또한, 산화물(b1)의 제조시 리튬 소스를 과잉 첨가할 필요가 없으므로, 분말 내 잔류하는 미반응 리튬 소스로 인해 불순물들이 형성되는 문제점을 근본적으로 방지할 수 있다.
이에 따라, 수용성 염기가 존재하는 경우에 발생할 수 있는 많은 문제점들, 특히 고온에서 전해액의 분해 반응을 촉진하여 가스를 발생시킴으로써 전지의 안전성을 해치는 문제를 해결할 수 있다. 따라서, 우수한 저장 안정성 및 고온 안전성이 우수하며 저렴한 비용으로 대량생산이 가능하다는 장점이 있다.
한편, 상기 산화물 분말(b) 중 산화물 분말(b2)는 우수한 층상 결정구조에 의해 현저히 향상된 고율 충방전 특성을 제공한다. 이하에서는 산화물 분말(b2)에 대해 상술한다.
상기 층상 결정구조의 바람직한 예로는 α-NaFeO2 층상 결정구조를 들 수 있다.
종래에는 Ni2+과 Mn4+를 동량으로 포함함으로써 전이금속 이온의 산화수를 평균 +3가 상태로 만들어야 층상 구조가 잘 이루어질 수 있는 것으로 알려져 있었다. 그러나, Ni2+의 경우 Li+와 거의 유사한 크기를 가짐으로써 리튬층으로 이동하여 암염 구조를 형성할 확률이 높으며, 이에 따라 전기화학적 성능이 퇴화된다는 문제가 있었다.
이에, 본 출원의 발명자들은 안정적인 층상 결정구조를 가지면서도 용량 및 레이트 특성이 우수한 양극 활물질을 제조하기 위해 심도있는 연구를 수행한 결과, 안정적인 층상 결정구조는 Ni2+ 및 Mn4+에 기인된다기 보다, 리튬의 이온 크기와 전이금속 이온의 크기의 차이에 더욱 의존적임을 발견하였다.
구체적으로, 층상 결정구조를 가지는 리튬 복합 전이금속 산화물의 경우, 가역적 리튬층과 MO층을 차지하는 이온의 크기 차이, 즉, 리튬 이온과 전이금속 이온의 크기 차이가 클수록 두 층이 적정하게 분리되어 잘 발달될 수 있다는 것을 확인하였다.
이와 관련하여, 이온의 크기 차이를 크게 하기 위해 MO층에 이온 반경이 작은 금속 원소를 사용하는 방안을 고려할 수 있으나, 이 경우 층상 구조는 잘 만들 수 있지만 전자를 이동시킬 수 있는 금속 이온의 수가 작아지기 때문에 상대적으로 용량이 감소된다는 한계가 있었다.
이에, 본 출원의 발명자들은 용량의 퇴화 없이 우수한 층상 결정구조를 달성하기 위해 노력한 결과, 상기 이온의 크기 차이는 산소 이온과 결합하는 거리 또는 결합력 등으로 나타낼 수 있으며, 양이온의 특성을 갖는 금속의 경우 산화수가 높아질수록 작은 이온 반경을 갖는 바, 전이금속의 산화수를 높임으로써 MO층과 가역적 리튬층의 차이를 크게 할 수 있을 것으로 판단하였고, 많은 실험들을 통해 이를 확인하였다.
이와 같이, 전이금속의 평균 산화수를 +3가 보다 높임으로써 리튬 이온과 전이금속 이온의 크기 차이에 의해 잘 발달된 층상 결정구조를 형성하는 개념은, 층상 결정구조의 안정화를 위해 전이금속의 산화수를 +3가로 맞추는 것이 필요한 것으로 인식해 오던 당업계의 통념을 뒤엎는 것이다.
한편, 종래와 같이 Ni과 Mn의 함량을 실질적으로 동량으로 맞추는 경우, Mn4+ 이온이 Ni2+ 이온의 형성을 유도하고 이에 따라 Mn이 다량 포함된 화합물에서 다량의 Ni2+가 리튬층에 위치하게 되어 바람직하지 못하다.
이에, 본원의 발명자들은 전이금속의 산화수를 높이는 방법으로서, 리튬층으로 쉽게 유입될 수 있는 Ni2+의 양을 줄여 전체적인 산화수, 즉, 평균 산화를 +3가 이상으로 만들어주는 것이 가장 효과적일 것으로 판단하였다. 또한, Ni2+에 비해 크기가 작은 Ni3+의 양이 높아짐에 따라, 이온의 크기 차이가 더욱 커질 수 있다고 판단하였다.
따라서, 상기 산화물 분말(b2)는 망간에 비해 니켈을 상대적으로 다량 포함하고(식(3) 참조), Mn4+에 비해 Ni2+를 상대적으로 소량 포함(식(4) 참조)하는 것으로 구성되어 있다. 구체적으로, 산화물 분말(b2)는 리튬 니켈-망간-코발트 산화물로서 (i) 리튬을 제외한 전체 전이금속인 니켈-망간-코발트의 평균 산화수가 +3가 보다 크고, (ii) 망간에 비해 니켈이 상대적으로 다량 포함되며, (iii) Mn4+에 비해 Ni2+가 상대적으로 소량 포함되는 점에 특징이 있다.
이러한 리튬 니켈-망간-코발트 산화물은 전이금속의 평균 산화수가 +3가 보다 크게 유지됨으로써, 상기 산화물의 안정적인 결정구조에 기반하여, 가역적 리튬층에 존재하는 전이금속의 양을 현저하게 감소시킬 수 있으며, 이에 따라 리튬 이온의 이동도 및 레이트 특성을 향상시킬 수 있음은 물론, 용량의 향상도 가져올 수 있다는 장점이 있다.
상기 특징(i)과 관련하여, 산화물 분말(b2)는 리튬을 제외한 전이금속의 평균 산화수가 +3가 보다 크므로, 평균 산화수가 +3가인 경우에 비해 전이금속 이온의 전반적인 크기가 작아지게 되고, 이에 따라 리튬 이온과의 크기 차이가 커지게 되어 층간 분리가 잘 이루어지므로, 안정적인 층상 결정구조를 형성할 수 있다.
다만, 전이금속의 평균 산화수가 지나치게 커지게 되면 리튬 이온을 이동시킬 수 있는 전하의 양이 줄어들게 되어 용량이 감소되는 문제가 있으므로, 전이금속의 평균 산화수는 3.0 초과 내지 3.5 이하인 것이 바람직하고, 더욱 바람직하게는 3.01 내지 3.3이며, 특히 바람직하게는 3.1 내지 3.3이다.
이 경우, 망간 및 망간의 함량에 대응하는 함량의 니켈의 전체 평균 산화수가 3.0 초과 내지 3.5 이하일 수 있고, 바람직하게는 3.1 내지 3.3일 수 있다.
본 발명에서 상기 '리튬을 제외한 전이금속의 평균 산화수'는, 예를 들어, 리튬 이온의 일부가 전이금속의 사이트에 포함되어 있는 경우라도 리튬 이온의 평균 산화수를 고려하지 않는다는 것을 의미한다.
상기와 같은 전이금속의 평균 산화수의 조절은, 예를 들어, 리튬 전이금속 산화물을 제조하는 과정에서 전이금속 전구체의 전이금속의 비율 및 리튬 전구체의 반응량을 조절함으로써 달성될 수 있다.
상기 특징(ii)와 관련하여, 산화물 분말(b2)는 하기 식(3)에서와 같이, 망간 대비 니켈의 몰비가 1.1 보다 크고 1.5 보다 작은 것으로 이루어져 있다.
1.1<m(Ni)/m(Mn)<1.5 (3)
이와 같이, 니켈이 망간에 비해 상대적으로 다량 포함되는 경우에는, 적어도 니켈 중 망간의 함량을 초과하는 함량만큼 Ni3+이 되고, 상대적으로 이온의 크기가 작아지게 된다. 따라서, 리튬 이온의 크기와 전이금속 이온의 평균 크기 차이가 커지게 되고, Ni2+가 리튬층으로 삽입되는 것을 최소화할 수 있어서 층상 결정구조의 안정성을 높일 수 있다.
다만, m(Ni)/m(Mn)가 1.5보다 커지게 되면, Mn 함량 감소로 인해 상대적으로 안전성이 나빠지고 활물질의 제조비용이 상승하게 되므로, 바람직하지 않다. 더욱 바람직한 예에서, 상기 m(Ni)/m(Mn)는 1.2 ~ 1.4일 수 있다.
이와 반대로, 니켈의 함량보다 망간의 함량이 많을 경우에도 전이금속의 평균 산화수가 +3가 이상이면 층상 결정구조가 형성되기는 하지만, 상대적으로 충방전에 기여하지 않는 +4가 이온의 증가로 용량이 감소하는 것을 확인할 수 있었다.
상기에서 살펴본 바와 같이, 산화물 분말(b2)는 니켈을 망간에 비해 과량 포함하므로, 상기 니켈은 망간 함량 대비 초과량의 니켈(1)과, 망간 함량에 대응하는 함량의 니켈(2)로 구별될 수 있다.
상기 니켈은 +2가보다 큰 평균 산화수를 가진다.
상기 망간 함량 대비 초과량의 니켈(1)은 바람직하게는 Ni3+이고, 상기 망간 함량에 대응하는 함량의 니켈(2)는 Ni2+와 Ni3+를 모두 포함한다.
Ni2+ 및 Ni3+을 포함하는 상기 니켈(2) 중 Ni3+의 비율은 11 ~ 60%인 것이 바람직하다. 즉, 상기 비율이 11%보다 작으면 소망하는 전기화학적 특성이 얻어지기 어렵고, 60%보다 크면 산화수 변화량이 너무 작아 용량 감소가 심해지고 리튬 분산물이 많아지므로, 바람직하지 않다. 이 경우에 있어서, 망간 및 니켈의 평균 산화수는 대략 3.05 ~ 3.35이다.
상기 특징(iii)와 관련하여, 산화물 분말(b2)는 하기 식(4)에서와 같이, Mn4+ 대비 Ni2+의 몰비가 0.4 보다 크고 1 보다 작은 것으로 이루어져 있다. 즉, Ni2+와 Mn4+가 동량으로 포함되어 있는 것이 아니라, Mn4+에 비해 Ni2+가 상대적으로 소량 포함되어 있다.
0.4<m(Ni2+)/m(Mn4+)<1 (4)
상기 m(Ni2+)/m(Mn4+)가 1 이상이면 전이금속의 평균 산화수의 증가가 없어 이온 크기 차이를 유도할 수 없고, 0.4 이하이면 전이금속의 산화수가 너무 높아져 이동시킬 수 있는 전하의 양이 줄어들어 용량이 감소하게 된다. 상기 m(Ni2+)/m(Mn4+)는 0.4 보다 크고 0.9 이하일 경우에 특히 높은 전기화학적 특성을 얻을 수 있다.
상기 산화물 분말(b2)에서 전이금속 중 코발트(Co)의 함량은 바람직하게는 전체 전이금속 함량의 10 mol% 미만일 수 있다. 코발트의 함량이 높을수록 비용 상승이 초래되고, 충전 상태에서 Co4+는 불안정하여 안정성이 낮아지는 단점이 있으므로 바람직하지 않기 때문이다.
이상 살펴본 바와 같이, 산화물 분말(b2)는 니켈이 망간보다 다량 포함되어 있고, 전이금속의 평균 산화수가 +3가 보다 큼으로써, 리튬 이온과 전이금속 이온의 크기 차이가 커져 층간 분리가 촉진되는 바, Ni2+가 리튬층으로 삽입되는 것을 최소화할 수 있다. 이에, 상기 양극재에서 리튬 사이트에 삽입된 니켈의 함량은 Li 전체 사이트에서 Ni(Ni2+)이 점유하고 있는 사이트의 비율로서 5 mol% 미만일 수 있다.
상기 산화물 분말(b2)에서 전이금속인 니켈, 망간 및 코발트는 층상 결정구조를 유지할 수 있는 범위 내에서, 다른 금속원소(들)로 일부 치환될 수 있으며, 바람직하게는 5% 이내의 소량의 금속원소, 양이온 원소 등으로 치환될 수 있다. 이 경우에도 본 발명에 따른 특징을 만족하는 한 본 발명의 범주에 속하는 점은 자명하다.
한편, 본 발명에서, 상기 산화물 분말(a)는 바람직하게는 단일상(monolithic) 구조로 이루어져 있을 수 있다. 이에 따라, 내부 공극(inner porosity)을 거의 갖고 있지 않으며, 입자의 크기가 커짐에 따라 결정 입자의 안정성이 향상되고, 이를 포함한 전지 제작이 용이해져 제조공정의 효율성을 높일 수 있다.
예를 들어, 산화물 분말(a)는 포테이토 형태(potato shaped)의 단일 입자로서, 그것의 D50가 10 ㎛ 이상, 바람직하게는 15 ㎛ 이상일 수 있다.
