WO2018105698A1 - 軟磁性部品用鋼材、軟磁性部品、及び、軟磁性部品の製造方法 - Google Patents

軟磁性部品用鋼材、軟磁性部品、及び、軟磁性部品の製造方法 Download PDF

Info

Publication number
WO2018105698A1
WO2018105698A1 PCT/JP2017/044037 JP2017044037W WO2018105698A1 WO 2018105698 A1 WO2018105698 A1 WO 2018105698A1 JP 2017044037 W JP2017044037 W JP 2017044037W WO 2018105698 A1 WO2018105698 A1 WO 2018105698A1
Authority
WO
WIPO (PCT)
Prior art keywords
soft magnetic
steel material
magnetic parts
less
steel
Prior art date
Application number
PCT/JP2017/044037
Other languages
English (en)
French (fr)
Inventor
江頭 誠
秀和 末野
松本 斉
Original Assignee
新日鐵住金株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日鐵住金株式会社 filed Critical 新日鐵住金株式会社
Priority to US16/463,172 priority Critical patent/US11248283B2/en
Priority to JP2018555063A priority patent/JP6801721B2/ja
Publication of WO2018105698A1 publication Critical patent/WO2018105698A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/04General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering with simultaneous application of supersonic waves, magnetic or electric fields
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/24Ferrous alloys, e.g. steel alloys containing chromium with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/32Ferrous alloys, e.g. steel alloys containing chromium with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C2202/00Physical properties
    • C22C2202/02Magnetic

Definitions

  • the present invention relates to a steel material for soft magnetic parts, a soft magnetic part using a steel material for soft magnetic parts, and a method for manufacturing a soft magnetic part.
  • Steel materials for soft magnetic parts are used as the core material for electrical components such as motors and generators.
  • the steel material for soft magnetic parts is, for example, soft iron, pure iron, and silicon steel.
  • a part using a steel material for soft magnetic parts is referred to as a soft magnetic part.
  • soft magnetic parts are manufactured by cold working a steel material for soft magnetic parts such as bar steel.
  • a steel material for soft magnetic parts for example, a low carbon steel material having a carbon content of about 0.1% or less is used.
  • Such a low carbon steel material is subjected to cold working such as wire drawing, cold forging, and cold drawing to produce a soft magnetic component. Therefore, high cold workability is required for steel materials for soft magnetic parts such as bar steel to be cold worked.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2008-045182
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2006-328461
  • Patent Document 3 Japanese Patent Application Laid-Open No. 2006-328461. This is proposed in Japanese Patent Application Publication No. 2006-328462 (Patent Document 3).
  • the soft magnetic steel material disclosed in Patent Document 2 is, in mass%, C: 0.015% or less, Si: 0.005 to 0.30%, Mn: 0.1 to 0.5%, P: 0.00. 02% or less, S: 0.02% or less, Al: more than 0.010 to 1.3%, N: 0.010% or less, O (oxygen): 0.020% or less, with the balance being Fe and It consists of impurities and satisfies 0.85 ⁇ 0.8 ⁇ 0.57C + 0.82Si + 0.07Mn + 0.78P ⁇ 3.56S + 0.82Al ⁇ 1.0N ⁇ 2.0 (the symbol is the mass% of each element).
  • Patent Document 2 describes that this soft magnetic steel material has high AC magnetic characteristics and deformability.
  • the soft magnetic steel material disclosed in Patent Document 3 is, by mass%, C: 0.015% or less, Si: 0.005 to 0.30%, Mn: 0.1 to 0.5%, P: 0.00. 02% or less, S: 0.02% or less, Cr: 0.01 to 2.0%, Al: more than 0.010 to 1.3%, N: 0.010% or less, O: 0.020% or less
  • the balance is composed of Fe and impurities, and 0.85 ⁇ 0.8 ⁇ 0.57C + 0.82Si + 0.07Mn + 0.78P ⁇ 3.56S + 0.3Cr + 0.82Al ⁇ 1.0N ⁇ 2.0 % By mass).
  • Patent Document 3 describes that this soft magnetic steel material has excellent AC magnetic characteristics and high deformability.
  • the soft magnetic component is manufactured by cold working a steel material for soft magnetic components, for example, a steel bar or a wire rod. Recently, there has been a demand for soft magnetic parts having complicated shapes as described above. When manufacturing such a soft magnetic part, in order to obtain high cold workability, the strength of the steel material for soft magnetic parts is lowered to improve cold workability. The strength of the soft magnetic component is increased by hardening the steel for soft magnetic component during cold working.
  • the steel material for soft magnetic parts is required to have high fatigue strength after magnetic annealing as well as cold workability and excellent magnetic properties after magnetic annealing.
  • the magnetic properties and deformability are considered, but the fatigue strength after magnetic annealing is not particularly considered.
  • the steel material for soft magnetic parts disclosed in Patent Document 1 contains a large amount of alloy elements. Therefore, sufficient cold workability may not be obtained.
  • An object of the present disclosure is to provide a steel material for soft magnetic parts having excellent cold workability and having excellent magnetic properties and high fatigue strength after magnetic annealing, a soft magnetic part using the steel material for soft magnetic parts, and Another object is to provide a method of manufacturing a soft magnetic component.
  • the steel material for soft magnetic parts according to the present disclosure is, by mass%, C: 0.02 to 0.13%, Si: 0.005 to 0.50%, Mn: 0.10 to 0.70%, P: 0 0.035% or less, S: 0.050% or less, Al: 0.005 to 1.300%, V: 0.02 to 0.50%, N: 0.003 to 0.030%, Cr: 0 to Less than 0.80%, Ti: 0 to 0.20%, Nb: 0 to 0.20%, B: 0 to 0.005%, and Ca: 0 to 0.005%, the balance being Fe And a chemical composition consisting of impurities.
  • the average grain size of ferrite grains in the steel material for soft magnetic parts is 5 to 200 ⁇ m.
  • the number Sv (pieces / mm 2 ) of precipitates having a circle-equivalent diameter of 30 nm or more satisfies the formula (1).
  • the V content (mass%) in the steel material for soft magnetic parts is substituted for V in the formula (1).
