CN104125925A - 互连波纹状碳基网络 - Google Patents

互连波纹状碳基网络 Download PDF

Info

Publication number
CN104125925A
CN104125925A CN201280070343.4A CN201280070343A CN104125925A CN 104125925 A CN104125925 A CN 104125925A CN 201280070343 A CN201280070343 A CN 201280070343A CN 104125925 A CN104125925 A CN 104125925A
Authority
CN
China
Prior art keywords
carbon
interconnection
coating
methods
corrugated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201280070343.4A
Other languages
English (en)
Inventor
V.A.斯特隆
M.F.埃尔-卡迪
R.B.卡纳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of California
Original Assignee
University of California
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of California filed Critical University of California
Priority to CN202011342273.6A priority Critical patent/CN112661139A/zh
Publication of CN104125925A publication Critical patent/CN104125925A/zh
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/0004Gaseous mixtures, e.g. polluted air
    • G01N33/0009General constructional details of gas analysers, e.g. portable test equipment
    • G01N33/0027General constructional details of gas analysers, e.g. portable test equipment concerning the detector
    • G01N33/0036General constructional details of gas analysers, e.g. portable test equipment concerning the detector specially adapted to detect a particular component
    • G01N33/0037NOx
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/05Preparation or purification of carbon not covered by groups C01B32/15, C01B32/20, C01B32/25, C01B32/30
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B18/00Layered products essentially comprising ceramics, e.g. refractory products
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form
    • B32B3/26Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form
    • B32B3/26Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer
    • B32B3/28Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer characterised by a layer comprising a deformed thin sheet, i.e. the layer having its entire thickness deformed out of the plane, e.g. corrugated, crumpled
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • B32B9/005Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising one layer of ceramic material, e.g. porcelain, ceramic tile
    • B32B9/007Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising one layer of ceramic material, e.g. porcelain, ceramic tile comprising carbon, e.g. graphite, composite carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • B32B9/04Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising such particular substance as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B9/041Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising such particular substance as the main or only constituent of a layer, which is next to another layer of the same or of a different material of metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • B32B9/04Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising such particular substance as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B9/045Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising such particular substance as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/20Graphite
    • C01B32/21After-treatment
    • C01B32/23Oxidation
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K5/00Irradiation devices
    • G21K5/02Irradiation devices having no beam-forming means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/04Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of carbon-silicon compounds, carbon or silicon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/20Properties of the layers or laminate having particular electrical or magnetic properties, e.g. piezoelectric
    • B32B2307/202Conductive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/732Dimensional properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/75Printability
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2429/00Carriers for sound or information
    • B32B2429/02Records or discs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/08PCBs, i.e. printed circuit boards
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/10Batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/12Photovoltaic modules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/20Displays, e.g. liquid crystal displays, plasma displays
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/02Aspects relating to interlayers, e.g. used to join ceramic articles with other articles by heating
    • C04B2237/04Ceramic interlayers
    • C04B2237/08Non-oxidic interlayers
    • C04B2237/086Carbon interlayers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/36Non-oxidic
    • C04B2237/363Carbon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/59Aspects relating to the structure of the interlayer
    • C04B2237/592Aspects relating to the structure of the interlayer whereby the interlayer is not continuous, e.g. not the whole surface of the smallest substrate is covered by the interlayer
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/72Forming laminates or joined articles comprising at least two interlayers directly next to each other
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Combustion & Propulsion (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Pathology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Toxicology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Inert Electrodes (AREA)
  • Secondary Cells (AREA)

Abstract

本发明公开一种互连波纹状碳基网络,其包括多个膨胀的和互连的碳层。在一个实施方案中,所述膨胀的和互连的碳层中的每一个均由一个原子厚的至少一个波纹状碳薄层构成。在另一个实施方案中,所述膨胀的和互连的碳层中的每一个均由各自为一个原子厚的多个波纹状碳薄层构成。所述互连波纹状碳基网络以导电率和电化学性质高度可调的高表面积为特征。