한편, 상기 산화물 분말(b)는 바람직하게는 응집상(agglomerated) 구조, 즉, 미소 분말들의 응집체 형태로 이루어져 있어서, 내부 공극을 가지고 있는 구조일 수 있다. 이러한 응집형 입자 구조는 전해액과 반응하는 표면적을 최대화시켜 고율의 레이트 특성을 발휘함과 동시에 양극의 가역 용량을 확장시킬 수 있다는 점에서 특징이 있다.
예를 들어, 응집상 구조의 산화물 분말(b)는 1 ㎛ 내지 5 ㎛의 미소 입자들이 서로 응집되어 있으며, 그것의 D50은 10 ㎛ 이하, 바람직하게는 8 ㎛ 이하, 더욱 바람직하게는 4 내지 7 ㎛일 수 있다. 특히 바람직하게는, 90% 이상이 1 내지 4 ㎛의 크기(D50)를 가진 미소 입자들의 응집체로서 산화물 분말(b)가 구성될 수 있다.
본 발명은 또한 상기 양극 재료를 포함하는 리튬 이차전지를 제공한다. 일반적으로, 리튬 이차전지는 양극과 음극 사이에 분리막이 개재된 상태에서 리튬 함유 비수계 전해액으로 이루어져 있다.
상기 양극은, 예를 들어, 양극 집전체 상에 상기 양극 재료, 도전제 및 바인더의 혼합물을 도포한 후 건조 및 프레싱하여 제조되며, 필요에 따라서는, 상기 혼합물에 충진제를 더 첨가하기도 한다.
상기 양극 집전체는 일반적으로 3 내지 500 ㎛ 두께로 만든다. 이러한 양극 집전체는, 당해 전지에 화학적 변화를 유발하지 않으면서 높은 도전성을 가지는 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 스테인리스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소, 또는 알루미늄이나 스테인리스 스틸의 표면에 카본, 니켈, 티탄, 은 등으로 표면처리한 것 등이 사용될 수 있다. 집전체는 그것의 표면에 미세한 요철을 형성하여 양극 재료의 접착력을 높일 수도 있으며, 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태가 가능하다.
상기 도전제는 통상적으로 양극 재료를 포함한 혼합물 전체 중량을 기준으로 1 내지 30 중량%로 첨가된다. 이러한 도전제는 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 천연 흑연이나 인조 흑연 등의 흑연; 카본블랙, 아세틸렌 블랙, 케첸 블랙, 채널 블랙, 퍼네이스 블랙, 램프 블랙, 서머 블랙 등의 카본블랙; 탄소 섬유나 금속 섬유 등의 도전성 섬유; 불화 카본, 알루미늄, 니켈 분말 등의 금속 분말; 산화아연, 티탄산 칼륨 등의 도전성 위스키; 산화 티탄 등의 도전성 금속 산화물; 폴리페닐렌 유도체 등의 도전성 소재 등이 사용될 수 있다.
상기 바인더는 전극 재료와 도전제 등의 결합과 집전체에 대한 결합에 조력하는 성분으로서, 통상적으로 양극 재료를 포함하는 혼합물 전체 중량을 기준으로 1 내지 30 중량%로 첨가된다. 이러한 바인더의 예로는, 폴리불화비닐리덴, 폴리비닐알코올, 카르복시메틸셀룰로우즈(CMC), 전분, 히드록시프로필셀룰로우즈, 재생 셀룰로우즈, 폴리비닐피롤리돈, 테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 에틸렌-프로필렌-디엔 테르 폴리머(EPDM), 술폰화 EPDM, 스티렌 브티렌 고무, 불소 고무, 다양한 공중합체 등을 들 수 있다.
상기 충진제는 양극의 팽창을 억제하는 성분으로서 선택적으로 사용되며, 당해 전지에 화학적 변화를 유발하지 않으면서 섬유상 재료라면 특별히 제한되는 것은 아니며, 예를 들어, 폴리에틸렌, 폴리프로필렌 등의 올리핀계 중합체; 유리섬유, 탄소섬유 등의 섬유상 물질이 사용된다.
상기 음극은 음극 집전체 상에 음극 재료를 도포, 건조하여 제작되며, 필요에 따라, 앞서 설명한 바와 같은 성분들이 더 포함될 수도 있다.
상기 음극 집전체는 일반적으로 3 내지 500 ㎛ 두께로 만들어진다. 이러한 음극 집전체는, 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 구리, 스테인리스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소, 구리나 스테인리스 스틸의 표면에 카본, 니켈, 티탄, 은 등으로 표면처리한 것, 알루미늄-카드뮴 합금 등이 사용될 수 있다. 또한, 양극 집전체와 마찬가지로, 표면에 미세한 요철을 형성하여 음극 재료의 결합력을 강화시킬 수도 있으며, 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태로 사용될 수 있다.
상기 음극 재료는, 예를 들어, 난흑연화 탄소, 흑연계 탄소 등의 탄소; LixFe2O3(0≤x≤1), LixWO2(0≤x≤1), SnxMe1-xMe'yOz (Me: Mn, Fe, Pb, Ge; Me': Al, B, P, Si, 주기율표의 1족, 2족, 3족 원소, 할로겐; 0<x≤1; 1≤y≤3; 1≤z≤8) 등의 금속 복합 산화물; 리튬 금속; 리튬 합금; 규소계 합금; 주석계 합금; SnO, SnO2, PbO, PbO2, Pb2O3, Pb3O4, Sb2O3, Sb2O4, Sb2O5, GeO, GeO2, Bi2O3, Bi2O4, and Bi2O5 등의 금속 산화물; 폴리아세틸렌 등의 도전성 고분자; Li-Co-Ni 계 재료 등을 사용할 수 있으며, 이들을 단독 또는 1종 이상 혼합하여 사용할 수 있다.