  • the soft magnetic component according to the present disclosure is, in mass%, C: 0.02 to 0.13%, Si: 0.005 to 0.50%, Mn: 0.10 to 0.70%, P: 0.035. %: S: 0.050% or less, Al: 0.005-1.300%, V: 0.02-0.50%, N: 0.003-0.030%, Cr: 0-0.
  • the maximum magnetic permeability of the soft magnetic component is 0.0015 N / A 2 or more.
  • the V content (% by mass) in the soft magnetic component is substituted for V in the formula (1).
  • the method for manufacturing a soft magnetic component according to the present disclosure includes a step of cold-working the above-described steel material for soft magnetic components to manufacture an intermediate material, and a step of performing magnetic annealing on the intermediate material.
  • the steel material for soft magnetic parts according to the present disclosure has excellent cold workability, and has excellent magnetic properties and high fatigue strength after magnetic annealing.
  • the soft magnetic component according to the present disclosure has excellent magnetic properties and high fatigue strength.
  • the method of manufacturing a soft magnetic component according to the present disclosure can manufacture the above-described soft magnetic component.
  • FIG. 1 is a diagram showing the relationship between the number of coarse precipitates Sv (pieces / mm 2 ) and the maximum magnetic permeability (N / A 2 ).
  • FIG. 2 is a front view and a side view of a ring-shaped test piece produced in the magnetic property evaluation test in the examples.
  • FIG. 3 is a side view and a front view of a round bar test piece produced in the cold workability evaluation test in the examples.
  • FIG. 4 is a side view of a fatigue test piece produced in a fatigue strength evaluation test after magnetic annealing in Examples.
  • the present inventors have investigated and examined a steel material for soft magnetic parts having excellent cold workability and having excellent magnetic properties and high fatigue strength after magnetic annealing. As a result, the present inventors obtained the following knowledge.
  • the cold workability of the steel for soft magnetic parts can be improved by suppressing the C content to 0.13% or less.
  • the magnetic properties deteriorate due to strain introduced into the steel material for soft magnetic parts.
  • the magnetic annealing is performed to remove the strain in the steel for soft magnetic parts, the magnetic properties are recovered.
  • magnetic annealing is performed as described above, the effect of work hardening due to strain is lost, and the fatigue strength of the steel for soft magnetic parts is reduced.
  • the strength of the steel material for soft magnetic parts may be increased.
  • the strength of the steel material for soft magnetic parts is high, excellent cold workability cannot be obtained. That is, it is preferable that the strength of the steel material for soft magnetic parts is low during cold working. Therefore, the present inventors have low strength of the steel material for soft magnetic parts during cold working, and can increase the strength of the steel material for soft magnetic parts after performing magnetic annealing on the steel material after cold working. The method was examined.
  • the steel material for soft magnetic parts is removed from the strain and the strength is lowered.
  • precipitates such as carbonitride can be precipitated in the steel for soft magnetic parts during magnetic annealing
  • the strength of the steel for soft magnetic parts can be increased by precipitation strengthening as an alternative to the strength reduction accompanying strain removal. The present inventors thought that it might be.
  • V carbonitride is finely precipitated in the steel by magnetic annealing.
  • the V carbonitride precipitated by magnetic annealing has a circle equivalent diameter of less than 30 nm. If the fine V carbonitride is precipitated, the strength of the steel material after the magnetic annealing can be increased by precipitation strengthening while suppressing the deterioration of the magnetic properties recovered by the magnetic annealing. That is, if V carbonitride is used, excellent magnetic properties and high fatigue strength can be obtained after magnetic annealing.
  • each element (V, C, and N) which can comprise V carbonitride is dissolved in the steel material for soft magnetic parts before magnetic annealing.
  • V, C, and N are sufficiently dissolved, the cold workability of the steel material for soft magnetic parts is enhanced.
  • fine V carbonitride can be formed by V, C, and N that are dissolved in magnetic annealing.
  • the present inventors further examined the relationship between the appropriate V carbonitride in the steel for soft magnetic parts before magnetic annealing, and the magnetic properties and fatigue strength. As a result, the present inventors obtained the following knowledge.
  • the other precipitates in the ferrite grains are mainly Nb carbonitride. That is, the size of the precipitates in the ferrite grains in the steel material before magnetic annealing (steel material for soft magnetic parts) substantially correlates with the size of the V carbonitride.
  • the present inventors have found that if there are few coarse precipitates in the ferrite grains of the steel material (steel material for soft magnetic parts) before magnetic annealing, coarse V carbonitrides are present in the ferrite grains. Less, it was considered that V, C, and N were sufficiently dissolved in the steel material before magnetic annealing. In this case, it was considered that fine V carbonitride precipitates after magnetic annealing, and high fatigue strength can be obtained while suppressing deterioration of magnetic properties.
  • the present inventors further investigated and examined the relationship between the size of precipitates in the ferrite grains of the steel material prior to magnetic annealing (steel material for soft magnetic parts) and the magnetic properties and fatigue strength after magnetic annealing. It was. As a result, the present inventors calculated the number Sv (pieces / mm 2 ) of precipitates having a circle-equivalent diameter of 30 nm or more in the ferrite grains of the steel material for soft magnetic parts, which is a steel material before magnetic annealing.
  • FIG. 1 is a diagram showing the relationship between the number of coarse precipitates Sv (pieces / mm 2 ) and the maximum magnetic permeability (N / A 2 ).
  • FIG. 1 was obtained by a test in Examples described later.
  • the maximum permeability of the steel material for soft magnetic parts after magnetic annealing held at 600 ° C. for 60 minutes becomes 0.0015 N / A 2 or more, and excellent magnetic properties are obtained. Is obtained.
  • the average grain size of the ferrite grains of the steel material for soft magnetic parts according to the present embodiment is 5 to 200 ⁇ m. If the average grain size of the ferrite grains is 5 to 200 ⁇ m, it is excellent in cold workability as well as excellent magnetic properties and high fatigue strength after magnetic annealing, provided that other requirements are satisfied.
  • the steel material for soft magnetic parts is in mass%, C: 0.02 to 0.13%, Si: 0.005 to 0.50%, Mn: 0.10. -0.70%, P: 0.035% or less, S: 0.050% or less, Al: 0.005-1.300%, V: 0.02-0.50%, N: 0.003- 0.030%, Cr: 0 to less than 0.80%, Ti: 0 to 0.20%, Nb: 0 to 0.20%, B: 0 to 0.005%, and Ca: 0 to 0.00. 005% is contained, and the balance has a chemical composition composed of Fe and impurities.
  • the average grain size of ferrite grains in the steel material for soft magnetic parts is 5 to 200 ⁇ m.
  • the number Sv (pieces / mm 2 ) of precipitates having a circle-equivalent diameter of 30 nm or more in the ferrite grains satisfies the formula (1).
  • the V content (mass%) in the steel material for soft magnetic parts is substituted for V in the formula (1).
  • the chemical composition of the above-described steel for soft magnetic parts may contain Cr: 0.02 to less than 0.80%.
  • the chemical composition of the above-mentioned steel for soft magnetic parts is from the group consisting of Ti: 0.01-0.20%, Nb: 0.01-0.20%, and B: 0.0008-0.005%. One or more selected may be contained.
  • the chemical composition of the above-described steel material for soft magnetic parts may contain Ca: 0.0005 to 0.005%.
  • the soft magnetic component according to the present embodiment is, in mass%, C: 0.02 to 0.13%, Si: 0.005 to 0.50%, Mn: 0.10 to 0.70%, P: 0.00. 035% or less, S: 0.050% or less, Al: 0.005-1.300%, V: 0.02-0.50%, N: 0.003-0.030%, Cr: 0-0 Less than 80%, Ti: 0 to 0.20%, Nb: 0 to 0.20%, B: 0 to 0.005%, and Ca: 0 to 0.005%, with the balance being Fe and It has a chemical composition consisting of impurities.
  • the number Sv (pieces / mm 2 ) of precipitates having an equivalent circle diameter of 30 nm or more satisfies the formula (1). Furthermore, the maximum magnetic permeability of the soft magnetic component is 0.0015 N / A 2 or more. Sv ⁇ 10V ⁇ 7.0 ⁇ 10 6 (1) Here, the V content (% by mass) in the soft magnetic component is substituted for V in the formula (1).
  • the chemical composition of the above soft magnetic component may contain Cr: 0.02 to less than 0.80%.
  • the chemical composition of the soft magnetic component is selected from the group consisting of Ti: 0.01-0.20%, Nb: 0.01-0.20%, and B: 0.0008-0.005%. 1 or more types may be contained.
  • the chemical composition of the above-described soft magnetic component may contain Ca: 0.0005 to 0.005%.
  • the method of manufacturing a soft magnetic component according to the present embodiment includes a step of cold-working the above-described steel material for soft magnetic components to manufacture an intermediate material, and a step of performing magnetic annealing on the intermediate material.
  • magnetic annealing refers to heat treatment that increases the magnetic properties by reducing the strain of the steel material by heating and recovering and recrystallizing the steel material.
  • the heating temperature is not particularly limited, but is desirably 200 ° C. to A c1 point in order to obtain the above effect.
  • the chemical composition of the steel material for soft magnetic parts according to the present embodiment contains the following elements.
  • C 0.02 to 0.13%
  • Carbon (C) combines with V, which will be described later, after magnetic annealing to form V carbonitride, and increases the strength of the steel material.
  • the fatigue strength of the steel material increases after magnetic annealing.
  • the C content is less than 0.02%, sufficient strength cannot be obtained in the steel material after magnetic annealing.
  • the C content exceeds 0.13%, the cold workability of the steel material for soft magnetic parts decreases. If the C content exceeds 0.13%, the magnetic properties of the steel material after magnetic annealing are further deteriorated. Therefore, the C content is 0.02 to 0.13%.
  • a preferable lower limit of the C content is 0.03%.
  • the upper limit with preferable C content is less than 0.10%, More preferably, it is 0.09%.
  • Si 0.005 to 0.50%
  • Silicon (Si) deoxidizes steel during melting. If the Si content is less than 0.005%, this effect cannot be obtained. On the other hand, Si solidifies and strengthens ferrite. Therefore, if the Si content exceeds 0.50%, the strength of the ferrite becomes too high, and the cold workability of the steel material for soft magnetic parts decreases. Therefore, the Si content is 0.005 to 0.50%.
  • a preferable lower limit of the Si content is 0.010%.
  • the upper limit with preferable Si content is 0.45%, More preferably, it is 0.40%.
  • Mn 0.10 to 0.70%
  • Manganese (Mn) dissolves in steel and increases the strength of the steel. If the Mn content is less than 0.10%, this effect cannot be obtained. On the other hand, if the Mn content exceeds 0.70%, the strength of ferrite becomes too high, and the cold workability of the steel material for soft magnetic parts decreases. Therefore, the Mn content is 0.10 to 0.70%.
  • the minimum with preferable Mn content is 0.20%.
  • the upper limit with preferable Mn content is 0.65%, More preferably, it is 0.60%.
  • Phosphorus (P) is an impurity and is inevitably contained in the steel material. Therefore, the P content is more than 0%. P tends to segregate in steel and causes local ductility reduction. If the P content exceeds 0.035%, local ductility is likely to occur. In this case, the cold workability of the steel material for soft magnetic parts is lowered. Therefore, the P content is 0.035% or less.
  • the upper limit with preferable P content is 0.030%, More preferably, it is 0.025%.
  • the P content is preferably as low as possible. Therefore, the lower limit of the P content is not particularly limited. However, if the P content is less than 0.002%, the above-described local reduction in ductility hardly occurs. Furthermore, in an actual operation, the production cost is excessively increased to reduce the P content to less than 0.002%. Therefore, the preferable lower limit of the P content is 0.002%.
  • S 0.050% or less Sulfur (S) is inevitably contained in the steel material. Therefore, the S content is more than 0%. S combines with Mn to form MnS and enhances the machinability of the steel material. However, if the S content exceeds 0.050%, coarse MnS is generated. Coarse MnS serves as a starting point for cracking, so the cold workability of the steel material for soft magnetic parts is reduced. Accordingly, the S content is 0.050% or less.