Description

互连波纹状碳基网络
本发明是在由美国国防部国防高级研究项目局颁发的授予号HR0011-10-3-0002的政府资助下完成。政府享有本发明中的某些权利。
相关申请
本申请要求于2011年12月21日提交的美国临时专利申请号61/578,431的权益,该临时专利申请的公开通过引用被全部并入本文。
本公开的领域
本发明提供互连波纹状碳基网络和用于制作、图案化以及调节所述互连波纹状碳基网络的电性质、物理性质和电化学性质的廉价过程。
背景
为了实现生产高质量的大批碳基装置诸如有机传感器,多种合成现在并入有石墨氧化物(GO)作为生成大规模碳基材料的前体。用于从石墨粉的氧化生产大量GO的廉价方法现在可用。另外,GO的水分散性结合廉价生产方法使得GO成为用于生产碳基装置的理想原材料。具体来说,GO具有水分散性质。不幸的是,给予GO其水分散性质的相同氧物种也在其电子结构中产生缺陷,并且因此GO为电绝缘材料。因此,具有优越电子性质的装置级碳基膜的形成需要这些氧物种的去除、共轭碳网络的重建以及用于可控制地图案化碳基装置特征的方法。
使石墨氧化物还原的方法包括通过肼、肼衍生物或其它还原剂进行的化学还原、在化学还原气体和/或惰性气氛下的高温退火、溶剂热还原、化学和热还原方法的组合、闪蒸还原(flash reduction)以及最近GO的激光还原。虽然这些方法中的几种方法已经证明了相对高质量的石墨氧化还原,但很多方法受到昂贵设备、高退火温度和最终产物中的氮杂质的限制。因此,在这些困难中,包括膨胀互连碳网络的高表面积和高导电率的性质组合仍然是难以捉摸的。另外,通过针对GO还原以及图案化的全包含步骤进行的大规模膜图案化已证明是困难的并且通常取决于光掩模来提供最基本的图案。因此,需要用于制作和图案化互连波纹状碳基网络的廉价过程,所述互连波纹状碳基网络具有导电率和电化学性质高度可调的高表面积。
概述
本发明提供一种生产互连波纹状碳基网络的方法。所生产的互连波纹状碳基网络具有包括互连碳层的膨胀网络的高表面积和高导电率的性质组合。
在一个实施方案中,所述方法生产图案化的互连波纹状碳基网络。在所述特定实施方案中,初始步骤接收具有碳基氧化膜的衬底。一旦所述衬底被接收,那么下一个步骤涉及生成具有足以使碳基氧化膜的部分还原为互连波纹状碳基网络的功率密度的光束。另一个步骤涉及在碳基氧化膜上通过计算机控制系统以预确定图案引导光束,同时通过计算机控制系统根据与所述预确定图案相关的预确定功率密度数据来调整光束的功率密度。
在一个实施方案中,衬底是盘形的数字多功能光盘(DVD)大小的塑料薄层,所述塑料薄层以可拆卸的方式粘着到包含DVD定中孔的DVD大小的板。载有盘形衬底的DVD大小的板可装载到直接光盘标记(direct-to-disc labeling)启用的光盘驱动器。计算机控制系统执行的软件程序读出定义预确定图案的数据。计算机控制系统将光盘驱动器生成的激光光束引导到盘形衬底上,从而使碳基氧化膜的部分还原为导电性的互连波纹状碳基网络,所述互连波纹状碳基网络与预确定图案的数据所述的形状、尺寸和传导水平匹配。
本领域技术人员在结合附图阅读的以下详细说明之后将了解本公开的范围并且认识到其额外方面。
附图简述
并入并且形成本说明书一部分的附图阐明本公开的一些方面,并且连同说明书用来解释本公开的原则。
图1描绘现有技术的直接光盘标记类型CD/DVD光盘的标记面。
图2是现有技术的直接光盘标记类型光盘驱动器的示意图。
图3是用于在衬底上提供石墨氧化物(GO)膜的示例性过程的流程图。
图4是用于对互连波纹状碳基网络进行激光刻划随后由互连波纹状碳基网络制造电部件的流程图。
图5是本实施方案的互连波纹状碳基网络的样本的线条图。
图6A是覆盖着电路的男性头部的艺术品图像。
图6B是在图6A的艺术品图像使用本发明的激光刻划技术在GO膜上直接图案化后的所述GO膜的照片。
图7是通过使用各种灰度等级对图6A的艺术品进行激光刻划以生产图6B的图案化的GO膜来使图6B的GO膜还原而比较导电率的图表。
图8A是示出在对图像右侧激光处理后红外激光对GO膜的影响的扫描电子显微镜(SEM)图像,这与图像左侧上对齐的互连波纹状碳基网络形成对照。
图8B是表明互连波纹状碳基网络的厚度比未处理GO膜的厚度大约10倍的SEM图像。
图8C是示出单个激光转换互连波纹状碳基网络的截面图的SEM图像。
图8D是示出图8C中互连波纹状碳基网络内的所选区的较大的放大率的SEM图像。
图9比较互连波纹状碳基网络的粉末X射线衍射(XRD)图案与石墨和石墨氧化物衍射图案。
图10是峰电流的log10对应用伏安扫描速率的log10的曲线图。
图11A至图11E是与拉曼光谱学分析有关的图表。
图12A是示出由互连波纹状碳基网络制成的、尺寸为6mm x6mm、间隔约500μm的一组叉指形电极的结构图,所述叉指形电极被直接图案化到GO的薄膜上。
图12B是示出传递到另一类型的衬底上的叉指形电极组合的结构图。
图13示出对在干燥空气中暴露于20ppm的氧化亚氮(NO2)的、由互连波纹状碳基网络制成的叉指形电极的图案化挠性组合的传感器响应。
图14A至图14D示出说明就对应于0秒、15秒、60秒和120秒的电沉积时间而言,铂(Pt)纳米颗粒生长到由互连波纹状碳基网络制成的支架上的SEM图像。
图15比较在50mV/s的扫描速率下,溶解于1.0M的KCl溶液中的5mM的K3[Fe(CN)6]/K4[Fe(CN)6]的等摩尔混合物中,GO、石墨与由互连波纹状碳基网络制成的CV分布图。
详述
以下阐明的实施方案代表使得本领域技术人员能够实践本公开的必需信息并且说明实施本公开的最佳模式。在鉴于附图来阅读以下描述之后,本领域技术人员了解本公开的概念并且认识到在本文中未具体提出的这些概念的应用。应了解这些概念和应用属于本公开和随附权利要求书的范围内。
本发明提供用于制作和图案化互连波纹状碳基网络的廉价过程,所述互连波纹状碳基网络对于具有导电率和电化学性质高度可调的高表面积具有严格的要求。本文所描述的实施方案不仅满足这些严格的要求,而且提供对互连波纹状碳基网络的传导率和图案化的直接控制,同时在单步骤过程中形成挠性电子装置。此外,这些互连波纹状碳基网络的生产并不需要还原剂或昂贵的设备。因此,挠性衬底上互连波纹状碳基网络的简单直接的制造简化了轻型电子装置的开发。可使互连波纹状碳基网络在各种衬底诸如塑料、金属和玻璃上同步。在本文中,展示全有机NO2气体传感器、快速氧化还原活性电极和用于铂(Pt)纳米颗粒的直接生长的支架。
在至少一个实施方案中,互连波纹状碳基网络是使用常见和廉价的红外激光所生产的导电膜,所述红外激光配合在致密盘/数字多功能光盘(CD/DVD)光学驱动器单元内部,所述光学驱动器单元提供光盘直接标记写入功能。LightScribe(惠普公司的注册商标)和LabelFlash(雅马哈公司的注册商标)是将文本和图形图案化到CD/DVD光盘的表面上的示例性直接光盘标记技术。LightScribe DVD驱动器是$20左右可商购的并且LightScribing过程使用标准台式计算机来控制。
图1描绘标准直接光盘标记类型CD/DVD光盘10的标记面,所述标记面包括标记区12和围绕定中孔16的夹紧区14。染料膜18覆盖标记区12并且对通常引导到标记区12上的激光能量敏感,以便生产可包括图形20和文本22的永久可见图像。位置跟踪标志24可由光盘驱动器(未示出)使用来在光盘驱动器内准确地定位CD/DVD光盘10的绝对角位置,以使得可重写图形20和/或文本22来增加对比度。此外,位置跟踪标志24可由光盘驱动器使用以便允许重写其它图形和/或文本,而不会不期望地覆写图形20和/或文本22。
图2是现有技术的直接光盘标记类型光盘驱动系统26的示意图。在这种示例性情况下,描绘CD/DVD光盘10的截面并将它装载到由CD/DVD主轴电动机30驱动的主轴组件28上。面向激光组件32示出标记区12,所述标记区包括标记写入器激光(LWL)34、透镜36和聚焦致动器38。LWL34通常是激光二极管。LWL34的示例性规范包括780nm发射下350mW的最大脉冲光功率和660nm发射下300mW的最大脉冲输出功率。LWL34所发射的激光光束40由透镜36聚焦,所述透镜由聚焦致动器38朝向和远离LWL34交替地平移以便维持激光光束40到CD/DVD光盘10的标记区12上的聚焦。激光光束40通常聚焦成范围为0.7μm左右至1μm左右的直径。
激光组件32对控制系统42作出响应,所述控制系统通过光盘驱动器接口(ODI)46提供控制信号44。控制系统42进一步包括中央处理器(CPU)48和存储器50。具有实现待写入到CD/DVD光盘10的标记区12上的永久图像所需的信息的标记图像数据(LID)由CPU48进行处理,所述CPU进而提供使LWL34开启或切断以便加热染料膜18来实现由LID定义的图像的LID流信号52。
CPU48还通过ODI46处理LID以便向径向致动器56提供位置控制信号54,所述径向致动器使激光组件32响应于LID中含有的位置信息而相对于标记区12平移。在实施方案的一些型式中,光盘驱动系统26监控激光光束40通过光学接收器(未示出)的聚焦,以使得ODI46可生成用于聚焦致动器38的聚焦控制信号58。ODI46还提供用于CD/DVD主轴电动机30的电动机控制信号60,所述主轴电动机在标记写入过程正在进行中时维持CD/DVD光盘10的适当旋转速度。
在光盘驱动系统26的一些型式中,LWL34专用于直接针对CD/DVD光盘10的标记区12的标记写入并且单独的激光二极管(未示出)用于将数据写入到CD/DVD光盘10的数据面62和/或读出来自所述数据面的数据。在光盘驱动系统26的其它型式中,LWL34用于标记写入和数据读出和/或写入。当LWL34用于数据读出和/或写入时,CD/DVD光盘10被翻转过来以使CD/DVD光盘10的数据面62暴露于激光光束40。在LWL34还用作数据读出/写入激光的型式中,激光组件32包括光学拾取部件(未示出),如光束分散镜和至少一个光学接收器。在数据读出操作期间,LWL34的输出功率通常为3mW左右。
为了使用光盘驱动系统26实现制作和图案化具有导电率和电化学性质高度可调的高表面积的互连波纹状碳基网络的廉价过程,用碳基膜代替燃料膜18(图1)。在一个实施方案中,石墨氧化物(GO)使用一种改进的Hummer方法由高纯度石墨粉合成。GO在水中的分散(3.7mg/mL)随后用于在各种衬底上形成GO膜。示例性衬底包括但不限于聚对苯二甲酸乙二酯(PET)、硝酸纤维素膜(孔径大小为0.4μm)、铝箔、碳化铝、铜箔及常规影印纸。
参照图3,过程100从提供石墨粉64开始。石墨粉64使用改进的Hummer方法经历氧化反应以便成为GO66(步骤102)。然而,应理解,用于生产GO的其它氧化方法也可用并且此类方法在本发明的范围内。剥离过程生产剥离的GO68(步骤104)。所述剥离过程可通过超声波作用来完成。应理解,剥离的GO68由到单个GO层的部分剥离而不是完整的剥离产生。部分剥离用于形成实现快速氧化还原反应的高的可及表面积,这实现了快速的传感器响应。另外,GO68的部分剥离提供用于使金属纳米颗粒生长的高表面积,所述金属纳米颗粒随后可用于催化。衬底70载有GO膜72,所述GO膜通过使剥离的GO68沉积到衬底70上的沉积过程产生(步骤106)。在至少一些实施方案中,通过使GO分散体滴涂或真空过滤到衬底70上来制作GO膜72,所述衬底是CD/DVD光盘的大小。GO膜72通常被允许在环境条件下干燥24小时。然而,控制使GO膜72暴露于相对较低湿度和相对较高温度的条件将使GO膜72相对快速地干燥。术语GO在此是指石墨氧化物。
参照图4,随后使GO膜72中的单个附着至衬底载体74,所述衬底载体具有与CD/DVD光盘10类似的尺寸(图1)(步骤108)。将具有GO膜72的载有衬底70的衬底载体74装载到光盘驱动系统26(图2)中,以使得GO膜72面对用于激光处理的LWL34(步骤110)。以这种方式,本实施方案使用GO膜72取代染料膜18(图1)。应理解,衬底载体74可以是上面可直接制造有GO膜72的硬质或半硬质光盘。在所述情况下,衬底载体74代替衬底70的功能。
将用于实现电部件78的图像76以同心圆的方式图案化,从衬底载体74的中心向外移动(步骤112)。激光辐照过程导致氧种类的去除和sp2碳的重建。这导致具有典型电阻(>20MΩ/sq)的GO膜72的传导率发生变化,以变成多个相对高度传导性的膨胀和互连碳层,所述多个碳层构成互连波纹状碳基网络80。GO膜72进行激光处理的导致互连波纹状碳基网络80的传导率产生显著且可控制的变化。互连波纹状碳基网络80具有包括碳层的膨胀互连网络的高表面积和高导电率的性质组合。在一个实施方案中,多个膨胀的和互连的碳层具有大于1400m2/g的表面积。在另一个实施方案中,多个膨胀的和互连的碳层具有大于1500m2/g的表面积。在又一个实施方案中,所述表面积为约1520m2/g左右。在一个实施方案中,多个膨胀的和互连的碳层产生大于约1500S/m的导电率。在另一个实施方案中,多个膨胀的和互连的碳层产生大于约1600S/m的导电率。在又一个实施方案中,多个膨胀的和互连的碳层产生大于约1650S/m左右的导电率。在另一个实施方案中,多个膨胀的和互连的碳层产生大于约1700S/m的导电率。在又一个实施方案中,多个膨胀的和互连的碳层产生大于约1738S/m左右的导电率。此外,在一个实施方案中,多个膨胀的和互连的碳层产生大于约1700S/m的导电率和大于约1500m2/g的表面积。在另一个实施方案中,多个膨胀的和互连的碳层产生约1650S/m左右的导电率和约1520m2/g左右的表面积。
用于制造装置84的包括电极82的电部件78在达到约1738S/m左右的相对高传导率之前,激光辐照6次。激光辐照过程花费约20分钟每周期。之后,从衬底载体74上去除载有互连波纹状碳基网络80和任何剩余GO膜72的衬底70(步骤114)。接下来,将互连波纹状碳基网络80制造成构成装置84的电部件78(步骤116)。在这种示例性情况下,互连波纹状碳基网络80在衬底70上的部分被切割成矩形段以形成电部件78,所述电部件包括由互连波纹状碳基网络80形成的电极82。
互连波纹状碳基网络80具有仅3.5%的非常低的含氧量。在其它实施方案中,膨胀的和互连的碳层的含氧量的范围为约1%左右至约5%左右。图5是互连波纹状碳基网络80的样本的线条图,所述互连波纹状碳基网络由多个膨胀的和互连的碳层构成,所述碳层包括波纹状碳层诸如单个波纹状碳薄层86。在一个实施方案中,膨胀的和互连的碳层中的每一个均包括一个原子厚的至少一个波纹状碳薄层。在另一个实施方案中,膨胀的和互连的碳层中的每一个均包括各自为一个原子厚的多个波纹状碳薄层。已发现,互连波纹状碳基网络80的厚度(如根据截面扫描电子显微镜术(SEM)和光度测定法所测)为约7.6μm左右。在一个实施方案中,构成互连波纹状碳基网络80的多个膨胀的和互连的碳层的厚度范围为7μm至8μm左右。
如对图像图案化中可能的多样性的图示一样,在图6A和图6B中示出通过GO的直接激光还原所形成的复杂图像。图6A是覆盖着电路的男性头部的艺术品图像。图6B是在图6A的艺术品图像使用本发明的激光刻划技术在GO膜上直接图案化后的所述GO膜的照片。实质上,GO膜与780nm红外激光器直接接触的任何一部分被有效地还原为互连波纹状碳基网络,其中还原量受激光强度控制;因数由碰撞在GO膜上的激光光束的功率密度来确定。图6B的所产生图像是图6A的原始图像的有效印刷。然而,在这种情况下,图6B的图像由GO膜的各种还原构成。如所预期,最暗的黑色区指示暴露于最强的激光强度,而最浅的灰色区仅仅部分还原。由于不同的灰度等级与激光强度直接相关,因此可能仅通过改变图案化过程中所使用的灰度等级来在薄层电阻(Ω/sq)的五到七个数量级范围内调节所生成互连波纹状碳基网络的电性质。如图7中所示,在薄层电阻、灰度等级以及GO膜进行辐照的次数之间存在明确的关系。可能对完全绝缘GO膜(典型薄层电阻值>20MΩ/sq)到传导性互连波纹状碳基网络(标示约80Ω/sq的薄层电阻)的传导率进行控制,所述传导率变化为约1650S/m的传导率。本方法对图7的图表中所示的相似灰度等级之间的区别足够敏感,其中灰度等级仅仅发生小的变化,薄层电阻就会发生显著变化。另外,GO膜进行激光处理的次数导致薄层电阻产生显著且可控制的变化。每一次另外的激光处理都会降低薄层电阻(如图7中所见),其中就灰度等级而言,使膜激光辐照一次(黑方块)、两次(圆)以及三次(三角形)。因此,可通过控制所使用的灰度等级以及膜通过激光还原的次数来调节膜的薄层电阻,这是到目前为止通过其它方法仍难以控制的性质。
扫描电子显微术(SEM)技术可用于通过比较互连波纹状碳基网络与未处理石墨氧化物GO膜之间的形态学差异来了解低能量红外激光对GO膜的结构性质的影响。图8A是示出在对图像右侧激光处理后红外激光对GO膜的影响的SEM图像,这与在利用红外激光还原后出现的图像左侧上对齐的互连波纹状碳基网络形成对照。所述图像不仅给出互连波纹状碳基网络与未处理GO区域之间的明确定义,而且展示在使用本方法作为图案化和还原GO的方式时可能的精度水平。互连波纹状碳基网络的区域(所述区域由于激光处理而产生)可通过截面SEM进一步分析。
图8B是示出激光处理和未处理GO膜的独立膜的截面图的SEM图像,所述图像示出GO膜厚度之间的显著差异。如图8B中的白色托架所示,与未处理GO膜的厚度相比,互连波纹状碳基网络的厚度增加约10倍。此外,多个碰撞和互连的碳层的厚度范围为7μm左右至8μm左右。在一个实施方案中,多个膨胀的和互连的碳层的平均厚度为7.6μm左右。增加的厚度源于激光处理期间所生成和释放的气体的快速排气(与热冲击类似),这在这些气体快速地穿过GO膜时,有效地导致还原的GO膨胀和剥离。图8C是示出单个互连波纹状碳基网络的截面图的SEM图像,所述图示出膨胀结构,所述膨胀结构是本发明的互连波纹状碳基网络的特征。
图8D是示出图8C中波纹状碳基网络内的所选区的较大的放大率的SEM图像。图8D的SEM图像允许多个膨胀和互连碳层的厚度计算为在5-10nm之间。然而,构成互连波纹状碳基网络的多个膨胀的和互连的碳层中的碳层数大于100。在另一个实施方案中,多个膨胀的和互连碳层中的碳层数大于1000。在又一个实施方案中,多个膨胀的和互连碳层中的碳层数大于10,000。在另一个实施方案中,多个膨胀的和互连碳层中的碳层数大于100,000。SEM分析表明,尽管红外激光发射仅仅少量地由GO吸收,但充分的功率和聚焦(即,功率密度)可导致产生足够的热能来使GO膜有效地还原、去氧、膨胀和剥离。此外,互连波纹状碳基网络的表面积大于约1500m2/g。
由于碳层中的每一个都具有2630m2/g的理论表面积,因此大于1500m2/g的表面表明碳层的几乎所有表面都是可及的。互连波纹状碳基网络具有大于17S/cm的导电率。互连波纹状碳基网络在某个波长的光射到GO的表面时形成,且随后被吸收来几乎立即转化为热量,这释放了二氧化碳(CO2)。示例性光源包括但不限于780nm激光、绿色激光和闪光灯。所述光源的光束发射的范围可为近红光波长至紫外线波长。互连波纹状碳基网络的典型含碳量大于97%,其中剩余小于3%的氧。互连波纹状碳基网络的一些样本大于99%的碳,即使在空气中进行激光还原过程。
图9比较波纹状碳基网络的粉末X射线衍射(XRD)图案与石墨和石墨氧化物衍射图案。石墨的典型XRD图案(在图9中示出,迹线A)显示2θ=27.8°的特征峰,d-间距为另一方面,GO的XRD图案(图9,迹线B)展示2θ=10.76°的单个峰,这对应于的层间d-间距。GO的增加的d-间距是由于石墨氧化物薄层中的含氧官能团所引起的,这倾向于使水分子陷入底面之间,从而导致所述薄层膨胀和分离。波纹状碳基网络的XRD图像(图9,迹线C)示出存在GO(10.76°2θ)以及与的d-间距相关的25.97°2θ的宽石墨峰(图10C)。预期在波纹状碳基网络中存在GO,因为激光具有期望穿透深度,这导致膜的仅仅顶部部分还原,而底部层不受激光影响。GO的小的存在度在较厚膜中更加突出,但在较薄膜中开始减弱。另外,还可观察26.66°2θ的部分阻塞峰,所述峰示出与宽的25.97°2θ峰类似的强度。所述两个峰均被认为是石墨峰,与底板之间的两个不同点阵间距相关。
先前表明,碳纳米管(CNT)在玻璃碳电极上的固定化将导致产生薄的CNT膜,这直接影响了CNT改性电极的伏安性能。在铁/氰亚铁酸盐氧化还原电对中,在CNT改性电极处测得的伏安电流可能具有两种类型的供量。薄层影响是伏安电流的重要因素。薄层影响源自氰亚铁酸盐离子的氧化,所述氰亚铁酸盐离子陷入在纳米管之间。其它因素由氰亚铁酸盐朝向平面电极表面的半无限扩散而引起。不幸的是,机械信息并不容易去卷积并且需要对膜厚度的了解。
相比之下,并没有观察到与本发明的互连波纹状碳基网络有关的任何薄层效果。图10是峰电流的log10对应用伏安扫描速率的log10的曲线图。在这种情况下,没有观察到任何薄层效果,因为所述曲线图具有0.53的一致斜率并且是线性的。0.53的斜率相对接近使用由Randles-Sevcik等式控制的半无限扩散模型计算出的理论值,所述等式如下所示:
i p = 0.3443 AC o * D o ν ( nF ) 3 RT
拉曼光谱学用于特征化和比较通过激光处理GO膜所诱发的结构变化。图11A至图11E是与拉曼光谱学分析有关的图表。如图11A可见,在GO以及互连波纹状碳基网络中观察特征D、G、2D和S3峰。所述两种光谱中的D带的存在表明碳sp3中心在还原后仍存在。有趣的是,互连波纹状碳基网络的光谱示出在约1350cm-1下D带峰的微小增加。这种未预料到的增加是由于结构性边缘缺陷的较大存在度而引起的并且指示较小石墨域(graphite domain)的量的整体增加。结果与SEM分析一致,其中由激光处理所导致的剥离折叠状石墨区域(图5)的生成形成大量边缘。然而,D带还示出显著的总体峰变窄,这表明互连波纹状碳基网络中的缺陷类型减少。G带经历了变窄和峰强度的减少以及从1585至1579cm-1的峰移位。这些结果与sp2碳的重建和底板内结构缺陷的减少一致。G带的总体变化指示从非晶质碳状态到更高程度的晶质碳状态的转换。另外,在GO通过红外激光处理后看到从约2730cm-1左右到约2688cm-1左右的突出和移位的2D峰,从而表明GO膜的相当大的还原并且在很大程度上指出几个层的互连石墨结构的存在。在一个实施方案中,在互连波纹状碳基网络由碳基氧化物还原后,所述互连波纹状碳基网络的2D拉曼峰值从约2700cm-1左右变化为约2600cm-1左右。此外,由于点阵无序,D-G的组合生成S3二阶峰值(所述S3二阶峰值显示为约2927cm-1)并且(如所预期)在红外激光处理后,随减小的无序而减弱。在一些实施方案中,多个膨胀的和互连的碳层具有范围为约2920cm-1左右至约2930cm-1左右的拉曼光谱学S3二阶峰值范围。拉曼分析展示通过红外激光处理GO的效果,作为有效地且可控制地生产互连波纹状碳基网络的方式。
X-射线光电子光谱学(XPS)被用来使氧官能团上的激光照射的效果相关并且用来监控GO膜上的结构变化。将GO与互连波纹状碳基网络之间的碳氧(C/O)比进行比较提供对使用简单的低能量红外激光所实现的还原程度的有效测量。图11B示出在对GO膜的激光处理之前和之后C/O比之间的显著差异。在激光还原之前,典型的GO膜具有约2.6:1的C/O比,这对应于约72%和38%的碳/氧含量。另一方面,互连波纹状碳基网络具有96.5%的增强的含碳量和3.5%的减弱的氧含量,从而给出27.8:1的总体C/O比。由于激光还原过程在环境条件下发生,因此据推测,互连波纹状碳基网络膜中所存在的一些氧是与所述环境下所发现的氧具有静态相互作用的膜的结果。
图11C表明,除了290.4eV下的小的π到π*峰之外,GO的C1sXPS光谱还显示两个宽峰,所述宽峰可分解成对应于通常在GO表面上发现的官能团的三个不同的碳成分。这些官能团包括羧基、处于环氧和羟基形式的sp3碳,和sp2碳,以上各项分别与以下结合能相关:约288.1、286.8和284.6eV。
图11D示出预期结果,因为GO中的大的氧化程度导致在C1sXPS光谱中产生各种氧成分。这些结果与互连波纹状碳基网络形成对照,所述互连波纹状碳基网络示出含氧官能团的显著减少和C-C sp2碳峰值的总体增加。这指出有效的脱氧过程以及C=C键在互连波纹状碳基网络中的重建。这些结果与拉曼分析一致。因此,红外激光诸如LWL34(图2)强大到足以除去大部分氧官能团,如互连波纹状碳基网络的XPS光谱中明显可见,所述互连波纹状碳基网络仅仅示出小的无序峰值和287.6eV下的峰值。后一种情况对应于sp3类型碳的存在,这表明少量的羰基留在最终产物中。另外,约290.7eV下π至π*伴峰的存在表明离域π共轭在互连波纹状碳基网络中显著更强,因为这个峰在GO XPS光谱中是极小的。离域π峰的出现清楚地表明,GO膜中的共轭在激光还原过程中恢复并且增加对重建sp2碳网络的支持。含氧官能团的增加强度、主要C=C键峰和离域π共轭的存在都表明,低能红外激光是生成互连波纹状碳基网络的有效工具。
图11E描绘以黑色示出的GO的UV可见光吸收率光谱。插图示出方框区域的放大图,所述方框区域示出GO就780nm红外激光而言在650至850nm区域中的吸收率。
多功能挠性电子装置诸如卷起显示器、光电池以及甚至可佩带装置的未来发展给设计和制造轻型、挠性能量存储装置带来了新的挑战。
本发明的实施方案还包括其它类型的电装置和电子装置。例如,图12A示出尺寸为6mm x6mm、间隔约500μm的一组叉指形电极,所述叉指形电极被直接图案化到GO的薄膜上。在图案化之前,使GO膜沉积在薄的挠性衬底(聚对苯二甲酸乙二酯(PET))上,以便制造机械挠性的一组电极。顶部箭头指向互连波纹状碳基网络的、构成黑色叉指形电极的区域,同时底部箭头指向未还原的金色GO膜。由于所述电极被直接图案化到挠性衬底上的GO膜上,因此对后处理诸如将所述膜转移到新的衬底上的需要是不必要的。尽管如果需要,可使用即揭即贴法来选择性地举升由互连波纹状碳基网络与(例如)聚二甲基硅氧烷(PDMS)制成的黑色叉指形电极并将其转移到其它类型的衬底上(图12B)。本方法的简明性允许通过控制激光强度以及由此每个膜中的还原量来对互连波纹状碳基网络的图案尺寸、衬底选择性和电性能进行实质性控制。
这些叉指形电极进而可用作检测NO2的全有机挠性气体传感器。图13示出对在干燥空气中暴露于20ppm的NO2的、由互连波纹状碳基网络制成的叉指形电极的图案化挠性组合的传感器响应。通过图案化互连波纹状碳基网络以制造活性电极并且少量地减小电极之间的面积以具有约7775ohm/sq的一致薄层电阻来制造这个传感器。以这种方式,可能省略金属电极的使用并且在挠性衬底上同时图案化电极和感测材料。曲线图涉及暴露于R/R0的NO2气体,其中R0为初始状态下的薄层电阻并且R为暴露于气体后互连波纹状碳基网络膜的电阻。使膜暴露于NO2气体10分钟,随后立即用空气净化另外10分钟。这个过程随后在总共200分钟内再重复九次。即使在比更复杂和更优化的传感器略微更低的敏感度下,由互连波纹状碳基网络构成的未优化传感器仍显示对于NO2来说良好的可逆感测并且其易于制造使得这对于这些系统来说是相当有利的。由用于NO2的互连波纹状碳基网络构成的传感器有希望通过使用直接用廉价激光图案化的廉价原材料以低成本改进全有机挠性传感器装置的制造。
由于多个膨胀的和互连的碳层而导致的高的传导率和增加的表面积使得互连波纹状碳基网络成为金属纳米颗粒的非均质催化剂载体的可行备选者。具体来说,Pt纳米颗粒在互连波纹状碳基网络上的直接生长可有助于改进基于甲醇的燃料电池,这已显示出来自大的表面积和传导性碳基支架的增强的装置性能。本发明表明互连波纹状碳基网络是Pt纳米颗粒的可控生长的可行支架。通过在不同的时间段内在-0.25V下利用0.5M的H2SO4对1mM的K2PtCl4进行电化学还原,可能积极控制电沉积在互连波纹状碳基网络膜上的Pt颗粒大小。图14A至图14D示出说明Pt纳米颗粒就对应于0秒、15秒、60秒和120秒的电沉积时间而言的生长的扫描电子显微镜术图像。如所预期,在0秒的电沉积(图14A)时不存在Pt颗粒,但在仅仅15秒(图14B)后小的Pt纳米颗粒是清楚可见的,纳米颗粒的大小范围为10-50nm(图14B,插图)。在60秒的电沉积后,较大的Pt纳米颗粒随着平均值为100至150nm的颗粒大小而生长(图14C)。最后,在120秒后,200至300nm的颗粒被发现平均分布在互连波纹状碳基网络的表面上(图14D)。处于可控直径的Pt纳米颗粒在互连波纹状碳基网络上的积极生长可针对需要金属纳米颗粒的应用制作潜在有用的混合材料,如甲醇燃料电池和气相催化剂。此外,如果钯(Pd)沉积,则由互连波纹状碳基网络制成的传感器可用于检测氢的传感器或用于诸如Suzuki偶联或Heck偶联的催化作用。
对于各种电化学应用,碳电极由于其对于很多氧化还原反应来说宽的电位窗口和良好的电催化活性而引起了巨大的兴趣。考虑到所述碳电极的高表面积和挠性以及所述碳电极是全碳电极这个事实,互连波纹状碳基网络可通过制作小型化且完全挠性的装置来彻底改变电化学系统。本文中,理解互连波纹状碳基网络的电化学性质对于确定其针对电化学应用的电位高度有益。最近,单层石墨的电催化性质已被证明在很大程度上源于其边缘处而不是底板处的高效电子转移。事实上,据报告,单层石墨在某些系统中展示出与边缘刨高度有序热解石墨的电催化活性类似的电催化活性。除了具有高度膨胀网络外,互连波纹状碳基网络还显示大量边缘刨(返回参照图5),从而使得所述网络成为研究边缘刨在基于单层石墨的纳米材料的电化学方面的作用的理想系统。
就这一点而言,特征在于与由互连波纹状碳基网络制成的挠性电极的电子转移相关的电化学性能,其中使用[Fe(CN)6]3-/4-对作为氧化还原探针。例如,图15比较在50mV/s的扫描速率下,在溶解于1.0M的KCl溶液中的5mM的K3[Fe(CN)6]/K4[Fe(CN)6]的等摩尔混合物中,GO、石墨与由互连波纹状碳基网络制成的电极的CV分布图。与GO和石墨不同,由互连波纹状碳基网络制成的电极接近完全可逆系统的性能,所述系统具有在10mV/s的扫描速率下的59.5mV到400mV/s的扫描速率下的97.6mV的低ΔEp(峰间电位分离)。低的ΔEp值接近计算出的59mV的理论值。考虑到ΔEp与电子转移速率常量(k0 obs)直接相关,ΔEp的低实验值表明非常快速的电子转移速率。计算出的k0 obs值对于石墨来说从1.266x10-4cm s-1开始变化并且对于互连波纹状碳基网络来说如所预期增加到1.333x10-2cm s-1
用于评估电子转移动力学的氧化还原系统为溶解在1.0M的KCl溶液中的5mM的K3[Fe(CN)6]/K4[Fe(CN)6](1:1摩尔比)。为了确保稳定的电化学响应,在收集实验数据之前,首先对所述电极循环扫描至少5次。使用由Nicholson开发的方法来确定非均质电子传递速率常数(k0 obs),这使得峰分离(ΔEp)与无维动力学参数ψ相关,并且因此根据以下等式与k0 obs相关:
k obs 0 = ψ [ D O πν ( nF RT ) ] ( D R D O ) α 2
其中DO和DR分别是氧化还原物种的扩散系数。其它变量包括ν-应用扫描速率、n-反应中转移的电子数、F-法拉第常数、R-气体常数、T-绝对温度和α-转移系数。氧化还原物种的扩散系数通常是类似的;因此术语(DR/DO)α/2为约1。7.26x10-6cm2s-1的扩散系数(DO)用于1.0M的KCl中的[[Fe(CN)6]3-/4-
除了在由互连波纹状碳基网络制成的电极处的电子转移速率的相对大的增加(比石墨电极快约两个时间量级)之外,由互连波纹状碳基网络制成的电极还存在实质性的电化学活性,如通过伏安峰电流的约268%的增加所见。这些大幅改进可归因于互连波纹状碳基网络膜的膨胀架构,所述膜提供用于电活性物种的有效扩散的大的开放区并且允许与互连波纹状碳基网络表面的更好的界面相互作用。另外,可推测,每单位质量的边缘状表面的量因此比石墨要大得多,并且因此有助于更高的电子转移速率,如本文所见。考虑到互连波纹状碳基网络中的大量暴露的边缘站点,发现所述互连波纹状碳基网络不仅具有比石墨更高的k0 obs值,而且超过基于碳纳米管的电极的k0 obs值和堆叠单层石墨纳米纤维的k0 obs值并不令人意外。
请注意,由互连波纹状碳基网络制成的电极是在覆盖着GO的挠性PET衬底上制成,所述GO在进行激光还原时,用作电极和电流收集器,从而使得这个特定电极不仅仅是轻型和挠性的,而且是廉价的。另外,互连波纹状碳基网络中的低的含氧量(约3.5%)(如通过XPS分析所示)对于本文所见的电化学活性是相当有利的,因为边缘刨站点处的较高的含氧量已证实会限制和减缓铁/氰亚铁酸盐氧化还原电对的电子转移。这样,本发明的实施方案提供制作用于蒸汽感测、生物感测、电催化和能量存储中的潜在应用的高度电活性电极的方法。
本发明涉及一种以低成本生成、图案化和电调节基于石墨的材料的便利、固态和环境安全的方法。已证实互连波纹状碳基网络成功生产并且在环境条件下通过GO膜的直接激光辐照选择性地图案化。电路和复杂设计在各种挠性衬底上直接图案化,而无掩膜、模板、后处理、转移技术或金属催化剂。另外,通过改变激光强度和激光辐照处理,在五个数量级范围内精确地调节互连波纹状碳基网络的电性质,这是证实为通过其它方法很难调节的特征。生成互连波纹状碳基网络的这种新的模式提供制造基于全有机的装置诸如气体传感器和其它电子装置的新的地点。在薄的挠性有机衬底上生成互连波纹状碳基网络的相对廉价的方法使得其成为用于金属纳米颗粒的选择性生长的相对理想的非均质支架。此外,金属纳米颗粒的选择性生长在对甲醇燃料电池的电催化中具有潜力。再有,由互连波纹状碳基网络制成的膜在铁/氰亚铁酸盐氧化还原电对的电子电荷转移中示出超过其它碳基电极的特殊的电化学活性。通过使用廉价激光对GO的同步还原和图案化是一种新技术,所述新技术提供制造电子装置、全有机装置、非对称膜、微流体装置、集成介电层、电池、气体传感器和电子电路的显著的通用性。
与其它光刻技术相比,这个过程在未改性的、可商购CD/DVD光盘驱动器中使用低成本红外激光结合LightScribe技术来在GO上图案化复杂图像并且具有额外的益处来同时生产激光转换的波纹状碳网络。LightScribe技术激光通常在5mW左右至350mW左右范围内的功率输出下以780nm波长进行操作。然而,应了解,只要碳基氧化物在激光发射的光谱内进行吸收,那么所述过程可在给定的功率输出下以任何波长实现。本方法是生成互连波纹状碳基网络的一种简单、单步骤、低成本且无掩模的固态方法,所述方法可在无需对多种薄膜进行任何后处理的情况下执行。与生成基于石墨的材料的其它还原方法不同,本方法是无化学途径和相对简单且环境保护的过程,其并未受到化学还原剂的限制。
本文所描述的技术是廉价的、不需要笨重的设备、显示了对膜传导率和图像图案化的直接控制,可用作制造挠性电子装置的单个步骤,均无需进行复杂的对齐或生产昂贵的掩膜。而且,由于所使用材料的传导性质,可能仅通过在不同的激光强度和功率下控制所产生的传导率,这是通过其它方法尚未证实的一种性质。工作电路板、电极、电容器和/或导线通过计算机程序精确地图案化。所述技术允许对各种参数的控制,并因此提供用于简化装置制造的地点并且具有缩放的可能,这与受到成本或设备控制的其它技术不同。本方法可用于任何光热(photothermically)活性材料,所述材料包括但不限于GO、传导性聚合物和其它光热活性化学物诸如碳纳米管。
如上所述,已提出一种用于生产基于石墨的材料的方法,所述方法不仅是便利、廉价和通用性的,而且是用于还原和图案化处于固体状态的石墨膜的单步骤环境安全的过程。简单低能量的廉价红外激光用作用于GO的有效还原、随后膨胀以及脱离和精细图案化的强有力的工具。除了直接图案化和有效生产大面积的高度还原激光转换石墨膜的能力之外,本方法还可应用于多种其它薄衬底并且具有简化完全由有机材料制成的装置的制造过程的潜力。挠性的全有机气体传感器已通过对沉积在薄挠性PET上的GO的激光图案化直接制成。互连波纹状碳基网络也显示为是用于通过简单的电化学过程对Pt纳米颗粒的成功的生长和大小控制的有效支架。最终,制造由互连波纹状碳基网络制成的挠性电极,所述互连波纹状碳基网络显示教科书样的可逆性,与铁/氰亚铁酸盐氧化还原电对之间的石墨朝向电子转移相比,电化学活性剧增约238%。这个概念验证过程具有有效地改进应用的潜力,所述应用得益于本文所展现的高的电化学活性,包括电池、传感器和电催化。
本领域技术人员了解本公开的实施方案的改进和变化。所有这些改进和变化被认为在本文公开的概念和以下权利要求书的范围内。

Claims (77)

1.一种互连波纹状碳基网络,其包括多个膨胀的和互连的碳层。
2.如权利要求1所述的互连波纹状碳基网络,其中所述膨胀的和互连的碳层中的每一个都包括一个原子厚的至少一个波纹状碳薄层。
3.如权利要求1所述的互连波纹状碳基网络,其中所述膨胀的和互连的碳层中的每一个都包括各自为一个原子厚的多个波纹状碳薄层。
4.如权利要求1所述的互连波纹状碳基网络,其中所述多个膨胀的和互连的碳层产生大于约1500S/m的导电率。
5.如权利要求1所述的互连波纹状碳基网络,其中所述多个膨胀的和互连的碳层产生大于约1600S/m的导电率。
6.如权利要求1所述的互连波纹状碳基网络,其中所述多个膨胀的和互连的碳层产生约1650S/m左右的导电率。
7.如权利要求1所述的互连波纹状碳基网络,其中所述多个膨胀的和互连的碳层产生大于约1700S/m的导电率。
8.如权利要求1所述的互连波纹状碳基网络,其中所述多个膨胀的和互连的碳层产生约1738S/m左右的导电率。
9.如权利要求1所述的互连波纹状碳基网络,其中所述多个膨胀的和互连的碳层具有大于约1000平方米/克(m2/g)左右的表面积。
10.如权利要求1所述的互连波纹状碳基网络,其中所述多个膨胀的和互连的碳层具有大于约1500m2/g左右的表面积。
11.如权利要求1所述的互连波纹状碳基网络,其中所述多个膨胀的和互连的碳层具有约1520m2/g左右的表面积。
12.如权利要求1所述的互连波纹状碳基网络,其中所述多个膨胀的和互连的碳层产生大于约1700S/m的导电率和约1500m2/g的表面积。
13.如权利要求1所述的互连波纹状碳基网络,其中所述多个膨胀的和互连的碳层产生约1650S/m左右的导电率和约1520m2/g左右的表面积。
14.如权利要求1所述的互连波纹状碳基网络,其中在所述互连波纹状碳基网络由碳基氧化物还原后,所述互连波纹状碳基网络的二阶无序(2D)拉曼峰值从约2730cm-1左右变化为约2688cm-1左右。
15.如权利要求1所述的互连波纹状碳基网络,其中在所述互连波纹状碳基网络由碳基氧化物还原后,所述互连波纹状碳基网络的2D拉曼峰值从约2700cm-1左右变化为约2600cm-1左右。
16.如权利要求1所述的互连波纹状碳基网络,其中所述多个膨胀的和互连的碳层的平均厚度为7.6μm左右。
17.如权利要求1所述的互连波纹状碳基网络,其中所述多个膨胀的和互连的碳层的厚度范围为约7μm左右到约8μm左右。
18.如权利要求1所述的互连波纹状碳基网络,其中所述膨胀的和互连的碳层的含氧量为约3.5%左右。
19.如权利要求1所述的互连波纹状碳基网络,其中所述膨胀的和互连的碳层的含氧量的范围为约1%左右至约5%左右。
20.如权利要求1所述的互连波纹状碳基网络,其中所述多个膨胀的和互连的碳层具有约27.8:1的碳氧(C/O)比。
21.如权利要求1所述的互连波纹状碳基网络,其中所述多个膨胀的和互连的碳层具有范围为约100:1至25:1左右的C/O比。
22.如权利要求1所述的互连波纹状碳基网络,其中所述多个膨胀的和互连的碳层具有在约20兆欧姆/平方左右至约80欧姆/平方左右的范围内可调的薄层电阻。
23.如权利要求1所述的互连波纹状碳基网络,其中所述多个膨胀的和互连的碳层具有约2927cm-1的拉曼光谱学S3二阶峰值。
24.如权利要求1所述的互连波纹状碳基网络,其中所述多个膨胀的和互连的碳层具有范围为约2920cm-1左右至约2930cm-1左右的拉曼光谱学S3二阶峰值范围。
25.如权利要求1所述的互连波纹状碳基网络,其中所述多个膨胀的和互连的碳层中的碳层数大于约100。
26.如权利要求1所述的互连波纹状碳基网络,其中所述多个膨胀的和互连的碳层中的碳层数大于约1000。
27.如权利要求1所述的互连波纹状碳基网络,其中所述多个膨胀的和互连的碳层中的碳层数大于约10,000。
28.如权利要求1所述的互连波纹状碳基网络,其中所述多个膨胀的和互连的碳层中的碳层数大于约100,000。
29.一种生产图案化互连波纹状碳基网络的方法,所述方法包括:
·接收具有碳基氧化物膜的衬底;
·产生光束,所述光束具有足以使所述碳基氧化物膜的部分还原为导电性的多个膨胀的和互连的碳层的功率密度;以及
·通过计算机控制系统以预确定图案来引导所述光束横越所述碳基氧化物膜。
30.如权利要求29所述的方法,其进一步包括调整所述光束的所述功率密度以便调节在所述碳基氧化物膜暴露于所述光束时所生产的所述多个膨胀的和互连的碳层的导电率。
31.如权利要求29所述的方法,其中所述多个膨胀的和互连的碳层具有在20兆欧姆/平方左右至80欧姆/平方左右的范围内可调的薄层电阻。
32.如权利要求29所述的方法,其中所述碳基氧化物膜是氧化石墨膜。
33.如权利要求32所述的方法,其中所述氧化石墨膜具有约2.6:1的C/O比。
34.如权利要求32所述的方法,其中所述氧化石墨膜暴露于所述光束的部分具有约27.8:1的C/O比。
35.如权利要求29所述的方法,其中所述多个膨胀的和互连的碳层具有范围为约100:1至25:1左右的C/O比。
36.如权利要求29所述的方法,其中所述光束是激光束。
37.如权利要求36所述的方法,其中所述激光束是波长为780nm左右的红外激光束。
38.如权利要求29所述的方法,其中光束发射的范围为近红外波长至紫外线波长。
39.如权利要求29所述的方法,其中所述光束具有约5mW左右的功率。
40.如权利要求29所述的方法,其中所述光束的功率范围为约5mW左右至约350mW左右。
41.如权利要求29所述的方法,其进一步包括在产生具有足以使所述碳基氧化物膜的部分还原为所述互连波纹状碳基网络的所述功率密度的所述光束之前,将所述衬底装载到自动激光图案化系统中。
42.如权利要求29所述的方法,其中使所述碳基氧化物膜暴露于所述光束以便在所述碳基氧化物膜内形成所述互连波纹状碳基网络的预确定图案在所述预确定图案的预确定部分上重复进行,以便提高石墨与碳基氧化物比。
43.如权利要求29所述的方法,其进一步包括使碳基氧化物溶液滴涂到所述衬底上的初始步骤。
44.如权利要求29所述的方法,其中所述衬底是聚对苯二甲酸乙二酯(PET)。
45.如权利要求29所述的方法,其进一步包括使所述衬底暴露于氧等离子体约三分钟左右。
46.如权利要求29所述的方法,其中所述多个膨胀的和互连的碳层具有约1520平方米/克(m2/g)的表面积。
47.如权利要求29所述的方法,其中所述多个膨胀的和互连的碳层中的每一个都是仅一个原子厚的单个波纹状碳薄层。
48.如权利要求29所述的方法,其中所述多个膨胀的和互连的碳层产生大于约1500S/m左右的导电率。
49.如权利要求29所述的方法,其中所述多个膨胀的和互连的碳层产生大于约1600S/m左右的导电率。
50.如权利要求29所述的方法,其中所述多个膨胀的和互连的碳层产生约1650S/m左右的导电率。
51.如权利要求29所述的方法,其中所述多个膨胀的和互连的碳层产生大于约1700S/m的导电率。
52.如权利要求29所述的方法,其中所述多个膨胀的和互连的碳层产生约1738S/m左右的导电率。
53.如权利要求29所述的方法,其中所述多个膨胀的和互连的碳层具有大于约1000m2/g左右的表面积。
54.如权利要求29所述的方法,其中所述多个膨胀的和互连的碳层具有大于约1500m2/g左右的表面积。
55.如权利要求29所述的方法,其中所述多个膨胀的和互连的碳层具有约1520m2/g左右的表面积。
56.如权利要求29所述的方法,其中所述多个膨胀的和互连的碳层产生大于约1700S/m左右的导电率和约1500m2/g左右的表面积。
57.如权利要求29所述的方法,其中所述多个膨胀的和互连的碳层产生约1650S/m左右的导电率和约1520m2/g左右的表面积。
58.如权利要求29所述的方法,其中在所述互连波纹状碳基网络由碳基氧化物还原后,所述互连波纹状碳基网络的二阶无序(2D)拉曼峰值从约2730cm-1左右变化为约2688cm-1左右。
59.如权利要求29所述的方法,其中在所述互连波纹状碳基网络由碳基氧化物还原后,所述互连波纹状碳基网络的2D拉曼峰值从约2700cm-1左右变化为约2600cm-1左右。
60.如权利要求29所述的方法,其中所述多个膨胀的和互连的碳层的平均厚度为约7.6μm左右。
61.如权利要求29所述的方法,其中所述多个膨胀的和互连的碳层的厚度范围为约7μm左右到约8μm左右。
62.如权利要求29所述的方法,其中所述膨胀的和互连的碳层的含氧量为约3.5%左右。
63.如权利要求29所述的方法,其中所述膨胀的和互连的碳层的含氧量的范围为约1%左右至约5%左右。
64.如权利要求29所述的方法,其中所述多个膨胀的和互连的碳层具有约27.8:1的C/O比。
65.如权利要求29所述的方法,其中所述多个膨胀的和互连的碳层具有范围为约100:1至25:1左右的C/O比。
66.如权利要求29所述的方法,其中所述多个膨胀的和互连的碳层具有在约20兆欧姆/平方左右至约80欧姆/平方左右的范围内可调的薄层电阻。
67.如权利要求29所述的方法,其中所述多个膨胀的和互连的碳层具有约2927cm-1左右的拉曼光谱学S3二阶峰值。
68.如权利要求29所述的方法,其中所述多个膨胀的和互连的碳层具有范围为约2920cm-1左右至约2930cm-1左右的拉曼光谱学S3二阶峰值范围。
69.如权利要求29所述的方法,其中所述多个膨胀的和互连的碳层中的碳层数大于约100左右。
70.如权利要求29所述的方法,其中所述多个膨胀的和互连的碳层中的碳层数大于约1000左右。
71.如权利要求29所述的方法,其中所述多个膨胀的和互连的碳层中的碳层数大于约10,000左右。
72.如权利要求29所述的方法,其中所述多个膨胀的和互连的碳层中的碳层数大于约100,000左右。
73.如权利要求29所述的方法,其中所述预确定图案限定全有机气体传感器的导电迹线。
74.如权利要求73所述的方法,其中所述全有机气体传感器是物理上挠性的氧化亚氮(NO2)传感器。
75.如权利要求29所述的方法,其中所述预确定图案限定快速氧化还原活性电极。
76.如权利要求29所述的方法,其中所述预确定图案限定用于纳米颗粒的直接生长的支架。
77.如权利要求76所述的方法,其中所述纳米颗粒是铂(Pt)纳米颗粒。
CN201280070343.4A 2011-12-21 2012-12-21 互连波纹状碳基网络 Pending CN104125925A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011342273.6A CN112661139A (zh) 2011-12-21 2012-12-21 互连波纹状碳基网络

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201161578431P 2011-12-21 2011-12-21
US61/578431 2011-12-21
PCT/US2012/071407 WO2013162649A2 (en) 2011-12-21 2012-12-21 Interconnected corrugated carbon-based network

Related Child Applications (1)

Application Number Title Priority Date Filing Date
CN202011342273.6A Division CN112661139A (zh) 2011-12-21 2012-12-21 互连波纹状碳基网络

Publications (1)

Publication Number Publication Date
CN104125925A true CN104125925A (zh) 2014-10-29

Family

ID=49484008

Family Applications (2)

Application Number Title Priority Date Filing Date
CN202011342273.6A Pending CN112661139A (zh) 2011-12-21 2012-12-21 互连波纹状碳基网络
CN201280070343.4A Pending CN104125925A (zh) 2011-12-21 2012-12-21 互连波纹状碳基网络

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CN202011342273.6A Pending CN112661139A (zh) 2011-12-21 2012-12-21 互连波纹状碳基网络

Country Status (11)

Country Link
US (4) US20160077074A1 (zh)
EP (1) EP2794475B1 (zh)
JP (1) JP6184421B2 (zh)
KR (1) KR102071841B1 (zh)
CN (2) CN112661139A (zh)
AU (1) AU2012378149B2 (zh)
CA (1) CA2862806C (zh)
DK (1) DK2794475T3 (zh)
ES (1) ES2785095T3 (zh)
HK (1) HK1201779A1 (zh)
WO (1) WO2013162649A2 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI619609B (zh) * 2015-09-14 2018-04-01 美國琳得科股份有限公司 可撓性片、導熱性組件、導電性組件、抗靜電組件、加熱元件、電磁波屏障、及製造可撓性片之方法

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112661139A (zh) 2011-12-21 2021-04-16 加州大学评议会 互连波纹状碳基网络
KR102231070B1 (ko) 2012-03-05 2021-03-23 더 리전트 오브 더 유니버시티 오브 캘리포니아 상호 연결된 파형 카본-기반 네트워크로 만들어진 전극을 갖는 커패시터
GB201405614D0 (en) * 2014-03-28 2014-05-14 Perpetuus Res & Dev Ltd Particles
CN106575806B (zh) 2014-06-16 2020-11-10 加利福尼亚大学董事会 混合电化学电池
CN107112144A (zh) * 2014-11-18 2017-08-29 加利福尼亚大学董事会 多孔互连波纹状碳基网络(iccn)复合材料
KR101615827B1 (ko) * 2014-12-30 2016-04-27 한양대학교 산학협력단 환원 그래핀 옥사이드/그래핀 복합필름, 이를 구비하는 에너지 저장소자, 및 환원 그래핀 옥사이드/그래핀 복합필름의 제조방법
WO2017112575A1 (en) 2015-12-22 2017-06-29 The Regents Of The University Of California Cellular graphene films
CN108475590B (zh) 2016-01-22 2021-01-26 加利福尼亚大学董事会 高电压装置
JP2019507717A (ja) 2016-02-26 2019-03-22 ナノテック エナジー,インク. 炭素質組成物を処理するための方法、装置、およびシステム
US11062855B2 (en) 2016-03-23 2021-07-13 The Regents Of The University Of California Devices and methods for high voltage and solar applications
KR102378286B1 (ko) 2016-04-01 2022-03-23 더 리전트 오브 더 유니버시티 오브 캘리포니아 가요성이고 고성능인 슈퍼커패시터를 위한 탄소 클로쓰 상에서의 폴리아닐린 나노튜브의 직접 성장
US10876210B1 (en) * 2016-05-05 2020-12-29 Iowa State University Research Foundation, Inc. Tunable nano-structured inkjet printed graphene via UV pulsed-laser irradiation for electrochemical sensing
US11097951B2 (en) 2016-06-24 2021-08-24 The Regents Of The University Of California Production of carbon-based oxide and reduced carbon-based oxide on a large scale
CN109845004B (zh) 2016-08-31 2022-10-14 加利福尼亚大学董事会 包括碳基材料的装置以及其制造
KR102658785B1 (ko) * 2017-06-14 2024-04-18 더 리전트 오브 더 유니버시티 오브 캘리포니아 수용성 전기화학적 에너지 저장 장치용 전극 및 전해질
US11133134B2 (en) 2017-07-14 2021-09-28 The Regents Of The University Of California Simple route to highly conductive porous graphene from carbon nanodots for supercapacitor applications
CN115638688A (zh) * 2018-01-22 2023-01-24 新格拉夫解决方案有限责任公司 石墨制品及其制造方法
US10938032B1 (en) 2019-09-27 2021-03-02 The Regents Of The University Of California Composite graphene energy storage methods, devices, and systems

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101723310A (zh) * 2009-12-02 2010-06-09 吉林大学 一种利用氧化石墨烯制备导电微纳结构的光加工方法

Family Cites Families (254)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2800616A (en) 1954-04-14 1957-07-23 Gen Electric Low voltage electrolytic capacitor
US3288641A (en) 1962-06-07 1966-11-29 Standard Oil Co Electrical energy storage apparatus
US3223639A (en) 1962-07-10 1965-12-14 Union Carbide Corp Solion electrolyte
US3536963A (en) 1968-05-29 1970-10-27 Standard Oil Co Electrolytic capacitor having carbon paste electrodes
US3652902A (en) 1969-06-30 1972-03-28 Ibm Electrochemical double layer capacitor
US3749608A (en) 1969-11-24 1973-07-31 Bogue J Primary electrochemical energy cell
US4327157A (en) 1981-02-20 1982-04-27 The United States Of America As Represented By The Secretary Of The Navy Stabilized nickel-zinc battery
JPS6110855A (ja) 1984-06-26 1986-01-18 Asahi Glass Co Ltd 電池用電極及びその製造方法
US4645713A (en) 1985-01-25 1987-02-24 Agency Of Industrial Science & Technology Method for forming conductive graphite film and film formed thereby
JPH0754701B2 (ja) 1986-06-04 1995-06-07 松下電器産業株式会社 アルカリ蓄電池の製造法
US5143709A (en) 1989-06-14 1992-09-01 Temple University Process for production of graphite flakes and films via low temperature pyrolysis
JPH0817092B2 (ja) 1989-11-21 1996-02-21 株式会社リコー 電極用基材及びその製造方法
CA2022802A1 (en) 1989-12-05 1991-06-06 Steven E. Koenck Fast battery charging system and method
EP0603397B2 (en) 1991-09-13 2002-12-18 Asahi Kasei Kogyo Kabushiki Kaisha Secondary cell
FR2685122B1 (fr) 1991-12-13 1994-03-25 Alcatel Alsthom Cie Gle Electric Supercondensateur a base de polymere conducteur.
JPH11503816A (ja) * 1995-04-13 1999-03-30 アライド・シグナル・インコーポレーテツド カーボン・カーボン複合材で作られた平行なプレートで構成される熱交換器
US5744258A (en) 1996-12-23 1998-04-28 Motorola,Inc. High power, high energy, hybrid electrode and electrical energy storage device made therefrom
US6117585A (en) 1997-07-25 2000-09-12 Motorola, Inc. Hybrid energy storage device
TW431004B (en) 1998-10-29 2001-04-21 Toshiba Corp Nonaqueous electrolyte secondary battery
US6252762B1 (en) 1999-04-21 2001-06-26 Telcordia Technologies, Inc. Rechargeable hybrid battery/supercapacitor system
US6677637B2 (en) 1999-06-11 2004-01-13 International Business Machines Corporation Intralevel decoupling capacitor, method of manufacture and testing circuit of the same
US7576971B2 (en) 1999-06-11 2009-08-18 U.S. Nanocorp, Inc. Asymmetric electrochemical supercapacitor and method of manufacture thereof
US8107223B2 (en) 1999-06-11 2012-01-31 U.S. Nanocorp, Inc. Asymmetric electrochemical supercapacitor and method of manufacture thereof
WO2001016972A1 (en) 1999-08-31 2001-03-08 Vishay Intertechnology, Inc. Conductive polymer capacitor and method for making same
US6790556B1 (en) 1999-12-06 2004-09-14 E.C.R. - Electro Chemical Research, Ltd. Electrochemical energy storage device having improved enclosure arrangement
US6522522B2 (en) 2000-02-01 2003-02-18 Cabot Corporation Capacitors and supercapacitors containing modified carbon products
KR20020092945A (ko) 2000-02-03 2002-12-12 케이스 웨스턴 리저브 유니버시티 금속 파우더 또는 금속 스폰지 입자의 박층으로 제조된고전력 커패시터
KR100515572B1 (ko) 2000-02-08 2005-09-20 주식회사 엘지화학 중첩 전기화학 셀 및 그의 제조 방법
KR100515571B1 (ko) 2000-02-08 2005-09-20 주식회사 엘지화학 중첩 전기 화학 셀
US6356433B1 (en) 2000-03-03 2002-03-12 The Regents Of The University Of California Conducting polymer ultracapacitor
JP4564125B2 (ja) 2000-03-24 2010-10-20 パナソニック株式会社 非水電解液電池用電極板の製造方法
JP2002063894A (ja) 2000-08-22 2002-02-28 Sharp Corp 炭素材料膜の作製方法及び該炭素材料膜を用いた非水電解質二次電池
DE10044450C1 (de) 2000-09-08 2002-01-17 Epcos Ag Verfahren zur Herstellung einer Elektrode für Kondensatoren und zur Herstellung eines Kondensators
JP3981566B2 (ja) * 2001-03-21 2007-09-26 守信 遠藤 膨張炭素繊維体の製造方法
JP4197859B2 (ja) 2001-05-30 2008-12-17 株式会社Gsiクレオス リチウム二次電池の電極材およびこれを用いたリチウム二次電池
DE10152270B4 (de) 2001-10-20 2004-08-05 Robert Bosch Gmbh Schaltungsanordnung zur Entladung eines Bufferkondensators
US6643119B2 (en) 2001-11-02 2003-11-04 Maxwell Technologies, Inc. Electrochemical double layer capacitor having carbon powder electrodes
TW535178B (en) 2001-12-31 2003-06-01 Luxon Energy Devices Corp Cylindrical high-voltage super capacitor and its manufacturing method
JP3714665B2 (ja) 2002-01-25 2005-11-09 Necトーキン栃木株式会社 リチウムイオン二次電池の製造方法
JP2004055541A (ja) 2002-05-31 2004-02-19 Hitachi Maxell Ltd 複合エネルギー素子
JP2004039491A (ja) 2002-07-04 2004-02-05 Japan Storage Battery Co Ltd 非水電解質二次電池
JP2004063297A (ja) 2002-07-30 2004-02-26 Yuasa Corp アルカリ蓄電池用負極とその製造方法およびそれを用いたアルカリ蓄電池
US6890670B2 (en) 2002-09-16 2005-05-10 University Of Iowa Research Foundation Magnetically modified electrodes as well as methods of making and using the same
US7122760B2 (en) 2002-11-25 2006-10-17 Formfactor, Inc. Using electric discharge machining to manufacture probes
GB0229079D0 (en) 2002-12-12 2003-01-15 Univ Southampton Electrochemical cell for use in portable electronic devices
KR100583610B1 (ko) 2003-03-07 2006-05-26 재단법인서울대학교산학협력재단 전이금속산화물/탄소나노튜브 합성물 제작방법
JP5144931B2 (ja) 2003-08-18 2013-02-13 パワージェニックス システムズ, インコーポレーテッド ニッケル亜鉛電池の製造方法
US7248458B2 (en) 2003-09-15 2007-07-24 American Technical Ceramics Corporation Orientation-insensitive ultra-wideband coupling capacitor and method of making
CN100372035C (zh) 2003-10-17 2008-02-27 清华大学 聚苯胺/碳纳米管混杂型超电容器
JP2005138204A (ja) 2003-11-05 2005-06-02 Kaken:Kk 超微粒子担持炭素材料とその製造方法および担持処理装置
JP2005199267A (ja) 2003-12-15 2005-07-28 Nippon Sheet Glass Co Ltd 金属担持体の製造方法及び金属担持体
US7255924B2 (en) 2004-01-13 2007-08-14 The United States Of America As Represented By The Secretary Of The Navy Carbon nanoarchitectures with ultrathin, conformal polymer coatings for electrochemical capacitors
JP2005317902A (ja) 2004-03-29 2005-11-10 Kuraray Co Ltd 電気二重層キャパシタ用電解質組成物及びそれを用いた電気二重層キャパシタ
US20080265219A1 (en) 2004-06-01 2008-10-30 Michael Anthony Whitehead Method for Fabricating Intrinsically Conducting Polymer Nanorods
US8034222B2 (en) 2004-10-26 2011-10-11 The Regents Of The University Of California Conducting polymer nanowire sensors
JP2006147210A (ja) 2004-11-17 2006-06-08 Hitachi Ltd 二次電池及びその製造方法
JP2006252902A (ja) 2005-03-10 2006-09-21 Kawasaki Heavy Ind Ltd ハイブリッド電池
JP4731967B2 (ja) 2005-03-31 2011-07-27 富士重工業株式会社 リチウムイオンキャパシタ
WO2006128174A2 (en) 2005-05-26 2006-11-30 California Institute Of Technology High voltage and high specific capacity dual intercalating electrode li-ion batteries
US20060275733A1 (en) 2005-06-01 2006-12-07 Cao Group, Inc. Three-dimensional curing light
RU2413339C2 (ru) 2005-06-30 2011-02-27 Конинклейке Филипс Электроникс, Н.В. Батарея и способ ее крепления к одежде
KR101256975B1 (ko) 2005-09-30 2013-04-19 니폰 케미콘 가부시키가이샤 전해 콘덴서용 전해액 및 전해 콘덴서
JP2007160151A (ja) 2005-12-09 2007-06-28 K & W Ltd 反応方法及びこの方法で得られた金属酸化物ナノ粒子、またはこの金属酸化物ナノ粒子を担持したカーボン及びこのカーボンを含有する電極、並びにこれを用いた電気化学素子。
US8182943B2 (en) 2005-12-19 2012-05-22 Polyplus Battery Company Composite solid electrolyte for protection of active metal anodes
CN101378987B (zh) * 2006-02-01 2013-02-13 Sgl碳股份公司 碳化的生物聚合物
US7990679B2 (en) 2006-07-14 2011-08-02 Dais Analytic Corporation Nanoparticle ultracapacitor
US7623340B1 (en) 2006-08-07 2009-11-24 Nanotek Instruments, Inc. Nano-scaled graphene plate nanocomposites for supercapacitor electrodes
JP4225334B2 (ja) 2006-08-25 2009-02-18 トヨタ自動車株式会社 蓄電装置用電極および蓄電装置
GB0618033D0 (en) 2006-09-13 2006-10-25 Univ Nottingham Electrochemical synthesis of composites
US8385046B2 (en) 2006-11-01 2013-02-26 The Arizona Board Regents Nano scale digitated capacitor
AR064292A1 (es) 2006-12-12 2009-03-25 Commw Scient Ind Res Org Dispositivo mejorado para almacenamiento de energia
WO2008089110A1 (en) 2007-01-12 2008-07-24 Microazure Corporation Three-dimensional batteries and methods of manufacturing the same
RU2484565C2 (ru) 2007-02-16 2013-06-10 ЮНИВЕРСАЛ СУПЕРКАПАСИТОРЗ ЭлЭлСи Гибридное устройство аккумулирования электрической энергии с электрохимическим суперконденсатором/свинцово-кислотной батареей
CN101641810B (zh) 2007-03-28 2012-01-25 旭化成化学株式会社 电极、使用该电极的锂离子二次电池、双电层电容器和燃料电池
JP2008300467A (ja) 2007-05-30 2008-12-11 Taiyo Yuden Co Ltd 電気化学デバイス
US8593714B2 (en) 2008-05-19 2013-11-26 Ajjer, Llc Composite electrode and electrolytes comprising nanoparticles and resulting devices
US7948739B2 (en) 2007-08-27 2011-05-24 Nanotek Instruments, Inc. Graphite-carbon composite electrode for supercapacitors
US8497225B2 (en) 2007-08-27 2013-07-30 Nanotek Instruments, Inc. Method of producing graphite-carbon composite electrodes for supercapacitors
US7875219B2 (en) 2007-10-04 2011-01-25 Nanotek Instruments, Inc. Process for producing nano-scaled graphene platelet nanocomposite electrodes for supercapacitors
US7745047B2 (en) 2007-11-05 2010-06-29 Nanotek Instruments, Inc. Nano graphene platelet-base composite anode compositions for lithium ion batteries
JP4934607B2 (ja) 2008-02-06 2012-05-16 富士重工業株式会社 蓄電デバイス
JP2009283658A (ja) 2008-05-22 2009-12-03 Elpida Memory Inc キャパシタ素子用の絶縁膜、キャパシタ素子及び半導体装置
US8450014B2 (en) * 2008-07-28 2013-05-28 Battelle Memorial Institute Lithium ion batteries with titania/graphene anodes
CN102187413B (zh) 2008-08-15 2013-03-20 加利福尼亚大学董事会 电化学储能用分级结构纳米线复合物
EP2472656A3 (en) 2008-08-15 2013-02-20 Massachusetts Institute of Technology Layer-by-layer assemblies of carbon-based nanostructures and their applications in energy storage and generation devices
FR2935546B1 (fr) 2008-09-02 2010-09-17 Arkema France Materiau composite d'electrode, electrode de batterie constituee dudit materiau et batterie au lithium comprenant une telle electrode.
US8216541B2 (en) * 2008-09-03 2012-07-10 Nanotek Instruments, Inc. Process for producing dispersible and conductive nano graphene platelets from non-oxidized graphitic materials
WO2010085443A1 (en) 2009-01-26 2010-07-29 Dow Global Technologies Inc. Nitrate salt-based process for manufacture of graphite oxide
US20100195261A1 (en) 2009-02-02 2010-08-05 Space Charge, LLC Capacitors using preformed dielectric
KR101024940B1 (ko) 2009-02-03 2011-03-31 삼성전기주식회사 표면 산화된 전이금속질화물 에어로젤을 이용한 하이브리드수퍼커패시터
US8968525B2 (en) * 2009-02-27 2015-03-03 Northwestern University Methods of flash reduction and patterning of graphite oxide and its polymer composites
KR101074027B1 (ko) 2009-03-03 2011-10-17 한국과학기술연구원 그래펜 복합 나노섬유 및 그 제조 방법
US9118078B2 (en) 2009-03-20 2015-08-25 Northwestern University Method of forming a film of graphite oxide single layers, and applications of same
US8147791B2 (en) * 2009-03-20 2012-04-03 Northrop Grumman Systems Corporation Reduction of graphene oxide to graphene in high boiling point solvents
US8317984B2 (en) * 2009-04-16 2012-11-27 Northrop Grumman Systems Corporation Graphene oxide deoxygenation
US8213157B2 (en) 2009-04-17 2012-07-03 University Of Delaware Single-wall carbon nanotube supercapacitor
KR101036164B1 (ko) 2009-04-24 2011-05-23 성균관대학교산학협력단 복합전극 및 이의 제조방법
CN101894679B (zh) 2009-05-20 2011-09-28 中国科学院金属研究所 一种石墨烯基柔性超级电容器及其电极材料的制备方法
SG10201402481PA (en) 2009-05-22 2014-07-30 Univ Rice William M Highly oxidized graphene oxide and methods for production thereof
JP5399801B2 (ja) 2009-07-22 2014-01-29 日本化学工業株式会社 イオン性液体含有ゲル、その製造方法及びイオン伝導体
WO2011014971A2 (en) 2009-08-07 2011-02-10 Oc Oerlikon Balzers Ag Fuel cell/ supercapacitor/ battery power system for vehicular propulsion
US20110038100A1 (en) 2009-08-11 2011-02-17 Chun Lu Porous Carbon Oxide Nanocomposite Electrodes for High Energy Density Supercapacitors
WO2011021982A1 (en) 2009-08-20 2011-02-24 Nanyang Technological University Integrated electrode architectures for energy generation and storage
KR20110035906A (ko) 2009-09-30 2011-04-06 가부시키가이샤 한도오따이 에네루기 켄큐쇼 커패시터
US20110079748A1 (en) 2009-10-02 2011-04-07 Ruoff Rodney S Exfoliation of Graphite Oxide in Propylene Carbonate and Thermal Reduction of Resulting Graphene Oxide Platelets
US9768355B2 (en) * 2009-12-10 2017-09-19 Virginia Commonwealth University Production of graphene and nanoparticle catalysts supported on graphene using laser radiation
JP4527194B1 (ja) * 2009-12-11 2010-08-18 エンパイア テクノロジー ディベロップメント エルエルシー グラフェン構造体、グラフェン構造体の製造方法、及び電子デバイス
US8883042B2 (en) 2009-12-16 2014-11-11 Georgia Tech Research Corporation Production of graphene sheets and features via laser processing of graphite oxide/ graphene oxide
WO2011078462A2 (ko) 2009-12-22 2011-06-30 Suh Kwang Suck 그래핀 분산액 및 그래핀-이온성 액체 고분자 복합물
US8652687B2 (en) * 2009-12-24 2014-02-18 Nanotek Instruments, Inc. Conductive graphene polymer binder for electrochemical cell electrodes
US8315039B2 (en) 2009-12-28 2012-11-20 Nanotek Instruments, Inc. Spacer-modified nano graphene electrodes for supercapacitors
US9640334B2 (en) 2010-01-25 2017-05-02 Nanotek Instruments, Inc. Flexible asymmetric electrochemical cells using nano graphene platelet as an electrode material
US20110227000A1 (en) 2010-03-19 2011-09-22 Ruoff Rodney S Electrophoretic deposition and reduction of graphene oxide to make graphene film coatings and electrode structures
FR2957910B1 (fr) 2010-03-23 2012-05-11 Arkema France Melange maitre de nanotubes de carbone pour les formulations liquides, notamment dans les batteries li-ion
US8451584B2 (en) 2010-03-31 2013-05-28 University Of Miami Solid state energy storage device and method
CN102254582B (zh) * 2010-05-18 2013-05-15 国家纳米科学中心 一种石墨烯基导电材料及其制备方法
CN101844761B (zh) * 2010-05-28 2012-08-15 上海师范大学 激光照射法制备还原氧化石墨烯
EP2593403B1 (en) 2010-07-14 2020-03-04 Monash University Method for producing a gel film and filtration membrane prepared with this method
US8134333B2 (en) 2010-08-17 2012-03-13 Ford Global Technologies, Llc Battery and ultracapacitor device and method of use
US8753772B2 (en) 2010-10-07 2014-06-17 Battelle Memorial Institute Graphene-sulfur nanocomposites for rechargeable lithium-sulfur battery electrodes
JP6027008B2 (ja) * 2010-10-10 2016-11-16 ザ トラスティーズ オブ プリンストン ユニバーシテイ 太陽電池用のグラフェン電極
US9786943B2 (en) 2010-10-14 2017-10-10 Ramot At Tel-Aviv University Ltd. Direct liquid fuel cell having ammonia borane, hydrazine, derivatives thereof or/and mixtures thereof as fuel
EP2634783A4 (en) 2010-10-27 2018-03-28 Ocean's King Lighting Science&Technology Co., Ltd. Composite electrode material, manufacturing method and application thereof
KR20120056556A (ko) 2010-11-25 2012-06-04 삼성전기주식회사 다층 구조의 전극, 및 상기 전극을 포함하는 슈퍼 캐패시터
CN103403922B (zh) 2010-12-23 2016-10-12 纳米技术仪器公司 表面介导的锂离子交换能量存储装置
US8828608B2 (en) 2011-01-06 2014-09-09 Springpower International Inc. Secondary lithium batteries having novel anodes
KR101233420B1 (ko) 2011-02-11 2013-02-13 성균관대학교산학협력단 신규한 그래핀옥사이드 환원제 및 이에 의한 환원그래핀옥사이드의 제조방법
JP2012169576A (ja) 2011-02-17 2012-09-06 Nec Tokin Corp 電気化学デバイス
CN103380469B (zh) 2011-02-21 2017-08-11 日本蓄电器工业株式会社 电极箔、集电体、电极及使用这些对象的蓄电组件
JP2012188484A (ja) 2011-03-09 2012-10-04 National Institute Of Advanced Industrial Science & Technology 制御された形状を有する導電性ポリマーの製造方法
US9312078B2 (en) 2011-03-18 2016-04-12 William Marsh Rice University Patterned graphite oxide films and methods to make and use same
US8503161B1 (en) 2011-03-23 2013-08-06 Hrl Laboratories, Llc Supercapacitor cells and micro-supercapacitors
US9892869B2 (en) 2011-04-06 2018-02-13 The Florida International University Board Of Trustees Electrochemically activated C-MEMS electrodes for on-chip micro-supercapacitors
WO2012138302A1 (en) 2011-04-07 2012-10-11 Nanyang Technological University Multilayer film comprising metal nanoparticles and a graphene-based material and method of preparation thereof
US20130026409A1 (en) 2011-04-08 2013-01-31 Recapping, Inc. Composite ionic conducting electrolytes
US8987710B2 (en) * 2011-05-19 2015-03-24 Polyera Corporation Carbonaceous nanomaterial-based thin-film transistors
US8784768B2 (en) 2011-05-26 2014-07-22 GM Global Technology Operations LLC Hierarchially porous carbon particles for electrochemical applications
CN102275896A (zh) 2011-05-30 2011-12-14 无锡第六元素高科技发展有限公司 一种插层法制备氧化石墨的方法
JP5602092B2 (ja) 2011-05-31 2014-10-08 株式会社Gsユアサ アルカリ二次電池用負極板を適用したアルカリ二次電池
CA3098849A1 (en) 2011-06-07 2012-12-13 Fastcap Systems Corporation Energy storage media for ultracapacitors
CA2845539A1 (en) 2011-08-15 2013-05-10 Purdue Research Foundation Methods and apparatus for the fabrication and use of graphene petal nanosheet structures
WO2013024727A1 (en) 2011-08-18 2013-02-21 Semiconductor Energy Laboratory Co., Ltd. Method for forming graphene and graphene oxide salt, and graphene oxide salt
US8828193B2 (en) * 2011-09-06 2014-09-09 Indian Institute Of Technology Madras Production of graphene using electromagnetic radiation
US8759153B2 (en) * 2011-09-06 2014-06-24 Infineon Technologies Ag Method for making a sensor device using a graphene layer
US20130217289A1 (en) 2011-09-13 2013-08-22 Nanosi Advanced Technologies, Inc. Super capacitor thread, materials and fabrication method
KR20140093930A (ko) 2011-09-19 2014-07-29 유니버시티 오브 울롱공 환원된 산화 그래핀 및 이의 제조 방법
JP2014534626A (ja) 2011-10-07 2014-12-18 アプライド ナノストラクチャード ソリューションズ リミテッド ライアビリティー カンパニーApplied Nanostructuredsolutions, Llc 2機能活性電解質を有するハイブリッド・キャパシタバッテリ及びスーパーキャパシタ
US8951675B2 (en) 2011-10-13 2015-02-10 Apple Inc. Graphene current collectors in batteries for portable electronic devices
KR101843194B1 (ko) 2011-10-21 2018-04-11 삼성전기주식회사 전기 이중층 캐패시터
CN102509632B (zh) 2011-10-28 2015-04-22 泉州师范学院 一种水合结构SnO2/IrO2·xH2O氧化物薄膜电极材料及其制备方法
US9406449B2 (en) 2011-11-10 2016-08-02 Regents Of The University Of Colorado, A Body Corporate Supercapacitor devices formed by depositing metal oxide materials onto carbon substrates
CN103733288A (zh) 2011-11-14 2014-04-16 住友电气工业株式会社 蓄电装置用电极、蓄电装置以及蓄电装置用电极的制造方法
WO2013119295A1 (en) 2011-11-18 2013-08-15 William Marsh Rice University Graphene-carbon nanotube hybrid materials and use as electrodes
US9601775B2 (en) 2011-11-28 2017-03-21 Zeon Corporation Binder composition for secondary battery positive electrode, slurry composition for secondary battery positive electrode, secondary battery positive electrode, and secondary battery
KR101297423B1 (ko) 2011-11-30 2013-08-14 한국전기연구원 양이온-파이 상호작용에 의해 고농도 분산된 산화 그래핀 환원물 및 그 제조방법
US9774038B2 (en) 2011-12-02 2017-09-26 Mitsubishi Chemical Corporation Binder resin for nonaqueous secondary battery electrode, binder resin composition for nonaqueous secondary battery electrode slurry composition for nonaqueous secondary battery electrode, electrode for nonaqueous secondary battery, and nonaqueous secondary battery
CN102491318B (zh) 2011-12-13 2013-08-14 河北工业大学 一种制备氧化石墨烯的方法
TWI466153B (zh) 2011-12-15 2014-12-21 Ind Tech Res Inst 電容器及其製造方法
CN112661139A (zh) 2011-12-21 2021-04-16 加州大学评议会 互连波纹状碳基网络
KR101371288B1 (ko) 2011-12-22 2014-03-07 이화여자대학교 산학협력단 망간 산화물/그래핀 나노복합체 및 이의 제조 방법
US20130171502A1 (en) 2011-12-29 2013-07-04 Guorong Chen Hybrid electrode and surface-mediated cell-based super-hybrid energy storage device containing same
CN103208373B (zh) 2012-01-16 2015-09-30 清华大学 石墨烯电极及其制备方法与应用
CN102543483B (zh) 2012-01-17 2014-02-26 电子科技大学 一种超级电容器的石墨烯材料的制备方法
KR101356791B1 (ko) 2012-01-20 2014-01-27 한국과학기술원 박막형 수퍼커패시터 및 그의 제조 방법
US8841030B2 (en) 2012-01-24 2014-09-23 Enovix Corporation Microstructured electrode structures
US8771630B2 (en) 2012-01-26 2014-07-08 Enerage, Inc. Method for the preparation of graphene
WO2013120011A1 (en) 2012-02-09 2013-08-15 Energ2 Technologies, Inc. Preparation of polymeric resins and carbon materials
US9697957B2 (en) 2012-02-28 2017-07-04 Teknologian Tutkimuskeskus Vtt Oy Electrochemical capacitor and semiconductor chip having an electrochemical capacitor
KR102231070B1 (ko) 2012-03-05 2021-03-23 더 리전트 오브 더 유니버시티 오브 캘리포니아 상호 연결된 파형 카본-기반 네트워크로 만들어진 전극을 갖는 커패시터
US9384904B2 (en) 2012-04-06 2016-07-05 Semiconductor Energy Laboratory Co., Ltd. Negative electrode for power storage device, method for forming the same, and power storage device
US9360905B2 (en) 2012-04-09 2016-06-07 Nanotek Instruments, Inc. Thermal management system containing an integrated graphene film for electronic devices
WO2013155276A1 (en) 2012-04-12 2013-10-17 Wayne State University Integrated 1-d and 2-d composites for asymmetric aqueous supercapacitors with high energy density
US9881746B2 (en) 2012-04-14 2018-01-30 Northeastern University Flexible and transparent supercapacitors and fabrication using thin film carbon electrodes with controlled morphologies
US10079389B2 (en) 2012-05-18 2018-09-18 Xg Sciences, Inc. Silicon-graphene nanocomposites for electrochemical applications
US20130314844A1 (en) 2012-05-23 2013-11-28 Nanyang Technological University Method of preparing reduced graphene oxide foam
US9437369B2 (en) 2012-07-11 2016-09-06 Jme, Inc. Conductive material with charge-storage material in voids
US9083010B2 (en) 2012-07-18 2015-07-14 Nthdegree Technologies Worldwide Inc. Diatomaceous energy storage devices
KR20140012464A (ko) 2012-07-20 2014-02-03 삼성에스디아이 주식회사 실리콘 합금계 음극활물질, 이를 포함하는 음극 활물질 조성물 및 그 제조 방법과 리튬 이차 전지
US20140030590A1 (en) 2012-07-25 2014-01-30 Mingchao Wang Solvent-free process based graphene electrode for energy storage devices
US20140050947A1 (en) 2012-08-07 2014-02-20 Recapping, Inc. Hybrid Electrochemical Energy Storage Devices
US20140045058A1 (en) 2012-08-09 2014-02-13 Bluestone Global Tech Limited Graphene Hybrid Layer Electrodes for Energy Storage
US9738527B2 (en) 2012-08-23 2017-08-22 Monash University Graphene-based materials
JP2014053209A (ja) 2012-09-07 2014-03-20 Tokyo Ohka Kogyo Co Ltd 櫛型電極、その製造方法、及び二次電池
KR20140045880A (ko) 2012-10-09 2014-04-17 가부시키가이샤 한도오따이 에네루기 켄큐쇼 축전 장치
SG11201502983SA (en) 2012-10-17 2015-05-28 Univ Singapore Technology & Design High specific capacitance and high power density of printed flexible micro-supercapacitors
US10176933B2 (en) 2012-10-25 2019-01-08 Purdue Research Foundation Super-capacitor and arrangement for miniature implantable medical devices
US20140118883A1 (en) 2012-10-31 2014-05-01 Jian Xie Graphene supported vanadium oxide monolayer capacitor material and method of making the same
WO2014072877A2 (en) 2012-11-08 2014-05-15 Basf Se Graphene based screen-printable ink and its use in supercapacitors
CN102923698B (zh) 2012-11-19 2014-11-12 中南大学 一种超级电容器用三维多孔石墨烯的制备方法
KR101505145B1 (ko) 2012-11-21 2015-03-24 주식회사 그래핀올 그래핀 양자점 형성 방법
KR20140075836A (ko) 2012-11-27 2014-06-20 삼성전기주식회사 전극 구조체 및 그 제조 방법, 그리고 상기 전극 구조체를 구비하는 에너지 저장 장치
US9887047B2 (en) 2012-12-19 2018-02-06 Imra America, Inc. Negative electrode active material for energy storage devices and method for making the same
EP2747175B1 (en) 2012-12-21 2018-08-15 Belenos Clean Power Holding AG Self-assembled composite of graphene oxide and H4V3O8
WO2014101128A1 (en) 2012-12-28 2014-07-03 Jiangnan University Graphene composites and methods of making and using the same
US20140205841A1 (en) 2013-01-18 2014-07-24 Hongwei Qiu Granules of graphene oxide by spray drying
KR101778541B1 (ko) 2013-02-08 2017-09-18 엘지전자 주식회사 그래핀 리튬 이온 커패시터
WO2014138721A1 (en) 2013-03-08 2014-09-12 Sri International High permittivity nanocomposites for electronic devices
AU2014225278B2 (en) 2013-03-08 2017-09-07 Monash University Graphene-based films
KR101447680B1 (ko) 2013-03-08 2014-10-08 한국과학기술연구원 전극의 제조 방법, 상기 제조 방법에 따라 제조된 전극, 상기 전극을 포함하는 슈퍼 커패시터 및 리튬 이차 전지
CN105247639B (zh) 2013-03-28 2018-01-23 国立大学法人东北大学 蓄电装置及其电极材料
JP6214028B2 (ja) 2013-04-05 2017-10-18 国立大学法人北海道大学 酸化グラフェン含有液の製造方法及びその利用
US9905371B2 (en) 2013-04-15 2018-02-27 Council Of Scientific & Industrial Research All-solid-state-supercapacitor and a process for the fabrication thereof
TWI518995B (zh) 2013-04-16 2016-01-21 Quanta Comp Inc The diversity antenna combination and its dynamic adjustment of the input impedance are wide Frequency antenna
WO2014181763A1 (ja) 2013-05-07 2014-11-13 山本化成株式会社 感熱発色性組成物及び該組成物を用いてなる感熱記録材料
JP6506513B2 (ja) 2013-08-09 2019-04-24 株式会社半導体エネルギー研究所 リチウムイオン二次電池用電極の作製方法
US20160196929A1 (en) 2013-08-15 2016-07-07 The Regents Of The University Of California A multicomponent approach to enhance stability and capacitance in polymer-hybrid supercapacitors
CN103508450B (zh) 2013-09-11 2015-05-20 清华大学 一种大面积、可图案化石墨烯的激光制备方法
US10214422B2 (en) 2013-10-16 2019-02-26 Research & Business Foundation Sungkyunkwan University Interlayer distance controlled graphene, supercapacitor and method of producing the same
WO2015061327A1 (en) 2013-10-21 2015-04-30 The Penn State Research Foundation Method for preparing graphene oxide films and fibers
CN203631326U (zh) 2013-11-06 2014-06-04 西安中科麦特电子技术设备有限公司 一种石墨烯电极的超级电容器
EP3066675B1 (en) 2013-11-08 2020-04-29 The Regents Of The University Of California Three-dimensional graphene framework-based high-performance supercapacitors
CN103723715B (zh) 2013-12-02 2015-08-12 辽宁师范大学 孔隙可调的超级电容器用石墨烯宏观体的制备方法
CN203839212U (zh) 2014-01-06 2014-09-17 常州立方能源技术有限公司 三维石墨烯梯度含量结构超级电容器极片
EP2905257B1 (en) 2014-02-05 2018-04-04 Belenos Clean Power Holding AG Method of production of graphite oxide
US9580325B2 (en) 2014-02-06 2017-02-28 Nanotek Instruments, Inc. Process for producing highly oriented graphene films
CN112479189A (zh) 2014-02-17 2021-03-12 威廉马歇莱思大学 激光诱导的石墨烯材料和它们在电子装置中的用途
US20170025557A1 (en) 2014-04-02 2017-01-26 Georgia Tech Research Corporation Broadband reduced graphite oxide based photovoltaic devices
EP2933229A1 (en) 2014-04-17 2015-10-21 Basf Se Electrochemical capacitor devices using two-dimensional carbon material for high frequency AC line filtering
EP3920273A1 (en) 2014-04-25 2021-12-08 South Dakota Board of Regents High capacity electrodes
JP2015218085A (ja) 2014-05-16 2015-12-07 国立大学法人信州大学 活性化グラフェンモノリスおよびその製造方法
CN104229777B (zh) 2014-05-28 2016-06-15 淮海工学院 一种自支撑还原氧化石墨烯薄膜的绿色还原制备方法
WO2015192008A2 (en) 2014-06-13 2015-12-17 Pope Michael A Batteries incorporating graphene membranes for extending the cycle-life of lithium-ion batteries
CN106575806B (zh) 2014-06-16 2020-11-10 加利福尼亚大学董事会 混合电化学电池
US20150364755A1 (en) 2014-06-16 2015-12-17 The Regents Of The University Of California Silicon Oxide (SiO) Anode Enabled by a Conductive Polymer Binder and Performance Enhancement by Stabilized Lithium Metal Power (SLMP)
SG11201700725TA (en) 2014-07-29 2017-02-27 Agency Science Tech & Res Method of preparing a porous carbon material
JP6293606B2 (ja) 2014-07-30 2018-03-14 株式会社東芝 複合体、複合体の製造方法、非水電解質電池用活物質材料、及び非水電解質電池
WO2016053956A1 (en) 2014-10-03 2016-04-07 E. I. Du Pont De Nemours And Company Multilayer food casing or food film
US20160099116A1 (en) 2014-10-05 2016-04-07 Yongzhi Yang Methods and apparatus for the production of capacitor with electrodes made of interconnected corrugated carbon-based network
CN104299794B (zh) 2014-10-16 2017-07-21 北京航空航天大学 一种超级电容器用三维功能化石墨烯及其制备方法
CN104355306B (zh) 2014-10-17 2016-04-13 浙江碳谷上希材料科技有限公司 一种一锅法快速制备单层氧化石墨烯的方法
CN105585003B (zh) 2014-10-22 2019-05-31 肖彦社 一种氧化石墨烯和石墨烯纳米片的大规模连续化制备方法及其设备
KR20170083571A (ko) 2014-11-07 2017-07-18 빙 롱 시에 그래핀계 인쇄식 슈퍼캐패시터
CN107112144A (zh) 2014-11-18 2017-08-29 加利福尼亚大学董事会 多孔互连波纹状碳基网络(iccn)复合材料
US20190088420A1 (en) 2014-11-26 2019-03-21 William Marsh Rice University Laser induced graphene hybrid materials for electronic devices
WO2016094551A1 (en) 2014-12-10 2016-06-16 Purdue Research Foundation Methods of making electrodes, electrodes made therefrom, and electrochemical energy storage cells utilizing the electrodes
CN104637694A (zh) 2015-02-03 2015-05-20 武汉理工大学 多孔石墨烯支撑聚苯胺异质结构基微型超级电容器纳米器件及其制备方法
CN104617300A (zh) 2015-02-09 2015-05-13 天津师范大学 一种采用还原氧化石墨烯制备锂离子电池正负极材料的方法
CN104892935B (zh) 2015-05-21 2017-03-01 安徽大学 一种合成聚苯胺纳米管的方法
WO2016190225A1 (ja) 2015-05-28 2016-12-01 国立研究開発法人物質・材料研究機構 電極材料、その製造方法、および、それを用いた蓄電デバイス
CN105062074B (zh) 2015-07-21 2018-09-04 中国科学院过程工程研究所 一种用于直流特高压绝缘组合物、制备方法及其用途
US9773622B2 (en) 2015-08-26 2017-09-26 Nanotek Instruments, Inc. Porous particles of interconnected 3D graphene as a supercapacitor electrode active material and production process
CN105217621A (zh) 2015-10-30 2016-01-06 浙江理工大学 一种尺寸均一的氧化石墨烯制备方法
WO2017112575A1 (en) 2015-12-22 2017-06-29 The Regents Of The University Of California Cellular graphene films
US9437372B1 (en) 2016-01-11 2016-09-06 Nanotek Instruments, Inc. Process for producing graphene foam supercapacitor electrode
WO2017122230A1 (en) 2016-01-13 2017-07-20 Nec Corporation Hierarchical oxygen containing carbon anode for lithium ion batteries with high capacity and fast charging capability
CN108475590B (zh) 2016-01-22 2021-01-26 加利福尼亚大学董事会 高电压装置
US11062855B2 (en) 2016-03-23 2021-07-13 The Regents Of The University Of California Devices and methods for high voltage and solar applications
KR102378286B1 (ko) 2016-04-01 2022-03-23 더 리전트 오브 더 유니버시티 오브 캘리포니아 가요성이고 고성능인 슈퍼커패시터를 위한 탄소 클로쓰 상에서의 폴리아닐린 나노튜브의 직접 성장
US9899672B2 (en) 2016-05-17 2018-02-20 Nanotek Instruments, Inc. Chemical-free production of graphene-encapsulated electrode active material particles for battery applications
US11097951B2 (en) 2016-06-24 2021-08-24 The Regents Of The University Of California Production of carbon-based oxide and reduced carbon-based oxide on a large scale
CN109845004B (zh) 2016-08-31 2022-10-14 加利福尼亚大学董事会 包括碳基材料的装置以及其制造
KR102658785B1 (ko) 2017-06-14 2024-04-18 더 리전트 오브 더 유니버시티 오브 캘리포니아 수용성 전기화학적 에너지 저장 장치용 전극 및 전해질
US11133134B2 (en) 2017-07-14 2021-09-28 The Regents Of The University Of California Simple route to highly conductive porous graphene from carbon nanodots for supercapacitor applications
US10193139B1 (en) 2018-02-01 2019-01-29 The Regents Of The University Of California Redox and ion-adsorbtion electrodes and energy storage devices

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101723310A (zh) * 2009-12-02 2010-06-09 吉林大学 一种利用氧化石墨烯制备导电微纳结构的光加工方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
SCOTT GILJE ET AL.: "Photothermal Deoxygenation of Graphene Oxide for Patterning and Distributed Ignition Applications", 《ADVANCED MATERIALS》, vol. 22, 26 October 2009 (2009-10-26), pages 419 - 423 *
VERONICA STRONG ET AL.: "Patterning and Electronic Tuning of Laser Scribed Graphene for Flexible All-Carbon Devices", 《ACS NANO》, vol. 6, no. 2, 13 January 2012 (2012-01-13), pages 1395 - 1403, XP055197734, DOI: 10.1021/nn204200w *
第335卷: "Laser Scribing of High-Performance and Flexible Graphene-Based Electrochemical Capacitors", 《SCIENCE》, 16 March 2012 (2012-03-16), pages 1326 - 1330 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI619609B (zh) * 2015-09-14 2018-04-01 美國琳得科股份有限公司 可撓性片、導熱性組件、導電性組件、抗靜電組件、加熱元件、電磁波屏障、及製造可撓性片之方法
US10189971B2 (en) 2015-09-14 2019-01-29 Lintec Of America, Inc. Flexible sheet, thermally conductive component, electrically conductive component, antistatic component, heating element, electromagnetic wave shield, and method of producing flexible sheet
US10717844B2 (en) 2015-09-14 2020-07-21 Lintec Corporation Multilayer conformable composites
US10995195B2 (en) 2015-09-14 2021-05-04 Lintec Of America, Inc. Composite nanofiber sheet
US11377537B2 (en) 2015-09-14 2022-07-05 Lintec Of America, Inc. Multilayer composites comprising adhesive and one or more nanofiber sheets

Also Published As

Publication number Publication date
EP2794475A4 (en) 2015-07-15
WO2013162649A2 (en) 2013-10-31
US20170299563A1 (en) 2017-10-19
CN112661139A (zh) 2021-04-16
HK1201779A1 (zh) 2015-09-11
EP2794475A2 (en) 2014-10-29
EP2794475B1 (en) 2020-02-19
US10648958B2 (en) 2020-05-12
US11397173B2 (en) 2022-07-26
ES2785095T3 (es) 2020-10-05
JP6184421B2 (ja) 2017-08-23
JP2015508379A (ja) 2015-03-19
DK2794475T3 (da) 2020-04-27
US20230194492A1 (en) 2023-06-22
AU2012378149B2 (en) 2016-10-20
KR20140116427A (ko) 2014-10-02
US20160077074A1 (en) 2016-03-17
KR102071841B1 (ko) 2020-01-31
CA2862806C (en) 2021-02-16
WO2013162649A3 (en) 2014-01-03
CA2862806A1 (en) 2013-10-31
AU2012378149A1 (en) 2014-07-17
US20200232960A1 (en) 2020-07-23

Similar Documents

Publication Publication Date Title
CN104125925A (zh) 互连波纹状碳基网络
Kurra et al. Laser-derived graphene: A three-dimensional printed graphene electrode and its emerging applications
Ge et al. Direct‐laser‐writing of metal sulfide‐graphene nanocomposite photoelectrode toward sensitive photoelectrochemical sensing
Zang et al. Laser-sculptured ultrathin transition metal carbide layers for energy storage and energy harvesting applications
Humayun et al. Plasmon assisted highly efficient visible light catalytic CO 2 reduction over the noble metal decorated Sr-incorporated gC 3 N 4
Bai et al. Surface defective g-C3N4− xClx with unique spongy structure by polarization effect for enhanced photocatalytic removal of organic pollutants
Wang et al. Magnesiothermic synthesis of sulfur-doped graphene as an efficient metal-free electrocatalyst for oxygen reduction
Yang et al. Manipulation of charge transport in ferroelectric-semiconductor hybrid for photoelectrochemical applications
Schlur et al. Synthesis of zinc oxide nanorods or nanotubes on one side of a microcantilever
Yang et al. Granum‐Like Stacking Structures with TiO2–Graphene Nanosheets for Improving Photo‐electric Conversion
Peng et al. Fabrication and photovoltaic property of ordered macroporous silicon
Hynek et al. The development of 2D materials for electrochemical energy applications: A mechanistic approach
Simsek et al. Carbon nanomaterial hybrids via laser writing for high-performance non-enzymatic electrochemical sensors: a critical review
Gao et al. Defect engineering of molybdenum-based materials for electrocatalysis
Du et al. Quasi-metal microwave route to MoN and Mo2C ultrafine nanocrystalline hollow spheres as surface-enhanced Raman scattering substrates
Lee et al. Liquid phase plasma synthesis of iron oxide nanoparticles on nitrogen-doped activated carbon resulting in nanocomposite for supercapacitor applications
Zhang et al. Laser-driven growth of structurally defined transition metal oxide nanocrystals on carbon nitride photoelectrodes in milliseconds
Wolf et al. Ag-MnxOy on graphene oxide derivatives as oxygen reduction reaction catalyst in alkaline direct ethanol fuel cells
Sanna et al. Fluorinated MAX phases for photoelectrochemical hydrogen evolution
Maça et al. Effect of vinylene carbonate electrolyte additive on the surface chemistry and pseudocapacitive sodium-ion storage of TiO2 nanosheet anodes
Dettlaff et al. Conductive printable electrodes tuned by boron-doped nanodiamond foil additives for nitroexplosive detection
Soldatov et al. Operando Photo-Electrochemical Catalysts Synchrotron Studies
Pema et al. Investigating the performance of lithium-doped bismuth ferrite [BiFe1− xLixO3]-graphene nanocomposites as cathode catalyst for the improved power output in microbial fuel cells
Wang et al. 2, 6-Diaminopyridine-Based Polyurea as an ORR Electrocatalyst of an Anion Exchange Membrane Fuel Cell
Lv et al. Fabrication and characterisation of Cu2 O nanorods array by anodic oxidation method

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20141029

RJ01 Rejection of invention patent application after publication