WO2013115205A1 - 発電機リム用熱延鋼板およびその製造方法 - Google Patents

発電機リム用熱延鋼板およびその製造方法 Download PDF

Info

Publication number
WO2013115205A1
WO2013115205A1 PCT/JP2013/051956 JP2013051956W WO2013115205A1 WO 2013115205 A1 WO2013115205 A1 WO 2013115205A1 JP 2013051956 W JP2013051956 W JP 2013051956W WO 2013115205 A1 WO2013115205 A1 WO 2013115205A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
hot
steel sheet
rolled steel
content
Prior art date
Application number
PCT/JP2013/051956
Other languages
English (en)
French (fr)
Inventor
中村 展之
中島 勝己
船川 義正
一生 沖本
隆彦 小倉
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to US14/375,709 priority Critical patent/US10301698B2/en
Priority to EP13744071.5A priority patent/EP2811046B1/en
Priority to CN201380007556.7A priority patent/CN104080938B/zh
Priority to JP2013554129A priority patent/JP5578288B2/ja
Priority to KR1020147021132A priority patent/KR101638715B1/ko
Publication of WO2013115205A1 publication Critical patent/WO2013115205A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0421Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the working steps
    • C21D8/0426Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1222Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1261Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest following hot rolling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/16Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/12Accessories for subsequent treating or working cast stock in situ
    • B22D11/1206Accessories for subsequent treating or working cast stock in situ for plastic shaping of strands
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/004Dispersions; Precipitations
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese

Definitions

  • the present invention relates to a hot-rolled steel sheet having a yield strength YS of 700 MPa or more and a method for producing the hot-rolled steel sheet, and particularly to a hot-rolled steel sheet excellent in magnetic properties suitable for generator rims such as hydroelectric power generation and its It relates to a manufacturing method.
  • a generator such as a hydroelectric generator includes a rotor and a stator, and the rotor includes a pole core that serves as an iron core and a rim that supports the pole core. To make the power generation capacity, it is necessary to rotate the rotor at high speed.
  • the rim is required to maintain a high strength in order to withstand high-speed centrifugal force, and a hot-rolled steel sheet having a yield strength of 550 MPa class has been mainly used.
  • a hot-rolled steel sheet having a yield strength of 550 MPa class has been mainly used.
  • the rim steel plate at the same time, it is required to retain excellent magnetic properties.
  • Patent Document 1 C: 0.02% or more and 0.10% or less, Si: 2.0% or less, Mn: 0.5% or more and 2.0% by weight%
  • P 0.08% or less
  • S 0.006% or less
  • N 0.005% or less
  • Al 0.01% or more and 0.1% or less
  • Ti 0.06% or more
  • 0.0. 3% or less and 0.50 ⁇ (Ti-3.43N-1.5S) / 4C containing Ti the area ratio of the low-temperature transformation product and pearlite is 15% or less
  • polygonal ferrite Describes a hot-rolled steel sheet having a microstructure in which TiC is dispersed.
  • Patent Document 1 states that one or more of Nb, Mo, V, Zr, Cr, Ni, Ca and the like may be contained in the hot-rolled steel sheet.
  • bainitic flights with a high dislocation density are likely to be generated, and the magnetic characteristics are likely to deteriorate.
  • Patent Document 2 describes a method for producing a high-tensile hot-rolled steel sheet having a high magnetic flux density.
  • the technique described in Patent Document 2 is weight%, C: 0.05% or more and 0.15% or less, Si: 0.50% or less, Mn: 0.70% or more and 2.00% or less, P: 0.020% or less, S: 0.010% or less, sol.
  • the technique described in Patent Document 2 has a yield strength YS of 80 kg / mm 2 (785 MPa) or more, a tensile strength TS of 100 kg / mm 2 (980 MPa) or more, and a magnetic flux density B 100 of 1.77 T. It is said that a high-tensile hot-rolled steel sheet having a high magnetic flux density is obtained.
  • B is always included for improving the hardenability, and is rapidly cooled after hot rolling. For this reason, since it becomes easy to produce
  • Patent Document 3 describes a method for producing a high-tensile hot-rolled steel sheet having a high magnetic flux density.
  • the technique described in Patent Document 3 is, by weight ratio, C: 0.02% to 0.06%, Si: 0.10% or less, Mn: 0.3% to 1.2%, S: A steel slab containing 0.02% or less, Al: 0.10% or less, N: 0.01% or less, Ti: 0.05% or more and 0.30% or less is heated to 1200 ° C. or more, and the Ar3 transformation point
  • This is a method for producing a high-tensile hot-rolled steel sheet, which is hot-rolled at a finish rolling temperature in the range of 900 ° C. or lower and wound in a temperature range of 500% or higher and 650 ° C.
  • the technique described in Patent Document 3 is a high-tensile hot-rolled steel sheet having a high magnetic flux density having a tensile strength TS of 50 kg / mm 2 (490 MPa) and a magnetic flux density B 100 of 1.8 T or more. It is supposed to be obtained.
  • the technique described in Patent Document 3 reduces the Si content to 0.10% or less and secures a desired high strength by precipitation strengthening with Ti carbide.
  • bainitic ferrite having a high dislocation density is likely to be generated, and magnetic characteristics are deteriorated, which is sufficient for an iron core for a rotating machine. It is difficult to ensure the proper magnetic properties.
  • Patent Document 4 by weight, C: 0.10% or less, Si: 0.5% or less, Mn: 0.2% or more and 2% or less, P: 0.06% or less, S: 0 0.01% or less, Al: 0.1% or less, N: 0.006% or less, Ti: 0.02% or more and 0.2% or less, and Mo: 0.7% or less (however, 0.2%) (Excluding the following ranges) and W: including at least one of 0.15% or less, and a carbide structure containing at least one of Ti, Mo, and W dispersed in a ferrite structure having a volume ratio of 95% or more.
  • a hot-rolled steel sheet for a rotating machine iron core having a strength of 590 MPa or higher is described. According to the technique described in Patent Document 4, it is said that a high-strength hot-rolled steel sheet having excellent magnetic properties while having excellent workability and sufficient characteristics for a rotating machine iron core is obtained.
  • Patent Document 4 a hot-rolled steel sheet having excellent magnetic properties can be obtained, but it is necessary to contain a large amount of expensive Mo and W, and the material cost increases.
  • the present invention has been made in view of the above-mentioned problems, and its purpose is that the yield strength YS in the rolling direction is 700 MPa or more in a relatively inexpensive component range without containing a large amount of expensive alloy elements. and high strength, the magnetic flux density B 50 is the magnetic flux density B 100 above 1.5T to provide the excellent magnetic properties equal to or greater than 1.6 T, the hot-rolled steel sheet and a manufacturing method thereof generator rim to combine the is there.
  • the hot-rolled steel sheet for generator rims according to the present invention includes a ferrite phase having an area ratio of 95% or more, and precipitates containing Ti and V having an average particle size of less than 10 nm are precipitated in the crystal grains of the ferrite phase.
  • the yield strength YS in the rolling direction is 700 MPa or more
  • the magnetic flux density B 50 is 1.5 T or more
  • the magnetic flux density B 100 is characterized by having a more electromagnetic characteristics 1.6T (electromagnetic properties).
  • the hot-rolled steel sheet for a generator rim according to the present invention is the above-described invention, wherein the structure includes a ferrite phase having an area ratio of 95% or more, and an average grain size of Ti is less than 10 nm in crystal grains of the ferrite phase.
  • the structure includes a ferrite phase having an area ratio of 95% or more, and an average grain size of Ti is less than 10 nm in crystal grains of the ferrite phase.
  • V and V it is a structure in which a precipitate containing one or two of Nb and Mo is precipitated.
  • the hot-rolled steel sheet for generator rims according to the present invention is, in addition to the structure, mass%, C: 0.03% or more and 0.11% or less, Si: 0.3% or less, Mn: 1.0% or more and 2.0% or less, P: 0.06% or less, S: 0.01% or less, Al: 0.06% or less, N: 0.006% or less, Ti: 0.06% or more 0.21% or less, V: 0.05% or more and 0.20% or less, and the content of solute V is 0.005% or more, and the balance is Fe and inevitable impurities. It has a composition.
  • the hot-rolled steel sheet for generator rims according to the present invention is, in addition to the structure, mass%, C: 0.03% or more and 0.11% or less, Si: 0.3% or less, Mn: 1.0% or more and 2.0% or less, P: 0.06% or less, S: 0.01% or less, Al: 0.06% or less, N: 0.006% or less, Ti: 0.06% or more 0.21% or less, V: 0.05% or more and 0.20% or less, and the content of the solid solution V is 0.005% or more. Further, Nb: 0.08% or less, Mo: 0 It contains one or two selected from 2% or less, and has a composition comprising the balance Fe and inevitable impurities.
  • the method for producing a hot-rolled steel sheet for a generator rim according to the present invention is, in mass%, C: 0.03% or more and 0.11% or less, Si: 0.3% or less, Mn: 1.0% or more. 0% or less, P: 0.06% or less, S: 0.01% or less, Al: 0.06% or less, N: 0.006% or less, Ti: 0.06% or more and 0.21% or less, V : 0.05% or more and 0.20% or less, molten steel having a composition composed of the balance Fe and inevitable impurities is melted and made into a steel material by a continuous casting method or an ingot-making method. Alternatively, after cooling, the steel sheet is heated to 1100 ° C.
  • the steel plate temperature reaches 700 ° C.
  • the coiling temperature is 500 ° C. or lower. And wherein the winding as the less than 700 °C.
  • the method for producing a hot-rolled steel sheet for generator rims according to the present invention, in the above invention, in addition to the above composition, is further selected from mass%, Nb: 0.08% or less, Mo: 0.2% or less. It is characterized by setting it as the composition containing 1 type or 2 types.
  • the high yield strength YS in the rolling direction is 700 MPa or more and the magnetic flux density B 50 is 1.5 T or more in a relatively inexpensive component range without containing a large amount of expensive alloy elements. It is possible to provide a hot-rolled steel sheet for a generator rim that has excellent magnetic properties such that the magnetic flux density B 100 is 1.6 T or more, and a method for manufacturing the hot-rolled steel sheet.
  • the inventors diligently studied various factors affecting magnetic properties while maintaining a high strength of 700 MPa or more in the yield strength in the rolling direction. As a result, the inventors came up with the idea of using V without using expensive Mo or W, and made a composition containing an appropriate amount of V together with Ti. Furthermore, the present inventors have optimized the cooling rate and coiling temperature after finish rolling in hot rolling, so that the average crystal grain size is a single phase composed of a ferrite phase in the range of 2 ⁇ m or more and less than 10 ⁇ m.
  • the mechanism by which the magnetic properties are remarkably improved in a state where the yield strength is maintained at a high strength of 700 MPa or more is not necessarily clear so far, but the present inventors consider as follows.
  • the structure of the hot-rolled steel sheet according to the present invention is a single phase composed of a ferrite phase, which has a low dislocation density and excellent magnetic properties, and does not include a martensite phase or a bainite phase having a high dislocation density that hinders domain wall movement.
  • very fine precipitates having an average particle size of 10 nm or less are precipitated in the crystal grains of the ferrite phase.
  • Such extremely fine precipitates greatly contribute to the increase in strength but do not hinder the movement of the domain wall. Therefore, it is considered that a high magnetic flux density was obtained while maintaining a high strength. Furthermore, it is considered that the strain around the fine precipitates was reduced by dissolving an appropriate amount of V having an atomic radius close to that of Fe, thereby contributing to an increase in magnetic flux density.
  • the hot-rolled steel sheet of the present invention is a single phase composed of a ferrite phase, and Ti and V having an average particle size of less than 10 nm, or further one or two of Nb and Mo are contained in the crystal grains of the ferrite phase. It has a structure in which precipitates are deposited.
  • the “single phase composed of ferrite phase” here is not limited to the case where the ferrite phase occupies 100% in area ratio. This includes the case where the ferrite phase is substantially a single phase occupying 95% or more, more preferably 98% or more in area ratio.
  • the workability is remarkably improved.
  • the magnetic properties are remarkably improved by employing a “single phase composed of a ferrite phase” that does not include a martensite phase or a bainite phase.
  • the ferrite phase crystal grains are refined to an average crystal grain size of 2 ⁇ m or more and less than 10 ⁇ m, and the average grain size of precipitates containing Ti and V precipitated in the ferrite crystal grains is set to less than 10 nm.
  • a high strength with a strength YS of 700 MPa or more is obtained.
  • the movement of the domain wall is hindered, and a remarkable improvement in magnetic properties cannot be expected.
  • the precipitate containing fine Ti and V having an average particle diameter of less than 10 nm precipitated in the ferrite crystal grains has an action of strengthening the steel sheet without deteriorating the magnetic properties.
  • the average particle size of the precipitate containing Ti and V is coarsened to 10 nm or more, it is impossible to ensure a high strength with a yield strength YS of 700 MPa or more.
  • strength when the average particle diameter of the deposit to precipitate is 10 nm or more, it is necessary to increase the deposit amount of a deposit. In order to deposit a larger amount of precipitates, the content of the precipitate-forming elements inevitably increases, leading to an increase in material costs.
  • the average particle size of the precipitates in which the metal elements contained are Ti and V is limited to less than 10 nm.
  • carbide is most preferable, but as long as the average particle size is less than 10 nm, the nitride or carbonitride does not particularly affect the essence of the invention.
  • the precipitates whose metal elements are Ti and V may further contain one or more of Nb or Mo in combination. That is, Ti carbide, nitride, and carbonitride, Nb carbide, nitride, and carbonitride, V carbide, nitride, and carbonitride, and Mo carbide alone and / or compounded Even if it is deposited, it does not affect the essence of the invention.
  • the hot-rolled steel sheet of the present invention having the above-described structure is in mass%, C: 0.03% to 0.11%, Si: 0.3% or less, Mn: 1.0% to 2.0%, P: 0.06% or less, S: 0.01% or less, Al: 0.06% or less, N: 0.006% or less, Ti: 0.06% or more and 0.21% or less, V: 0.05 % Or more and 0.20% or less, and the content of the solid solution V is 0.005% or more, or Nb: 0.08% or less and Mo: 0.2% or less. It is preferable to have a composition comprising one or two types, the balance being Fe and inevitable impurities.
  • [C content] C is an element that contributes to securing a desired high strength by bonding with carbide-forming elements to form fine carbides and strengthening precipitation.
  • Si content Si is an element that effectively increases the steel sheet strength by solid solution strengthening. However, if the content exceeds 0.3%, the discharge of C from the ferrite is promoted, and coarse iron carbide is likely to precipitate at the grain boundaries, not only causing a decrease in magnetic properties, but also the surface properties of the steel sheet. It also causes deterioration. For this reason, it is preferable to limit the Si content to 0.3% or less. More preferably, the Si content is 0.1% or less. There is no problem even if the Si content is zero.
  • Mn is an element effective in increasing the strength of a hot-rolled steel sheet by refining carbides precipitated in the ferrite phase crystal grains.
  • most of the carbides precipitated in the ferrite phase crystal grains are carbides precipitated simultaneously with the austenite ( ⁇ ) ⁇ ferrite ( ⁇ ) transformation in the cooling process after finish rolling in the hot rolled steel sheet manufacturing process. Therefore, when the ⁇ ⁇ ⁇ transformation temperature of steel is high, carbides precipitate in a high temperature range, and the carbides become coarse in the cooling process until winding.
  • Mn has the effect of lowering the ⁇ ⁇ ⁇ transformation temperature of the steel, so when a predetermined amount of Mn is contained, the ⁇ ⁇ ⁇ transformation temperature of the steel is lowered to the coiling temperature range described later.
  • carbide can be precipitated during the winding of the steel sheet. The carbide precipitated during winding without being exposed to such a high temperature range for a long time is maintained in a fine state.
  • the Mn content exceeds 2.0%, segregation becomes significant, the transformation temperature becomes too low, and a hard second phase such as bainite and martensite is formed, resulting in a decrease in magnetic properties. .
  • [P content] P is effective element contributing to increased strength of the solid solution to the steel sheet.
  • P has a strong tendency to segregate at grain boundaries and the like, and when the content exceeds 0.06, the toughness and magnetic properties are remarkably lowered.
  • [S content] S is present as an inclusion in steel and reduces ductility, toughness and the like. For this reason, in the present invention, it is desirable to reduce the S content as much as possible, but a content of up to 0.01% is acceptable from the viewpoint of magnetic properties. For this reason, the content of S is preferably limited to 0.01% or less. More preferably, the S content is 0.005% or less. There is no problem even if the S content is zero.
  • Al content acts as a deoxidizer. In order to obtain such an effect, it is desirable to contain 0.01% or more of Al. However, when the content exceeds 0.06%, the oxide inclusions increase excessively, and the workability deteriorates. For this reason, it is preferable to limit the content of Al to 0.06% or less. More preferably, the Al content is 0.04% or less.
  • N is likely to form coarse nitrides such as TiN by combining with nitride-forming elements such as Ti and V. Coarse nitrides lead to deterioration of magnetic properties, and the amount of effective Ti, V, etc. that contributes to increasing the strength of steel sheets by forming fine carbides is reduced to ensure the desired high strength. Becomes difficult.
  • the N content is preferably limited to 0.006% or less. More preferably, the N content is 0.004% or less. There is no problem even if the N content is zero.
  • Ti is an important element in the present invention that forms fine carbides, nitrides, carbonitrides, and the like and ensures desired high strength by precipitation strengthening. Preferably contains Ti or 0.06% in order to obtain such an effect. On the other hand, even if the Ti content exceeds 0.21%, only coarse carbides and nitrides that do not contribute to the strengthening of the steel increase, and the useless content that does not contribute to the strengthening increases, and the effect commensurate with the content. Cannot be expected. For this reason, it is preferable to limit the Ti content within a range of 0.06% or more and 0.21% or less. More preferably the content of Ti is in the range of 0.15% to 0.08%.
  • V content V, like Ti, is an important element in the present invention that forms fine carbides, nitrides, carbonitrides, and the like and ensures desired high strength by precipitation strengthening. In order to acquire such an effect, it is preferable to contain V 0.05% or more. On the other hand, even if the content of V exceeds 0.20%, only coarse carbides and nitrides that do not contribute to the strengthening of the steel increase, and the useless content that does not contribute to the strengthening increases, and an effect commensurate with the content. Cannot be expected. Therefore, the content of V is preferably limited to the range of 0.20% to 0.05%. More preferably the content of V is in the range of 0.15% to 0.08%.
  • the solid solution V is an important element in the present invention that alleviates strain around the precipitate and contributes to improvement of magnetic properties.
  • the content of the solid solution V is preferably 0.005% or more.
  • the upper limit value of the content of the solid solution V is not particularly defined, but the precipitated V is unavoidably present, and therefore is less than the V content.
  • Nb and Mo are elements that form fine carbides, nitrides, carbonitrides, and the like and contribute to high strength by precipitation strengthening, and can be selected and contained as necessary.
  • Nb content is an element that forms fine carbides, nitrides, carbonitrides, and the like and has a function of ensuring desired high strength by precipitation strengthening. Such effects in order to obtain a desirably contain Nb of 0.01% or more. On the other hand, when the Nb content exceeds 0.08%, the precipitates are excessive and the magnetic properties are deteriorated. For this reason, when Nb is contained, the Nb content is preferably limited to 0.08% or less. More preferably the content of Nb is in the range of 0.07% to 0.03%.
  • Mo content is an element having an action of securing a desired high strength by solid solution in fine carbides, nitrides, carbonitrides and the like containing Ti and V and precipitation strengthening. Mo is an element that suppresses pearlite transformation and promotes the formation of a ferrite phase single phase structure. Such effects in order to obtain a desirably contains at least 0.05% of Mo.
  • the content of Mo exceeds 0.20%, a hard phase may be formed, resulting in a decrease in magnetic properties and an increase in manufacturing cost.
  • the Mo content is preferably limited to 0.20% or less. More preferably the content of Mo is in the range of 0.15% to 0.05%.
  • the balance other than the above components is composed of Fe and inevitable impurities.
  • unavoidable impurities O: 0.01% or less, Cu: 0.5% or less, Ni: 0.5% or less, Cr: 0.5% or less, Sn: 0.3% or less, Ta: 0. 1% or less, W: 0.1% or less, Ca: 0.005% or less, Mg: 0.005% or less, REM: 0.005% or less, B: 0.005% or less are acceptable.
  • the steel material having the above composition is preferably immediately hot-rolled, or once cooled and then heated and hot-rolled to obtain a hot-rolled steel sheet.
  • the manufacturing method of the steel material is not particularly limited, but the molten steel having the above-described composition is melted by a conventional melting method such as a converter or an electric furnace, and a conventional casting method such as a continuous casting method is used. It is preferable to use a steel material such as slab.
  • the obtained steel material When the obtained steel material has a temperature at which hot rolling is possible, immediately or once cooled to near room temperature, it is heated to a temperature of 1100 ° C. or higher, preferably 1250 ° C. or higher. Apply hot rolling. Heating before hot rolling includes coarse precipitates that adversely affect magnetic properties, and further includes precipitates (preferably carbides) containing Ti and V, or Ti and V after hot rolling. Further, it is important for finely depositing precipitates (preferably carbides) containing Nb and one or two of Mo, and at the stage of the steel material before hot rolling, Ti, Nb, V, and It is important to completely dissolve Mo. For this reason, the steel material (slab) is immediately hot-rolled or once cooled, and then heated to a temperature of 1100 ° C. or higher, preferably 1250 ° C. or higher.
  • the steel material heated to the above temperature is subjected to hot rolling.
  • the hot rolling is rolling consisting of rough rolling and finish rolling.
  • the conditions for rough rolling are not particularly limited, and it is sufficient that the sheet bar (rough rolled bar) has a predetermined size and shape. Even if the sheet bar is heated or retained after rough rolling and before finish rolling or during finish rolling, the sheet bar may be joined and continuously rolled after rough rolling, or the sheet bar may be heated and continuously rolled. Even if performed simultaneously, there is no problem and the effect of the present invention is not affected.
  • Finish rolling is rolling in which the steel plate temperature on the exit side of the finish rolling mill is 800 ° C. or higher.
  • the steel plate temperature on the exit side of the finish rolling mill is less than 800 ° C.
  • the yield strength in the desired rolling direction cannot be ensured, and the tensile strength is also less than the desired tensile strength.
  • the structure becomes finer and it becomes difficult to secure desired magnetic characteristics.
  • the steel plate temperature in the exit side of a finishing mill is limited to 800 degreeC or more.
  • the steel sheet temperature on the exit side of the finishing mill is in the range of 850 ° C. or higher and 950 ° C. or lower.
  • the steel sheet After finishing the finish rolling, the steel sheet is cooled at an average cooling rate of 30 ° C./s or more until the steel plate temperature reaches 700 ° C., and then cooled to the winding temperature and wound in a coil shape.
  • the cooling after finishing rolling is limited to a cooling rate of an average cooling rate of 30 ° C./s or more.
  • the average cooling rate is 50 ° C./s or more.
  • the average cooling rate is 400 ° C./s or more, there is a concern that the shape of the steel sheet is deteriorated. Therefore, the average cooling rate is preferably less than 400 ° C./s.
  • the winding temperature is in the range of 500 ° C to 700 ° C.
  • the coiling temperature is less than 500 ° C., since a bainite phase or a martensite phase is included, a desired ferrite phase single phase structure cannot be secured.
  • a precipitate containing Ti, V, or further containing Nb, Mo is not sufficiently precipitated, a desired high strength cannot be ensured.
  • the coiling temperature is set in the range of 500 ° C. or higher and 700 ° C. or lower.
  • the coiling temperature is in the range of 550 ° C or higher and 650 ° C or lower. This further improves the balance between strength and magnetic properties.
  • the hot-rolled steel sheet of the present invention has no difference in characteristics even when it is scaled or after pickling. Furthermore, there is no problem even if temper rolling is performed as long as it is within the range of normal conditions.
  • the hot-rolled steel sheet of the present invention is suitable for use as an electromagnetic member.
  • the hot-rolled steel sheet of the present invention can be cut into a predetermined shape by means such as shearing, punching, or laser cutting, laminated, and used as an electromagnetic member for a rim or core (such as a pole core).
  • the hot-rolled steel sheet of the present invention can be suitably applied to a generator rim that requires both high strength and good magnetic properties.
  • the steel shown in Table 2 was melted in a converter and made into a slab (steel material: thickness 250 mm) by a continuous casting method, followed by hot rolling under the conditions shown in Table 2. A thick hot-rolled steel sheet was used. Test pieces were collected from the obtained hot-rolled steel sheet, and subjected to a structure observation test, an analysis of the content of solute V, a tensile test, and a magnetic property measurement test to investigate strength and magnetic properties.
  • the test method was as follows.
  • Microstructure observation test A specimen for microstructural observation was collected from the obtained hot-rolled steel sheet, the cross section in the rolling direction (L cross section) was polished, corroded with nital liquid, and optical microscope (magnification: 400 times). ) And a scanning electron microscope (SEM) (magnification: 1000 times), the tissue was observed and imaged. The resulting structure photograph by an image analysis processing, the type of tissue, was investigated tissue fraction. Further, the obtained structure photograph was subjected to image analysis processing, and the average ferrite crystal grain size was measured by a cutting method in accordance with the standard of ASTM standard ASTM E 112-10.
  • a thin film for a transmission electron microscope was collected from the obtained hot rolled steel sheet, a thin film was prepared by paper polishing and electrolytic polishing, and the structure was observed by a transmission electron microscope (TEM) (magnification: 135000 times).
  • TEM transmission electron microscope
  • the average particle diameter was obtained, and the metal elements contained in the precipitates were identified by the attached energy dispersive X-ray spectrometer (EDX).
  • Magnetic property measurement test A test piece for magnetic measurement (size: 30 ⁇ 280 mm) was taken from the obtained hot-rolled steel sheet so that the rolling direction and the direction perpendicular to the rolling direction were the longitudinal direction of the test piece.
  • the magnetic flux density B 50 and the magnetic flux density B 100 were determined using a DC magnetic characteristic measuring device in accordance with the provisions of JIS standard JIS C 2555.
  • Each of the examples of the present invention has a high yield strength YS of 700 MPa or more in the rolling direction, and further satisfies the magnetic flux density B 50 of 1.5 T or more and the magnetic flux density B 100 of 1.6 T or more. Has magnetic properties.
  • the yield strength YS in the rolling direction is less than 700 MPa
  • the magnetic flux density B 50 is less than 1.5 T
  • the magnetic flux density B 100 is less than 1.6 T.
  • the high yield strength YS in the rolling direction is 700 MPa or more and the magnetic flux density B 50 is 1.5 T or more in a relatively inexpensive component range without containing a large amount of expensive alloy elements. It is possible to provide a hot-rolled steel sheet for a generator rim that has excellent magnetic properties such that the magnetic flux density B 100 is 1.6 T or more, and a method for manufacturing the hot-rolled steel sheet.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Electromagnetism (AREA)
  • Power Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Heat Treatment Of Steel (AREA)
  • Soft Magnetic Materials (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)

Abstract

 発電機リム用熱延鋼板は、面積率で95%以上のフェライト相を含み、フェライト相の結晶粒内に平均粒径が10nm未満のTiおよびVを含む析出物が析出した組織を有し、フェライト相の平均結晶粒径が2μm以上10μm未満の範囲内にあり、圧延方向の降伏強さYSが700MPa以上の強度と、磁束密度B50が1.5T以上および磁束密度B100が1.6T以上の電磁特性を有する。

Description

発電機リム用熱延鋼板およびその製造方法
 本発明は、降伏強さYSが700MPa以上である熱延鋼板およびその製造方法に係り、とくに水力発電などの発電機リム用として好適な、磁気特性(magnetic properties)に優れた熱延鋼板およびその製造方法に関する。
 近年、地球環境の保全という観点から、地球の温暖化が問題視され、自動車の燃費を向上させるなどの方法によって、炭酸ガスCOの排出量を削減することが要望されている。このような地球温暖化の抑制という観点から、最近では、クリーンなエネルギー源として水力発電機が見直されている。水力発電機等の発電機はローターとステーターとを備え、ローターは鉄芯の役割を果たすポールコアとこれを支えるリムとから構成されている。発電容量を稼ぐためには、ローターを高速で回転させる必要がある。そのため、リムには、高速回転の遠心力に耐えるために高強度を保持することが要求され、主として、降伏強さが550MPa級の熱延鋼板が使用されてきた。しかし、最近では、降伏強さが700MPa級以上の高強度熱延鋼板を使用することが要望されるようになってきた。また、同時にリム用鋼板には、優れた磁気特性を保持することが要求される。
 このような要望に対し、例えば特許文献1には、重量%で、C:0.02%以上0.10%以下、Si:2.0%以下、Mn:0.5%以上2.0%以下、P:0.08%以下、S:0.006%以下、N:0.005%以下、Al:0.01%以上0.1%以下を含み、Ti:0.06%以上0.3%以下でかつ0.50<(Ti-3.43N-1.5S)/4Cとなる量のTiを含有し、低温変態生成物及びパーライトの面積比率が15%以下でかつポリゴナルフェライト中にTiCが分散した組織(microstructure)を有する熱延鋼板が記載されている。特許文献1に記載された技術は、Nb、Mo、V、Zr、Cr、Ni、Caなどの1種以上を熱延鋼板に含有させてもよいとしている。特許文献1に記載された技術では、磁気特性についての検討はなされていないが、引張強さTSが70kgf/mm(690MPa)以上の高強度で、伸びフランジ性が顕著に向上した熱延鋼板が得られるとしている。しかしながら、特許文献1に記載された技術では、所望の高強度を確保するためには、多量のTiを含有させる必要がある。このため、高強度化に寄与しない30nmを超える粗大なTi炭化物が生成しやすい。また、固溶Tiの量が多くなる。また、転位密度の高いベイニティックフライトが生成しやすくなり、磁気特性が低下しやすい。
 また、特許文献2には、高磁束密度を有する高張力熱延鋼板の製造方法が記載されている。特許文献2に記載された技術は、重量%で、C:0.05%以上0.15%以下、Si:0.50%以下、Mn:0.70%以上2.00%以下、P:0.020%以下、S:0.010%以下、sol.Al:0.010%以上0.10%以下、N:0.0050%以下、Ti:0.10%以上0.30%以下、B:0.0015%以上0.005%以下を含む鋼スラブを、1200℃以上に加熱し、熱延仕上温度をAr3変態点以上950℃以下の範囲内とする熱間圧延を施したのち、冷却速度を30℃/s以上70℃/s未満の範囲内として冷却し、500℃以下で巻取る、高張力熱延鋼板の製造方法である。特許文献2に記載された技術は、これにより、降伏強さYSが80kg/mm(785MPa)以上、引張強さTSが100kg/mm(980MPa)以上で、磁束密度B100が1.77T以上である、高磁束密度を有する高張力熱延鋼板が得られるとしている。しかし、特許文献2に記載された技術では、焼入れ性改善のためBを必ず含有させ、しかも熱間圧延後に急冷する。このため、ベイナイト相が生成しやすくなるため、磁気特性が低下し、回転機鉄芯としては磁気特性が不足する。
 また、特許文献3には、高磁束密度を有する高張力熱延鋼板の製造方法が記載されている。特許文献3に記載された技術は、重量比で、C:0.02%以上0.06%以下、Si:0.10%以下、Mn:0.3%以上1.2%以下、S:0.02%以下、Al:0.10%以下、N:0.01%以下、Ti:0.05%以上0.30%以下を含む鋼スラブを、1200℃以上に加熱し、Ar3変態点以上900℃以下の範囲内にある仕上圧延温度で熱間圧延し、500%以上650℃以下の温度範囲で巻き取る、高張力熱延鋼板の製造方法である。特許文献3に記載された技術は、これにより、引張強さTSが50kg/mm(490MPa)を有し、磁束密度B100が1.8T以上の高磁束密度を有する高張力熱延鋼板が得られるとしている。特許文献3に記載された技術は、Siの含有量を0.10%以下に低減し、Ti炭化物による析出強化で所望の高強度を確保している。しかし、特許文献3に記載された技術では、Tiを多量に含有させているために、転位密度の高いベイニティックフェライトが生成しやすくなり、磁気特性が低下し、回転機鉄芯用として十分な磁気特性が確保しにくくなる。
 また、特許文献4には、重量%で、C:0.10%以下、Si:0.5%以下、Mn:0.2%以上2%以下、P:0.06%以下、S:0.01%以下、Al:0.1%以下、N:0.006%以下、Ti:0.02%以上0.2%以下を含み、さらにMo:0.7%以下(ただし0.2%以下の範囲を除く)およびW:0.15%以下のうち少なくとも一方を含み、体積率で95%以上のフェライト組織にTiとMoおよびWの少なくとも一方とを含む10nm未満の炭化物が分散してなり、590MPa級以上の強度を有する回転機鉄芯用熱延鋼板が記載されている。特許文献4に記載された技術によれば、優れた加工性を有しながら優れた磁気特性をも備え、回転機鉄芯用として十分な特性を有する高強度熱延鋼板が得られるとしている。
特公平08-26433号公報 特開昭63-166931号公報 特開昭58-91121号公報 特許第4273768号公報
 しかしながら、特許文献4に記載された技術では、優れた磁気特性を示す熱延鋼板が得られるが、高価なMoやWを多量含有させる必要があり、材料コストが高騰する。
 本発明は、上記課題に鑑みてなされたものであって、その目的は、高価な合金元素を多量含有することなく、比較的安価な成分範囲で、圧延方向の降伏強さYSが700MPa以上という高強度と、磁束密度B50が1.5T以上で磁束密度B100が1.6T以上となる優れた磁気特性と、を兼備する発電機リム用熱延鋼板およびその製造方法を提供することにある。
 磁束密度B50、B100は、直流磁気特性を示す指標であり、それぞれ、磁化力H=5000A/mA、10000A/Mでの磁束密度B(T)を表し、数値が高くなるほど、優れた磁気特性を有することを意味する。
 本発明に係る発電機リム用熱延鋼板は、面積率で95%以上のフェライト相を含み、該フェライト相の結晶粒内に平均粒径が10nm未満のTiおよびVを含む析出物が析出した組織を有し、該フェライト相の平均結晶粒径が2μm以上10μm未満の範囲内にあり、圧延方向の降伏強さYSが700MPa以上の強度と、磁束密度B50が1.5T以上および磁束密度B100が1.6T以上の電磁特性(electromagnetic properties)を有することを特徴とする。
 本発明に係る発電機リム用熱延鋼板は、上記発明において、前記組織が、面積率で95%以上のフェライト相を含み、該フェライト相の結晶粒内に平均粒径が10nm未満の、TiおよびVに加えてさらにNb、Moのうちの1種または2種を含む析出物が析出した組織であることを特徴とする。
 本発明に係る発電機リム用熱延鋼板は、上記発明において、前記組織に加えて、質量%で、C:0.03%以上0.11%以下、Si:0.3%以下、Mn:1.0%以上2.0%以下、P:0.06%以下、S:0.01%以下、Al:0.06%以下、N:0.006%以下、Ti:0.06%以上0.21%以下、V:0.05%以上0.20%以下を含有し、かつ固溶V(solute V)の含有量が0.005%以上であり、残部Feおよび不可避的不純物からなる組成を有することを特徴とする。
 本発明に係る発電機リム用熱延鋼板は、上記発明において、前記組織に加えて、質量%で、C:0.03%以上0.11%以下、Si:0.3%以下、Mn:1.0%以上2.0%以下、P:0.06%以下、S:0.01%以下、Al:0.06%以下、N:0.006%以下、Ti:0.06%以上0.21%以下、V:0.05%以上0.20%以下を含有し、かつ固溶Vの含有量が0.005%以上であり、さらにNb:0.08%以下、Mo:0.2%以下のうちから選ばれた1種または2種を含み、残部Feおよび不可避的不純物からなる組成を有することを特徴とする。
 本発明に係る発電機リム用熱延鋼板の製造方法は、質量%で、C:0.03%以上0.11%以下、Si:0.3%以下、Mn:1.0%以上2.0%以下、P:0.06%以下、S:0.01%以下、Al:0.06%以下、N:0.006%以下、Ti:0.06%以上0.21%以下、V:0.05%以上0.20%以下を含有し、残部Feおよび不可避的不純物からなる組成を有する溶鋼を溶製し、連続鋳造法または造塊法により鋼素材とし、該鋼素材を、直ちに、または、一旦冷却してから1100℃以上に加熱し、熱間圧延機の出側における鋼板温度を800℃以上とする熱間圧延を施し、該熱間圧延後、鋼板温度が700℃になるまで30℃/s以上の平均冷却速度で冷却した後、巻取温度(coiling temperature)を500℃以上700℃以下の範囲内として巻取ることを特徴とする。
 本発明に係る発電機リム用熱延鋼板の製造方法は、上記発明において、前記組成に加えてさらに、質量%で、Nb:0.08%以下、Mo:0.2%以下のうちから選ばれた1種または2種を含む組成とすることを特徴とする。
 本発明によれば、高価な合金元素を多量含有することなく、比較的安価な成分範囲で、圧延方向の降伏強さYSが700MPa以上という高強度と、磁束密度B50が1.5T以上で磁束密度B100が1.6T以上となる優れた磁気特性と、を兼備する発電機リム用熱延鋼板およびその製造方法を提供することができる。
 本発明者らは、圧延方向の降伏強さが700MPa以上という高強度を維持した状態で、磁気特性に及ぼす各種要因について鋭意研究した。その結果、本発明者らは、高価なMoやWを使用せずに、Vを活用することに思い至り、TiとともにVを適正量含有する組成とした。さらに、本発明者らは、熱間圧延の仕上圧延後の冷却速度および巻取温度を適正化することにより、平均結晶粒径が2μm以上10μm未満の範囲内にあるフェライト相からなる単相で、フェライト相の結晶粒内に平均粒径10nm以下の極めて微細な析出物(炭化物、窒化物および炭窒化物(carbonitride))が分散した組織が得られ、かつ固溶Vを0.005%以上含有させ、降伏強さが700MP以上という高強度を維持した状態で,磁気特性が顕著に向上することを新規に見い出した。
 降伏強さが700MPa以上という高強度を維持した状態で、磁気特性が顕著に向上する機構について、現在までのところ必ずしも明確になっていないが、本発明者らは次のように考えている。一般的に、鋼板組織が磁壁の移動を妨げない組織であれば、高い磁束密度が得られ、磁気特性が向上する。本発明の熱延鋼板の組織は、低転位密度で磁気特性に優れた、フェライト相からなる単相で、磁壁の移動を妨げる転位密度の高いマルテンサイト相やベイナイト相を含まない組織であり、しかもフェライト相の結晶粒内には、平均粒径10nm以下の極めて微細な析出物が析出している。このような極めて微細な析出物は、強度増加には大きく寄与するが、磁壁の移動の妨げとはなっていないため、高強度を維持した状態で高磁束密度が得られたものと考えられる。さらに、Feと原子半径が近いVを適量固溶させることにより、上記の微細な析出物まわりの歪が緩和され、高磁束密度化へ寄与したものと考えられる。
 以下、本発明について具体的に説明する。
 本発明の熱延鋼板は、フェライト相からなる単相で、該フェライト相の結晶粒内に平均粒径が10nm未満のTiおよびV、あるいはさらにNb、Moのうちの1種または2種を含む析出物が析出した組織を有する。ここでいう「フェライト相からなる単相」とは、フェライト相が面積率で100%を占める場合に限定されない。フェライト相が面積率で95%以上、より好ましくは98%以上を占める実質的に単相である場合までを含むものとする。
 組織を、加工性の向上に最も有効な「フェライト相からなる単相」組織とすることにより、加工性が顕著に向上する。また、マルテンサイト相やベイナイト相を含まない「フェライト相からなる単相」とすることにより、磁気特性も顕著に向上する。さらに、フェライト相の結晶粒を、平均結晶粒径で2μmm以上10μm未満と微細化し、フェライト結晶粒内に析出したTiとVとを含む析出物の平均粒径を10nm未満とすることにより、降伏強さYSが700MPa以上の高強度が得られる。ただし、平均結晶粒径が2μm未満と微細な結晶粒では、磁壁の移動が妨げられ、顕著な磁気特性の向上は望めない。
 また、フェライト結晶粒内に析出した平均粒径が10nm未満の微細なTiとVとを含む析出物は、磁気特性を劣化させずに、鋼板を強化する作用を有する。TiとVとを含む析出物の平均粒径が10nm以上と粗大化(coarsening)すると、降伏強さYSが700MPa以上の高強度を確保できなくなる。また、析出する析出物の平均粒径が10nm以上である場合に所望の高強度を確保するには、析出物の析出量をより多くしなければならなくなる。より多くの析出物を析出させるためには、必然的に析出物形成元素の含有量が増加し、材料コストの高騰を招くことになる。
 このようなことから、本発明では、含有される金属元素がTiおよびVである析出物の平均粒径を10nm未満に限定した。析出物形成元素の含有量を少なく抑えて、所望の高強度を確保するためには、含有される金属元素がTiおよびVである析出物の平均粒径をより小さくすることが望ましく、好ましくは8nm以下、より好ましくは5nm以下である。ここで、析出物としては、炭化物が最も好ましいが、平均粒径が10nm未満であれば、窒化物、炭窒化物でもとくに、発明の本質に影響を及ぼすものではない。
 また、含有される金属元素がTiおよびVである析出物は、さらにNbまたはMoの1種以上を複合して含有してもよい。すなわち、Tiの炭化物、窒化物、および炭窒化物、Nbの炭化物、窒化物、および炭窒化物、Vの炭化物、窒化物、および炭窒化物、およびMoの炭化物が、単独および/または複合化して析出していても、なんら発明の本質に影響を及ぼすものではない。
 上記した組織を有する本発明熱延鋼板は、質量%で、C:0.03%以上0.11%以下、Si:0.3%以下、Mn:1.0%以上2.0%以下、P:0.06%以下、S:0.01%以下、Al:0.06%以下、N:0.006%以下、Ti:0.06%以上0.21%以下、V:0.05%以上0.20%以下を含有し、かつ固溶Vの含有量が0.005%以上であり、あるいはさらにNb:0.08%以下、Mo:0.2%以下のうちから選ばれた1種または2種を含み、残部Feおよび不可避的不純物からなる組成を有することが好ましい。
 つぎに、本発明の熱延鋼板の好ましい組成の限定理由について説明する。以下、組成に関する質量%は、単に%で記す。
〔Cの含有量〕
 Cは、炭化物形成元素と結合し、微細な炭化物を形成して析出強化により、所望の高強度の確保に寄与する元素である。このような効果を得るためには、0.03%以上の含有を必要とする。含有量が0.03%未満では効果が不十分となる。一方、含有量が0.11%を超える場合、鋼の高強度化に寄与しない粗大な炭化物を有するパーライトが形成され、磁気特性が低下する。このため、Cの含有量は0.03%以上0.11%以下の範囲内に限定することが好ましい。より好ましくはCの含有量は0.04%以上0.10%以下の範囲内である。
〔Siの含有量〕
 Siは、固溶強化により鋼板強度を有効に高める元素である。しかしながら、含有量が0.3%を超える場合、フェライトからのCの排出が促進され、粒界に粗大な鉄炭化物が析出しやすくなり、磁気特性の低下を招くだけでなく、鋼板の表面性状の劣化も招く。このため、Siの含有量は0.3%以下に限定することが好ましい。より好ましくはSiの含有量は0.1%以下である。Siの含有量はゼロであっても問題ない。
〔Mnの含有量〕
 Mnは、フェライト相の結晶粒内に析出する炭化物を微細化し、熱延鋼板の高強度化に有効な元素である。本発明においてフェライト相の結晶粒内に析出する炭化物の多くは、熱延鋼板製造工程における仕上げ圧延終了後の冷却過程で、オーステナイト(γ)→フェライト(α)変態と同時に析出する炭化物である。そのため、鋼のγ→α変態温度が高いと、炭化物が高温域で析出し、巻取りまでの冷却過程で炭化物が粗大化してしまう。このような問題に対し、Mnは鋼のγ→α変態温度を低温化する作用を有するため、所定量のMnを含有させると、鋼のγ→α変態温度を後述する巻取り温度域まで低下させ、鋼板の巻取り中に炭化物を析出させることができる。このような高温域に長時間曝されることなく巻取り中に析出した炭化物は、微細な状態に維持される。炭化物を微細化して降伏強さYSが700MPa以上である熱延鋼板を得るには、Mnを1.0%以上含有することが好ましい。一方、Mnの含有量が2.0%を超える場合、偏析が著しくなり、さらに変態温度が低くなりすぎて、ベイナイトやマルテンサイトなどの硬質な第二相が形成されて、磁気特性が低下する。このため、Mnの含有量は1.0%以上2.0%以下の範囲内に限定することが好ましい。より好ましくはMnの含有量は1.3%超1.5%以下の範囲内である。
〔Pの含有量〕
 Pは、固溶して鋼板の強度増加に有効に寄与する元素である。しかし、Pは粒界等に偏析する傾向が強く、含有量が0.06を超える場合、靭性、磁気特性を著しく低下させる。このため、Pの含有量は0.06%以下に限定することが好ましい。より好ましくはPの含有量は0.03%以下である。Pの含有量はゼロであっても問題ない。
〔Sの含有量〕
 Sは、鋼中では介在物として存在し、延性、靭性等を低下させる。このため、本発明ではSの含有量をできるだけ低減することが望ましいが、磁気特性の観点から0.01%までの含有量は許容できる。このようなことから、Sの含有量は0.01%以下に限定することが好ましい。より好ましくはSの含有量は0.005%以下である。Sの含有量はゼロであっても問題ない。
〔Alの含有量〕
 Alは、脱酸剤として作用される。このような効果を得るためにはAlを0.01%以上含有することが望ましい。しかしながら、含有量が0.06%を超える場合、酸化物系介在物が増加しすぎて、加工性が低下する。このため、Alの含有量は0.06%以下に限定することが好ましい。より好ましくはAlの含有量は0.04%以下である。
〔Nの含有量〕
 Nは、Ti、V等の窒化物形成元素と結合して、TiN等の粗大な窒化物を形成しやすい。粗大な窒化物は磁気特性の低下を招くとともに、本来、微細な炭化物を形成して鋼板の高強度化に寄与する有効なTi、V等の量が減少し、所望の高強度を確保することが難しくなる。このため、Nの含有量は0.006%以下に限定することが好ましい。より好ましくはNの含有量は0.004%以下である。Nの含有量はゼロであっても問題ない。
〔Tiの含有量〕
 Tiは、微細な炭化物、窒化物、炭窒化物等を形成し、析出強化により所望の高強度を確保する、本発明において重要な元素である。このような効果を得るためにはTiを0.06%以上含有することが好ましい。一方、Tiの含有量が0.21%を超えても、鋼の強化に寄与しない粗大な炭化物、窒化物が増えるだけであり、強化に寄与しない無駄な含有が増加し、含有量に見合う効果が期待できなくなる。このため、Tiの含有量は0.06%以上0.21%以下の範囲内に限定することが好ましい。より好ましくはTiの含有量は0.08%以上0.15%以下の範囲内である。
〔Vの含有量〕
 Vは、Tiと同様に、微細な炭化物、窒化物、炭窒化物等を形成し、析出強化により所望の高強度を確保する、本発明において重要な元素である。このような効果を得るためにはVを0.05%以上含有することが好ましい。一方、Vの含有量が0.20%を超えても、鋼の強化に寄与しない粗大な炭化物、窒化物が増えるだけであり、強化に寄与しない無駄な含有が増加し、含有量に見合う効果が期待できなくなる。このため、Vの含有量は0.05%以上0.20%以下の範囲内に限定することが好ましい。より好ましくはVの含有量は0.08%以上0.15%以下の範囲内である。
〔固溶Vの含有量〕
 固溶したVは、析出物まわりの歪を緩和させ、磁気特性向上に寄与する、本発明において重要な元素である。このような効果を得るためには、固溶Vの含有量を0.005%以上とすることが好ましい。固溶Vの含有量の上限値は、特に定めないが、析出するVが不可避的に存在するので、Vの含有量未満となる。
 上記した成分に加えて、さらに選択元素とし、Nb:0.08%以下、Mo:0.20%以下のうちから選ばれた1種または2種を含有してもよい。Nb、Moはいずれも、微細な炭化物、窒化物、炭窒化物等を形成し、析出強化により高強度化に寄与する元素であり、必要に応じて選択して含有できる。
〔Nbの含有量〕
 Nbは、微細な炭化物、窒化物、炭窒化物等を形成し、析出強化により、所望の高強度を確保する作用を有する元素である。このような効果を得るためにはNbを0.01%以上含有することが望ましい。一方、Nbの含有量が0.08%を超える場合、析出物が過多となりすぎて、磁気特性が低下する。このため、Nbを含有させる場合には、Nbの含有量は0.08%以下に限定することが好ましい。より好ましくはNbの含有量は0.03%以上0.07%以下の範囲内である。
〔Moの含有量〕
 Moは、Nbと同様に、Ti、Vを含む微細な炭化物、窒化物、炭窒化物等に固溶して、析出強化により、所望の高強度を確保する作用を有する元素である。また、Moは、パーライト変態を抑制し、フェライト相単相組織の形成を促進する元素である。このような効果を得るためにはMoを0.05%以上含有することが望ましい。一方、Moの含有量が0.20%を超える場合、硬質相が形成される場合があり、磁気特性が低下するとともに、製造コストの高騰を招く。このため、Moを含有させる場合には、Moの含有量は0.20%以下に限定することが好ましい。より好ましくはMoの含有量は0.05%以上0.15%以下の範囲内である。
 上記した成分以外の残部は、Feおよび不可避的不純物からなる。不可避的不純物としては、O:0.01%以下、Cu:0.5%以下、Ni:0.5%以下、Cr:0.5%以下、Sn:0.3%以下、Ta:0.1%以下、W:0.1%以下、Ca:0.005%以下、Mg:0.005%以下、REM:0.005%以下、B:0.005%以下が許容できる。
〔熱延鋼板の製造方法〕
 つぎに、本発明の熱延鋼板の好ましい製造方法について説明する。
 本発明の熱延鋼板を製造する際には、上記した組成を有する鋼素材を、直ちに熱間圧延、または一旦、冷却してから加熱し熱間圧延を施し、熱延鋼板とすることが好ましい。鋼素材の製造方法については、とくに限定する必要はないが、上記した組成を有する溶鋼を、転炉、電気炉等の常用の溶製方法により溶製し、連続鋳造法等の常用の鋳造方法でスラブ等の鋼素材とすることが好ましい。
 得られた鋼素材が、熱間圧延が可能な温度を保持している場合には直ちに、または一旦、室温付近まで冷却したのち、1100℃以上、好ましくは1250℃以上の温度に加熱し、熱間圧延を施す。熱間圧延前の加熱は、磁気特性に悪影響を及ぼす粗大な析出物を固溶し、さらに熱間圧延後に、TiとVとを含む析出物(好ましくは炭化物)、あるいはTiとVとを含み、さらにNbとMoの1種または2種とを含む析出物(好ましくは炭化物)を微細に析出させるために重要であり、熱間圧延前の鋼素材の段階で、Ti、Nb、V、およびMoを完全に固溶させることが重要となる。このようなことから、鋼素材(スラブ)を直ちに熱問圧延するか、または一旦冷却してから1100℃以上、好ましくは1250℃以上の温度に加熱する。
 鋳造後で、低温まで冷却されない状態の鋼素材(スラブ)では、Ti、Nb、V、およびMoは固溶しており、直ちに熱間圧延する場合には固溶状態が保たれているため、熱間圧延前に加熱する必要はない。しかし、一旦、室温等の低温まで冷却した場合には、粗大な析出物が形成される。このため、低温まで冷却された状態の鋼素材では、1100℃以上、好ましくは1250℃以上の温度に加熱して、Ti、Nb、V、およびMoを再度、固溶させる必要がある。鋳造後、補熱を目的とした加熱を施し、そのまま熱間圧延を行っても、なんら問題はなく、本発明の効果に影響はない。
 上記した温度に加熱された鋼素材は、熱間圧延を施される。熱間圧延は、粗圧延、仕上圧延からなる圧延とする。粗圧延の条件はとくに限定する必要はなく、所定の寸法および形状のシートバー(粗圧延バー)とすることができればよい。粗圧延後で仕上圧延前もしくは仕上圧延中にシートバーを加熱または保熱しても、また、粗圧延後にシートバーを接合して連続圧延を行っても、また、シートバーの加熱と連続圧延を同時に行っても、なんら問題はなく、本発明の効果に影響はない。
 仕上圧延は、仕上圧延機の出側における鋼板温度が800℃以上となる圧延とする。仕上圧延機の出側における鋼板温度が800℃未満である場合、所望の圧延方向の降伏強さを確保できないうえ、引張強さも所望の引張強さ未満となる。また、組織が微細化して、所望の磁気特性を確保できにくくなる。このため、仕上圧延機の出側における鋼板温度を800℃以上に限定する。好ましくは仕上圧延機の出側における鋼板温度は850℃以上950℃以下の範囲内である。
 仕上圧延を終了したのち、鋼板温度が700℃になるまで平均冷却速度30℃/s以上の冷却速度で冷却した後、巻取温度まで冷却し、コイル状に巻取る。平均冷却速度30℃/s未満の冷却速度で冷却した場合、冷却中に析出物が析出ししかも粗大化して、所望の高強度を確保できなくなるだけでなく、所望の固溶Vの含有量も確保できなくなる。このため、仕上圧延終了後の冷却は、平均冷却速度30℃/s以上の冷却速度に限定する。好ましくは平均冷却速度は50℃/s以上である。但し平均冷却速度が400℃/s以上である場合、鋼板形状が劣化する懸念があるため、平均冷却速度は400℃/s未満とすることが好ましい。
 巻取温度は、500℃以上700℃以下の範囲内とする。巻取温度が500℃未満である場合、ベイナイト相やマルテンサイト相を含むため、所望のフェライト相単相組織を確保できなくなる。また、Ti、Vを含み、或いはさらにNb、Moを含む析出物が十分に析出しないため、所望の高強度を確保できなくなる。一方、巻取温度が700℃を超える高温となると、析出物が粗大となり、析出強化が小さくなる。このようなことから、巻取温度は500℃以上700℃以下の範囲内とする。好ましくは巻取温度は550℃以上650℃以下の範囲内である。これにより、強度と磁気特性のバランスがさらに向上する。
 また、本発明の熱延鋼板は、スケール(scale)の付いた状態でも、酸洗を施されたのちでもその特性に差異はない。さらに、通常行われる条件の範囲内であれば、さらに調質圧延を施しても問題はない。本発明の熱延鋼板は、電磁部材として用いるのに好適である。例えば本発明の熱延鋼板をせん断、打抜き、レーザーカットなどの手段で所定の形状に切り出し、積層して、リムやコア(ポールコアなど)向けの電磁部材として用いることができる。特に本発明の熱延鋼板は、高強度と良好な磁気特性との両立が必要な、発電機リムに好適に適用できる。鋼板の積層に際しては、鋼板に絶縁被覆を施す又は絶縁素材を間に挟むなど、積層される鋼板と鋼板との間を電気的に絶縁することが好ましい。
〔実施例〕
 以下、実施例に従い、さらに本発明について説明する。
 表1に示す成分組成の鋼を転炉で溶製し、連続鋳造法でスラブ(鋼素材:肉厚250mm)としたのち、表2に示す条件で熱間圧延を行ない、表2に示す板厚の熱延鋼板とした。得られた熱延鋼板から試験片を採取し、組織観察試験、固溶Vの含有量の分析、引張試験、磁気特性測定試験を実施し、強度、磁気特性を調査した。試験方法は次のとおりとした。
(1)組織観察試験
 得られた熱延鋼板から組織観察用試験片を採取し、圧延方向断面(L断面)を研磨し、ナイタール(nital)液で腐食して、光学顕微鏡(倍率:400倍)および走査型電子顕微鏡(SEM)(倍率:1000倍)を用いて組織を観察し、撮像した。得られた組織写真について、画像解析処理により、組織の種類、組織分率を調査した。また、得られた組織写真について、画像解析処理により、ASTM規格ASTM E 112-10の規定に準拠して切断法で、平均フェライト結晶粒径を測定した。また、得られた熱延鋼板から透過電子顕微鏡用の薄膜を採取し、ペーパー研磨、電解研磨により、薄膜を作製し、透過型電子顕微鏡(TEM)(倍率:135000倍)により、組織を観察し、フェライト結晶粒内の析出物を30個以上観察し、その平均粒径を求めるとともに、付属のエネルギー分散型X線分光装置(EDX)により、析出物中に含有する金属元素を同定した。
(2)固溶Vの含有量の分析
 得られた熱延鋼板から、試験片を採取し、10%AA(acetylacetone)溶液中で電解抽出したのち、電解液を採取、溶媒を除去したのち乾固し、測定した。
(3)引張試験
 得られた熱延鋼板から、引張方向が圧延方向と平行となるように、JIS(Japanese Industrial Standards)5号試験片(GL:50mm)を採取し、JIS規格JIS Z 2241の規定に準拠して引張試験を行ない、引張特性(降伏強さYS、引張強さTS)を求めた。
(4)磁気特性測定試験
 得られた熱延鋼板から、圧延方向および圧延方向と直角方向が試験片の長手方向となるように、磁気測定用試験片(大きさ:30×280mm)を採取し、直流磁気特性測定装置を用いて,JIS規格JIS C 2555の規定に準拠して、磁束密度B50および磁束密度B100を求めた。ここで、磁束密度B50、B100は、直流磁気特性を示す指標で、それぞれ磁化力H=5000A/m、10000A/mにおける磁束密度B(T)を示す。
 得られた結果を表3に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 本発明例はいずれも、圧延方向の降伏強さYSが700MPa以上の高強度を有し、さらに磁束密度B50が1.5T以上、磁束密度B100が1.6T以上を満足し、優れた磁気特性を有している。一方、本発明の範囲を外れる比較例は、圧延方向の降伏強さYSが700MPa未満であるか、磁束密度B50が1.5T未満であるか、磁束密度B100が1.6T未満であるかして、所望の高強度、優れた磁気特性を兼備するまでに至っていない。
 以上、本発明者らによってなされた発明を適用した実施の形態について説明したが、本実施形態による本発明の開示の一部をなす記述により本発明は限定されることはない。すなわち、本実施形態に基づいて当業者などによりなされる他の実施の形態、実施例および運用技術などは全て本発明の範疇に含まれる。
 本発明によれば、高価な合金元素を多量含有することなく、比較的安価な成分範囲で、圧延方向の降伏強さYSが700MPa以上という高強度と、磁束密度B50が1.5T以上で磁束密度B100が1.6T以上となる優れた磁気特性と、を兼備する発電機リム用熱延鋼板およびその製造方法を提供することができる。

Claims (6)

  1.  面積率で95%以上のフェライト相を含み、該フェライト相の結晶粒内に平均粒径が10nm未満のTiおよびVを含む析出物が析出した組織を有し、該フェライト相の平均結晶粒径が2μm以上10μm未満の範囲内にあり、圧延方向の降伏強さYSが700MPa以上の強度と、磁束密度B50が1.5T以上および磁束密度B100が1.6T以上の電磁特性を有することを特徴とする発電機リム用熱延鋼板。
  2.  前記組織が、面積率で95%以上のフェライト相を含み、該フェライト相の結晶粒内に平均粒径が10nm未満の、TiおよびVに加えてさらにNb、Moのうちの1種または2種を含む析出物が析出した組織であることを特徴とする請求項1に記載の発電機リム用熱延鋼板。
  3.  前記組織に加えて、質量%で、C:0.03%以上0.11%以下、Si:0.3%以下、Mn:1.0%以上2.0%以下、P:0.06%以下、S:0.01%以下、Al:0.06%以下、N:0.006%以下、Ti:0.06%以上0.21%以下、V:0.05%以上0.20%以下を含有し、かつ固溶V(solute V)の含有量が0.005%以上であり、残部Feおよび不可避的不純物からなる組成を有することを特徴とする請求項1に記載の発電機リム用熱延鋼板。
  4.  前記組織に加えて、質量%で、C:0.03%以上0.11%以下、Si:0.3%以下、Mn:1.0%以上2.0%以下、P:0.06%以下、S:0.01%以下、Al:0.06%以下、N:0.006%以下、Ti:0.06%以上0.21%以下、V:0.05%以上0.20%以下を含有し、かつ固溶Vの含有量が0.005%以上であり、さらにNb:0.08%以下、Mo:0.2%以下のうちから選ばれた1種または2種を含み、残部Feおよび不可避的不純物からなる組成を有することを特徴とする請求項2に記載の発電機リム用熱延鋼板。
  5.  質量%で、C:0.03%以上0.11%以下、Si:0.3%以下、Mn:1.0%以上2.0%以下、P:0.06%以下、S:0.01%以下、Al:0.06%以下、N:0.006%以下、Ti:0.06%以上0.21%以下、V:0.05%以上0.20%以下を含有し、残部Feおよび不可避的不純物からなる組成を有する溶鋼を溶製し、連続鋳造法または造塊法により鋼素材とし、該鋼素材を、直ちに、または、一旦冷却してから1100℃以上に加熱し、熱間圧延機の出側における鋼板温度を800℃以上とする熱間圧延を施し、該熱間圧延後、鋼板温度が700℃になるまで30℃/s以上の平均冷却速度で冷却した後、巻取温度を500℃以上700℃以下の範囲内として巻取ることを特徴とする発電機リム用熱延鋼板の製造方法。
  6.  前記組成に加えてさらに、質量%で、Nb:0.08%以下、Mo:0.2%以下のうちから選ばれた1種または2種を含む組成とすることを特徴とする請求項5に記載の発電機リム用熱延鋼板の製造方法。
PCT/JP2013/051956 2012-01-31 2013-01-30 発電機リム用熱延鋼板およびその製造方法 WO2013115205A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US14/375,709 US10301698B2 (en) 2012-01-31 2013-01-30 Hot-rolled steel sheet for generator rim and method for manufacturing the same
EP13744071.5A EP2811046B1 (en) 2012-01-31 2013-01-30 Hot-rolled steel sheet for generator rim and method for manufacturing same
CN201380007556.7A CN104080938B (zh) 2012-01-31 2013-01-30 发电机轮毂用热轧钢板及其制造方法
JP2013554129A JP5578288B2 (ja) 2012-01-31 2013-01-30 発電機リム用熱延鋼板およびその製造方法
KR1020147021132A KR101638715B1 (ko) 2012-01-31 2013-01-30 발전기 림용 열연 강판 및 그 제조 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012018306 2012-01-31
JP2012-018306 2012-01-31

Publications (1)

Publication Number Publication Date
WO2013115205A1 true WO2013115205A1 (ja) 2013-08-08

Family

ID=48905239

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/051956 WO2013115205A1 (ja) 2012-01-31 2013-01-30 発電機リム用熱延鋼板およびその製造方法

Country Status (6)

Country Link
US (1) US10301698B2 (ja)
EP (1) EP2811046B1 (ja)
JP (1) JP5578288B2 (ja)
KR (1) KR101638715B1 (ja)
CN (1) CN104080938B (ja)
WO (1) WO2013115205A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014148001A1 (ja) * 2013-03-19 2014-09-25 Jfeスチール株式会社 780MPa以上の引張強度を有する高強度熱延鋼板
WO2016084289A1 (ja) * 2014-11-28 2016-06-02 Jfeスチール株式会社 磁極用熱延鋼板およびその製造方法、ならびに水力発電用リム部材
WO2016088321A1 (ja) * 2014-12-05 2016-06-09 Jfeスチール株式会社 磁極用熱延鋼板およびその製造方法、ならびに水力発電用リム部材
WO2018105698A1 (ja) * 2016-12-08 2018-06-14 新日鐵住金株式会社 軟磁性部品用鋼材、軟磁性部品、及び、軟磁性部品の製造方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL2021825B1 (en) * 2018-10-16 2020-05-11 Univ Delft Tech Magnetocaloric effect of Mn-Fe-P-Si-B-V alloy and use thereof
PL3926064T3 (pl) * 2020-06-16 2023-02-20 Ssab Technology Ab Wyrób stalowy w postaci taśmy o wysokiej wytrzymałości i sposób jego wytwarzania

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5891121A (ja) 1981-11-21 1983-05-31 Kawasaki Steel Corp 高磁束密度を有する高張力熱延鋼板の製造方法
JPS58136719A (ja) * 1982-02-05 1983-08-13 Nippon Kokan Kk <Nkk> 高強度熱延鋼板の製造方法
JPS63166931A (ja) 1986-12-27 1988-07-11 Nippon Steel Corp 高磁束密度を有する高張力熱延鋼板の製造方法
JPH0826433B2 (ja) 1992-12-28 1996-03-13 株式会社神戸製鋼所 伸びフランジ性に優れた高強度熱延鋼板
JP2003221648A (ja) * 2001-11-20 2003-08-08 Jfe Engineering Kk 受像管フレーム用高強度熱延鋼板およびその製造方法、ならびに受像管フレーム
JP2003268509A (ja) * 2001-12-28 2003-09-25 Jfe Steel Kk 回転機鉄芯用高加工性高強度熱延鋼板およびその製造方法
JP2004143518A (ja) * 2002-10-23 2004-05-20 Sumitomo Metal Ind Ltd 熱延鋼板
JP2006213957A (ja) * 2005-02-02 2006-08-17 Nippon Steel Corp 材質均一性に優れた高伸びフランジ成形性熱延鋼板の製造方法
JP2009052139A (ja) * 2007-07-31 2009-03-12 Jfe Steel Kk 高強度鋼板
JP2011225980A (ja) * 2010-03-31 2011-11-10 Jfe Steel Corp 加工性に優れた高張力熱延鋼板およびその製造方法

Family Cites Families (130)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5967365A (ja) 1982-10-08 1984-04-17 Daido Steel Co Ltd 機械部品の製造方法
JPS59100214A (ja) 1982-11-29 1984-06-09 Nippon Kokan Kk <Nkk> 厚肉高張力鋼の製造方法
JP2783809B2 (ja) 1988-06-28 1998-08-06 川崎製鉄株式会社 冷間加工性および溶接性に優れた引張り強さが55▲kg▼f/▲mm▼▲上2▼以上の高張力熱延鋼帯
JPH04273768A (ja) 1991-02-28 1992-09-29 Murata Mach Ltd 中間調送信方式
EP0535238A4 (en) 1991-03-13 1993-08-04 Kawasaki Steel Corporation High-strength steel sheet for forming and production thereof
JPH05171347A (ja) 1991-12-18 1993-07-09 Aichi Steel Works Ltd 冷間鍛造性に優れた軟窒化用鋼
JP2543459B2 (ja) 1992-03-30 1996-10-16 新日本製鐵株式会社 加工性および溶接性の良い高強度熱延鋼板
US5454883A (en) 1993-02-02 1995-10-03 Nippon Steel Corporation High toughness low yield ratio, high fatigue strength steel plate and process of producing same
JP2879530B2 (ja) 1994-07-21 1999-04-05 株式会社大仁工業 ローラコンベア用ローラ装置
JPH0925513A (ja) 1995-07-12 1997-01-28 Nippon Steel Corp 成形性に優れた窒化用鋼板の製造方法
JPH0925543A (ja) 1995-07-12 1997-01-28 Nippon Steel Corp 成形性に優れた窒化用鋼板およびそのプレス成形体
JP3477955B2 (ja) 1995-11-17 2003-12-10 Jfeスチール株式会社 極微細組織を有する高張力熱延鋼板の製造方法
JP3425288B2 (ja) 1996-02-06 2003-07-14 新日本製鐵株式会社 加工性に優れた400〜800N/mm2級高強度熱延鋼板及びその製造方法
JPH09279296A (ja) 1996-04-16 1997-10-28 Nippon Steel Corp 冷間鍛造性に優れた軟窒化用鋼
JP4134355B2 (ja) 1997-03-25 2008-08-20 Jfeスチール株式会社 靱性に優れた連続鋳造製調質型高張力鋼板の製造方法
JP3792341B2 (ja) 1997-04-28 2006-07-05 株式会社神戸製鋼所 冷間鍛造性及び耐ピッチング性に優れた軟窒化用鋼
US5858130A (en) 1997-06-25 1999-01-12 Bethlehem Steel Corporation Composition and method for producing an alloy steel and a product therefrom for structural applications
KR100230430B1 (ko) 1997-07-16 1999-11-15 윤종용 가스 혼합물 및 이를 이용한 전극층 식각 방법
TW476790B (en) 1998-05-18 2002-02-21 Kawasaki Steel Co Electrical sheet of excellent magnetic characteristics and its manufacturing method
JP3433687B2 (ja) 1998-12-28 2003-08-04 Jfeスチール株式会社 加工性に優れた高張力熱延鋼板およびその製造方法
JP2000212687A (ja) 1999-01-20 2000-08-02 Nisshin Steel Co Ltd 材質均一性及び穴拡げ性に優れた高張力熱延鋼板及びその製造方法
CA2297291C (en) 1999-02-09 2008-08-05 Kawasaki Steel Corporation High tensile strength hot-rolled steel sheet and method of producing the same
WO2001023625A1 (fr) * 1999-09-29 2001-04-05 Nkk Corporation Tole d'acier et son procede de fabrication
DE60116765T2 (de) 2000-01-24 2006-11-02 Jfe Steel Corp. Feuerverzinktes stahlblech und herstellungsverfahren dafür
CN1145709C (zh) 2000-02-29 2004-04-14 川崎制铁株式会社 应变时效硬化特性优良的高强度冷轧钢板及其制造方法
EP1205570A4 (en) 2000-03-02 2004-11-10 Matsushita Electric Ind Co Ltd COLOR CATHODE RANGE MASK FRAME, STEEL PLATE USEFUL IN THIS MASK, METHOD FOR PRODUCING THE SAME, AND COLOR CATHODE RANGE WITH THIS FRAME
JP3846156B2 (ja) 2000-05-11 2006-11-15 Jfeスチール株式会社 自動車の高強度プレス成形部品用鋼板およびその製造方法
DE60110586T2 (de) 2000-05-31 2005-12-01 Jfe Steel Corp. Kaltgewalztes stahlblech mit ausgezeichneten reckalterungseigenschaftenund herstellungsverfahren für ein solches stahlblech
US6364968B1 (en) 2000-06-02 2002-04-02 Kawasaki Steel Corporation High-strength hot-rolled steel sheet having excellent stretch flangeability, and method of producing the same
CN1286999C (zh) 2000-06-20 2006-11-29 杰富意钢铁株式会社 薄钢板及其制造方法
JP3790135B2 (ja) 2000-07-24 2006-06-28 株式会社神戸製鋼所 伸びフランジ性に優れた高強度熱延鋼板およびその製造方法
JP4291941B2 (ja) 2000-08-29 2009-07-08 新日本製鐵株式会社 曲げ疲労強度に優れた軟窒化用鋼
DE10141565A1 (de) * 2000-09-22 2002-04-11 Merck Patent Gmbh Flüssigkristallverbindung, diese enthaltendes Flüssigkristallmedium und elektrooptische Flüssigkristallanzeige
CN1153841C (zh) * 2000-10-31 2004-06-16 杰富意钢铁株式会社 高强度热轧钢板和它的制造方法
JP3637885B2 (ja) 2001-09-18 2005-04-13 Jfeスチール株式会社 加工性に優れた超高張力鋼板ならびにその製造方法および加工方法
DE10062919A1 (de) 2000-12-16 2002-06-27 Thyssenkrupp Stahl Ag Verfahren zum Herstellen von Warmband oder -blech aus einem mikrolegierten Stahl
JP3591502B2 (ja) 2001-02-20 2004-11-24 Jfeスチール株式会社 加工性に優れた高張力鋼板ならびにその製造方法および加工方法
CN1318627C (zh) 2001-06-28 2007-05-30 杰富意钢铁株式会社 无方向性电磁钢板及其制造方法
TWI290177B (en) 2001-08-24 2007-11-21 Nippon Steel Corp A steel sheet excellent in workability and method for producing the same
DE10144614A1 (de) 2001-09-11 2003-03-27 Sms Demag Ag Konvertergetriebe
JP3840939B2 (ja) 2001-09-26 2006-11-01 住友金属工業株式会社 軟窒化処理用鋼およびその製造方法
JP4028719B2 (ja) 2001-11-26 2007-12-26 新日本製鐵株式会社 形状凍結性に優れる絞り可能なバーリング性高強度薄鋼板およびその製造方法
JP4006974B2 (ja) 2001-10-31 2007-11-14 Jfeスチール株式会社 材質均一性に優れた高成形性高張力熱延鋼板ならびにその製造方法および加工方法
CN100335670C (zh) 2002-02-07 2007-09-05 杰富意钢铁株式会社 高强度钢板及其制造方法
JP3928454B2 (ja) 2002-03-26 2007-06-13 Jfeスチール株式会社 窒化処理用薄鋼板
KR100949694B1 (ko) 2002-03-29 2010-03-29 제이에프이 스틸 가부시키가이샤 초미세입자 조직을 갖는 냉연강판 및 그 제조방법
JP3821036B2 (ja) 2002-04-01 2006-09-13 住友金属工業株式会社 熱延鋼板並びに熱延鋼板及び冷延鋼板の製造方法
JP2003328071A (ja) 2002-05-09 2003-11-19 Jfe Steel Kk 連続焼鈍炉用通板材およびその製造方法
JP4154936B2 (ja) 2002-06-25 2008-09-24 株式会社Sumco 単結晶の無欠陥領域シミュレーション方法
US7559997B2 (en) * 2002-06-25 2009-07-14 Jfe Steel Corporation High-strength cold rolled steel sheet and process for producing the same
JP3863818B2 (ja) 2002-07-10 2006-12-27 新日本製鐵株式会社 低降伏比型鋼管
EP1550797A3 (de) 2002-12-07 2006-05-31 Mann+Hummel Gmbh Verfahren und Vorrichtung zur Regelung eines Sekundärluftstroms bei einer Verbrennungsmaschine
US20040118489A1 (en) * 2002-12-18 2004-06-24 Weiping Sun Dual phase hot rolled steel sheet having excellent formability and stretch flangeability
CN100591789C (zh) 2002-12-24 2010-02-24 新日本制铁株式会社 焊接热影响区的耐软化性优良且扩孔弯边性好的高强度钢板及其制造方法
JP3991884B2 (ja) 2003-02-24 2007-10-17 Jfeスチール株式会社 窒化後の磁気特性に優れた窒化用鋼材およびその成形体
JP4313591B2 (ja) 2003-03-24 2009-08-12 新日本製鐵株式会社 穴拡げ性と延性に優れた高強度熱延鋼板及びその製造方法
JP4232545B2 (ja) 2003-06-11 2009-03-04 住友金属工業株式会社 高強度熱延鋼板とその製造方法
TWI248977B (en) 2003-06-26 2006-02-11 Nippon Steel Corp High-strength hot-rolled steel sheet excellent in shape fixability and method of producing the same
JP4317419B2 (ja) 2003-10-17 2009-08-19 新日本製鐵株式会社 穴拡げ性と延性に優れた高強度薄鋼板
JP4289139B2 (ja) 2003-12-12 2009-07-01 Jfeスチール株式会社 成形性に優れる軟窒化用鋼板の製造方法
US20050199322A1 (en) * 2004-03-10 2005-09-15 Jfe Steel Corporation High carbon hot-rolled steel sheet and method for manufacturing the same
JP4561136B2 (ja) 2004-03-17 2010-10-13 Jfeスチール株式会社 窒化処理用鋼板
JP4692018B2 (ja) 2004-03-22 2011-06-01 Jfeスチール株式会社 強度−延性バランスに優れた高張力熱延鋼板およびその製造方法
KR100683471B1 (ko) 2004-08-04 2007-02-20 제이에프이 스틸 가부시키가이샤 무방향성 전자 강판의 제조방법, 및 무방향성 전자강판용의 소재 열연 강판
JP4525299B2 (ja) 2004-10-29 2010-08-18 Jfeスチール株式会社 加工性に優れた高強度熱延鋼板およびその製造方法
JP4424185B2 (ja) 2004-12-08 2010-03-03 住友金属工業株式会社 熱延鋼板とその製造方法
JP4581665B2 (ja) 2004-12-08 2010-11-17 住友金属工業株式会社 高強度熱延鋼板とその製造方法
JP4634885B2 (ja) 2005-07-26 2011-02-16 新日本製鐵株式会社 疲労特性と塗装焼付硬化性能と耐常温時効性に優れた高強度薄鋼板及びその製造方法
ES2528427T3 (es) 2005-08-05 2015-02-09 Jfe Steel Corporation Lámina de acero de alta tracción y procedimiento para producir la misma
JP5076394B2 (ja) 2005-08-05 2012-11-21 Jfeスチール株式会社 高張力鋼板ならびにその製造方法
JP4644077B2 (ja) 2005-09-05 2011-03-02 新日本製鐵株式会社 耐食性と成形性に優れた溶融亜鉛めっき高強度鋼板および合金化溶融亜鉛めっき高強度鋼板、およびそれらの製造方法
AU2006305841A1 (en) 2005-10-24 2007-05-03 Exxonmobil Upstream Research Company High strength dual phase steel with low yield ratio, high toughness and superior weldability
JP4226626B2 (ja) 2005-11-09 2009-02-18 新日本製鐵株式会社 音響異方性が小さく溶接性に優れる、板厚中心部も含めて降伏応力450MPa以上かつ引張強さ570MPa以上の高張力鋼板およびその製造方法
JP4502947B2 (ja) 2005-12-27 2010-07-14 株式会社神戸製鋼所 溶接性に優れた鋼板
JP5157146B2 (ja) 2006-01-11 2013-03-06 Jfeスチール株式会社 溶融亜鉛めっき鋼板
JP4575893B2 (ja) 2006-03-20 2010-11-04 新日本製鐵株式会社 強度延性バランスに優れた高強度鋼板
JP4528276B2 (ja) 2006-03-28 2010-08-18 新日本製鐵株式会社 伸びフランジ性に優れた高強度鋼板
JP4853082B2 (ja) 2006-03-30 2012-01-11 住友金属工業株式会社 ハイドロフォーム加工用鋼板およびハイドロフォーム加工用鋼管と、これらの製造方法
JP4837426B2 (ja) 2006-04-10 2011-12-14 新日本製鐵株式会社 バーリング加工性に優れた高ヤング率薄鋼板及びその製造方法
JP5047649B2 (ja) 2006-04-11 2012-10-10 新日本製鐵株式会社 伸びフランジ成形性に優れた高強度熱延鋼板及び亜鉛めっき鋼板並びにそれらの製造方法
JP2008156680A (ja) 2006-12-21 2008-07-10 Nippon Steel Corp 高降伏比を有する高強度冷延鋼板及びその製造方法
KR100868423B1 (ko) 2006-12-26 2008-11-11 주식회사 포스코 조관후 강도변화가 작은 스파이럴 강관용 후물 열연 고강도api-x80 급 강재 및 제조방법
JP4790639B2 (ja) 2007-01-17 2011-10-12 新日本製鐵株式会社 伸びフランジ成形性と衝突吸収エネルギー特性に優れた高強度冷延鋼板及びその製造方法
JP4853304B2 (ja) 2007-01-24 2012-01-11 Jfeスチール株式会社 高強度熱延鋼板
PL2130938T3 (pl) 2007-03-27 2018-11-30 Nippon Steel & Sumitomo Metal Corporation Blacha stalowa o dużej wytrzymałości walcowana na gorąco o doskonałych właściwościach powierzchniowych i właściwościach wywijania obrzeży otworu
JP2008274416A (ja) 2007-03-30 2008-11-13 Nippon Steel Corp 疲労特性と伸びフランジ性に優れた熱延鋼板およびその製造方法
JP4946617B2 (ja) 2007-05-14 2012-06-06 Jfeスチール株式会社 軟窒化処理用鋼板およびその製造方法
US20090301613A1 (en) 2007-08-30 2009-12-10 Jayoung Koo Low Yield Ratio Dual Phase Steel Linepipe with Superior Strain Aging Resistance
JP2009068067A (ja) 2007-09-13 2009-04-02 Covalent Materials Corp 耐プラズマ性セラミックス溶射膜
JP4955496B2 (ja) 2007-09-28 2012-06-20 株式会社神戸製鋼所 疲労特性及び伸びフランジ性に優れた高強度熱延鋼板
JP4955497B2 (ja) 2007-09-28 2012-06-20 株式会社神戸製鋼所 疲労特性及び伸びフランジ性バランスに優れた熱延鋼板
JP5194858B2 (ja) 2008-02-08 2013-05-08 Jfeスチール株式会社 高強度熱延鋼板およびその製造方法
JP5042914B2 (ja) 2008-05-12 2012-10-03 新日本製鐵株式会社 高強度鋼およびその製造方法
JP4917186B2 (ja) 2009-05-11 2012-04-18 新日本製鐵株式会社 打抜き加工性と疲労特性に優れた熱延鋼板、溶融亜鉛めっき鋼板、およびそれらの製造方法
JP4998755B2 (ja) 2009-05-12 2012-08-15 Jfeスチール株式会社 高強度熱延鋼板およびその製造方法
JP5423191B2 (ja) * 2009-07-10 2014-02-19 Jfeスチール株式会社 高強度鋼板およびその製造方法
JP5278226B2 (ja) 2009-07-29 2013-09-04 新日鐵住金株式会社 省合金型高強度熱延鋼板及びその製造方法
JP5041083B2 (ja) 2010-03-31 2012-10-03 Jfeスチール株式会社 加工性に優れた高張力溶融亜鉛めっき鋼板およびその製造方法
JP5609223B2 (ja) * 2010-04-09 2014-10-22 Jfeスチール株式会社 温間加工性に優れた高強度鋼板およびその製造方法
JP4962594B2 (ja) 2010-04-22 2012-06-27 Jfeスチール株式会社 加工性に優れた高強度溶融亜鉛めっき鋼板およびその製造方法
JP5402847B2 (ja) 2010-06-17 2014-01-29 新日鐵住金株式会社 バーリング性に優れる高強度熱延鋼板及びその製造方法
JP5765080B2 (ja) * 2010-06-25 2015-08-19 Jfeスチール株式会社 伸びフランジ性に優れた高強度熱延鋼板およびその製造方法
JP5609786B2 (ja) 2010-06-25 2014-10-22 Jfeスチール株式会社 加工性に優れた高張力熱延鋼板およびその製造方法
JP5765092B2 (ja) 2010-07-15 2015-08-19 Jfeスチール株式会社 延性と穴広げ性に優れた高降伏比高強度溶融亜鉛めっき鋼板およびその製造方法
CN101935801A (zh) 2010-09-30 2011-01-05 攀钢集团钢铁钒钛股份有限公司 一种490MPa级热轧钢板及其生产方法
JP5521970B2 (ja) 2010-10-20 2014-06-18 新日鐵住金株式会社 冷鍛窒化用鋼、冷鍛窒化用鋼材および冷鍛窒化部品
JP5825481B2 (ja) 2010-11-05 2015-12-02 Jfeスチール株式会社 深絞り性および焼付硬化性に優れる高強度冷延鋼板とその製造方法
CN102021472B (zh) 2011-01-12 2013-02-06 钢铁研究总院 一种适用于连续退火工艺高强塑积汽车钢板的生产方法
JP5609712B2 (ja) 2011-02-24 2014-10-22 Jfeスチール株式会社 良好な延性、伸びフランジ性、材質均一性を有する高強度熱延鋼板およびその製造方法
JP5614330B2 (ja) 2011-02-28 2014-10-29 Jfeスチール株式会社 軟窒化処理用鋼板およびその製造方法
JP5614329B2 (ja) 2011-02-28 2014-10-29 Jfeスチール株式会社 軟窒化処理用鋼板およびその製造方法
KR101570590B1 (ko) 2011-03-18 2015-11-19 신닛테츠스미킨 카부시키카이샤 열연 강판 및 그 제조 방법
PL2692895T3 (pl) 2011-03-28 2018-07-31 Nippon Steel & Sumitomo Metal Corporation Blacha stalowa cienka walcowana na zimno i sposób jej wytwarzania
US9587287B2 (en) 2011-03-31 2017-03-07 Nippon Steel and Sumitomo Metal Corporation Bainite-containing-type high-strength hot-rolled steel sheet having excellent isotropic workability and manufacturing method thereof
JP5640898B2 (ja) 2011-06-02 2014-12-17 新日鐵住金株式会社 熱延鋼板
JP5655712B2 (ja) 2011-06-02 2015-01-21 新日鐵住金株式会社 熱延鋼板の製造方法
JP5780210B2 (ja) 2011-06-14 2015-09-16 新日鐵住金株式会社 伸びと穴広げ性に優れた高強度熱延鋼板およびその製造方法
JP5754279B2 (ja) 2011-07-20 2015-07-29 Jfeスチール株式会社 温間成形用高強度鋼板およびその製造方法
JP5831056B2 (ja) 2011-09-02 2015-12-09 Jfeスチール株式会社 溶接部耐食性に優れた高強度熱延鋼板およびその製造方法
JP5365673B2 (ja) 2011-09-29 2013-12-11 Jfeスチール株式会社 材質均一性に優れた熱延鋼板およびその製造方法
RU2566121C1 (ru) 2011-09-30 2015-10-20 Ниппон Стил Энд Сумитомо Метал Корпорейшн Высокопрочный гальванизированный погружением стальной лист с превосходной характеристикой сопротивления удару и способ его изготовления и высокопрочный, подвергнутый легированию, гальванизированный погружением стальной лист и способ его изготовления
JP5541263B2 (ja) 2011-11-04 2014-07-09 Jfeスチール株式会社 加工性に優れた高強度熱延鋼板およびその製造方法
JP5321671B2 (ja) 2011-11-08 2013-10-23 Jfeスチール株式会社 強度と加工性の均一性に優れた高張力熱延鋼板およびその製造方法
WO2013099206A1 (ja) 2011-12-27 2013-07-04 Jfeスチール株式会社 熱延鋼板およびその製造方法
JP5838796B2 (ja) 2011-12-27 2016-01-06 Jfeスチール株式会社 伸びフランジ性に優れた高強度熱延鋼板およびその製造方法
JP5565534B2 (ja) 2012-01-26 2014-08-06 Jfeスチール株式会社 高強度熱延鋼板及びその製造方法
IN2014MN01636A (ja) 2012-04-26 2015-05-15 Jfe Steel Corp
EP2868762B1 (en) 2012-06-27 2019-05-22 JFE Steel Corporation Steel sheet for soft nitriding and process for producing same
US10077489B2 (en) 2012-06-27 2018-09-18 Jfe Steel Corporation Steel sheet for soft-nitriding and method for manufacturing the same
JP5618431B2 (ja) 2013-01-31 2014-11-05 日新製鋼株式会社 冷延鋼板およびその製造方法

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5891121A (ja) 1981-11-21 1983-05-31 Kawasaki Steel Corp 高磁束密度を有する高張力熱延鋼板の製造方法
JPS58136719A (ja) * 1982-02-05 1983-08-13 Nippon Kokan Kk <Nkk> 高強度熱延鋼板の製造方法
JPS63166931A (ja) 1986-12-27 1988-07-11 Nippon Steel Corp 高磁束密度を有する高張力熱延鋼板の製造方法
JPH0826433B2 (ja) 1992-12-28 1996-03-13 株式会社神戸製鋼所 伸びフランジ性に優れた高強度熱延鋼板
JP2003221648A (ja) * 2001-11-20 2003-08-08 Jfe Engineering Kk 受像管フレーム用高強度熱延鋼板およびその製造方法、ならびに受像管フレーム
JP2003268509A (ja) * 2001-12-28 2003-09-25 Jfe Steel Kk 回転機鉄芯用高加工性高強度熱延鋼板およびその製造方法
JP4273768B2 (ja) 2001-12-28 2009-06-03 Jfeスチール株式会社 回転機鉄芯用熱延鋼板およびその製造方法
JP2004143518A (ja) * 2002-10-23 2004-05-20 Sumitomo Metal Ind Ltd 熱延鋼板
JP2006213957A (ja) * 2005-02-02 2006-08-17 Nippon Steel Corp 材質均一性に優れた高伸びフランジ成形性熱延鋼板の製造方法
JP2009052139A (ja) * 2007-07-31 2009-03-12 Jfe Steel Kk 高強度鋼板
JP2011225980A (ja) * 2010-03-31 2011-11-10 Jfe Steel Corp 加工性に優れた高張力熱延鋼板およびその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2811046A4 *

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014148001A1 (ja) * 2013-03-19 2014-09-25 Jfeスチール株式会社 780MPa以上の引張強度を有する高強度熱延鋼板
US10400316B2 (en) 2013-03-19 2019-09-03 Jfe Steel Corporation High strength hot rolled steel sheet having tensile strength of 780 MPa or more
WO2016084289A1 (ja) * 2014-11-28 2016-06-02 Jfeスチール株式会社 磁極用熱延鋼板およびその製造方法、ならびに水力発電用リム部材
JP6004139B1 (ja) * 2014-11-28 2016-10-05 Jfeスチール株式会社 磁極用熱延鋼板およびその製造方法、ならびに水力発電用リム部材
KR20170072311A (ko) 2014-11-28 2017-06-26 제이에프이 스틸 가부시키가이샤 자극용 열연 강판 및 그의 제조 방법, 그리고 수력 발전용 림 부재
KR101966728B1 (ko) 2014-11-28 2019-04-08 제이에프이 스틸 가부시키가이샤 자극용 열연 강판 및 그의 제조 방법, 그리고 수력 발전용 림 부재
WO2016088321A1 (ja) * 2014-12-05 2016-06-09 Jfeスチール株式会社 磁極用熱延鋼板およびその製造方法、ならびに水力発電用リム部材
JP6020769B1 (ja) * 2014-12-05 2016-11-02 Jfeスチール株式会社 磁極用熱延鋼板およびその製造方法、ならびに水力発電用リム部材
KR20170072312A (ko) 2014-12-05 2017-06-26 제이에프이 스틸 가부시키가이샤 자극용 열연 강판 및 그의 제조 방법, 그리고 수력 발전용 림 부재
KR101966313B1 (ko) 2014-12-05 2019-04-05 제이에프이 스틸 가부시키가이샤 자극용 열연 강판 및 그의 제조 방법, 그리고 수력 발전용 림 부재
WO2018105698A1 (ja) * 2016-12-08 2018-06-14 新日鐵住金株式会社 軟磁性部品用鋼材、軟磁性部品、及び、軟磁性部品の製造方法
JPWO2018105698A1 (ja) * 2016-12-08 2019-10-31 日本製鉄株式会社 軟磁性部品用鋼材、軟磁性部品、及び、軟磁性部品の製造方法

Also Published As

Publication number Publication date
EP2811046A1 (en) 2014-12-10
JPWO2013115205A1 (ja) 2015-05-11
EP2811046A4 (en) 2015-11-25
JP5578288B2 (ja) 2014-08-27
KR101638715B1 (ko) 2016-07-11
EP2811046B1 (en) 2020-01-15
US20150013853A1 (en) 2015-01-15
CN104080938B (zh) 2016-01-20
KR20140108713A (ko) 2014-09-12
CN104080938A (zh) 2014-10-01
US10301698B2 (en) 2019-05-28

Similar Documents

Publication Publication Date Title
JP4644076B2 (ja) 伸びと穴拡げ性に優れた高強度薄鋼板およびその製造方法
JP5316634B2 (ja) 加工性に優れた高強度鋼板およびその製造方法
WO2015088040A1 (ja) 鋼板およびその製造方法
JP5245476B2 (ja) ラインパイプ用鋼板
JP5578288B2 (ja) 発電機リム用熱延鋼板およびその製造方法
JP2011225980A (ja) 加工性に優れた高張力熱延鋼板およびその製造方法
WO2012002566A1 (ja) 加工性に優れた高強度鋼板およびその製造方法
JP5482204B2 (ja) 高強度熱延鋼板およびその製造方法
JP5892147B2 (ja) 高強度熱延鋼板およびその製造方法
WO2013161090A1 (ja) 良好な延性、伸びフランジ性、材質均一性を有する高強度熱延鋼板およびその製造方法
JP6149776B2 (ja) 高靭性高延性高強度熱延鋼板及びその製造方法
JP5742123B2 (ja) ラインパイプ用高強度溶接鋼管向け高張力熱延鋼板およびその製造方法
JP2015160986A (ja) 高強度熱延鋼板およびその製造方法
JP5423737B2 (ja) 加工性に優れた高強度熱延鋼板およびその製造方法
JP5971404B2 (ja) 780MPa以上の引張強度を有する高強度熱延鋼板およびその製造方法
JP5609712B2 (ja) 良好な延性、伸びフランジ性、材質均一性を有する高強度熱延鋼板およびその製造方法
JP5896183B2 (ja) 高強度熱延鋼板とその製造方法
JP6058508B2 (ja) 冷間加工性と加工後の表面性状および硬さに優れる熱延鋼板
JP4514150B2 (ja) 高強度鋼板およびその製造方法
JP4867177B2 (ja) 焼付硬化性及び成形性に優れた高張力熱延鋼板およびその製造方法
JP6052503B2 (ja) 高強度熱延鋼板とその製造方法
JP6390573B2 (ja) 冷延鋼板およびその製造方法
JP4273768B2 (ja) 回転機鉄芯用熱延鋼板およびその製造方法
JP5458641B2 (ja) 炭化物分散鋼
JP6123551B2 (ja) 耐疲労性およびスリット加工後の形状凍結性に優れた高強度熱延鋼板およびその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13744071

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013554129

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20147021132

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2013744071

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14375709

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE