WO2012060294A1 - 深絞り性および焼付硬化性に優れる高強度冷延鋼板とその製造方法 - Google Patents

深絞り性および焼付硬化性に優れる高強度冷延鋼板とその製造方法 Download PDF

Info

Publication number
WO2012060294A1
WO2012060294A1 PCT/JP2011/074939 JP2011074939W WO2012060294A1 WO 2012060294 A1 WO2012060294 A1 WO 2012060294A1 JP 2011074939 W JP2011074939 W JP 2011074939W WO 2012060294 A1 WO2012060294 A1 WO 2012060294A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
less
steel sheet
rolled steel
rolling
Prior art date
Application number
PCT/JP2011/074939
Other languages
English (en)
French (fr)
Inventor
英之 木村
長滝 康伸
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to CA2814193A priority Critical patent/CA2814193C/en
Priority to CN201180053425.3A priority patent/CN103201403B/zh
Priority to BR112013011013A priority patent/BR112013011013A2/pt
Priority to EP11837944.5A priority patent/EP2636762B1/en
Priority to KR1020137009954A priority patent/KR101561358B1/ko
Priority to US13/882,300 priority patent/US20130213529A1/en
Priority to MX2013005011A priority patent/MX350226B/es
Publication of WO2012060294A1 publication Critical patent/WO2012060294A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/005Modifying the physical properties by deformation combined with, or followed by, heat treatment of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0273Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/008Ferrous alloys, e.g. steel alloys containing tin
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/20Ferrous alloys, e.g. steel alloys containing chromium with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/24Ferrous alloys, e.g. steel alloys containing chromium with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite

Definitions

  • the present invention is suitable for use in the outer plate of an automobile body, etc., has a tensile strength TS of 440 MPa or more, an average r value of 1.20 or more, and a BH amount of 40 MPa or more.
  • the present invention relates to a high-strength cold-rolled steel sheet having excellent curability and a method for producing the same.
  • the weight reduction effect of an automobile body can be enjoyed as the steel plate strength increases. Therefore, recently, there is a tendency to use a high-strength steel plate having a tensile strength of 440 MPa or more for an automobile body.
  • the steel plate as the material is also required to have excellent formability. That is, in order to achieve weight reduction and high strength of the automobile body, the tensile strength is 440 MPa or more and the deep drawability is excellent.
  • the Rankford value r A high-strength steel sheet having an average r value of 1.2 or more has been demanded.
  • the outer panel of the automobile body is also required to have dent resistance, it is desirable that the strength after baking is high, and for that purpose, it is also necessary to have excellent bake hardenability (BH property).
  • BH property bake hardenability
  • a conventional steel sheet with improved BH properties contains a large amount of solute C, and therefore tends to be inferior in formability, particularly deep drawability, as compared with a normal mild steel plate. Therefore, in order to realize both weight reduction and safety improvement of the car body, the steel plate used for the car body must have excellent bake hardenability in addition to high strength and deep drawability. Needed.
  • the technology to achieve high r value and high strength is based on IF (Interstitial Free) steel in which solute C or solute N is fixed by adding Ti or Nb to ultra low carbon steel, and Si or Mn
  • IF Interstitial Free
  • solid solution strengthening elements such as.
  • C 0.002 to 0.015%
  • Nb C ⁇ 3 to (C ⁇ 8 + 0.020)%
  • Si 1.2% or less
  • Mn 0.04 to 0.005.
  • P 0.03 to 0.10% component composition
  • a rolled steel sheet is disclosed.
  • a composite structure steel plate composed of a soft ferrite phase and a hard martensite phase generally has good ductility, an excellent balance between strength and ductility, and a low yield ratio. It has.
  • the composite structure steel plate has excellent formability, but has a problem that it is inferior in deep drawability due to its low r value. This is because, in addition to the presence of a martensite phase that does not contribute to the r value in terms of crystal orientation, the solid solution C necessary for the formation of the martensite phase is an effective ⁇ 111 ⁇ recrystallization texture. It is said to inhibit the production of.
  • Patent Document 3 C: 0.20% or less, Si: 1.0% or less, Mn: 0.8 to 2.5%, sol.
  • a steel material containing Al: 0.01-0.20%, N: 0.0015-0.0150%, P: 0.10% or less is hot-rolled and cold-rolled, and then 650-800 ° C.
  • box annealing in the temperature range of the above, forming a recrystallized texture preferable for the r value, segregating C, Mn atoms to the austenite phase, and then performing continuous annealing to be heated and cooled to 600 ° C. or higher.
  • Patent Document 4 by mass, C: 0.03 to 0.25%, Si: 0.001 to 3.0%, Mn: 0.01 to 3.0%, P: 0.001 Steel material containing ⁇ 0.06%, S: 0.05% or less, N: 0.001 ⁇ 0.030%, Al: 0.005 ⁇ 0.3% is hot-rolled and the reduction rate is 30% More than 95% cold-rolled steel sheet is annealed at an average heating rate of 4 to 200 ° C / hr to a maximum temperature of 600 to 800 ° C to form Al and N clusters and precipitates. Further, by heating to a ferrite-austenite two-phase region with an Ac 1 transformation point or more and 1050 ° C. or less and cooling, a total of one or more of bainite, martensite, and austenite is obtained. Containing 3 to 100% of the structure, excellent deep drawability A technique for obtaining a steel sheet is proposed.
  • Patent Documents 2 to 4 are an annealing process for increasing the r value by developing a texture by forming Al and N clusters and precipitates, and for forming a desired structure. A heat treatment step.
  • the annealing process is based on box annealing, and the soaking time is 1 hour or longer, and therefore requires a long time. That is, the techniques of Patent Documents 2 to 4 are inferior in productivity due to a long annealing time and a large number of processes.
  • Patent Document 5 As another technique for improving the r value of a composite structure steel plate, for example, in Patent Document 5, C: 0.003 to 0.03%, Si: 0.2 to 1%, Mn: 0 by weight%. 0.3 to 1.5%, Al: 0.01 to 0.07%, Ti: 0.02 to 0.2%, and (effective Ti) / (C + N) atomic concentration ratio of 0.4 to A steel material set to 0.8 is hot-rolled, cold-rolled, continuously heated at a temperature of Ac 1 transformation point to 900 ° C. for 30 seconds to 10 minutes, and then cooled at an average cooling rate of 30 ° C./s or more. There has been proposed a manufacturing method in which annealing is performed to obtain a composite structure steel plate in which a predetermined amount of a second phase (martensite and / or bainite) is dispersed in ferrite.
  • a second phase martensite and / or bainite
  • Patent Document 5 C: 0.012%, Si: 0.32%, Mn: 0.53%, P: 0.03%, Al: 0.03%, Ti: 0% by weight.
  • a steel material having a composition of 0.051% is hot-rolled, cold-rolled, annealed at 870 ° C., which is a two-phase region of ferrite-austenite, for 2 minutes, and then rapidly cooled at an average cooling rate of 100 ° C./s. It is said that a composite structure steel plate having an r value of 1.61 and a tensile strength of 482 MPa can be obtained by applying.
  • Patent Document 5 requires a water quenching facility having a strong cooling capacity in order to ensure a cooling rate of 100 ° C./s, resulting in an increase in equipment cost. Moreover, the steel plate which gave water quenching also has the problem that it is inferior to a shape property and surface treatment property. Furthermore, the steel plate obtained by the technique of Patent Document 5 has a problem that the tensile strength does not reach 500 MPa, and it is difficult to cope with the production of a high-strength steel plate having a tensile strength of 500 MPa or more, and further 590 MPa or more. .
  • Patent Document 6 discloses that in mass%, C: 0.01 to 0.08%, Si: 2.0% or less, Mn: 3.0% or less, Al: 0.005 to 0.20%, A steel material containing N: 0.02% or less, V: 0.01 to 0.5%, and V and C satisfying a predetermined relationship is hot-rolled, cold-rolled, and then By continuous annealing (recrystallization annealing) in the temperature range of Ac 1 to Ac 3 transformation points, it has a structure including a ferrite phase as the main phase and a martensite phase with an area ratio of 1% or more, and excellent deep drawability. A technique for manufacturing a high-strength cold-rolled steel sheet having a composite structure has been proposed.
  • This technology optimizes the contents of V and C, and prior to recrystallization annealing, C in steel is precipitated as V-based carbides to reduce solute C as much as possible to achieve a high r value, followed by recrystallization.
  • Annealing is characterized in that it is heated to a ferrite-austenite two-phase region, V carbides are dissolved, C is concentrated in austenite, and martensite is generated in the subsequent cooling process to increase the strength. There is.
  • Patent Document 6 dissolves V-based carbides in the ferrite-austenite two-phase region, there is variation in the dissolution rate of the V-based carbides, so the annealing temperature and annealing time in the recrystallization annealing process Need to be managed accurately, leaving a problem in terms of stability of quality characteristics.
  • Patent Document 7 by mass, C: 0.010 to 0.050%, Si: 1.0% or less, Mn: 1.0 to 3.0%, P: 0.005 to 0.00. 1%, S: 0.01% or less, Al: 0.005 to 0.5%, N: 0.01% or less, Nb: 0.01 to 0.3%, and Nb and C (Nb / 93) / (C / 12): a steel material containing 0.2 to 0.7 is hot-rolled, cold-rolled, and then subjected to a ferrite-austenite two-phase region at 800 to 950 ° C.
  • Patent Document 7 aims to refine the hot-rolled sheet structure by adding Nb, and the contents of Nb and C are (Nb / 93) / (C / 12): 0.2 to 0.7.
  • NbC contents of Nb and C
  • C / 12 contents of Nb and C
  • the amount of steel so as to precipitate part of C in the steel during hot rolling as NbC
  • the solid solution C before annealing the generation of ⁇ 111 ⁇ recrystallized grains from the grain boundaries during annealing is promoted.
  • martensite is generated at the time of cooling after annealing by the solid solution C that is not fixed as NbC, and the strength is increased.
  • a high-strength steel sheet having a structure including a ferrite phase having an area ratio of 50% or more and a martensite phase having an area ratio of 1% or more and having an average r value of 1.2 or more can be manufactured.
  • Nb is a very expensive element, which is disadvantageous in terms of raw material costs. Further, Nb significantly delays the recrystallization of austenite, so that there is a problem that the load during hot rolling becomes high. Further, NbC precipitated in the hot-rolled sheet also increases deformation resistance during cold rolling, and therefore, when cold rolling is performed at a high reduction ratio (65%) as disclosed in the example of Patent Document 7.
  • NbC precipitated in the hot-rolled sheet also increases deformation resistance during cold rolling, and therefore, when cold rolling is performed at a high reduction ratio (65%) as disclosed in the example of Patent Document 7.
  • there are many problems in stable production of steel sheets such as an increase in rolling load, an increase in the risk of occurrence of troubles, and a reduction in productivity and restrictions on the width of the steel sheet that can be manufactured.
  • JP-A-56-139654 Japanese Patent Publication No. 55-10650 JP-A-55-100934 JP 2003-64444 A Japanese Patent Publication No. 01-35900 JP 2002226694 A Japanese Patent Laid-Open No. 2005-120467
  • the conventional technology using solid solution strengthening requires the addition of a large amount or an excess of alloy elements, and the r value There are also problems in terms of raw material costs as well as BH properties.
  • the technology for strengthening using the structure strengthening it is necessary to perform annealing for a long time, or to perform another heat treatment after annealing to form a desired structure, or to require a high-speed cooling facility. Manufacturing problems.
  • the technique using precipitation of VC or NbC can provide a high-strength steel sheet having relatively good processing characteristics, there is still room for improvement in terms of quality stability, productivity, and cost.
  • the present invention has been made in view of the above-mentioned problems of the prior art, and its purpose is suitable for use in automobile steel sheets and the like, while having a high tensile strength TS of 440 MPa or more,
  • the present invention provides a high-strength cold-rolled steel sheet that has an average r value of 1.20 or more and a bake hardening amount (BH amount) of 40 MPa or more and is excellent in deep drawability and bake hardenability, and an advantageous production method thereof.
  • BH amount bake hardening amount
  • the high-strength cold-rolled steel sheets of the present invention include those having a tensile strength of 440 MPa or more, a tensile strength of 500 MPa or more, and further 590 MPa or more.
  • the present invention includes C: 0.010 to 0.06 mass%, Si: more than 0.5 mass% and 1.5 mass% or less, Mn: 1.0 to 3.0 mass%, P: 0.005 to 0.1 mass. %, S: 0.01 mass% or less, sol.
  • the balance is composed of Fe and unavoidable impurities, and has a structure including a ferrite phase of 70% or more and a martensite phase of 3% or more in area ratio, and a tensile strength of 440 MPa or more.
  • the high-strength cold-rolled steel sheet is excellent in deep drawability and bake hardenability, having an average r value of 1.20 or more and a BH amount of 40 MPa or more.
  • the high-strength cold-rolled steel sheet of the present invention is characterized by further containing one or more selected from Mo, Cr and V in addition to the above component composition in a total amount of 0.5 mass% or less.
  • the high-strength cold-rolled steel sheet of the present invention further contains one or two selected from Cu: 0.3 mass% or less and Ni: 0.3 mass% or less.
  • the high-strength cold-rolled steel sheet of the present invention further contains one or two selected from Sn: 0.2 mass% or less and Sb: 0.2 mass% or less.
  • C 0.010 to 0.06 mass%
  • Si more than 0.5 mass% and 1.5 mass% or less
  • Mn 1.0 to 3.0 mass%
  • P 0.005 to 0.1 mass %
  • S 0.01 mass% or less
  • the annealing is performed. After heating the temperature range of 700 to 800 ° C. to an annealing temperature of 800 to 900 ° C. with an average temperature increase rate of less than 3 ° C./s, an average cooling rate of 5 ° C./s from the annealing temperature to a cooling stop temperature Tc of 500 ° C. or lower is obtained.
  • the present invention proposes a method for producing a high-strength cold-rolled steel sheet excellent in deep drawability and bake hardenability, which is performed under conditions of cooling at s or higher.
  • the steel material in the production method of the present invention is characterized in that in addition to the above component composition, one or more selected from Mo, Cr and V are further contained in a total amount of 0.5 mass% or less.
  • the steel raw material in the manufacturing method of this invention contains further 1 type or 2 types chosen from Cu: 0.3 mass% or less and Ni: 0.3 mass% or less.
  • the steel raw material in the manufacturing method of this invention contains 1 type or 2 types further chosen from Sn: 0.2 mass% or less and Sb: 0.2 mass% or less.
  • the element symbol indicates the content (mass%) of each element. It is characterized by containing.
  • the production method of the present invention is characterized in that the rolling reduction of the final pass in the hot rolling finish rolling is 10% or more, and the rolling reduction of the previous pass of the final pass is 15% or more.
  • the production method of the present invention starts cooling within 3 seconds after finishing the hot rolling finish cooling, and cools to a temperature range of 720 ° C. or less at an average cooling rate of 40 ° C./s to 500 to 700 After winding at a temperature of ° C., cold rolling is performed at a rolling rate of 50% or more.
  • the C content is in the range of 0.010 to 0.06 mass%
  • the Nb addition amount is related to the C content (Nb / 93) / (C / 12): Limiting to less than 0.20, the amount of solute C not fixed by Nb and Ti (C *) Is controlled within a predetermined range, and the tensile strength TS is 440 MPa or more, the average r value is 1.20 or more, and the BH amount is 40 MPa or more. It becomes possible to manufacture a cold-rolled steel sheet stably.
  • the present invention by reducing the expensive Nb as much as possible and actively using Ti, not only the tensile strength of 440 MPa or more, but also high strength steel sheets of 500 MPa or more, and even 590 MPa or more are averaged.
  • a high-strength steel sheet having an r value of 1.20 or more and a BH amount of 40 MPa or more and excellent in deep drawability and bake hardenability can be manufactured inexpensively and stably. Therefore, when the high-strength cold-rolled steel sheet of the present invention is applied to automobile parts, it becomes possible to increase the strength of members that have been difficult to press-form so far. It can contribute greatly.
  • the inventors have newly found that there is an extraordinarily solute C content range that enables the development of ⁇ 111 ⁇ recrystallization texture and the formation of martensite. That is, in the present invention, the content of C is lower than that of a conventional DP steel plate made of low-carbon steel and more than that of a conventional ultra-low carbon steel plate, and C: 0.010 to 0.06 mass%. In addition to controlling to the range, the appropriate amount of Nb and Ti is added in accordance with the C content, and the proper amount of solid solution C is ensured to develop the ⁇ 111 ⁇ recrystallized texture during annealing.
  • Nb is effective in refining the hot rolled sheet structure because it has the effect of delaying recrystallization. Further, Nb has a high carbide forming ability and precipitates as NbC in the steel at the winding stage after hot rolling, so that the amount of solute C before cold rolling and before recrystallization annealing can be reduced. it can.
  • Nb is an expensive element and an element that deteriorates manufacturability (rollability). Therefore, in the present invention, the amount of Nb added is limited to the minimum amount necessary for refinement of the hot-rolled sheet structure, and Ti having high carbide forming ability like Nb is used for reducing the solid solution C. I decided to use it.
  • Nb is added so as to satisfy less than (Nb / 93) / (C / 12): 0.20 in relation to the C content, and solid solution not fixed by Nb or Ti.
  • the amount of C (C *) is controlled in the range of 0.005 to 0.025 mass%.
  • the amount of solid solution C (C *) is controlled in the range of 0.005 to 0.025 mass% by controlling the component composition of steel within an appropriate range, thereby increasing the r value,
  • One characteristic is that high strength is realized by BH and composite organization.
  • the present invention suppresses (Nb / 93) / (C / 12) to less than 0.20, and actively uses Ti as an alternative to increase the load of hot rolling and cold rolling.
  • the amount of expensive Nb to be added is greatly reduced, so that a high strength cold rolled steel sheet having a high r value and high BH properties can be industrially stabilized without causing an increase in raw material cost and a decrease in productivity.
  • the second feature is that it can be manufactured.
  • the present invention controls the rolling reduction of the final pass and the rolling reduction of the pass before the final pass in an appropriate range in finish rolling in hot rolling,
  • the refinement of crystal grains of the hot-rolled sheet proceeds more remarkably, the structure after cold rolling and annealing is also refined, and this
  • the refinement of the structure after annealing increases the interfacial area of the grains and increases the amount of grain segregated C which enhances bake hardenability, so that a high bake hardening amount (BH amount) can be obtained.
  • BH amount bake hardening amount
  • C 0.010 to 0.06 mass%
  • C is an important element necessary for solid strengthening steel and promoting the formation of a composite structure containing a second phase containing martensite with ferrite as a main phase and achieving high strength.
  • C content is less than 0.010 mass%, it is difficult to secure a sufficient amount of martensite, and the tensile strength of 440 MPa or more desired by the present invention cannot be obtained.
  • the C content exceeds 0.06 mass%, the amount of martensite to be generated increases, and a desired average r value (1.20 or more) cannot be obtained. Therefore, in the present invention, C is in the range of 0.010 to 0.06 mass%. Preferably, it is in the range of 0.020 to 0.045 mass%.
  • Si 0.5 mass% to 1.5 mass% or less Si promotes ferrite transformation, increases the C content in untransformed austenite, and facilitates formation of a composite structure composed of ferrite and martensite. It is an element with excellent strengthening ability. Therefore, in the present invention, Si is added in excess of 0.5 mass% in order to ensure a tensile strength of 440 MPa or more. On the other hand, when the Si addition amount exceeds 1.5 mass%, Si-based oxides are formed on the steel plate surface, and the chemical conversion treatment property, paint adhesion, and post-coating corrosion resistance of the product steel plate are lowered. Therefore, in the present invention, Si is more than 0.5 mass% and not more than 1.5 mass%. In order to make the tensile strength 500 MPa or more, the Si content is preferably more than 0.8 mass%, and in order to make the tensile strength 590 MPa or more, the Si content should be 1.0 mass% or more. preferable.
  • Mn 1.0 to 3.0 mass% Since Mn is an element that improves the hardenability of steel and promotes the formation of martensite, it is an effective element for increasing the strength. If the Mn content is less than 1.0 mass%, it is difficult to produce a desired amount of martensite, and it may be impossible to ensure a tensile strength of 440 MPa or more. On the other hand, when the Mn content exceeds 3.0 mass%, the raw material cost is increased, and the r value and weldability are lowered. Therefore, the Mn content is in the range of 1.0 to 3.0 mass%. Note that Mn is preferably added in an amount of 1.2 mass% or more for a tensile strength of 500 MPa or more and 1.5 mass% or more for a tensile strength of 590 MPa or more.
  • P 0.005 to 0.1 mass%
  • P is an element having a high solid solution strengthening ability and effective for increasing the strength of steel.
  • the effect is not sufficient, but rather, dephosphorization is required in the steel making process, leading to an increase in production cost.
  • the content of P exceeds 0.1 mass%, P segregates at the grain boundaries, resulting in secondary work embrittlement resistance and a decrease in weldability.
  • the amount of C segregated at the grain boundaries contributing to the increase in BH decreases, so that there is a possibility that a desired BH amount cannot be ensured. Therefore, the P content is in the range of 0.005 to 0.1 mass%.
  • P is preferably 0.08 mass% or less, and more preferably 0.05 mass% or less.
  • S 0.01 mass% or less
  • S is a harmful element that causes hot brittleness and is present in the steel as sulfide inclusions and lowers the workability of the steel sheet. Therefore, it is preferable to reduce S as much as possible.
  • S has an upper limit of 0.01 mass%. Preferably it is 0.008 mass% or less.
  • sol. Al 0.005 to 0.5 mass%
  • Al is an element added as a deoxidizer, it has a solid solution strengthening ability and thus effectively acts to increase the strength.
  • sol. If the Al content as Al is less than 0.005 mass%, the above effect cannot be obtained.
  • sol. If the Al content as Al exceeds 0.5 mass%, the raw material cost is increased, and surface defects of the steel sheet are induced. Therefore, sol.
  • the content of Al as Al is in the range of 0.005 to 0.5 mass%. Preferably, it is 0.005 to 0.1 mass%.
  • N 0.01 mass% or less N, when the content exceeds 0.01 mass%, excessive nitride is generated in the steel, and in addition to the reduction in ductility and toughness, the surface properties of the steel sheet It will also worsen. Therefore, N is set to 0.01 mass% or less.
  • Nb 0.010 to 0.090 mass%
  • Nb refines the hot-rolled sheet structure and has the effect of fixing a part of the solute C present in the steel by precipitation as NbC in the hot-rolled sheet. It is an extremely important element in the present invention that contributes to the above.
  • the refinement of the hot-rolled sheet structure by adding Nb refines the steel sheet structure after cold rolling and annealing and increases the grain boundary area, thereby increasing the amount of C segregation at the grain boundary and increasing the amount of BH. There is also. In order to acquire such an effect, it is necessary to add Nb 0.010 mass% or more.
  • the amount of Nb added is in the range of 0.010 to 0.090 mass%.
  • the range is preferably 0.010 to 0.075 mass%, more preferably 0.010 to 0.05 mass%.
  • Ti 0.015 to 0.15 mass% Ti, like Nb, is an important element in the present invention that contributes to increasing the r value by fixing C and precipitating it as TiC in the hot-rolled sheet.
  • Ti has a smaller effect than Nb, but also has the effect of refining the hot-rolled sheet structure. Therefore, Ti is refined in the steel sheet structure after cold rolling and annealing and increased to the grain boundary. Since the amount of C segregation is increased, it also has an effect of increasing the amount of BH. In order to exhibit such an effect, it is necessary to add Ti 0.015 mass% or more. On the other hand, excessive addition exceeding 0.15 mass% increases the raw material cost and increases the deformation resistance during cold rolling, which makes stable production difficult. Moreover, the addition of excess Ti reduces the solid solution C like Nb, and inhibits the formation of martensite in the cooling process after annealing. Therefore, the amount of Ti added is in the range of 0.015 to 0.15 mass%.
  • the high-strength cold-rolled steel sheet of the present invention needs to further contain C, Nb, Ti, N and S satisfying the following formulas (1) and (2): It is. (Nb / 93) / (C / 12) ⁇ 0.20 (1) 0.005 ⁇ C * ⁇ 0.025 (2)
  • C * C- (12/93) Nb- (12/48) ⁇ Ti- (48/14) N- (48/32) S ⁇ , and the element symbols in the above formulas are Content (mass%) is shown.
  • Nb is an element more expensive than Ti, and increases the rolling load of hot rolling, which is one of the causes of harming production stability. Further, as described later, in the present invention, in order to generate martensite in the cooling process after annealing, it is necessary to secure a predetermined amount of solute C that is not fixed by Nb or Ti (C *). is there. Therefore, in the present invention, it is necessary to control (Nb / 93) / (C / 12) and C * within an appropriate range from the viewpoints of raw material cost, manufacturing stability, steel plate structure, and steel plate characteristics. Therefore, the formulas (1) and (2) that define the above (Nb / 93) / (C / 12) and C * are the most important indexes in the present invention.
  • (Nb / 93) / (C / 12) is the atomic ratio of Nb to C. If this value is 0.20 or more, the precipitation amount of NbC increases and the load during hot rolling increases. In addition, since the expensive Nb addition amount increases, it is disadvantageous in terms of raw material cost. Therefore, (Nb / 93) / (C / 12) is less than 0.20.
  • C * means the amount of solute C that is not fixed by Nb or Ti. If this value is less than 0.005 mass%, a predetermined amount of martensite cannot be secured and a tensile strength of 440 MPa or more is achieved. It becomes difficult. On the other hand, if C * exceeds 0.025 mass%, formation of ⁇ 111 ⁇ recrystallized texture of the ferrite phase effective for increasing the r value is inhibited, and not only good deep drawability cannot be obtained, but also martensite. As the site phase increases, the desired BH amount may not be obtained. Therefore, C * is in the range of 0.005 to 0.025 mass%. In order to make the BH amount 50 MPa or more, C * 0.020 mass% or less is preferable. To make the BH amount 60 MPa or more, C * is preferably 0.015 mass% or less.
  • the high-strength cold-rolled steel sheet according to the present invention further includes one or more selected from Mo, Cr and V and / or Cu and Ni, depending on the required properties in addition to the basic composition.
  • 1 type or 2 types chosen from these can be added.
  • 1 type or 2 types or more selected from Mo, Cr and V: 0.5 mass% or less in total Mo, Cr and V are expensive elements, but like Mn, they are elements that improve hardenability. Yes, it is an effective element for stably producing martensite. Such an effect is remarkably exhibited when the total addition amount of the above components is 0.1 mass% or more. Therefore, it is preferable to add 0.1 mass% or more.
  • One or two selected from Cu: 0.3 mass% or less and Ni: 0.3 mass% or less Cu is a harmful element that causes cracks during hot rolling and causes surface defects.
  • the adverse effect on the steel sheet properties due to Cu is small, so that a content of 0.3 mass% or less is acceptable.
  • Ni like Cu, has a small effect on the steel sheet properties, but has the effect of preventing the occurrence of surface flaws due to the addition of Cu. The above effect can be exhibited by adding 1/2 or more of the Cu content.
  • the addition amount of Ni becomes excessive, the occurrence of another surface defect due to non-uniform scale formation is promoted, so the upper limit of the Ni addition amount is preferably set to 0.3 mass%.
  • the high-strength cold-rolled steel sheet of the present invention can further contain one or two selected from Sn and Sb and / or Ta.
  • Sn 0.2 mass% or less
  • Sb 0.2 mass% or less
  • Sn and Sb can be added in order to suppress decarburization in the region of several tens ⁇ m of the steel sheet surface caused by nitriding, oxidation or oxidation of the steel sheet surface.
  • Ta 0.005 to 0.1 mass% Ta, like Nb and Ti, precipitates as TaC in the hot-rolled sheet and has an action of fixing C, and thus is an element contributing to an increase in r value.
  • the addition exceeding 0.1 mass% not only increases the raw material cost but also inhibits the formation of martensite in the cooling process after annealing, as in Nb and Ti, and TaC precipitated in the hot-rolled sheet The deformation resistance during cold rolling is increased and the productivity is deteriorated. Therefore, when Ta is added, it is preferably in the range of 0.005 to 0.1 mass%.
  • C, Nb, Ta, Ti, N, and S are replaced by the following formula (3) instead of the above-described formula (2); 0.005 ⁇ C * ⁇ 0.025 (3)
  • C * C- (12/93) Nb- (12/181) Ta- (12/48) ⁇ Ti- (48/14) N- (48/32) S ⁇
  • the element symbol indicates the content (mass%) of each element. It is preferable to contain and satisfy.
  • C * in the above formula (3) is less than 0.005, a predetermined amount of martensite cannot be secured, and it becomes difficult to obtain a tensile strength of 440 MPa or more.
  • C * exceeds 0.025, formation of ⁇ 111 ⁇ recrystallized texture of the ferrite phase effective for increasing the r value is hindered. As the site phase increases, a desired BH amount may not be ensured.
  • C * is preferably 0.020 or less, and in order to make the BH amount: 60 MPa or more, C * is preferably 0.015 or less.
  • the balance other than the above components is composed of Fe and inevitable impurities.
  • the content of other components is not rejected as long as the effects of the present invention are not impaired.
  • oxygen (O) forms non-metallic inclusions and adversely affects the quality of the steel sheet, its content is preferably reduced to 0.003 mass% or less.
  • the steel structure (microstructure) of the high-strength cold-rolled steel sheet of the present invention will be described. Since the high-strength cold-rolled steel sheet of the present invention satisfies both the steel sheet strength, press formability (particularly deep drawability), and bake hardenability, the ferrite phase having an area ratio of 70% or more with respect to the entire steel sheet structure, It is necessary to have a steel sheet structure containing a martensite phase of 3% or more by rate.
  • the high-strength cold-rolled steel sheet of the present invention may contain pearlite, bainite, retained austenite, carbide, etc. as the remaining structure other than the ferrite phase and martensite phase, but these are 5% or less in total area ratio. Acceptable if any.
  • the ferrite phase is a soft phase necessary to ensure press formability of the steel sheet, particularly deep drawability.
  • a high r value is obtained by developing a ⁇ 111 ⁇ recrystallized texture of the ferrite phase. We are trying to make it.
  • the area ratio of the ferrite phase is less than 70%, it is difficult to achieve an average r value of 1.20 or more, and good deep drawability cannot be obtained.
  • the bake hardenability correlates with the amount of solid solution C in the ferrite, and when the area ratio of the ferrite phase is less than 70%, it becomes difficult to achieve a BH amount of 40 MPa or more. Therefore, the ferrite phase is 70% or more in area ratio.
  • the area ratio of the ferrite phase is preferably 80% or more.
  • the steel plate strength is lowered, and it becomes difficult to ensure a tensile strength of 440 MPa or more.
  • the “ferrite” in the present invention includes not only polygonal ferrite but also bainitic ferrite having a high dislocation density transformed from austenite.
  • the martensite phase is a hard phase necessary to ensure the strength of the cold-rolled steel sheet of the present invention.
  • the area ratio of the martensite phase is set to 3% or more.
  • the martensite phase is preferably 5% or more in terms of area ratio.
  • the area ratio of the martensite phase is 30% or less, and preferably 20% or less.
  • the high-strength cold-rolled steel sheet of the present invention is a steelmaking process in which steel adjusted to the above-described chemical composition is melted in a converter or the like and is made into a steel material (steel slab) by continuous casting or the like, and the steel slab is roughly rolled.
  • a hot rolling process in which a hot rolled sheet is formed by hot rolling consisting of finish rolling, a cold rolling process in which the hot rolled sheet is cold rolled to be a cold rolled sheet, and the cold rolled sheet is annealed to have a predetermined strength. And an annealing process for obtaining deep drawability and bake hardenability.
  • a steel melting method is, for example, a known melting process in which a molten steel obtained in a converter, an electric furnace or the like is subjected to secondary refining such as vacuum degassing treatment to obtain a predetermined component composition.
  • the method of using molten steel as a slab is preferably a continuous casting method from the viewpoint of segregation or the like, but may be a steel slab by a method such as an ingot-bundling rolling method or a thin slab continuous casting method.
  • the steel slab obtained as described above is then preferably reheated and hot rolled.
  • the reheating temperature of the steel slab is preferably low from the viewpoint of improving the deep drawability by developing a ⁇ 111 ⁇ recrystallization texture by coarsening precipitates such as TiC.
  • the slab heating temperature is preferably 1000 ° C. or higher.
  • the upper limit of heating temperature shall be about 1300 degreeC from a viewpoint of suppressing the increase in the scale loss by oxidation.
  • the slab when hot-rolling a steel slab, it is common to roll the slab after charging it into a heating furnace and reheating it to a predetermined temperature. If this is the case, the slab can be rolled as it is without being reheated (direct feed rolling), or it can be placed in a heating furnace while still in a high temperature state and part of the reheating can be omitted (hot strip charging). You may do it.
  • the steel slab reheated under the above conditions is roughly rolled into a sheet bar.
  • the conditions of rough rolling may be performed according to a conventional method and are not particularly defined.
  • the slab heating temperature is lowered, from the viewpoint of ensuring a predetermined hot rolling temperature or preventing rolling trouble, it is possible to increase the temperature of the seat bar by utilizing a seat bar heater. Needless to say.
  • the rolling reduction of the final pass of the finish rolling and the pass before the final pass can be controlled within an appropriate range. preferable. That is, it is preferable that the rolling reduction in the final pass of the finish rolling is 10% or more, a large number of shear bands are introduced into the prior austenite grains, the nucleation sites of ferrite transformation are increased, and the hot rolled sheet structure is refined. . This refinement of the hot-rolled sheet structure increases the preferential nucleation sites of the ⁇ 111 ⁇ recrystallized texture during annealing after cold rolling, which is not only effective for improving the r value, but also the steel sheet after annealing.
  • the rolling reduction of the final pass is preferably 10% or more, but more preferably 13% or more.
  • the rolling reduction ratio of the previous pass of the final pass it is preferable to set the rolling reduction ratio of the previous pass of the final pass to 15% or more in addition to the rolling reduction control of the final pass.
  • the strain accumulation effect is further increased and a large number of shear bands are introduced into the prior austenite grains. Finer, r value and BH property are further improved. If the rolling reduction ratio of the pass before the final pass is less than 15%, the effect of refinement of the hot-rolled sheet structure becomes insufficient, and the above-described effect of improving the r value and BH property may not be sufficiently obtained.
  • the rolling reduction of the pass before the final pass is preferably 15% or more, and more preferably 18% or more.
  • the upper limit of the rolling reduction of two passes of the final pass and the pass before the final pass is less than 40% from the viewpoint of rolling load.
  • the rolling temperature in the final pass and the pass before the final pass is not particularly limited, but the rolling temperature in the final pass is preferably 800 ° C. or higher, and more preferably 830 ° C. or higher. Further, the rolling temperature in the pass before the final pass is preferably 980 ° C. or lower, and more preferably 950 ° C. or lower.
  • the rolling temperature of the final pass is less than 800 ° C., the transformation from non-recrystallized austenite to ferrite increases, and the steel sheet structure after cold-rolling annealing is affected by the hot-rolled sheet structure, and the non-uniform structure is elongated in the rolling direction. As a result, workability is reduced.
  • the hot-rolled sheet that has been subjected to the above hot rolling starts cooling within 3 seconds after the finish rolling from the viewpoint of improving the r value and BH properties by refining crystal grains, and the average cooling rate is 40 ° C./s. It is preferable that the temperature is lowered to a temperature range of 720 ° C. or lower and wound on a coil at a temperature of 500 to 700 ° C. When the time to start cooling exceeds 3 seconds, the average cooling rate is less than 40 ° C./s, or the cooling stop temperature is higher than 720 ° C., the hot rolled sheet structure becomes coarse, and the r value and BH property The improvement effect may not be obtained.
  • the hot-rolled steel sheet is then pickled and cold-rolled into a cold-rolled sheet according to a conventional method.
  • the rolling reduction in cold rolling at this time is preferably in the range of 50 to 90%, but in order to increase the r value, it is more preferable to set the cold rolling reduction higher. If the rolling reduction is less than 50%, the ⁇ 111 ⁇ recrystallized texture of the ferrite phase does not sufficiently develop, and an excellent deep drawability may not be obtained. On the other hand, if the rolling reduction exceeds 90%, the load in cold rolling is increased, and there is a risk that a sheet passing trouble may occur.
  • the cold-rolled steel sheet is then annealed to impart desired strength, deep drawability, and bake hardenability.
  • the annealing is performed by heating to an annealing temperature of 800 to 900 ° C. with an average temperature increase rate in the temperature range of 700 to 800 ° C. being less than 3 ° C./s, soaking, It is necessary to cool at an average cooling rate of 5 ° C./s or more from the annealing temperature (soaking temperature) to a cooling stop temperature Tc of 500 ° C. or less.
  • continuous annealing is preferably suitable.
  • the average temperature rise is set to a temperature range of 700 to 800 ° C. from the viewpoint of promoting recrystallization and developing a ⁇ 111 ⁇ recrystallization texture effective for increasing the r value. It is necessary to heat at a low speed of less than 3 ° C./s. If the average rate of temperature rise is 3 ° C./s or more, the development of ⁇ 111 ⁇ recrystallized texture becomes insufficient, and it may be difficult to increase the r value.
  • the average temperature rising rate is preferably 0.5 ° C./s or more.
  • the annealing temperature (soaking temperature) is two phases of a ferrite phase and an austenite phase. It is necessary to set the ambient temperature. Therefore, in the present invention, the annealing temperature is set to a temperature range of 800 to 900 ° C. If the annealing temperature is less than 800 ° C., the desired martensite amount cannot be obtained after cooling after annealing, and the recrystallization is not sufficiently completed during annealing, so the ⁇ 111 ⁇ recrystallization texture of the ferrite phase does not develop.
  • the average r value of 1.20 or more may not be secured.
  • the annealing temperature exceeds 900 ° C., the amount of dissolved C in the ferrite decreases, and there is a possibility that a BH amount of 40 MPa or more cannot be secured.
  • the annealing temperature exceeds 900 ° C., the second phase (martensite phase, bainite phase, pearlite phase) increases more than necessary depending on the subsequent cooling conditions, and a ferrite phase having a desired area ratio cannot be obtained. There is a possibility that a good r value cannot be obtained. There is also a problem that productivity is lowered and energy costs are increased. Therefore, the annealing temperature is in the range of 800 to 900 ° C., preferably in the range of 820 to 880 ° C.
  • the soaking time in annealing is 15 seconds from the viewpoint of sufficiently concentrating elements such as C to austenite and sufficiently promoting the development of the ⁇ 111 ⁇ recrystallization texture of the ferrite phase. (S) or more is preferable.
  • the soaking time exceeds 300 seconds (s)
  • the crystal grains become coarse, and not only a high BH amount can be obtained, but also adversely affect various properties of the steel sheet, such as a decrease in strength and deterioration of the steel sheet surface properties. May cause effects. Therefore, the soaking time during annealing is preferably in the range of 15 to 300 seconds (s). More preferably, it is in the range of 15 to 200 seconds (s).
  • ⁇ Cooling rate> The steel sheet that has been recrystallized by the annealing needs to be cooled from the annealing temperature (soaking temperature) to a cooling stop temperature Tc of 500 ° C. or lower at an average cooling rate of 5 ° C./s or higher.
  • Tc annealing temperature
  • the average cooling rate is less than 5 ° C./s, it becomes difficult to secure a martensite phase of 3% or more in terms of the area ratio with respect to the entire steel sheet structure, and a desired strength (tensile strength of 440 MPa or more) may not be obtained.
  • the cooling stop temperature exceeds 500 ° C., there is a possibility that a martensite phase with an area ratio of 3% or more cannot be secured.
  • the average cooling rate is preferably 8 ° C./s or more, more preferably 10 ° C./s or more, and the cooling stop temperature Tc is preferably in the range of 400 to 450 ° C. If the average cooling rate exceeds 100 ° C./s, special equipment such as water cooling is required, which may increase the manufacturing cost or deteriorate the shape of the steel sheet. Is preferably about 100 ° C./s.
  • the cooling conditions after the cooling stop temperature Tc are not particularly limited.
  • the cooling stop temperature Tc is 200 ° C.
  • the temperature range up to is preferably cooled at an average cooling rate of 0.2 to 10 ° C./s. That is, when the average cooling rate in the above temperature range is less than 0.2 ° C./s, the tempering of the martensite phase proceeds excessively and the desired strength may not be obtained.
  • the average cooling rate in the above temperature range exceeds 10 ° C./s, the tempering of the martensite phase does not proceed sufficiently and the effect of recovering ductility and toughness cannot be expected.
  • a more preferable average cooling rate is in the range of 0.5 to 6 ° C./s.
  • the cold-rolled steel sheet of the present invention produced as described above may be subjected to temper rolling or leveler processing for the purpose of shape correction or surface roughness adjustment.
  • temper rolling is performed, the elongation is preferably about 0.3 to 1.5%.
  • Steels A to V having the component compositions shown in Table 1 were melted by a known smelting process through a converter, vacuum degassing treatment, etc., and continuously cast into a steel slab having a thickness of 260 mm. These steel slabs were heated to 1220 ° C. and hot-rolled to obtain hot-rolled sheets having a plate thickness of 3.8 mm.
  • Table 2 shows the rolling temperature and rolling reduction ratio in the final pass and the pass before the final pass, the average cooling rate from the start of cooling after finish rolling to 720 ° C., and the winding temperature in the hot rolling finish rolling. The time from the end of finish rolling to the start of cooling was within 3 seconds.
  • the hot-rolled sheet was pickled, cold-rolled under the conditions shown in Table 2 to obtain a cold-rolled sheet having a thickness of 1.2 mm, and then subjected to continuous annealing under the conditions shown in Table 2, followed by an elongation of 0. 5% temper rolling was performed to obtain a cold rolled steel sheet (product).
  • Sample materials are collected from each cold-rolled steel sheet obtained as described above, and the structure observation and tensile test are performed by the following methods, the steel sheet structure is specified, the area ratio of the ferrite phase and the martensite phase, the tensile strength, and the elongation.
  • the average r value and the bake hardening amount (BH amount) were measured.
  • ⁇ Tissue observation> A specimen for structure observation was collected from the sample material, the L cross section (vertical cross section parallel to the rolling direction) was mechanically polished, corroded with nital, and then magnification 2000 times using a scanning electron microscope (SEM).
  • SEM scanning electron microscope
  • the structure of the steel sheet and the area ratio of the ferrite phase and the martensite phase were measured from the structure photograph (SEM photograph) taken in step 1.
  • the structure of the steel sheet from the above structure photograph is defined as an area where the ferrite is slightly black contrast
  • the pearlite is an area where the carbide is generated in a lamellar shape
  • the bainite is an area where the carbide is generated in a dot sequence.
  • the site and residual austenite (residual ⁇ ) were particles having white contrast. Furthermore, after tempering the test piece at 250 ° C. for 4 hours, a structure photograph was obtained in the same manner, and the region where the carbide was generated in a lamellar shape was pearlite and the carbide was dotted in a row before heat treatment. The area ratio is again determined as the area that was bainite or martensite before heat treatment, and the fine particles remaining as white contrast are measured as residual ⁇ , and have white contrast before tempering The area ratio of the martensite phase was determined from the difference from the area ratio of the particles (martensite and retained austenite).
  • the area ratio of each phase is obtained by layering each phase on a transparent OHP sheet, capturing the image, binarizing, and image analysis software (Digital Image-Pro Plus ver. 4 manufactured by Microsoft Corporation). 0.0), the area ratio was obtained.
  • ⁇ Measurement of tensile test and bake hardening amount (BH amount)> A JIS No. 5 tensile test piece (JIS Z2201) having a tensile direction of 90 ° direction (C direction) with respect to the rolling direction is taken from the sample material, and a tensile test is performed in accordance with the provisions of JIS Z2241 to obtain a tensile strength. TS and total elongation El were measured.
  • the bake hardening amount (BH amount) is 2% tensile pre-strain, and after heat treatment equivalent to 170 ° C x 20 minutes of paint baking, a tensile test is performed again, and the upper yield after heat treatment A value obtained by subtracting the nominal stress at the time of applying pre-strain from the point was determined, and this was used as the BH amount.
  • Steel sheets of 3 to 7 and 16 to 20 have an extremely high bake hardening amount with a BH amount of 60 MPa or more.
  • No. of the comparative example The steel plate No. 1 has C, Si content and C *. Since the steel plate No. 2 has a Mn content outside the range of the present invention, the desired martensite amount cannot be obtained, and the tensile strength is less than 440 MPa.
  • No. of the comparative example The steel sheets Nos. 14 and 15 have C * exceeding the range of the present invention, so the area ratio of the ferrite phase effective for increasing the r value and BH is low, the average r value is less than 1.20, and BH The amount is also below 40 MPa.
  • a steel slab having the composition of steels D, G and L shown in Table 1 was heated to 1220 ° C. and hot-rolled to obtain a hot-rolled sheet having a thickness of 3.8 mm.
  • the finish rolling conditions, cooling conditions, and winding temperature in hot rolling are shown in Table 4. Further, the time from finish rolling to the start of cooling was set to within 3 seconds.
  • the hot-rolled sheet was pickled, cold-rolled under the conditions shown in Table 4 to obtain a cold-rolled sheet having a thickness of 1.2 mm, and then continuously annealed under the conditions shown in Table 4 to obtain an elongation percentage. 0.5% temper rolling was performed to obtain a cold-rolled steel sheet (product).
  • Example 2 From the cold-rolled steel sheet obtained as described above, a test piece was collected in the same manner as in Example 1, and the structure was observed and subjected to a tensile test. The area ratio of ferrite, martensite, etc., tensile strength, elongation, average The r value and the bake hardening amount were measured.
  • the measurement results are shown in Table 5. From this table, No. satisfying the production conditions of the present invention is shown.
  • the steel sheets of the inventive examples of 23 to 29, 31, 32, 35, 36, 38 and 39 have a tensile strength TS of 440 MPa or more, an average r value of 1.20 or more, and a BH amount of 40 MPa or more.
  • the steel sheet satisfies both deep drawability and bake hardenability.
  • the average cooling rate after finishing rolling was set to 40 ° C./s or higher.
  • the steel plates 25, 26 and 29 have higher average r values and BH amounts than other steel plates in which the average cooling rate after finish rolling is less than 40 ° C./s.
  • No. of the comparative example The steel plate No. 30 has the final pass reduction ratio in finish rolling and the reduction ratio of the pass before the final pass are below the range of the present invention, so that the effect of increasing the r value and increasing the BH by refining the structure of the hot rolled sheet is obtained.
  • the average r value is less than 1.20, and the BH amount is less than 40 MPa.
  • No. of the comparative example Since the annealing temperature of the steel plate No.
  • the average cooling rate from the annealing temperature to the cooling stop temperature Tc is lower than the range of the present invention, so that a desired martensite amount cannot be obtained and the tensile strength is less than 440 MPa. Furthermore, No. of the comparative example. In the steel plate No. 40, the average temperature increase rate at 700 to 800 ° C. during annealing heating exceeds the range of the present invention, so that the development of ⁇ 111 ⁇ recrystallized texture of the ferrite phase becomes insufficient. The value is less than 1.20.
  • the use of the high-strength cold-rolled steel sheet of the present invention is not limited to automobile members, and can be suitably used as long as it is another application that requires high strength and deep drawability and bake hardenability. . Therefore, it is also suitable as a material for home appliance parts and steel pipes.

Abstract

本発明は、mass%で、C:0.010~0.06%、Si:0.5%超1.5%以下、Mn:1.0~3.0%、Nb:0.010~0.090%、Ti:0.015~0.15%を含有し、かつ(Nb/93)/(C/12)<0.20および固溶C量が0.005~0.025%を満たす成分組成の鋼素材を熱間圧延し、冷間圧延した後、700~800℃の温度を平均昇温速度3℃/s未満として800~900℃の温度に加熱し、均熱後、上記均熱温度から500℃以下の冷却停止温度まで5℃/s以上で冷却する焼鈍を施し、面積率で70%以上のフェライト相と3%以上のマルテンサイト相を含む組織とすることにより、引張強さが440MPa以上、平均r値が1.20以上で焼付硬化量が40MPa以上の深絞り性と焼付硬化性に優れる高強度冷延鋼板を得るものである。

Description

深絞り性および焼付硬化性に優れる高強度冷延鋼板とその製造方法
 本発明は、自動車車体の外板等に用いて好適な、引張強さTSが440MPa以上で、平均r値が1.20以上であるとともに、BH量が40MPa以上である、深絞り性および焼付硬化性に優れる高強度冷延鋼板とその製造方法に関するものである。
 近年、地球環境を保護する観点から、自動車の燃費を改善し、COの排出量を削減するため、自動車車体の軽量化が強く求められている。それと同時に、衝突時における乗員の安全を確保する観点から、自動車車体の強度の向上も強く求められている。上記要求に応えるためには、自動車車体の軽量化と高強度化を同時に満たす必要があり、そのためには、自動車車体の素材となる鋼板板厚を、剛性が問題とならない範囲で薄肉化するとともに、鋼板強度を高めてやることが有効である。そこで、近年では、上記目的を達成するため、高強度鋼板の自動車部材への適用が積極的に行われている。
 一般に、自動車車体の軽量化効果は、鋼板強度が高いほど享受することができる。そのため、昨今では、引張強さが440MPa以上の高強度鋼板を自動車車体に使用する傾向にある。一方、自動車車体を構成する部材の多くは、プレス加工によって成形されているため、その素材となる鋼板には、成形性に優れることも必要とされる。すなわち、自動車車体の軽量化と高強度化を達成するためには、引張強さが440MPa以上でかつ深絞り性にも優れる、具体的には、深絞り性の指標であるランクフォード値(r値)が平均r値で1.2以上である高強度鋼板が要求されるようになってきている。
 さらに、自動車車体の外板パネルには耐デント性も要求されるため、塗装焼付後の強度が高いことが望ましく、そのためには、焼付硬化性(BH性)に優れることも必要とされる。しかし、従来のBH性を高めた鋼板は、固溶Cを多く含むため、通常の軟鋼板と比較して成形性、特に深絞り性に劣る傾向にある。したがって、自動車車体の軽量化と安全性の向上の両方を実現するには、自動車車体に用いられる鋼板は、高強度で深絞り性に優れることに加えて、さらに焼付硬化性にも優れることが必要とされる。
 高r値と高強度を実現する技術としては、極低炭素鋼にTiやNbを添加して固溶Cや固溶Nを固定したIF(Interstitial free)鋼をベースとし、これにSiやMn,Pなどの固溶強化元素を添加する方法がある。例えば、特許文献1には、C:0.002~0.015%、Nb:C×3~(C×8+0.020)%、Si:1.2%以下、Mn:0.04~0.8%、P:0.03~0.10%の成分組成を有する、引張強さが35~45kgf/mm級(340~440MPa級)の非時効性を有する成形性に優れた高張力冷延鋼板が開示されている。しかしながら、このような極低炭素鋼素材の場合、引張強さを440MPa以上とするためには、多量の合金元素の添加が必要となるため、r値が低下したり、表面性状やめっき性の悪化を招いたりするという問題がある。また、TiやNbで固溶Cや固溶Nを固定するため、二次加工脆性が顕在化したり、耐デント性の確保に有効なBH性が得られなくなるという問題もある。
 上記の固溶強化元素を添加する方法以外の鋼板強度を高める方法としては、組織強化を利用する方法がある。例えば、軟質のフェライト相と硬質のマルテンサイト相とからなる複合組織鋼板(DP鋼板)は、一般的に、延性が良好で、優れた強度-延性バランスを有すると共に、低降伏比であるという特長を具えている。しかし、複合組織鋼板は、優れた成形性を有する反面、r値が低いため深絞り性に劣るという問題がある。これは、結晶方位学的にr値に寄与しないマルテンサイト相が存在することに加えて、マルテンサイト相形成に必要な固溶Cが、高r値化に有効な{111}再結晶集合組織の生成を阻害するためといわれている。
 このような複合組織鋼板のr値を改善する技術としては、例えば、特許文献2には、C:0.05~0.15%、Si:1.50%以下、Mn:0.30~1.50%、P:0.030%以下、S:0.030%以下、sol.Al:0.020~0.070%、N:0.0020~0.0080%を含有する鋼素材に所定条件の熱間圧延と冷間圧延を施した後、再結晶温度~Ac変態点の温度で箱焼鈍を施してAlNを析出させて{111}集積度を高め、次いで調質圧延し、さらに700~800℃に加熱均熱し、焼入れし、200~500℃で焼戻しを行う連続焼鈍を施すことで、r値が1.3以上で、強度が40~60kgf/mmの複合組織鋼板を得る技術が提案されている。
 また、特許文献3には、C:0.20%以下、Si:1.0%以下、Mn:0.8~2.5%、sol.Al:0.01~0.20%、N:0.0015~0.0150%、P:0.10%以下を含有する鋼素材を熱間圧延し、冷間圧延した後、650~800℃の温度域で箱焼鈍を施して、r値に好ましい再結晶集合組織を形成するとともに、オーステナイト相へC,Mn原子を偏析させ、次いで、600℃以上に加熱冷却する連続焼鈍を施すことにより、フェライト-マルテンサイト複合組織からなる深絞り性と形状性に優れる鋼板を得る技術が提案されている。
 また、特許文献4には、質量%で、C:0.03~0.25%、Si:0.001~3.0%、Mn:0.01~3.0%、P:0.001~0.06%、S:0.05%以下、N:0.001~0.030%、Al:0.005~0.3%を含有する鋼素材を熱間圧延し、圧下率30%以上95%未満の冷間圧延を施した鋼板に、平均加熱速度4~200℃/hrで600~800℃の最高到達温度まで加熱する焼鈍を施してAlとNのクラスターや析出物を形成させて所望の集合組織とし、さらに、Ac変態点以上1050℃以下のフェライト-オーステナイト2相域に加熱し、冷却することにより、ベイナイト、マルテンサイト、オーステナイトのうちの1種または2種以上を合計で3~100%含む組織からなる、深絞り性に優れる鋼板を得る技術が提案されている。
 しかしながら、上記特許文献2~4に提案された技術は、AlとNのクラスターや析出物の形成により集合組織を発達させてr値を高めるための焼鈍工程と、所望の組織を形成するための熱処理工程とを必要とする。しかも、上記焼鈍工程は、箱焼鈍を基本とし、均熱保持時間も1時間以上であるため、長時間を要する。すなわち、特許文献2~4の技術は、焼鈍処理時間が長い上、工程数が多く、生産性に劣る。また、コイル状態で高温長時間の焼鈍を行うため、鋼板同士が密着を起こしたり、テンパーカラーが発生したりするという品質上の問題や、焼鈍炉の炉体やインナーカバーの寿命が低下する等、製造設備上の問題もある。
 複合組織鋼板のr値を改善する他の技術としては、例えば、特許文献5には、重量%で、C:0.003~0.03%、Si:0.2~1%、Mn:0.3~1.5%、Al:0.01~0.07%、Ti:0.02~0.2%を含有し、(有効Ti)/(C+N)の原子濃度比を0.4~0.8とした鋼素材を熱間圧延し、冷間圧延した後、Ac変態点以上900℃以下の温度で30秒~10分間加熱後、平均冷却速度30℃/s以上で冷却する連続焼鈍を施して、フェライト中に所定量の第二相(マルテンサイトおよび/またはベイナイト)が分散した複合組織鋼板とする製造方法が提案されている。
 この特許文献5によれば、重量%で、C:0.012%、Si:0.32%、Mn:0.53%、P:0.03%、Al:0.03%、Ti:0.051%の組成を有する鋼素材を熱間圧延し、冷間圧延した後、フェライト-オーステナイト2相域である870℃で2分焼鈍後、平均冷却速度100℃/sで急速冷却する連続焼鈍を施すことで、r値が1.61で、引張強さが482MPaの複合組織鋼板が得られるとしている。
 しかしながら、上記特許文献5の技術は、100℃/sの冷却速度を確保するために、強力な冷却能力を備えた水焼入設備が必要となり、設備コストが嵩むという問題がある。また、水焼入れを施した鋼板は、形状性や表面処理性に劣るという問題もある。さらに、特許文献5の技術で得られる鋼板は、引張強さが500MPaに達しておらず、引張強さ500MPa以上、さらに590MPa以上という高強度鋼板の製造には対応することが難しいという問題もある。
 また、特許文献6には、質量%で、C:0.01~0.08%、Si:2.0%以下、Mn:3.0%以下、Al:0.005~0.20%、N:0.02%以下、V:0.01~0.5%を含有し、かつ、VとCが所定の関係を満たして含有する鋼素材を熱間圧延し、冷間圧延し、続いてAc~Ac変態点の温度域で連続焼鈍(再結晶焼鈍)することで、主相であるフェライト相と面積率1%以上のマルテンサイト相を含む組織を有する、深絞り性に優れた複合組織型の高張力冷延鋼板を製造する技術が提案されている。
 この技術は、VとCの含有量を適正化し、再結晶焼鈍前に、鋼中のCをV系炭化物として析出させて固溶Cを極力低減することで高r値を図り、続く再結晶焼鈍では、フェライト-オーステナイト2相域に加熱し、V系炭化物を溶解させてオーステナイト中にCを濃化させ、その後の冷却過程でマルテンサイトを生成させて高強度化を図っているところに特徴がある。
 しかしながら、この特許文献6の技術は、フェライト-オーステナイト2相域でV系炭化物を溶解させているが、V系炭化物の溶解速度にバラツキが生じるため、再結晶焼鈍工程での焼鈍温度や焼鈍時間を精度よく管理する必要があり、品質特性の安定性の面で問題を残している。
 また、特許文献7には、質量%で、C:0.010~0.050%、Si:1.0%以下、Mn:1.0~3.0%、P:0.005~0.1%、S:0.01%以下、Al:0.005~0.5%、N:0.01%以下、Nb:0.01~0.3%を含有し、かつ、NbとCとが(Nb/93)/(C/12):0.2~0.7を満たすよう含有した鋼素材を熱間圧延し、冷間圧延した後、800~950℃のフェライト-オーステナイト2相域温度に加熱し、上記焼鈍温度から500℃までの温度域を平均冷却速度5℃/s以上で冷却する焼鈍を施す高強度鋼板の製造方法が提案されている。
 この特許文献7の技術は、Nb添加によって熱延板組織の微細化を図るとともに、NbとCの含有量を(Nb/93)/(C/12):0.2~0.7となるよう制御し、熱間圧延時の鋼中Cの一部をNbCとして析出させて焼鈍前の固溶Cを低減することで、焼鈍時における粒界からの{111}再結晶粒の発生を促進し、高r値化を図る一方、NbCとして固定されなかった固溶Cによって、焼鈍後の冷却時にマルテンサイトを生成させて高強度化を図るところに特徴がある。この特許文献7によれば、面積率50%以上のフェライト相と面積率1%以上のマルテンサイト相を含む組織を有する、平均r値が1.2以上の高強度鋼板を製造できるとしている。
 しかしながら、Nbを積極的に利用する特許文献7の技術には、次に挙げるような種々の問題がある。まず、Nbは非常に高価な元素であり、原料コストの面で不利である。また、Nbはオーステナイトの再結晶を著しく遅延させるため、熱間圧延時の負荷が高くなるという問題がある。さらに、熱延板中に析出したNbCは、冷間圧延時の変形抵抗も高めるため、特許文献7の実施例に開示されているような高い圧下率(65%)で冷間圧延を施す場合には、圧延負荷が大きくなり、トラブル発生の危険性が高まるとともに、生産性の低下や製造可能な鋼板幅の制約が生じる等、鋼板を安定生産する上での問題点を多く抱えている。
特開昭56-139654号公報 特公昭55-10650号公報 特開昭55-100934号公報 特開2003-64444号公報 特公平01-35900号公報 特開2002-226941号公報 特開2005-120467号公報
 上記に説明したように、深絞り性に優れる軟鋼板の高強度化を図るには、従来の固溶強化を利用する技術では、多量のあるいは過剰の合金元素の添加が必要であり、r値やBH性の面のみならず、原料コストの面でも問題がある。また、組織強化を利用して高強度化する技術では、長時間の焼鈍を必要としたり、所望の組織を形成させるために焼鈍後に別の熱処理を施す必要があったり、高速冷却設備を必要としたりする等、製造上の問題がある。また、VCやNbCの析出を利用する技術では、比較的良好な加工特性を有する高強度鋼板が得られるものの、品質安定性や生産性さらにはコスト面でも改善の余地が残されている。
 本発明は、上記従来技術が抱える問題点に鑑みてなされたものであり、その目的は、自動車用鋼板等に用いて好適な、引張強さTSが440MPa以上の高強度を有しながらも、平均r値が1.20以上でかつ焼付硬化量(BH量)が40MPa以上の特性を兼備する、深絞り性と焼付硬化性に優れる高強度冷延鋼板を提供するとともに、その有利な製造方法を提案することにある。なお、本発明の高強度冷延鋼板には、引張強さが440MPa以上のものの他、引張強さが500MPa以上、さらには590MPa以上のものも含まれる。
 発明者らは、上記課題を解決するべく、高強度化手段が、鋼板の深絞り性や焼付硬化性および工業的生産性に及ぼす各種影響について鋭意検討した。その結果、C:0.010~0.06mass%、N:0.01mass%以下、Nb:0.010~0.090mass%、Ti:0.015~0.15mass%、S:0.01mass%以下を含有し、かつ、NbとCが(Nb/93)/(C/12):0.20未満の関係を満たして含有し、さらに、Nb,Tiで固定されていない固溶Cの量(C*)を所定の範囲に調整した成分組成を有する素材を用いて冷延鋼板を製造した場合には、面積率で70%以上のフェライト相と面積率で3%以上のマルテンサイト相を含む鋼板組織を有し、平均r値が1.20以上、BH量が40MPa以上で、引張強さTSが440MPa以上である、深絞り性および焼付硬化性が共に優れる高強度冷延鋼板を製造することができることを知見し、本発明を開発した。
 すなわち、本発明は、C:0.010~0.06mass%、Si:0.5mass%超1.5mass%以下、Mn:1.0~3.0mass%、P:0.005~0.1mass%、S:0.01mass%以下、sol.Al:0.005~0.5mass%、N:0.01mass%以下、Nb:0.010~0.090mass%、Ti:0.015~0.15mass%を含有し、かつC,Nb,Ti,NおよびSが下記(1)式および(2)式;
 (Nb/93)/(C/12)<0.20 ・・・(1)
 0.005≦C*≦0.025 ・・・(2)
 ここで、C*=C-(12/93)Nb-(12/48){Ti-(48/14)N-(48/32)S}で、上記各式中の元素記号は各元素の含有量(mass%)を示す。
を満たして含有し、残部がFeおよび不可避的不純物からなる成分組成を有し、面積率で70%以上のフェライト相と3%以上のマルテンサイト相を含む組織からなり、引張強さが440MPa以上、平均r値が1.20以上で、BH量が40MPa以上である深絞り性および焼付硬化性に優れる高強度冷延鋼板である。
 本発明の高強度冷延鋼板は、上記成分組成に加えてさらに、Mo,CrおよびVのうちから選ばれる1種または2種以上を合計で0.5mass%以下含有することを特徴とする。
 また、本発明の高強度冷延鋼板は、上記成分組成に加えてさらに、Cu:0.3mass%以下、Ni:0.3mass%以下のうちから選ばれる1種または2種を含有することを特徴とする。
 また、本発明の高強度冷延鋼板は、上記成分組成に加えてさらに、Sn:0.2mass%以下およびSb:0.2mass%以下のうちから選ばれる1種または2種を含有することを特徴とする。
 また、本発明の高強度冷延鋼板は、上記成分組成に加えてさらに、Ta:0.005~0.1mass%を含有し、かつ、C,Nb,Ta,Ti,NおよびSが、上記(2)式に代えて下記(3)式;
 0.005≦C*≦0.025 ・・・(3)
 ここで、C*=C-(12/93)Nb-(12/181)Ta-(12/48){Ti-(48/14)N-(48/32)S}で、上記各式中の元素記号は各元素の含有量(mass%)を示す。
を満たして含有することを特徴とする。
 また、本発明は、C:0.010~0.06mass%、Si:0.5mass%超1.5mass%以下、Mn:1.0~3.0mass%、P:0.005~0.1mass%、S:0.01mass%以下、sol.Al:0.005~0.5mass%、N:0.01mass%以下、Nb:0.010~0.090mass%、Ti:0.015~0.15mass%を含有し、かつC,Nb,Ti,NおよびSが下記(1)式および(2)式;
 (Nb/93)/(C/12)<0.20 ・・・(1)
 0.005≦C*≦0.025 ・・・(2)
 ここで、C*=C-(12/93)Nb-(12/48){Ti-(48/14)N-(48/32)S}で、上記各式中の元素記号は各元素の含有量(mass%)を示す。
を満たして含有し、残部がFeおよび不可避的不純物からなる成分組成を有する鋼素材を熱間圧延し、冷間圧延し、焼鈍して高強度冷延鋼板を製造する方法において、前記焼鈍を、700~800℃の温度範囲を平均昇温速度3℃/s未満として800~900℃の焼鈍温度に加熱した後、前記焼鈍温度から500℃以下の冷却停止温度Tcまでを平均冷却速度5℃/s以上で冷却する条件で行うことを特徴とする深絞り性および焼付硬化性に優れる高強度冷延鋼板の製造方法を提案する。
 本発明の製造方法における鋼素材は、上記成分組成に加えてさらに、Mo,CrおよびVのうちから選ばれる1種または2種以上を合計で0.5mass%以下含有することを特徴とする。
 また、本発明の製造方法における鋼素材は、上記成分組成に加えてさらに、Cu:0.3mass%以下、Ni:0.3mass%以下のうちから選ばれる1種または2種を含有することを特徴とする。
 また、本発明の製造方法における鋼素材は、上記成分組成に加えてさらに、Sn:0.2mass%以下およびSb:0.2mass%以下のうちから選ばれる1種または2種を含有することを特徴とする。
 また、本発明の製造方法における鋼素材は、上記成分組成に加えてさらに、Ta:0.005~0.1mass%を含有し、かつ、C,Nb,Ta,Ti,NおよびSが、上記(2)式に代えて下記(3)式;
 0.005≦C*≦0.025 ・・・(3)
 ここで、C*=C-(12/93)Nb-(12/181)Ta-(12/48){Ti-(48/14)N-(48/32)S}で、上記各式中の元素記号は各元素の含有量(mass%)を示す。
を満たして含有することを特徴とする。
 また、本発明の製造方法は、前記熱間圧延の仕上圧延における最終パスの圧下率を10%以上、前記最終パスの前パスの圧下率を15%以上とすることを特徴とする。
 また、本発明の製造方法は、前記熱間圧延の仕上圧延終了後、3秒以内に冷却を開始し、平均冷却速度40℃/s以上で720℃以下の温度域まで冷却し、500~700℃の温度で巻き取りした後、圧延率50%以上で冷間圧延することを特徴とする。
 本発明によれば、Cの含有量を0.010~0.06mass%の範囲とした上で、Nbの添加量をC含有量との関係で(Nb/93)/(C/12):0.20未満に制限して、従来の極低炭素IF鋼のように深絞り性に悪影響を及ぼす固溶Cの低減を徹底せず、さらに、NbおよびTiで固定されない固溶C量(C*)を所定の範囲に制御することで、引張強さTSが440MPa以上でかつ平均r値が1.20以上、BH量が40MPa以上である、深絞り性、焼付硬化性が共に優れる高強度冷延鋼板を安定して製造することが可能となる。
 さらに、本発明によれば、高価なNbを極力低減し、Tiを積極的に利用することで、引張強さが440MPa以上のみならず、500MPa以上、さらには590MPa以上の高強度鋼板でも、平均r値が1.20以上で、BH量が40MPa以上の、深絞り性と焼付硬化性に優れる高強度鋼板を、安価にかつ安定して製造することが可能となる。
 したがって、本発明の高強度冷延鋼板を自動車部品に適用した場合には、これまでプレス成形が困難であった部材の高強度化が可能となるので、自動車車体の衝突安全性や軽量化に大きく寄与することができる。
 まず、本発明の基本的な技術思想について説明する。
 一般に、深絞り用冷延鋼板を高r値化する、すなわち{111}再結晶集合組織を発達させるには、冷間圧延前および再結晶焼鈍前の固溶C量を極力低減することと、熱延板組織を微細化することが有効であるとされている。そのため、前述した従来技術の複合組織鋼板(DP鋼板)では、マルテンサイトの生成に多量の固溶Cが必要となるため、{111}再結晶集合組織が発達せず、r値が低いという欠点を有していた。
 しかしながら、発明者らは、{111}再結晶集合組織の発達と、マルテンサイトの生成を可能にする絶妙の固溶C量の範囲が存在することを新規に見出した。すなわち、本発明は、Cの含有量を、従来の低炭素鋼を素材としたDP鋼板よりも低く、かつ、従来の極低炭素鋼板よりも多い、C:0.010~0.06mass%の範囲に制御することに加えて、このC含有量に合わせてNbとTiを適正量添加し、適正量の固溶C量を確保することで、焼鈍時における{111}再結晶集合組織の発達を促進してr値を高めるとともに、焼鈍後の冷却時に適正量のマルテンサイトを生成させて高強度化を達成し、さらには、焼鈍後も高い焼付硬化量(BH量)を確保することができることを新たに見出した。
 また、Nbは、再結晶を遅延する効果があるため、熱延板組織を微細化するのに有効である。さらに、Nbは、高い炭化物形成能を有し、熱延後の巻き取り段階で、鋼中にNbCとして析出するため、冷間圧延前および再結晶焼鈍前の固溶C量を低減することができる。しかし、Nbは高価な元素であり、製造性(圧延性)を悪化させる元素でもある。そこで、本発明では、Nbの添加量は、熱延板組織の微細化に必要な最低限の量に制限し、固溶Cの低減には、Nbと同様に高い炭化物形成能を有するTiを活用することとした。すなわち、本発明では、NbをC含有量との関係で、(Nb/93)/(C/12):0.20未満を満たすように添加するとともに、NbやTiで固定されていない固溶C量(C*)を0.005~0.025mass%の範囲に制御している。
 従来、このような固溶Cの存在は、{111}再結晶集合組織の発達を阻害するとされてきたが、本発明では、すべてのCをNbCあるいはTiCとして固定せずに、マルテンサイトの形成に必要な固溶Cを存在させた上で、高r値を達成している。このような効果が得られる理由は、現時点では明確にはなっていないが、固溶C量を上記範囲とした場合には、固溶Cによる{111}再結晶集合組織形成に及ぼす負の効果よりも、熱延板の微細化効果に加えて、マトリックス中に微細なNbCやTiCが析出し、冷間圧延時にこの析出物近傍に歪が蓄積して{111}再結晶粒の発生が促進される正の効果の方が大きくなるためと考えられる。
 すなわち、本発明は、鋼の成分組成を適正範囲に制御することによって、固溶C量(C*)を0.005~0.025mass%の範囲に制御し、もって、高r値化、高BH化と複合組織化による高強度化を実現しているところに1つの特徴がある。また、本発明は、(Nb/93)/(C/12)を0.20未満に抑制し、その代替としてTiを積極的に活用することで、熱間圧延や冷間圧延の負荷を増大させる高価なNbの添加量を大幅に削減し、もって、原料コストの上昇や生産性の低下を招くことなく、高r値かつ高BH性を有する高強度冷延鋼板を工業的に安定して製造可能としたところに、2つめの特徴がある。
 また、本発明は、Nbによる熱延板組織の微細化効果に加えて、熱間圧延での仕上圧延における最終パスの圧下率および最終パスの前パスの圧下率を適正範囲に制御し、さらに、仕上圧延後の冷却条件を適正範囲に制御した場合には、熱延板の結晶粒の微細化がより顕著に進み、冷間圧延、焼鈍後の組織も微細化されること、そして、この焼鈍後組織の微細化は、粒界面積を増大し、焼付硬化性を高める粒界偏析したC量も増大するため、高い焼付硬化量(BH量)を得ることが可能となることも見出した。
 本発明は、上記の新規知見にさらに検討を加えてなされたものである。
 次に、本発明の高強度冷延鋼板の成分組成について説明する。
C:0.010~0.06mass%
 Cは、鋼を固溶強化し、また、フェライトを主相とし、マルテンサイトを含む第2相を含む複合組織の生成を促進して高強度化を達成するのに必要な重要元素である。C含有量が0.010mass%未満では、十分な量のマルテンサイトを確保することが困難となり、本発明が所望とする440MPa以上の引張強さが得られなくなる。一方、C含有量が0.06mass%を超えると、生成するマルテンサイト量が増加し、所望とする平均r値(1.20以上)が得られなくなる。よって、本発明では、Cは0.010~0.06mass%の範囲とする。好ましくは、0.020~0.045mass%の範囲である。
Si:0.5mass%超え1.5mass%以下
 Siは、フェライト変態を促進し、未変態オーステナイト中のC含有量を高めて、フェライトとマルテンサイトからなる複合組織を生成しやすくするほか、固溶強化能にも優れる元素である。そこで、本発明では、440MPa以上の引張強さを確保するため、Siは0.5mass%超え添加する。一方、Si添加量が1.5mass%を超えると、鋼板表面にSi系酸化物が形成され、製品鋼板の化成処理性や塗装密着性、塗装後耐食性を低下するようになる。よって、本発明では、Siは0.5mass%超1.5mass%以下とする。なお、引張強さを500MPa以上とするには、Si含有量は0.8mass%超えが好ましく、さらに引張強さを590MPa以上とするには、Si含有量は1.0mass%以上とするのが好ましい。
Mn:1.0~3.0mass%
 Mnは、鋼の焼入性を向上し、マルテンサイトの生成を促進する元素であるため、高強度化を図る上で有効な元素である。Mnの含有量が1.0mass%未満では、所望量のマルテンサイトの生成が困難となり、440MPa以上の引張強さを確保することができなくなるおそれがある。一方、Mn含有量が3.0mass%を超えると、原料コストの上昇を招くとともに、r値および溶接性が低下するようになる。よって、Mnの含有量は1.0~3.0mass%の範囲とする。なお、Mnは、引張強さを500MPa以上とするには1.2mass%以上、590MPa以上とするには1.5mass%以上添加するのが好ましい。
P:0.005~0.1mass%
 Pは、固溶強化能が高く、鋼の高強度化に有効な元素である。しかし、Pの含有量が0.005mass%未満では、その効果が十分ではなく、むしろ、製鋼工程での脱燐が必要となり、製造コストの上昇を招く。一方、Pの含有量が0.1mass%を超えると、Pが粒界に偏析し、耐二次加工脆性や溶接性の低下を招く。また、Pが粒界に偏析すると、高BH化に寄与する粒界に偏析するC量が低下するため、所望のBH量を確保できないおそれがある。よって、Pの含有量は、0.005~0.1mass%の範囲とする。なお、BH量を確実に確保する上では、Pは0.08mass%以下が好ましく、0.05mass%以下とするのがより好ましい。
S:0.01mass%以下
 Sは、熱間脆性を起こす原因となるほか、鋼中に硫化物系介在物として存在して、鋼板の加工性を低下させる有害な元素である。したがって、Sは極力低減するのが好ましく、本発明では、Sは0.01mass%を上限とする。好ましくは0.008mass%以下である。
sol.Al:0.005~0.5mass%
 Alは、脱酸剤として添加される元素であるが、固溶強化能を有するため、高強度化に有効に作用する。しかし、sol.AlとしてのAl含有量が0.005mass%未満では、上記効果が得られない。一方、sol.AlとしてのAl含有量が0.5mass%を超えると、原料コストの上昇を招くとともに、鋼板の表面欠陥を誘発する原因ともなる。よって、sol.AlとしてのAlの含有量は0.005~0.5mass%の範囲とする。好ましくは0.005~0.1mass%である。
N:0.01mass%以下
 Nは、含有量が0.01mass%を超えると、鋼中に過剰な窒化物が生成することに起因して、延性や靭性の低下のほか、鋼板の表面性状の悪化も招く。よって、Nは0.01mass%以下とする。
Nb:0.010~0.090mass%
 Nbは、熱延板組織を微細化するとともに、熱延板中にNbCとして析出して鋼中に存在する固溶Cの一部を固定する作用を有し、これらの作用によって高r値化に寄与する、本発明においては極めて重要な元素である。また、Nb添加による熱延板組織の微細化は、冷延、焼鈍後の鋼板組織を微細化し、粒界面積を増大させるので、粒界へのC偏析量を増大し、BH量を高める効果もある。このような効果を得るためには、Nbを0.010mass%以上添加する必要がある。一方、0.090mass%を超える過剰な添加は、原料コストの上昇を招くだけでなく、熱間圧延や冷間圧延における圧延負荷を高めるため、安定した製造を困難にする。また、後述するように、本発明においては、焼鈍後の冷却過程でマルテンサイトを生成させるために所定量の固溶Cを必要とするが、Nbの過剰な添加は、鋼中のCのすべてをNbCとして固定してしまうため、マルテンサイトの生成を阻害することになる。よって、Nbの添加量は0.010~0.090mass%の範囲とする。好ましくは0.010~0.075mass%、さらに好ましくは0.010~0.05mass%の範囲である。
Ti:0.015~0.15mass%
 Tiは、Nbと同様、Cを固定し、TiCとして熱延板中に析出することによって、高r値化に寄与する、本発明における重要元素である。また、Tiは、Nbに比べて効果は小さいものの、熱延板組織を微細化する作用も有するため、冷延、焼鈍後の鋼板組織の微細化と粒界面積の増大を介して粒界へのC偏析量を増大させるので、BH量を高める効果も有する。このような効果を発現させるには、Tiを0.015mass%以上添加する必要がある。一方、0.15mass%を超える過剰な添加は、原料コストの上昇を招くとともに、冷間圧延時の変形抵抗を高くするため、安定した製造を困難にする。また、過剰なTiの添加は、Nbと同様に、固溶Cを低減し、焼鈍後の冷却過程におけるマルテンサイトの生成を阻害する。よって、Tiの添加量は0.015~0.15mass%の範囲とする。
 本発明の高強度冷延鋼板は、上記成分組成を満たすことに加えてさらに、C,Nb,Ti,NおよびSが下記の(1)式および(2)式を満たして含有することが必要である。
 (Nb/93)/(C/12)<0.20 ・・・(1)
 0.005≦C*≦0.025 ・・・(2)
 ここで、C*=C-(12/93)Nb-(12/48){Ti-(48/14)N-(48/32)S}であり、上記式中の元素記号は各元素の含有量(mass%)を示す。ただし、Ti-(48/14)N-(48/32)S≦0の場合は、Ti-(48/14)N-(48/32)S=0とする。
 Nbは、Tiに比べて高価な元素であるほか、熱間圧延の圧延負荷を増大して、製造安定性を害する原因の一つとなっている。また、後述するように、本発明では、焼鈍後の冷却過程でマルテンサイトを生成させるために、NbやTiによって固定されていない固溶Cの量(C*)を、所定量確保する必要がある。そのため、本発明においては、原料コスト、製造安定性、鋼板組織および鋼板特性の観点から、(Nb/93)/(C/12)およびC*を、適正範囲に制御する必要がある。したがって、上記(Nb/93)/(C/12)およびC*を規定する(1)式および(2)式は、本発明においては、最も重要な指標である。
 (Nb/93)/(C/12)は、Cに対するNbの原子比であり、この値が0.20以上であると、NbCの析出量が増大して熱間圧延時の負荷が増大するだけでなく、高価なNb添加量が多くなるため、原料コスト面でも不利となる。したがって、(Nb/93)/(C/12)は0.20未満とする。
 また、C*は、NbやTiによって固定されていない固溶C量を意味し、この値が0.005mass%未満では、所定のマルテンサイト量を確保できず、引張強さ440MPa以上を達成することが難しくなる。一方、C*が0.025mass%を超えると、高r値化に有効なフェライト相の{111}再結晶集合組織の形成を阻害し、良好な深絞り性が得られなくなるばかりでなく、マルテンサイト相の増加に伴い、所望のBH量が得られなくなるおそれがある。よってC*は0.005~0.025mass%の範囲とする。なお、BH量を50MPa以上とするには、C*0.020mass%以下とするのが好ましく、BH量を60MPa以上とするには、C*を0.015mass%以下とするのが好ましい。
 本発明の高強度冷延鋼板は、上記基本組成に加えてさらに、要求される特性に応じて、Mo,CrおよびVのうちから選ばれる1種または2種以上および/またはCuおよびNiのうちから選ばれる1種または2種を添加することができる。
Mo,CrおよびVのうちから選ばれる1種または2種以上:合計で0.5mass%以下
 Mo,CrおよびVは、高価な元素であるが、Mnと同様、焼入性を向上させる元素であり、マルテンサイトを安定して生成させるのに有効な元素である。このような効果は、上記成分の合計添加量が0.1mass%以上で顕著に発現するので、0.1mass%以上添加するのが好ましい。一方、Mo,CrおよびVの合計添加量が0.5mass%を超えると、上記効果が飽和するだけでなく、原料コストの上昇を招く。よって、これらの元素を添加する場合は、合計で0.5mass%以下とするのが好ましい。
Cu:0.3mass%以下およびNi:0.3mass%以下のうちから選ばれる1種または2種
 Cuは、熱間圧延時に割れを引き起こして、表面疵の発生原因となる有害元素である。しかし、本発明の冷延鋼板では、Cuによる鋼板特性への悪影響は小さいので、0.3mass%以下の含有量であれば許容できる。これにより、スクラップ等を使用し、リサイクル原料の活用が可能となるので原料コストの低減を図ることができる。
 Niは、Cuと同様、鋼板特性に及ぼす影響は小さいが、Cu添加による表面疵の発生を防止する効果がある。上記効果は、Cu含有量の1/2以上添加することで発現させることができる。しかし、Niの添加量が過剰になると、スケールの不均一生成に起因した別の表面欠陥の発生を助長するので、Ni添加量の上限は0.3mass%とするのが好ましい。
 本発明の高強度冷延鋼板は、上記成分に加えてさらに、SnおよびSbのうちから選ばれる1種または2種および/またはTaを添加することができる。
Sn:0.2mass%以下、Sb:0.2mass%以下
 SnやSbは、鋼板表面の窒化や酸化あるいは酸化により生じる鋼板表面数十μm領域の脱炭を抑制するために添加することができる。このような窒化や酸化、脱炭が抑制されることで、鋼板表面におけるマルテンサイト生成量の減少が抑制され、疲労特性や表面品質が改善される。上記効果を得るためには、Snおよび/またはSbは、それぞれ0.005mass%以上添加するのが好ましい。しかし、0.2mass%を超える添加は、靭性の劣化を招くおそれがあるので、添加する場合には、それぞれ0.2mass%を上限とするのが好ましい。
Ta:0.005~0.1mass%
 Taは、NbやTiと同様、熱延板中にTaCとして析出し、Cを固定する作用を有するので、高r値化に寄与する元素である。この効果を得るためには、0.005mass%以上添加することが好ましい。しかし、0.1mass%を超える添加は、原料コストの増加のみならず、NbやTiと同様、焼鈍後の冷却過程におけるマルテンサイトの形成を阻害したり、熱延板中に析出したTaCが、冷間圧延時の変形抵抗を高め、製造性を悪化させたりする。よって、Taを添加する場合には、0.005~0.1mass%の範囲とするのが好ましい。
 なお、Taを添加する場合、C,Nb,Ta,Ti,NおよびSは、前述した(2)式に代えて、下記(3)式;
 0.005≦C*≦0.025 ・・・(3)
 ここで、C*=C-(12/93)Nb-(12/181)Ta-(12/48){Ti-(48/14)N-(48/32)S}で、上記各式中の元素記号は各元素の含有量(mass%)を示す。
を満たして含有することが好ましい。
 上記(3)式中のC*が、0.005未満では、所定のマルテンサイト量を確保することができず、440MPa以上の引張強さを得ることが難しくなる。一方、C*が0.025を超えると、高r値化に有効なフェライト相の{111}再結晶集合組織の形成を阻害するため、良好な深絞り性が得られなくなるばかりでなく、マルテンサイト相の増加に伴って、所望のBH量を確保できなくなるおそれがある。なお、BH量:50MPa以上とするには、C*は0.020以下とすることが好ましく、また、BH量:60MPa以上とするには、C*は0.015以下とすることが好ましい。
 本発明の冷延鋼板は、上記成分以外の残部は、Feおよび不可避的不純物からなる。ただし、本発明の効果を害しない範囲であれば、その他の成分の含有を拒むものではない。ただし、酸素(O)は、非金属介在物を形成して鋼板品質に悪影響を及ぼすため、その含有量は0.003mass%以下に低滅するのが好ましい。
 次に、本発明の高強度冷延鋼板の鋼組織(ミクロ組織)について説明する。
 本発明の高強度冷延鋼板は、鋼板強度とプレス成形性(特に深絞り性)、焼付硬化性を共に満たすため、鋼板組織全体に対して、面積率で70%以上のフェライト相と、面積率で3%以上のマルテンサイト相を含む鋼板組織を有するものであることが必要である。なお、本発明の高強度冷延鋼板は、フェライト相とマルテンサイト相以外の残部組織として、パーライト、ベイナイト、残留オーステナイトおよび炭化物等を含む場合があるが、これらは合計面積率で5%以下であれば許容できる。
<フェライト相:面積率で70%以上>
 フェライト相は、鋼板のプレス成形性、特に深絞り性を確保するのに必要な軟質相であり、本発明においては、フェライト相の{111}再結晶集合組織を発達させることによって、高r値化を図っている。フェライト相の面積率が70%未満では、平均r値1.20以上を達成することが難しく、良好な深絞り性を得ることができない。また、焼付硬化性は、フェライト中の固溶C量と相関があり、フェライト相の面積率が70%未満では、BH量40MPa以上を達成することが難しくなる。よって、フェライト相は、面積率で70%以上とする。なお、平均r値およびBH量をより高めるためには、フェライト相の面積率は80%以上が好ましい。一方、フェライト相の面積率が97%を超えると、鋼板強度が低下し、引張強さ440MPa以上を確保することが難しくなる。なお、本発明における「フェライト」には、ポリゴナルフェライトのほか、オーステナイトから変態した転位密度の高いベイニティックフェライトも含まれる。
<マルテンサイト相:面積率で3%以上>
 マルテンサイト相は、本発明の冷延鋼板の強度を確保するのに必要な硬質相である。マルテンサイト相の面積率が3%未満では、鋼板強度が低下し、引張強さ440MPa以上を確保することが難しくなるので、マルテンサイト相の面積率は3%以上とする。なお、引張強さを500MPa以上あるいは590MPa以上とするには、マルテンサイト相は、面積率で5%以上とするのが好ましい。一方、マルテンサイト相の面積率が30%を超えると、r値およびBH性を向上させるフェライト相の面積率が低下し、良好な深絞り性や焼付硬化性を確保することが難しくなる。よって、マルテンサイト相の面積率は30%以下とし、20%以下とするのが好ましい。
 次に、本発明の高強度冷延鋼板の製造方法について説明する。
 本発明の高強度冷延鋼板は、上述した化学成分組成に調整した鋼を転炉等で溶製し、連続鋳造等で鋼素材(鋼スラブ)とする製鋼工程、上記鋼スラブを粗圧延と仕上圧延とからなる熱間圧延により熱延板とする熱間圧延工程、上記熱延板を冷間圧延して冷延板とする冷間圧延工程、上記冷延板を焼鈍して所定の強度と深絞り性、焼付硬化性を得る焼鈍工程を順次経ることにより製造される。
(製鋼工程)
 本発明の製造方法においては、鋼の溶製方法は、例えば、転炉や電気炉等で得た溶鋼を真空脱ガス処理等の二次精錬して所定の成分組成とする公知の溶製プロセスを採用することができ、特に制限はない。また、溶鋼をスラブとする方法は、偏析等の問題から連続鋳造法を用いるのが好ましいが、造塊-分塊圧延法や薄スラブ連鋳法などの方法で鋼スラブとしてもよい。
(熱間圧延工程)
<スラブ再加熱>
 上記のようにして得た鋼スラブは、その後、再加熱し、熱間圧延するのが好ましい。上記鋼スラブの再加熱温度は、TiC等の析出物を粗大化させることにより、{111}再結晶集合組織を発達させて、深絞り性を改善する観点からは低い方が好ましい。しかし、加熱温度が1000℃未満では、熱間圧延における圧延負荷が増大し、圧延トラブルを発生するおそれがあるので、スラブ加熱温度は1000℃以上とするのが好ましい。なお、加熱温度の上限は、酸化によるスケールロスの増大を抑制する観点から、1300℃程度とするのが好ましい。なお、鋼スラブを熱間圧延するに当たっては、スラブを加熱炉に装入して所定の温度に再加熱してから圧延するのが一般的であるが、連続鋳造後のスラブが所定の温度以上である場合には、スラブを再加熱することなくそのまま圧延(直送圧延)したり、高温状態のまま加熱炉に装入して再加熱の一部を省略する方法(温片装入)を採用したりしてもよい。
<粗圧延>
 上記条件で再加熱した鋼スラブは、粗圧延してシートバーとする。ここで、粗圧延の条件は、常法に従って行えばよく、特に規定しない。なお、スラブ加熱温度を低くした場合には、所定の熱延温度を確保する、あるいは、圧延トラブルを防止する観点から、シートバーヒーターを活用してシートバーの昇温を図ってもよいことは言うまでもない。
<仕上圧延>
 上記粗圧延後のシートバーは、その後、仕上圧延して熱延板とするが、本発明においては、上記仕上圧延の最終パスおよび最終パスの前パスの圧下率を適正範囲に制御することが好ましい。すなわち、仕上圧延の最終パスの圧下率は、10%以上として旧オーステナイト粒内に剪断帯を多数導入し、フェライト変態の核生成サイトを増大して熱延板組織の微細化を図るのが好ましい。この熱延板組織の微細化は、冷延後の焼鈍時における{111}再結晶集合組織の優先核生成サイトを増大させるので、r値の向上に有効であるだけでなく、焼鈍後の鋼板組織を微細化し、粒界面積を増大して粒界偏析C量を増大させるので、焼付硬化性を高めるにも有効である。一方、最終パス圧下率が10%未満では、フェライト粒が粗大化するため、上記の高r値化や高BH化の効果が得られないおそれがある。よって、最終パスの圧下率は10%以上とするのが好ましいが、13%以上であればより好ましい。
 さらに、高r値化や高BH化の効果をより高めるためには、上記最終パスの圧下率制御に加えて、最終パスの前パスの圧下率を15%以上とするのが好ましい。この最終パスの前パスの圧下率制御によって、歪累積効果がより高まって旧オーステナイト粒内に剪断帯が多数導入されるため、フェライト変態の核生成サイトがさらに増大して熱延板組織がより微細化し、r値およびBH性がさらに向上する。最終パスの前パスの圧下率が15%未満では、熱延板組織の微細化効果が不十分となり、上記のr値やBH性の向上効果が十分に得られないおそれがある。よって、最終パスの前パスの圧下率は15%以上とするのが好ましく、18%以上とするのがより好ましい。
 なお、上記最終パスおよび最終パスの前パスの2パスの圧下率の上限は、圧延負荷の観点から、それぞれ40%未満とするのが好ましい。
 また、最終パスおよび最終パスの前パスにおける圧延温度については、特に制限する必要はないが、最終パスの圧延温度は、800℃以上が好ましく、830℃以上がより好ましい。また、最終パスの前パスの圧延温度は980℃以下が好ましく、950℃以下がより好ましい。
 最終パスの圧延温度が800℃未満では、未再結晶オーステナイトからフェライトへの変態が多くなり、冷延焼鈍後の鋼板組織が熱延板組織の影響を受けて圧延方向に伸長した不均一な組織となり、加工性が低下するようになる。
 また、最終パスの前パスの圧延温度が980℃を超えると、回復によって歪の累積効果が不十分となるため、熱延板組織が微細化し難くなり、高r値化、高BH化の効果が得られなくなるおそれがあるからである。
<熱間圧延後の冷却条件および巻取温度>
 上記熱間圧延を終了した熱延板は、結晶粒微細化によるr値向上、BH性向上を図る観点から、仕上圧延終了後、3秒以内に冷却を開始し、平均冷却速度40℃/s以上で720℃以下の温度域まで冷却し、500~700℃の温度でコイルに巻き取ることが好ましい。
 冷却を開始するまでの時間が3秒を超えたり、平均冷却速度が40℃/s未満、あるいは、冷却停止温度が720℃より高い場合は、熱延板組織が粗大となり、r値やBH性の向上効果が得られない場合がある。
 また、巻取温度が700℃を超えると、熱延板組織が粗大化し、強度の低下が懸念されるとともに、冷延焼鈍後の高r値化や高BH化を阻害するおそれがある。一方、巻取温度が500℃未満では、NbCやTiCの析出が困難となり、固溶Cが増加するため、やはり高r値化に不利となる。
(冷間圧延工程)
 上記熱間圧延した鋼板は、その後、常法に従って、酸洗し、冷間圧延して冷延板とする。このときの冷間圧延における圧下率は、50~90%の範囲とするのが好ましいが、高r値化を図るためには、冷延圧下率は高めに設定するのがより好ましい。圧下率が50%未満では、フェライト相の{111}再結晶集合組織が十分に発達せず、優れた深絞り性が得られないおそれがある。一方、圧下率が90%を超えると、冷間圧延における負荷が増大し、通板トラブルが発生するおそれがあるからである。
(焼鈍工程)
 上記冷間圧延した鋼板は、その後、焼鈍して、所望とする強度と深絞り性、焼付硬化性を付与する。そのためには、上記焼鈍を、以下に説明するように、700~800℃の温度範囲の平均昇温速度を3℃/s未満として800~900℃の焼鈍温度まで加熱し、均熱した後、上記焼鈍温度(均熱温度)から500℃以下の冷却停止温度Tcまで、平均冷却速度5℃/s以上で冷却することが必要である。上記条件を満たす焼鈍方法としては、連続焼鈍が好ましく適合する。
<平均昇温速度>
 本発明では、熱延板の段階で、TiCやNbCを鋼中に析出させているため、冷間圧延後の鋼板の再結晶温度は、比較的高温となっている。このため、冷延板を加熱するに際しては、再結晶を促進させて、高r値化に有効な{111}再結晶集合組織を発達させる観点から、700~800℃の温度範囲を平均昇温速度3℃/s未満の低速で加熱する必要がある。平均昇温速度が3℃/s以上では、{111}再結晶集合組織の発達が不十分となり、高r値化が困難となるおそれがある。なお、生産性を高める観点から、平均昇温速度は0.5℃/s以上とするのが好ましい。
<焼鈍温度>
 本発明の鋼板の焼鈍後の鋼板組織を、所望の面積率のフェライト相とマルテンサイト相を含む複合組織とするためには、焼鈍温度(均熱温度)は、フェライト相とオーステナイト相の2相域温度とする必要がある。このため、本発明では、焼鈍温度を800~900℃の温度範囲とする。焼鈍温度が800℃未満では、焼鈍後の冷却後に所望のマルテンサイト量が得られない上、焼鈍中に再結晶が十分に完了しないため、フェライト相の{111}再結晶集合組織が発達せず、平均r値1.20以上を確保できないおそれがある。一方、焼鈍温度が900℃を超えると、フェライト中の固溶C量が減少し、40MPa以上のBH量を確保することができないおそれがある。また、焼鈍温度が900℃を超えると、その後の冷却条件によっては、第2相(マルテンサイト相、ベイナイト相、パーライト相)が必要以上に増加して所望の面積率のフェライト相が得られず、良好なr値が得られなくなるおそれがある。また、生産性の低下やエネルギーコストの増加を招くという問題もある。よって、焼鈍温度は800~900℃の範囲とするが、好ましくは820~880℃の範囲である。
 なお、焼鈍における均熱保持時間は、オーステナイトへのC等の元素の濃化を十分に進行させる観点、およびフェライト相の{111}再結晶集合組織の発達を十分に促進させる観点から、15秒(s)以上とするのが好ましい。一方、均熱保持時間が300秒(s)を超えると、結晶粒が粗大化し、高いBH量が得られなくなるだけでなく、強度の低下や鋼板表面性状の劣化等、鋼板の諸特性に悪影響を及ぼすおそれがある。よって、焼鈍での均熱保持時間は、15~300秒(s)の範囲とするのが好ましい。より好ましくは15~200秒(s)の範囲である。
<冷却速度>
 上記焼鈍で再結晶が完了した鋼板は、その後、焼鈍温度(均熱温度)から平均冷却速度5℃/s以上で500℃以下の冷却停止温度Tcまで冷却することが必要である。平均冷却速度が5℃/s未満では、鋼板組織全体に対する面積率で3%以上のマルテンサイト相を確保することが難しくなり、所望の強度(引張強さ440MPa以上)が得られないおそれがある。また、冷却停止温度が500℃を超える場合には、やはり、面積率で3%以上のマルテンサイト相を確保できないおそれがある。なお、平均冷却速度は、好ましくは8℃/s以上、より好ましくは10℃/s以上であり、また、冷却停止温度Tcは、好ましくは400~450℃の範囲である。なお、平均冷却速度が100℃/sを超えると、水冷等の特別な設備が必要となり、製造コストの増加を招いたり、鋼板形状の悪化を招いたりするおそれがあるため、平均冷却速度の上限は、100℃/s程度とするのが好ましい。
 なお、本発明においては、冷却停止温度Tc以降の冷却条件については特に限定しないが、マルテンサイト相の焼戻しを適度に進行させて、延性や靭性を回復する観点から、冷却停止温度Tcから200℃までの温度域を平均冷却速度0.2~10℃/sで冷却するのが好ましい。すなわち、上記温度域の平均冷却速度が0.2℃/s未満であると、マルテンサイト相の焼戻しが過度に進行し、所望の強度が得られないおそれがある。一方、上記温度域の平均冷却速度が10℃/sを超えると、マルテンサイト相の焼戻しが十分に進行せず、延性や靭性の回復効果があまり期待できないからである。より好ましい平均冷却速度は0.5~6℃/sの範囲である。
 上記のようにして製造された本発明の冷延鋼板は、その後、形状矯正や表面粗度調整等の目的で、調質圧延やレベラー加工等を施してもよい。なお、調質圧延を行う場合には、伸び率は0.3~1.5%程度とするのが好ましい。
 表1に示す成分組成を有するA~Vの鋼を、転炉、真空脱ガス処理等を経る公知の製錬プロセスで溶製し、連続鋳造して厚さが260mmの鋼スラブとした。これらの鋼スラブを1220℃に加熱後、熱間圧延し、板厚が3.8mmの熱延板とした。なお、上記熱間圧延の仕上圧延における最終パスおよび最終パスの前パスの圧延温度および圧下率、仕上圧延終了後の冷却開始から720℃までの平均冷却速度および巻取温度は表2に示すとおりとし、仕上圧延終了後から冷却を開始するまでの時間は3秒以内とした。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 次いで、上記熱延板を酸洗し、表2に示す条件で冷間圧延して板厚1.2mmの冷延板とした後、表2に示す条件で連続焼鈍した後、伸び率0.5%の調質圧延を施し、冷延鋼板(製品)とした。
 上記のようにして得た各冷延鋼板からサンプル材を採取し、下記の方法で組織観察、引張試験を行い、鋼板組織の特定、フェライト相およびマルテンサイト相の面積率、引張強さ、伸び、平均r値および焼付硬化量(BH量)を測定した。
<組織観察>
 上記サンプル材から組織観察用試験片を採取し、L断面(圧延方向に平行な垂直断面)を機械的に研磨し、ナイタールで腐食した後、走査型電子顕微鏡(SEM)を用いて倍率2000倍で撮影した組織写真(SEM写真)から鋼板組織の特定とフェライト相およびマルテンサイト相の面積率を測定した。なお、上記組織写真からの鋼板組織の特定は、フェライトはやや黒いコントラストの領域、パーライトは炭化物がラメラー状に生成している領域、ベイナイトは炭化物が点列状に生成している領域とし、マルテンサイトおよび残留オーステナイト(残留γ)は白いコントラストのついている粒子とした。さらに、上記試験片に、250℃×4hrの焼戻し処理を施した後、同様にして組織写真を得、炭化物がラメラー状に生成している領域を、熱処理前にパーライト、炭化物が点列状に生成している領域を熱処理前にベイナイトもしくはマルテンサイトであった領域として再度その面積率を求め、白いコントラストのまま残存している微粒子を残留γとして測定し、焼戻し処理前の白いコントラストのついている粒子(マルテンサイトおよび残留オーステナイト)の面積率との差から、マルテンサイト相の面積率を求めた。なお、それぞれの相の面積率は、透明のOHPシートに各相ごとに層別して色付けし、画像に取り込み後、2値化を行い、画像解析ソフト(マイクロソフト社製 Digital Image-Pro Plus ver.4.0)にて面積率を求めた。
<引張試験、焼付硬化量(BH量)の測定>
 上記サンプル材から圧延方向に対して90°方向(C方向)を引張方向とするJIS5号引張試験片(JIS Z2201)を採取し、JIS Z2241の規定に準拠して引張試験を行い、引張強さTS、全伸びElを測定した。
 また、焼付硬化量(BH量)は、2%の引張予歪を付与後、170℃×20分の塗装焼付条件相当の熱処理を施した後、再度、引張試験を行い、熱処理後の上降伏点から予歪付与時の公称応力を差し引いた値を求め、これをBH量とした。
<平均r値の測定>
 上記サンプル材から圧延方向に対して0°方向(L方向)、45°方向(D方向)および90°方向(C方向)を引張方向とするJIS5号引張試験片を採取し、それらの試験片に10%の単軸引張歪を付与したときの各試験片の幅方向真歪と厚さ方向真歪を測定し、これらの測定値から、JIS Z2254の規定に準拠して平均r値(平均塑性歪比)を算出した。
 上記測定の結果を表3に示した。
 No.3~13および16~22の鋼板は、鋼成分組成および製造条件が本発明に適合した発明例であり、引張強さTSが440MPa以上、平均r値が1.20以上で、BH量が40MPa以上の特性を有しており、強度と深絞り性、焼付硬化性をともに満たす冷延鋼板となっている。中でも、固溶C量(C*)が0.020mass%以下であるNo.8,12,13および22の鋼板は、いずれもBH量が50MPa以上であり、さらに、C*が0.015%以下であるNo.3~7および16~20の鋼板は、BH量が60MPa以上と、極めて高い焼付硬化量を有している。
 これに対して、比較例のNo.1の鋼板は、C,Si含有量およびC*が、また、比較例のNo.2の鋼板は、Mn含有量が本発明の範囲を外れているため、所望のマルテンサイト量が得られず、引張強さが440MPaを下回っている。また、比較例のNo.14,15の鋼板は、C*が本発明の範囲を超えているため、高r値化、高BH化に有効なフェライト相の面積率が低く、平均r値が1.20を下回り、BH量も40MPaを下回っている。
Figure JPOXMLDOC01-appb-T000003
 表1に記載の鋼D,GおよびLの成分組成を有する鋼スラブを1220℃に加熱後、熱間圧延して板厚3.8mmの熱延板とした。なお、熱間圧延における仕上圧延条件、冷却条件、巻取温度については表4に示した。また、仕上圧延終了から冷却開始までの時間は3秒以内とした。次いで、上記熱延板を酸洗し、表4に示した条件で冷間圧延して板厚1.2mmの冷延板とした後、同じく表4に示した条件で連続焼鈍し、伸び率0.5%の調質圧延を施して冷延鋼板(製品)とした。
 上記のようにして得た冷延鋼板から、実施例1と同様にして、試験片を採取し、組織観察、引張試験を行い、フェライト、マルテンサイト等の面積率、引張強さ、伸び、平均r値および焼付硬化量を測定した。
Figure JPOXMLDOC01-appb-T000004
 上記測定の結果を表5に示す。この表から、本発明の製造条件を満たすNo.23~29,31,32,35,36,38および39の発明例の鋼板は、引張強さTSが440MPa以上、平均r値が1.20以上でかつBH量が40MPa以上であり、強度と深絞り性、焼付硬化性を共に満たす鋼板となっている。中でも、熱延板の組織微細化による高r値化、高BH化を図る目的で仕上圧延終了後の平均冷却速度を40℃/s以上としたNo.25,26および29の鋼板は、仕上圧延終了後の平均冷却速度を40℃/s未満とした他の鋼板よりも高い平均r値、BH量が得られている。
 これに対して、比較例のNo.30の鋼板は、仕上圧延における最終パス圧下率および最終パスの前パスの圧下率が本発明の範囲を下回るため、熱延板の組織微細化による高r値化、高BH化の効果が得られず、平均r値が1.20未満、BH量が40MPa未満となっている。
 また、比較例のNo.33の鋼板は、焼鈍温度が本発明の範囲を下回るため、所望のマルテンサイト量が得られず、引張強さが440MPaを下回っている上、再結晶が完了していないため、高r値化に有効な{111}再結晶集合組織の発達が不十分となり、平均r値が1.20未満となっている。
 また、比較例のNo.34の鋼板は、焼鈍温度が本発明の範囲を超えてオーステナイト単相域での焼鈍となったため、その後の冷却過程で高r値化、高BH化に有効なフェライト相が生成せず、平均r値が1.20未満、BH量が40MPa未満となっている。
 また、比較例のNo.37の鋼板は、焼鈍温度から冷却停止温度Tcまでの平均冷却速度が本発明の範囲を下回るため、所望のマルテンサイト量が得られず、引張強さが440MPaを下回っている。さらに、比較例のNo.40の鋼板は、焼鈍加熱時の700~800℃における平均昇温速度が本発明の範囲を超えているため、フェライト相の{111}再結晶集合組織の発達が不十分となり、やはり、平均r値が1.20未満となっている。
Figure JPOXMLDOC01-appb-T000005
 本発明の高強度冷延鋼板の用途は、自動車用部材に限定されるものではなく、高強度でかつ深絞り性や焼付硬化性が要求される他の用途であれば好適に用いることができる。したがって、家電部品や鋼管等の素材としても好適である。

Claims (12)

  1. C:0.010~0.06mass%、Si:0.5mass%超1.5mass%以下、Mn:1.0~3.0mass%、P:0.005~0.1mass%、S:0.01mass%以下、sol.Al:0.005~0.5mass%、N:0.01mass%以下、Nb:0.010~0.090mass%、Ti:0.015~0.15mass%を含有し、かつC,Nb,Ti,NおよびSが下記(1)式および(2)式を満たして含有し、残部がFeおよび不可避的不純物からなる成分組成を有し、面積率で70%以上のフェライト相と3%以上のマルテンサイト相を含む組織からなり、引張強さが440MPa以上、平均r値が1.20以上で、BH量が40MPa以上である深絞り性および焼付硬化性に優れる高強度冷延鋼板。
               記
     (Nb/93)/(C/12)<0.20 ・・・(1)
     0.005≦C*≦0.025 ・・・(2)
     ここで、C*=C-(12/93)Nb-(12/48){Ti-(48/14)N-(48/32)S}で、上記各式中の元素記号は各元素の含有量(mass%)を示す。
  2. 上記成分組成に加えてさらに、Mo,CrおよびVのうちから選ばれる1種または2種以上を合計で0.5mass%以下含有することを特徴とする請求項1に記載の高強度冷延鋼板。
  3. 上記成分組成に加えてさらに、Cu:0.3mass%以下、Ni:0.3mass%以下のうちから選ばれる1種または2種を含有することを特徴とする請求項1または2に記載の高強度冷延鋼板。
  4. 上記成分組成に加えてさらに、Sn:0.2mass%以下およびSb:0.2mass%以下のうちから選ばれる1種または2種を含有することを特徴とする請求項1~3のいずれか1項に記載の高強度冷延鋼板。
  5. 上記成分組成に加えてさらに、Ta:0.005~0.1mass%を含有し、かつ、C,Nb,Ta,Ti,NおよびSが、上記(2)式に代えて下記(3)式を満たして含有することを特徴とする請求項1~4のいずれか1項に記載の高強度冷延鋼板。
     0.005≦C*≦0.025 ・・・(3)
     ここで、C*=C-(12/93)Nb-(12/181)Ta-(12/48){Ti-(48/14)N-(48/32)S}で、上記各式中の元素記号は各元素の含有量(mass%)を示す。
  6. C:0.010~0.06mass%、Si:0.5mass%超1.5mass%以下、Mn:1.0~3.0mass%、P:0.005~0.1mass%、S:0.01mass%以下、sol.Al:0.005~0.5mass%、N:0.01mass%以下、Nb:0.010~0.090mass%、Ti:0.015~0.15mass%を含有し、かつC,Nb,Ti,NおよびSが下記(1)式および(2)式を満たして含有し、残部がFeおよび不可避的不純物からなる成分組成を有する鋼素材を熱間圧延し、冷間圧延し、焼鈍して高強度冷延鋼板を製造する方法において、前記焼鈍を、700~800℃の温度範囲を平均昇温速度3℃/s未満として800~900℃の焼鈍温度に加熱した後、前記焼鈍温度から500℃以下の冷却停止温度Tcまでを平均冷却速度5℃/s以上で冷却する条件で行うことを特徴とする深絞り性および焼付硬化性に優れる高強度冷延鋼板の製造方法。
               記
     (Nb/93)/(C/12)<0.20 ・・・(1)
     0.005≦C*≦0.025 ・・・(2)
     ここで、C*=C-(12/93)Nb-(12/48){Ti-(48/14)N-(48/32)S}で、上記各式中の元素記号は各元素の含有量(mass%)を示す。
  7. 上記成分組成に加えてさらに、Mo,CrおよびVのうちから選ばれる1種または2種以上を合計で0.5mass%以下含有することを特徴とする請求項6に記載の高強度冷延鋼板の製造方法。
  8. 上記成分組成に加えてさらに、Cu:0.3mass%以下、Ni:0.3mass%以下のうちから選ばれる1種または2種を含有することを特徴とする請求項6または7に記載の高強度冷延鋼板の製造方法。
  9. 上記成分組成に加えてさらに、Sn:0.2mass%以下およびSb:0.2mass%以下のうちから選ばれる1種または2種を含有することを特徴とする請求項6~8のいずれか1項に記載の高強度冷延鋼板の製造方法。
  10. 上記成分組成に加えてさらに、Ta:0.005~0.1mass%を含有し、かつ、C,Nb,Ta,Ti,NおよびSが、上記(2)式に代えて下記(3)式を満たして含有することを特徴とする請求項6~9のいずれか1項に記載の高強度冷延鋼板の製造方法。
     0.005≦C*≦0.025 ・・・(3)
     ここで、C*=C-(12/93)Nb-(12/181)Ta-(12/48){Ti-(48/14)N-(48/32)S}で、上記各式中の元素記号は各元素の含有量(mass%)を示す。
  11. 前記熱間圧延の仕上圧延における最終パスの圧下率を10%以上、前記最終パスの前パスの圧下率を15%以上とすることを特徴とする請求項6~10のいずれか1項に記載の高強度冷延鋼板の製造方法。
  12. 前記熱間圧延の仕上圧延終了後、3秒以内に冷却を開始し、平均冷却速度40℃/s以上で720℃以下の温度域まで冷却し、500~700℃の温度で巻き取りした後、圧延率50%以上で冷間圧延することを特徴とする請求項6~11のいずれか1項に記載の高強度冷延鋼板の製造方法。
PCT/JP2011/074939 2010-11-05 2011-10-28 深絞り性および焼付硬化性に優れる高強度冷延鋼板とその製造方法 WO2012060294A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
CA2814193A CA2814193C (en) 2010-11-05 2011-10-28 High-strength cold rolled steel sheet having excellent deep drawability and bake hardenability and method for manufacturing the same
CN201180053425.3A CN103201403B (zh) 2010-11-05 2011-10-28 深冲性和烧结硬化性优良的高强度冷轧钢板及其制造方法
BR112013011013A BR112013011013A2 (pt) 2010-11-05 2011-10-28 chapa de aço de alta resistência laminada a frio, possuindo excelente capacidade de estiramento profundo e excelente temperabilidade, e método para fabricação dessa chapa de aço
EP11837944.5A EP2636762B1 (en) 2010-11-05 2011-10-28 High-strength cold-rolled steel sheet having excellent deep-drawability and bake hardenability, and method for manufacturing same
KR1020137009954A KR101561358B1 (ko) 2010-11-05 2011-10-28 딥 드로잉성 및 베이킹 경화성이 우수한 고강도 냉연 강판과 그 제조 방법
US13/882,300 US20130213529A1 (en) 2010-11-05 2011-10-28 High-strength cold rolled steel sheet having excellent deep drawability and bake hardenability and method for manufacturing the same
MX2013005011A MX350226B (es) 2010-11-05 2011-10-28 Hoja de acero laminado en frio de alta resistencia que tiene capacidad de embuticion profunda y capacidad de temple en horno excelentes y metodo para su fabricacion.

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2010248119 2010-11-05
JP2010-248119 2010-11-05
JP2011227817A JP5825481B2 (ja) 2010-11-05 2011-10-17 深絞り性および焼付硬化性に優れる高強度冷延鋼板とその製造方法
JP2011-227817 2011-10-17

Publications (1)

Publication Number Publication Date
WO2012060294A1 true WO2012060294A1 (ja) 2012-05-10

Family

ID=46024408

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/074939 WO2012060294A1 (ja) 2010-11-05 2011-10-28 深絞り性および焼付硬化性に優れる高強度冷延鋼板とその製造方法

Country Status (10)

Country Link
US (1) US20130213529A1 (ja)
EP (1) EP2636762B1 (ja)
JP (1) JP5825481B2 (ja)
KR (1) KR101561358B1 (ja)
CN (1) CN103201403B (ja)
BR (1) BR112013011013A2 (ja)
CA (1) CA2814193C (ja)
MX (1) MX350226B (ja)
TW (1) TWI473887B (ja)
WO (1) WO2012060294A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140290810A1 (en) * 2011-10-13 2014-10-02 Jfe Steel Corporation High strength cold rolled steel sheet with excellent deep drawability and material uniformity in coil and method for manufacturing the same
JP2016141858A (ja) * 2015-02-03 2016-08-08 Jfeスチール株式会社 高強度鋼板、高強度めっき鋼板、高強度溶融亜鉛めっき鋼板および高強度合金化溶融亜鉛めっき鋼板、並びにそれらの製造方法
JP2016141857A (ja) * 2015-02-03 2016-08-08 Jfeスチール株式会社 高強度鋼板、高強度めっき鋼板、高強度溶融亜鉛めっき鋼板および高強度合金化溶融亜鉛めっき鋼板、並びにそれらの製造方法

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2811046B1 (en) 2012-01-31 2020-01-15 JFE Steel Corporation Hot-rolled steel sheet for generator rim and method for manufacturing same
JP5637225B2 (ja) * 2013-01-31 2014-12-10 Jfeスチール株式会社 バーリング加工性に優れた高強度熱延鋼板およびその製造方法
WO2017168962A1 (ja) * 2016-03-31 2017-10-05 Jfeスチール株式会社 薄鋼板およびめっき鋼板、並びに、熱延鋼板の製造方法、冷延フルハード鋼板の製造方法、薄鋼板の製造方法およびめっき鋼板の製造方法
JP6304456B2 (ja) 2016-03-31 2018-04-04 Jfeスチール株式会社 薄鋼板およびめっき鋼板、並びに、熱延鋼板の製造方法、冷延フルハード鋼板の製造方法、熱処理板の製造方法、薄鋼板の製造方法およびめっき鋼板の製造方法
US11712781B2 (en) * 2017-09-18 2023-08-01 Grip Tread, Llc Surfacing system for steel plate
KR102463485B1 (ko) * 2018-03-30 2022-11-04 닛테츠 스테인레스 가부시키가이샤 페라이트계 스테인리스 강판, 및 그 제조 방법 그리고 페라이트계 스테인리스 부재
CN111218620B (zh) * 2018-11-23 2021-10-22 宝山钢铁股份有限公司 一种高屈强比冷轧双相钢及其制造方法
CN110117756B (zh) * 2019-05-21 2020-11-24 安徽工业大学 一种Cu合金化深冲双相钢板及其制备方法
CN111705263B (zh) * 2020-06-22 2022-01-04 武汉钢铁有限公司 一种在低温二次加工性能优良的抗拉强度为440MPa级带钢及生产方法
CN115341074B (zh) * 2022-09-05 2024-01-09 江苏圣珀新材料科技有限公司 一种双相钢的退火工艺

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002146478A (ja) * 2000-11-02 2002-05-22 Kawasaki Steel Corp 高r値と優れた歪時効硬化特性および常温非時効性を有する高張力冷延鋼板およびその製造方法
JP2004197155A (ja) * 2002-12-18 2004-07-15 Jfe Steel Kk 焼付硬化性に優れ、かつ面内異方性の小さい冷延鋼板およびその製造方法
JP2007197748A (ja) * 2006-01-25 2007-08-09 Jfe Steel Kk 深絞り用高強度複合組織型冷延鋼板の製造方法
JP2008050622A (ja) * 2006-08-22 2008-03-06 Jfe Steel Kk 延性と深絞り性に優れた高強度鋼板およびその製造方法
JP2008174825A (ja) * 2007-01-22 2008-07-31 Jfe Steel Kk 高強度鋼板および高強度めっき鋼板の製造方法
JP2009263713A (ja) * 2008-04-24 2009-11-12 Sumitomo Metal Ind Ltd 高張力冷延鋼板および高張力めっき鋼板ならびにこれらの製造方法。
JP2011219855A (ja) * 2010-03-24 2011-11-04 Jfe Steel Corp 深絞り性に優れた高強度冷延鋼板およびその製造方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100664433B1 (ko) * 2000-04-07 2007-01-03 제이에프이 스틸 가부시키가이샤 변형 시효 경화 특성이 우수한 열연 강판, 냉연 강판 및용융 아연 도금 강판, 그리고 이들의 제조 방법
TW565621B (en) * 2000-05-26 2003-12-11 Jfe Steel Corp Cold-rolled steel sheet and galvanized steel sheet having strain age hardenability property and method for producing the same
US20030129444A1 (en) * 2000-11-28 2003-07-10 Saiji Matsuoka Composite structure type high tensile strength steel plate, plated plate of composite structure type high tensile strength steel and method for their production
JP4010132B2 (ja) * 2000-11-28 2007-11-21 Jfeスチール株式会社 深絞り性に優れた複合組織型高張力溶融亜鉛めっき鋼板およびその製造方法
JP2003193191A (ja) * 2001-12-25 2003-07-09 Jfe Steel Kk 深絞り性に優れた複合組織型高張力冷延鋼板およびその製造方法
CN1833042A (zh) * 2003-09-26 2006-09-13 杰富意钢铁株式会社 深冲性优良的高强度钢板及其制造方法
ES2391164T3 (es) * 2003-09-30 2012-11-22 Nippon Steel Corporation Chapa delgada de acero laminado en frío, de alta resistencia, con alto límite de elasticidad, y superior ductilidad y soldabilidad, chapa delgada de acero galvanizado por inmersión en caliente, de alta resistencia, con alto límite de elasticidad, chapa delgada de acero galvanizado y recocido por inmersión en caliente, de alta resistencia, con alto límite de eleasticidad, y métodos para la producción de las mismas
JP5157146B2 (ja) * 2006-01-11 2013-03-06 Jfeスチール株式会社 溶融亜鉛めっき鋼板
WO2009025125A1 (ja) * 2007-08-20 2009-02-26 Jfe Steel Corporation 打抜き加工性に優れたフェライト系ステンレス鋼板およびその製造方法
JP5262372B2 (ja) * 2008-07-11 2013-08-14 Jfeスチール株式会社 深絞り性に優れた高強度鋼板およびその製造方法
JP5365112B2 (ja) * 2008-09-10 2013-12-11 Jfeスチール株式会社 高強度鋼板およびその製造方法
JP4623233B2 (ja) * 2009-02-02 2011-02-02 Jfeスチール株式会社 高強度溶融亜鉛めっき鋼板およびその製造方法
JP5532088B2 (ja) * 2011-08-26 2014-06-25 Jfeスチール株式会社 深絞り性に優れた高強度溶融亜鉛めっき鋼板およびその製造方法
JP5408314B2 (ja) * 2011-10-13 2014-02-05 Jfeスチール株式会社 深絞り性およびコイル内材質均一性に優れた高強度冷延鋼板およびその製造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002146478A (ja) * 2000-11-02 2002-05-22 Kawasaki Steel Corp 高r値と優れた歪時効硬化特性および常温非時効性を有する高張力冷延鋼板およびその製造方法
JP2004197155A (ja) * 2002-12-18 2004-07-15 Jfe Steel Kk 焼付硬化性に優れ、かつ面内異方性の小さい冷延鋼板およびその製造方法
JP2007197748A (ja) * 2006-01-25 2007-08-09 Jfe Steel Kk 深絞り用高強度複合組織型冷延鋼板の製造方法
JP2008050622A (ja) * 2006-08-22 2008-03-06 Jfe Steel Kk 延性と深絞り性に優れた高強度鋼板およびその製造方法
JP2008174825A (ja) * 2007-01-22 2008-07-31 Jfe Steel Kk 高強度鋼板および高強度めっき鋼板の製造方法
JP2009263713A (ja) * 2008-04-24 2009-11-12 Sumitomo Metal Ind Ltd 高張力冷延鋼板および高張力めっき鋼板ならびにこれらの製造方法。
JP2011219855A (ja) * 2010-03-24 2011-11-04 Jfe Steel Corp 深絞り性に優れた高強度冷延鋼板およびその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2636762A4 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140290810A1 (en) * 2011-10-13 2014-10-02 Jfe Steel Corporation High strength cold rolled steel sheet with excellent deep drawability and material uniformity in coil and method for manufacturing the same
US9297052B2 (en) * 2011-10-13 2016-03-29 Jfe Steel Corporation High strength cold rolled steel sheet with excellent deep drawability and material uniformity in coil and method for manufacturing the same
JP2016141858A (ja) * 2015-02-03 2016-08-08 Jfeスチール株式会社 高強度鋼板、高強度めっき鋼板、高強度溶融亜鉛めっき鋼板および高強度合金化溶融亜鉛めっき鋼板、並びにそれらの製造方法
JP2016141857A (ja) * 2015-02-03 2016-08-08 Jfeスチール株式会社 高強度鋼板、高強度めっき鋼板、高強度溶融亜鉛めっき鋼板および高強度合金化溶融亜鉛めっき鋼板、並びにそれらの製造方法
WO2016125461A1 (ja) * 2015-02-03 2016-08-11 Jfeスチール株式会社 高強度鋼板およびその製造方法
WO2016125462A1 (ja) * 2015-02-03 2016-08-11 Jfeスチール株式会社 高強度鋼板およびその製造方法
US10472697B2 (en) 2015-02-03 2019-11-12 Jfe Steel Corporation High-strength steel sheet and production method therefor
US11035019B2 (en) 2015-02-03 2021-06-15 Jfe Steel Corporation High-strength steel sheet and production method therefor

Also Published As

Publication number Publication date
KR20130055021A (ko) 2013-05-27
CA2814193C (en) 2016-07-05
KR101561358B1 (ko) 2015-10-16
JP5825481B2 (ja) 2015-12-02
MX2013005011A (es) 2013-08-01
EP2636762A1 (en) 2013-09-11
TW201239105A (en) 2012-10-01
CA2814193A1 (en) 2012-05-10
TWI473887B (zh) 2015-02-21
EP2636762B1 (en) 2019-02-27
EP2636762A4 (en) 2016-10-26
JP2012112039A (ja) 2012-06-14
CN103201403A (zh) 2013-07-10
US20130213529A1 (en) 2013-08-22
MX350226B (es) 2017-08-30
BR112013011013A2 (pt) 2016-08-23
CN103201403B (zh) 2016-08-17

Similar Documents

Publication Publication Date Title
JP5825481B2 (ja) 深絞り性および焼付硬化性に優れる高強度冷延鋼板とその製造方法
JP5884714B2 (ja) 溶融亜鉛めっき鋼板およびその製造方法
JP6179461B2 (ja) 高強度鋼板の製造方法
JP6779320B2 (ja) 強度及び成形性に優れたクラッド鋼板及びその製造方法
JP5493986B2 (ja) 加工性に優れた高強度鋼板および高強度溶融亜鉛めっき鋼板並びにそれらの製造方法
JP5003785B2 (ja) 延性に優れた高張力鋼板およびその製造方法
JP5408314B2 (ja) 深絞り性およびコイル内材質均一性に優れた高強度冷延鋼板およびその製造方法
KR101264574B1 (ko) 딥 드로잉성이 우수한 고강도 강판의 제조 방법
EP2623622B1 (en) High-strength hot-dip galvanized steel sheet with excellent deep drawability and stretch flangeability, and process for producing same
KR20150028366A (ko) 성형성이 우수한 고강도 용융 아연 도금 강판 및 그 제조 방법
JP5532088B2 (ja) 深絞り性に優れた高強度溶融亜鉛めっき鋼板およびその製造方法
WO2017168957A1 (ja) 薄鋼板およびめっき鋼板、並びに、熱延鋼板の製造方法、冷延フルハード鋼板の製造方法、薄鋼板の製造方法およびめっき鋼板の製造方法
JP5256690B2 (ja) 加工性および耐衝撃特性に優れる高強度溶融亜鉛めっき鋼板およびその製造方法
JP5655475B2 (ja) 深絞り性に優れた高強度冷延鋼板およびその製造方法
JP4772431B2 (ja) 伸びと穴拡げ性に優れた溶融亜鉛めっき高強度鋼板の製造方法
JP5251207B2 (ja) 深絞り性に優れた高強度鋼板及びその製造方法
JP5151390B2 (ja) 高張力冷延鋼板、高張力亜鉛めっき鋼板およびそれらの製造方法
JP5310920B2 (ja) 耐時効性と焼付き硬化性に優れた高強度冷延鋼板
JP5034296B2 (ja) 歪時効硬化特性に優れた熱延鋼板およびその製造方法
JP5655436B2 (ja) 深絞り性に優れた高強度鋼板およびその製造方法
JP2009179832A (ja) 角筒絞り成形性と形状凍結性に優れた高強度冷延鋼板およびその製造方法ならびに製品形状に優れた自動車用部品
JP4930393B2 (ja) 冷延鋼板の製造方法
JP2005264212A (ja) 高強度鋼板およびその製造方法
JP2009221556A (ja) 深絞り性に優れた高強度冷延鋼板の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11837944

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2814193

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2011837944

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20137009954

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13882300

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: MX/A/2013/005011

Country of ref document: MX

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112013011013

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112013011013

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20130503