JP4289139B2 - 成形性に優れる軟窒化用鋼板の製造方法 - Google Patents

成形性に優れる軟窒化用鋼板の製造方法 Download PDF

Info

Publication number
JP4289139B2
JP4289139B2 JP2003414040A JP2003414040A JP4289139B2 JP 4289139 B2 JP4289139 B2 JP 4289139B2 JP 2003414040 A JP2003414040 A JP 2003414040A JP 2003414040 A JP2003414040 A JP 2003414040A JP 4289139 B2 JP4289139 B2 JP 4289139B2
Authority
JP
Japan
Prior art keywords
steel sheet
mass
soft nitriding
steel
nitriding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003414040A
Other languages
English (en)
Other versions
JP2005171331A (ja
Inventor
崇 小林
力 上
透 稲積
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2003414040A priority Critical patent/JP4289139B2/ja
Publication of JP2005171331A publication Critical patent/JP2005171331A/ja
Application granted granted Critical
Publication of JP4289139B2 publication Critical patent/JP4289139B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

本発明は、耐久性向上のために軟窒化処理を施して用いられる機械部品の素材に関し、特に、軟窒化処理前の成形性に優れると共に、軟窒化処理による表面硬化特性にも優れる軟窒化用鋼板の製造方法に関するものである。
自動車の変速機等に用いられる機械部品は、疲労強度や耐摩耗性等を向上するため、素材の鋼板を成形加工した後に表面硬化処理を施して使用されることが多い。上記表面硬化処理の代表的なものとしては、浸炭処理と窒化処理がよく知られている。
これらの中で浸炭処理は、最も一般的な表面硬化処理であるが、高温での浸炭処理後に焼入するため、焼入歪による部品の形状精度の低下が避けられない。そのため、部品の形状矯正ならびに焼戻しの工程が必要となり、部品の製造コストが高くなるという問題がある。
これに対して、窒化処理は、窒化処理工程での加熱温度が鋼のA1変態点よりも低いため、素材鋼板の相変態による形状精度の低下が起こらない。また、窒化処理に伴う素材鋼板の表層部の体積変化が小さく、部品の形状精度を良好に保つことが容易である等の優れた特長がある。
しかし、従来の窒化処理方法は、窒化に要する時間が長く、大量生産を前提とする自動車部品等への適用が難しいという問題があった。そこで、軟窒化処理と呼ばれる新たな窒化処理方法が普及しつつある。この軟窒化処理は、処理後に得られる表面硬度は従来の窒化処理よりも低くなるものの、窒化に要する時間が従来の窒化処理より大幅に短縮できるという利点がある。
軟窒化処理の方法としては、塩浴中で窒化する方法とガス中で窒化する二つの方法が主流である。このうち、塩浴中で窒化する方法は、シアン系の塩浴を用いるために環境汚染の防止対策が必要となる。一方、ガス中で窒化する方法は、アンモニアを主成分とする混合ガスを用いるため、環境汚染を引き起こす排出物が少ない。そのため、近年では、浸炭処理に代わる表面硬化処理として、ガス軟窒化処理を採用する傾向にある。
軟窒化処理に用いられる素材としては、例えば、特許文献1や特許文献2には、成形性に優れた窒化用鋼板として、Alを0.060wt%を超えて含有する鋼板に、さらに窒化促進元素として多量のCrと同時にTiやVを複合添加した低炭素鋼板が提案されている。また、特許文献3には、窒化促進元素としてCrを0.20〜2.00wt%含有し、フェライト結晶粒度を5以上12以下に調整した軟窒化処理用の低炭素鋼板が開示されている。さらに、特許文献4には、C含有量が0.001〜0.005wt%の極低炭素鋼において、伸びフランジ性や穴拡げ性を確保したプレス成形性に優れる軟窒化処理用鋼板が開示されている。
特開平9−25513号公報 特開平9−25543号広報 特開2003−105489号公報 特開2003−119548号公報
しかしながら、特許文献1や特許文献2の技術は、鋼にAlとCrを多量に添加しているため、窒化処理後の窒化層の表層部の硬度が高くなり過ぎて、窒化層の脆化を招く。そのため、このような鋼板は、適用できる対象部品が限定される。さらに、Alを脱酸に必要な量以上に添加しているため、原料コストが増加する他、鋼中介在物に起因する欠陥も発生し易いという問題がある。また、特許文献3の技術は、TiやVのような高価な元素を用いずに軟窒化処理に適した鋼を提供するものであるが、その代わりにCrを多量に含有しており、必ずしも製造コストの低減にはつながらない。また、Crを多量に含有する場合には、窒化層が脆化するため、適用できる対象部品が制約されるという問題もある。さらに、特許文献4の技術は、鋼板にAl,Ti,Cr,Vの窒化促進元素に加えて、CuやNiをも含有しており、鋼板の製造コストは必然的に高くなる。また、多量の合金元素を含むため、極低炭素鋼でありながら引張強度が高く、加工が厳しい部品に適用できる程の成形性は備えていないという問題がある。
本発明の目的は、従来技術の軟窒化用鋼板における上記問題点を解決し、自動車用変速機等の部品の素材として好適な、軟質で成形性に優れた軟窒化用鋼板の製造方法を提案することにある。
発明者らは、上記課題を解決するために、鋼の成分組成と軟窒化処理前の成形性および軟窒化処理による表面硬化特性との関係について鋭意研究を重ねた。その結果、鋼板の化学組成を所定の範囲に調整することにより、合金元素量を低減した上でなおかつ鋼板に十分な表面硬化特性を付与できることを見出し、本発明を完成するに至った。
すなわち、本発明は、C:0.01〜0.10mass%、Si:0.1mass%以下、Mn:O.1〜l.0mass%、P:0.05mass%以下、S:0.01mass%以下、Al:0.01〜0.06mass%、Cr:0.05〜0.50mass%、V:0.01〜0.30mass%、N:0.01mass%以下を含み、残部がFeおよび不可避的不純物からなる鋼スラブを、仕上温度をAr変態点〜(Ar変態点+100℃)として熱間圧延し、巻取温度500〜700℃で巻き取ることを特徴とする成形性に優れる軟窒化用熱延鋼板の製造方法を提案する。
また、本発明は、上記製造方法で得た熱延鋼板を、さらに、圧下率40〜80%で冷間圧延し、その後、再結晶温度以上の温度で焼鈍することを特徴とする成形性に優れる軟窒化用冷延鋼板の製造方法である。
本発明によれば、多量の合金元素を添加することなく軟窒化処理前の成形性に優れ、かつ軟窒化処理による表面硬化特性にも優れる軟窒化用鋼板を安価に製造することができる。従って、本発明の鋼板は、自動車の変速機等の部品に代表される軟窒化処理を施す成形品の素材として好適に用いることができる。
本発明の軟窒化用鋼板の成分組成を限定する理由について説明する。
C:0.01〜0.10mass%
Cは、鋼を固溶強化すると共に、硬質な第二相の形成を通じて鋼を高強度化する元素である。そのため、鋼を軟質化し、成形性を向上するためには、Cの含有量を低減することが望ましく、0.10mass%以下に制限する。しかし、C含有量を0.01mass%未満まで低減すると、鋼の溶製コストの増大を招くため、C含有量の下限は0.01mass%以上とする。好ましくは0.02〜0.08mass%である。
Si:0.1mass%以下
Siは、固溶強化により鋼を高強度化する元素である。Si含有量が0.1mass%を超えると、鋼板の強度が上昇して成形性の低下を招くほか、スケール性欠陥の発生により鋼板の表面が悪化する。そのため、Siの含有量は0.1mass%以下に限定する。好ましくは0.05mass%以下である。
Mn:O.1〜l.0mass%
Mnは、鋼中に不純物として存在するSを析出物(MnS)として固定し、Sに起因する悪影響を低減する作用を有する。上記効果を得るためには、0.1mass%以上の含有が必要である。一方、Mnは、固溶強化により鋼を強化する元素でもあり、その含有量が1.0mass%を超えると、鋼板の強度が上昇して成形性の低下を招く。よって、Mnの含有量は0.1〜1.0mass%に限定する。好ましくは0.1〜0.5mass%である。
P:0.05mass%以下
Pは、鋼中に不純物として存在する元素であり、多量に含有すると鋼板の成形性や溶接性が低下する。そのため、Pの含有量は0.05mass%以下に限定する。望ましくは0.03mass%以下である。
S:0.01mass%以下
Sは、鋼中に不純物として存在する元素である。多量のSは、鋼板の成形性や溶接性を低下させるため、Sの含有量は0.01mass%以下に限定する。望ましくは0.005mass%以下である。
Al:0.01〜0.06mass%
Alは、鋼の脱酸のために添加される元素である。Alの含有量が0.01mass%未満では十分な脱酸効果が得られない。一方、0.06mass%を超えて添加しても、脱酸効果は飽和する。そのため、Alの含有量は0.01〜0.06mass%に限定する。
Cr:0.05〜0.50mass%
Crは、軟窒化処理により、鋼中に窒化物を形成して鋼板の表面硬さを高める効果があり、本発明における重要な元素である。上記効果を得るためには、0.05mass%以上の含有が必要である。軟窒化処理による表面硬化量はCr含有量の増加に伴って大きくなる。しかし、過度のCrの含有は、原料コストが増加するだけでなく、表層部の窒化が過度に進行することにより、逆に、窒化層の深さは浅くなる。そのため、Crの含有量は0.05〜0.50mass%に限定する必要がある。
V:0.01〜0.30mass%
Vは、Crと同様に、軟窒化処理により、鋼中に窒化物を形成して鋼板の表面硬さを高める効果があり、本発明においては重要な元素である。特に、Crと複合して添加することにより、相乗的な効果を発揮し、軟窒化処理による表面硬化特性がより向上する。すなわち、CrとVの同時添加により、Crの含有量が少なくても、軟窒化後の鋼板表層部の硬度を大きく高めることができ、かつ、窒化深さを増すことが可能となる。このような効果を得るためには、Vは0.01mass%以上含有する必要がある。一方、含有量が0.30mass%を超えると、前記効果は飽和し、原料コストの増加を招く。そのため、Vの含有量は0.01〜0.30mass%に限定する。
N:0.01mass%以下
Nは、鋼中に不純物として存在する元素であり、多量のNの含有は、鋼板の成形性を低下させるため、0.01mass%以下に限定する。望ましくは0.005mass%以下である。
本発明の鋼板は、上記成分以外の残部は、Feおよび不可避的不純物からなる。
次に、本発明に係る軟窒化用鋼板の製造工程について説明する。
まず、通常公知の方法で、上記の成分組成を有する鋼を溶製し、鋳造して鋼片(鋼スラブ)とする。溶製および鋳造は、転炉および連続鋳造機を用いて行うのが、生産効率およびスラブ品質の観点からは好ましいが、電炉で溶製したり、造塊−分塊法で鋼スラブを製造したりしても構わない。また、脱ガス処理等の二次精錬を行ってもよい。
上記鋼スラブは、その後、後述する所定の仕上温度で圧延を終了する熱間圧延を行う。仕上温度を所定の温度とするためには、熱間圧延前の鋼スラブは、適当な温度に加熱炉で再加熱しておく必要がある。その加熱温度は、所定の仕上温度が確保できる温度であればよく、製造設備の能力に応じて適宜決定でき、本発明では特に規定しない。また、仕上温度が確保できる場合には、連続鋳造後の鋼スラブをそのまま熱間圧延する直送圧延を採用してもよい。なお、熱間圧延工程においては、熱間圧延中のシートバー等を誘導加熱等の方法で追加加熱し、所定の仕上温度の確保を図ってもよいし、粗圧延後のシートバーを接合し、仕上圧延工程を連続化してもよい。
所定の仕上温度で熱間圧延した熱延鋼板は、後述する所定の温度で巻き取り、その後、表面に生成した酸化スケールを酸洗またはショットブラスト等の処理により除去し、さらに必要に応じて、形状矯正、表面粗度調整のために調質圧延を施して軟窒化用熱延鋼板とする。また、本発明の軟窒化鋼板は、上記熱延鋼板に限られることなく、熱間圧延後の鋼板を、さらに脱スケールし、冷間圧延し、再結晶焼鈍し、その後、必要に応じて調質圧延を施して軟窒化用冷延鋼板としてもよく、要求品質に応じて適宜選択することができる。なお、成形加工後の軟窒化処理を妨げない程度であれば、鋼板表面に防錆油等を塗布しても構わない。
次に、上記各製造工程における製造条件を限定する理由について説明する。
熱間圧延仕上温度:Ar3変態点〜(Ar3変態点+100℃)
熱間仕上圧延における仕上温度は、Ar3変態点〜(Ar3変態点+100℃)の範囲とする。仕上温度がAr3変態点を下回ると、熱延鋼板の表層組織が粗大化したり、圧延方向に展伸したフェライト組織および未再結晶フェライト組織が形成されたりして、熱延鋼板の成形性が低下する。また、鋼板の機械的特性の面内異方性が大きくなる。一方、仕上温度が(Ar3変態点+100℃)を超えると、鋼板の表面性状の悪化を招きやすい。好ましくは、Ar3変態点〜(Ar3変態点+50℃)である。
巻取温度:500〜700℃
熱間圧延したコイルの巻取温度は500〜700℃とする。巻取温度が500℃未満の場合には、熱延鋼板が硬質化して成形性が低下すると共に、鋼板形状の悪化を招く。一方、巻取温度が700℃を超える場合には、鋼板の表面性状が悪化するため好ましくない。好ましくは、550〜650℃である。
冷延圧下率:40〜80%
冷間圧延における圧下率は、40〜80%の範囲とする。圧下率が40%未満の場合には、焼鈍後の結晶粒が粗大化し易く、冷延鋼板の表面性状や成形性が低下する。一方、圧下率が80%を超える場合には、圧延荷重等の負荷が過大となり、現有の冷延設備では対応できない。好ましくは、50〜70%である。
焼鈍温度:再結晶温度以上
冷間圧延した鋼板の焼鈍は、再結晶が完了する温度以上で行う必要がある。焼鈍温度が再結晶温度に達しない場合には、冷延鋼板の組織は、圧延歪が残存する未再結晶組織となり、鋼板の成形性が大きく低下する。連続焼鈍の場合、好ましい焼鈍温度は750℃以上である。なお、連続焼鈍の焼鈍温度は、焼鈍コストを抑制する観点から、850℃以下であることが好ましい。焼鈍に用いる炉は、連続焼鈍ラインにて実施するのが生産効率上好ましいが、バッチ式の箱焼鈍炉を用いてもよい。
なお、軟窒化処理の方法は、ガス窒化法が代表的であるが、塩浴窒化法やプラズマ窒化法でも問題はない。ガス窒化法で窒化処理に使用されるガスについても、通常用いられている組成の混合ガスであれば不都合はない。また、本発明鋼板は、軟窒化処理に限らず、従来の窒化処理に対しても十分な効果を発現する。
表1に示す成分組成を有し、残部がFeおよび不可避的不純物よりなる鋼を転炉で溶製し、連続鋳造して鋼スラブとし、その後、表2に示す条件にて熱間圧延し、酸洗し、伸率1.0%の調質圧延を施して熱延鋼板とした。また、上記熱延後の鋼板の一部については、酸洗した後、同じく表2に示す条件で冷間圧延し、連続焼鈍し、伸率1.0%の調質圧延を施し、冷延鋼板とした。上記のようにして得た、熱延鋼板および冷延鋼板から試験片を採取し、引張試験に供して機械的特性を調査した。引張試験は、引張方向が圧延方向となるように採取したJIS Z 2204に規定のJIS 5号試験片を用いて、JIS Z 2241の規定に準拠して行い、降伏応力(YS)、引張強さ(TS)、破断伸び(El)を測定した。なお、成形性の評価は、Elが40%以上のものを良好と判定した。
Figure 0004289139
Figure 0004289139
次いで、成形性を良好と判定した鋼板について、ガス軟窒化処理を施した。ガス軟窒化処理は、窒化ガスとしてアンモニア(NH3)と吸熱型変成ガスの混合ガスを用いて、処理温度570℃で3時間処理し、処理後の鋼板は油冷した。軟窒化処理を施した鋼板は、鋼板表面の硬さと断面の硬さを測定した。表面硬さは、JIS G 0563の規定に準拠し、ビッカース表面硬さを測定した。また、断面硬さは、JIS G 0562の規定に準拠してビッカース硬さを測定し、深さ0.1mmにおける断面硬さおよび実用窒化層深さを求めた。ここで、実用窒化層深さとは、JIS G 0562に規定されているビッカース硬さで測定した実用窒化層深さのことである。さらに、成形性を良好と判定した鋼板については、予め引張試験片にまで加工した試験片を軟窒化処理し、軟窒化処理前と同様の条件で引張試験を行い、軟窒化処理後の破断伸び(El*)を測定し、軟窒化処理による脆化度を調査した。なお、鋼板の表面硬化特性は、軟窒化処理後の断面硬さと破断伸びの値により評価し、鋼板表面から深さ0.1mmにおけるビッカース硬さの値が500以上で実用窒化層深さが0.40mm以上、かつ、軟窒化処理後の破断伸び(El*)が0.5%以上の場合を良好と判定した。
上記各測定の結果を表3に示す。
本発明に適合するNo.1,4〜6,9〜11の各鋼板は、成形性と表面硬化特性がいずれも良好であり、成形性に優れた軟窒化用鋼板となっている。一方、鋼の化学組成が本発明の範囲を外れるNo.12〜17の各鋼板では、成形性と表面硬化特性の双方が良好なものは得られていない。CrあるいはVの含有量が本発明の範囲を外れるNo.12〜16の鋼板は、表面硬化特性が不十分であり、Cの含有量が本発明の範囲外となるNo.17の鋼板は硬質で成形性に劣る。また、製造時の熱間圧延の仕上温度がAr3変態点を下回ったNo.2、熱間圧延の巻取温度が本発明の範囲を外れるNo.3、冷間圧延の圧下率が本発明の範囲を外れるNo.7、冷間圧延後の焼鈍温度が低く、再結晶が完了していないNo.8の各鋼板は、破断伸び(El)の値が低く、十分な成形性は得られていない。
Figure 0004289139
本発明の鋼板は、自動車の変速機等の駆動系部品に適用することができる他、自動車以外の各種機械の駆動系部品等に用いても好適である。

Claims (2)

  1. C:0.01〜0.10mass%、
    Si:0.1mass%以下、
    Mn:O.1〜l.0mass%、
    P:0.05mass%以下、
    S:0.01mass%以下、
    Al:0.01〜0.06mass%、
    Cr:0.05〜0.50mass%、
    V:0.01〜0.30mass%、
    N:0.01mass%以下を含み、
    残部がFeおよび不可避的不純物からなる鋼スラブを、仕上温度をAr変態点〜(Ar変態点+100℃)として熱間圧延し、巻取温度500〜700℃で巻き取ることを特徴とする成形性に優れる軟窒化用熱延鋼板の製造方法。
  2. 請求項1に記載の製造方法で得た熱延鋼板を、さらに、圧下率40〜80%で冷間圧延し、その後、再結晶温度以上の温度で焼鈍することを特徴とする成形性に優れる軟窒化用冷延鋼板の製造方法。
JP2003414040A 2003-12-12 2003-12-12 成形性に優れる軟窒化用鋼板の製造方法 Expired - Fee Related JP4289139B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003414040A JP4289139B2 (ja) 2003-12-12 2003-12-12 成形性に優れる軟窒化用鋼板の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003414040A JP4289139B2 (ja) 2003-12-12 2003-12-12 成形性に優れる軟窒化用鋼板の製造方法

Publications (2)

Publication Number Publication Date
JP2005171331A JP2005171331A (ja) 2005-06-30
JP4289139B2 true JP4289139B2 (ja) 2009-07-01

Family

ID=34733961

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003414040A Expired - Fee Related JP4289139B2 (ja) 2003-12-12 2003-12-12 成形性に優れる軟窒化用鋼板の製造方法

Country Status (1)

Country Link
JP (1) JP4289139B2 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4946617B2 (ja) * 2007-05-14 2012-06-06 Jfeスチール株式会社 軟窒化処理用鋼板およびその製造方法
JP5522982B2 (ja) * 2009-06-18 2014-06-18 日新製鋼株式会社 Atセパレートプレート用鋼板
JP5614329B2 (ja) * 2011-02-28 2014-10-29 Jfeスチール株式会社 軟窒化処理用鋼板およびその製造方法
EP2811046B1 (en) 2012-01-31 2020-01-15 JFE Steel Corporation Hot-rolled steel sheet for generator rim and method for manufacturing same
TWI456077B (zh) * 2012-06-27 2014-10-11 Jfe Steel Corp 軟氮化處理用鋼板及其製造方法
EP2868764B1 (en) * 2012-06-27 2019-07-24 JFE Steel Corporation Steel sheet for soft nitriding and method for manufacturing the same
KR101735220B1 (ko) * 2012-06-27 2017-05-12 제이에프이 스틸 가부시키가이샤 연질화 처리용 강판 및 그 제조 방법
JP5630523B2 (ja) 2013-04-02 2014-11-26 Jfeスチール株式会社 窒化処理用鋼板およびその製造方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5967365A (ja) * 1982-10-08 1984-04-17 Daido Steel Co Ltd 機械部品の製造方法
JPH05171347A (ja) * 1991-12-18 1993-07-09 Aichi Steel Works Ltd 冷間鍛造性に優れた軟窒化用鋼

Also Published As

Publication number Publication date
JP2005171331A (ja) 2005-06-30

Similar Documents

Publication Publication Date Title
TWI404808B (zh) 淬火性優異之硼添加鋼板及製造方法
JP6143355B2 (ja) 絞り加工性と浸炭熱処理後の表面硬さに優れる熱延鋼板
JP5034803B2 (ja) 軟窒化処理用鋼板およびその製造方法
JP5126844B2 (ja) 熱間プレス用鋼板およびその製造方法ならびに熱間プレス鋼板部材の製造方法
WO2012060294A1 (ja) 深絞り性および焼付硬化性に優れる高強度冷延鋼板とその製造方法
CN108315637B (zh) 高碳热轧钢板及其制造方法
KR101733513B1 (ko) 질화 처리용 강판 및 그의 제조 방법
US10077485B2 (en) Steel sheet for soft-nitriding and method for manufacturing the same
KR101718757B1 (ko) 성형 가공성이 우수한 페라이트계 스테인리스 강판
EP2868764B1 (en) Steel sheet for soft nitriding and method for manufacturing the same
JP4289139B2 (ja) 成形性に優れる軟窒化用鋼板の製造方法
JP5614330B2 (ja) 軟窒化処理用鋼板およびその製造方法
JP5614329B2 (ja) 軟窒化処理用鋼板およびその製造方法
JP4946617B2 (ja) 軟窒化処理用鋼板およびその製造方法
JP4561136B2 (ja) 窒化処理用鋼板
JP2007162138A (ja) 窒化処理用鋼板およびその製造方法
JP4397772B2 (ja) 加工性に優れるフェライト系ステンレス鋼板の製造方法
JP5029500B2 (ja) 脱水素処理用鋼板および電気めっき鋼板部材ならびに電気めっき鋼板部材の製造方法
JP2009179832A (ja) 角筒絞り成形性と形状凍結性に優れた高強度冷延鋼板およびその製造方法ならびに製品形状に優れた自動車用部品
JP3911075B2 (ja) 焼付硬化性に優れる超深絞り用鋼板の製造方法
JP2011032543A (ja) 加工性に優れた高強度鋼板及びその製造方法
JP2011032542A (ja) 加工性に優れた高強度鋼板及びその製造方法
JP2003253387A (ja) 窒化用鋼板および窒化鋼品の製造方法
TW201400625A (zh) 軟氮化處理用鋼板及其製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061003

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081104

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081202

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090121

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090310

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090323

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120410

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130410

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130410

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140410

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees