WO2016032210A1 - 탄소-실리콘 복합 구조체 및 이의 제조 방법 - Google Patents

탄소-실리콘 복합 구조체 및 이의 제조 방법 Download PDF

Info

Publication number
WO2016032210A1
WO2016032210A1 PCT/KR2015/008882 KR2015008882W WO2016032210A1 WO 2016032210 A1 WO2016032210 A1 WO 2016032210A1 KR 2015008882 W KR2015008882 W KR 2015008882W WO 2016032210 A1 WO2016032210 A1 WO 2016032210A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon
composite structure
silicon
secondary battery
silicon composite
Prior art date
Application number
PCT/KR2015/008882
Other languages
English (en)
French (fr)
Inventor
문준혁
이훈희
Original Assignee
서강대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 서강대학교산학협력단 filed Critical 서강대학교산학협력단
Publication of WO2016032210A1 publication Critical patent/WO2016032210A1/ko
Priority to US15/441,392 priority Critical patent/US10431813B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/05Preparation or purification of carbon not covered by groups C01B32/15, C01B32/20, C01B32/25, C01B32/30
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/02Silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/04Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of carbon-silicon compounds, carbon or silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0471Processes of manufacture in general involving thermal treatment, e.g. firing, sintering, backing particulate active material, thermal decomposition, pyrolysis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/386Silicon or alloys based on silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present application relates to a carbon-silicon composite structure including a carbon particle layer in which silicon nanoparticles are dispersed, a method for manufacturing the same, a negative electrode material for a secondary battery including the same, and a secondary battery including the negative electrode material.
  • Secondary batteries are used as small-scale, high-performance energy sources for large-capacity power storage batteries such as electric vehicles and battery power storage systems, or portable electronic devices such as mobile phones, camcorders, and notebook computers.
  • power storage batteries such as electric vehicles and battery power storage systems
  • portable electronic devices such as mobile phones, camcorders, and notebook computers.
  • research on weight reduction and low power consumption of components is required, and a secondary battery capable of realizing small size and high capacity is required.
  • the secondary battery market requires the development of a negative active material having high capacity and high performance in order to be used as an energy storage device of a hybrid vehicle (HEV or PHEV) or a power generation system with the use of portable electronic devices and information communication devices.
  • HEV or PHEV hybrid vehicle
  • the high crystalline carbon-based active material commercialized as a negative electrode active material of the conventional secondary battery has excellent characteristics as an active material of the battery, the theoretical capacity is limited to 372 mAh / g to develop a high capacity, high performance lithium secondary battery.
  • the development of an improved negative electrode active material is essential.
  • the non-carbon-based negative electrode active material may be silicon, and the silicon (Si) is most suitable as a negative electrode material because of a very low lithium reaction potential of 0.4 V (Li / Li + ) as well as a high discharge capacity of 4,200 mAh / g.
  • silicon is not maintained in capacity due to volume expansion of up to 400% upon insertion (charging) of lithium ions, and improvement is necessary for commercialization as a negative electrode active material due to problems such as low electrical conductivity.
  • Korean Patent No. 10-1248108 relates to a negative electrode for a lithium ion secondary battery having an amorphous silicon oxide thin film, the amorphous silicon oxide thin film comprising the step of forming a thin film of SiO x (0.3 ⁇ x ⁇ 1.5)
  • the manufacturing method of the negative electrode for lithium ion secondary batteries is disclosed.
  • the present application is a method for producing a carbon-silicon composite structure including a carbon particle layer in which silicon nanoparticles are dispersed, a carbon-silicon composite structure manufactured by the manufacturing method, a negative electrode material for a secondary battery including the carbon-silicon composite structure, And to provide a secondary battery comprising the negative electrode material for the secondary battery.
  • a first aspect of the present disclosure includes the steps of polymerizing an aromatic monomer to form polymer particles; Crosslinking the polymer particles to obtain crosslinked polymer particles; Sintering and carbonizing the crosslinked polymer particles to obtain carbon particles; And mixing the carbon particles with the silicon nanoparticles to obtain a carbon particle layer containing the silicon nanoparticles dispersed therein, the method of manufacturing a carbon-silicon composite structure.
  • a second aspect of the present application provides a carbon-silicon composite structure, comprising a carbon particle layer in which silicon nanoparticles are dispersed, and prepared by the method according to the first aspect of the present application.
  • the third aspect of the present application provides a negative electrode material for a secondary battery comprising the carbon-silicon composite structure according to the second aspect of the present application.
  • a fourth aspect of the present application provides a secondary battery including a negative electrode, a positive electrode, a separator, and an electrolyte including the negative electrode material for the secondary battery according to the third aspect of the present application.
  • capacitance characteristic of silicon can be improved as an electrode material.
  • the carbon particle layer disperses the force due to excessive volume expansion of silicon that appears during the charging and discharging process of the lithium ion battery, thereby crushing the silicon particles or falling off the current collector. By preventing the capacity, the capacity can be maintained to improve the life characteristics of a secondary battery such as a lithium ion battery.
  • the negative electrode material for the secondary battery includes silicon having a high theoretical capacity (4,200 mAh / g), it is possible to implement a higher electron capacity than the graphite electrode (372 mAh / g) that is commercially used in the prior art.
  • FIG. 1 is a flow chart showing a method of manufacturing a carbon-silicon composite structure according to an embodiment of the present application.
  • FIG 2 is an electron scanning micrograph of the carbon-silicon composite structure according to an embodiment of the present application.
  • Figure 3 shows, in one embodiment of the present application, the results of X-ray diffraction analysis of the carbon-silicon composite structure.
  • Figure 4 in one embodiment of the present application, shows the Raman spectroscopy results of the carbon-silicon composite structure.
  • FIG. 5 illustrates the Galvano static charge / discharge test results of the carbon-silicon composite structure in an example of the present disclosure.
  • step to or “step of” does not mean “step for”.
  • the term "combination (s) thereof" included in the representation of a makushi form refers to one or more mixtures or combinations selected from the group consisting of the components described in the representation of makushi form, It means to include one or more selected from the group consisting of the above components.
  • a first aspect of the present disclosure includes the steps of polymerizing an aromatic monomer to form polymer particles; Crosslinking the polymer particles to obtain crosslinked polymer particles; Sintering and carbonizing the crosslinked polymer particles to obtain carbon particles; And, by mixing the carbon particles with the silicon nanoparticles to obtain a carbon particle layer in which the silicon nanoparticles are dispersed, it provides a method for producing a carbon-silicon composite structure.
  • FIG. 1 is a detailed flowchart of a method of manufacturing a carbon-silicon composite structure according to one embodiment of the present application. An embodiment of the present disclosure will be described in detail below with reference to FIG. 1.
  • the method for producing the carbon-silicon composite structure the synthesis of the copolymer through the emulsion polymerization, and through the selective crosslinking and selective carbonization of the copolymer to form a microporous structure and carbon particles It may be synthesized, and physically mixed with the crystalline silicon nanoparticles to disperse the crystalline silicon nanoparticles in the carbon particle layer to produce a silicon-carbon structure that can be used as a negative electrode material of a lithium ion battery.
  • Step S100 of FIG. 1 is a step of polymerizing an aromatic monomer to form polymer particles.
  • the step of polymerizing the aromatic monomer (S100) may be to include a spherical polymer through the emulsion polymerization, but is not limited thereto.
  • the aromatic monomer is selected from the group consisting of styrene, benzamide, butylene terephthalate, ethylene terephthalate, methyl methacrylate-based compound, vinylpyridine-based compound, and combinations thereof It may include, but is not limited thereto.
  • Step S200 of FIG. 1 is a step of crosslinking the polymer particles to obtain crosslinked polymer particles.
  • the cross-linking step (S200) of the polymer particles may include, but is not limited to, selectively crosslinking the polymer particles by a Friedelcraft-acylation reaction.
  • the crosslinking may be a post-crosslinking reaction using a Friedelcraft reaction, but is not limited thereto.
  • the post-crosslinking reaction means crosslinking after the particle synthesis in order to further crosslink the synthesized particles since the crosslinking agent is already included when the particles are produced.
  • the Friedelcraft-acylation reaction is a reaction that induces acylation of an aromatic compound by reacting an aromatic compound with an acyl halide in the presence of a catalyst.
  • a metal halide catalyst such as aluminum halide (e.g., AlCl 3 ) or antimony (V) chloride, iron (III) chloride, tin (IV), etc.
  • a compound having an acyl group (RCO-) bonded to a benzene ring is produced (see Scheme 1 below).
  • Step S300 of FIG. 1 is a step of obtaining carbon particles by sintering and carbonizing the crosslinked polymer particles.
  • the crosslinked polymer particles may be selectively carbonized by the selective crosslinking, and porous carbon particles may be prepared by the selective carbonization, but are not limited thereto.
  • the step of sintering the crosslinked polymer particles (S300) may be performed at a temperature of about 600 °C to about 1,100 °C, but is not limited thereto.
  • the sintering temperature may be selected by a person skilled in the art using the sintering temperature but sufficient to carbonize the crosslinked polymer particles according to the kind of the polymers.
  • the sintering temperature may be about 600 ° C. to about 700 ° C., about 600 ° C.
  • an inert gas such as argon may be injected and heated at the sintering temperature to carbonize the crosslinked polymer particles, and then cooled to room temperature, but is not limited thereto.
  • Step S400 of FIG. 1 is a step of mixing the carbon particles with the silicon nanoparticles to obtain a carbon particle layer in which the silicon nanoparticles are dispersed.
  • the step of obtaining a carbon particle layer in which the silicon nanoparticles are dispersed (S400), the crystalline silicon nanoparticles by physically mixing the carbon particles obtained by sintering the polymer particles with crystalline silicon nanoparticles Particles may include forming a uniformly dispersed carbon particle layer, but is not limited thereto.
  • the silicon nanoparticles may be to include a crystalline, but is not limited thereto.
  • the silicon nanoparticles may have a size of about 10 nm to about 10 ⁇ m, but is not limited thereto.
  • the size of the silicon nanoparticles is about 10 nm to about 100 nm, about 10 nm to about 200 nm, about 10 nm to about 300 nm, about 10 nm to about 400 nm, about 10 nm to about 500 nm , About 10 nm to about 600 nm, about 10 nm to about 700 nm, about 10 nm to about 800 nm, about 10 nm to about 900 nm, about 10 nm to about 1 ⁇ m, about 10 nm to about 5 ⁇ m, about 10 nm to about 10 ⁇ m, about 100 nm to about 200 nm, about 100 nm to about 300 nm, about 100 nm to about 400 nm, about 100 nm to about 500 nm, about 100 nm to about 600
  • the carbon particle layer may include carbon particles including pores, but is not limited thereto.
  • the pores of the carbon particles may be formed by selective crosslinking and selective carbonization of the polymer particles.
  • the pores of the carbon particles may be meso pores or micro pores, but are not limited thereto.
  • the carbon particles may be to include those having a size of about 100 nm to about 1 ⁇ m, but is not limited thereto.
  • the size of the carbon particles is about 100 nm to about 200 nm, about 100 nm to about 300 nm, about 100 nm to about 400 nm, about 100 nm to about 500 nm, about 100 nm to about 600 nm, About 100 nm to about 700 nm, about 100 nm to about 800 nm, about 100 nm to about 900 nm, about 100 nm to about 1 ⁇ m, about 200 nm to about 300 nm, about 200 nm to about 400 nm, about 200 nm to about 500 nm, about 200 nm to about 600 nm, about 200 nm to about 700 nm, about 200 nm to about 800 nm, about 200 nm to about 900 nm, about 200 nm to about 1 ⁇ m,
  • a second aspect of the present application provides a carbon-silicon composite structure, comprising a carbon particle layer in which silicon nanoparticles are dispersed, and prepared by the method according to the first aspect of the present application.
  • the carbon-silicon composite structure according to the second aspect of the present application may apply all the contents described for the method of manufacturing the carbon-silicon composite structure according to the first aspect of the present application, and detailed descriptions of overlapping portions may be made. Although the description is omitted, the same may be applied even if the description is omitted.
  • the silicon nanoparticles may be to include a crystalline, but is not limited thereto.
  • the silicon nanoparticles may have a size of about 10 nm to about 10 ⁇ m, but is not limited thereto.
  • the size of the silicon nanoparticles is about 10 nm to about 100 nm, about 10 nm to about 200 nm, about 10 nm to about 300 nm, about 10 nm to about 400 nm, about 10 nm to about 500 nm , About 10 nm to about 600 nm, about 10 nm to about 700 nm, about 10 nm to about 800 nm, about 10 nm to about 900 nm, about 10 nm to about 1 ⁇ m, about 10 nm to about 5 ⁇ m, about 10 nm to about 10 ⁇ m, about 100 nm to about 200 nm, about 100 nm to about 300 nm, about 100 nm to about 400 nm, about 100 nm to about 500 nm, about 100 nm to about 600
  • the carbon particle layer may include carbon particles including pores, but is not limited thereto.
  • the pores of the carbon particles may be formed by selective crosslinking and selective carbonization of the polymer particles.
  • the pores of the carbon particles may be meso pores or micro pores, but are not limited thereto.
  • the carbon particles may be to include those having a size of about 100 nm to about 1 ⁇ m, but is not limited thereto.
  • the size of the carbon particles is about 100 nm to about 200 nm, about 100 nm to about 300 nm, about 100 nm to about 400 nm, about 100 nm to about 500 nm, about 100 nm to about 600 nm, About 100 nm to about 700 nm, about 100 nm to about 800 nm, about 100 nm to about 900 nm, about 100 nm to about 1 ⁇ m, about 200 nm to about 300 nm, about 200 nm to about 400 nm, about 200 nm to about 500 nm, about 200 nm to about 600 nm, about 200 nm to about 700 nm, about 200 nm to about 800 nm, about 200 nm to about 900 nm, about 200 nm to about 1 ⁇ m,
  • the third aspect of the present application provides a negative electrode material for a secondary battery comprising the carbon-silicon composite structure according to the second aspect of the present application.
  • the negative electrode material for a secondary battery according to the third aspect of the present application all of the contents described for the method of manufacturing the carbon-silicon composite structure according to the first aspect of the present application and the carbon-silicon composite structure according to the second aspect may be applied. Although a detailed description of the overlapping portions has been omitted, the same may be applied even if the description is omitted.
  • the carbon-silicon composite structure may include a carbon particle layer in which silicon nanoparticles are dispersed, but is not limited thereto.
  • the negative electrode material for the secondary battery using a carbon particle layer consisting of nano-size carbon particles to suppress the volume expansion and contraction of the silicon appearing during charging / discharging and to prevent falling from the current collector to lower the silicon
  • the carbon particle layer may also contribute to the capacity of the electrode because lithium ions can be inserted and removed.
  • a fourth aspect of the present application provides a secondary battery comprising a negative electrode, a positive electrode, a separator, and an electrolyte including a negative electrode material for a secondary battery according to the third aspect of the present application.
  • a secondary battery according to the fourth aspect of the present application all of the contents described with respect to the first to third aspects of the present application may be applied, and detailed descriptions of overlapping portions are omitted, but the description is omitted. If so, the same applies.
  • the secondary battery may include a lithium ion battery, but is not limited thereto.
  • the negative electrode may be manufactured by the following method, but is not limited thereto.
  • a composition for forming a negative electrode active material layer may be prepared by mixing a carbon-silicon composite structure, a binder, and a solvent according to one embodiment of the present application. Subsequently, the negative electrode may be manufactured by applying and drying the composition for forming the negative electrode active material layer on a negative electrode current collector.
  • the binder adheres the anode active material particles to each other well, and also serves to adhere the anode active material to the current collector well.
  • the binder may be polyacrylic acid, polyvinylidene fluoride, polyvinyl alcohol, carboxymethyl cellulose ( carboxymethyl cellulose (CMC), starch, hydroxypropyl cellulose, regenerated cellulose, polyvinylpyrrolidone, tetrafluoroethylene, polyethylene, polypropylene, ethylene-propylene-diene terpolymer (EPDM), Sulfonated EPDM, styrene butylene rubber, fluororubber, or various copolymers may be used, but is not limited thereto.
  • the negative electrode current collector is generally made to a thickness of about 3 ⁇ m to about 500 ⁇ m.
  • the negative electrode current collector is not particularly limited as long as it has conductivity without causing chemical change in the battery.
  • copper, stainless steel, aluminum, nickel, titanium, heat treated carbon, copper, or stainless steel It may include, but is not limited to, a surface treated with carbon, nickel, titanium, or silver, or an aluminum-cadmium alloy.
  • fine concavities and convexities may be formed on the surface to enhance the bonding strength of the negative electrode active material, and may be used in various forms of a film, a sheet, a foil, a net, a porous body, a foam, or a nonwoven fabric.
  • the solvent may be N-methyl-2-pyrrolidone (N-methyl-2-pyrrolidone, NMP), acetone, water, or a mixture thereof, but is not limited thereto.
  • the amount of the solvent may be about 50 to about 500 parts by weight based on 100 parts by weight of the composition for forming the negative electrode active material layer, but is not limited thereto. When the content of the solvent is within the above range, the operation for forming the active material layer is easy.
  • the separator is not limited in kind, but is, for example, a polyolefin selected from the group consisting of ethylene homopolymers, propylene homopolymers, ethylene-butene copolymers, ethylene-hexene copolymers, and ethylene-methacrylate copolymers.
  • Porous substrate made of a polymer A porous substrate made of a polymer selected from the group consisting of polyesters, polyacetals, polyamides, polycarbonates, polyimides, polyetheretherketones, polyethersulfones, polyphenylene oxides, polyphenylenesulfites, and polyethylene naphthalenes; Alternatively, a porous substrate formed of a mixture of inorganic particles and a binder polymer may be used.
  • the polyester, polyacetal, polyamide, polycarbonate, polyimide, polyether ether ketone, polyether sulfone, polyphenylene oxide, and polyphenylene It is preferable to use a separator of non-woven material corresponding to a porous substrate made of a polymer selected from the group consisting of sulfide, polyethylene naphthalene, and combinations thereof.
  • polyethylene oxide polyvinylidene fluoride
  • PVDF-HFP polyvinylidene fluoride-hexafluoropropylene
  • PMMA poly (methyl 2-methylpropenoate)
  • PAN polyacrylonitrile
  • PVAc poly (ethenyl ethanoate)
  • PEO polyethylene oxide
  • PVDF polyvinylidene fluoride
  • PVDF-HFP polyvinylidene fluoride-hexafluoropropylene
  • PMMA methyl 2-methylpropenoate
  • PAN polyacrylonitrile
  • PVAc poly (ethenyl ethanoate)
  • PEO polyethylene oxide
  • PVDF polyvinylidene fluoride-HFP
  • PMMA methyl 2-methylpropenoate
  • PAN polyacrylonitrile
  • PVAc poly (ethenyl ethanoate)
  • PEO polyethylene oxide
  • PVDF polyvinylidene fluoride-HFP
  • PMMA
  • the electrolyte may be ethylene carbonate (EC), propylene carbonate (PC), butylene carbonate (BC), vinylene carbonate (VC), diethyl carbonate (diethyl carbonate, DEC), dimethyl carbonate (DMC), ethyl methyl carbonate (EMC), methyl formate (MF), gamma-butyrolactone ( ⁇ -BL), sulfore Non-aqueous electrolytes using phosphorus, methylacetate (MA), or methylpropionate (MP) may be used.
  • EC ethylene carbonate
  • PC propylene carbonate
  • BC butylene carbonate
  • VVC vinylene carbonate
  • DEC diethyl carbonate
  • DEC dimethyl carbonate
  • EMC ethyl methyl carbonate
  • MF methyl formate
  • ⁇ -BL gamma-butyrolactone
  • the electrolyte may further include a lithium salt, for example, LiCl, LiBr, LiI, LiClO 4 , LiBF 4 , LiB 10 Cl 10 , LiPF 6 , LiCF 3 SO 3 , LiCF 3 CO to 2, LiAsF 6, LiSbF 6, LiAlCl 4, CH 3 SO 3 Li, CF 3 SO 3 Li, (CF 3 SO 2) 2 NLi, chloroborane lithium, lower aliphatic carboxylic acid lithium, or tetraphenyl lithium borate, etc.
  • a lithium salt for example, LiCl, LiBr, LiI, LiClO 4 , LiBF 4 , LiB 10 Cl 10 , LiPF 6 , LiCF 3 SO 3 , LiCF 3 CO to 2, LiAsF 6, LiSbF 6, LiAlCl 4, CH 3 SO 3 Li, CF 3 SO 3 Li, (CF 3 SO 2) 2 NLi, chloroborane lithium, lower aliphatic carboxylic acid lithium, or tetra
  • the positive electrode may include a lithium metal or a lithium transition metal oxide, but is not limited thereto, and the positive electrode may apply all materials commonly used in lithium ion batteries.
  • the positive electrode may be manufactured by, for example, the following method, but is not limited thereto.
  • the positive electrode is manufactured by applying and drying a composition for forming a positive electrode active material layer on a positive electrode current collector in the same manner as in the manufacturing process of the negative electrode described above.
  • the positive electrode active material layer-forming composition is prepared by mixing a positive electrode active material, a conductive material, a binder, and a solvent.
  • the positive electrode active material, the binder, and the solvent may be used in the same kind and content as in the preparation of the negative electrode.
  • the conductive material may be a conductive crude material such as polyacrylic acid, acetylene black, furnace black, graphite, carbon fiber, or fullerene, but is not limited thereto.
  • the positive electrode current collector has a thickness of about 3 ⁇ m to about 500 ⁇ m, and is not particularly limited as long as it has high conductivity without causing chemical change in the battery, for example, stainless steel; aluminum; nickel; titanium; Heat treated carbon; Carbon on the surface of aluminum or stainless steel; Or a surface-treated one selected from the group consisting of nickel, titanium, silver, and combinations thereof, but is not limited thereto.
  • the positive electrode current collector may form fine irregularities on its surface to increase the adhesion of the positive electrode active material, and various forms of a film, a sheet, a foil, a net, a porous body, a foam, or a nonwoven fabric are possible.
  • LiCoO 2 , LiNiO 2 , LiMnO 2 , LiMn 2 O 4 , Li (Ni a Co b Mn c ) O 2 (0 ⁇ a ⁇ 1, 0 ⁇ b ⁇ 1, 0 ⁇ c ⁇ 1 , a + b + c 1 ), LiNi 1 - Y Co Y O 2 ( here, 0 ⁇ Y ⁇ 1), LiCo 1 - Y Mn Y O 2 ( here, 0 ⁇ Y ⁇ 1), LiNi 1 - (wherein, 0 ⁇ Y ⁇ 1) Y Mn Y O 2, LiMn 2 -z Ni z O 4 ( where 0 ⁇ z ⁇ 2), LiMn 2-in z Co z O 4 (where 0 ⁇ One or more selected from the group consisting of Z ⁇ 2), LiCoPO 4 , LiFePO 4 , and combinations thereof may be used, but is not limited thereto.
  • a lithium secondary battery is manufactured by interposing a separator between a cathode and an anode obtained according to the above process, and supplying an electrolyte solution including an electrolyte thereto.
  • the lithium secondary battery described above may be stacked, for example, by stacking the negative electrode, the separator, and the positive electrode, and then winding or folding the lithium secondary battery into a cylindrical or angular battery case or pouch, and then organically storing the negative electrode, the separator, and the pouch. It may be prepared by injecting an electrolyte solution.
  • the separator has a pore size of about 0.01 ⁇ m to about 10 ⁇ m and a thickness of about 5 ⁇ m to about 300 ⁇ m.
  • an olefin polymer such as polypropylene or polyethylene, or a sheet or nonwoven fabric made of glass fiber is used.
  • the electrolyte may be a lithium salt dissolved in an organic solvent, but is not limited thereto.
  • the organic solvent is, for example, propylene carbonate, ethylene carbonate, fluoroethylene carbonate, butylene carbonate, dimethyl carbonate, diethyl carbonate, methyl ethyl carbonate, methyl propyl carbonate, ethyl propyl carbonate, methyl isopropyl carbonate, dipropyl Carbonate, dibutyl carbonate, benzonitrile, acetonitrile, tetrahydrofuran, 2-methyltetrahydrofuran, ⁇ -butyrolactone, 1,3-dioxolane, 4-methyldioxolane, N, N-dimethylform Amide, dimethylacetamide, dimethyl sulfoxide, 1,4-dioxane, 1,2-dimethoxyethane, sulfolane, dichloroethane, chlorobenzene, nitrobenzene
  • the lithium salt is LiPF 6 , LiBF 4 , LiSbF 6 , LiAsF 6 , LiClO 4 , LiCF 3 SO 3 , Li (CF 3 SO 2 ) 2 N, LiC 4 F 9 SO 3 , LiAlO 2 , LiAlCl 4 , LiN (C x F 2x + 1 SO 2 ) (C y F 2y + 1 SO 2 ), provided that x and y are natural numbers, LiCl, LiI, and combinations thereof, but are not limited thereto. It is not.
  • the secondary battery may be used together with the organic solid electrolyte and / or inorganic solid electrolyte in addition to the separator, but is not limited thereto.
  • the solid electrolyte may also serve as a separator, and thus the separator may not be used.
  • the organic solid electrolyte may include, but is not limited to, a polyethylene derivative, a polyethylene oxide derivative, a polypropylene oxide derivative, a phosphate ester polymer, a polyvinyl alcohol, or a polyvinylidene fluoride.
  • the inorganic solid electrolyte for example, Li 3 N, LiI, Li 5 NI 2 , Li 3 N-LiI-LiOH, Li 2 SiS 3 , Li 4 SiO 4 , Li 4 SiO 4 -LiI-LiOH, Li 3 PO 4 -Li 2 S-SiS 2 , and combinations thereof may be selected from, but is not limited thereto.
  • a copolymer was synthesized through an emulsion polymerization reaction, and microporous structure formation and carbon particles were synthesized through selective crosslinking and selective carbonization, and then physically mixed with crystalline silicon nanoparticles to form crystalline silicon in the carbon particle layer.
  • the nanoparticles were dispersed to prepare a silicon-carbon structure that can be used as a negative electrode material of a lithium ion battery.
  • a polymer comprising styrene monomer 2.1 g of styrene was injected into the flask, and nitrogen was introduced while increasing the temperature.
  • 10 mL of an aqueous solution prepared by dissolving 0.12 g of potassium persulfate was injected into the flask.
  • 0.9 g of divinylbenzene was added to the flask as a crosslinking agent to cause a polymerization reaction, and then the copolymer particles obtained after 24 hours were separated.
  • a Friedelcraft-acylation reaction was used to selectively crosslink only the polystyrene portion contained in the copolymer particles.
  • 0.3 g of the copolymer was administered to a solution containing chloroform and aluminum chloride, and reacted for 16 hours.
  • the solution was purified by centrifuge and washed with ethanol.
  • the washed copolymer particles were dispersed in ethanol and dried to obtain crosslinked copolymer particles.
  • the crosslinked polystyrene (PS) copolymer was placed in a sintering furnace, followed by argon injection and heating at high temperature to sinter.
  • the carbon particles obtained in the above experiments were physically mixed with the crystalline silicon nanoparticles to obtain a carbon particle layer (carbon-silicon composite structure) in which the crystalline silicon nanoparticles were dispersed, which was used as a negative electrode active material (cathode material) for a lithium ion battery.
  • a negative electrode active material cathode material
  • the lithium ion battery negative electrode was prepared by applying a composition including 60 parts by weight of the active material, 20 parts by weight of the conductive material, and 20 parts by weight of the binder to a copper current collector at a thickness of 100 ⁇ m.
  • the thickness of the cathode was adjustable according to the height of the doctor blade.
  • Lithium metal was used as a counter electrode (anode), and the prepared cathode was used as a working electrode, celgard 2400 as a separator, 50 parts by weight of ethylene carbonate (EC) in which 1M LiPF 6 was dissolved, and diethyl carbonate (DEC). ) CR2032 coin cell was prepared using 50 parts by weight of the mixed solution.
  • EC ethylene carbonate
  • DEC diethyl carbonate
  • the structure of the mixture of carbon particles and crystalline silicon nanoparticles obtained through the above examples was spherical using scanning electron microscope (SEM) and energy-dispersive X-ray spectroscopy. It was confirmed that the crystalline silicon nanoparticles were uniformly dispersed in the carbon particle layer of (FIG. 2 and FIG. 3).
  • SEM scanning electron microscope
  • X-ray diffraction and Raman spectroscopy were performed in order to determine the composition of the mixture of the carbon particle layer and the crystalline silicon nanoparticles. The position of the peaks shown in X-ray diffraction and Raman spectroscopy confirmed that the crystalline silicon nanoparticles were crystalline, and that the synthesized carbon particle layer was amorphous carbon.
  • FIG. 3 is an X-ray diffraction graph of the carbon-silicon composite structure according to the present embodiment, wherein peaks found at 28.4 °, 47.3 °, 56.1 °, 69.1 °, and 76.4 °, respectively, are represented by (111), (220), (311), (400), and (331) showing crystal planes, and a broad peak near 25 ° showed that the carbon particle layer in which the crystalline silicon nanoparticles were dispersed according to the present example was amorphous carbon.
  • Peaks of 1,350 cm ⁇ 1 and 1,590 cm ⁇ 1 are peaks associated with the carbon particle layer and are D-band and G-band, respectively. The ratio of the peaks of the D-band and the G-band indicates that the carbon particle layer synthesized at 0.77 is amorphous carbon, which is consistent with the results of X-ray diffraction analysis.
  • the same experiment was conducted by mixing crystalline silicon nanoparticles with activated carbon as a comparative example, the reduction of the capacitance according to the cycle of the comparative example according to this embodiment It was confirmed that it is larger than that of the carbon-silicon composite structure, and the capacitance after 45 cycles was found to be 645 mAh / g.
  • the results of the present example lead to the result that the carbon particle layer in which the silicon particles are dispersed can be applied as a negative electrode material for a lithium ion battery.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

실리콘 나노입자가 분산된 탄소 입자층을 포함하는 탄소-실리콘 복합 구조체, 상기 탄소-실리콘 복합 구조체의 제조 방법, 상기 탄소-실리콘 복합 구조체를 포함하는 이차전지용 음극 재료, 및 상기 이차전지용 음극 재료를 포함하는 이차전지에 관한 것이다.

Description

탄소-실리콘 복합 구조체 및 이의 제조 방법
본원은, 실리콘 나노입자가 분산된 탄소 입자층을 포함하는 탄소-실리콘 복합 구조체, 이의 제조 방법, 이를 포함하는 이차전지용 음극 재료, 및 상기 음극 재료를 포함하는 이차전지에 관한 것이다.
이차전지는 전기자동차나 전지전력 저장시스템 등의 대용량 전력저장전지 또는 휴대전화, 캠코더, 노트북 등의 휴대전자기기의 소형의 고성능 에너지원으로서 사용되고 있다. 휴대전자기기의 소형화와 장시간 연속사용을 목표로 부품의 경량화와 저소비전력화에 대한 연구와 더불어 소형이면서 고용량을 실현할 수 있는 이차전지가 요구되고 있다.
최근 이차전지 시장은 휴대용 전자기기 및 정보통신기기의 사용과 함께 하이브리드 자동차(HEV 또는 PHEV) 또는 발전시스템의 에너지 저장 기기로서 사용하기 위하여, 대형화와 더불어 고용량, 고성능을 가지는 음극 활물질의 개발이 요구되고 있다. 그러나, 기존의 이차전지의 음극활물질로서 상용화된 고결정질 탄소계 활물질은 전지의 활물질로서 제반 특성이 우수함에도 불구하고, 이론용량이 372 mAh/g으로 제한되어 있어 고용량, 고성능 리튬 이차전지를 개발하기 위해서는 개선된 음극 활물질의 개발이 필수적이다.
비탄소계 음극 활물질로는 실리콘을 들 수 있는데, 상기 실리콘(Si)은 4,200 mAh/g의 높은 방전용량뿐 아니라 리튬 반응 전위가 0.4 V(Li/Li+)로 매우 낮기 때문에 음극 소재로서 가장 적합한 물질로 알려져 있다. 그러나, 실리콘은 리튬 이온의 삽입(충전) 시 최대 400%에 이르는 부피팽창으로 인하여 용량이 유지되지 못하고, 낮은 전기전도도 등의 문제로 인하여 음극 활물질로서 상용화되기 위해서는 이에 대한 개선이 필수적이다.
한편, 대한민국 등록특허 제10-1248108호는 비정질 실리콘 산화물 박막을 가지는 리튬 이온 이차전지용 음극에 관한 것으로서, 상기 비정질 실리콘 산화물 박막은 SiOx(0.3≤x≤1.5)인 박막을 형성하는 단계를 포함하는 리튬이온 이차전지용 음극의 제조방법에 대하여 개시하고 있다.
본원은, 실리콘 나노입자가 분산된 탄소 입자층을 포함하는 탄소-실리콘 복합 구조체의 제조 방법, 상기 제조 방법에 의하여 제조되는 탄소-실리콘 복합 구조체, 상기 탄소-실리콘 복합 구조체를 포함하는 이차전지용 음극 재료, 및 상기 이차전지용 음극 재료를 포함하는 이차전지를 제공하고자 한다.
그러나, 본원이 해결하고자 하는 과제는 이상에서 언급한 과제로 제한되지 않으며, 언급되지 않은 또 다른 과제들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.
본원의 제 1 측면은, 방향족 단량체를 중합시켜 중합체 입자를 형성하는 단계; 상기 중합체 입자를 가교시켜 가교된 중합체 입자를 수득하는 단계; 상기 가교된 중합체 입자를 소결하여 탄화시킴으로써 탄소 입자를 수득하는 단계; 및 상기 탄소 입자를 실리콘 나노입자와 혼합하여 실리콘 나노입자가 분산된 탄소 입자층을 수득하는 단계를 포함하는, 탄소-실리콘 복합 구조체의 제조 방법을 제공한다.
본원의 제 2 측면은, 실리콘 나노입자가 분산된 탄소 입자층을 포함하며, 상기 본원의 제 1 측면에 따른 방법에 의하여 제조되는, 탄소-실리콘 복합 구조체를 제공한다.
본원의 제 3 측면은, 상기 본원의 제 2 측면에 따른 상기 탄소-실리콘 복합 구조체를 포함하는, 이차전지용 음극 재료를 제공한다.
본원의 제 4 측면은, 상기 본원의 제 3 측면에 따른 상기 이차전지용 음극 재료를 포함하는 음극, 양극, 분리막, 및 전해질을 포함하는, 이차전지를 제공한다.
본원의 일 구현예에 의하면, 나노 사이즈의 탄소 입자를 합성한 뒤, 결정질 실리콘 나노입자와 물리적으로 혼합하여 결정질 실리콘 나노입자를 탄소 입자층 사이에 균일하게 분산시켜 탄소-실리콘 복합 구조체를 형성하고, 이를 이차전지용 음극 재료로서 이용함으로써, 전극재료로서 실리콘의 용량 특성을 개선할 수 있다. 또한, 결정질 실리콘 나노입자가 탄소 입자층 사이에 균일하게 분포되면서 리튬 이온 전지의 충전 및 방전 과정에서 나타나는 실리콘의 과도한 부피 팽창에 의한 힘을 탄소 입자층이 분산시켜 실리콘 입자가 분쇄되거나 집전체로부터 탈락되는 것을 방지함으로써 용량이 유지되어 리튬 이온 전지와 같은 이차전지의 수명 특성이 향상될 수 있다.
본원의 일 구현예에 의하면, 실리콘의 과도한 부피 팽창을 억제하여 고용량 및 높은 수명 특성을 가지는 이차전지용 음극 재료를 제공할 수 있다. 또한, 상기 이차전지용 음극 재료는 높은 이론용량(4,200 mAh/g)을 갖는 실리콘을 포함함으로써 종래에 상업적으로 이용되고 있는 흑연 전극(372 mAh/g)에 비해 높은 전자 용량을 구현할 수 있다.
도 1은, 본원의 일 구현예에 따른 탄소-실리콘 복합 구조체의 제조 방법을 나타낸 순서도이다.
도 2는, 본원의 일 실시예에 따른 탄소-실리콘 복합 구조체의 전자주사현미경사진이다.
도 3은, 본원의 일 실시예에 있어서, 탄소-실리콘 복합 구조체의 X-선 회절분석법 결과를 나타낸다.
도 4는, 본원의 일 실시예에 있어서, 탄소-실리콘 복합 구조체의 라만 분광법 결과를 나타낸다.
도 5는, 본원의 일 실시예에 있어서, 탄소-실리콘 복합 구조체의 정전류 충/방전법(Galvano static charge/discharge) 실험 결과를 나타낸다.
이하, 첨부한 도면을 참조하여 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본원의 구현예 및 실시예를 상세히 설명한다. 그러나 본원은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 구현예 및 실시예에 한정되지 않는다. 그리고 도면에서 본 발명을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 유사한 부분에 대해서는 유사한 도면 부호를 붙였다.
본원 명세서 전체에서, 어떤 부분이 다른 부분과 "연결"되어 있다고 할 때, 이는 "직접적으로 연결"되어 있는 경우뿐 아니라, 그 중간에 다른 소자를 사이에 두고 "전기적으로 연결"되어 있는 경우도 포함한다.
본원 명세서 전체에서, 어떤 부재가 다른 부재 "상에" 위치하고 있다고 할 때, 이는 어떤 부재가 다른 부재에 접해 있는 경우뿐 아니라 두 부재 사이에 또 다른 부재가 존재하는 경우도 포함한다.
본원 명세서 전체에서, 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성 요소를 더 포함할 수 있는 것을 의미한다.
본 명세서에서 사용되는 정도의 용어 "약", "실질적으로" 등은 언급된 의미에 고유한 제조 및 물질 허용오차가 제시될 때 그 수치에서 또는 그 수치에 근접한 의미로 사용되고, 본원의 이해를 돕기 위해 정확하거나 절대적인 수치가 언급된 개시 내용을 비양심적인 침해자가 부당하게 이용하는 것을 방지하기 위해 사용된다.
본원 명세서 전체에서 사용되는 정도의 용어 “~ 하는 단계” 또는 “~의 단계”는 “~를 위한 단계”를 의미하지 않는다.
본원 명세서 전체에서, 마쿠시 형식의 표현에 포함된 "이들의 조합(들)"의 용어는 마쿠시 형식의 표현에 기재된 구성 요소들로 이루어진 군에서 선택되는 하나 이상의 혼합 또는 조합을 의미하는 것으로서, 상기 구성 요소들로 이루어진 군에서 선택되는 하나 이상을 포함하는 것을 의미한다.
본원 명세서 전체에서, "A 및/또는 B"의 기재는, "A 또는 B, 또는 A 및 B"를 의미한다.
이하, 본원의 구현예를 상세히 설명하였으나, 본원이 이에 제한되지 않을 수 있다.
본원의 제 1 측면은, 방향족 단량체를 중합시켜 중합체 입자를 형성하는 단계; 상기 중합체 입자를 가교시켜 가교된 중합체 입자를 수득하는 단계; 상기 가교된 중합체 입자를 소결하여 탄화시킴으로써 탄소 입자를 수득하는 단계; 및, 상기 탄소 입자를 실리콘 나노입자와 혼합하여 실리콘 나노입자가 분산된 탄소 입자층을 수득하는 단계를 포함하는, 탄소-실리콘 복합 구조체의 제조 방법을 제공한다.
도 1은 본원의 일 구현예에 따른 탄소-실리콘 복합 구조체의 제조 방법의 세부 흐름도이다. 도 1을 참조하여 본원의 일 구현예를 이하에서 상세히 설명하도록 한다.
본원의 일 구현예에 있어서, 상기 탄소-실리콘 복합 구조체의 제조 방법은, 에멀젼 중합반응을 통해 공중합체를 합성하고, 상기 공중합체의 선택적인 가교 및 선택적인 탄화를 통해 미세기공 구조 형성 및 탄소 입자를 합성하고, 이를 결정질 실리콘 나노입자와 물리적으로 혼합하여 탄소 입자층 내에 결정질 실리콘 나노입자를 분산시켜 리튬 이온 전지의 음극 재료로서 사용 가능한 실리콘-탄소 구조체를 제조하는 것일 수 있다.
도 1의 단계 S100은 방향족 단량체를 중합시켜 중합체 입자를 형성하는 단계이다.
본원의 일 구현예에 있어서, 상기 방향족 단량체의 중합 단계(S100)는 에멀젼 중합반응을 통하여 구형의 중합체를 형성하는 것을 포함하는 것일 수 있으나, 이에 제한되는 것은 아니다.
본원의 일 구현예에 있어서, 상기 방향족 단량체는 스타이렌, 벤즈아마이드, 부틸렌테레프탈레이트, 에틸렌테레프탈레이트, 메틸메타크릴레이트계 화합물, 비닐피리딘계 화합물, 및 이들의 조합들로 이루어진 군에서 선택되는 것을 포함하는 것일 수 있으나, 이에 제한되는 것은 아니다.
도 1의 단계 S200은 상기 중합체 입자를 가교시켜 가교된 중합체 입자를 수득하는 단계이다.
본원의 일 구현예에 있어서, 상기 중합체 입자의 가교 단계(S200)는 프리델크래프트-아실화 반응에 의하여 상기 중합체 입자를 선택적으로 가교시키는 것을 포함하는 것일 수 있으나, 이에 제한되는 것은 아니다. 예를 들어, 상기 가교는 프리델크래프트 반응을 이용한 후가교 반응일 수 있으나, 이에 제한되는 것은 아니다. 상기 후가교 반응은, 입자를 생성할 때 이미 가교제를 포함하고 있으므로 합성된 입자를 추가로 가교시키기 위하여 입자 합성 후에 가교를 시키는 것을 의미한다.
상기 프리델크래프트-아실화 반응은 촉매의 존재 하에 방향족 화합물과 할로겐화 아실을 반응시켜서 방향족 화합물의 아실화를 유도하는 반응이다. 예를 들어, 벤젠과 할로겐화 아실(RCOCl)을 할로겐화 알루미늄(예를 들어, AlCl3) 또는 염화안티모니 (Ⅴ), 염화철 (Ⅲ), 염화주석 (Ⅳ) 등의 금속할로겐화물 촉매 존재 하에서 반응시키면 벤젠 고리에 아실기(RCO-)가 결합된 화합물이 생성된다(하기 반응식 1 참조).
[반응식 1]
Figure PCTKR2015008882-appb-I000001
도 1의 단계 S300은 상기 가교된 중합체 입자를 소결하여 탄화시킴으로써 탄소 입자를 수득하는 단계이다.
본원의 일 구현예에 있어서, 상기 선택적인 가교에 의해 상기 가교된 중합체 입자를 선택적으로 탄화시킬 수 있으며, 또한, 상기 선택적인 탄화에 의해 다공성 탄소 입자가 제조될 수 있으나, 이에 제한되는 것은 아니다.
본원의 일 구현예에 있어서, 상기 가교된 중합체 입자의 소결 단계(S300)는 약 600℃ 내지 약 1,100℃의 온도에서 수행되는 것일 수 있으나, 이에 제한되는 것은 아니다. 상기 소결 온도를 사용하되 상기 중합체들 종류에 따라 상기 가교된 중합체 입자를 탄화시키기에 충분한 온도 범위에서 당업자가 선택 가능하며, 예를 들어, 상기 소결 온도는 약 600℃ 내지 약 700℃, 약 600℃ 내지 약 800℃, 약 600℃ 내지 약 900℃, 약 600℃ 내지 약 1,000℃, 약 600℃ 내지 약 1,100℃, 약 700℃ 내지 약 800℃, 약 700℃ 내지 약 900℃, 약 700℃ 내지 약 1,000℃, 약 700℃ 내지 약 1,100℃, 약 800℃ 내지 약 900℃, 약 800℃ 내지 약 1,000℃, 약 800℃ 내지 약 1,100℃, 약 900℃ 내지 약 1,000℃, 약 900℃ 내지 약 1,100℃, 또는 약 1,000℃ 내지 약 1,100℃일 수 있으나, 이에 제한되는 것은 아니다.
본원의 일 구현예에 있어서, 아르곤과 같은 불활성 기체를 주입하여 상기 소결 온도에서 가열하여 상기 가교된 중합체 입자를 탄화시킨 후 상온까지 냉각시키는 것일 수 있으나, 이에 제한되는 것은 아니다.
도 1의 단계 S400은 탄소 입자를 실리콘 나노입자와 혼합하여 실리콘 나노입자가 분산된 탄소 입자층을 수득하는 단계이다.
본원의 일 구현예에 있어서, 상기 실리콘 나노입자가 분산된 탄소 입자층을 수득하는 단계(S400)는, 상기 중합체 입자를 소결하여 수득한 탄소 입자를 결정질 실리콘 나노입자와 물리적으로 혼합하여 상기 결정질 실리콘 나노입자가 균일하게 분산된 탄소 입자층을 형성하는 것을 포함할 수 있으나, 이에 제한되는 것은 아니다.
본원의 일 구현예에 있어서, 상기 실리콘 나노입자는 결정질인 것을 포함하는 것일 수 있으나, 이에 제한되는 것은 아니다.
본원의 일 구현예에 있어서, 상기 실리콘 나노입자는 약 10 nm 내지 약 10 ㎛의 크기를 가지는 것일 수 있으나, 이에 제한되는 것은 아니다. 예를 들어, 상기 실리콘 나노입자의 크기는 약 10 nm 내지 약 100 nm, 약 10 nm 내지 약 200 nm, 약 10 nm 내지 약 300 nm, 약 10 nm 내지 약 400 nm, 약 10 nm 내지 약 500 nm, 약 10 nm 내지 약 600 nm, 약 10 nm 내지 약 700 nm, 약 10 nm 내지 약 800 nm, 약 10 nm 내지 약 900 nm, 약 10 nm 내지 약 1 ㎛, 약 10 nm 내지 약 5 ㎛, 약 10 nm 내지 약 10 ㎛, 약 100 nm 내지 약 200 nm, 약 100 nm 내지 약 300 nm, 약 100 nm 내지 약 400 nm, 약 100 nm 내지 약 500 nm, 약 100 nm 내지 약 600 nm, 약 100 nm 내지 약 700 nm, 약 100 nm 내지 약 800 nm, 약 100 nm 내지 약 900 nm, 약 100 nm 내지 약 1 ㎛, 약 100 nm 내지 약 5 ㎛, 약 100 nm 내지 약 10 ㎛, 약 200 nm 내지 약 300 nm, 약 200 nm 내지 약 400 nm, 약 200 nm 내지 약 500 nm, 약 200 nm 내지 약 600 nm, 약 200 nm 내지 약 700 nm, 약 200 nm 내지 약 800 nm, 약 200 nm 내지 약 900 nm, 약 200 nm 내지 약 1 ㎛, 약 200 nm 내지 약 5 ㎛, 약 200 nm 내지 약 10 ㎛, 약 300 nm 내지 약 400 nm, 약 300 nm 내지 약 500 nm, 약 300 nm 내지 약 600 nm, 약 300 nm 내지 약 700 nm, 약 300 nm 내지 약 800 nm, 약 300 nm 내지 약 900 nm, 약 300 nm 내지 약 1 ㎛, 약 300 nm 내지 약 5 ㎛, 약 300 nm 내지 약 10 ㎛, 약 400 nm 내지 약 500 nm, 약 400 nm 내지 약 600 nm, 약 400 nm 내지 약 700 nm, 약 400 nm 내지 약 800 nm, 약 400 nm 내지 약 900 nm, 약 400 nm 내지 약 1 ㎛, 약 400 nm 내지 약 5 ㎛, 약 400 nm 내지 약 10 ㎛, 약 500 nm 내지 약 600 nm, 약 500 nm 내지 약 700 nm, 약 500 nm 내지 약 800 nm, 약 500 nm 내지 약 900 nm, 약 500 nm 내지 약 1 ㎛, 약 500 nm 내지 약 5 ㎛, 약 500 nm 내지 약 10 ㎛, 약 600 nm 내지 약 700 nm, 약 600 nm 내지 약 800 nm, 약 600 nm 내지 약 900 nm, 약 600 nm 내지 약 1 ㎛, 약 600 nm 내지 약 5 ㎛, 약 600 nm 내지 약 10 ㎛, 약 700 nm 내지 약 800 nm, 약 700 nm 내지 약 900 nm, 약 700 nm 내지 약 1 ㎛, 약 700 nm 내지 약 5 ㎛, 약 700 nm 내지 약 10 ㎛, 약 800 nm 내지 약 900 nm, 약 800 nm 내지 약 1 ㎛, 약 800 nm 내지 약 5 ㎛, 약 800 nm 내지 약 10 ㎛, 약 900 nm 내지 약 1 ㎛, 약 900 nm 내지 약 5 ㎛, 약 900 nm 내지 약 10 ㎛, 약 1 ㎛ 내지 약 5 ㎛, 약 1 ㎛ 내지 약 10 ㎛, 또는 약 5 ㎛ 내지 약 10 ㎛일 수 있으나, 이에 제한되는 것은 아니다.
본원의 일 구현예에 있어서, 상기 탄소 입자층은 기공을 포함하는 탄소 입자를 포함하는 것일 수 있으나, 이에 제한되는 것은 아니다. 상기 탄소 입자의 기공은 상기 중합체 입자의 선택적인 가교 및 선택적인 탄화에 의해 형성되는 것일 수 있다. 예를 들어, 상기 탄소 입자의 기공은 메조 기공 또는 마이크로 기공일 수 있으나, 이에 제한되는 것은 아니다.
본원의 일 구현예에 있어서, 상기 탄소 입자는 약 100 nm 내지 약 1 ㎛의 크기를 가지는 것을 포함하는 것일 수 있으나, 이에 제한되는 것은 아니다. 예를 들어, 상기 탄소 입자의 크기는 약 100 nm 내지 약 200 nm, 약 100 nm 내지 약 300 nm, 약 100 nm 내지 약 400 nm, 약 100 nm 내지 약 500 nm, 약 100 nm 내지 약 600 nm, 약 100 nm 내지 약 700 nm, 약 100 nm 내지 약 800 nm, 약 100 nm 내지 약 900 nm, 약 100 nm 내지 약 1 ㎛, 약 200 nm 내지 약 300 nm, 약 200 nm 내지 약 400 nm, 약 200 nm 내지 약 500 nm, 약 200 nm 내지 약 600 nm, 약 200 nm 내지 약 700 nm, 약 200 nm 내지 약 800 nm, 약 200 nm 내지 약 900 nm, 약 200 nm 내지 약 1 ㎛, 약 300 nm 내지 약 400 nm, 약 300 nm 내지 약 500 nm, 약 300 nm 내지 약 600 nm, 약 300 nm 내지 약 700 nm, 약 300 nm 내지 약 800 nm, 약 300 nm 내지 약 900 nm, 약 300 nm 내지 약 1 ㎛, 약 400 nm 내지 약 500 nm, 약 400 nm 내지 약 600 nm, 약 400 nm 내지 약 700 nm, 약 400 nm 내지 약 800 nm, 약 400 nm 내지 약 900 nm, 약 400 nm 내지 약 1 ㎛, 약 500 nm 내지 약 600 nm, 약 500 nm 내지 약 700 nm, 약 500 nm 내지 약 800 nm, 약 500 nm 내지 약 900 nm, 약 500 nm 내지 약 1 ㎛, 약 600 nm 내지 약 700 nm, 약 600 nm 내지 약 800 nm, 약 600 nm 내지 약 900 nm, 약 600 nm 내지 약 1 ㎛, 약 700 nm 내지 약 800 nm, 약 700 nm 내지 약 900 nm, 약 700 nm 내지 약 1 ㎛, 약 800 nm 내지 약 900 nm, 약 800 nm 내지 약 1 ㎛, 또는 약 900 nm 내지 약 1 ㎛일 수 있으나, 이에 제한되는 것은 아니다.
본원의 제 2 측면은, 실리콘 나노입자가 분산된 탄소 입자층을 포함하며, 상기 본원의 제 1 측면에 따른 방법에 의하여 제조되는, 탄소-실리콘 복합 구조체를 제공한다. 상기 본원의 제 2 측면에 따른 탄소-실리콘 복합 구조체는, 상기 본원의 제 1 측면에 따른 탄소-실리콘 복합 구조체의 제조 방법에 대하여 기술된 내용을 모두 적용할 수 있으며, 중복되는 부분들에 대해서는 상세한 설명을 생략하였으나, 그 설명이 생략되었더라도 동일하게 적용될 수 있다.
본원의 일 구현예에 있어서, 상기 실리콘 나노입자는 결정질인 것을 포함하는 것일 수 있으나, 이에 제한되는 것은 아니다.
본원의 일 구현예에 있어서, 상기 실리콘 나노입자는 약 10 nm 내지 약 10 ㎛의 크기를 가지는 것일 수 있으나, 이에 제한되는 것은 아니다. 예를 들어, 상기 실리콘 나노입자의 크기는 약 10 nm 내지 약 100 nm, 약 10 nm 내지 약 200 nm, 약 10 nm 내지 약 300 nm, 약 10 nm 내지 약 400 nm, 약 10 nm 내지 약 500 nm, 약 10 nm 내지 약 600 nm, 약 10 nm 내지 약 700 nm, 약 10 nm 내지 약 800 nm, 약 10 nm 내지 약 900 nm, 약 10 nm 내지 약 1 ㎛, 약 10 nm 내지 약 5 ㎛, 약 10 nm 내지 약 10 ㎛, 약 100 nm 내지 약 200 nm, 약 100 nm 내지 약 300 nm, 약 100 nm 내지 약 400 nm, 약 100 nm 내지 약 500 nm, 약 100 nm 내지 약 600 nm, 약 100 nm 내지 약 700 nm, 약 100 nm 내지 약 800 nm, 약 100 nm 내지 약 900 nm, 약 100 nm 내지 약 1 ㎛, 약 100 nm 내지 약 5 ㎛, 약 100 nm 내지 약 10 ㎛, 약 200 nm 내지 약 300 nm, 약 200 nm 내지 약 400 nm, 약 200 nm 내지 약 500 nm, 약 200 nm 내지 약 600 nm, 약 200 nm 내지 약 700 nm, 약 200 nm 내지 약 800 nm, 약 200 nm 내지 약 900 nm, 약 200 nm 내지 약 1 ㎛, 약 200 nm 내지 약 5 ㎛, 약 200 nm 내지 약 10 ㎛, 약 300 nm 내지 약 400 nm, 약 300 nm 내지 약 500 nm, 약 300 nm 내지 약 600 nm, 약 300 nm 내지 약 700 nm, 약 300 nm 내지 약 800 nm, 약 300 nm 내지 약 900 nm, 약 300 nm 내지 약 1 ㎛, 약 300 nm 내지 약 5 ㎛, 약 300 nm 내지 약 10 ㎛, 약 400 nm 내지 약 500 nm, 약 400 nm 내지 약 600 nm, 약 400 nm 내지 약 700 nm, 약 400 nm 내지 약 800 nm, 약 400 nm 내지 약 900 nm, 약 400 nm 내지 약 1 ㎛, 약 400 nm 내지 약 5 ㎛, 약 400 nm 내지 약 10 ㎛, 약 500 nm 내지 약 600 nm, 약 500 nm 내지 약 700 nm, 약 500 nm 내지 약 800 nm, 약 500 nm 내지 약 900 nm, 약 500 nm 내지 약 1 ㎛, 약 500 nm 내지 약 5 ㎛, 약 500 nm 내지 약 10 ㎛, 약 600 nm 내지 약 700 nm, 약 600 nm 내지 약 800 nm, 약 600 nm 내지 약 900 nm, 약 600 nm 내지 약 1 ㎛, 약 600 nm 내지 약 5 ㎛, 약 600 nm 내지 약 10 ㎛, 약 700 nm 내지 약 800 nm, 약 700 nm 내지 약 900 nm, 약 700 nm 내지 약 1 ㎛, 약 700 nm 내지 약 5 ㎛, 약 700 nm 내지 약 10 ㎛, 약 800 nm 내지 약 900 nm, 약 800 nm 내지 약 1 ㎛, 약 800 nm 내지 약 5 ㎛, 약 800 nm 내지 약 10 ㎛, 약 900 nm 내지 약 1 ㎛, 약 900 nm 내지 약 5 ㎛, 약 900 nm 내지 약 10 ㎛, 약 1 ㎛ 내지 약 5 ㎛, 약 1 ㎛ 내지 약 10 ㎛, 또는 약 5 ㎛ 내지 약 10 ㎛일 수 있으나, 이에 제한되는 것은 아니다.
본원의 일 구현예에 있어서, 상기 탄소 입자층은 기공을 포함하는 탄소 입자를 포함하는 것일 수 있으나, 이에 제한되는 것은 아니다. 상기 탄소 입자의 기공은 상기 중합체 입자의 선택적인 가교 및 선택적인 탄화에 의해 형성되는 것일 수 있다. 예를 들어, 상기 탄소 입자의 기공은 메조 기공 또는 마이크로 기공일 수 있으나, 이에 제한되는 것은 아니다.
본원의 일 구현예에 있어서, 상기 탄소 입자는 약 100 nm 내지 약 1 ㎛의 크기를 가지는 것을 포함하는 것일 수 있으나, 이에 제한되는 것은 아니다. 예를 들어, 상기 탄소 입자의 크기는 약 100 nm 내지 약 200 nm, 약 100 nm 내지 약 300 nm, 약 100 nm 내지 약 400 nm, 약 100 nm 내지 약 500 nm, 약 100 nm 내지 약 600 nm, 약 100 nm 내지 약 700 nm, 약 100 nm 내지 약 800 nm, 약 100 nm 내지 약 900 nm, 약 100 nm 내지 약 1 ㎛, 약 200 nm 내지 약 300 nm, 약 200 nm 내지 약 400 nm, 약 200 nm 내지 약 500 nm, 약 200 nm 내지 약 600 nm, 약 200 nm 내지 약 700 nm, 약 200 nm 내지 약 800 nm, 약 200 nm 내지 약 900 nm, 약 200 nm 내지 약 1 ㎛, 약 300 nm 내지 약 400 nm, 약 300 nm 내지 약 500 nm, 약 300 nm 내지 약 600 nm, 약 300 nm 내지 약 700 nm, 약 300 nm 내지 약 800 nm, 약 300 nm 내지 약 900 nm, 약 300 nm 내지 약 1 ㎛, 약 400 nm 내지 약 500 nm, 약 400 nm 내지 약 600 nm, 약 400 nm 내지 약 700 nm, 약 400 nm 내지 약 800 nm, 약 400 nm 내지 약 900 nm, 약 400 nm 내지 약 1 ㎛, 약 500 nm 내지 약 600 nm, 약 500 nm 내지 약 700 nm, 약 500 nm 내지 약 800 nm, 약 500 nm 내지 약 900 nm, 약 500 nm 내지 약 1 ㎛, 약 600 nm 내지 약 700 nm, 약 600 nm 내지 약 800 nm, 약 600 nm 내지 약 900 nm, 약 600 nm 내지 약 1 ㎛, 약 700 nm 내지 약 800 nm, 약 700 nm 내지 약 900 nm, 약 700 nm 내지 약 1 ㎛, 약 800 nm 내지 약 900 nm, 약 800 nm 내지 약 1 ㎛, 또는 약 900 nm 내지 약 1 ㎛일 수 있으나, 이에 제한되는 것은 아니다.
본원의 제 3 측면은, 상기 본원의 제 2 측면에 따른 상기 탄소-실리콘 복합 구조체를 포함하는, 이차전지용 음극 재료를 제공한다. 상기 본원의 제 3 측면에 따른 이차전지용 음극 재료는, 상기 본원의 제 1 측면에 따른 탄소-실리콘 복합 구조체의 제조 방법 및 제 2 측면에 따른 탄소-실리콘 복합 구조체에 대하여 기술된 내용을 모두 적용할 수 있으며, 중복되는 부분들에 대해서는 상세한 설명을 생략하였으나, 그 설명이 생략되었더라도 동일하게 적용될 수 있다.
본원의 일 구현예에 있어서, 상기 탄소-실리콘 복합 구조체는 실리콘 나노입자가 분산된 탄소 입자층을 포함하는 것일 수 있으나, 이에 제한되는 것은 아니다.
본원의 일 구현예에 있어서, 상기 이차전지용 음극 재료는 나노 사이즈의 탄소 입자로 구성된 탄소 입자층을 사용하여 충/방전 시 나타나는 실리콘의 부피 팽창 및 수축을 억제하고 집전체로부터의 탈락을 막아 실리콘의 낮은 수명특성을 개선할 뿐만 아니라, 상기 탄소 입자층 역시 리튬 이온의 삽입, 탈리 반응이 가능하므로 전극의 용량에 기여할 수 있다.
본원의 제 4 측면은, 본원의 제 3 측면에 따른 이차전지용 음극 재료를 포함하는 음극, 양극, 분리막, 및 전해질을 포함하는, 이차전지를 제공한다. 상기 본원의 제 4 측면에 따른 이차전지는, 상기 본원의 제 1 측면 내지 제 3 측면에 대하여 기술된 내용을 모두 적용할 수 있으며, 중복되는 부분들에 대해서는 상세한 설명을 생략하였으나, 그 설명이 생략되었더라도 동일하게 적용될 수 있다.
본원의 일 구현예에 있어서, 상기 이차전지는 리튬 이온 전지를 포함하는 것일 수 있으나, 이에 제한되는 것은 아니다.
예를 들어, 상기 음극은 하기와 같은 방법으로 제조될 수 있으나, 이에 제한되는 것은 아니다.
먼저, 본원의 일 구현예에 따른 탄소-실리콘 복합 구조체, 바인더, 및 용매를 혼합하여 음극 활물질층 형성용 조성물을 제조할 수 있다. 이어서, 상기 음극 활물질층 형성용 조성물을 음극 집전체 상에 도포 및 건조하여 음극을 제조할 수 있다.
상기 바인더는 음극 활물질 입자들을 서로 잘 부착시키고, 또한 음극 활물질을 전류 집전체에 잘 부착시키는 역할을 하며, 예를 들어, 상기 바인더는 폴리아크릴산, 폴리불화비닐리덴, 폴리비닐알코올, 카르복시메틸셀룰로오스(carboxymethyl cellulose, CMC), 전분, 히드록시프로필셀룰로오스, 재생 셀룰로오스, 폴리비닐피롤리돈, 테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 에틸렌-프로필렌-디엔 테르폴리머(ethylene-propylene-diene terpolymer, EPDM), 술폰화 EPDM, 스티렌 브티렌 고무, 불소 고무, 또는 다양한 공중합체 등을 사용할 수 있으나, 이에 제한되는 것은 아니다.
상기 음극 집전체는 일반적으로 약 3 ㎛ 내지 약 500 ㎛의 두께로 만들어진다. 이러한 상기 음극 집전체는, 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 구리, 스테인레스 스틸, 알루미늄, 니켈, 티탄, 열처리 탄소, 구리 또는 스테인레스 스틸의 표면에 탄소, 니켈, 티탄, 또는 은으로 표면처리한 것, 또는 알루미늄-카드뮴 합금을 포함할 수 있으나, 이에 제한되는 것은 아니다. 또한, 양극 집전체와 마찬가지로, 표면에 미세한 요철을 형성하여 음극 활물질의 결합력을 강화시킬 수도 있으며, 필름, 시트, 호일, 네트, 다공질체, 발포체, 또는 부직포체의 다양한 형태로 사용될 수 있다.
상기 용매로는 N-메틸-2-피롤리돈(N-methyl-2-pyrrolidone, NMP), 아세톤, 물, 또는 이들의 혼합물이 사용될 수 있으나, 이에 제한되는 것은 아니다. 상기 용매의 함량은 음극 활물질층 형성용 조성물의 100 중량부를 기준으로 하여 약 50 내지 약 500 중량부를 사용하는 것일 수 있으나, 이에 제한되는 것은 아니다. 상기 용매의 함량이 상기 범위일 때 활물질층을 형성하기 위한 작업이 용이하다.
상기 분리막으로는 그 종류를 한정하는 것은 아니지만, 예를 들어, 에틸렌 단독중합체, 프로필렌 단독중합체, 에틸렌-부텐 공중합체, 에틸렌-헥센 공중합체, 및 에틸렌-메타크릴레이트 공중합체로 이루어진 군에서 선택된 폴리올레핀계 고분자로 제조한 다공성 기재; 폴리에스테르, 폴리아세탈, 폴리아미드, 폴리카보네이트, 폴리이미드, 폴리에테르에테르케톤, 폴리에테르설폰, 폴리페닐렌옥사이드, 폴리페닐렌설파이트, 및 폴리에틸렌나프탈렌으로 이루어진 군에서 선택된 고분자로 제조한 다공성 기재; 또는 무기물 입자 및 바인더 고분자의 혼합물로 형성된 다공성 기재 등을 사용할 수 있다. 특히, 리튬 이온 공급 코어부의 리튬 이온이 외부전극에도 쉽게 전달되기 위해서는 상기 폴리에스테르, 폴리아세탈, 폴리아미드, 폴리카보네이트, 폴리이미드, 폴리에테르에테르케톤, 폴리에테르설폰, 폴리페닐렌옥사이드, 폴리페닐렌설파이드, 폴리에틸렌나프탈렌, 및 이들의 조합들로 이루어진 군으로부터 선택된 고분자로 제조한 다공성 기재에 해당하는 부직포 재질의 세퍼레이터를 사용하는 것이 바람직하다.
상기 전해질로는, 예를 들어, PEO(polyethylene oxide), PVdF(polyvinylidene fluoride), PVdF-HFP(polyvinylidene fluoride-hexafluoropropylene), PMMA[poly(methyl 2-methylpropenoate)], PAN(polyacrylonitrile), 또는 PVAc[poly(ethenyl ethanoate)]를 사용한 겔형 고분자 전해질; 또는 PEO, PPO(polypropylene oxide), PEI(polyethylene imine), PES(polyethylene sulphide), 또는 PVAc를 사용한 고체 전해질 등을 사용할 수 있다. 또한, 전해질로는 에틸렌카보네이트(ethylene carbonate, EC), 프로필렌카보네이트(polyethylene carbonate, PC), 부틸렌카보네이트(butylene carbonate, BC), 비닐렌카보네이트(vinylene carbonate, VC), 디에틸카보네이트(diethyl carbonate, DEC), 디메틸카보네이트(dimethyl carbonate, DMC), 에틸메틸카보네이트(ethyl methyl carbonate, EMC), 메틸포르메이트(methyl formate, MF), 감마-부티로락톤(γ-butyrolactone, γ-BL), 설포레인(sulfolane), 메틸아세테이트(methylacetate, MA), 또는 메틸프로피오네이트(methylpropionate, MP)를 사용한 비수전해액을 사용할 수도 있다. 또한, 전해질은 리튬염을 더 포함할 수 있는데, 이러한 리튬염으로는, 예를 들어, LiCl, LiBr, LiI, LiClO4, LiBF4, LiB10Cl10, LiPF6, LiCF3SO3, LiCF3CO2, LiAsF6, LiSbF6, LiAlCl4, CH3SO3Li, CF3SO3Li, (CF3SO2)2NLi, 클로로보란리튬, 저급지방족카르본산리튬, 또는 테트라페닐붕산리튬 등을 사용할 수 있다.
본원의 일 구현예에 있어서, 상기 양극은 리튬 금속 또는 리튬 전이금속 산화물을 포함하는 것일 수 있으나, 이에 제한되는 것은 아니며, 상기 양극은 리튬 이온 전지에서 통상적으로 사용되는 모든 물질을 적용할 수 있다.
상기 양극은, 예를 들어, 하기와 같은 방법으로 제조될 수 있으나, 이에 제한되는 것은 아니다.
상기 양극은 상술한 음극의 제조 과정과 마찬가지로 양극 집전체 상에 양극 활물질층 형성용 조성물을 도포 및 건조하여 제작된다. 상기 양극 활물질층 형성용 조성물은 양극 활물질, 도전재, 바인더, 및 용매를 혼합하여 제조된다. 상기 양극 활물질, 바인더, 및 용매는 음극 제조시와 동일한 종류 및 함량으로 사용될 수 있다. 예를 들어, 상기 도전재는 폴리아크릴산, 아세틸렌 블랙, 퍼니스 블랙, 흑연, 탄소 섬유, 또는 플러렌 등의 전도성 조재료를 사용할 수 있으나, 이에 제한되는 것은 아니다.
상기 양극 집전체는 약 3 ㎛ 내지 약 500 ㎛의 두께로서, 당해 전지에 화학적 변화를 유발하지 않으면서 높은 도전성을 가지는 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 스테인레스 스틸; 알루미늄; 니켈; 티탄; 열처리 탄소; 알루미늄 또는 스테리인레스 스틸의 표면에 카본; 또는 니켈, 티탄, 은, 및 이들의 조합들로 이루어진 군으로부터 선택된 것으로 표면처리한 것이 사용될 수 있으나, 이에 제한되는 것은 아니다. 상기 양극 집전체는 그것의 표면에 미세한 요철을 형성하여 양극 활물질의 접착력을 높일 수도 있으며, 필름, 시트, 호일, 네트, 다공질체, 발포체, 또는 부직포체의 다양한 형태가 가능하다.
상기 리튬 전이금속 산화물로는 LiCoO2, LiNiO2, LiMnO2, LiMn2O4, Li(NiaCobMnc)O2(0<a<1, 0<b<1, 0<c<1, a+b+c=1), LiNi1 - YCoYO2(여기에서, 0≤Y<1), LiCo1 - YMnYO2(여기에서, 0≤Y<1), LiNi1 - YMnYO2(여기에서, 0≤Y<1), LiMn2 -zNizO4(여기에서, 0<Z<2), LiMn2 - zCozO4(여기에서, 0<Z<2), LiCoPO4, LiFePO4, 및 이들의 조합들로 이루어진 군으로부터 1 종 이상 선택되는 것을 사용할 수 있으나, 이에 제한되는 것은 아니다.
상기 과정에 따라 수득한 음극 및 양극 사이에 분리막(seperator)을 개재하고 여기에 전해질을 포함하는 전해액을 공급하면 리튬 이차 전지가 제작된다.
상술한 리튬 이차 전지는, 예를 들어, 상기 음극, 상기 분리막, 및 상기 양극를 차례로 적층한 다음, 이를 와인딩(winding)하거나 접어서 원통형 또는 각형 전지 케이스 또는 파우치에 넣은 다음, 상기 전지 케이스 또는 파우치에 유기 전해액을 주입하여 제조될 수 있다. 상기 분리막은 기공 크기가 약 0.01 ㎛ 내지 약 10 ㎛이고, 두께는 일반적으로 약 5 ㎛ 내지 약 300 ㎛인 것을 사용한다. 구체적인 예로서, 폴리프로필렌 또는 폴리에틸렌 등의 올레핀계 폴리머, 또는 유리섬유로 만들어진 시트나 부직포가 사용된다.
상기 전해액은 유기 용매에 리튬염이 용해된 것일 수 있으나, 이에 제한되는 것은 아니다. 상기 유기용매는, 예를 들어, 프로필렌카보네이트, 에틸렌카보네이트, 플루오로에틸렌카보네이트, 부틸렌카보네이트, 디메틸카보네이트, 디에틸카보네이트, 메틸에틸카보네이트, 메틸프로필카보네이트, 에틸프로필카보네이트, 메틸이소프로필카보네이트, 디프로필카보네이트, 디부틸카보네이트, 벤조니트릴, 아세토니트릴, 테트라히드로퓨란, 2-메틸테트라히드로퓨란, γ-부티로락톤, 1,3-디옥소란, 4-메틸디옥소란, N,N-디메틸포름아미드, 디메틸아세트아미드, 디메틸설폭사이드, 1,4-디옥산, 1,2-디메톡시에탄, 설포란, 디클로로에탄, 클로로벤젠, 니트로벤젠, 디에틸렌글리콜, 디메틸에테르, 및 이들의 조합들로 이루어진 군으로부터 선택된 것일 수 있으나, 이에 제한되는 것은 아니다.
상기 리튬염은 LiPF6, LiBF4, LiSbF6, LiAsF6, LiClO4, LiCF3SO3, Li(CF3SO2)2N, LiC4F9SO3, LiAlO2, LiAlCl4, LiN(CxF2x + 1SO2)(CyF2y + 1SO2)(단, x 및 y는 자연수임), LiCl, LiI, 및 이들의 조합들로 이루어진 군으로부터 선택된 것일 수 있으나, 이에 제한되는 것은 아니다.
본원의 일 구현예에 있어서, 상기 이차전지는 상기 분리막 이외에 유기 고체 전해질 및/또는 무기 고체 전해질을 함께 사용할 수 있으나, 이에 제한되는 것은 아니다. 이 때, 상기 유기 고체 전해질 및/또는 무기 고체 전해질이 사용되는 경우, 경우에 따라서는 고체 전해질이 분리막을 겸할 수도 있어 상술한 분리막을 사용하지 않아도 무방하다.
상기 유기 고체 전해질은, 예를 들어, 폴리에틸렌 유도체, 폴리에틸렌 옥사이드 유도체, 폴리프로필렌 옥사이드 유도체, 인산 에스테르 폴리머, 폴리비닐 알코올, 또는 폴리 불화 비닐리덴을 포함할 수 있으나, 이에 제한되는 것은 아니다. 상기 무기 고체 전해질은, 예를 들어, Li3N, LiI, Li5NI2, Li3N-LiI-LiOH, Li2SiS3, Li4SiO4, Li4SiO4-LiI-LiOH, Li3PO4-Li2S-SiS2, 및 이들의 조합으로 이루어진 군으로부터 선택된 것을 포함할 수 있으나, 이에 제한되는 것은 아니다.
이하, 실시예를 참조하여 본원을 좀더 자세히 설명하지만, 본원이 이에 제한되는 것은 아니다.
[ 실시예 ]
본 실시예에서는 에멀젼 중합반응을 통해 공중합체를 합성하였고, 선택적인 가교 및 선택적인 탄화를 통해 미세기공 구조 형성 및 탄소 입자를 합성하였고, 이를 결정질 실리콘 나노입자와 물리적으로 혼합하여 탄소 입자층 내에 결정질 실리콘 나노입자를 분산시켜 리튬 이온 전지의 음극 재료로서 사용 가능한 실리콘-탄소 구조체를 제조하였다.
먼저, 스타이렌 단량체를 포함하는 중합체를 형성하기 위하여, 스타이렌 2.1 g을 플라스크에 주입하였고, 온도를 증가시키면서 질소를 주입하였다. 상기 플라스크의 온도가 70℃가 되었을 때, 과황산칼륨(potassium persulfate) 0.12 g을 녹여 만든 수용액 10 mL를 상기 플라스크에 주입하였다. 상기 과황산칼륨 수용액을 주입하고 3 시간 후, 상기 플라스크에 가교제로서 디비닐벤젠(divinylbenzene) 0.9 g을 주입하여 중합 반응시킨 후, 24 시간이 경과한 후에 수득된 공중합체 입자를 분리하였다. 상기 공중합체 입자에 포함된 폴리스타이렌 부분만 선택적으로 가교시키기 위하여 프리델크래프트-아실화 반응을 이용하였다. 우선, 클로로포름 30 mL에 염화알루미늄 1.80 g을 첨가한 용액을 준비하였다. 상기 클로로포름 및 염화알루미늄을 포함하는 용액에 상기 공중합체 0.3 g을 투여하고, 16 시간 동안 반응시켰다. 상기 반응이 완료된 후, 상기 용액을 원심분리기로 정제하였고, 에탄올을 이용하여 세척하였다. 상기 세척된 공중합체 입자를 에탄올에 분산시키고 건조시킴으로써, 가교된 공중합체 입자를 수득하였다. 상기 가교된 폴리스타이렌(polystyrene, PS) 공중합체를 소결로에 넣은 뒤, 아르곤을 주입하여 고온에서 가열하여 소결시켰다. 이후 소결이 완료된 입자를 상온까지 냉각시켜 탄소 입자를 수득할 수 있었다. 상기 실험에서 수득된 탄소 입자를 결정질 실리콘 나노 입자와 물리적으로 혼합하여 결정질 실리콘 나노 입자가 분산된 탄소 입자층(탄소-실리콘 복합 구조체)을 수득할 수 있었고, 이를 리튬 이온 전지용 음극 활물질(음극 재료)로서 사용하였다. 리튬 이온 전지 음극은 상기 활물질 60 중량부, 도전재 20 중량부, 및 바인더 20 중량부를 포함하는 조성물을 구리 집전체에 100 ㎛의 두께로 도포하여 제작하였다. 상기 음극의 두께는 닥터 블레이드의 높이에 따라 조절이 가능하였다. 리튬 금속을 상대전극(양극)으로서 사용하였고, 상기 제조된 음극을 작업전극으로서 사용하였으며, 분리막으로서 celgard 2400, 전해액으로서 1M LiPF6이 녹아 있는 에틸렌 카보네이트(EC) 50 중량부 및 디에틸 카보네이트(DEC) 50 중량부의 혼합 용액을 사용하여 CR2032 코인셀을 제조하였다.
상기 실시예를 통해 수득된 탄소 입자와 결정질 실리콘 나노입자의 혼합물의 구조를 주사 전자현미경(scanning electron microscope, SEM)과 에너지 분산형 X-선 분광법(energy-dispersive X-ray spectroscopy)를 이용하여 구형의 탄소 입자층에 결정질 실리콘 나노입자가 균일하게 분산되어 있음을 확인하였다(도 2 및 도 3). 또한, 상기 탄소 입자층과 결정질 실리콘 나노입자의 혼합물의 조성을 알아보기 위하여, X-선 회절분석법(X-ray diffraction)과 라만 분광법(Raman spectroscopy)을 진행하였다. X-선 회절분석법과 라만 분광법에 나타난 피크의 위치를 통해 결정질 실리콘 나노입자가 결정성이 있음을 확인하였고, 합성된 탄소 입자층은 무정형의 탄소라는 것을 확인하였다.
도 3은 본 실시예에 따른 탄소-실리콘 복합 구조체의 X-선 회절 분석 그래프로서, 각각 28.4°, 47.3°, 56.1°, 69.1°, 및 76.4°에서 발견된 피크는 결정질 실리콘의 (111), (220), (311), (400), 및 (331) 결정면을 나타내며, 25° 근처의 넓은 피크는 본 실시예에 따른 결정질 실리콘 나노입자가 분산된 탄소 입자층이 무정형의 탄소임을 확인할 수 있었다.
도 4는 본 실시예에 따른 탄소-실리콘 복합 구조체의 라만 분광 스펙트럼으로서, 516 cm-1의 강한 피크와 955.7 cm-1의 약한 피크는 결정질 실리콘 구조를 나타낸다. 1,350 cm-1 및 1,590 cm-1의 피크는 탄소 입자층에 관련된 피크이며 각각 D-밴드 및 G-밴드이다. 상기 D-밴드 및 G-밴드의 피크의 비율은 0.77로 합성된 탄소 입자층이 무정형의 탄소임을 나타내고 이는 X-선 회절분석법의 결과와 일치하였다.
또한, 결정질 실리콘 나노입자가 분산된 탄소 입자층을 이용한 경우 전지의 수명특성을 확인하기 위해서, 전기화학분석인 정전류 충/방전법 (Galvano static charge/discharge) 실험을 진행하였고, 그 결과를 도 5에 나타내었다. 상기 정전류 실험에서, 100 mA/g의 조건에서 결정질 실리콘 나노입자가 분산된 탄소 입자층을 이용하여 음극을 형성한 경우 사이클이 진행되어도 정전용량이 감소가 거의 없는 것을 확인하였고, 45 사이클 후 1,050 mAh/g의 정전용량을 갖는 것을 확인하였다. 본 실시예에 따른 탄소-실리콘 복합 구조체와의 비교를 위하여, 비교예로서 활성탄에 결정질 실리콘 나노입자를 혼합하여 동일한 실험을 진행하였고, 상기 비교예의 사이클에 따른 정전용량의 감소가 본 실시예에 따른 탄소-실리콘 복합 구조체의 것보다 큰 것을 확인하였으며, 45 사이클 후의 정전용량은 645 mAh/g 임을 확인하였다. 본 실시예의 결과를 통해 실리콘 입자가 분산된 탄소 입자층이 리튬 이온 전지용 음극 재료로서 적용 가능하다는 결과를 도출하였다.
전술한 본원의 설명은 예시를 위한 것이며, 본원이 속하는 기술분야의 통상의 지식을 가진 자는 본원의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 쉽게 변형이 가능하다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다. 예를 들어, 단일형으로 설명되어 있는 각 구성 요소는 분산되어 실시될 수도 있으며, 마찬가지로 분산된 것으로 설명되어 있는 구성 요소들도 결합된 형태로 실시될 수도 있다.
본원의 범위는 상기 상세한 설명보다는 후술하는 특허청구범위에 의하여 나타내어지며, 특허청구범위의 의미 및 범위, 그리고 그 균등 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본원의 범위에 포함되는 것으로 해석되어야 한다.

Claims (9)

  1. 방향족 단량체를 중합시켜 중합체 입자를 형성하는 단계;
    상기 중합체 입자를 가교시켜 가교된 중합체 입자를 수득하는 단계;
    상기 가교된 중합체 입자를 소결하여 탄화시킴으로써 탄소 입자를 수득하는 단계; 및
    상기 탄소 입자를 실리콘 나노입자와 혼합하여 실리콘 나노입자가 분산된 탄소 입자층을 수득하는 단계
    를 포함하는, 탄소-실리콘 복합 구조체의 제조 방법.
  2. 제 1 항에 있어서,
    상기 방향족 단량체는 스타이렌, 벤즈아마이드, 부틸렌테레프탈레이트, 에틸렌테레프탈레이트, 메틸메타크릴레이트계 화합물, 비닐피리딘계 화합물, 및 이들의 조합들로 이루어진 군에서 선택되는 것을 포함하는 것인, 탄소-실리콘 복합 구조체의 제조 방법.
  3. 제 1 항에 있어서,
    상기 중합체 입자의 가교는 프리델크래프트-아실화 반응에 의하여 상기 중합체 입자를 가교시키는 것을 포함하는 것인, 탄소-실리콘 복합 구조체의 제조 방법.
  4. 제 1 항에 있어서,
    상기 실리콘 나노입자는 결정질인 것을 포함하는 것인, 탄소-실리콘 복합 구조체의 제조 방법.
  5. 제 1 항에 있어서,
    상기 실리콘 나노입자는 10 nm 내지 10 ㎛의 크기를 가지는 것인, 탄소-실리콘 복합 구조체의 제조 방법.
  6. 실리콘 나노입자가 분산된 탄소 입자층을 포함하며, 제 1 항 내지 제 5 항 중 어느 한 항에 따른 방법에 의하여 제조되는,
    탄소-실리콘 복합 구조체.
  7. 제 6 항에 따른 상기 탄소-실리콘 복합 구조체를 포함하는,
    이차전지용 음극 재료.
  8. 제 7 항에 따른 이차전지용 음극 재료를 포함하는 음극, 양극, 분리막, 및 전해질을 포함하는,
    이차전지.
  9. 제 8 항에 있어서,
    상기 이차전지는 리튬 이온 전지를 포함하는 것인, 이차전지.
PCT/KR2015/008882 2014-08-25 2015-08-25 탄소-실리콘 복합 구조체 및 이의 제조 방법 WO2016032210A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/441,392 US10431813B2 (en) 2014-08-25 2017-02-24 Carbon-silicon composite structure and method of preparing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2014-0110988 2014-08-25
KR1020140110988A KR101679367B1 (ko) 2014-08-25 2014-08-25 탄소-실리콘 복합 구조체 및 이의 제조 방법

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/441,392 Continuation US10431813B2 (en) 2014-08-25 2017-02-24 Carbon-silicon composite structure and method of preparing the same

Publications (1)

Publication Number Publication Date
WO2016032210A1 true WO2016032210A1 (ko) 2016-03-03

Family

ID=55400036

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/008882 WO2016032210A1 (ko) 2014-08-25 2015-08-25 탄소-실리콘 복합 구조체 및 이의 제조 방법

Country Status (3)

Country Link
US (1) US10431813B2 (ko)
KR (1) KR101679367B1 (ko)
WO (1) WO2016032210A1 (ko)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114804117B (zh) * 2021-01-29 2024-03-29 中国科学技术大学 一种氧化亚硅/碳复合材料及其制备方法,以及锂离子电池
CN113415804B (zh) * 2021-07-29 2022-07-29 厦门海辰新能源科技有限公司 一种碳硅三维结构复合材料及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000149927A (ja) * 1998-09-10 2000-05-30 Mitsubishi Chemicals Corp 電気エネルギ―貯蔵素子
KR20090066031A (ko) * 2007-12-18 2009-06-23 주식회사 엘지화학 이차 전지용 음극활물질 및 그 제조방법
KR20130098233A (ko) * 2012-02-27 2013-09-04 서강대학교산학협력단 다공성 탄소 입자, 및 이의 제조 방법
KR20130124813A (ko) * 2012-05-07 2013-11-15 강윤규 이차전지의 음극재용 실리콘 및 탄소 분말복합체 및 그의 제조방법
KR20140028449A (ko) * 2012-08-29 2014-03-10 서강대학교산학협력단 구형의 탄소 입자, 및 이의 제조 방법

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US920A (en) * 1838-09-14 Rag-duster
US873A (en) * 1838-08-03 Peck-hammer for pecking or working mill and other stones
EP2303774B1 (de) 2008-07-15 2017-06-14 Universität Duisburg-Essen Einlagerung von silizium und/oder zinn in poröse kohlenstoffsubstrate
KR101248108B1 (ko) 2011-03-14 2013-03-28 충남대학교산학협력단 리튬 이온 이차전지용 음극, 그의 제조방법 및 이를 채용한 리튬 이온 이차전지
US9714172B2 (en) * 2012-11-26 2017-07-25 Georgia-Pacific Chemicals Llc Preparation of polymeric resins and carbon materials

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000149927A (ja) * 1998-09-10 2000-05-30 Mitsubishi Chemicals Corp 電気エネルギ―貯蔵素子
KR20090066031A (ko) * 2007-12-18 2009-06-23 주식회사 엘지화학 이차 전지용 음극활물질 및 그 제조방법
KR20130098233A (ko) * 2012-02-27 2013-09-04 서강대학교산학협력단 다공성 탄소 입자, 및 이의 제조 방법
KR20130124813A (ko) * 2012-05-07 2013-11-15 강윤규 이차전지의 음극재용 실리콘 및 탄소 분말복합체 및 그의 제조방법
KR20140028449A (ko) * 2012-08-29 2014-03-10 서강대학교산학협력단 구형의 탄소 입자, 및 이의 제조 방법

Also Published As

Publication number Publication date
US10431813B2 (en) 2019-10-01
KR101679367B1 (ko) 2016-11-24
US20170162867A1 (en) 2017-06-08
KR20160024324A (ko) 2016-03-04

Similar Documents

Publication Publication Date Title
KR102140129B1 (ko) 메쉬 형태의 절연층을 포함하는 리튬 이차전지용 음극 및 이를 포함하는 리튬 이차전지
WO2018008953A1 (en) Negative electrode for secondary battery
WO2011105833A2 (ko) 출력 향상을 위한 양극 활물질 및 이를 포함하는 리튬 이차전지
WO2010079962A2 (ko) 리튬 이차전지용 양극 활물질
WO2010079949A2 (ko) 리튬 이차전지용 양극 활물질
WO2012165758A1 (ko) 리튬 이차전지
WO2010079965A2 (ko) 리튬 이차전지용 양극 활물질
WO2010079958A2 (ko) 리튬 이차전지용 양극 활물질
WO2014204141A1 (ko) 리튬 이차전지용 음극활물질, 이를 포함하는 리튬 이차전지 및 상기 음극활물질의 제조방법
WO2010079956A2 (ko) 리튬 이차전지용 양극 활물질
WO2018084449A2 (ko) 황-탄소 복합체 및 이를 포함하는 리튬-황 전지
WO2014073833A1 (ko) 이차전지용 양극 활물질 및 이를 포함하는 이차전지
WO2020149622A1 (ko) 음극 및 상기 음극을 포함하는 이차 전지
CN110785876B (zh) 锂二次电池用正极、其制备方法以及包含其的锂二次电池
WO2020130434A1 (ko) 음극 활물질, 그의 제조 방법 및 그를 포함하는 리튬이차전지
WO2015141997A1 (ko) 양극 활물질과 이를 포함하는 리튬 이차전지
WO2016032211A1 (ko) 탄소-실리콘 복합 전극 물질 및 이의 제조 방법
WO2014196777A1 (ko) 황-리튬 이온 전지용 전극 조립체 및 이를 포함하는 황-리튬 이온 전지
WO2017111566A1 (ko) 출력 특성이 향상된 음극 활물질 상기 음극 활물질을 포함하는 전기화학소자용 전극
WO2015012473A1 (ko) 리튬 망간계 산화물 및 이를 포함하는 양극 활물질
CN111316483A (zh) 负极活性材料、包含所述负极活性材料的负极和包含所述负极的二次电池
WO2016117950A1 (ko) 출력특성이 향상된 리튬이차전지
WO2012008774A2 (ko) 이차전지용 음극
KR20190044445A (ko) 리튬 이차전지용 양극 활물질, 이의 제조방법, 이를 포함하는 리튬 이차전지용 양극 및 리튬 이차전지
WO2017061807A1 (ko) 전극조립체를 구성하는 분리막의 기공 내에 겔화 전해액 성분을 포함하고 있는 전지셀

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15835551

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15835551

Country of ref document: EP

Kind code of ref document: A1