상기 분리막은 높은 이온 투과도와 기계적 강도를 가지는 절연성의 얇은 박막으로서, 그것의 기공 직경은 0.01 ~ 10 ㎛이고 두께는 5 ~ 300 ㎛이다. 분리막 소재의 바람직한 예로는, 미세 다공 구조를 가지는 폴리에틸렌, 폴리프로필렌, 폴리테트라플루오로에틸렌, 폴리에틸렌테레프탈레이트, 폴리부틸렌테레프탈레이트, 폴리에틸렌나프탈레이트 및 이들의 둘 또는 이상의 혼합체 등을 들 수 있지만, 상기의 것으로 한정되는 것은 아니다.
또한, 상기 분리막은 무기물로 단면 또는 양면 코팅될 수 있다.
상기 리튬 함유 비수계 전해액은 비수 전해액과 리튬염으로 이루어져 있다.
상기 비수 전해액으로는, 예를 들어, N-메틸-2-피롤리디논, 프로필렌 카르보네이트, 에틸렌 카르보네이트, 부틸렌 카르보네이트, 디메틸 카르보네이트, 디에틸 카르보네이트, 감마-부틸로 락톤, 1,2-디메톡시 에탄, 테트라히드록시 프랑(franc), 2-메틸 테트라하이드로푸란, 디메틸술폭시드, 1,3-디옥소런, 포름아미드, 디메틸포름아미드, 디옥소런, 아세토니트릴, 니트로메탄, 포름산 메틸, 초산메틸, 인산 트리에스테르, 트리메톡시 메탄, 디옥소런 유도체, 설포란, 메틸 설포란, 1,3-디메틸-2-이미다졸리디논, 프로필렌 카르보네이트 유도체, 테트라하이드로푸란 유도체, 에테르, 피로피온산 메틸, 프로피온산 에틸 등의 비양자성 유기용매가 유기용매가 적어도 1종 이상 사용될 수 있다.
바람직하게는 환형 카보네이트계 용매와 선형 카보네이트계 용매를 1종 이상 혼합하여 사용할 수 있다.
또한, 바람직하게는 에틸렌 카르보네이트 또는 에틸렌 카르보네이트와 에틸메틸카보네이트와 같은 선형 카보네이트의 혼합 용매를 사용할 수 있다.
상기 리튬염은 상기 비수계 전해액에 용해되기 좋은 물질로서, 예를 들어, LiCl, LiBr, LiI, LiClO4, LiBF4, LiB10Cl10, LiPF6, LiCF3SO3, LiCF3CO2, LiAsF6, LiSbF6, LiAlCl4, CH3SO3Li, CF3SO3Li, (CF3SO2)2NLi, 클로로 보란 리튬, 저급 지방족 카르본산 리튬, 4 페닐 붕산 리튬, 이미드 등이 적어도 1종 이상 사용될 수 있다.
경우에 따라서는 유기 고체 전해질, 무기 고체 전해질 등이 사용될 수도 있다.
상기 유기 고체 전해질로는, 예를 들어, 폴리에틸렌 유도체, 폴리에틸렌 옥사이드 유도체, 폴리프로필렌 옥사이드 유도체, 인산 에스테르 폴리머, 폴리 에지테이션 리신(agitation lysine), 폴리에스테르 술파이드, 폴리비닐 알코올, 폴리 불화 비닐리덴, 이온성 해리기를 포함하는 중합체 등이 사용될 수 있다.
상기 무기 고체 전해질로는, 예를 들어, Li3N, LiI, Li5NI2, Li3N-LiI-LiOH, LiSiO4, LiSiO4-LiI-LiOH, Li2SiS3, Li4SiO4, Li4SiO4-LiI-LiOH, Li3PO4-Li2S-SiS2 등의 Li의 질화물, 할로겐화물, 황산염 등이 사용될 수 있다.
또한, 비수계 전해액에는 충방전 특성, 난연성 등의 개선을 목적으로, 예를 들어, 피리딘, 트리에틸포스파이트, 트리에탄올아민, 환상 에테르, 에틸렌 디아민, n-글라임(glyme), 헥사 인산 트리 아미드, 니트로벤젠 유도체, 유황, 퀴논 이민 염료, N-치환 옥사졸리디논, N,N-치환 이미다졸리딘, 에틸렌 글리콜 디알킬 에테르, 암모늄염, 피롤, 2-메톡시 에탄올, 삼염화 알루미늄 등이 적어도 1종 이상 첨가될 수도 있다. 경우에 따라서는, 불연성을 부여하기 위하여, 사염화탄소, 삼불화에틸렌 등의 할로겐 함유 용매를 더 포함시킬 수도 있고, 고온 보존 특성을 향상시키기 위하여 이산화탄산 가스를 더 포함시킬 수도 있다.
하나의 바람직한 예에서, 상기 이차전지는 수지층과 금속층을 포함하는 라미네이트 시트의 파우치형 케이스에 전극조립체가 밀봉된 파우치 전지일 수 있다.
상기 라미네이트 시트는, 예를 들어, 내부 수지층, 차단성 금속층 및 외부 수지층을 포함하는 구조로 이루어질 수 있다. 상기 외부 수지층은 외부 환경으로부터 우수한 내성을 가져야 하므로, 소정 이상의 인장강도와 내후성을 가지는 것이 필요하다. 그러한 측면에서 외부 수지층의 고분자 수지로는 폴리에틸렌 테레프탈레이트(PET)와 연신 나일론 필름이 바람직하게 사용될 수 있다. 상기 차단성 금속층은 가스, 습기 등 이물질의 유입 내지 누출을 방지하는 기능 이외에 전지케이스의 강도를 향상시키는 기능을 발휘할 수 있도록, 바람직하게는 알루미늄이 사용될 수 있다. 상기 내부 수지층의 고분자 수지로는 열융착성(열접착성)을 가지고, 전해액의 침입을 억제하기 위해 흡습성이 낮으며, 전해액에 의해 팽창하거나 침식되지 않는 폴리올레핀(polyolefin)계 수지가 바람직하게 사용될 수 있으며, 더욱 바람직하게는 무연신 폴리프로필렌(CPP)이 사용될 수 있다.
도 1은 본 발명의 하나의 실시예에 따른 산화물(b) 결정구조의 모식도이다;
도 2는 본 발명에 따른 산화물(b)의 바람직한 조성 범위를 보여주는 그래프이다;
도 3은 본 발명의 실험예 1에 따른 방전 용량 비율을 측정한 그래프이다.
이하에서는 실시예를 참조하여 본 발명을 더욱 상술하지만, 본 발명의 범주가 그것에 의해 한정되는 것은 아니다.
[제조예 1] 산화물 분말(b)의 제조
혼합 전이금속 전구체로서 혼합 수산화물 MOOH (M=Ni4/15(Mn1/2Ni1/2)8/15Co0.2)을 사용하였고, 상기 혼합 수산화물과 Li2CO3를 화학양론적 비율(Li:M = 1.02:1)로 혼합하고, 혼합물을 공기 중에서 920℃에서 10 시간 동안 소결하여, LiNi0.53Co0.2Mn0.27O2을 제조하였다. 이 때, 2차 입자들은 전혀 붕괴되지 않고 고스란히 유지되었다.
X-ray 분석으로 모든 샘플들이 잘 발달된 층상 결정 구조를 가지고 있음을 확인하였다. 또한, 단위 셀 체적은 소결 온도의 증가와 함께 현저하게 변화하지 않았는 바, 이는 현저한 산소 결핍 및 양이온 혼합의 현저한 증가가 나타나지 않고, 본질적으로 리튬 증발이 일어나지 않았음을 의미한다.
LiNi0.53Co0.2Mn0.27O2은 3.9 ~ 4.5% 정도로 니켈이 가역적 리튬층에 삽입되어 있고, 적정한 양의 Ni2+가 리튬 층에 삽입되어 구조적 안정성을 얻을 수 있다는 것을 확인하였다.
[실시예 1]
단일상 구조로서 대략 15 ~ 20 ㎛의 D50를 가진 LiCoO2와, 제조예 1에서 얻은 약 1 ~ 2 ㎛의 미소 입자들의 응집체인 약 5 ~ 8 ㎛의 D50를 가진 LiNi0.53Co0.2Mn0.27O2를 50:50의 비율로 혼합하여 혼합 양극 재료를 제조하였다.
상기 제조된 혼합 양극 재료를 도전재인 Super P 및 바인더인 폴리비닐리덴 플루오라이드(polyvinylidene fluoride)를 중량비 92:4:4으로 혼합한 후, NMP(N-methyl pyrrolidone)를 첨가하여 슬러리를 제조하였다. 이러한 양극 슬러리를 알루미늄 집전체에 도포한 후 120℃의 진공오븐에서 건조하여 양극을 제조하였다.
또한, 음극으로는 MCMB(mesocarbon microbead)를 활물질로 사용하고 도전재로는 super P 및 바인더로는 PVdF를 각각 사용하여 92:2:6의 비율(중량비)로 혼합하고 NMP에 분산시킨 후 구리 호일에 코팅하여 음극을 제조하였다.
이렇게 제조된 음극과 양극 사이에 폴리프로필렌으로 제조된 다공성 분리막을 사용하여 전극조립체를 제조하였다. 상기 전극조립체를 파우치형 케이스에 넣고 전극리드를 연결한 후, 1 M의 LiPF6이 녹아있는 부피비 1:1의 에틸렌카보네이트(EC)와 다이메틸카보네이트(DMC) 용액을 전해질로 주입한 다음, 밀봉하여 리튬 이차전지를 조립하였다.
[실시예 2]
혼합물에서 LiCoO2와 LiNi0.53Co0.2Mn0.27O2의 중량비가 70: 30인 것을 제외하고는 실시예 1과 동일한 방법으로 혼합 양극 재료 및 리튬 이차전지를 제조하였다.
[비교예 1]
혼합물에서 LiCoO2와 LiNi0.53Co0.2Mn0.27O2의 중량비가 40: 60인 것을 제외하고는 실시예 1과 동일한 방법으로 혼합 양극 재료 및 리튬 이차전지를 제조하였다.
[비교예 2]
혼합물에서 LiNi0.53Co0.2Mn0.27O2 대신에 LiNi1/3Co1/3Mn1/3O2를 사용하였다는 점을 제외하고는 실시예 1과 동일한 방법으로 혼합 양극 재료 및 리튬 이차전지를 제조하였다.
[실험예 1]
상기 실시예 1 및 2에서 제작된 전지와 비교예 1에서 각각 제작된 전지들을 0.2, 0.5, 1, 1.5 및 2 C rate로 방전용량(1 C rate 충전)을 측정하고, 5 C rate 용량 대비 각 C-rate에서의 방전용량의 비율을 계산하여, 이를 도 3에 나타내었다.
도 3에서 보는 바와 같이, 비교예 1에 따른 전지는 C-rate가 높아질수록 방전용량이 급격이 저하되는 반면에, 본 발명에 따른 실시예 1과 2의 전지는 C-rate 특성이 매우 우수하고, 특히 산화물(b)의 함량이 30%인 실시예 2의 경우 C-rate 특성이 2C rate에서도 90% 이상의 높은 방전용량을 나타내는 것을 확인할 수 있다. 또한, 이러한 C-rate 특성의 향상은 1C의 낮은 C-rate에서도 발현되고 있고, 실시예 1 및 2의 전지에서 각각 C-rate가 높아질수록 방전 특성의 향상 정도가 훨씬 더 높아졌음을 알 수 있다.
이상 검토한 바와 같이, 단순히 리튬 코발트 산화물과 리튬 니켈망간코발트 산화물을 혼합 사용하는 것만으로는 소망하는 레이트 특성을 발휘할 수 없고, 소정의 조성식을 갖는 물질을 특정한 혼합비로서 혼합하는 경우 상승효과를 발휘함을 확인할 수 있다.
본 발명이 속한 분야에서 통상의 지식을 가진 자라면, 상기 내용을 바탕으로 본 발명의 범주내에서 다양한 응용 및 변형을 행하는 것이 가능할 것이다.
이상의 설명과 같이, 본 발명에 따른 양극 재료는 특정한 조성의 산화물(a) 및 (b)를 혼합 사용하고, 이들의 혼합비를 특정한 범위로 조절함으로써 높은 에너지 밀도를 발휘하면서도 고용량인 이차전지를 제조할 수 있다. 특히, 상기 산화물(b)는 안정적인 층상 구조를 가지므로 충방전시 결정구조의 안정성이 향상되어, 이러한 양극 재료를 포함하는 전지는 고용량이고 높은 사이클 안정성을 발휘할 수 있는 물질이므로 전반적인 전지 성능을 향상시킬 수 있다는 장점이 있다.

Claims (21)

  1. 하기에서 정의한 산화물 분말(a)과, 하기에서 정의한 산화물 분말(b1) 및 산화물 분말(b2)로 이루어진 군에서 선택되는 1종 이상의 산화물 분말(b)의 혼합물로서, 두 산화물 분말들의 혼합비(산화물 분말(a): 산화물 분말(b))가 50: 50 내지 90: 10인 것을 특징으로 하는 양극 재료:
    [산화물 분말(a)]
    하기 식(1)로 표현되는 산화물 분말:
    Lix(CoyAmDz)Ot (1)
    상기 식에서, 0.8≤x≤1.2, D≤z≤0.3, 1.8≤t≤4.2, (0.8-m-z)≤y≤(2.2-m-z), 0≤m≤0.3이고, A는 Mg 및 Ca으로부터 선택되는 1종 이상이며, D는 Ti, Zr, Hf, V, Nb, Ta; Cr, Mo, W, Mn, Tc, Re, Fe, Ru, Os, Co, Rh, Ir, Ni, Pd, Pt, Cu, Au, Ag, Zn, Cd, Hg, B, Al, Ga, In, TI, C, Si, Ge, Sn, Pb, N, P, As, Sb 및 Bi로 이루어진 군으로부터 선택되는 1종 이상이고;
    [산화물 분말(b1)]
    하기 식(2)로 표현되는 산화물 분말:
    Lix(Ni1-a-bMnaCob)yO2 (2)
    상기 식에서, 0.05≤a≤0.4, 0.1≤b≤0.4, 0.4≤1-a-b≤0.7, 0.95≤x≤1.05, 1.9≤x+y≤2.3이며;
    [산화물 분말(b2)]
    Ni, Mn 및 Co의 혼합 전이금속을 포함하며 리튬을 제외한 전체 전이금속의 평균 산화수가 +3가 보다 크고, 하기 식 3 및 4의 조건을 만족하는 산화물 분말:
    1.1<m(Ni)/m(Mn)<1.5 (3)
    0.4<m(Ni2+)/m(Mn4+)<1 (4)
    상기 식에서, m(Ni)/m(Mn)는 망간 대비 니켈의 몰비이고, m(Ni2+)/m(Mn4+)는 Mn4+ 대비 Ni2+의 몰비이다.
  2. 제 1 항에 있어서, 상기 산화물 분말들의 혼합비는 50: 50 내지 70: 30 인 것을 특징으로 하는 양극 재료.
  3. 제 1 항에 있어서, 상기 산화물 분말(a)는 LiCoO2 분말인 것을 특징으로 하는 양극 재료.
  4. 제 1 항에 있어서, 상기 산화물 분말(b1)은 혼합 전이금속 산화물 층('MO층')들 사이로 리튬 이온이 흡장 및 방출되며, 상기 리튬 이온의 흡장 및 방출 층('가역적 리튬층')에는 MO층으로부터 유래된 일부 Ni 이온이 삽입되어 MO층들을 상호 결합하고 있는 것을 특징으로 하는 양극 재료.
  5. 제 4 항에 있어서, 상기 MO층에는 Ni2+와 Ni3+가 공존하고 있고, 그 중 일부 Ni2+가 가역적 리튬층에 삽입되어 있는 것을 특징으로 하는 양극 재료.
  6. 제 5 항에 있어서, 상기 산화물 분말(b1)에서 가역적 리튬층에 삽입되어 결합되는 Ni2+의 몰분율은 산화물 분말(b1)의 전체 전이금속일 기준으로 0.03 ~ 0.07인 것을 특징으로 하는 양극 재료.
  7. 제 1 항에 있어서, 산화물 분말(b2)에서 상기 m(Ni)/m(Mn)은 1.2≤m(Ni)/m(Mn)≤1.4인 것을 특징으로 하는 양극 재료.
  8. 제 1 항에 있어서, 산화물 분말(b2)에서 상기 리튬을 제외한 전체 전이금속의 평균 산화수가 3.0 초과 내지 3.5 이하인 것을 특징으로 하는 양극 재료.
  9. 제 1 항에 있어서, 산화물 분말(b2)에서 상기 니켈은 망간 함량 대비 초과량의 니켈(1)과, 망간 함량에 대응하는 함량의 니켈(2)로 이루어져 있는 것을 특징으로 하는 양극 재료.
  10. 제 1 항에 있어서, 산화물 분말(b2)에서 상기 니켈은 +2가보다 큰 평균 산화수를 가지는 것을 특징으로 하는 양극 재료.
  11. 제 9 항에 있어서, 상기 망간 함량 대비 초과량의 니켈(1)은 Ni3+인 것을 특징으로 하는 양극 재료.
  12. 제 9 항에 있어서, 망간 및 상기 망간 함량에 대응하는 함량의 니켈(2)의 전체 평균 산화수가 3.0 초과 내지 3.5 이하인 것을 특징으로 하는 양극 재료.
  13. 제 9 항에 있어서, 상기 망간 함량에 대응하는 함량의 니켈(2)은 Ni2+ 및 Ni3+로 이루어진 것을 특징으로 하는 양극 재료.
  14. 제 9 항에 있어서, 상기 망간 함량에 대응하는 함량의 니켈(2) 중 Ni3+의 비율이 11 ~ 60%인 것을 특징으로 하는 양극 재료.
  15. 제 1 항에 있어서, 상기 산화물 분말(b2)에서 Li 전체 사이트에서 Ni(Ni2+)이 점유하고 있는 사이트의 비율은 5 mol% 미만인 것을 특징으로 하는 양극 재료.
  16. 제 1 항에 있어서, 상기 산화물 분말(a)은 단일상(monolithic) 구조의 입자이고, 상기 산화물 분말(b)은 미소 입자들의 응집체로 이루어진 응집상(agglomerated) 구조의 입자인 것을 특징으로 하는 양극 재료.
  17. 제 1 항에 있어서, 상기 산화물 분말(a)의 D50은 15 ㎛ 이상이고 상기 산화물 분말(b)의 D50은 8 ㎛ 이하인 것을 특징으로 하는 양극 재료.
  18. 제 17 항에 있어서, 상기 산화물 분말(a)의 D50은 20 내지 30 ㎛이고, 상기 산화물 분말(b)의 D50은 4 내지 7 ㎛인 것을 특징으로 하는 양극 재료.
  19. 제 18 항에 있어서, 상기 산화물 분말(b)의 90% 이상은 1 내지 4 ㎛의 크기를 가진 미소 입자들의 응집체로 이루어진 것을 특징으로 하는 양극 재료.
  20. 제 1 항 내지 제 19 항 중 어느 하나에 따른 양극 재료를 포함하는 리튬 이차전지.
  21. 제 20 항에 있어서, 상기 리튬 이차전지는 고분자 수지층과 금속층을 포함하는 파우치형 시트 케이스에 전극조립체가 밀봉된 상태로 내장되어 있는 파우치형 전지인 리튬 이차전지.
PCT/KR2010/001305 2009-03-03 2010-03-03 고에너지밀도의 양극 재료 및 이를 포함하는 리튬 이차전지 WO2010101396A2 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201080010713.6A CN102341940B (zh) 2009-03-03 2010-03-03 具有高能量密度的正极材料和含有所述正极材料的锂二次电池
EP10748938.7A EP2405511B1 (en) 2009-03-03 2010-03-03 Positive electrode material having a high energy density, and lithium secondary battery comprising same
US13/223,754 US8603676B2 (en) 2009-03-03 2011-09-01 Cathode materials having high energy density and lithium secondary battery containing the same
US14/071,058 US8920974B2 (en) 2009-03-03 2013-11-04 Cathode materials having high energy density and lithium second battery containing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2009-0018123 2009-03-03
KR20090018123 2009-03-03

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/223,754 Continuation US8603676B2 (en) 2009-03-03 2011-09-01 Cathode materials having high energy density and lithium secondary battery containing the same

Publications (2)

Publication Number Publication Date
WO2010101396A2 true WO2010101396A2 (ko) 2010-09-10
WO2010101396A3 WO2010101396A3 (ko) 2010-11-25

Family

ID=42710106

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2010/001305 WO2010101396A2 (ko) 2009-03-03 2010-03-03 고에너지밀도의 양극 재료 및 이를 포함하는 리튬 이차전지

Country Status (5)

Country Link
US (2) US8603676B2 (ko)
EP (1) EP2405511B1 (ko)
KR (1) KR101154880B1 (ko)
CN (1) CN102341940B (ko)
WO (1) WO2010101396A2 (ko)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8497039B2 (en) * 2008-09-10 2013-07-30 Lg Chem, Ltd. Cathode active material for lithium secondary battery
EP2405510B1 (en) * 2009-03-03 2015-11-25 LG Chem, Ltd. Lithium secondary battery containing high energy density positive electrode materials and an organic/inorganic composite microporous separator membrane
JP6150800B2 (ja) 2011-08-16 2017-06-21 ティアックス エルエルシーTiax Llc 多結晶金属酸化物、その製造方法、およびそれを含む物
JP6090661B2 (ja) * 2012-06-20 2017-03-08 株式会社Gsユアサ リチウム二次電池用正極活物質、その正極活物質の前駆体、リチウム二次電池用電極、リチウム二次電池
US10476080B2 (en) 2016-01-19 2019-11-12 Samsung Electronics Co., Ltd. Electrode containing both anion-absorbing and cation-absorbing active materials
CA3020902A1 (en) 2016-04-27 2017-11-02 Camx Power, L.L.C. Polycrystalline layered metal oxides comprising nano-crystals
US10343552B2 (en) 2017-02-08 2019-07-09 Samsung Electronics Co., Ltd. Heterogeneous electrical energy storage system
KR102464769B1 (ko) * 2017-07-17 2022-11-08 주식회사 엘지에너지솔루션 리튬 이차전지용 양극, 그 제조방법 및 이를 포함하는 리튬 이차전지
PL3696894T3 (pl) 2017-11-21 2024-03-04 Lg Energy Solution, Ltd. Materiał katody dla litowej baterii akumulatorowej oraz katoda i litowa bateria akumulatorowa, która ją zawiera
US11522189B2 (en) 2017-12-04 2022-12-06 Samsung Sdi Co., Ltd. Positive electrode for rechargeable lithium battery, preparing method thereof, and rechargeable lithium battery comprising positive electrode
KR102424398B1 (ko) 2020-09-24 2022-07-21 삼성에스디아이 주식회사 리튬 이차 전지용 양극, 그 제조 방법, 및 이를 포함한 리튬 이차 전지
US11670754B2 (en) 2017-12-04 2023-06-06 Samsung Sdi Co., Ltd. Positive active material for rechargeable lithium battery, preparing method thereof and rechargeable lithium battery comprising positive electrode including positive active material
US11777075B2 (en) 2017-12-04 2023-10-03 Samsung Sdi Co., Ltd. Positive active material for rechargeable lithium battery, preparing method thereof and rechargeable lithium battery comprising positive electrode including positive active material
US10847781B2 (en) 2017-12-04 2020-11-24 Samsung Sdi Co., Ltd. Positive active material for rechargeable lithium battery, preparing method thereof and rechargeable lithium battery comprising positive electrode including positive active material
WO2019123306A1 (en) * 2017-12-22 2019-06-27 Umicore A positive electrode material for rechargeable lithium ion batteries and methods of making thereof
HUE063176T2 (hu) 2018-03-02 2024-01-28 Umicore Nv Pozitív elektródaanyag újratölthetõ lítiumionakkumulátorokhoz
US11424449B2 (en) 2019-01-25 2022-08-23 Camx Power Llc Stable cathode materials
US10950857B2 (en) 2019-01-17 2021-03-16 Camx Power Llc Polycrystalline metal oxides with enriched grain boundaries
US10501335B1 (en) 2019-01-17 2019-12-10 Camx Power Llc Polycrystalline metal oxides with enriched grain boundaries
CN112467209A (zh) * 2019-09-09 2021-03-09 珠海冠宇电池股份有限公司 一种高低温性能兼顾的高电压锂离子电池

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0989622B1 (en) * 1997-06-12 2001-10-31 Sanyo Electric Co., Ltd. Non-aqueous electrolytic secondary cell
JP4082855B2 (ja) 2000-09-25 2008-04-30 Agcセイミケミカル株式会社 リチウム二次電池
EP2005503B1 (en) * 2006-03-20 2019-12-11 LG Chem, Ltd. Cathode materials for lithium battery having higher performance
JP5537929B2 (ja) * 2006-05-10 2014-07-02 エルジー・ケム・リミテッド 高性能リチウム2次電池材料
KR100790834B1 (ko) * 2006-05-10 2008-01-03 주식회사 엘지화학 고성능 리튬 이차전지용 재료
KR100913836B1 (ko) * 2006-09-18 2009-08-26 주식회사 엘지화학 향상된 안전성의 파우치형 이차전지
KR101147601B1 (ko) * 2008-12-17 2012-05-21 주식회사 엘지화학 표면이 개질되어 있는 양극 활물질

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None

Also Published As

Publication number Publication date
KR20100099668A (ko) 2010-09-13
EP2405511B1 (en) 2016-04-27
US20120225343A1 (en) 2012-09-06
EP2405511A2 (en) 2012-01-11
US8920974B2 (en) 2014-12-30
EP2405511A4 (en) 2013-10-16
KR101154880B1 (ko) 2012-06-18
US20140106212A1 (en) 2014-04-17
US8603676B2 (en) 2013-12-10
WO2010101396A3 (ko) 2010-11-25
CN102341940B (zh) 2014-06-11
CN102341940A (zh) 2012-02-01

Similar Documents

Publication Publication Date Title
WO2010101396A2 (ko) 고에너지밀도의 양극 재료 및 이를 포함하는 리튬 이차전지
US11876210B2 (en) Positive electrode active material for lithium secondary battery, method of preparing the same, and positive electrode for lithium secondary battery and lithium secondary battery which include the positive electrode active material
WO2010093219A2 (ko) 에너지 밀도가 향상된 리튬이차전지
KR102646712B1 (ko) 리튬 이차전지용 양극 첨가제의 제조방법
WO2014021626A1 (ko) 이차전지용 양극 활물질 및 이를 포함하는 리튬 이차전지
US11424436B2 (en) Positive electrode active material for secondary battery, method of preparing the same, and lithium secondary battery including the positive electrode active material
WO2010101395A2 (ko) 고에너지 밀도의 양극 재료와 유/무기 복합 다공성 분리막을 포함하는 리튬 이차전지
WO2016175597A1 (ko) 이차전지용 양극활물질, 이의 제조방법 및 이를 포함하는 이차전지
WO2011105832A2 (ko) 고용량의 양극활물질 및 이를 포함하는 리튬 이차전지
WO2012011785A2 (ko) 리튬 이차전지용 양극활물질의 제조방법, 그에 의하여 제조된 리튬 이차전지용 양극활물질 및 그를 이용한 리튬 이차전지
WO2011105833A9 (ko) 출력 향상을 위한 양극 활물질 및 이를 포함하는 리튬 이차전지
WO2018070703A1 (ko) 각 층의 바인더의 함량과 활물질 입경이 상이한 다층 음극 및 이를 포함하는 리튬 이차전지
WO2010047525A2 (ko) 올리빈 구조의 리튬 철인산화물 및 이의 분석 방법
WO2011132930A2 (ko) 이차전지용 양극 활물질 및 이를 포함하는 리튬 이차전지
KR101658503B1 (ko) 이차전지용 양극 활물질 및 이를 포함하는 이차전지
WO2010047552A2 (ko) 전극 효율 및 에너지 밀도 특성이 개선된 양극 활물질
WO2010079958A2 (ko) 리튬 이차전지용 양극 활물질
WO2011081422A2 (ko) 리튬 복합 산화물 및 그 제조 방법.
WO2019074306A2 (ko) 양극 활물질, 이의 제조방법, 및 이를 포함하는 리튬 이차전지
WO2013109038A1 (ko) 양극 활물질 및 이를 포함하고 불순물 혹은 스웰링 제어를 위한 리튬 이차전지와 생산성이 향상된 양극 활물질의 제조방법
KR102207105B1 (ko) 이차전지용 양극 활물질의 제조 방법
WO2019083330A2 (ko) 리튬 이차전지용 음극 활물질 및 이를 포함하는 리튬 이차전지
WO2012036474A2 (ko) 양극 활물질 및 이를 이용한 리튬 이차전지
WO2011132965A2 (ko) 설파이드 결합의 황 화합물을 포함하고 있는 리튬 철인산화물 및 이를 이용한 리튬 이차전지
WO2018147558A1 (ko) 장수명에 적합한 이차전지용 전극의 제조방법

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080010713.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10748938

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 2010748938

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE