WO2014193187A1 - 이차전지용 도전재 및 이를 포함하는 리튬 이차전지용 전극 - Google Patents

이차전지용 도전재 및 이를 포함하는 리튬 이차전지용 전극 Download PDF

Info

Publication number
WO2014193187A1
WO2014193187A1 PCT/KR2014/004842 KR2014004842W WO2014193187A1 WO 2014193187 A1 WO2014193187 A1 WO 2014193187A1 KR 2014004842 W KR2014004842 W KR 2014004842W WO 2014193187 A1 WO2014193187 A1 WO 2014193187A1
Authority
WO
WIPO (PCT)
Prior art keywords
secondary battery
conductive material
electrode
graphene sheet
pitch
Prior art date
Application number
PCT/KR2014/004842
Other languages
English (en)
French (fr)
Inventor
신선영
우상욱
김은경
김제영
김현욱
이수민
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to EP14793424.4A priority Critical patent/EP2846383B1/en
Priority to CN201480002610.3A priority patent/CN104704663B/zh
Priority to JP2015544013A priority patent/JP6094841B2/ja
Priority to US14/320,745 priority patent/US9960427B2/en
Publication of WO2014193187A1 publication Critical patent/WO2014193187A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • C01B32/194After-treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0471Processes of manufacture in general involving thermal treatment, e.g. firing, sintering, backing particulate active material, thermal decomposition, pyrolysis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a secondary battery conductive material and a lithium secondary battery electrode comprising the same.
  • the lithium secondary battery includes a positive electrode and a negative electrode including an electrode active material, a binder, and a conductive material as main components, and a separator and an electrolyte interposed between the positive electrode and the negative electrode.
  • the conductivity of the carbon-based material itself which is an active material, may be high and may serve as a conductive material.
  • the electron conduction path may become unstable as the negative electrode active material reacts with lithium ions, and thus, an additional conductive material must be further included to compensate for this.
  • the fundamental performance of the lithium secondary battery largely depends on the properties of materials such as an electrode active material and a conductive material.
  • the conductive material plays a role to improve the electrical conductivity between the electrode active material or between the active material and the current collector. If the amount of the conductive material is not sufficient or does not perform the role properly, the electrode active material does not react. As this increases, the battery capacity decreases. In addition, the high speed charging and discharging characteristics, high rate charging and discharging efficiency, and the initial charging and discharging efficiency are adversely affected.
  • the present invention is to solve the above problems, and provides a conductive material for a lithium secondary battery having a high conductivity improvement effect and a method of manufacturing the same.
  • the present invention also provides a secondary battery electrode comprising the conductive material.
  • the present invention provides a lithium secondary battery having improved cycle life characteristics by including the secondary battery electrode.
  • a conductive material for a secondary battery including a pitch coated graphene sheet.
  • the present invention comprises the steps of preparing a pure graphene sheet
  • It provides a secondary battery conductive material manufacturing method comprising the step of producing a pitch-coated graphene sheet by baking the mixture at a high temperature.
  • the present invention is a negative electrode for a secondary battery comprising a current collector, and an electrode active material layer coated on the current collector, the electrode active material layer for a secondary battery comprising an active material, the conductive material for a secondary battery and the binder of the present invention.
  • a cathode Provide a cathode.
  • the present invention also provides a lithium secondary battery including a cathode, an anode, a separator interposed between the cathode and the anode, and an electrolyte, and the anode including the anode of the present invention as the anode.
  • an electrode including a pitch-coated graphene sheet as a conductive material by providing an electrode including a pitch-coated graphene sheet as a conductive material, it is possible to manufacture a secondary battery with improved cycle safety and life characteristics.
  • FIG. 1 is a view for explaining a method for manufacturing a secondary battery electrode of the present invention.
  • Figure 2 is a graph showing the capacity measurement results according to the number of cycles of secondary batteries manufactured in Examples and Comparative Examples of the present invention.
  • graphenes can exhibit self-capacitance as a conductive material and have large contact paths between active materials and current collectors. Research into using pins is underway.
  • graphene has a disadvantage in that the conductivity improvement effect is not as high as that of a conventional viscous conductive material, such as carbon black, and because the surface is exposed, the graphene has a high reactivity with the electrolyte, thereby degrading the life characteristics of the secondary battery. .
  • the present invention is to improve the disadvantage of the graphene, to provide a conductive material for secondary batteries with improved conductivity.
  • a conductive material for a secondary battery including a pitch coated graphene sheet.
  • the pitch is made of coal-based pitch, and includes about 6 to 15% by weight based on the total weight of the conductive material for a secondary battery. If the pitch content of the secondary battery conductive material is less than 6%, the edge portion of the graphene sheet surface is partially exposed to improve the conductivity, and if the pitch content is more than 15%, the amorphous carbon layer is excessive. The problem arises that the fall of the electrode active material capacity is included.
  • the coal-based pitch may be included in about 10% by weight based on the total weight of the conductive material for a secondary battery.
  • the graphene sheet is preferably in the form of a single layer graphene sheet separated by performing a chemical peeling process from graphite.
  • coal-based pitch may be in the form coated on the front or a portion of the graphene sheet.
  • It provides a secondary battery conductive material manufacturing method comprising the step of producing a pitch-coated graphene sheet by baking the mixture at a high temperature.
  • the pure graphene sheet may be formed using a conventional method of forming graphene oxide from graphite, exfoliating the graphene sheet, and then using a reducing agent (J. Am. Chem. Soc. 1958, 80 (6), 1339 and Carbon 2007, 45, 1558).
  • a reducing agent J. Am. Chem. Soc. 1958, 80 (6), 1339 and Carbon 2007, 45, 1558.
  • the graphene oxide sheet has a high oxygen content and low conductivity
  • the graphene sheet separated from graphite is heat-treated in a mixed gas atmosphere of Ar / H 2 . It may include the step of removing the oxygen contained.
  • the heat treatment temperature is preferably about 1100 °C, it can be carried out at a lower temperature than this.
  • the pitch coating layer may be in the form coated on the front or a part of the graphene sheet.
  • the high temperature baking step is to mix the graphene sheet and the pitch, and then maintained at 250 °C which is near the softening point of the pitch under an air atmosphere for 3 hours, and the temperature was raised to a temperature of 2 °C / min to 1150 °C under nitrogen atmosphere Thereafter, it may be carried out by firing at 1150 ° C. for 5 hours to carbonize.
  • the graphene sheet coating step does not cause side reactions with the electrolyte solution other than the pitch coating, it is also possible to use an amorphous carbon material such as coating materials, heavy oil (common oil) generally used when coating the active material surface.
  • an amorphous carbon material such as coating materials, heavy oil (common oil) generally used when coating the active material surface.
  • the present invention by coating a petroleum pitch on a single layer of graphene sheet as a conductive material, it is possible to reduce the exposed area of the graphene sheet used conventionally to prevent side reactions with the electrolyte solution, The conductivity can be improved by increasing the energy density.
  • the pitch-coated graphene sheet since the role of the conductive material and the active material can be performed at the same time, by increasing the energy density of the secondary battery, it is possible to improve the life characteristics.
  • the electrode for a secondary battery comprising a current collector, and an electrode active material layer coated on the current collector
  • the electrode active material layer provides an electrode for a secondary battery including an electrode active material 11, a conductive material 13, and a binder (not shown) of the present invention (see FIG. 1).
  • the electrode of the present invention may be an anode or a cathode.
  • the current collector is not particularly limited as long as it has conductivity without causing chemical change in the battery.
  • copper, stainless steel, aluminum, nickel, titanium, sintering Surface-treated with carbon, nickel, titanium, silver, and the like on the surface of carbon, copper or stainless steel, aluminum-cadmium alloy, and the like can be used.
  • various forms such as a film, a sheet, a foil, a net, a porous body, a foam, and a nonwoven fabric having fine irregularities formed on a surface thereof may be used.
  • the electrode active material may be lithium-containing titanium composite oxide (LTO), natural graphite, artificial graphite, expanded graphite, carbon fiber, non-graphitizable carbon, carbon black, carbon nanotube, fullerene, which can occlude and release lithium ions
  • LTO lithium-containing titanium composite oxide
  • Natural graphite natural graphite, artificial graphite, expanded graphite, carbon fiber, non-graphitizable carbon, carbon black, carbon nanotube, fullerene, which can occlude and release lithium ions
  • Carbon and graphite materials such as activated carbon
  • Metal oxides capable of forming alloys with lithium such as Al, Si, Sn, Ag, Bi, Mg, Zn, In, Ge, Pb, Pd, Pt, Ti, and metals containing such elements
  • the single material or two or more selected from the group consisting of oxides (MeOx) may be a negative electrode active material including a mixture.
  • the electrode active material may be spherical natural graphite, for example
  • the binder is a component that assists in bonding the active material and the conductive material to the current collector, and is generally added in an amount of 1 to 20 wt% based on the total weight of the electrode active material.
  • binder resins include polyvinylidene fluoride (PVDF), polyvinyl alcohol, carboxymethyl cellulose (CMC), starch, hydroxypropyl cellulose, regenerated cellulose, polyvinylpyrrolidone, tetra Fluoroethylene, polyethylene, polypropylene, ethylene-propylene-diene polymer (EPDM), sulfonated-EPDM, styrene-butadiene rubber, fluorine rubber, various copolymers thereof, and the like.
  • PVDF polyvinylidene fluoride
  • CMC carboxymethyl cellulose
  • EPDM ethylene-propylene-diene polymer
  • sulfonated-EPDM styrene-butadiene rubber
  • fluorine rubber various cop
  • the conductive material of the present invention may be added in 1 to 15% by weight based on the total weight of the electrode active material to improve the conductivity of the active material. If the content of the conductive material of the present invention is less than 1% by weight, there is a concern about deterioration of the life characteristics during a long cycle, and when the content of the conductive material exceeds 15% by weight, more binders and the like are required when preparing the slurry, so that the content of the active material is relatively high. There is a disadvantage that the capacity is reduced to decrease.
  • an embodiment of the present invention includes a positive electrode, a negative electrode, a separator and an electrolyte solution interposed between the positive electrode and the negative electrode, any one of the positive electrode and the negative electrode provides a lithium secondary battery comprising the electrode of the present invention.
  • a slurry for positive electrode was prepared by mixing LiCoO 2 in a proportion of 91 wt%, graphite as a conductive agent, 6 wt% as a binder, and PVdF as a binder at 3 wt%, and dispersing it in N-methyl-2-pyrrolidone (NMP). .
  • NMP N-methyl-2-pyrrolidone
  • the slurry was applied to one side of an aluminum foil which is a positive electrode current collector, and then dried by compression molding using a roller press to prepare a positive electrode.
  • a battery assembly was manufactured by interposing a polyolefin-based separator between the prepared positive electrode and negative electrode.
  • a coin full cell was prepared by injecting an electrolyte in which 1 M LiPF 6 was dissolved in a solvent in which the battery assembly, ethylene carbonate (EC), and dimethyl carbonate (DMC) were mixed at a volume ratio of 1: 1.
  • a negative electrode, a positive electrode, and a coin full cell were manufactured in the same manner as in Example 1, except that a conventional graphene sheet was used as the negative electrode conductive material.
  • a negative electrode, a positive electrode, and a coin full cell were manufactured in the same manner as in Example 1, except that carbon black was used as the negative electrode conductive material.
  • Example 1 and Comparative Examples 1 and 2 were initially subjected to three cycles of 0.1C charge / 0.1C discharge, followed by 97 cycles of 1C / 1C charge and discharge. At this time, charging was performed in CC-CV mode (0.005C cut off) discharge in CC mode. The charge / discharge voltage section was performed at 2.5 to 4.2V. Standard capacity according to the number of cycles, that is, the capacity life characteristics results are shown in FIG.
  • Comparative Example 1 using general graphene as the conductive material was the best during the initial charging and discharging, but the pitch-coated graphene sheet of the present invention was used as the conductive material during a long cycle.
  • the cell of Example 1 showed the best life characteristics.

Abstract

본 발명은 핏치(pitch) 코팅된 그라핀 시트를 포함하는 이차전지용 도전재와, 이를 포함하는 이차전지용 음극 및 리튬 이차전지에 관한 것이다.

Description

이차전지용 도전재 및 이를 포함하는 리튬 이차전지용 전극
본 발명은 이차전지용 도전재 및 이를 포함하는 리튬 이차전지용 전극에 관한 것이다.
전자 제품, 전자 기기, 통신 기기의 소형화, 경량화 및 고성능화가 급속히 진전됨에 따라 이들 제품의 전원으로 사용되는 리튬 이차전지의 성능 개선이 크게 요구되고 있다.
상기 리튬 이차전지는 전극 활물질, 바인더 및 도전재를 주성분으로 포함하는 양극 및 음극과, 상기 양극 및 음극 사이에 개재된 세퍼레이터 및 전해액으로 이루어져 있다.
이때, 상기 음극의 경우 활물질인 탄소계 물질 자체의 전도도가 높아 도전재의 역할을 병행할 수 있다. 하지만, 충·방전을 진행함에 따라 음극 활물질이 리튬 이온과 반응하면서 전자 전도 통로가 불안정해 지는 경우가 있기 때문에, 이를 보완하기 위한 별도의 도전재를 추가로 포함해야 한다.
이와 같이, 리튬 이차전지의 근본적인 성능은 전극 활물질 및 도전재 등과 같은 재료의 특성에 크게 좌우된다.
특히, 도전재는 전극 활물질간, 또는 활물질과 집전체 간의 전기전도성을 개선하기 위한 역할을 수행하는 것으로, 이러한 도전재의 양이 충분하지 않거나 혹은 그 역할을 제대로 수행하지 못하게 되면 전극 활물질 중 반응하지 못하는 부분이 증가하면서, 전지 용량이 감소하게 된다. 또한, 고속 충·방전 특성, 고율 충·방전 효율과 초기 충·방전 효율에도 악영향을 미치게 된다.
종래에는 이러한 도전재로 아세틸렌 블랙 또는 카본 블랙 등의 점형 도전재 등을 사용하였으나, 고율 방전특성과 초기 충·방전 효율 등이 낮아, 전극 활물질의 손실(loss) 등이 발생하는 단점이 있다.
따라서, 충·방전 효율 등을 개선할 수 있는 이차전지용 도전재의 개발이 시급한 실정이다.
본 발명은 상술한 문제점을 해결하기 위한 것으로서, 전도성 개선 효과가 높은 리튬 이차전지용 도전재 및 이의 제조 방법을 제공한다.
본 발명은 또한 상기 도전재를 포함하는 이차전지용 전극을 제공한다.
또한, 본 발명은 상기 이차전지용 전극을 포함함으로써, 사이클 수명 특성이 향상된 리튬 이차전지를 제공한다.
구체적으로, 본 발명은
핏치(pitch) 코팅된 그라핀 시트를 포함하는 이차전지용 도전재를 제공한다.
또한, 본 발명은 순수 그라핀 시트를 제조하는 단계;
상기 그라핀 시트와 석탄계 핏치를 혼합하는 단계; 및
상기 혼합물을 고온 소성하여 핏치 코팅된 그라핀 시트를 제조하는 단계를 포함하는 이차전지용 도전재 제조 방법을 제공한다.
또한, 본 발명은 집전체, 및 상기 집전체 상에 도포된 전극 활물질층을 포함하는 이차전지용 음극에 있어서, 상기 전극 활물질층은 활물질, 상기 본 발명의 이차전지용 도전재 및 바인더를 포함하는 이차전지용 음극을 제공한다.
또한, 본 발명은 양극, 음극, 상기 양극 및 음극 사이에 개제된 세퍼레이터 및 전해액을 포함하는 리튬 이차전지로서, 상기 음극으로 본 발명의 음극을 포함하는 리튬 이차전지를 제공한다.
본 발명에서는 도전재로서 핏치 코팅된 그라핀 시트를 포함하는 전극을 제공함으로써, 사이클 안전성 및 수명 특성이 개선된 이차전지를 제조할 수 있다.
본 명세서에 첨부되는 다음의 도면은 본 발명의 바람직한 실시예를 예시하는 것이며, 전술한 발명의 내용과 함께 본 발명의 기술 사상을 더욱 이해시키는 역할을 하는 것이므로, 본 발명은 그러한 도면에 기재된 사항에만 한정되어 해석되어서는 아니다.
도 1은 본 발명의 이차전지용 전극의 제조 방법을 설명한 도면이다.
도 2는 본 발명의 실시예 및 비교예에서 제조된 이차전지의 사이클 수에 따른 용량 측정 결과를 나타낸 그래프이다.
이하, 본 발명에 대한 이해를 돕기 위해 본 발명을 더욱 상세하게 설명한다. 이때, 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.
최근 리튬 이차전지 제조 시 활물질간, 혹은 활물질과 집전체간 전기전도성 개선을 위해, 도전재로 자체 용량 발현이 가능하고, 활물질 및 집전체와의 접촉면이 커서 전자의 이동 경로(path)가 큰 그라핀을 사용하려는 연구가 시도되고 있다. 하지만, 그라핀은 기존에 사용되고 있는 카본 블랙 등과 같은 점형 도전재에 비하여 전도성 개선 효과가 높지 않을 뿐만 아니라, 많은 면이 노출되기 때문에 전해액과의 반응성이 높아 이차전지의 수명 특성을 저하한다는 단점이 있다.
이에, 본 발명에서는 상기 그라핀의 단점을 개선하여, 전도성이 향상된 이차전지용 도전재를 제공하고자 한다.
구체적으로, 본 발명의 일 실시예에서는
핏치(pitch) 코팅된 그라핀 시트를 포함하는 이차전지용 도전재를 제공한다.
이때, 상기 핏치는 석탄계 핏치로 이루어진 것으로, 이차전지용 도전재의 전체 중량을 기준으로 약 6 내지 15중량%로 포함한다. 만약, 상기 이차전지용 도전재 중 핏치 함량이 6% 이하인 경우, 그라핀 시트 표면의 에지 (edge) 부분이 일부 노출되어 전도성 개선 효과를 얻을 수 없고, 핏치 함량이 15% 이상인 경우 비정질 카본층이 과량 포함되어, 전극활물질 용량의 저하가 심화되는 문제가 발생한다. 구체적으로, 상기 석탄계 핏치는 이차전지용 도전재의 전체 중량을 기준으로 약 10중량%로 포함될 수 있다.
또한, 본 발명의 이차전지용 도전재에 있어서, 상기 그라핀 시트는 흑연으로부터 화학적 박리 과정을 수행하여 분리해 낸 단층의 그라핀 시트 형태인 것이 바람직하다.
또한, 상기 석탄계 핏치는 그라핀 시트의 전면 또는 일부에 코팅된 형태일 수 있다.
또한, 본 발명의 일 실시예에서는
순수 그라핀 시트를 제조하는 단계;
상기 그라핀 시트와 석탄계 핏치를 혼합하는 단계; 및
상기 혼합물을 고온 소성하여 핏치 코팅된 그라핀 시트를 제조하는 단계를 포함하는 이차전지용 도전재 제조 방법을 제공한다.
이때, 상기 방법에 있어서, 순수 그라핀 시트는 흑연으로부터 산화 그라핀 형성하고 그라핀 시트를 박리한 다음, 환원제를 사용하여 환원시키는 통상의 방법을 이용하여 형성할 수 있다 (J. Am. Chem. Soc. 1958, 80(6), 1339 및 Carbon 2007, 45, 1558 참조). 다만, 일반적인 산화 그라핀 시트는 자체의 산소 함량이 높아 전도성이 낮기 때문에, 이와 같이, 흑연으로부터 분리해 낸 단층의 그라핀 시트를 Ar/H2의 혼합 가스 분위기 하에서 열처리를 실시하여 그라핀 시트 중에 포함된 산소를 제거하는 단계를 포함할 수 있다. 이때 상기 열처리 온도는 약 1100℃인 것이 바람직하며, 이보다 낮은 온도에서 실시하는 것도 가능하다.
본 발명의 방법에 있어서, 상기 핏치 코팅층은 그라핀 시트의 전면 또는 일부에 코팅된 형태일 수 있다.
또한, 상기 고온 소성하는 단계는 그라핀 시트와 핏치를 혼합한 다음, 공기 분위기하에서 핏치의 연화점 근방인 250℃에서 3시간 유지하고, 질소 분위기하에서 1150℃까지 2℃/min속도로 온도를 승온시킨 후, 1150℃에서 5 시간 동안 소성하여 탄화시키는 단계에 의해 실시할 수 있다.
한편, 상기 그라핀 시트 코팅 단계에서 핏치 코팅 외에 전해액과 부반응을 유발하지 않으며, 활물질 표면 코팅 시 일반적으로 사용하는 코팅 재료, 중유 (heavy oil) 등의 비정질 탄소 물질을 이용할 수도 있다.
이와 같이, 본 발명에서는 단층의 그라핀 시트 상에 석유계 핏치를 코팅하여 도전재로 이용함으로써, 종래 사용하던 그라핀 시트의 노출 면적을 감소시켜 전해액과의 부반응을 방지할 수 있을 뿐만 아니라, 면적당 에너지 밀도를 증가시켜 전도성을 향상시킬 수 있다. 특히, 핏치 코팅된 그라핀 시트의 경우, 도전재 겸 활물질의 역할을 동시에 수행할 수 있기 때문에, 이차전지의 에너지 밀도를 증가시켜, 수명 특성을 개선할 수 있다.
또한, 본 발명의 바람직한 일 실시예에서는
집전체, 및 상기 집전체 상에 도포된 전극활물질층을 포함하는 이차전지용 전극에 있어서,
상기 전극활물질층은 전극활물질(11), 본 발명의 도전재(13) 및 바인더(미도시)를 포함하는 이차전지용 전극을 제공한다 (도 1 참조).
이때, 본 발명의 전극은 양극 또는 음극일 수 있다.
구체적으로, 본 발명의 이차전지용 전극에 있어서, 상기 집전체는 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되지 않으며, 예를 들면 구리, 스테인리스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소, 구리나 스테인리스 스틸의 표면에 카본, 니켈, 티탄, 은 등으로 표면 처리한 것, 알루미늄-카드뮴 합금 등이 사용될 수 있다. 또한, 표면에 미세한 요철이 형성된 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태가 사용될 수 있다.
또한, 상기 전극활물질은 리튬 이온이 흡장 및 방출될 수 있는 리튬 함유 티타늄 복합 산화물(LTO), 천연 흑연, 인조 흑연, 팽창 흑연, 탄소섬유, 난흑연화성 탄소, 카본블랙, 카본나노튜브, 플러렌, 활성탄 등의 탄소 및 흑연재료; 리튬과 합금을 형성할 수 있는 금속 산화물, 예컨대 Al, Si, Sn, Ag, Bi, Mg, Zn, In, Ge, Pb, Pd, Pt, Ti 등의 금속 및 이러한 원소를 포함하는 금속(Me) 산화물(MeOx)로 이루어진 군으로부터 선택된 단일물 또는 2종 이상이 혼합물을 포함하는 음극활물질일 수 있다. 보다 구체적으로, 상기 전극활물질은 구형화된 천연흑연, 예를 들면 비정질 코팅된 구형화된 천연흑연일 수 있다.
또한, 상기 바인더는 활물질과 도전재의 결합과 집전체에 대한 결합에 조력하는 성분으로서, 통상적으로 전극 활물질 전체 중량을 기준으로 1 내지 20 중량%로 첨가된다. 이러한 바인더 수지의 예로는, 폴리비닐리덴플로라이드(PVDF), 폴리비닐알코올, 카르복시메틸셀룰로우즈(CMC), 전분, 히드록시프로필셀룰로우즈, 재생 셀룰로우즈, 폴리비닐피롤리돈, 테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 에틸렌-프로필렌-디엔 폴리머(EPDM), 술폰화-EPDM, 스티렌-부타디엔 고무, 불소 고무, 이들의 다양한 공중합체 등을 들 수 있다.
또한, 본 발명의 도전재는 활물질의 도전성을 향상시킬 수 있도록 전극 활물질 전체 중량을 기준으로 1 내지 15 중량%로 첨가될 수 있다. 만약, 본 발명의 도전재의 함량이 1 중량% 이하인 경우 장기 사이클 동안 수명 특성의 열화가 우려되고, 15 중량%를 초과하는 경우 슬러리 제작 시에 보다 많은 바인더 등의 필요하기 때문에, 상대적으로 활물질 함량이 감소하여 용량이 낮아지는 단점이 있다.
또한, 본 발명의 일 실시예에서는 양극, 음극, 상기 양극 및 음극 사이에 개제된 세퍼레이터 및 전해액을 포함하며, 상기 양극 및 음극 중 어느 하나는 본 발명의 전극을 포함하는 리튬 이차전지를 제공한다.
이하, 실시예 및 비교예를 통하여 본 발명을 더욱 상세하게 설명한다. 단, 실시예는 본 발명을 예시하기 위한 것이지 이들 만으로 본 발명의 범위를 한정하는 것은 아니다.
실시예
(제조예 1. 핏치 코팅된 그라핀 제조)
흑연으로부터 분리해 낸 순수 그라핀 시트 (90wt%)과 석탄계 핏치(10wt%)을 혼합한 후, 공기 분위기하에서 핏치의 연화점 근방인 250℃에서 3시간 유지하고, 질소 분위기하에서 1150℃까지 2℃/min속도로 온도를 승온시킨 후, 1150℃에서 5 시간 동안 소성하여 탄화시켜 핏치 코팅된 그라핀 시트를 제조하였다.
(실시예 1)
LiCoO2을 91 중량%, 도전제로서 흑연을 6 중량%, 결착제로서 PVdF를 3 중량%의 비율로 혼합하고 N-메틸-2-피롤리돈(NMP)에 분산시켜 양극용 슬러리를 제조하였다. 상기 슬러리를 양극집전체인 알루미늄 박의 한쪽면에 도포하여, 건조후 롤러프레스기로 압축 성형하여 양극을 제조하였다.
이어서, 구형화 천연흑연 95%, 결착제인 CMC+SBR 4% 및 도전재로서 상기 제조예 1의 핏치 코팅된 그라핀 시트 1%을 H2O에 분산시켜 음극용 슬러리를 제조하였다. 그리고, 상기 슬러리를 음극집전체인 구리(Cu)박의 한쪽 면에 도포한 후, 롤러 프레스기로 압축 성형하여 음극을 제조하였다.
그 다음으로, 상기 제조된 양극과 음극 사이에 폴리올레핀계열 분리막을 개재시켜 전지 조립체를 제조하였다. 상기 전지 조립체와 에틸렌 카보네이트(EC)와 디메틸 카보네이트(DMC)를 1:1 부피비로 혼합한 용매에 1M LiPF6가 용해된 전해질을 주입하여 코인 풀 셀을 제조하였다.
*(비교예 1)
상기 음극 도전재로서 통상적인 그라핀 시트를 이용하는 것을 제외하고는 상기 실시예 1과 동일한 방법으로 음극, 양극 및 코인 풀 셀을 제조하였다.
(비교예 2)
상기 음극 도전재로서 카본 블랙을 이용하는 것을 제외하고는 상기 실시예 1과 동일한 방법으로 음극, 양극 및 코인 풀 셀을 제조하였다.
(실험예 1)
상기 실시예 1 및 비교예 1 및 2에서 제조된 코인 풀 셀을 초기 3 사이클을 0.1C 충전 / 0.1C 방전으로 진행한 다음, 97 사이클을 1C/1C 로 충방전을 진행하였다. 이때 충전은 CC-CV 모드 (0.005C cut off) 방전은 CC 모드 로 진행하였다. 충방전 전압 (voltage) 구간은 2.5 내지 4.2V로 진행하였다. 사이클 수에 따른 표준 용량 즉, 용량수명 특성 결과를 도 2에 나타내었다.
도 2를 살펴보면, 최초 충,방전 시에는 도전재로 일반적인 그라핀을 사용한 비교예 1의 셀 성능이 가장 우수하였으나, 장기 사이클이 진행되는 동안 도전재로 본 발명의 핏치 코팅된 그라핀 시트를 사용한 실시예 1의 셀이 가장 우수한 수명 특성을 나타내었다.

Claims (14)

  1. 핏치(pitch) 코팅된 그라핀 시트를 포함하는 이차전지용 도전재.
  2. 청구항 1에 있어서,
    상기 핏치는 석탄계 핏치인 것을 특징으로 하는 이차전지용 도전재.
  3. 청구항 1에 있어서,
    상기 핏치는 이차전지용 도전재의 전체 중량을 기준으로 6 내지 15중량%로 포함하는 것을 특징으로 하는 이차전지용 도전재.
  4. 청구항 1에 있어서,
    상기 그라핀 시트는 흑연으로부터 화학적 박리 과정을 실시하여 분리해 낸 단층의 그라핀 시트인 것을 특징으로 하는 이차전지용 도전재.
  5. 순수 그라핀 시트를 제조하는 단계;
    상기 그라핀 시트와 석탄계 핏치를 혼합하는 단계; 및
    상기 혼합물을 고온 소성하여 핏치 코팅된 그라핀 시트를 제조하는 단계를 포함하는 청구항 1 기재의 이차전지용 도전재 제조 방법.
  6. 청구항 5에 있어서,
    상기 순수 그라핀 시트는 흑연으로부터 화학적 박리 과정을 실시하여 분리해 낸 단층의 그라핀 시트인 것을 특징으로 하는 이차전지용 도전재 제조 방법.
  7. 청구항 6에 있어서,
    상기 그라핀 시트는 분리해 낸 그라핀 시트를 Ar/H2의 혼합 가스 분위기 하에서 열처리하여 그라핀 시트 내부의 산소를 제거하는 단계를 포함하는 것을 특징으로 하는 이차전지용 도전재 제조 방법.
  8. 청구항 5에 있어서,
    상기 고온 소성 단계는 공기 분위기하에서 핏치의 연화점 근방인 250℃에서 3시간 유지한 다음, 질소 분위기하에서 1150℃까지 2℃/min속도로 온도를 승온시키고, 1150℃에서 5 시간 동안 소성하여 탄화시키는 단계를 포함하는 것을 특징으로 하는 이차전지용 도전재 제조 방법.
  9. 집전체, 및 상기 집전체 상에 도포된 전극활물질층을 포함하는 이차전지용 전극에 있어서,
    상기 전극활물질층은 전극활물질, 청구항 1 기재의 이차전지용 도전재 및 바인더를 포함하는 이차전지용 전극.
  10. 청구항 9에 있어서,
    상기 전극활물질은 리튬 함유 티타늄 복합 산화물(LTO), 천연흑연, 인조흑연, 팽창흑연, 탄소섬유, 난흑연화성 탄소, 카본블랙, 카본나노튜브, 플러렌, 활성탄, 및 리튬과 합금을 형성할 수 있는 금속(Me) 산화물(MeOx)로 이루어진 군으로부터 선택되는 단일물 또는 2종 이상의 혼합물인 것을 특징으로 하는 이차전지용 전극.
  11. 청구항 10에 있어서,
    상기 전극활물질은 구형화된 천연흑연인 것을 특징으로 하는 이차전지용 전극.
  12. 청구항 11에 있어서,
    상기 전극활물질은 비정질 코팅된 구형화된 천연흑연인 것을 특징으로 하는 이차전지용 전극.
  13. 청구항 9에 있어서,
    상기 도전재는 전극활물질 전체 중량을 기준으로 1 내지 15 중량%로 포함하는 것을 특징으로 하는 이차전지용 전극.
  14. 양극, 음극, 상기 양극 및 음극 사이에 개제된 세퍼레이터 및 전해액을 포함하는 리튬 이차전지에 있어서,
    상기 양극 및 음극 중 어느 하나는 청구항 9 기재의 전극을 포함하는 것을 특징으로 하는 리튬 이차전지.
PCT/KR2014/004842 2013-05-30 2014-05-30 이차전지용 도전재 및 이를 포함하는 리튬 이차전지용 전극 WO2014193187A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP14793424.4A EP2846383B1 (en) 2013-05-30 2014-05-30 Conductive material for secondary battery and electrode for lithium secondary battery comprising same
CN201480002610.3A CN104704663B (zh) 2013-05-30 2014-05-30 二次电池用导电材料及包含该导电材料的锂二次电池用电极
JP2015544013A JP6094841B2 (ja) 2013-05-30 2014-05-30 二次電池用導電材及びこれを含むリチウム二次電池用電極
US14/320,745 US9960427B2 (en) 2013-05-30 2014-07-01 Conductive material for lithium secondary battery and electrode for lithium secondary battery including the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2013-0062102 2013-05-30
KR1020130062102A KR101595616B1 (ko) 2013-05-30 2013-05-30 이차전지용 도전재 및 이를 포함하는 리튬 이차전지용 전극

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/320,745 Continuation US9960427B2 (en) 2013-05-30 2014-07-01 Conductive material for lithium secondary battery and electrode for lithium secondary battery including the same

Publications (1)

Publication Number Publication Date
WO2014193187A1 true WO2014193187A1 (ko) 2014-12-04

Family

ID=51989133

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/004842 WO2014193187A1 (ko) 2013-05-30 2014-05-30 이차전지용 도전재 및 이를 포함하는 리튬 이차전지용 전극

Country Status (5)

Country Link
EP (1) EP2846383B1 (ko)
JP (1) JP6094841B2 (ko)
KR (1) KR101595616B1 (ko)
CN (1) CN104704663B (ko)
WO (1) WO2014193187A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110581275A (zh) * 2018-06-07 2019-12-17 山东欧铂新材料有限公司 一种锂离子电池石墨烯/软碳负极材料及其制备方法、锂离子电池
CN110775966A (zh) * 2019-11-21 2020-02-11 秦皇岛中科瀚祺科技有限公司 一种柔性石墨烯膜及其应用

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105514379A (zh) * 2015-12-19 2016-04-20 台州市金博超导纳米材料科技有限公司 球状纳米硅石墨烯复合制备锂电池负极材料及制备方法
CN107819110A (zh) * 2016-09-13 2018-03-20 深圳市金润能源材料有限公司 锂离子电池负极材料及其制备方法
WO2020231150A1 (ko) * 2019-05-15 2020-11-19 주식회사 엘지화학 도전재, 상기 도전재를 포함하는 전극, 및 상기 전극을 포함하는 이차 전지

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090269667A1 (en) * 2006-05-31 2009-10-29 Max-Planck-Gesellschaft Zur Foerderung Der Wissenschaften E.V. Porous Electrically Conductive Carbon Material And Uses Thereof
US7623340B1 (en) * 2006-08-07 2009-11-24 Nanotek Instruments, Inc. Nano-scaled graphene plate nanocomposites for supercapacitor electrodes
KR20100137622A (ko) * 2009-06-23 2010-12-31 한국세라믹기술원 순수 탄소계 연료전지 분리판 제조 방법
KR20110029321A (ko) * 2009-09-15 2011-03-23 주식회사 엘지화학 리튬 이차전지용 전극 및 이를 구비한 리튬 이차전지
KR101037766B1 (ko) * 2010-10-11 2011-05-27 아이비그라핀주식회사 그라핀을 이용한 이차전지의 제조 방법

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5087842B2 (ja) * 2006-02-14 2012-12-05 三菱化学株式会社 リチウムイオン二次電池用負極材料およびその製造方法
US7745047B2 (en) * 2007-11-05 2010-06-29 Nanotek Instruments, Inc. Nano graphene platelet-base composite anode compositions for lithium ion batteries
CN102117911B (zh) * 2009-12-30 2014-06-04 上海杉杉科技有限公司 一种锂离子电池石墨负极材料及其制备方法
US9640334B2 (en) * 2010-01-25 2017-05-02 Nanotek Instruments, Inc. Flexible asymmetric electrochemical cells using nano graphene platelet as an electrode material
JP2012033375A (ja) * 2010-07-30 2012-02-16 Mitsubishi Chemicals Corp 非水系二次電池用炭素材料
US9558860B2 (en) * 2010-09-10 2017-01-31 Samsung Electronics Co., Ltd. Graphene-enhanced anode particulates for lithium ion batteries
JP5742153B2 (ja) * 2010-09-29 2015-07-01 三菱化学株式会社 非水系二次電池用複層構造炭素材、及びそれを用いた負極材並びに非水系二次電池
JP2014507365A (ja) * 2010-12-29 2014-03-27 ▲海▼洋王照明科技股▲ふん▼有限公司 多孔質グラフェン材料、その製造方法、及び電極材料としての応用
KR101342601B1 (ko) * 2011-06-30 2013-12-19 삼성에스디아이 주식회사 음극 활물질, 그 제조방법 및 이를 포함하는 리튬 전지
US9779883B2 (en) * 2011-09-07 2017-10-03 Nanotek Instruments, Inc. Partially surface-mediated lithium ion-exchanging cells and method for operating same
KR101708360B1 (ko) * 2011-10-05 2017-02-21 삼성에스디아이 주식회사 음극 활물질 및 이를 채용한 리튬 전지

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090269667A1 (en) * 2006-05-31 2009-10-29 Max-Planck-Gesellschaft Zur Foerderung Der Wissenschaften E.V. Porous Electrically Conductive Carbon Material And Uses Thereof
US7623340B1 (en) * 2006-08-07 2009-11-24 Nanotek Instruments, Inc. Nano-scaled graphene plate nanocomposites for supercapacitor electrodes
KR20100137622A (ko) * 2009-06-23 2010-12-31 한국세라믹기술원 순수 탄소계 연료전지 분리판 제조 방법
KR20110029321A (ko) * 2009-09-15 2011-03-23 주식회사 엘지화학 리튬 이차전지용 전극 및 이를 구비한 리튬 이차전지
KR101037766B1 (ko) * 2010-10-11 2011-05-27 아이비그라핀주식회사 그라핀을 이용한 이차전지의 제조 방법

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
CARBON, vol. 45, 2007, pages 1558
J. AM. CHEM. SOC., vol. 80, no. 6, 1958, pages 1339
See also references of EP2846383A4

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110581275A (zh) * 2018-06-07 2019-12-17 山东欧铂新材料有限公司 一种锂离子电池石墨烯/软碳负极材料及其制备方法、锂离子电池
CN110581275B (zh) * 2018-06-07 2023-03-17 山东欧铂新材料有限公司 一种锂离子电池石墨烯/软碳负极材料及其制备方法、锂离子电池
CN110775966A (zh) * 2019-11-21 2020-02-11 秦皇岛中科瀚祺科技有限公司 一种柔性石墨烯膜及其应用
CN110775966B (zh) * 2019-11-21 2021-07-27 秦皇岛中科瀚祺科技有限公司 一种柔性石墨烯膜及其应用

Also Published As

Publication number Publication date
JP6094841B2 (ja) 2017-03-15
CN104704663A (zh) 2015-06-10
KR20140140981A (ko) 2014-12-10
KR101595616B1 (ko) 2016-02-18
EP2846383A1 (en) 2015-03-11
CN104704663B (zh) 2018-12-07
JP2016503569A (ja) 2016-02-04
EP2846383A4 (en) 2015-07-01
EP2846383B1 (en) 2018-01-10

Similar Documents

Publication Publication Date Title
WO2017204466A1 (ko) 음극활물질 및 이를 포함하는 리튬 이차전지
WO2014182036A1 (ko) 리튬 이차 전지용 음극 활물질, 이의 제조 방법 및 이를 포함하는 리튬 이차 전지
WO2014084502A1 (ko) 규소계 복합체 및 이의 제조방법
WO2013183187A1 (ja) 負極活物質及びその製造方法
WO2014088270A1 (ko) 리튬 이차전지용 고용량 음극 활물질, 이의 제조 방법 및 이를 포함한 리튬 이차전지
WO2017164702A1 (ko) 음극 및 이의 제조방법
WO2014204141A1 (ko) 리튬 이차전지용 음극활물질, 이를 포함하는 리튬 이차전지 및 상기 음극활물질의 제조방법
WO2015005648A1 (ko) 리튬이차전지용 음극 활물질, 이를 포함하는 음극용 조성물 및 리튬이차전지
WO2014193187A1 (ko) 이차전지용 도전재 및 이를 포함하는 리튬 이차전지용 전극
WO2012077929A2 (ko) 음극 활물질 및 이를 이용한 이차전지
WO2014098419A1 (ko) 리튬 이차 전지용 음극재, 이의 제조 방법 및 이를 포함하는 리튬 이차 전지
WO2020013667A1 (ko) 무기 전해액을 포함하는 리튬 이차전지
WO2014196777A1 (ko) 황-리튬 이온 전지용 전극 조립체 및 이를 포함하는 황-리튬 이온 전지
WO2012086939A2 (ko) 음극 활물질 및 이를 이용한 이차전지
WO2015199384A1 (ko) 리튬 이차전지
WO2017171294A1 (ko) 전극의 제조방법
WO2019093709A1 (ko) 리튬-황 전지용 전해질 복합체, 이를 포함하는 전기화학소자 및 그 제조방법
WO2020130434A1 (ko) 음극 활물질, 그의 제조 방법 및 그를 포함하는 리튬이차전지
WO2012091301A2 (ko) 음극 활물질 및 이를 이용한 이차전지
WO2012111919A2 (ko) 음극 활물질의 제조방법
WO2012086940A2 (ko) 음극 활물질 및 이를 이용한 이차전지
WO2017061807A1 (ko) 전극조립체를 구성하는 분리막의 기공 내에 겔화 전해액 성분을 포함하고 있는 전지셀
JP2023505048A (ja) 二次電池用正極材の製造方法
WO2020085859A1 (ko) 기능성 분리막, 그 제조 방법 및 이를 포함하는 리튬 이차전지
WO2020242257A1 (ko) 음극 및 상기 음극을 포함하는 이차 전지

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2014793424

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14793424

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015544013

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE