CN203839212U - 三维石墨烯梯度含量结构超级电容器极片 - Google Patents

三维石墨烯梯度含量结构超级电容器极片 Download PDF

Info

Publication number
CN203839212U
CN203839212U CN201420005819.2U CN201420005819U CN203839212U CN 203839212 U CN203839212 U CN 203839212U CN 201420005819 U CN201420005819 U CN 201420005819U CN 203839212 U CN203839212 U CN 203839212U
Authority
CN
China
Prior art keywords
graphene
electrode plate
active carbon
super capacitor
ultracapacitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201420005819.2U
Other languages
English (en)
Inventor
不公告发明人
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangsu Mingliao Information Technology Co., Ltd.
Original Assignee
CHANGZHOU LIFANG ENERGY TECHNOLOGY Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CHANGZHOU LIFANG ENERGY TECHNOLOGY Co Ltd filed Critical CHANGZHOU LIFANG ENERGY TECHNOLOGY Co Ltd
Priority to CN201420005819.2U priority Critical patent/CN203839212U/zh
Application granted granted Critical
Publication of CN203839212U publication Critical patent/CN203839212U/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

本实用新型提供了一种三维石墨烯梯度含量结构极片构造,包括:集流体紧贴集流体的一层一定石墨烯含量的活性炭涂层石墨烯含量逐渐增加或减少的活性炭涂层涂敷于前一层涂层之上。该结构极片降低电极材料之间接触内阻,减小充电极化现象和漏电流,节省成本,从而能进一步提高超级电容器能量密度和功率密度,尤其是在超大电流密度充放电条件下超级电容器的综合性能。因此,本实用新型可应用于制备新型超级电容器。

Description

三维石墨烯梯度含量结构超级电容器极片
技术领域
本实用新型属于超级电容器电极材料制备领域,涉及一种三维石墨烯梯度含量结构的超级电容器极片。  
背景技术
电容器作为一种能量存储设备,人们使用了许多不同的名字称呼它,例如电动电容器(Electrokinetic capacitor)、双电层电容器(Electrical double-layer capacitor)、金电容器(Gold capacitor)、准电容器/赝电容器(Pseudocapacitor)和超级电容器(Supercapacitor/Ultracapacitor),其中超级电容器成为科学研究工作者和工业界最喜爱的称呼。超级电容器的结构与电池结构相似,是由电解液、浸在电解液中的电极以及位于两电极之间的离子透过隔离膜组成。充电时,电解液中正负离子分离,分别向两电极移动,在电极与电解液界面处将电荷存储,正极存储正电荷,负极存储负电荷,电荷产生的电场与电解液的内电场平衡;放电时,被存储的电荷经外电路释放,电解液中离子快速恢复到初始状态。 
超级电容器属于标准的全系列低碳经济核心产品。超级电容器具有很多特性,它的功率密度远高于锂电池,充放电循环次数可达50万次以上,寿命达10年以上,维护成本低。因此,超级电容器的发展和开发吸引了广大科学工作者的关注。同时,鉴于其诸多特点,被广泛应用于消费电子产品领域,智能电力系统,新能源汽车等交通领域,电磁炸弹、坦克启动系统等军事领域。中国超级电容器产业总规模2006年-2008年分别达到3.9亿元、5.7亿元、8.6亿元和13.3亿元,年复合增长率达到了24.4%。超级电容器占世界能量储存装置(包括电池、电容器)的市场份额不足1%,在我国所占市场份额约为0.5%。随着低碳经济日益受到重视,未来超级电容器的市场潜力巨大。然而,超级电容器较低的能量密度和系统的等效内阻,尤其是在大充放电电流密度下的性能,限制了超级电容器的进一步发展。由于超级电容器本身的内阻限制,在较大的电流密度充放电条件下会产生很大的电压降,导致存储容量急剧降低,同时,产生了很大的热量导致超级电容器系统过热而引起一系列安全问题。开发新型结构的电极材料,保持超级电容器固有特性,提高超级电容器的能量密度,降低内阻是一个重要的发展方向。 
由于活性炭有高的体积比表面积,成本低,与电解液兼容性好等特点,是使用最为广泛的超级电容器电极材料。然而活性炭由于其非晶结构,导致其本身的电导率很低(10 ~ 100 S/m)。因此,在工业制备超级电容器电极材料的过程中,需要与导电添加剂例如碳黑混合使用。 
石墨烯作为一种新兴的碳材料,其特殊的原子排列和理想的二维结构导致具有非常优异的物理化学性能。石墨烯是一种零带隙半导体,室温电子迁移率超过15000 cm2V-1S-1(Si的电子迁移率1400 cm2V-1S-1),电阻率为10-6 Ωcm,略小于银的电阻率;光透明度达到98%,且与光波波长无关;可观察到量子霍尔效应;比表面积2630 m2/g;杨氏模量~1100 GPa;断裂强度~125 GPa;热导率~5000 W m-1k-1(银:429 W m-1k-1铜:401 W m-1k-1),有望在高性能纳米电子器件、复合材料、场发射材料、气体传感器、能量存储、光催化、环境等领域获得广泛应用,被认为是下一代应用电子设备最有前途的一种材料,成为材料科学和凝聚态物理领域的研究热点。石墨烯纳米片的制备方法有很多,氧化还原法可制备出吨级石墨烯材料,重复性好,尤其在能量存储材料领域中,被认为是可实现规模化生产的重要途径之一。氧化还原法的基本原理就是利用强氧化剂在石墨片层内插入含氧官能团,扩大片层间距,减弱片层之间的范德华力吸引,后借助外力将石墨氧化物片层打开制成石墨烯氧化物再利用还原剂还原成石墨烯纳米片或利用高温热还原将石墨氧化物片层打开同时还原成石墨烯纳米片。 
将传统的活性炭与新兴的石墨烯材料混合使用作为超级电容器电极材料,一方面可以提高活性炭的电导率和利用率,另一方面石墨烯本身对比电容也有很大的贡献。综合使用,可以降低超级电容器内阻,提高功率/能量密度和循环稳定性。然而,简单的将两种材料混合不利于活性炭和石墨烯各自发挥自身特点,为了优化超级电容器的综合性能,本发明利用传统的极片制备技术-涂布法,设计了新型的石墨烯梯度含量极片的结构,石墨烯梯度含量从集流体一侧向外随极片的厚度增大而增加,可应用于先进超级电容器电极制备领域。  
发明内容
发明目的:本实用新型通过提高超级电容器电极材料活性炭的利用率和电导率,降低电极材料之间接触内阻,减小充电极化现象和漏电流,节省成本,从而能进一步提高超级电容器能量密度和功率密度,尤其是在超大电流密度充放电条件下超级电容器的综合性能。 
技术方案 
  将含有石墨烯粉体的活性炭涂层定义为存储电层。
一种三维石墨烯梯度含量结构超级电容器极片,其特征在于:其包括包括集流体、存储电层(含有石墨烯粉体的活性炭涂层),由内到外依次为集流体,存储电层(含有石墨烯粉体的活性炭涂层)。
存储电层(含有石墨烯粉体的活性炭涂层)为含有石墨烯粉体含量梯度变化的活性炭涂层。 
存储电层(含有石墨烯粉体的活性炭涂层)至多3层。 
所述的集流体厚度范围为10-50 μm。 
存储电层(含有石墨烯粉体的活性炭涂层)的比表面积范围1000-3500 m2/g,电导率500-5000 S/m。 
石墨烯含量梯度变化的活性炭涂层中每层涂层厚度范围为10-300 μm;石墨烯含量范围为0.01 wt% - 100 wt%;极片电极材料涂层总厚度范围为100-500 μm。 
有益效果 
21、活性炭被广泛用作超级电容器电极材料,其本身内阻的限制,在超高电流密度充放电要求的条件下,大大降低了超级电容器的性能指标。石墨烯具有高的电导率、比表面积,为其在电化学储能领域的应用提供了理论基础。这种平面二维结构直接用来存储电荷,可近一步提高超级电容器的功率密度。同时,石墨烯这种二维平面结构与传统的活性炭形成面面接触方式,大大降低了接触内阻。从而可以满足超高电流密度充放电的要求。为了优化石墨烯的用量,降低成本,本实用新型设计出石墨烯含量梯度变化的极片结构,来提高超级电容器的综合性能。如图1所示,为石墨烯含量梯度增加的示意图和超级电容器产品。
2、本实用新型可应用于大规模制备超级电容器石墨烯梯度含量极片。所制备的石墨烯梯度含量极片保持了活性炭原来的高的体积比表面积。石墨烯含量的梯度变化,增强了远离集流体一侧活性炭的电子输送能力,大大提高了外层活性炭的电导率和利用率。另外,由于高质量石墨烯三维网络结构的介入,也会对超级电容器的比电容做出贡献(比表面积2630 m2/g)。同时,外层石墨烯含量的增加,保证了外层活性炭的循环稳定性,延长了超级电容器的使用寿命。尤其是应用于超大电流密度充放电条件下,可提高超级电容器综合性能。 
附图说明
下面结合附图对本发明的具体实施方式作进一步详细的说明。 
图1为石墨烯梯度含量横截面示意图; 
图2为石墨烯梯度含量结构超级电容器极片1-涂层厚度相同型;
图3为石墨烯梯度含量结构超级电容器极片2-涂层厚度不同型;
图4为石墨烯梯度含量结构超级电容器极片-含量梯度增加型;
图5为石墨烯梯度含量结构超级电容器极片-含量梯度减少型;
其中1为集流体,2为含有石墨烯粉体含量梯度变化的活性炭涂层,3为石墨烯粉体含量为50wt%的活性炭涂层,4为石墨烯粉体含量为60wt%的活性炭涂层,石墨烯粉体含量为70wt%的活性炭涂层。
具体实施方式
为更好地理解本发明,下文将结合实施例对本发明进行详细描述,但应认识到这些实施例仅为对本发明进行示例说明,而非限制本发明。 
以下实施例中使用的化合物或试剂市售可得,或者可通过本领域技术人员已知的常规方法制备得到;所使用的实验仪器可通过商业途径购得。 
将含有石墨烯粉体的活性炭涂层定义为存储电层
实施例中所述的活性炭为应用于超极电容器电极材料的工业化成品。 
实施例1:选用一种超级电容器电极材料-活性炭(KURARAY,YP-50F),集流体1为铝箔(厚度20 μm),石墨烯粉体(购置于上海新池能源,比表面积大于1500 m2/g)。首先将一定量的活性炭制成水系超级电容器浆料,其中石墨烯粉体含量占50wt%,利用涂布机涂敷于铝箔上,涂层厚度为100 μm。增加活性炭浆料中石墨烯粉体的含量至60wt%,涂敷于前一层涂层之上,涂层厚度为100 μm。继续增加活性炭浆料中石墨烯粉体的含量至70wt%,涂敷于前一层涂层之上,涂层厚度为100 μm。这样形成每层涂层厚度相同的石墨烯含量梯度增加的极片结构,如图2和图4所示。 
实施例2:选用一种超级电容器电极材料-活性炭(KURARAY,YP-50F),集流体为铝箔(厚度20 μm),石墨烯粉体(购置于上海新池能源,比表面积大于1500 m2/g)。首先将一定量的活性炭制成水系超级电容器浆料,其中石墨烯粉体含量占50wt%,利用涂布机涂敷于铝箔上,涂层厚度为10 μm。增加活性炭浆料中石墨烯粉体的含量至60wt%,涂敷于前一层涂层之上,涂层厚度为300 μm。这样形成第一层薄层,第二层厚层结构的石墨烯含量梯度增加的极片结构,如图3所示。 
实施例3:选用一种超级电容器电极材料-活性炭(KURARAY,YP-50F),集流体为铝箔(厚度20 μm),石墨烯粉体(购置于上海新池能源,比表面积大于1500 m2/g)。首先将一定量的活性炭制成水系超级电容器浆料,其中石墨烯粉体含量占70wt%,利用涂布机涂敷于铝箔上,涂层厚度为100 μm。降低活性炭浆料中石墨烯粉体的含量至60wt%,涂敷于前一层涂层之上,涂层厚度为100 μm。继续降低活性炭浆料中石墨烯粉体的含量至50wt%,涂敷于前一层涂层之上,涂层厚度为100 μm。这样形成每层涂层厚度相同的石墨烯含量梯度减小的极片结构,如图5所示。 
实施例4:选用一种超级电容器电极材料-活性炭(KURARAY,YP-50F),集流体为铝箔(厚度20 μm),石墨烯粉体(购置于上海新池能源,比表面积大于1500 m2/g)。首先将一定量的活性炭制成油系超级电容器浆料,其中石墨烯粉体含量占50wt%,利用涂布机涂敷于铝箔上,涂层厚度为50 μm。增加活性炭浆料中石墨烯粉体的含量至60wt%,涂敷于前一层涂层之上,涂层厚度为50 μm。继续增加活性炭浆料中石墨烯粉体的含量至70wt%,涂敷于前一层涂层之上,涂层厚度为50 μm。这样形成每层涂层厚度相同的石墨烯含量梯度增加的极片结构,如图2和图4所示。 
虽然已结合具体实施方案对本发明进行了示例说明,但本领域技术人员应认识到的是,在不偏离本发明主旨和范围的情况下,可对所述实施方案进行改变或改进,本发明范围通过所附权利要求书限定。 

Claims (4)

1.一种三维石墨烯梯度含量结构超级电容器极片,其特征在于:其包括包括集流体、存储电层,由内到外依次为集流体,存储电层
2.根据权利要求1所述的一种三维石墨烯梯度含量结构超级电容器极片,其特征在于:存储电层至多3层。
3.根据权利要求1至3任意一项所述的一种三维石墨烯梯度含量结构超级电容器极片,其特征在于:集流体(1)为铝箔、铜箔或腐蚀铝箔等。
4.根据权利要求4所述的一种三维石墨烯梯度含量结构超级电容器极片,其特征在于:所述的集流体厚度范围为10-50 μm。 
CN201420005819.2U 2014-01-06 2014-01-06 三维石墨烯梯度含量结构超级电容器极片 Expired - Fee Related CN203839212U (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201420005819.2U CN203839212U (zh) 2014-01-06 2014-01-06 三维石墨烯梯度含量结构超级电容器极片

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201420005819.2U CN203839212U (zh) 2014-01-06 2014-01-06 三维石墨烯梯度含量结构超级电容器极片

Publications (1)

Publication Number Publication Date
CN203839212U true CN203839212U (zh) 2014-09-17

Family

ID=51517024

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201420005819.2U Expired - Fee Related CN203839212U (zh) 2014-01-06 2014-01-06 三维石墨烯梯度含量结构超级电容器极片

Country Status (1)

Country Link
CN (1) CN203839212U (zh)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016075465A1 (en) * 2014-11-14 2016-05-19 Isis Innovation Limited Electrode structure and method of manufacture thereof
US10211495B2 (en) 2014-06-16 2019-02-19 The Regents Of The University Of California Hybrid electrochemical cell
US10614968B2 (en) 2016-01-22 2020-04-07 The Regents Of The University Of California High-voltage devices
US10622163B2 (en) 2016-04-01 2020-04-14 The Regents Of The University Of California Direct growth of polyaniline nanotubes on carbon cloth for flexible and high-performance supercapacitors
US10648958B2 (en) 2011-12-21 2020-05-12 The Regents Of The University Of California Interconnected corrugated carbon-based network
US10655020B2 (en) 2015-12-22 2020-05-19 The Regents Of The University Of California Cellular graphene films
US10734167B2 (en) 2014-11-18 2020-08-04 The Regents Of The University Of California Porous interconnected corrugated carbon-based network (ICCN) composite
US10938021B2 (en) 2016-08-31 2021-03-02 The Regents Of The University Of California Devices comprising carbon-based material and fabrication thereof
US10938032B1 (en) 2019-09-27 2021-03-02 The Regents Of The University Of California Composite graphene energy storage methods, devices, and systems
US11004618B2 (en) 2012-03-05 2021-05-11 The Regents Of The University Of California Capacitor with electrodes made of an interconnected corrugated carbon-based network
US11062855B2 (en) 2016-03-23 2021-07-13 The Regents Of The University Of California Devices and methods for high voltage and solar applications
US11097951B2 (en) 2016-06-24 2021-08-24 The Regents Of The University Of California Production of carbon-based oxide and reduced carbon-based oxide on a large scale
US11133134B2 (en) 2017-07-14 2021-09-28 The Regents Of The University Of California Simple route to highly conductive porous graphene from carbon nanodots for supercapacitor applications

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10648958B2 (en) 2011-12-21 2020-05-12 The Regents Of The University Of California Interconnected corrugated carbon-based network
US11397173B2 (en) 2011-12-21 2022-07-26 The Regents Of The University Of California Interconnected corrugated carbon-based network
US11257632B2 (en) 2012-03-05 2022-02-22 The Regents Of The University Of California Capacitor with electrodes made of an interconnected corrugated carbon-based network
US11915870B2 (en) 2012-03-05 2024-02-27 The Regents Of The University Of California Capacitor with electrodes made of an interconnected corrugated carbon-based network
US11004618B2 (en) 2012-03-05 2021-05-11 The Regents Of The University Of California Capacitor with electrodes made of an interconnected corrugated carbon-based network
US10847852B2 (en) 2014-06-16 2020-11-24 The Regents Of The University Of California Hybrid electrochemical cell
US11569538B2 (en) 2014-06-16 2023-01-31 The Regents Of The University Of California Hybrid electrochemical cell
US10211495B2 (en) 2014-06-16 2019-02-19 The Regents Of The University Of California Hybrid electrochemical cell
WO2016075465A1 (en) * 2014-11-14 2016-05-19 Isis Innovation Limited Electrode structure and method of manufacture thereof
CN107112143B (zh) * 2014-11-14 2020-11-06 牛津大学科技创新有限公司 电极结构及其制造方法
CN107112143A (zh) * 2014-11-14 2017-08-29 牛津大学科技创新有限公司 电极结构及其制造方法
US10734167B2 (en) 2014-11-18 2020-08-04 The Regents Of The University Of California Porous interconnected corrugated carbon-based network (ICCN) composite
US11810716B2 (en) 2014-11-18 2023-11-07 The Regents Of The University Of California Porous interconnected corrugated carbon-based network (ICCN) composite
US10655020B2 (en) 2015-12-22 2020-05-19 The Regents Of The University Of California Cellular graphene films
US11118073B2 (en) 2015-12-22 2021-09-14 The Regents Of The University Of California Cellular graphene films
US11891539B2 (en) 2015-12-22 2024-02-06 The Regents Of The University Of California Cellular graphene films
US11842850B2 (en) 2016-01-22 2023-12-12 The Regents Of The University Of California High-voltage devices
US10892109B2 (en) 2016-01-22 2021-01-12 The Regents Of The University Of California High-voltage devices
US10614968B2 (en) 2016-01-22 2020-04-07 The Regents Of The University Of California High-voltage devices
US11062855B2 (en) 2016-03-23 2021-07-13 The Regents Of The University Of California Devices and methods for high voltage and solar applications
US11961667B2 (en) 2016-03-23 2024-04-16 The Regents Of The University Of California Devices and methods for high voltage and solar applications
US10622163B2 (en) 2016-04-01 2020-04-14 The Regents Of The University Of California Direct growth of polyaniline nanotubes on carbon cloth for flexible and high-performance supercapacitors
US11097951B2 (en) 2016-06-24 2021-08-24 The Regents Of The University Of California Production of carbon-based oxide and reduced carbon-based oxide on a large scale
US10938021B2 (en) 2016-08-31 2021-03-02 The Regents Of The University Of California Devices comprising carbon-based material and fabrication thereof
US11791453B2 (en) 2016-08-31 2023-10-17 The Regents Of The University Of California Devices comprising carbon-based material and fabrication thereof
US11133134B2 (en) 2017-07-14 2021-09-28 The Regents Of The University Of California Simple route to highly conductive porous graphene from carbon nanodots for supercapacitor applications
US10938032B1 (en) 2019-09-27 2021-03-02 The Regents Of The University Of California Composite graphene energy storage methods, devices, and systems

Similar Documents

Publication Publication Date Title
CN203839212U (zh) 三维石墨烯梯度含量结构超级电容器极片
Ramachandran et al. Asymmetric supercapacitors: Unlocking the energy storage revolution
Chen et al. Electrophoretic deposition of graphene nanosheets on nickel foams for electrochemical capacitors
Ren et al. Metallic CoS2 nanowire electrodes for high cycling performance supercapacitors
CN102013330B (zh) 石墨烯/多孔氧化镍复合超级电容器薄膜及其制备方法
Qu et al. Rational design of Au–NiO hierarchical structures with enhanced rate performance for supercapacitors
CN106548877B (zh) 碳纳米管阵列/聚苯胺/二氧化铈复合材料电极及其制备方法和应用
CN103035409A (zh) 石墨烯复合电极及其制备方法和应用
CN102915844B (zh) 一种制备碳片/二氧化锰纳米片的分级复合材料的方法及其应用
CN104715934A (zh) 一种混合超级电容器及其制备方法
Kandalkar et al. Cobalt–nickel composite films synthesized by chemical bath deposition method as an electrode material for supercapacitors
CN104992837A (zh) 应用于准法拉第超级电容器的复合基材及其制法与应用
Lee et al. Self-organized cobalt fluoride nanochannel layers used as a pseudocapacitor material
CN105948132B (zh) 一种三维γ‑Fe2O3纳米材料的制备方法及其应用
CN103887077A (zh) 一种超级电容器及其制备方法
He et al. Ultrathin Cerium Orthovanadate Nanobelts for High‐Performance Flexible All‐Solid‐State Asymmetric Supercapacitors
CN102856080A (zh) 一种基于纳米多孔金属导电聚合物的超级电容器材料及其制备方法
CN102354604B (zh) 复合电极超级电容器及其制备方法
CN101950673A (zh) 高倍率超级电容器
Ike et al. Modelling and optimization of electrodes utilization in symmetric electrochemical capacitors for high energy and power
Nuamah et al. Supercapacitor performance evaluation of nanostructured Ag‐decorated Co‐Co3O4 composite thin film electrode material
CN208722757U (zh) 一种超级电容器的电极极片结构
CN103956274A (zh) 一种超级电容器复合电极的制备方法
Jiang et al. Electrodeposition of Ni–Co double hydroxide composite nanosheets on Fe substrate for high‐performance supercapacitor electrode
CN208460575U (zh) 一种石墨烯超级电容器电极

Legal Events

Date Code Title Description
C14 Grant of patent or utility model
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20190326

Address after: 213000 No. 123 Hexiang Road, West Taihu Science and Technology Industrial Park, Changzhou City, Jiangsu Province

Patentee after: Jiangsu Mingliao Information Technology Co., Ltd.

Address before: 213149 South Second Floor of Hubin No. 1 Sales Office, Luyang Road, Wujin Jingfa District, Changzhou City, Jiangsu Province

Patentee before: CHANGZHOU LIFANG ENERGY TECHNOLOGY CO., LTD.

CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20140917

Termination date: 20210106