WO2020231150A1 - 도전재, 상기 도전재를 포함하는 전극, 및 상기 전극을 포함하는 이차 전지 - Google Patents

도전재, 상기 도전재를 포함하는 전극, 및 상기 전극을 포함하는 이차 전지 Download PDF

Info

Publication number
WO2020231150A1
WO2020231150A1 PCT/KR2020/006230 KR2020006230W WO2020231150A1 WO 2020231150 A1 WO2020231150 A1 WO 2020231150A1 KR 2020006230 W KR2020006230 W KR 2020006230W WO 2020231150 A1 WO2020231150 A1 WO 2020231150A1
Authority
WO
WIPO (PCT)
Prior art keywords
particle
particles
conductive material
graphene
electrode
Prior art date
Application number
PCT/KR2020/006230
Other languages
English (en)
French (fr)
Inventor
김태곤
박신영
이보람
김슬기
유태구
곽민
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to CN202080031595.0A priority Critical patent/CN113795948A/zh
Priority to EP20806155.6A priority patent/EP3944380A4/en
Priority to US17/604,577 priority patent/US20220200005A1/en
Publication of WO2020231150A1 publication Critical patent/WO2020231150A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/168After-treatment
    • C01B32/174Derivatisation; Solubilisation; Dispersion in solvents
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • C01B32/184Preparation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a conductive material, an electrode including the conductive material, and a secondary battery including the electrode.
  • the conductive material includes a first particle and a second particle
  • the first particle includes a secondary particle structure in which graphene sheets are connected to each other
  • the graphene sheet includes a plurality of graphene sheets arranged in different directions. It includes a fin sheet
  • the second particle is a carbon nanotube.
  • a lithium secondary battery includes a positive electrode including a positive electrode active material capable of intercalating/detaching lithium ions, a negative electrode including a negative active material capable of intercalating/deintercalating lithium ions, and an electrode with a microporous separator interposed between the positive electrode and the negative electrode It means a battery in which a non-aqueous electrolyte containing lithium ions is included in the assembly.
  • the positive electrode and/or the negative electrode may include a conductive material to improve conductivity.
  • a conductive material to improve conductivity.
  • point-type conductive materials such as carbon black have been mainly used, and linear conductive materials such as carbon nanotubes have been studied in order to further improve conductivity.
  • the electrical conductivity is excellent, but due to the nature of the material growing in a bundle type and/or entangled type, dispersion is not easily made in the slurry for forming an electrode. Accordingly, a problem occurs in that the resistance within the electrode becomes uneven.
  • a functional group may be introduced into the linear conductive material, but since this causes side reactions on the surface of the conductive material, actual mass production and application are difficult.
  • point-type contact is the main contact method between carbon nanotubes in the electrode, there is a limit to improvement in conductivity.
  • the carbon nanotubes and graphene as a planar conductive material may be used together, and in this case, the linear contact between the carbon nanotubes and the graphene is increased.
  • graphene when graphene is produced by exfoliating graphite, it is not easy to manufacture graphene with a thin thickness, and when graphene with a thick thickness is used, the conductive path is shortened and battery efficiency is greatly reduced.
  • even if thin graphene is used since the general area of graphene is too large, diffusion of lithium ions is inhibited and output characteristics are deteriorated.
  • the graphene has a planar shape, it is easy for carbons of the carbon nanotubes and carbons of the graphene to have sp2 bonds with adjacent carbons. Accordingly, ⁇ - ⁇ bonds can be easily formed between the surface of the carbon nanotubes and the graphene surfaces, and most of the carbon nanotubes to be connected to the surface of the electrode active material are the surface of the graphene, especially the basal plane. Since aggregation is easy in the (basal plane), there is a problem that the conductivity in the electrode is lowered. Furthermore, since one graphene present in the electrode has only one surface direction, there is a problem that the conductivity of the carbon nanotubes bonded to the graphene is limited, and thus conductivity is further reduced.
  • An object of the present invention is a conductive material capable of securing conductivity between electrode active materials while increasing contact between conductive materials and minimizing aggregation of carbon nanotubes without inhibiting diffusion of lithium ions, the conductive material It is to provide an electrode including, and a secondary battery including the electrode.
  • a first particle and a second particle are included, and the first particle includes a secondary particle structure in which graphene sheets are connected to each other, and the first particles are arranged in different directions. It includes a plurality of graphene sheets, the second particle is provided with a conductive material of carbon nanotubes.
  • an electrode including the conductive material is provided.
  • a secondary battery including the electrode is provided.
  • a plurality of graphene sheets are connected to each other to have a secondary particle structure showing a chain shape, and a first particle having excellent dispersion level due to high oxygen content and a second particle including carbon nanotubes are used as conductive materials.
  • the conductive contact within the electrode is improved in the composite application of two different types of conductive materials, which are planar (first particle) and linear (second particle), so that the conductivity within the electrode may be improved.
  • the first particles include graphene sheets having a small length unlike general graphene, the direct connection between the carbon nanotube and the electrode active material is not disturbed.
  • the degree of diffusion of lithium ions in the electrode may be improved.
  • the first particles have a high oxygen content, the first particles and/or the second particles are prevented from being agglomerated by a repulsive force due to a non-shared electron pair included in the functional group containing oxygen.
  • the first particle and the second particle may be effectively dispersed and present. Accordingly, the conductivity of the electrode may be further improved, which may lead to improvement in the high rate discharge capacity of the battery.
  • the graphene sheet of the first particle has various directions, the carbon nanotubes bonded to the graphene sheet may be arranged in various directions. Accordingly, the graphene sheets of the first particles serve as a kind of hub, so that a conductive network according to a composite application with a carbon nanotube can be efficiently formed, and the conductivity of the electrode can be further improved.
  • FIG. 1 is a schematic diagram, a TEM photograph, and a SEM photograph showing a process of forming a graphene sheet included in a first particle of a conductive material of the present invention.
  • FIG. 6 is a SEM photograph of graphene (a) used in Comparative Examples of the present invention and an anode (b) using the graphene.
  • Example 7 is a SEM photograph of the anode of Example 1 of the present invention.
  • the graphene sheet is a carbonaceous structure having a thickness of 10 nm or less, has flexibility, and is in the form of a thin film, and is present in a form included in the first particles.
  • the graphene used in the comparative example refers to a carbonaceous structure that is not included in the first particle and exists as a single particle in the form of a thin film.
  • the oxygen content may be measured by a method of C, H, O, and N elemental analysis, and may be measured using an elemental analysis equipment (CHN-coder MT-5, Yanako).
  • CHN-coder MT-5 an elemental analysis equipment
  • the average particle diameter (D 50 ) may be defined as a particle diameter corresponding to 50% of the volume accumulation amount in the particle diameter distribution curve of the particles.
  • the average particle diameter (D 50 ) can be measured using, for example, a laser diffraction method.
  • the laser diffraction method can measure a particle diameter of about several mm from a submicron region, and high reproducibility and high resolution results can be obtained.
  • the conductive material according to an embodiment of the present invention includes a first particle and a second particle, and the first particle includes a secondary particle structure in which graphene sheets are connected to each other, and the first particles are arranged in different directions. It includes a plurality of graphene sheets, and the second particles may be carbon nanotubes.
  • the conductive material may include first particles and second particles.
  • the first particle may have a structure in which a plurality of graphene sheets are connected. Specifically, at least the first particles may have two or more graphene sheets directly connected to each other or indirectly connected to each other.
  • the first particles may be in the form of secondary particles formed by connecting a plurality of graphene sheets.
  • the plurality of graphene sheets may be connected to each other to form a long chain-shaped secondary particle, and more specifically, the chain-shaped secondary particle partially covers a region in which the plurality of graphene sheets are aggregated.
  • typical planar graphenes have a two-dimensional arrangement based on a thin thickness compared to the width of the plane. Accordingly, most of the conductive networks formed in the electrodes are formed based on the two-dimensional arrangement.
  • the graphene sheets included in the first particles include a plurality of graphene sheets having an irregular arrangement.
  • the graphene sheets included in the first particle include a plurality of graphene sheets having different directions (directions perpendicular to the surface of the graphene sheet). That is, the first particles may be in the form of secondary particles having a three-dimensional arrangement formed by connecting graphene sheets arranged in various directions to each other, and more specifically, the graphene sheets having the three-dimensional arrangement.
  • a conductive network formed in the electrode can be formed based on a three-dimensional arrangement. Accordingly, it is possible to form a conductive network in various directions, and since the conductive connection between the linear second particles and the first particles can be effectively made, the conductivity in the electrode can be greatly improved.
  • the carbon nanotubes connected to the graphene sheet may also exist in the electrode in various directions. Accordingly, a conductive network in the electrode can be formed more effectively.
  • the first particles may also include a plurality of graphene sheets arranged in the same direction with each other, but even in such a case, the first particles also include a plurality of graphene sheets arranged in different directions.
  • the first particle may further include a connection part connected to at least some of the plurality of graphene sheets.
  • the preliminary first particles such as carbon black
  • the connection portion may be in a non-graphene form, and the non-graphene form may mean a lump shape having a thickness greater than that of the graphene sheet, unlike the above-described graphene sheet, and more specifically, not completely ruptured. It may be in the form of a lump.
  • a portion of each of the plurality of graphene sheets may be directly connected to each other.
  • at least a portion of the graphene sheets among the plurality of graphene sheets may be connected to each other through the connection part, and specifically, at least a part of each of the plurality of graphene sheets may be connected to the connection part.
  • the first particle of the present invention may include both of the above connection methods.
  • the first particles are carbon black in the form of particles close to a sphere, such as acetylene black, furnace black, thermal black, channel black, and lamp black. (lamp black) may be formed by deforming its shape by oxidation treatment. Referring to the schematic diagram of FIG. 1, the structure of carbon black may be deformed by oxidation treatment to form particles including a plurality of graphene sheets.
  • first particles in the form of secondary particles in which particles including the plurality of graphene sheets are aggregated may be formed.
  • the average thickness of the graphene sheet may be 10 nm or less, specifically 0.34 nm to 10 nm, and more specifically 0.34 nm to 5 nm. When the above range is satisfied, the characteristic flexibility of the graphene sheet can be expressed, so that the surface contact by the graphene sheet is improved, so that the electrical conductivity of the conductive material can be excellent.
  • the graphene sheet may be in a form in which 30 or less graphene layers are stacked.
  • the average thickness of the graphene sheet may correspond to the average value of the thickness of 100 graphene sheets measured by checking the electrode through TEM.
  • the lateral size of the graphene sheet may be 200 nm or less, specifically 10 nm to 200 nm or less, more specifically 10 nm to 100 nm, and, for example, 50 nm to 90 nm.
  • the longest length of the graphene sheet may be controlled according to the degree of heat treatment, and for example, after the oxidation treatment process, a separate heat treatment may be additionally performed in an inert atmosphere to control the longest length of the graphene sheet. If the above range is satisfied, ions in the electrolyte may be smoothly diffused within the electrode. Accordingly, the rapid charging characteristic of the battery can be improved, and the rate-limiting characteristic can also be improved.
  • the longest length of the graphene sheet means the average of the longest lengths of 100 graphene sheets observed through SEM or TEM, where the longest length refers to a line connecting one point in one graphene sheet to another. It represents the longest length assumed.
  • the longest length of the graphene sheet is much smaller than that of general graphene.
  • the graphene sheet of the present invention since the graphene sheet of the present invention has a small and longest length, it does not interfere with direct contact between the carbon nanotubes and the electrode active material, and thus is effective in reducing the resistance of the electrode.
  • the oxygen content of the first particles may be 1% by weight or more based on the total weight of the first particles, and specifically 1% by weight to 10% by weight. When the above range is satisfied, since the first particles can be smoothly dispersed in the electrode slurry formed during electrode manufacturing, the conductivity of the electrode may be improved, and the capacity of the manufactured battery may be improved.
  • the oxygen content may be measured by a method of C, H, O, and N elemental analysis.
  • the oxygen content may be achieved in the process of oxidizing carbon black.
  • an oxygen-containing functional group may be formed on the surface of the first particle by the oxidation treatment.
  • the oxygen-containing functional group may be at least one selected from the group consisting of a carboxyl group, a hydroxy group, and a carbonyl group. After the oxidation treatment process, the oxygen content may be additionally controlled through heat treatment of the first particles in an inert atmosphere.
  • the first particles may have a higher degree of graphitization than carbon black before undergoing oxidation treatment.
  • the high structural stress caused by the surface tension of the spherical carbon black may be partially resolved due to the formation of planar graphene sheets, and structural defects occurring in curvature are minimized to form a stable sp 2 structure. Therefore, the degree of graphitization of the prepared conductive material may be increased.
  • the D/G peak ratio may be 2.0 or less, specifically 0.9 to 2.0, and more specifically 1.1 to 1.8.
  • G peak of 1590cm -1 near shows a modification resulting from the E 2g mode vibration of the carbon sp 2 bond
  • D peak in the vicinity of 1350cm -1 is shown when there is a defect in the sp 2 carbon bond. That is, when the D/G peak ratio is satisfied, it means that a high degree of graphitization can be obtained. Accordingly, when the first particles are used, the capacity and electrical properties of the battery are increased based on the high electrical conductivity of the first particles. Characteristics can be improved.
  • the first particle may have a value calculated by the following equation 1 of 0.2 or less, specifically 0 to 0.20, specifically 0 to 0.15, and preferably 0 to 0.1.
  • Equation 1 a is the specific surface area (m 2 /g) of the first particle measured by the nitrogen adsorption BET method, and b is the iodine adsorption value (mg/g) of the first particle.
  • N 2 small nitrogen
  • I 2 iodine
  • the first particle when the value according to Equation 1 is 0.2 or less, it means that the first particle does not contain micropores or contains a small amount. That is, when the micropores do not exist, the degree to which iodine is adsorbed and the degree to which nitrogen is adsorbed are similar, and thus the value of Equation 1 is reduced.
  • the surface of the first particle is a free surface. Specifically, most of the carbon black is transformed into a hollow structure by oxidation treatment, and the structure is destroyed by continuous oxidation treatment, thereby forming graphene sheets. At this time, the graphene sheets may be formed in a shape that opens toward the outside without forming a void structure.
  • the specific surface area (m 2 /g) of the first particles measured by the nitrogen adsorption BET method may be 200 m 2 /g or more, specifically 200 m 2 /g to 1100 m 2 /g, and more specifically 300 m 2 / It may be from g to 1100m 2 /g, preferably from 500m 2 /g to 900m 2 /g.
  • the specific surface area range it means that the area of the graphene sheet in the first particles is large, and accordingly, even if the content of the first particles in the electrode is small, the conductivity of the electrode can be secured.
  • the average particle diameter (D 50 ) of the first particles may be 0.5 ⁇ m to 2.5 ⁇ m, specifically 0.7 ⁇ m to 2.3 ⁇ m, and more specifically 0.9 ⁇ m to 2.1 ⁇ m.
  • the first particles serve as a hub of a conductive network in the electrode, so that electron distribution in the electrode may be uniform.
  • the second particle may be a carbon nanotube.
  • the viscosity of the electrode slurry becomes too high due to an excessively high specific surface area and oxygen content, and thus processability is deteriorated during electrode manufacturing.
  • the conductive material is composed of planar graphene sheets, it is difficult to significantly improve the diffusion of lithium ions.
  • the carbon nanotubes are used in combination with the first particles as the second particles, the overall specific surface area and the oxygen content of the conductive material are maintained at an appropriate level, so that fairness can be improved.
  • the planar graphene sheet and the linear carbon nanotubes can more effectively form a conductive network in the electrode, diffusion of lithium ions can be improved, and rate characteristics and life characteristics of the battery can be improved.
  • the graphite sheet of the carbon nanotube has a cylindrical shape of a nano-sized diameter, and has an sp 2 bonding structure. At this time, the characteristics of a conductor or a semiconductor may be expressed according to the angle and structure at which the graphite surface is rolled.
  • the carbon nanotubes are single-walled carbon nanotubes (SWCNT), double-walled carbon nanotubes (DWCNTs), and multi-walled carbon nanotubes (MWCNT), depending on the number of bonds forming the wall. multi-walled carbon nanotube) can be classified as a unit.
  • the carbon nanotubes may be multi-walled carbon nanotubes.
  • the carbon nanotubes are single-walled carbon nanotubes or double-walled carbon nanotubes, there is a problem in that the cost of manufacturing a battery is excessively high, and since the carbon nanotube units are present in the electrode in an excessively aggregated state, conductivity is lowered.
  • the manufacturing cost is relatively low, and the carbon nanotubes are easily dispersed in the electrode slurry, and thus may be uniformly distributed in the electrode. Accordingly, rate characteristics and life characteristics of the battery may be improved.
  • the average diameter of the carbon nanotubes may be 1 nm to 200 nm, specifically 5 nm to 100 nm, and more specifically 5 nm to 50 nm. When the above range is satisfied, the carbon nanotubes are easily dispersed in the electrode manufacturing slurry, and the conductivity of the electrode may be improved. The average diameter can be confirmed by a method of obtaining an average of the diameters of 100 carbon nanotubes in the electrode observed through SEM or TEM.
  • the BET specific surface area of the carbon nanotubes may be 50m 2 /g to 500m 2 /g, specifically 100m 2 /g to 400m 2 /g, and more specifically 150m 2 /g to 300m 2 /g I can. When the specific surface area range is satisfied, proper dispersion of the carbon nanotubes is possible to maintain manufacturing processability, and formation of a conductive network can be maximized even with a small content of a conductive material.
  • the BET specific surface area may be measured through a nitrogen adsorption BET method.
  • the average length of the carbon nanotubes may be 0.1 ⁇ m to 100 ⁇ m, specifically 0.5 ⁇ m to 50 ⁇ m, and more specifically 1 ⁇ m to 20 ⁇ m. It is possible to properly disperse the carbon nanotubes, and to maintain manufacturing processability by using an electrode slurry having a high solid content when manufacturing an electrode. In addition, it is possible to maximize the formation of a conductive network with a small content of the conductive material. The average length can be confirmed by a method of obtaining an average of the lengths of 100 carbon nanotubes in the electrode observed through SEM or TEM.
  • the weight ratio of the first particle and the second particle may be 1:9 to 9:1, specifically 2:8 to 5:5, and more specifically 3:7 to 4:6.
  • appropriate dispersion of the first particles and the second particles is possible, and the electrode slurry having a high solid content can be used when manufacturing an electrode, thereby maintaining manufacturing processability.
  • An electrode according to another embodiment of the present invention may include the conductive material of the embodiment described above.
  • the electrode may be an anode or a cathode.
  • the electrode may include a current collector and an active material layer disposed on the current collector.
  • the conductive material may be included in an amount of 0.1% to 3.0% by weight in the active material layer, and specifically, may be included in an amount of 0.5% to 2.0% by weight. This corresponds to a level lower than the conventional conductive material content. That is, when using the conductive material according to an embodiment of the present invention, it means that sufficient conductivity can be secured even with a small amount.
  • the positive electrode may include a current collector and a positive electrode active material layer disposed on the current collector and including a positive electrode active material.
  • the negative electrode may include a current collector and a negative active material layer disposed on the current collector and including a negative active material. Furthermore, each of the positive active material layer and the negative active material layer may further include a binder.
  • the current collector is not particularly limited as long as it has conductivity without causing a chemical change in the battery.
  • copper, stainless steel, aluminum, nickel, titanium, calcined carbon, or a surface-treated aluminum or stainless steel surface with carbon, nickel, titanium, silver, or the like may be used.
  • a transition metal that adsorbs carbon well, such as copper and nickel can be used as the current collector.
  • the positive active material layer or the negative active material layer may be disposed on one or both surfaces of the current collector, respectively.
  • the positive electrode active material may be a commonly used positive electrode active material.
  • the positive electrode active material may include a layered compound such as lithium cobalt oxide (LiCoO 2 ) or lithium nickel oxide (LiNiO 2 ), or a compound substituted with one or more transition metals; Lithium manganese oxides such as formula Li 1+y1 Mn 2-y1 O 4 (0 ⁇ y1 ⁇ 0.33), LiMnO 3 , LiMn 2 O 3 , and LiMnO 2 ; Lithium copper oxide (Li 2 CuO 2 ); Vanadium oxides such as LiV 3 O 8 , V 2 O 5 , and Cu 2 V 2 O 7 ; Ni site-type lithium nickel oxide represented by the formula LiNi 1-y2 M1 y2 O 2 (where M1 is Co, Mn, Al, Cu, Fe, Mg, B or Ga, and satisfies 0.01 ⁇ y2 ⁇ 0.3); Formula LiMn 2-y3 M2 y3 O 2 (where M2 is Co, Ni
  • the negative active material may be graphite-based active material particles or silicon-based active material particles.
  • the graphite-based active material particles may be one or more selected from the group consisting of artificial graphite, natural graphite, graphitized carbon fibers, and graphitized mesocarbon microbeads.In particular, when using artificial graphite, rate characteristics may be improved. .
  • the silicon-based active material particles are Si, SiO x (0 ⁇ x ⁇ 2), Si-C composite and Si-Y alloy (where Y is an alkali metal, alkaline earth metal, transition metal, group 13 element, group 14 element, rare earth element And it is an element selected from the group consisting of a combination thereof), it is possible to use at least one selected from the group consisting of, in particular, when Si is used, a high capacity of the battery can be derived.
  • the binder is polyvinylidene fluoride-hexafluoropropylene copolymer (PVDF-co-HFP), polyvinylidenefluoride, polyacrylonitrile, polymethylmethacrylate, polymethylmethacrylate, and polyvinylidene fluoride.
  • Vinyl alcohol carboxymethylcellulose (CMC), starch, hydroxypropylcellulose, regenerated cellulose, polyvinylpyrrolidone, tetrafluoroethylene, polyethylene, polypropylene, polyacrylic acid, ethylene-propylene-diene monomer (EPDM), alcohol It may include at least any one selected from the group consisting of phonated EPDM, styrene butadiene rubber (SBR), fluorine rubber, poly acrylic acid, and materials in which hydrogen thereof is substituted with Li, Na, or Ca, It may also include various copolymers thereof.
  • CMC carboxymethylcellulose
  • SBR styrene butadiene rubber
  • fluorine rubber poly acrylic acid
  • materials in which hydrogen thereof is substituted with Li, Na, or Ca It may also include various copolymers thereof.
  • a secondary battery according to another embodiment of the present invention may include a negative electrode, a positive electrode, a separator interposed between the positive electrode and the negative electrode, and an electrolyte, and at least one of the positive electrode and the negative electrode is an electrode of the other embodiment described above.
  • the separator separates the negative electrode and the positive electrode and provides a path for lithium ions to move, and can be used without particular limitation as long as it is used as a separator in a general secondary battery.In particular, it has a low resistance against the movement of ions of the electrolyte and has an electrolyte-moisture ability. It is desirable to be excellent.
  • a porous polymer film for example, a porous polymer film made of polyolefin-based polymers such as ethylene homopolymer, propylene homopolymer, ethylene/butene copolymer, ethylene/hexene copolymer, and ethylene/methacrylate copolymer, or these A stacked structure of two or more layers of may be used.
  • a conventional porous nonwoven fabric for example, a nonwoven fabric made of a high melting point glass fiber, polyethylene terephthalate fiber, or the like may be used.
  • a coated separator containing a ceramic component or a polymer material may be used to secure heat resistance or mechanical strength, and may be optionally used in a single layer or multilayer structure.
  • the electrolyte may include, but is not limited to, an organic liquid electrolyte, an inorganic liquid electrolyte, a solid polymer electrolyte, a gel polymer electrolyte, a solid inorganic electrolyte, and a molten inorganic electrolyte that can be used when manufacturing a lithium secondary battery.
  • the electrolyte may include a non-aqueous organic solvent and a metal salt.
  • non-aqueous organic solvent for example, N-methyl-2-pyrrolidinone, propylene carbonate, ethylene carbonate, butylene carbonate, dimethyl carbonate, diethyl carbonate, gamma-butyllolactone, 1,2-dime Oxyethane, tetrahydroxy franc (franc), 2-methyl tetrahydrofuran, dimethyl sulfoxide, 1,3-dioxolone, formamide, dimethylformamide, dioxolone, acetonitrile, nitromethane, methyl formate, Methyl acetate, phosphoric acid tryester, trimethoxy methane, dioxolone derivative, sulfolane, methyl sulfolane, 1,3-dimethyl-2-imidazolidinone, propylene carbonate derivative, tetrahydrofuran derivative, ether, pyrofion
  • An aprotic organic solvent such as methyl acid or ethy
  • ethylene carbonate and propylene carbonate which are cyclic carbonates
  • cyclic carbonates are highly viscous organic solvents and can be preferably used because they dissociate lithium salts well because of their high dielectric constant.
  • These cyclic carbonates include dimethyl carbonate and diethyl carbonate. If the same low viscosity, low dielectric constant linear carbonate is mixed and used in an appropriate ratio, an electrolyte having a high electrical conductivity can be made, and thus it can be more preferably used.
  • the metal salt may be a lithium salt
  • the lithium salt is a material that is readily soluble in the non-aqueous electrolyte, for example, is in the lithium salt anion F -, Cl -, I - , NO 3 -, N (CN ) 2 -, BF 4 -, ClO 4 -, PF 6 -, (CF 3) 2 PF 4 -, (CF 3) 3 PF 3 -, (CF 3) 4 PF 2 -, (CF 3) 5 PF - , (CF 3) 6 P - , CF 3 SO 3 -, CF 3 CF 2 SO 3 -, (CF 3 SO 2) 2 N -, (FSO 2) 2 N -, CF 3 CF 2 (CF 3) 2 CO -, (CF 3 SO 2 ) 2 CH -, (SF 5) 3 C -, (CF 3 SO 2) 3 C -, CF 3 (CF 2) 7 SO 3 -, CF 3 CO 2 -, CH 3 CO 2 -
  • the electrolyte includes, for example, haloalkylene carbonate-based compounds such as difluoroethylene carbonate, pyridine, and trivalent for the purpose of improving battery life characteristics, suppressing reduction in battery capacity, and improving battery discharge capacity.
  • haloalkylene carbonate-based compounds such as difluoroethylene carbonate, pyridine, and trivalent for the purpose of improving battery life characteristics, suppressing reduction in battery capacity, and improving battery discharge capacity.
  • Ethyl phosphite triethanolamine, cyclic ether, ethylene diamine, n-glyme, hexaphosphate triamide, nitrobenzene derivative, sulfur, quinone imine dye, N-substituted oxazolidinone, N,N-substituted imida
  • additives such as zolidine, ethylene glycol dialkyl ether, ammonium salt, pyrrole, 2-methoxy ethanol, or aluminum trichloride, may be further included.
  • a battery module including the secondary battery as a unit cell and a battery pack including the same are provided. Since the battery module and the battery pack include the secondary battery having high capacity, high rate characteristics, and site characteristics, a mid- to large-sized device selected from the group consisting of electric vehicles, hybrid electric vehicles, plug-in hybrid electric vehicles and power storage systems It can be used as a power source.
  • a method for manufacturing a conductive material includes: preparing first particles; And mixing the first particles and the second particles, wherein the preparing of the first particles includes: preparing a preliminary first particle; And transforming the preliminary first particles by oxidizing them, wherein the step of modifying the preliminary first particles by oxidizing treatment comprises: a) 200°C to 800°C in an oxygen atmosphere or an air atmosphere. Performing a first heat treatment at a temperature of °C; And b) reacting the preliminary first particles with acidic vapor at 120°C to 300°C, and the second particles may be carbon nanotubes.
  • the preliminary first particles may be carbon black.
  • the preliminary first particle may be at least one selected from the group consisting of acetylene black, furnace black, thermal black, channel black, and lamp black. More specifically, the preliminary first particles may be acetylene black, which is manufactured at the highest temperature and basically has excellent graphitization degree.
  • Preparing the preliminary first particles may include pyrolyzing acetylene gas, and carbon black, specifically acetylene black, may be formed through the pyrolysis.
  • the acetylene gas may be a high purity acetylene gas, specifically an acetylene gas having a purity of 95% or more, and more specifically, a purity of 98% or more.
  • the pyrolysis may be to pyrolyze the acetylene gas at a temperature of 1500°C or higher, specifically 1500°C to 2200°C, and more specifically 1500°C to 2000°C.
  • the graphitization degree of the prepared preliminary first particles may be high, and the graphitization degree of the prepared conductive material may also be high. Therefore, the electrical conductivity of the conductive material can be improved.
  • the preliminary first particles may be carbon black, but among them, acetylene black may be preferable in the following points.
  • the graphene sheet included in the conductive material of the present invention may be formed by deforming the surface of the preliminary first particles by oxidation treatment.
  • Acetylene black formed by the thermal decomposition has a high degree of graphitization of the surface. Therefore, compared to the oxidation treatment of other carbon blacks that inevitably contain some oxygen functional groups on the surface, the structure of the graphene sheet may be smoothly formed when the acetylene black is oxidized.
  • the pyrolysis may be an instantaneous pyrolysis by adjusting the temperature inside the reaction furnace within the above temperature range, and then introducing an acetylene gas into the reaction furnace.
  • air, oxygen, H 2 O, etc. may be additionally added to control the density of the conductive material and oxygen functional groups, and the connection structure in the conductive material may be controlled.
  • the step of deforming the preliminary first particles by oxidation treatment includes: a) subjecting the preliminary first particles to a heat treatment temperature of 200°C to 800°C in an oxygen atmosphere or an air atmosphere (step a); And b) reacting the preliminary first particles with acidic vapor of 120° C. to 300° C. (step b).
  • the oxygen atmosphere or the air atmosphere may be formed by introducing oxygen or air into a reaction furnace in which the preliminary first particles are accommodated.
  • the graphene sheet structure may be formed by an oxidation process in the reactor according to the setting of an appropriate inflow amount and rate of oxygen or air, a reaction temperature, and a reaction time during the first heat treatment.
  • the conditions of the oxidation process may be changed based on differences in the density of the preliminary first particles and the content of oxygen functional groups.
  • the first heat treatment may be performed by adjusting the temperature of the reaction furnace in the reaction furnace in which the preliminary first particles are accommodated.
  • the first heat treatment may be heat treatment at a heat treatment temperature of 200°C to 800°C, and specifically, heat treatment at a heat treatment temperature of 200°C to 450°C.
  • the first heat treatment may be performed for 1 to 50 hours.
  • the preliminary first particles may be oxidized by reacting with acidic vapor to form a graphene sheet.
  • the acidic vapor may be vapor derived from an acidic solution such as HCl or HNO 3 .
  • the temperature of the acidic vapor reacting with the preliminary first particles may be 120°C to 300°C.
  • a second heat treatment process may be additionally performed in an inert atmosphere in order to increase the size of the formed graphene sheet.
  • the conductive material manufacturing method further includes a step of performing a second heat treatment on the preliminary first particles modified by oxidation treatment at a temperature of 500°C or higher in an inert atmosphere after the step of oxidizing and deforming the preliminary first particles. can do.
  • the inert atmosphere may be formed of any one gas selected from the group consisting of vacuum, helium, argon, and nitrogen.
  • the second heat treatment temperature may be 500°C or higher, specifically 500°C to 2800°C, and more specifically 600°C to 1600°C.
  • the mechanism by which the first particles described in the present invention are formed may be as follows.
  • the average size of the spherical primary particles is 50 nm or less, and oxidation treatment is performed under specific conditions for spherical to chain carbon black in which the primary particles share a structure, specifically acetylene black. It goes on.
  • an oxidizing agent such as oxygen or acidic vapor penetrates and an oxidation reaction occurs from defects such as grain boundaries or dislocations in the fine unit structure of the carbon black.
  • the oxidizing agent penetrates into the microstructure inside the carbon black, and oxidation proceeds.
  • step a is more preferable than step b in that it can further accelerate the transformation process.
  • the second particle may be a carbon nanotube.
  • the second particle is the same as the second particle of the above-described embodiment.
  • the second particles may be prepared by dispersing bundled carbon nanotubes or entangled carbon nanotubes in a dispersion state.
  • the bundled carbon nanotube refers to a secondary shape in the form of a bundle or a rope in which a plurality of carbon nanotubes are arranged in parallel with the axis in the longitudinal direction of the carbon nanotube in substantially the same orientation.
  • the entangled carbon nanotubes mean that a plurality of carbon nanotubes are entangled with each other.
  • the first particles and the second particles may be mixed by mixing a first particle dispersion containing the first particles and a second particle dispersion containing the second particles.
  • the mixing may be performed when preparing an electrode slurry for forming an electrode.
  • acetylene gas having a purity of 98% was instantaneously injected into a reaction furnace having an internal temperature of 2000° C. and thermally decomposed to form acetylene black.
  • the internal temperature of the reactor in which the acetylene black was accommodated was set to 250° C., and oxidation treatment was performed for 30 hours while introducing oxygen.
  • a plurality of graphene sheets having a lateral size of 40 nm level are connected to each other, and the graphene sheet has a secondary particle structure including a plurality of graphene sheets arranged in different directions. The first particles were obtained. (See Figs. 2 and 3)
  • the conductive material obtained in Preparation Example 1 by performing an additional heat treatment at 900°C for 1 hour in an inert atmosphere, a plurality of graphene sheets having a lateral size of 65 nm level are connected to each other, and the The graphene sheet obtained first particles having a secondary particle structure including a plurality of graphene sheets arranged in different directions.
  • FIG. 4 it can be seen that the first particles of Preparation Example 1 shown in FIG. 4(a) are transformed into the first particles of Preparation Example 2 of FIG. 4(b) by heat treatment. Specifically, it can be seen that adjacent graphene sheets are interconnected by the heat treatment to increase the maximum length.
  • the first particles of Preparation Example 1, hydrogenated nitrile butadiene rubber (H-NBR) as a dispersant, and N-methylpyrrolidone (NMP, N-methylpyrrolidone) as a dispersion medium were mixed in a weight ratio of 5.7:1.7:92.6 to form a mixture. .
  • the mixture was added to a spike mill filled with 80% of beads having a size of 0.65 mm, dispersed, and discharged at a discharge rate of 2 kg/min. This process was performed four times to prepare a first particle dispersion containing first particles whose particle size distribution was adjusted.
  • Bundled multi-walled carbon nanotubes, hydrogenated nitrile butadiene rubber (H-NBR) as a dispersant, and N-methylpyrrolidone (NMP, N-methylpyrrolidone) as a dispersion medium were mixed in a weight ratio of 4:0.8:95.2 to form a mixture.
  • the mixture was added to a spike mill filled with 80% of beads having a size of 0.65 mm, dispersed, and discharged at a discharge rate of 2 kg/min. By performing such a process twice, a second particle dispersion containing second particles (carbon nanotubes) having a controlled particle size distribution was prepared.
  • the weight ratio of the positive electrode active material, PVdF, and the first and second particles of Preparation Example 1 in the positive electrode slurry was 96.5:1.5:0.8:1.2.
  • the positive electrode slurry was applied and dried to a positive electrode current collector (Al) having a thickness of 20 ⁇ m so that a solid content loading amount of 21 mg/cm 2 . Thereafter, the positive electrode current collector on which the positive electrode slurry was disposed was rolled by a roll rolling method so that the total thickness of the positive electrode slurry and the positive electrode current collector was 77 ⁇ m. Thereafter, the positive electrode slurry and the positive electrode current collector were dried at 130° C. for 6 hours to prepare a positive electrode.
  • Al positive electrode current collector
  • a negative electrode slurry was prepared by mixing artificial graphite as a negative active material, carbon black as a negative conductive material, styrene-butadiene rubber (SBR), and carboxymethyl cellulose (CMC) as negative binders in distilled water at a weight ratio of 96.1:0.5:2.3:1.1, respectively.
  • the prepared slurry was applied and dried to a negative electrode current collector (Cu) having a thickness of 20 ⁇ m so that the loading amount was 10 mg/cm 2 .
  • the negative electrode current collector on which the negative electrode slurry was disposed was rolled by a roll rolling method so that the total thickness of the negative electrode slurry and the negative electrode current collector was 80 ⁇ m.
  • the negative electrode slurry and the negative electrode current collector were dried at 110° C. for 6 hours to prepare a negative electrode (see FIG. 7 ).
  • EC ethylene carbonate
  • EMC ethylmethyl carbonate
  • PVdF polyvinylidene fluoride
  • a first particle dispersion silica
  • NMP NMP
  • a battery was manufactured in the same manner as in Example 1, except that the positive electrode slurry was used.
  • PVdF polyvinylidene fluoride
  • NMP NMP
  • a battery was manufactured in the same manner as in Example 1, except that the positive electrode slurry was used.
  • a battery was manufactured in the same manner as in Example 1, except that the first particles and the second particles were not used, and carbon black having an average particle diameter (D 50 ) of 23 nm (see FIG. 5) was used as a conductive material. At this time, the weight ratio of the positive electrode active material, PVdF, and carbon black in the positive electrode was 96.5:1.5:2.0.
  • Example 6 The same as in Example 1, except that graphene (BTR company) (see Fig. 6) having an average thickness of more than 100 nm and an average size of 5.5 ⁇ m was used as a conductive material without using the first and second particles.
  • the battery was manufactured by the method. At this time, the weight ratio of the positive electrode active material, PVdF, and graphene in the positive electrode was 96.5:1.5:2.0.
  • the average thickness and average size were calculated as an average of 100 graphenes observed through SEM or TEM.
  • a battery was manufactured in the same manner as in Example 1, except that carbon black was used instead of the first particle. At this time, the weight ratio of the positive electrode active material, PVdF, carbon black, and carbon nanotubes (second particles) in the positive electrode was 96.5:1.5:0.8:1.2.
  • a battery was manufactured in the same manner as in Example 1, except that graphene (BTR) having an average thickness of more than 100 nm and an average size of 5.5 ⁇ m was used instead of the first particle.
  • the weight ratio of the positive electrode active material, PVdF, graphene, and carbon nanotubes (second particles) in the positive electrode was 96.5:1.5:0.8:1.2.
  • Nitrogen adsorption specific surface area (m 2 /g): Using BET measuring equipment (BEL-SORP-MAX, Nippon Bell), degassing at 200°C for 8 hours and adsorbing N 2 at 77K/ Desorption (absorption/desorption) was performed and measured.
  • Iodine adsorption value (mg/g): It was measured according to ASTM D1510 method.
  • Oxygen content (% by weight): Using an elemental analysis equipment (CHN-coder MT-5, Yanako), the content of C, H, and N elements is measured, and the amount of remaining ash is reflected to determine the oxygen content (differential ) Was calculated.
  • CHN-coder MT-5 elemental analysis equipment
  • Raman spectrum D/G ratio Raman spectrum was analyzed and measured with an Ar-ion laser having a wavelength of 514.5 nm through a Raman spectroscopy equipment (NRS-2000B, Jasco).
  • Average particle diameter of carbon black After measuring the size of the primary particle diameter of 100 carbon blacks in the positive electrode by TEM (JEOL, JEM-2010F), the average of these was evaluated.
  • Table 5 shows the evaluation results of the lithium secondary batteries prepared in Examples 1 to 4 and Comparative Examples 1 to 6 by discharge C-Rate. Specifically, the charging C-Rate was fixed at 0.2C, and the discharge C-Rate was increased from 0.2C to 2.0C, and the 2.0C discharge capacity (%) was evaluated compared to the 0.2C discharge capacity.
  • Example 4 using the first particles including the graphene sheet having a larger longest length are higher than that of Example 1.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Nanotechnology (AREA)
  • Inorganic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

본 발명은 제1 입자 및 제2 입자를 포함하며, 상기 제1 입자는 그래핀 시트들이 서로 연결된 2차 입자 구조를 포함하며, 상기 제1 입자는 서로 다른 방향으로 배열된 복수의 그래핀 시트를 포함하며, 상기 제2 입자는 탄소나노튜브인, 도전재, 이를 포함하는 전극, 및 이를 포함하는 이차전지에 관한 것이다.

Description

도전재, 상기 도전재를 포함하는 전극, 및 상기 전극을 포함하는 이차 전지
관련출원과의 상호인용
본 출원은 2019년 5월 15일자 출원된 한국 특허 출원 제10-2019-0056920호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
기술분야
본 발명은 도전재, 상기 도전재를 포함하는 전극, 및 상기 전극을 포함하는 이차 전지에 관한 발명이다. 구체적으로, 상기 도전재는 제1 입자 및 제2 입자를 포함하며, 상기 제1 입자는 그래핀 시트들이 서로 연결된 2차 입자 구조를 포함하며, 상기 그래핀 시트는 서로 다른 방향으로 배열된 복수의 그래핀 시트를 포함하며, 상기 제2 입자는 탄소나노튜브이다.
최근 모바일 기기에 대한 기술 개발과 수요가 증가함에 따라 에너지원으로서의 전지의 수요가 급격히 증가하고 있고, 그에 따라 다양한 요구에 부응할 수 있는 전지에 대한 연구가 다양하게 행해지고 있다. 특히, 이러한 장치의 전원으로 높은 에너지 밀도를 가지면서 우수한 수명 및 사이클 특성을 가지는 리튬 이차전지에 대한 연구가 활발히 진행되고 있다.
리튬 이차전지는 리튬 이온의 삽입/탈리가 가능한 양극 활물질을 포함하고 있는 양극과, 리튬 이온의 삽입/탈리가 가능한 음극 활물질을 포함하고 있는 음극, 상기 양극과 음극 사이에 미세 다공성 분리막이 개재된 전극 조립체에 리튬 이온을 함유한 비수 전해질이 포함되어 있는 전지를 의미한다.
상기 양극 및/또는 상기 음극은, 도전성을 향상시키기 위해, 도전재를 포함할 수 있다. 종래에는 카본 블랙 등의 점형 도전재를 주로 사용하였으며, 도전성을 더욱 개선하기 위해 탄소나노튜브 등의 선형 도전재가 검토되고 있다.
그러나, 상기 탄소나노튜브의 경우, 전기 전도성은 우수하나 번들 형태(bundle type) 및/또는 엉킨 형태(entangled type) 로 성장하는 소재의 특성 상 전극 형성용 슬러리 내에서 분산이 쉽게 이루어지지 않으며, 이에 따라 전극 내 저항이 균일하지 못하게 되는 문제가 발생한다. 이러한 분산성 문제를 해결하기 위해 선형 도전재에 관능기를 도입할 수도 있으나, 이는 도전재 표면의 부반응을 야기하므로 실제 양산 및 적용이 어려운 상황이다. 또한, 전극 내에서 탄소나노튜브들 간에는 점형 접촉이 주된 접촉 방식이므로, 도전성 개선에 한계가 있다.
이를 개선하기 위해, 상기 탄소나노튜브와 면형 도전재인 그래핀이 함께 사용될 수도 있으며, 이 경우 상기 탄소나노튜브와 상기 그래핀 간의 선형 접촉이 증가하게 된다. 다만, 그라파이트를 박리하여 그래핀을 제조할 때, 얇은 두께의 그래핀을 제조하기 쉽지 않으며, 두께가 두꺼운 그래핀을 사용하는 경우 도전성 경로가 줄어들어 전지 효율이 크게 저하된다. 또한, 얇은 두께의 그래핀이 사용되더라도, 일반적인 그래핀의 면적이 지나치게 크기 때문에, 리튬 이온의 확산이 저해되어 출력 특성이 저하된다. 나아가, 상기 그래핀이 평면 형태를 가지므로, 상기 탄소나노튜브의 탄소들 및 상기 그래핀의 탄소들이 인접한 탄소들과 sp2 결합을 가지기 쉽다. 이에 따라, 상기 탄소나노튜브 표면과 상기 그래핀 표면들 간에 π-π결합이 쉽게 형성될 수 있으며, 전극 활물질 표면과 연결되어야 할 상기 탄소나노튜브의 대부분이 상기 그래핀의 표면, 특히 베이살 플레인(basal plane)에서 응집(aggregation)되기 쉬우므로, 전극 내 도전성이 저하되는 문제가 발생한다. 나아가, 전극 내 존재하는 하나의 그래핀은 한가지 면방향만을 가지고 있는 바, 상기 그래핀과 결합되는 상기 탄소 나노 튜브들의 방향성이 제한되어 도전성이 더욱 저하되는 문제가 있다.
따라서, 도전재들 간의 접촉을 증가시키면서도, 리튬 이온의 확산을 저해하지 않고, 탄소 나노 튜브의 응집을 최소화할 수 있는 도전재가 요구된다.
본 발명의 목적은 도전재들 간의 접촉을 증가시키면서도, 전극 활물질들간의 도전성이 확보될 수 있으며, 리튬 이온의 확산을 저해하지 않고, 탄소 나노 튜브의 응집을 최소화할 수 있는 도전재, 상기 도전재를 포함하는 전극, 및 상기 전극을 포함하는 이차 전지를 제공하는 것이다.
본 발명의 일 실시예에 따르면, 제1 입자 및 제2 입자를 포함하며, 상기 제1 입자는 그래핀 시트들이 서로 연결된 2차 입자 구조를 포함하며, 상기 제1 입자는 서로 다른 방향으로 배열된 복수의 그래핀 시트를 포함하며, 상기 제2 입자는 탄소나노튜브인 도전재가 제공된다.
본 발명의 다른 실시예에 따르면, 상기 도전재를 포함하는 전극이 제공된다.
본 발명의 또 다른 실시예에 따르면, 상기 전극을 포함하는 이차 전지가 제공된다.
본 발명에 따르면, 복수의 그래핀 시트들이 서로 연결되어 사슬 형태를 나타내는 2차 입자 구조를 포함하며 산소 함량이 높아 분산 수준이 우수한제1 입자와 탄소 나노 튜브를 포함하는 제2 입자를 도전재로 병용한다. 이에 따라, 면형(제1 입자)과 선형(제2 입자)이라는 상이한 두 형태의 도전재의 복합 적용에 전극 내 도전성 접촉이 향상되어, 전극 내 도전성이 개선될 수 있다. 나아가, 상기 제1 입자는 일반적인 그래핀과 달리 작은 길이의 그래핀 시트들을 포함하므로, 상기 탄소 나노 튜브와 전극 활물질의 직접적인 연결을 방해하지 않는다. 또한, 제1 입자가 사슬 형태(평면이 아닌 입체적인 형상)으로 존재하며, 제1 입자의 그래핀 시트가 불규칙하게 배열되므로, 전극 내 리튬 이온의 확산 정도가 개선될 수 있다. 나아가, 제1 입자가 높은 산소 함량을 가지므로, 산소를 포함하는 관능기에 포함된 비공유 전자쌍에 의한 반발력에 의해, 제1 입자 및/또는 제2 입자가 응집되는 것을 방지하며, 전극 내에서 상기 제1 입자와 제2 입자가 효과적으로 분산되어 존재할 수 있다. 이에 따라, 전극의 도전성이 더욱 더 개선될 수 있으며, 이는 전지의 고율 방전 용량 개선으로 이어질 수 있다. 더욱이, 상기 제1 입자의 그래핀 시트가 여러 방향성을 가지고 있어서, 상기 그래핀 시트와 결합된 탄소 나노 튜브가 다양한 방향으로 배치될 수 있다. 따라서, 상기 제1 입자의 그래핀 시트들이 일종의 허브 역할을 하여, 탄소 나노 튜브와의 복합 적용에 따른 도전성 네트워크가 효율적으로 형성될 수 있고, 전극의 도전성이 더욱 개선될 수 있다.
도 1은 본 발명의 도전재의 제1 입자에 포함된 그래핀 시트가 형성되는 과정을 보이는 모식도, TEM 사진, 및 SEM 사진이다.
도 2는 본 발명의 제조예 1의 제1 입자의 TEM 및 STEM(scanning TEM)사진이다.
도 3은 본 발명의 제조예 1의 제1 입자의 SEM 사진이다.
도 4는 본 발명의 제조예 1의 제1 입자의 TEM 사진(a) 및 제조예 2의 제1 입자의 TEM 사진(b)이다.
도 5는 본 발명의 비교예들에서 사용된 카본 블랙의 SEM 사진이다.
도 6은 본 발명의 비교예들에서 사용된 그래핀(a) 및 상기 그래핀을 사용한 양극(b)의 SEM 사진이다.
도 7은 본 발명의 실시예 1의 양극의 SEM 사진이다.
이하, 본 발명에 대한 이해를 돕기 위해 본 발명을 더욱 상세하게 설명한다. 이때, 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.
본 발명에 있어서 그래핀 시트란, 두께가 10nm 이하이며, 유연성을 가지고, 박막 형태인 탄소질 구조체로써 제1 입자에 포함된 형태로 존재하는 것을 의미한다. 반면, 비교예에서 사용된 그래핀이란 제1 입자에 포함되지 않고 박막 형태의 단일 입자로써 존재하는 탄소질 구조체를 의미한다.
본 발명에 있어서, 산소 함량은 C, H, O, N 원소 분석(elemental Analysis)의 방법으로 측정될 수 있으며, 원소 분석 장비(CHN-coder MT-5, Yanako)를 사용하여 측정될 수 있다.
본 명세서에서 평균 입경(D50)은 입자의 입경 분포 곡선에 있어서, 체적 누적량의 50%에 해당하는 입경으로 정의할 수 있다. 상기 평균 입경(D50)은 예를 들어, 레이저 회절법(laser diffraction method)을 이용하여 측정할 수 있다. 상기 레이저 회절법은 일반적으로 서브미크론(submicron) 영역에서부터 수 mm 정도의 입경의 측정이 가능하며, 고 재현성 및 고 분해성의 결과를 얻을 수 있다.
<도전재>
본 발명의 일 실시예에 따른 도전재는 제1 입자 및 제2 입자를 포함하며, 상기 제1 입자는 그래핀 시트들이 서로 연결된 2차 입자 구조를 포함하며, 상기 제1 입자는 서로 다른 방향으로 배열된 복수의 그래핀 시트를 포함하며, 상기 제2 입자는 탄소나노튜브일 수 있다.
상기 도전재는 제1 입자 및 제2 입자를 포함할 수 있다.
(1) 제1 입자
상기 제1 입자는 복수의 그래핀 시트들이 연결된 구조를 포함할 수 있다. 구체적으로, 적어도 상기 제1 입자는 2이상의 그래핀 시트들이 서로 직접적으로 연결되어 있거나, 간접적으로 연결되어 있을 수 있다.
상기 제1 입자는 복수의 그래핀 시트들이 연결되어 형성된 2차 입자 형태일 수 있다. 구체적으로, 상기 복수의 그래핀 시트들은 서로 연결되어 긴 사슬 형태의 2차 입자를 형성할 수 있으며, 보다 구체적으로 상기 사슬 형태의 2차 입자는 부분적으로 상기 복수의 그래핀 시트들이 응집된 영역을 포함할 수 있다. 상기 2차 입자가 특유의 사슬 형태의 직접적인 연결 구조를 가지므로, 상기 제1 입자를 포함하는 도전재의 전기 전도성 및 열 전도성이 우수할 수 있다.
더욱 상세하게 설명하면, 통상의 평면 형태의 그래핀들은 면의 너비 대비 얇은 두께에 기하여 2차원적인 배열을 가지게 된다. 이에 따라 전극 내에서 형성되는 도전성 네트워크는 대부분 상기 2차원적인 배열에 기초하여 형성되게 된다. 반면, 상기 제1 입자에 포함된 그래핀 시트들은 불규칙한 배열을 가지는 복수의 그래핀 시트들을 포함한다. 구체적으로, 상기 제1 입자에 포함되는 그래핀 시트들은 서로 다른 방향(그래핀 시트의 면에 대해 수직인 방향)을 가지는 복수의 그래핀 시트들을 포함한다. 즉, 상기 제1 입자는 다양한 방향으로 배열된 그래핀 시트들이 서로 연결되어 형성된 3차원적인 배열을 가지는 2차 입자 형태일 수 있으며, 보다 구체적으로는 상기 그래핀 시트들이 상기 3차원적인 배열을 가지면서 소정을 길이를 가지도록 길게 배열된 사슬 형태를 가지므로, 전극 내에 형성되는 도전성 네트워크가 3차원적인 배열에 기초하여 형성될 수 있다. 이에 따라, 다양한 방향의 도전성 네트워크 형성이 가능하며, 선형의 제2 입자와 상기 제1 입자의 도전성 연결도 효과적으로 이루어질 수 있어서, 전극 내 도전성이 크게 개선될 수 있다. 특히, 후술할 탄소 나노 튜브와의 병용 측면에서 볼 때, 상기 제1 입자의 그래핀 시트들이 다양한 방향성을 가지므로, 상기 그래핀 시트와 연결된 탄소 나노 튜브 역시 다양한 방향으로 전극 내 존재할 수 있다. 이에 따라, 전극 내 도전성 네트워크가 더욱 효과적으로 형성될 수 있다. 여기서 상기 제1 입자는 서로 동일한 방향으로 배열된 복수의 그래핀 시트도 포함할 수 있으나, 그러한 경우에도 상기 제1 입자는 서로 다른 방향으로 배열된 복수의 그래핀 시트 또한 포함한다.
상기 제1 입자는 복수의 그래핀 시트들 중 적어도 일부의 그래핀 시트와 연결된 연결부를 더 포함할 수 있다. 본 발명에 있어서, 상기 제1 입자를 제조할 시, 카본 블랙 등의 예비 제1 입자가 지속적인 산화에 의해 파열되어 상기 그래핀 시트를 형성하며, 미처 완전히 파열되지 않고 본래의 형태를 유지하는 부분도 존재할 수 있다. 이 때, 상기 형태를 유지하는 부분이 상기 연결부에 해당할 수 있다. 따라서, 상기 연결부는 비-그래핀 형태일 수 있고, 상기 비-그래핀 형태란 상술한 그래핀 시트와 달리 그래핀 시트보다 큰 두께를 가지는 덩어리 형태를 의미할 수 있으며, 보다 구체적으로 완전히 파열되지 않은 덩어리 형태일 수 있다.
복수의 그래핀 시트들 각각의 일부분은 서로 직접적으로 연결되어 있을 수 있다. 또는 이와 달리, 상기 복수의 그래핀 시트들 중 적어도 일부의 그래핀 시트는 상기 연결부를 통해 서로 연결될 수 있으며, 구체적으로 상기 복수의 그래핀 시트들 각각의 적어도 일부분은 상기 연결부에 연결될 수 있다. 본 발명의 제1 입자는 상기 두 가지 연결 방법을 모두 포함할 수 있다.
상기 제1 입자는 구형에 가까운 입자 형태의 카본 블랙(carbon black), 예컨대 아세틸렌 블랙(acetylene black), 퍼니스 블랙(furnace black), 서머 블랙(thermal black), 채널 블랙(channel black), 및 램프 블랙(lamp black)이 산화 처리에 의해 형태가 변형되어 형성된 것일 수 있다. 도 1의 모식도를 참조하면, 카본 블랙의 조직 구조가 산화 처리에 의해 변형되어 복수개의 그래핀 시트들을 포함하는 입자가 형성될 수 있다. 상기 카본 블랙이 2차 입자 형태인 경우, 상기 복수의 그래핀 시트들을 포함하는 입자들이 응집된 2차 입자 형태의 제1 입자가 형성될 수 있다.
상기 그래핀 시트의 평균 두께는 10nm 이하일 수 있으며, 구체적으로 0.34nm 내지 10nm일 수 있고, 보다 구체적으로 0.34nm 내지 5nm일 수 있다. 상기 범위를 만족하는 경우, 그래핀 시트 특유의 유연성이 발현될 수 있어서, 그래핀 시트에 의한 면 접촉이 개선되어 도전재의 전기 전도성이 우수할 수 있다. 상기 그래핀 시트는 30개 이하의 그래핀층(layer)이 적층된 형태일 수 있다. 상기 그래핀 시트의 평균 두께는 전극을 TEM을 통해 확인하여 측정된 100개의 그래핀 시트의 두께의 평균값에 해당할 수 있다.
상기 그래핀 시트의 최장 길이(lateral size)는 200nm 이하일 수 있으며, 구체적으로 10nm 내지 200nm 이하일 수 있고, 보다 구체적으로 10nm 내지 100nm일 수 있고, 예를 들어 50nm 내지 90nm일 수 있다. 상기 그래핀 시트의 최장 길이는 열처리 정도에 따라 제어될 수 있으며, 예를 들어 산화 처리 공정 후 비활성 분위기에서 별도의 열처리를 추가적으로 진행하여 그래핀 시트의 최장 길이를 제어할 수 있다. 상기 범위를 만족하는 경우, 전해액 내 이온들이 전극 내에서 원활하게 확산될 수 있다. 따라서, 전지의 급속 충전 특성이 개선될 수 있으며, 율속 특성도 개선될 수 있다. 상기 그래핀 시트의 최장 길이는 SEM 또는 TEM을 통해 관찰된 100개의 그래핀 시트의 최장 길이의 평균을 의미하며, 여기서 상기 최장 길이란 일 그래핀 시트 내 어느 한 지점에서 다른 한 지점을 이은 선을 가정했을 때 가장 긴 길이를 나타낸다.
상기 그래핀 시트의 최장 길이는 일반적인 그래핀의 최장 길이보다 훨씬 작은 수준이다. 종래, 도전재로 사용되는 큰 최장 길이를 가진 그래핀의 경우, 전극 활물질 표면을 지나치게 감싸고 있으므로, 상기 탄소 나노 튜브와 상기 전극 활물질의 직접적인 접촉이 방해된다. 반면, 본 발명의 그래핀 시트는 작은 최장 길이를 가지는 바, 상기 탄소 나노 튜브와 상기 전극 활물질 간의 직접적 접촉을 방해하지 않으므로, 전극의 저항 감소에 효과적이다. 이러한 특징은 종래의 일반적인 그래핀과 본 발명의 제1 입자가 전혀 상이한 메커니즘으로 도전성 네트워크를 형성하는 것을 보여주며, 서로 전혀 다른 물질임을 의미한다.
상기 제1 입자의 산소 함량은 상기 제1 입자의 전체 중량을 기준으로 1중량% 이상일 수 있으며, 구체적으로 1중량% 내지 10중량%일 수 있다. 상기 범위를 만족하는 경우, 전극 제조 시 형성되는 전극 슬러리 내에서 상기 제1 입자의 분산이 원활하게 이루어질 수 있으므로 전극의 도전성이 개선될 수 있고, 제조된 전지의 용량이 향상될 수 있다. 상기 산소 함량은 C, H, O, N 원소 분석(elemental Analysis)의 방법으로 측정될 수 있다.
상기 산소 함량은 카본 블랙을 산화 처리하는 과정에서 달성될 수 있다. 구체적으로, 상기 산화 처리에 의해 상기 제1 입자의 표면에 산소 함유 관능기가 형성될 수 있다. 상기 산소 함유 관능기는 카르복실기, 히드록시기, 카보닐기 등으로 이루어진 군에서 선택되는 적어도 어느 하나일 수 있다. 산화 처리 공정 이후, 상기 산소 함량은 상기 제1 입자를 비활성 분위기에서 열처리 하는 것을 통해 추가적으로 제어될 수 있다.
상기 제1 입자는 산화 처리를 진행하기 전의 카본 블랙에 비해 높은 흑연화도를 가질 수 있다. 구체적으로, 상기 구형의 카본 블랙의 표면 장력에 의해 발생하는 높은 구조 응력이 면형의 그래핀 시트들의 형성으로 인해 일부 해소될 수 있으며, 곡률에서 발생하는 구조적 결함이 최소화되어 안정적인 sp2 구조가 형성될 수 있으므로, 제조된 도전재의 흑연화도가 증가할 수 있다.
상기 제1 입자에 대해 라만 스펙트럼 측정 시 D/G 피크 비가 2.0 이하일 수 있으며, 구체적으로 0.9 내지 2.0일 수 있고, 보다 구체적으로 1.1 내지 1.8일 수 있다. 라만 스펙트럼에 있어서, 1590cm-1 근처의 G 피크는 탄소의 sp2 결합의 E2g 진동모드로부터 기인한 것이며, 1350cm-1 부근의 D 피크는 탄소의 sp2 결합에 결함이 존재할 때 나타난다. 즉, 상기 D/G 피크 비를 만족하는 경우, 높은 흑연화도를 가질 수 있는 것을 의미하며, 이에 따라, 상기 제1 입자를 이용할 시, 상기 제1 입자의 높은 전기 전도성에 기하여 전지의 용량 및 전기적 특성이 향상될 수 있다.
상기 제1 입자는 하기 식 1에 의해 계산된 값이 0.2이하일 수 있으며, 구체적으로 0 내지 0.20일 수 있고, 구체적으로 0 내지 0.15일 수 있고, 바람직하게는 0 내지 0.1일 수 있다.
[식 1]
Figure PCTKR2020006230-appb-I000001
상기 식 1에서 a는 질소 흡착 BET법으로 측정된 상기 제1 입자의 비표면적(m2/g)이고, b는 상기 제1 입자의 요오드 흡착가(mg/g)이다. 상기 제1 입자가 내부 또는 입자 간에 공극(pore) 구조를 포함하고 있는 경우, 작은 크기의 질소(N2) 분자는 공극 내에 다수 흡착될 수 있다. 반면, 상대적으로 큰 분자인 요오드(I2)는 질소에 비해 공극 내에 들어가기 어려워 요오드 흡착가가 크게 나타나지 않는다. 즉, 공극 구조가 존재할 시, 상기 식 1에 따른 값이 커진다. 다시 말해, 상기 제1 입자에 있어서, 상기 식 1에 따른 값이 0.2 이하인 것은 상기 제1 입자가 미세 기공을 포함하지 않거나 적은 양으로 포함하는 것을 의미한다. 즉, 상기 미세 기공이 존재하지 않는 경우, 요오드가 흡착되는 정도와 질소가 흡착 되는 정도가 유사하므로, 상기 식 1의 값이 작아지게 된다. 이는, 상기 제1 입자의 표면이 매끄러운 상태(free surface)인 것을 의미한다. 구체적으로, 대부분의 카본 블랙이 산화 처리에 의해 중공형 구조로 변형되고, 지속적인 산화 처리에 의해 구조가 파괴되면서 그래핀 시트들이 형성된다. 이 때, 공극 구조가 형성되지 않으면서 그래핀 시트들이 외부를 향해 열리는 모양으로 형성될 수 있다.
질소 흡착 BET법으로 측정된 상기 제1 입자의 비표면적(m2/g)이 200m2/g 이상일 수 있으며, 구체적으로 200m2/g 내지 1100m2/g 일 수 있고, 보다 구체적으로 300m2/g 내지 1100m2/g 일 수 있으며, 바람직하게는 500m2/g 내지 900m2/g 일 수 있다. 상기 비표면적 범위를 만족하는 경우, 상기 제1 입자 내 그래핀 시트의 면적이 넓은 것을 의미하며, 이에 따라 전극 내 제1 입자의 함량이 적더라도, 전극의 도전성이 확보될 수 있다.
상기 제1 입자의 평균 입경(D50)은 0.5㎛ 내지 2.5㎛일 수 있고, 구체적으로 0.7㎛ 내지 2.3㎛, 보다 구체적으로 0.9㎛ 내지 2.1㎛일 수 있다. 상기 범위를 만족할 시, 상기 제1 입자가 전극 내에서 도전성 네트워크의 허브 역할을 하여, 전극 내 전자 분포가 균일하게 이루어질 수 있다.
(2) 제2 입자
상기 제2 입자는 탄소나노튜브일 수 있다. 상기 제1 입자만 사용하는 경우, 지나치게 높은 비표면적과 산소 함량에 의해 전극 슬러리의 점도가 지나치게 높아지므로, 전극 제조 시 공정성이 저하된다. 또한, 도전재의 대부분이 면형의 그래핀 시트들로 구성되므로, 리튬 이온의 확산이 월등하게 개선되기 어렵다. 반면, 상기 탄소나노튜브를 제2 입자로써 제1 입자와 병용하는 경우, 도전재의 전반적인 비표면적과 산소 함량이 적정 수준을 유지하므로 공정성이 개선될 수 있다. 또한, 면형의 그래핀 시트와 선형의 탄소 나노 튜브가 전극 내 도전성 네트워크를 더욱 효과적으로 형성할 수 있으므로, 리튬 이온의 확산이 개선되며, 전지의 율 특성 및 수명 특성이 개선될 수 있다.
상기 탄소나노튜브의 흑연면(graphite sheet)은 나노 크기 직경의 실린더 형태를 가지며, sp2결합 구조를 갖는다. 이때 상기 흑연면이 말리는 각도 및 구조에 따라서 도체 또는 반도체의 특성을 나타낼 수 있다. 상기 탄소나노튜브는 벽을 이루고 있는 결합수에 따라서 단일벽 탄소나노튜브(SWCNT, singlewalled carbon nanotube) 단위체, 이중벽 탄소나노튜브(DWCNT, double-walled carbon nanotube) 단위체 및 다중벽 탄소 나노튜브(MWCNT, multi-walled carbon nanotube) 단위체로 분류될 수 있다.
상기 탄소나노튜브는 다중벽 탄소나노튜브일 수 있다. 상기 탄소나노튜브가 단일벽 탄소나노튜브나 이중벽 탄소나노튜브인 경우, 전지 제조 비용이 지나치게 높으며, 탄소 나노 튜브 단위체가 지나치게 응집된 상태로 전극에 존재하기 때문에 도전성이 저하되는 문제가 있다. 반면, 상기 탄소나노튜브는 다중벽 탄소나노튜브인 경우, 제조 가격이 상대적으로 낮으며, 전극 슬러리 내에서 분산이 용이하여, 전극 내 균일하게 분포되어 존재할 수 있다. 이에 따라, 전지의 율 특성 및 수명 특성이 개선될 수 있다.
상기 탄소나노튜브의 평균 직경은 1nm 내지 200nm일 수 있으며, 구체적으로 5nm 내지 100nm 일 수 있고, 보다 구체적으로 5nm 내지 50nm 일 수 있다. 상기 범위를 만족하는 경우, 탄소나노튜브가 전극 제조용 슬러리에서 분산되기 용이하며, 전극의 도전성이 개선될 수 있다. 상기 평균 직경은 SEM 또는 TEM을 통해 관찰된 전극 내 100개 탄소 나노 튜브의 직경의 평균을 구하는 방법으로 확인할 수 있다.
상기 탄소나노튜브의 BET 비표면적은 50m2/g 내지 500m2/g일 수 있으며, 구체적으로 100m2/g 내지 400m2/g 일 수 있고, 보다 구체적으로 150m2/g 내지 300m2/g 일 수 있다. 상기 비표면적 범위를 만족하는 경우, 상기 탄소나노튜브의 적절할 분산이 가능하여 제조 공정성을 유지할 수 있으며, 적은 도전재 함량으로도 도전성 네트워크 형성을 극대화할 수 있다. 상기 BET 비표면적은 질소 흡착 BET법을 통해 측정될 수 있다.
상기 탄소나노튜브의 평균 길이는 0.1㎛ 내지 100㎛일 수 있으며, 구체적으로 0.5㎛ 내지 50㎛, 보다 구체적으로 1㎛ 내지 20㎛일 수 있다. 상기 탄소나노튜브의 적절할 분산이 가능하며 전극 제조 시 높은 고형분의 전극 슬러리 사용이 가능하여 제조 공정성을 유지할 수 있다. 또한, 적은 도전재 함량으로도 도전성 네트워크 형성을 극대화할 수 있다. 상기 평균 길이는 SEM 또는 TEM을 통해 관찰된 전극 내 100개 탄소 나노 튜브의 길이의 평균을 구하는 방법으로 확인할 수 있다.
상기 제1 입자와 상기 제2 입자의 중량비는 1:9 내지 9:1일 수 있으며, 구체적으로 2:8 내지 5:5, 보다 구체적으로 3:7 내지 4:6일 수 있다. 상기 범위를 만족하는 경우, 상기 제1 입자와 상기 제2 입자의 적절할 분산이 가능하며 전극 제조 시 높은 고형분의 전극 슬러리 사용이 가능하여 제조 공정성을 유지할 수 있다. 또한, 적은 도전재 함량으로도 도전성 네트워크 형성을 극대화할 수 있다. 이에 따라, 전지의 율 특성 및 수명 특성이 개선될 수 있다.
<전극>
본 발명의 다른 실시예에 따른 전극은 상술한 일 실시예의 도전재를 포함할 수 있다. 상기 전극은 양극 또는 음극일 수 있다. 상기 전극은 집전체 및 집전체 상에 배치된 활물질층을 포함할 수 있다.
상기 도전재는 상기 활물질층 내에 0.1중량% 내지 3.0중량%로 포함될 수 있으며, 구체적으로 0.5중량% 내지 2.0중량%로 포함될 수 있다. 이는 통상적인 도전재 함량보다 낮은 수준에 해당한다. 즉, 본 발명의 일 실시예에 따른 도전재를 사용할 시 적은 함량으로도 충분한 도전성을 확보할 수 있음을 의미한다.
상기 양극은 집전체 및 상기 집전체 상에 배치되며 양극 활물질을 포함하는 양극 활물질층을 포함할 수 있다. 상기 음극은 집전체 및 상기 집전체 상에 배치되며 음극 활물질을 포함하는 음극 활물질층을 포함할 수 있다. 나아가, 상기 양극 활물질층 및 상기 음극 활물질층은 각각 바인더를 더 포함할 수 있다.
상기 집전체는 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 되고, 특별히 제한되는 것은 아니다. 예를 들어, 상기 집전체로는 구리, 스테인리스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소, 또는 알루미늄이나 스테인리스 스틸의 표면에 카본, 니켈, 티탄, 은 등으로 표면 처리한 것 등이 사용될 수 있다. 구체적으로는, 구리, 니켈과 같은 탄소를 잘 흡착하는 전이 금속을 집전체로 사용할 수 있다. 상기 양극 활물질층 또는 음극 활물질층은 각각 상기 집전체의 일면 또는 양면에 배치될 수 있다.
상기 양극 활물질은 통상적으로 사용되는 양극 활물질일 수 있다. 구체적으로, 상기 양극 활물질은 리튬 코발트 산화물(LiCoO2), 리튬 니켈 산화물(LiNiO2) 등의 층상 화합물이나 1 또는 그 이상의 전이금속으로 치환된 화합물; 화학식 Li1+y1Mn2-y1O4 (0≤y1≤0.33), LiMnO3, LiMn2O3, LiMnO2 등의 리튬 망간 산화물; 리튬 동 산화물(Li2CuO2); LiV3O8, V2O5, Cu2V2O7 등의 바나듐 산화물; 화학식 LiNi1-y2M1y2O2 (여기서, M1은 Co, Mn, Al, Cu, Fe, Mg, B 또는 Ga 이고, 0.01≤y2≤0.3를 만족한다)으로 표현되는 Ni 사이트형 리튬 니켈 산화물; 화학식 LiMn2-y3M2y3O2 (여기서, M2은 Co, Ni, Fe, Cr, Zn 또는 Ta 이고, 0.01≤y3≤0.1를 만족한다) 또는 Li2Mn3M3O8 (여기서, M3은 Fe, Co, Ni, Cu 또는 Zn 이다.)으로 표현되는 리튬 망간 복합 산화물; 화학식의 Li 일부가 알칼리토금속 이온으로 치환된 LiMn2O4 등을 들 수 있지만, 이들만으로 한정되는 것은 아니다.
상기 음극 활물질은 흑연계 활물질 입자 또는 실리콘계 활물질 입자일 수 있다. 상기 흑연계 활물질 입자는 인조흑연, 천연흑연, 흑연화탄소 섬유 및 흑연화 메조카본마이크로비드로 이루어진 군에서 선택되는 1종 이상을 사용할 수 있으며, 특히 인조흑연을 사용하는 경우 율 특성을 개선할 수 있다. 상기 실리콘계 활물질 입자는 Si, SiOx(0<x<2), Si-C 복합체 및 Si-Y 합금(여기서, Y는 알칼리 금속, 알칼리 토금속, 전이금속, 13족 원소, 14족 원소, 희토류 원소 및 이들의 조합으로 이루어진 군에서 선택되는 원소임)으로 이루어진 군에서 선택되는 1종 이상을 사용할 수 있으며, 특히 Si를 사용하는 경우 전지의 고용량을 도출할 수 있다.
상기 바인더는 폴리비닐리덴플루오라이드-헥사플루오로프로필렌 코폴리머(PVDF-co-HFP), 폴리비닐리덴플루오라이드(polyvinylidenefluoride), 폴리아크릴로니트릴(polyacrylonitrile), 폴리메틸메타크릴레이트(polymethylmethacrylate), 폴리비닐알코올, 카르복시메틸셀룰로오스(CMC), 전분, 히드록시프로필셀룰로오스, 재생 셀룰로오스, 폴리비닐피롤리돈, 테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 폴리아크릴산, 에틸렌-프로필렌-디엔 모노머(EPDM), 술폰화 EPDM, 스티렌 부타디엔 고무(SBR), 불소 고무, 폴리 아크릴산 (poly acrylic acid) 및 이들의 수소를 Li, Na 또는 Ca 등으로 치환된 물질로 이루어진 군에서 선택되는 적어도 어느 하나를 포함할 수 있으며, 또한 이들의 다양한 공중합체를 포함할 수 있다.
<이차 전지>
본 발명의 또 다른 실시예에 따른 이차 전지는 음극, 양극, 상기 양극 및 음극 사이에 개재된 분리막, 및 전해질을 포함할 수 있으며, 상기 양극 및 상기 음극 중 적어도 어느 하나는 상술한 다른 실시예의 전극일 수 있다.
상기 분리막으로는 음극과 양극을 분리하고 리튬 이온의 이동 통로를 제공하는 것으로, 통상 이차 전지에서 분리막으로 사용되는 것이라면 특별한 제한 없이 사용가능하며, 특히 전해질의 이온 이동에 대하여 저저항이면서 전해액 함습 능력이 우수한 것이 바람직하다. 구체적으로는 다공성 고분자 필름, 예를 들어 에틸렌 단독중합체, 프로필렌 단독중합체, 에틸렌/부텐 공중합체, 에틸렌/헥센 공중합체 및 에틸렌/메타크릴레이트 공중합체 등과 같은 폴리올레핀계 고분자로 제조한 다공성 고분자 필름 또는 이들의 2층 이상의 적층 구조체가 사용될 수 있다. 또 통상적인 다공성 부직포, 예를 들어 고융점의 유리 섬유, 폴리에틸렌테레프탈레이트 섬유 등으로 된 부직포가 사용될 수도 있다. 또, 내열성 또는 기계적 강도 확보를 위해 세라믹 성분 또는 고분자 물질이 포함된 코팅된 분리막이 사용될 수도 있으며, 선택적으로 단층 또는 다층 구조로 사용될 수 있다.
상기 전해질은 전해질로는 리튬 이차전지 제조시 사용 가능한 유기계 액체 전해질, 무기계 액체 전해질, 고체 고분자 전해질, 겔형 고분자 전해질, 고체 무기 전해질, 용융형 무기 전해질 등을 들 수 있으며, 이들로 한정되는 것은 아니다.
구체적으로, 상기 전해질은 비수계 유기용매와 금속염을 포함할 수 있다.
상기 비수계 유기용매로는, 예를 들어, N-메틸-2-피롤리디논, 프로필렌 카보네이트, 에틸렌 카보네이트, 부틸렌 카보네이트, 디메틸 카보네이트, 디에틸 카보네이트, 감마-부틸로 락톤, 1,2-디메톡시 에탄, 테트라히드록시 프랑(franc), 2-메틸 테트라하이드로푸란, 디메틸술폭시드, 1,3-디옥소런, 포름아미드, 디메틸포름아미드, 디옥소런, 아세토니트릴, 니트로메탄, 포름산 메틸, 초산메틸, 인산 트리에스테르, 트리메톡시 메탄, 디옥소런 유도체, 설포란, 메틸 설포란, 1,3-디메틸-2-이미다졸리디논, 프로필렌 카보네이트 유도체, 테트라하이드로푸란 유도체, 에테르, 피로피온산 메틸, 프로피온산 에틸 등의 비양자성 유기용매가 사용될 수 있다.
특히, 상기 카보네이트계 유기 용매 중 고리형 카보네이트인 에틸렌 카보네이트 및 프로필렌 카보네이트는 고점도의 유기 용매로서 유전율이 높아 리튬염을 잘 해리시키므로 바람직하게 사용될 수 있으며, 이러한 고리형 카보네이트에 디메틸카보네이트 및 디에틸카보네이트와 같은 저점도, 저유전율 선형 카보네이트를 적당한 비율로 혼합하여 사용하면 높은 전기 전도율을 갖는 전해질을 만들 수 있어 더욱 바람직하게 사용될 수 있다.
상기 금속염은 리튬염을 사용할 수 있고, 상기 리튬염은 상기 비수 전해액에 용해되기 좋은 물질로서, 예를 들어, 상기 리튬염의 음이온으로는 F-, Cl-, I-, NO3 -, N(CN)2 -, BF4 -, ClO4 -, PF6 -, (CF3)2PF4 -, (CF3)3PF3 -, (CF3)4PF2 -, (CF3)5PF-, (CF3)6P-, CF3SO3 -, CF3CF2SO3 -, (CF3SO2)2N-, (FSO2)2N-, CF3CF2(CF3)2CO-, (CF3SO2)2CH-, (SF5)3C-, (CF3SO2)3C-, CF3(CF2)7SO3 -, CF3CO2 -, CH3CO2 -, SCN- 및 (CF3CF2SO2)2N-로 이루어진 군으로부터 선택되는 1종을 사용할 수 있다.
상기 전해질에는 상기 전해질 구성 성분들 외에도 전지의 수명특성 향상, 전지 용량 감소 억제, 전지의 방전 용량 향상 등을 목적으로 예를 들어, 디플루오로 에틸렌카보네이트 등과 같은 할로알킬렌카보네이트계 화합물, 피리딘, 트리에틸포스파이트, 트리에탄올아민, 환상 에테르, 에틸렌 디아민, n-글라임(glyme), 헥사인산 트리아미드, 니트로벤젠 유도체, 유황, 퀴논 이민 염료, N-치환옥사졸리디논, N,N-치환 이미다졸리딘, 에틸렌 글리콜 디알킬 에테르, 암모늄염, 피롤, 2-메톡시 에탄올 또는 삼염화 알루미늄 등의 첨가제가 1종 이상 더 포함될 수도 있다.
본 발명의 또 다른 일 실시예에 따르면, 상기 이차 전지를 단위 셀로 포함하는 전지 모듈 및 이를 포함하는 전지 팩을 제공한다. 상기 전지 모듈 및 전지 팩은 고용량, 높은 율속 특성 및 사이틀 특성을 갖는 상기 이차 전지를 포함하므로, 전기자동차, 하이브리드 전기자동차, 플러그-인 하이브리드 전기자동차 및 전력 저장용 시스템으로 이루어진 군에서 선택되는 중대형 디바이스의 전원으로 이용될 수 있다.
<도전재 제조 방법>
본 발명의 또 다른 일 실시예에 따른 도전재 제조 방법은, 제1 입자를 준비하는 단계; 및 상기 제1 입자와 제2 입자를 혼합하는 단계;를 포함하며, 상기 제1 입자를 준비하는 단계는, 예비 제1 입자를 준비하는 단계; 및 상기 예비 제1 입자를 산화 처리하여 변형시키는 단계;를 포함하며, 상기 예비 제1 입자를 산화 처리하여 변형시키는 단계는, a) 상기 예비 제1 입자를 산소 분위기 또는 공기 분위기에서 200℃ 내지 800℃의 온도로 제1 열처리하는 것; 및 b) 상기 예비 제1 입자를 120℃ 내지 300℃의 산성 증기와 반응시키는 것 중 적어도 어느 하나를 포함하며, 상기 제2 입자는 탄소나노튜브일 수 있다.
상기 예비 제1 입자를 준비하는 단계에 있어서, 상기 예비 제1 입자는 카본 블랙일 수 있다. 구체적으로, 상기 예비 제1 입자는 아세틸렌 블랙, 퍼니스 블랙, 서머 블랙, 채널 블랙, 및 램프 블랙으로 이루어진 군에서 선택되는 적어도 어느 하나일 수 있다. 보다 구체적으로 상기 예비 제1 입자는 가장 고온에서 제조되어 기본적으로 흑연화도가 우수한 아세틸렌 블랙일 수 있다.
상기 예비 제1 입자를 준비하는 단계는, 아세틸렌 가스를 열분해시키는 것을 포함할 수 있으며, 상기 열분해를 통해 카본 블랙, 구체적으로 아세틸렌 블랙이 형성될 수 있다. 상기 아세틸렌 가스는 고순도의 아세틸렌 가스일 수 있으며, 구체적으로 순도 95% 이상, 보다 구체적으로 순도 98% 이상의 아세틸렌 가스일 수 있다.
상기 열분해는 1500℃이상, 구체적으로 1500℃ 내지 2200℃, 보다 구체적으로 1500℃ 내지 2000℃의 온도에서 상기 아세틸렌 가스를 열분해하는 것일 수 있다. 상기 범위를 만족하는 경우, 제조된 예비 제1 입자의 흑연화도가 높을 수 있으며, 이에 따라 제조되는 도전재의 흑연화도 역시 높을 수 있다. 따라서, 도전재의 전기 전도성이 향상될 수 있다.
상기 예비 제1 입자는 카본 블랙일 수 있으나, 그 중에서도 다음과 같은 점에서 아세틸렌 블랙이 바람직할 수 있다. 본 발명의 도전재가 포함하는 그래핀 시트는 예비 제1 입자의 표면이 산화 처리에 의해 변형되어 형성될 수 있다. 상기 열분해에 의해 형성되는 아세틸렌 블랙은 표면의 흑연화도가 높다. 따라서, 표면에 산소 관능기를 필연적으로 일부 포함하는 다른 카본 블랙을 산화 처리하는 것에 비해, 상기 아세틸렌 블랙을 산화 처리할 시 그래핀 시트의 구조가 원활하게 형성될 수 있다.
상기 열분해는 상기 온도 범위로 반응로 내부 온도를 조절한 뒤, 반응로에 아세틸렌 가스를 투입하고, 순간적으로 열분해하는 것일 수 있다. 또한, 이 과정에서 공기, 산소, H2O 등을 추가로 투입하여 도전재의 밀도, 산소 관능기 등을 제어할 수 있으며, 도전재 내 연결 구조를 제어할 수 있다.
상기 예비 제1 입자를 산화 처리하여 변형시키는 단계는, a) 상기 예비 제1 입자를 산소 분위기 또는 공기 분위기에서 200℃ 내지 800℃의 열처리 온도로 제1 열처리하는 것(단계 a); 및 b) 상기 예비 제1 입자를 120℃ 내지 300℃의 산성 증기와 반응시키는 것(단계 b) 중 적어도 어느 하나를 포함할 수 있다.
상기 단계 a에 있어서, 상기 산소 분위기 또는 상기 공기 분위기는 산소 또는 공기를 상기 예비 제1 입자가 수용된 반응로에 투입하는 것으로 형성될 수 있다. 구체적으로, 상기 제1 열처리 시 산소 또는 공기의 적절한 유입량과 속도, 반응 온도 및 반응 시간의 설정에 따라 상기 반응로에서 산화 공정에 의해 그래핀 시트 구조를 형성할 수 있다. 또한, 상기 예비 제1 입자의 밀도, 산소 관능기 함량 등의 차이에 기하여 상기 산화 공정의 조건은 달라질 수 있다.
상기 단계 a에 있어서, 상기 제1 열처리는 상기 예비 제1 입자가 수용된 반응로에서 상기 반응로의 온도를 조절하여 수행될 수 있다. 상기 제1 열처리는 200℃ 내지 800℃의 열처리 온도로 열처리하는 것일 수 있으며, 구체적으로 200℃ 내지 450℃의 열처리 온도로 열처리하는 것일 수 있다. 상기 온도 범위를 만족하는 경우, 예비 제1 입자가 지나치게 급격하게 산화되는 것이 방지될 수 있으며, 바람직한 크기의 그래핀 시트가 형성될 수 있다. 상기 제1 열처리는 1시간 내지 50시간 동안 수행될 수 있다.
상기 단계 b에 있어서, 상기 예비 제1 입자는 산성 증기와 반응하여 산화되어 그래핀 시트를 형성할 수 있다. 구체적으로, 상기 산성 증기는 HCl, HNO3 등의 산성 용액으로부터 유래된 증기일 수 있다. 상기 예비 제1 입자와 반응하는 산성 증기의 온도는 120℃ 내지 300℃일 수 있다.
상기 예비 제1 입자를 산화 처리하여 변형시키는 단계 이후, 형성된 그래핀 시트의 크기를 증가시키기 위해 비활성 분위기에서 제2 열처리하는 공정을 추가적으로 진행할 수 있다. 구체적으로, 상기 도전재 제조 방법은 상기 예비 제1 입자를 산화 처리하여 변형시키는 단계 이후, 비활성 분위기에서 상기 산화 처리되어 변형된 예비 제1 입자를 500℃ 이상의 온도로 제2 열처리하는 단계를 더 포함할 수 있다. 이 때, 상기 비활성 분위기는 진공, 헬륨, 아르곤, 질소로 이루어진 군에서 선택되는 어느 하나의 가스로 형성될 수 있다. 상기 제2 열처리 온도는 500℃ 이상, 구체적으로 500℃ 내지 2800℃, 보다 구체적으로 600℃ 내지 1600℃일 수 있다.
본 발명에서 설명하는 제1 입자가 형성되는 메커니즘은 다음과 같을 수 있다. 상기 제1 입자 제조 시, 구형의 1차 입자의 평균 크기가 50nm 이하이고, 상기 1차 입자들이 조직을 공유하는 구형 내지 사슬형의 카본 블랙, 구체적으로는 아세틸렌 블랙에 대해 특정 조건으로 산화 처리가 진행된다. 이 경우, 상기 카본 블랙의 미세 단위 조직에 존재하는 결정립계(grain boundary)나 전위(dislocation) 등의 결함(defect) 부분에서부터 산소, 산성 증기 등의 산화제의 침투 및 산화 반응이 발생한다. 상기 제조방법에서 언급한 온도 범위에서 일정 시간 산화 처리를 진행할 시, 카본 블랙의 내부의 미세 조직까지 산화제가 침투하여 산화가 진행되게 된다. 이 때, 구형의 1차 입자 표면의 곡률 반경보다 큰 곡률 반경을 가지는 1차 입자 내부의 미세 조직의 구조 응력을 해소하기 위해, 내부에서 산화 반응이 빠르게 일어난다. 이에 따라 내부의 탄소들은 CO, CO2, CH4 등의 가스로 산화되며, 상기 1차 입자는 중공형(hollow type)으로 변하게 된다. 지속적인 산화 처리에 의해 중공형의 1차 입자의 표면 구조도 파괴되면서 구형의 1차 입자에 남아 있던 구조 응력도 대부분 해소가 될 수 있으며, 이 과정에서 그래핀 시트들이 나타나게 된다. 따라서, 1차 입자인 카본 블랙의 평균 크기가 작을수록, 입자의 내부 밀도가 작을수록, 1차 입자의 표면보다 내부에 산소 관능기 함량이 높을 수록 상기 변형 공정이 가속화될 수 있다. 또한, 단계 b보다는 단계 a가 상기 변형 공정을 더욱 가속화시킬 수 있다는 점에서 좀 더 바람직하다.
상기 제2 입자는 탄소나노튜브일 수 있다. 상기 제2 입자는 상술한 실시예의 제2 입자와 동일하다.
상기 제2 입자는 번들형 탄소나노튜브 또는 인탱글형 탄소나노튜브를 분산액 상태에서 분산시켜서 준비할 수 있다. 상기 번들형 탄소나노튜브란 복수 개의 탄소나노튜브가 탄소나노튜브 길이 방향의 축이 실질적으로 동일한 배향으로 나란하게 배열되어 결합된 다발(bundle) 혹은 로프(rope) 형태의 2차 형상을 의미한다. 상기 인탱글형 탄소나노튜브란 복수 개의 탄소나노튜브가 서로 뒤엉켜있는 것을 의미한다.
이 후, 상기 제1 입자와 상기 제2 입자를 혼합하는 단계를 거친다. 상기 제1 입자와 상기 제2 입자는 상기 제1 입자를 포함하는 제1 입자 분산액과 상기 제2 입자를 포함하는 제2 입자 분산액을 혼합하는 것을 통해 혼합될 수 있다. 상기 혼합은 전극을 형성하기 위한 전극 슬러리 제조 시 수행될 수 있다.
이하, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본 발명의 실시예에 대하여 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다.
제조예 1: 제1 입자의 준비
(1) 예비 제1 입자(아세틸렌 블랙)의 형성
내부 온도가 2000℃인 반응로에 순도 98%의 아세틸렌 가스를 순간적으로 분사하여 열분해시켜, 아세틸렌 블랙을 형성하였다.
(2) 제1 입자의 제조
이어서, 상기 아세틸렌 블랙이 수용된 상기 반응로의 내부 온도를 250℃로 한 뒤, 산소를 유입시키면서 30시간 동안 산화 처리를 진행하였다. 이를 통해, 최장 길이(lateral size)가 40nm 수준인 다수의 그래핀 시트이 서로 연결된 사슬 형태를 포함하며, 상기 그래핀 시트는 서로 다른 방향으로 배열된 복수의 그래핀 시트를 포함하는 2차 입자 구조의 제1 입자를 수득하였다. (도 2, 3 참조)
제조예 2: 제1 입자의 준비
제조예 1에서 수득된 도전재에 대해, 비활성 분위기에서 900℃로 1시간동안 추가 열처리를 진행하여, 최장 길이(lateral size)가 65nm 수준인 다수의 그래핀 시트이 서로 연결된 사슬 형태를 포함하며, 상기 그래핀 시트는 서로 다른 방향으로 배열된 복수의 그래핀 시트를 포함하는 2차 입자 구조의 제1 입자를 수득하였다. 도 4를 참조하면, 도 4(a)가 나타내는 제조예 1의 제1 입자가 열처리에 의해 도 4(b)의 제조예 2의 제1 입자로 변형된 것을 알 수 있다. 구체적으로, 상기 열처리에 의해 근접한 그래핀 시트들이 상호 연결되어 최장 길이가 증가한 것을 알 수 있다.
실시예 1: 전지의 제조
(1) 제1 입자 분산액의 준비
제조예 1의 제1 입자, 분산제인 수소화 니트릴 부타디엔 고무(H-NBR), 분산매인 N-메틸피롤리돈(NMP, N-methylpyrrolidone)을 5.7:1.7:92.6의 중량비로 혼합하여 혼합물을 형성하였다. 상기 혼합물을 크기가 0.65mm인 비드가 80%로 채워진 스파이크 밀에 투입하여 분산시키고, 2kg/min의 토출 속도로 배출시켰다. 이와 같은 공정을 4회 진행하여, 입도 분포가 조절된 제1 입자를 포함하는 제1 입자 분산액을 제조하였다.
(2) 제2 입자 분산액의 준비
번들형 다중벽 탄소나노튜브, 분산제인 수소화 니트릴 부타디엔 고무(H-NBR), 분산매인 N-메틸피롤리돈(NMP, N-methylpyrrolidone)을 4:0.8:95.2 중량비로 혼합하여 혼합물을 형성하였다. 상기 혼합물을 크기가 0.65mm인 비드가 80%로 채워진 스파이크 밀에 투입하여 분산시키고, 2kg/min의 토출 속도로 배출시켰다. 이와 같은 공정을 2회 진행하여, 입도 분포가 조절된 제2 입자(탄소나노튜브)를 포함하는 제2 입자 분산액을 제조하였다.
(3) 양극 슬러리의 제조
양극 활물질인 Li[Ni0.6Mn0.2Co0.2]O2, 바인더인 폴리비닐리덴 플루오라이드(PVdF), 상기 제1 입자 분산액, 상기 제2 입자 분산액, 및 용매인 NMP를 혼합 및 교반하여, 고형분 72%의 양극 슬러리를 제조하였다. 상기 양극 슬러리 내에서 양극 활물질, PVdF, 상기 제조예 1의 제1 입자 및 제2 입자의 중량비는 96.5:1.5:0.8:1.2였다.
(4) 양극 제조
상기 양극 슬러리를 두께가 20㎛인 양극 집전체(Al)에 고형분 로딩량이 21mg/cm2가 되도록 도포 및 건조하였다. 이 후, 상기 양극 슬러리가 배치된 양극 집전체를 롤 압연 방법으로 압연하여 상기 양극 슬러리 및 양극 집전체 전체 두께가 77㎛이 되도록 하였다. 이 후, 상기 양극 슬러리 및 양극 집전체를 130℃에서 6시간 동안 건조시켜서 양극을 제조하였다.
(5) 이차전지 제조
음극 활물질인 인조흑연, 음극 도전재인 카본 블랙, 음극 바인더인 스티렌-부타디엔 고무(SBR), 카르복시 메틸 셀룰로오스(CMC)를 각각 96.1:0.5:2.3:1.1 중량비로 증류수에 혼합하여 음극 슬러리를 제조하였다. 제조된 슬러리를 두께가 20㎛인 음극 집전체(Cu)에 로딩량이 10mg/cm2가 되도록 도포 및 건조하였다. 이 후, 상기 음극 슬러리가 배치된 음극 집전체를 롤 압연 방법으로 압연하여 상기 음극 슬러리 및 음극 집전체 전체 두께가 80㎛이 되도록 하였다. 이 후, 상기 음극 슬러리 및 음극 집전체를 110℃에서 6시간 동안 건조시켜서 음극을 제조하였다(도 7 참조).
이 후, 상기 제조된 음극 및 양극과 그 사이에 개재시키는 15㎛ 두께의 폴리에틸렌계 분리막을 조합하여 모노셀을 제조한 뒤, 상기 모노셀에 전해액 (에틸렌카보네이트(EC)/에틸메틸카보네이트(EMC)=1/2 (부피비), 리튬 헥사 플로로 포스페이트 (LiPF6 1몰))을 주입하여 리튬 이차전지를 제조하였다.
실시예 2: 전지의 제조
양극 슬러리 제조 시, 양극 활물질, PVdF, 상기 제조예 1의 제1 입자 및 제2 입자의 중량비가 96.5:1.5:0.2:1.8이 되도록 한 것을 제외하고는, 실시예 1과 동일한 방법으로 전지를 제조하였다.
실시예 3: 전지의 제조
양극 슬러리 제조 시, 양극 활물질, PVdF, 상기 제조예 1의 제1 입자 및 제2 입자의 중량비가 96.5:1.5:1.8:0.2가 되도록 한 것을 제외하고는, 실시예 1과 동일한 방법으로 전지를 제조하였다.
실시예 4: 전지의 제조
양극 슬러리 제조 시, 제조예 1의 제1 입자 대신 제조예 2의 제1 입자를 사용한 것을 제외하고는, 실시예 1과 동일한 방법으로 전지를 제조하였다.
비교예 1: 전지의 제조
(1) 양극 슬러리의 제조
양극 활물질인 Li[Ni0.6Mn0.2Co0.2]O2, 바인더인 폴리비닐리덴 플루오라이드(PVdF), 제1 입자 분산액(실시예 1에서 사용된 제1 입자 분산액과 동일), 및 용매인 NMP를 혼합 및 교반한 뒤, 고형분 72%의 양극 슬러리를 제조하였다. 상기 양극 슬러리 내에서 양극 활물질, PVdF, 상기 제조예 1의 제1 입자의 중량비는 96.5:1.5:2.0였다.
(2) 전지의 제조
상기 양극 슬러리를 사용한 것을 제외하고는, 실시예 1과 동일한 방법으로 전지를 제조하였다.
비교예 2: 전지의 제조
(1) 양극 슬러리의 제조
양극 활물질인 Li[Ni0.6Mn0.2Co0.2]O2, 바인더인 폴리비닐리덴 플루오라이드(PVdF), 제2 입자 분산액(실시예 1에서 사용된 제2 입자 분산액과 동일), 및 용매인 NMP를 혼합 및 교반한 뒤, 고형분 72%의 양극 슬러리를 제조하였다. 상기 양극 슬러리 내에서 양극 활물질, PVdF, 상기 제2 입자의 중량비는 96.5:1.5:2.0였다.
(2) 전지의 제조
상기 양극 슬러리를 사용한 것을 제외하고는, 실시예 1과 동일한 방법으로 전지를 제조하였다.
비교예 3: 전지의 제조
제1 입자와 제2 입자를 사용하지 않고 도전재로 평균 입경(D50)이 23nm인 카본 블랙(도 5 참조)을 사용한 것을 제외하고는, 실시예 1과 동일한 방법으로 전지를 제조하였다. 이 때, 양극 내 양극 활물질, PVdF, 카본 블랙의 중량비는 96.5:1.5:2.0였다.
비교예 4: 전지의 제조
제1 입자와 제2 입자를 사용하지 않고 도전재로 평균 두께가 100nm초과이고 및 평균 크기가 5.5㎛인 그래핀(BTR社)(도 6 참조)을 사용한 것을 제외하고는, 실시예 1과 동일한 방법으로 전지를 제조하였다. 이 때, 양극 내 양극 활물질, PVdF, 그래핀의 중량비는 96.5:1.5:2.0였다. 상기 평균 두께 및 평균 크기는 SEM 또는 TEM을 통해 관찰된 100개의 그래핀에 대한 평균으로 산출하였다.
비교예 5: 전지의 제조
제1 입자 대신 카본 블랙을 사용한 것을 제외하고는, 실시예 1과 동일한 방법으로 전지를 제조하였다. 이 때, 양극 내 양극 활물질, PVdF, 카본 블랙 및 탄소나노튜브(제2 입자)의 중량비는 96.5:1.5:0.8:1.2였다.
비교예 6: 전지의 제조
제1 입자 대신 평균 두께가 100nm초과이고 및 평균 크기가 5.5㎛인 그래핀(BTR社)을 사용한 것을 제외하고는, 실시예 1과 동일한 방법으로 전지를 제조하였다. 이 때, 양극 내 양극 활물질, PVdF, 그래핀 및 탄소나노튜브(제2 입자)의 중량비는 96.5:1.5:0.8:1.2였다.
이하, 실시예 1 내지 4 및 비교예 1 내지 6에서 사용된 도전재(제조예 1 및 2 각각의 제1 입자, 탄소나노튜브, 카본 블랙, 그래핀)의 물성을 평가하여 표 1 내지 5에 나타내었다. 구체적으로 물성은 다음과 같이 평가하였다.
1) 제1 입자에 포함된 그래핀 시트의 최장 길이(lateral size)(nm): TEM(JEOL, JEM-2010F)으로 양극 내 제1 입자에 포함된 100개의 그래핀 시트의 크기를 측정한 뒤, 이들의 평균으로 평가하였다.
2) 그래핀의 최장 길이: TEM(JEOL, JEM-2010F)으로 양극에 포함된 100개의 그래핀의 크기를 측정한 뒤, 이들의 평균으로 평가하였다.
3) 질소 흡착 비표면적(m2/g): BET 측정 장비(BEL-SORP-MAX, Nippon Bell)를 이용하여, 200℃에서 8시간 동안 가스를 제거(degassing)하고, 77K에서 N2 흡착/탈착(absorption/desorption)을 진행하여 측정하였다.
4) 요오드 흡착가(mg/g): ASTM D1510 방법에 의거하여 측정하였다.
5) 산소 함량(중량%): 원소 분석 장비(CHN-coder MT-5, Yanako)를 통해, C, H, N 원소 함량을 측정하고, 잔존 회분의 양을 반영하여 산소 함량(Oxygen) (differential)을 계산하였다.
6) 라만 스펙트럼 D/G ratio: 라만 분광 분석 장비(NRS-2000B, Jasco)를 통해 514.5nm 파장의 Ar-ion laser로 라만 스펙트럼을 분석하여 측정하였다.
7) 카본 블랙의 평균 입경: TEM(JEOL, JEM-2010F)으로 양극 내 100개의 카본 블랙에 대한 1차 입경의 크기를 측정한 뒤, 이들의 평균으로 평가하였다.
그래핀 시트 의 최장 길이(nm) 질소 흡착 비표면적(m2/g) 요오드 흡착가(mg/g) 산소 함량(중량%) 라만 스펙트럼 D/G ratio
제조예 1의 제1 입자 41 825 849 8.9 1.42
제조예 2의 제1 입자 65 712 736 3.2 1.27
평균 직경(nm) 평균 길이(㎛) 비표면적(m2/g)
탄소나노튜브 12 15 184
평균 입경(㎛) 비표면적(m2/g)
카본 블랙 23 135
평균 두께(nm) 평균 크기(㎛) 질소 흡착 비표면적(m2/g) 산소 함량(중량%) 라만 스펙트럼 D/G ratio
그래핀 100초과 5.5 50 1.0 미만 0.15
실험예 1: 방전 C Rate 에 따른 방전 용량 평가
실시예 1 내지 4 및 비교예 1 내지 6에서 제조된 리튬 이차전지를 방전 C-Rate별로 평가한 결과를 표 5에 나타내었다. 구체적으로, 충전 C-Rate는 0.2C로 고정하였으며, 방전 C-Rate를 0.2C에서 2.0C로 증가시키면서, 0.2C 방전 용량 대비 2.0C 방전 용량(%)을 평가하였다.
0.2C 방전 용량 대비 2.0C 방전 용량(%)
실시예 1 94.6
실시예 2 92.8
실시예 3 90.5
실시예 4 96.1
비교예 1 83.9
비교예 2 87.4
비교예 3 75.2
비교예 4 68.3
비교예 5 88.2
비교예 6 89.7
상기 표 5에 따르면, 제1 입자와 제2 입자(탄소나노튜브)를 함께 사용한 실시예들의 율 특성이 그렇지 않은 비교예들에 비해 월등히 뛰어난 것을 알 수 있다.또한, 제1 입자와 제2 입자의 중량비가 2:8 내지 5:5를 만족하는 실시예 1의 율 특성이 그렇지 않은 실시예 2, 3에 비해서 높은 것을 알 수 있다.
나아가, 보다 큰 최장 길이를 가지는 그래핀 시트를 포함하는 제1 입자를 사용한 실시예 4의 율 특성이 실시예 1보다 높은 것을 알 수 있다.

Claims (16)

  1. 제1 입자 및 제2 입자를 포함하며,
    상기 제1 입자는 그래핀 시트들이 서로 연결된 2차 입자 구조를 포함하며,
    상기 제1 입자는 서로 다른 방향으로 배열된 복수의 그래핀 시트를 포함하며,
    상기 제2 입자는 탄소나노튜브인 도전재.
  2. 청구항 1에 있어서,
    상기 제1 입자의 산소 함량은 상기 제1 입자 전체 중량을 기준으로 1중량% 내지 10중량%인 도전재.
  3. 청구항 1에 있어서,
    상기 그래핀 시트의 최장 길이는 10nm 내지 200nm인 도전재.
  4. 청구항 1에 있어서,
    상기 제1 입자에 대해 라만 스펙트럼 측정 시, D/G 피크 비가 0.9 내지 2.0인 도전재.
  5. 청구항 1에 있어서,
    상기 제1 입자에 대해 하기 식 1에 의해 계산된 값이 0 내지 0.2인 도전재:
    [식 1]
    Figure PCTKR2020006230-appb-I000002
    상기 식 1에서 a는 질소 흡착 BET법으로 측정된 상기 제1 입자의 비표면적(m2/g)이고, b는 상기 제1 입자의 요오드 흡착가(mg/g)이다.
  6. 청구항 1에 있어서,
    상기 복수의 그래핀 시트들 중 적어도 일부의 그래핀 시트와 연결된 연결부를 더 포함하며,
    상기 연결부는 비-그래핀 형태인 도전재.
  7. 청구항 6에 있어서,
    상기 복수의 그래핀 시트들 각각의 적어도 일부분은 상기 연결부에 연결된 도전재.
  8. 청구항 1에 있어서,
    상기 그래핀 시트의 평균 두께는 0.34nm 내지 10nm인 도전재.
  9. 청구항 1에 있어서,
    질소 흡착 BET법으로 측정된 상기 제1 입자의 비표면적(m2/g)이 200m2/g 내지 1100m2/g인 도전재.
  10. 청구항 1에 있어서,
    상기 탄소나노튜브의 평균 직경은 1nm 내지 200nm인 도전재.
  11. 청구항 1에 있어서,
    상기 탄소나노튜브는 다중벽 탄소나노튜브인 도전재.
  12. 청구항 1에 있어서,
    상기 탄소나노튜브의 평균 길이는 0.1㎛ 내지 100㎛인 도전재.
  13. 청구항 1에 있어서,
    상기 제1 입자와 상기 제2 입자의 중량비는 1:9 내지 9:1인 도전재.
  14. 청구항 1에 있어서,
    상기 제1 입자와 상기 제2 입자의 중량비는 2:8 내지 5:5인 도전재.
  15. 청구항 1의 도전재를 포함하는 전극.
  16. 양극;
    음극;
    상기 양극과 상기 음극 사이에 개재된 분리막; 및
    전해질;을 포함하며,
    상기 양극 및 상기 음극 중 적어도 어느 하나는 청구항 15의 전극인 이차 전지.
PCT/KR2020/006230 2019-05-15 2020-05-12 도전재, 상기 도전재를 포함하는 전극, 및 상기 전극을 포함하는 이차 전지 WO2020231150A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202080031595.0A CN113795948A (zh) 2019-05-15 2020-05-12 导电剂、包括该导电剂的电极和包括该电极的二次电池
EP20806155.6A EP3944380A4 (en) 2019-05-15 2020-05-12 CONDUCTIVE MATERIAL, CONDUCTIVE MATERIAL ELECTRODE AND SINGLE ELECTRODE SECONDARY BATTERY
US17/604,577 US20220200005A1 (en) 2019-05-15 2020-05-12 Conductive Agent, Electrode Including the Conductive Agent, and Secondary Battery Including the Electrode

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2019-0056920 2019-05-15
KR20190056920 2019-05-15

Publications (1)

Publication Number Publication Date
WO2020231150A1 true WO2020231150A1 (ko) 2020-11-19

Family

ID=73290111

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/006230 WO2020231150A1 (ko) 2019-05-15 2020-05-12 도전재, 상기 도전재를 포함하는 전극, 및 상기 전극을 포함하는 이차 전지

Country Status (5)

Country Link
US (1) US20220200005A1 (ko)
EP (1) EP3944380A4 (ko)
KR (1) KR102703535B1 (ko)
CN (1) CN113795948A (ko)
WO (1) WO2020231150A1 (ko)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024080668A1 (ko) * 2022-10-11 2024-04-18 주식회사 엘지에너지솔루션 리튬이차전지
KR20240051711A (ko) * 2022-10-13 2024-04-22 주식회사 엘지에너지솔루션 음극 및 이차전지

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014103030A (ja) * 2012-11-21 2014-06-05 Toho Tenax Co Ltd 多孔質導電シート及びその製造方法、電極材、燃料電池
KR20140140981A (ko) * 2013-05-30 2014-12-10 주식회사 엘지화학 이차전지용 도전재 및 이를 포함하는 리튬 이차전지용 전극
KR20170127240A (ko) * 2016-05-11 2017-11-21 주식회사 엘지화학 전극, 이의 제조방법 및 이를 포함하는 리튬이차전지
JP2018045820A (ja) * 2016-09-13 2018-03-22 ライオン・スペシャリティ・ケミカルズ株式会社 炭素導電材スラリー
KR20180129348A (ko) * 2017-05-26 2018-12-05 한국화학연구원 이차전지 음극재
KR101937900B1 (ko) * 2018-02-07 2019-01-14 주식회사 엘지화학 신규한 도전재, 상기 도전재를 포함하는 전극, 상기 전극을 포함하는 이차 전지, 및 상기 도전재의 제조 방법

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140332731A1 (en) * 2012-04-02 2014-11-13 CNano Technology Limited Electrode Composition for Battery
KR101604003B1 (ko) * 2012-08-16 2016-03-17 충남대학교산학협력단 리튬이차전지용 실리콘 복합재 음극활물질, 이의 제조방법 및 이를 포함하는 리튬이차전지
KR101652921B1 (ko) * 2013-12-27 2016-08-31 주식회사 엘지화학 도전재 조성물, 이를 사용한 리튬 이차 전지의 전극 형성용 슬러리 조성물 및 리튬 이차 전지
US9601763B2 (en) * 2015-03-27 2017-03-21 Nanotek Instruments, Inc. Process for mass-producing silicon nanowires and silicon nanowire-graphene hybrid particulates
KR102479726B1 (ko) * 2015-10-22 2022-12-21 삼성전자주식회사 전극 활물질, 이를 포함하는 전극 및 이차전지, 및 상기 전극 활물질의 제조방법
US10622624B2 (en) * 2016-09-19 2020-04-14 Samsung Electronics Co., Ltd. Porous silicon composite cluster and carbon composite thereof, and electrode, lithium battery, field emission device, biosensor and semiconductor device each including the same
CN110073458B (zh) * 2016-12-12 2022-07-08 韩国地质资源研究院 褶皱状石墨烯复合体的制备方法、由此制备的复合体及包含复合体的超级电容器
KR101813893B1 (ko) * 2017-07-12 2018-01-02 한국지질자원연구원 구겨진 형상의 실리콘-탄소나노튜브-그래핀 복합체 제조방법, 이에 따라 제조된 복합체 및 복합체를 포함하는 이차전지

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014103030A (ja) * 2012-11-21 2014-06-05 Toho Tenax Co Ltd 多孔質導電シート及びその製造方法、電極材、燃料電池
KR20140140981A (ko) * 2013-05-30 2014-12-10 주식회사 엘지화학 이차전지용 도전재 및 이를 포함하는 리튬 이차전지용 전극
KR20170127240A (ko) * 2016-05-11 2017-11-21 주식회사 엘지화학 전극, 이의 제조방법 및 이를 포함하는 리튬이차전지
JP2018045820A (ja) * 2016-09-13 2018-03-22 ライオン・スペシャリティ・ケミカルズ株式会社 炭素導電材スラリー
KR20180129348A (ko) * 2017-05-26 2018-12-05 한국화학연구원 이차전지 음극재
KR101937900B1 (ko) * 2018-02-07 2019-01-14 주식회사 엘지화학 신규한 도전재, 상기 도전재를 포함하는 전극, 상기 전극을 포함하는 이차 전지, 및 상기 도전재의 제조 방법

Also Published As

Publication number Publication date
EP3944380A1 (en) 2022-01-26
KR20200132716A (ko) 2020-11-25
EP3944380A4 (en) 2022-05-25
KR102703535B1 (ko) 2024-09-06
CN113795948A (zh) 2021-12-14
US20220200005A1 (en) 2022-06-23

Similar Documents

Publication Publication Date Title
WO2021020939A1 (ko) 음극, 상기 음극을 포함하는 이차 전지, 및 상기 음극의 제조 방법
WO2019107936A1 (ko) 음극 활물질, 이를 포함하는 음극 및 리튬 이차전지
WO2020184938A1 (ko) 음극 및 상기 음극을 포함하는 이차 전지
WO2019194613A1 (ko) 양극 활물질, 상기 양극 활물질의 제조 방법, 상기 양극 활물질을 포함하는 양극, 및 상기 양극을 포함하는 이차 전지
WO2016018023A1 (ko) 흑연 2차 입자 및 이를 포함하는 리튬 이차전지
WO2019156462A1 (ko) 신규한 도전재, 상기 도전재를 포함하는 전극, 상기 전극을 포함하는 이차 전지, 및 상기 도전재의 제조 방법
WO2018221827A1 (ko) 음극 활물질, 상기 음극 활물질을 포함하는 음극, 및 상기 음극을 포함하는 이차 전지
WO2021066494A1 (ko) 전극 및 이를 포함하는 이차 전지
WO2020231150A1 (ko) 도전재, 상기 도전재를 포함하는 전극, 및 상기 전극을 포함하는 이차 전지
WO2022050664A1 (ko) 양극 활물질, 상기 양극 활물질을 포함하는 양극, 및 상기 양극을 포함하는 이차 전지
WO2016167591A1 (ko) 음극 활물질 및 이의 제조방법
WO2019093825A1 (ko) 음극 활물질, 상기 음극 활물질을 포함하는 음극, 및 상기 음극을 포함하는 이차 전지
WO2023106882A1 (ko) 음극 활물질, 이를 포함하는 음극 슬러리, 이를 포함하는 음극, 이를 포함하는 이차전지 및 음극 활물질의 제조방법
WO2023121257A1 (ko) 음극 조성물, 이를 포함하는 리튬 이차 전지용 음극, 음극을 포함하는 리튬 이차 전지 및 음극 조성물의 제조 방법
WO2023059016A1 (ko) 리튬 이차 전지용 음극, 리튬 이차 전지용 음극의 제조 방법 및 음극을 포함하는 리튬 이차 전지
WO2023068880A1 (ko) 음극 선분산액, 이를 포함하는 음극 조성물, 음극 조성물을 포함하는 리튬 이차 전지용 음극, 음극을 포함하는 리튬 이차 전지 및 음극 조성물의 제조 방법
WO2024144188A1 (ko) 리튬 이차 전지
WO2023085691A1 (ko) 음극 조성물, 이를 포함하는 리튬 이차 전지용 음극, 음극을 포함하는 리튬 이차 전지 및 음극 조성물의 제조 방법
WO2024144169A1 (ko) 리튬 이차 전지
WO2023090950A1 (ko) 양극 활물질층용 조성물 및 리튬이차전지
WO2023018190A1 (en) Negative electrode active material, and negative electrode and secondary battery including same
WO2023068838A1 (ko) 음극 조성물, 이를 포함하는 리튬 이차 전지용 음극, 음극을 포함하는 리튬 이차 전지 및 음극 조성물의 제조 방법
WO2023090948A1 (ko) 양극 활물질층용 조성물 및 리튬이차전지
WO2022250505A1 (ko) 전고체 리튬 이차전지 및 이의 제조 방법
WO2023068601A1 (ko) 리튬 이차 전지용 음극, 음극을 포함하는 리튬 이차 전지 및 리튬 이차 전지용 음극의 제조 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20806155

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020806155

Country of ref document: EP

Effective date: 20211019

NENP Non-entry into the national phase

Ref country code: DE