  • the upper limit with preferable S content is 0.045%, More preferably, it is 0.040%. From the viewpoint of reducing the desulfurization cost, the preferable lower limit of the S content is 0.0001%. When the machinability of the steel material for soft magnetic parts is effectively increased, the preferable lower limit of the S content is 0.005%, more preferably 0.006%.
  • V 0.02% to 0.50%
  • Vanadium (V) forms V carbonitride by carrying out magnetic annealing with respect to the steel material after cold working. Thereby, the strength reduction of the steel material resulting from magnetic annealing is suppressed. If the V content is less than 0.02%, this effect cannot be obtained.
  • the V content exceeds 0.50%, the strength of the steel for soft magnetic parts before cold working becomes too high, and the cold workability of the steel for soft magnetic parts decreases. If the V content exceeds 0.50%, the magnetic properties of the steel material after magnetic annealing are further deteriorated. Therefore, the V content is 0.02 to 0.50%.
  • the minimum with preferable V content is 0.03%, More preferably, it is 0.04%.
  • the upper limit with preferable V content is 0.45%, More preferably, it is 0.40%.
  • Al 0.005 to 1.300%
  • Aluminum (Al) deoxidizes steel during melting. Further, Al increases the electrical resistance of the steel material and enhances the magnetic properties of the steel material. If the Al content is less than 0.005%, these effects cannot be obtained. On the other hand, if the Al content exceeds 1.300%, the strength of the ferrite becomes too high, and the cold workability of the steel material for soft magnetic parts decreases. Therefore, the Al content is 0.005 to 1.300%.
  • action is 0.010%, More preferably, it is 0.014%.
  • the upper limit with preferable Al content is 1.000%, More preferably, it is 0.950%.
  • N 0.003 to 0.030% Nitrogen (N) combines with V and C by magnetic annealing to form V carbonitride. Thereby, the strength reduction of the steel material resulting from magnetic annealing is suppressed. If the N content is less than 0.003%, this effect cannot be obtained. On the other hand, if the N content exceeds 0.030%, the cold workability of the steel material for soft magnetic parts decreases. Therefore, the N content is 0.003 to 0.030%.
  • the upper limit with preferable N content is 0.025%, More preferably, it is 0.020%.
  • a preferable lower limit of the N content is 0.005%.
  • the balance of the chemical composition of the steel material for soft magnetic parts according to the present embodiment is composed of Fe and impurities.
  • the impurities are mixed from the ore as a raw material, scrap, or the manufacturing environment when the steel for soft magnetic parts of the present embodiment is industrially manufactured. It means that it is allowed in a range that does not have a significant adverse effect on the cold workability of the steel for magnetic parts, the magnetic properties of the soft magnetic parts after magnetic annealing, and the fatigue strength.
  • any element other than the above-described elements can be raised. There may be only one kind of element as an impurity, or two or more kinds.
  • impurities include the following. O: 0.030% or less, Pb: 0.05% or less, Cu: 0.20% or less, Ni: 0.20% or less, Mo: 0.05% or less, rare earth element (REM): 0.0003%
  • Mg 0.003% or less
  • W 0.003% or less
  • Sb 0.003% or less
  • Bi 0.003% or less
  • Co 0.003% or less
  • Ta 0.003% Less than.
  • REM in this specification refers to yttrium (Y) having an atomic number of 39, lanthanum (La) having an atomic number of 57 to lutetium (Lu) having an atomic number of 71, and an atomic number of 89 that is an actinoid. It is one or more elements selected from the group consisting of No. actinium (Ac) to No. 103 Lorencium (Lr). Moreover, the REM content in this specification is the total content of these elements.
  • the chemical composition of the steel material for soft magnetic parts according to the present embodiment may further contain Cr instead of a part of Fe.
  • Chromium (Cr) is an optional element and may not be contained. That is, the Cr content may be 0%. When Cr is contained, Cr is dissolved in the steel material to increase the strength of the steel material. If Cr is contained even a little, this effect can be obtained to some extent. On the other hand, if the Cr content is 0.80 or more, the strength of the ferrite becomes too high, and the cold workability of the steel material for soft magnetic parts decreases. Accordingly, the Cr content is 0 to less than 0.80%.
  • the preferable lower limit of the Cr content for effectively obtaining the above effect is more than 0%, more preferably 0.02%, still more preferably 0.03%, and further preferably 0.05%. .
  • the upper limit with preferable Cr content is 0.75%, More preferably, it is 0.50%.
  • the chemical composition of the steel material for soft magnetic parts according to the present embodiment may further include one or more selected from the group consisting of Ti, Nb and B instead of a part of Fe. All of these elements increase the fatigue strength of the steel material after magnetic annealing.
  • Titanium (Ti) is an optional element and may not be contained. That is, the Ti content may be 0%. When Ti is contained, Ti forms carbonitrides, further increases the strength of the steel material after magnetic annealing, and further increases the fatigue strength. If Ti is contained even a little, this effect can be obtained to some extent. However, if the Ti content exceeds 0.20%, the cold workability of the steel material for soft magnetic parts decreases. Therefore, the Ti content is 0 to 0.20%.
  • a preferable lower limit of the Ti content for more effectively obtaining the above effect is more than 0%, more preferably 0.01%, and further preferably 0.02%.
  • the upper limit with preferable Ti content is 0.15%, More preferably, it is 0.13%.
  • Niobium (Nb) is an optional element and may not be contained. That is, the Nb content may be 0%. When Nb is contained, Nb forms carbonitrides, increases the strength of the steel material after magnetic annealing, and increases fatigue strength. If Nb is contained even a little, this effect can be obtained to some extent. However, if the Nb content exceeds 0.20%, the cold workability of the steel material decreases. Therefore, the Nb content is 0 to 0.20%.
  • a preferable lower limit of the Nb content for more effectively obtaining the above effect is more than 0%, more preferably 0.01%, and further preferably 0.02%.
  • the upper limit with preferable Nb content is 0.15%, More preferably, it is 0.13%.
  • B 0 to 0.005%
  • Boron (B) is an optional element and may not be contained. That is, the B content may be 0%. When B is contained, B forms a nitride and fixes N. This suppresses a decrease in strength after magnetic annealing due to the formation of coarse nitrides after hot rolling. If B is contained even a little, this effect can be obtained to some extent. However, if the B content exceeds 0.005%, the effect is saturated. Therefore, the B content is 0 to 0.005%.
  • a preferable lower limit of the B content for more effectively obtaining the above effect is more than 0%, further preferably 0.0008%, and more preferably 0.0010%.
  • the upper limit with preferable B content is 0.002%, More preferably, it is 0.0018%.
  • the chemical composition of the steel material for soft magnetic parts of the present embodiment may further contain Ca instead of a part of Fe.
  • Ca 0 to 0.005%
  • Calcium (Ca) is an optional element and may not be contained. That is, the Ca content may be 0%.
  • Ca spheroidizes MnS in the steel and improves the cold workability of the steel material for soft magnetic parts. If Ca is contained even a little, this effect can be obtained to some extent. However, if the Ca content exceeds 0.005%, the effect is saturated. Therefore, the Ca content is 0 to 0.005%.
  • a preferable lower limit of the Ca content for more effectively obtaining the above effect is more than 0%, further preferably 0.0005%, and more preferably 0.0008%.
  • the upper limit with preferable Ca content is 0.002%.
  • the microstructure of the steel material for soft magnetic parts according to the present embodiment is composed of ferrite and a second phase.
  • the second phase is pearlite.
  • Perlite includes pseudo perlite.
  • the main phase is ferrite, and the total area ratio of ferrite grains is 80% or more.
  • the average crystal grain size of the above-mentioned ferrite grains is 5 to 200 ⁇ m. If the average grain size of the ferrite grains is less than 5 ⁇ m, the movement of the domain wall is hindered, and the magnetic properties of the soft magnetic component after the magnetic annealing are lowered. On the other hand, when the average crystal grain size of the ferrite grains exceeds 200 ⁇ m, the fatigue strength after magnetic annealing decreases. Therefore, the average grain size of the ferrite grains is 5 to 200 ⁇ m.
  • a preferable lower limit of the average crystal grain size of the ferrite grains is 10 ⁇ m, and more preferably 20 ⁇ m.
  • a preferable upper limit of the average crystal grain size of the ferrite grains is 180 ⁇ m, and more preferably 150 ⁇ m.
  • the area ratio of ferrite grains and the average crystal grain diameter of ferrite grains of the steel material for soft magnetic parts can be measured by the following method.
  • a sample for observing the structure is taken from the steel material for soft magnetic parts. Specifically, when the steel material for soft magnetic parts is a steel bar or a wire, the central portion of the radius R connecting the surface and the central axis (hereinafter referred to as the following) in the cross section (surface perpendicular to the longitudinal direction) of the steel bar or wire.
  • a sample for observing the microstructure is taken from (R / 2 part). Of the R / 2 part sample, the surface perpendicular to the longitudinal direction of the steel material for soft magnetic parts is taken as the observation surface.
  • the observation surface of the sample is etched with 3% nitric acid alcohol (a nital etchant).
  • the etched observation surface is observed with a 100 ⁇ optical microscope, and five arbitrary visual fields are specified at a position 1 mm from the outer periphery of the cross section. A photographic image of each identified field of view is generated.
  • ferrite grains are specified based on contrast. Specifically, in each field of view, ferrite is white and uniformly observed, pearlite has a layered structure, and the grain boundary between ferrite and pearlite is observed as a black line due to intergranular corrosion. Furthermore, structures other than ferrite and pearlite are observed in black. Therefore, a white and uniformly observed region surrounded by a black line in each field of view is determined as a ferrite grain.
  • the ferrite grain in each visual field is specified by the above method.
  • the area of the ferrite grains is determined. From the obtained area of the ferrite grain, the equivalent circle diameter of the ferrite grain is obtained.
  • the average value of equivalent circle diameters determined in five fields of view is defined as the average crystal grain size ( ⁇ m) of ferrite grains.
  • the ratio of the total area of the ferrite grains in the five fields of view to the total area of the five fields of view is defined as the area ratio (%) of the ferrite grains.
  • the equivalent circle diameter means the diameter of a circle when the area of the observed crystal grains or precipitates is converted into a circle having the same area on the visual field in the structure observation.
  • the number of coarse precipitates Sv (pieces / mm 2 ) in the ferrite grains satisfies the formula (1).
  • the V content (mass%) in the steel material for soft magnetic parts is substituted for V in the formula (1).
  • the coarse precipitate means a precipitate having an equivalent circle diameter of 30 nm or more among the precipitates contained in the ferrite grains of the steel material for soft magnetic parts.
  • the equivalent circle diameter means the diameter of a circle when the area of the specified crystal grain or precipitate is converted into a circle having the same area in the field plane in the structure observation.
  • the upper limit of the circle equivalent diameter of the precipitate contained in the ferrite of the steel material for soft magnetic parts of the present embodiment is 1000 nm (1 ⁇ m). That is, in this embodiment, the equivalent circle diameter of the coarse precipitate is 30 nm to 1000 nm.
  • the precipitates in the ferrite grains of the steel material for soft magnetic parts of this embodiment include V carbonitride and Nb carbonitride.
  • carbonitride is a general term for carbide, nitride, and carbonitride. That is, the V carbonitride in this specification contains not only the narrowly defined V carbonitride containing V, C, and N, but also V carbide containing V and C, and V and N. V nitride is also included.
  • the precipitates contained in the ferrite grains of the steel material for soft magnetic parts of the present embodiment are derived from the elements contained as the chemical composition described above. Based on the above-mentioned chemical composition, most of the precipitates contained in the ferrite grains of the steel material for soft magnetic parts are considered to be V carbonitrides. When Nb, which is an optional element, is contained, the precipitate contained in the ferrite grains of the steel material for soft magnetic parts is considered to contain Nb carbonitride.
  • the number of coarse precipitates Sv can be obtained by the following method.
  • a thin film sample (thickness: 100 nm) for observing the structure of the ferrite region is collected from an arbitrary portion of the cross section of the steel material for soft magnetic parts.
  • the steel material for soft magnetic parts is a steel bar or a wire
  • the structure is observed from the R / 2 part (including the point that bisects the center point and the outer periphery of the cut surface (circular shape) of the steel bar or wire)
  • a thin film sample is collected, and arbitrary five visual fields are specified in the ferrite grain part.
  • TEM transmission electron microscope
  • the number of coarse precipitates Sv may be 1.0 ⁇ 10 5 pieces / mm 2 or more in the steel material for soft magnetic parts manufactured in actual operation.
  • the steel material for soft magnetic parts according to the present embodiment exhibits excellent magnetic properties when held at 200 ° C. to A c1 for 30 to 180 minutes. Specifically, the excellent magnetic properties are that the steel material for soft magnetic parts held at 200 ° C. to A c1 point for 30 to 180 minutes has a maximum permeability in the DC hysteresis measurement test according to JIS C 2504 (2000). It means that the magnetic susceptibility is 0.0015 (N / A 2 ) or more.
  • the maximum permeability after magnetic annealing of steel for soft magnetic parts can be measured by the following method. Cold working (for example, cold upsetting) simulating the processing of soft magnetic parts is performed on the steel material for soft magnetic parts. Magnetic annealing is performed for 60 minutes at 600 ° C. on the steel for soft magnetic parts after cold working.
  • a ring-shaped test piece shown in FIG. 2 is produced by machining from a soft magnetic part steel material subjected to magnetic annealing.
  • FIG. 2 is a front view and a side view of the ring-shaped test piece.
  • the outer diameter DO of the ring-shaped test piece is 30 to 50 mm, and the outer diameter DO / inner diameter DI is 1.2 to 1.4. If the steel material for soft magnetic parts is a steel bar and the outer diameter is less than 30 mm, the outer diameter DO is set to 30 mm or more by cold upsetting forging. Make a piece.
  • a DC hysteresis measurement test is performed according to JIS C 2504 (2000). Specifically, the BH curve up to 10000 A / m is measured to obtain the maximum magnetic permeability (B / H, unit is N / A 2 ).
  • the steel material for soft magnetic parts is, for example, a steel bar or a wire.
  • the equivalent circle diameter of the cross section perpendicular to the longitudinal direction of the steel bar is, for example, 20 mm to 100 mm.
  • the cross section of the steel bar may be circular, rectangular, or polygonal.
  • Soft magnetic parts The steel material for soft magnetic parts of this embodiment is used as a soft magnetic part.
  • Soft magnetic components are components typified by electrical components for AC magnetic fields in motors, power generators, electromagnetic switches, and the like, and are components characterized by low coercive force and high magnetic permeability.
  • the soft magnetic component according to the present embodiment is obtained by magnetic annealing the cold-worked steel for soft magnetic component. That is, the chemical composition of the soft magnetic component is the same as the chemical composition of the above-described steel material for soft magnetic component. In the soft magnetic component, the number of coarse precipitates Sv in the ferrite grains satisfies the formula (1), and the maximum magnetic permeability is 0.0015 N / A 2 or more. Since the soft magnetic component according to the present embodiment is manufactured using the above-described steel for soft magnetic components, it has excellent magnetic properties and high fatigue strength.
  • a material having the above chemical composition is prepared.
  • the material is, for example, a slab (bloom, slab or billet) or a steel ingot.
  • the material is manufactured by the following method.
  • a molten steel having the above chemical composition is produced.
  • a slab is manufactured by a continuous casting method using molten steel.
  • an ingot is manufactured by an ingot-making method using molten steel.
  • the material is prepared by the above process.
  • Hot working process is performed on the prepared material to produce a steel material for soft magnetic parts.
  • one or more hot workings are usually performed.
  • the material is heated before each hot working.
  • hot working is performed on the material.
  • Hot working is, for example, hot forging, hot rolling, or hot extrusion.
  • the initial hot working is, for example, a rough rolling process by block rolling or hot forging
  • the final hot working is, for example, a finish rolling process using a continuous rolling mill. is there.
  • horizontal stands having a pair of horizontal rolls and vertical stands having a pair of vertical rolls are alternately arranged in a line.
  • the steel material for soft magnetic parts manufactured by the hot working process is, for example, a steel bar or a wire.
  • the final hot working is performed at a heating temperature of 1000 to 1300 ° C., for example. If the heating temperature is too high, the austenite grains may become coarse. In this case, the average grain size of ferrite grains obtained after hot working and cooling is too large. On the other hand, if the heating temperature is too low, the austenite grains may become fine. In this case, the average grain size of ferrite grains obtained after hot working and cooling is too small. Accordingly, the heating temperature for the final hot working is preferably 1000 to 1300 ° C.
  • the final hot working is further performed, for example, with a heating time of 30 to 120 minutes. If the heating time is too short, the austenite transformation may not be sufficiently completed and a two-phase structure with ferrite may be formed. In this case, the average grain size of ferrite grains obtained after hot working and cooling is too large. On the other hand, if the heating time is too long, austenite grains may become coarse. In this case, the average grain size of ferrite grains obtained after hot working and cooling is too large. Accordingly, the heating time for the final hot working is preferably 30 to 120 minutes.
  • the final hot working is further performed at a finishing temperature of 800 to 1100 ° C., for example. If the finishing temperature is too low, the austenite grains may become fine. In this case, the average grain size of ferrite grains obtained after hot working and cooling is too small. On the other hand, if the finishing temperature is too high, the austenite grain size may become coarse due to recrystallization. In this case, the average grain size of ferrite grains obtained after hot working and cooling is too small. Therefore, the final hot working finishing temperature is preferably 800 to 1100 ° C.
  • the steel material for soft magnetic parts after the final hot working is cooled at a cooling rate CR 1000-500 .
  • the cooling rate CR 1000-500 means a cooling rate in a temperature range of 1000 to 500 ° C. when the finishing temperature is 1000 to 1100 ° C.
  • the cooling rate CR 1000-500 further means a cooling rate in the temperature range from the finishing temperature to 500 ° C. when the finishing temperature is less than 800 to 1000 ° C.
  • the cooling rate CR 1000-500 is as follows. Cooling rate CR 1000-500 : More than 0.10 °C / second
  • the cooling rate CR 1000-500 of the steel material for soft magnetic parts after the final hot working affects the number of coarse precipitates Sv in the steel material for soft magnetic parts. If the cooling rate CR 1000-500 is less than 0.10 ° C./second, V carbonitrides precipitated in the steel being cooled become coarse. Therefore, the number of precipitates having a circle equivalent diameter of 30 nm or more (the number of coarse precipitates) Sv exceeds 10 V ⁇ 7.0 ⁇ 10 6 pieces / mm 2 . If the cooling rate CR 1000-500 is less than 0.10 ° C./second , the ferrite grains may further recrystallize. In this case, the average grain size of the ferrite grains becomes too large.
  • the cooling rate CR 1000-500 is 0.10 ° C./second or more, the precipitated V carbonitride becomes fine. As a result, the number of coarse precipitates Sv becomes 10 V ⁇ 7.0 ⁇ 10 6 pieces / mm 2 or less.
  • a preferable lower limit of the cooling rate CR 1000-500 is 0.30 ° C./second , more preferably 0.50 ° C./second , and further preferably 0.80 ° C./second .
  • a preferable upper limit of the cooling rate CR 1000-500 is 5.00 ° C./second . When it exceeds 5.00 ° C./second, bainite and / or martensite may be generated. In this case, the area ratio of ferrite grains decreases. As a result, cold workability is reduced.
  • the cooling rate CR 1000-500 can be obtained by the following method.
  • the surface temperature of the steel material for soft magnetic parts after the final hot rolling is measured with a radiation thermometer.
  • the finishing temperature is 1000 to 1100 ° C.
  • the time from 1000 ° C. to 500 ° C. is measured.
  • the finishing temperature is less than 800 to 1000 ° C.
  • the time from the finishing temperature to 500 ° C. is measured. Based on the obtained time, a cooling rate CR 1000-500 is obtained.
  • the steel bar or wire which is the steel material for soft magnetic parts of the present embodiment, is manufactured.
  • These steel materials for soft magnetic parts are excellent in cold workability.
  • the above-described steel for soft magnetic parts has excellent magnetic properties even after magnetic annealing described later.
  • Method of manufacturing soft magnetic parts An example of a method for manufacturing a soft magnetic component is as follows. Cold working is performed on the above-described steel material for soft magnetic parts to form a desired part shape. Cold working is, for example, wire drawing, cold forging, or cold drawing.
  • Magnetic annealing is performed on the steel material for soft magnetic parts formed into a desired part shape. Thereby, the distortion
  • a preferable temperature for magnetic annealing is 200 ° C. to A c1 point.
  • a preferable holding time at the magnetic annealing temperature is 30 minutes or more.
  • the magnetic annealing temperature is 200 ° C. or higher, fine V carbonitrides are sufficiently precipitated during magnetic annealing, and the strength of the soft magnetic component is sufficiently increased.
  • a more preferable magnetic annealing temperature is 400 ° C. If the magnetic annealing temperature is not more than A c1 point, the coarsening of the precipitated V carbonitride can be suppressed. As a result, high strength is obtained in the soft magnetic component. From the viewpoint of heat treatment strain, a more preferable upper limit of the magnetic annealing temperature is 730 ° C.
  • the holding time at the magnetic annealing temperature is 30 minutes or more, a sufficient amount of fine V carbonitride precipitates. Therefore, high fatigue strength can be obtained in soft magnetic parts. The above effect can be obtained even when the holding time is long. However, if the holding time is too long, the manufacturing cost increases. Therefore, the preferable upper limit of the holding time is 180 minutes.
  • Soft magnetic parts are manufactured by the above manufacturing process.
  • the soft magnetic component of this embodiment is excellent in magnetic characteristics and has high fatigue strength.
  • the steel material for soft magnetic parts and the soft magnetic part of this embodiment will be described by way of examples.
  • the steel material for soft magnetic components and soft magnetic components of this embodiment are not limited to a present Example.
  • This example is an example of the steel material for soft magnetic parts and the soft magnetic part of this embodiment.
  • Ingots with test numbers other than test number 49 were heated at 1000 to 1300 ° C. for 30 to 120 minutes. Hot working (hot forging) was performed on the heated ingot to produce a steel bar (steel material for soft magnetic parts) having a diameter of 42 mm. The finishing temperature for hot forging was 800-1100 ° C. On the other hand, the ingot of test number 49 was heated at 1300 ° C. for 120 minutes. Hot forging was performed on the heated ingot to produce a steel bar having a diameter of 42 mm. The finishing temperature for hot forging was 1150 ° C. Table 2 shows the cooling rate CR 1000-500 of the hot forged steel bars of each test number.
  • a precipitate having a equivalent circle diameter of 30 nm or more was identified.
  • the total number of coarse precipitates identified in 5 fields of view was determined, and the number of coarse precipitates Sv (pieces / mm 2 ) was determined based on the total number and the total area of 5 fields of view.
  • the obtained coarse precipitate number Sv is shown in Table 2 as coarse precipitate number Sv / (10 V ⁇ 10 6 ) (pieces / (mm 2 ⁇ mass%)).
  • the round bar test piece shown in FIG. 3 was produced from the bar steel of each test number.
  • the longitudinal direction of the round bar test piece was parallel to the longitudinal direction of the steel bar.
  • a sample was taken from the center of the cross section of the round bar test piece.
  • the ferrite grains were specified by the above-described method, and the average crystal grain size ( ⁇ m) of the ferrite grains was determined. Table 2 shows the average grain size of the obtained ferrite grains. In any of the test pieces, the total area ratio of the ferrite grains was 80% or more.
  • the round bar test piece shown in FIG. 3 was produced from the bar steel of each test number.
  • the longitudinal direction of the round bar test piece was parallel to the longitudinal direction of the steel bar.
  • a cold compression test was performed on the manufactured round bar specimen.
  • a 500 ton hydraulic press was used for the cold compression test.
  • the compression rate compression processing amount
  • a plurality of round bar test pieces were cold-compressed at an initial compression rate. After cold compression, it was visually confirmed whether cracks occurred in each round bar test piece. After removing the round bar test pieces that were confirmed to be cracked, the remaining round bar test pieces (that is, round bar test pieces that were not observed to crack) were subjected to cold compression again by increasing the compression ratio. . After the implementation, the presence or absence of cracks was confirmed.
  • the minimum compression ratio (compression processing amount) at which the number of test pieces with cracks reached 50% or more, that is, the number of round bar test pieces in which cracks were confirmed was the total number of round bar test pieces.
  • the compression ratio when it was half of this was defined as the critical compression ratio (%).
  • the critical compression ratio was 75% or more, it was judged that the cold workability was very excellent (indicated as “E (Excellent)” in Table 2).
  • the critical compression ratio was 65% to less than 75%, it was judged that the cold workability was excellent (indicated as “G (Good)” in Table 2).
  • the critical compression ratio was less than 65%, it was judged that the cold workability was low (indicated by “NA (Not Acceptable)” in Table 2).
  • Magnetic property evaluation test Using the manufactured soft magnetic component, a DC hysteresis measurement test was performed in accordance with JIS C 2504 (2000). Specifically, the maximum permeability (N / A 2 ) was determined by measuring a BH curve up to 10,000 A / m.
  • a fatigue test piece shown in FIG. 4 was produced from the manufactured soft magnetic component. Each numerical value in FIG. 4 indicates the dimension (unit: mm) of the corresponding part.
  • An Ono-type rotary bending fatigue test was performed using the fatigue test piece. The rotating bending fatigue test was carried out at room temperature (25 ° C.) and in an air atmosphere under a swinging condition of 3600 rpm. A test for picking up a plurality of fatigue test pieces with different stresses was performed, and the highest stress that did not break after 10 7 cycles was defined as fatigue strength FS1 (MPa).
  • a fatigue test piece shown in FIG. 4 was prepared from a round bar test piece having a diameter of 36 mm before cold drawing, and an Ono-type rotary bending fatigue test was performed under the same conditions as in the case of soft magnetic parts.
  • the strength FS2 (MPa) was determined.
  • Fatigue strength ratio FS1 / FS2 ⁇ 100
  • Test results are shown in Table 2.
  • Test numbers 1, 3, 6, 7, 10, 11, 13, 14, 16, 18, 19, 21, 22, 24, 25, 28, 29, 31, 32, 34 to 36, 38 to 44, and In 46 to 48 the chemical composition was appropriate, and the production method was also appropriate.
  • the number of coarse precipitates Sv in the steel for soft magnetic parts was 10 V ⁇ 7.0 ⁇ 10 6 pieces / mm 2 or less. Therefore, in any test number, it was excellent in cold workability.
  • the soft magnetic parts of these test numbers had a maximum magnetic permeability of 0.0015 N / A 2 or more, and were excellent in magnetic properties after magnetic annealing.
  • the soft magnetic parts of these test numbers were excellent in fatigue strength after magnetic annealing.
  • the maximum magnetic permeability increased as the cooling rate CR 1000-500 increased. Specifically, the maximum magnetic permeability of the test number 42 with the fastest cooling rate CR 1000-500 was the highest, and the maximum magnetic permeability of the test number 44 with the lowest cooling rate CR 1000-500 was the lowest. Furthermore, the fatigue strength of test number 42 with the fastest cooling rate CR 1000-500 was higher than the fatigue strengths of other test numbers 43 and 44.
  • test number 2 test number 5 and test number 23
  • the cooling rate CR 1000-500 after hot working was too slow. Therefore, the number Sv of coarse precipitates in the steel for soft magnetic parts exceeded 10 V ⁇ 7.0 ⁇ 10 6 pieces / mm 2 . As a result, the magnetic properties and fatigue strength of the soft magnetic parts after magnetic annealing were low.
  • test number 4 magnetic annealing was not performed. As a result, the magnetic properties of the soft magnetic parts were low.
  • test number 8 the C content was too high. As a result, the cold workability of the steel material for soft magnetic parts was low. Furthermore, the maximum magnetic permeability of the soft magnetic part after magnetic annealing was less than 0.0015 N / A 2 , and the magnetic properties were low.
  • test number 9 the C content was too low. As a result, the fatigue strength of the soft magnetic parts after magnetic annealing was low.
  • test number 12 the Si content was too high. As a result, the cold workability of the steel material for soft magnetic parts was low.
  • test number 15 the Mn content was too high. As a result, the cold workability of the steel material for soft magnetic parts was low.
  • test number 17 the P content was too high. As a result, the cold workability of the steel material for soft magnetic parts was low.
  • test number 20 the S content was too high. As a result, the cold workability of the steel material for soft magnetic parts was low.
  • test number 26 the V content was too high. Therefore, the number of coarse precipitates Sv exceeded 10 V ⁇ 7.0 ⁇ 10 6 pieces / mm 2 . As a result, the cold workability of the steel material for soft magnetic parts was low. Furthermore, the maximum magnetic permeability of the soft magnetic part after magnetic annealing was less than 0.0015 N / A 2 , and the magnetic properties were low.
  • test numbers 27 and 45 the V content was too low. As a result, the fatigue strength of the soft magnetic parts after magnetic annealing was low.
  • test number 30 the Al content was too high. As a result, the cold workability of the steel material for soft magnetic parts was low.
  • test number 33 the Cr content was too high. As a result, the cold workability of the steel material for soft magnetic parts was low.
  • test number 37 the N content was too high. As a result, the cold workability of the steel material for soft magnetic parts was low.
  • test number 49 the average crystal grain size of the ferrite grains was too large. As a result, the fatigue strength of the soft magnetic parts after magnetic annealing was low.
  • the steel material for soft magnetic parts according to the present embodiment can be widely used for parts that require excellent magnetic properties and high strength.
  • it is suitable for electrical components typified by a core material for an alternating magnetic field in motors, power generators, electromagnetic switches, and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Dispersion Chemistry (AREA)
  • Power Engineering (AREA)
  • Soft Magnetic Materials (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

優れた冷間加工性を有し、磁気焼鈍後において優れた磁気特性及び高い疲労強度を有する軟磁性部品用鋼材を提供する。本発明による軟磁性部品用鋼材は、質量%で、C:0.02~0.13%、Si:0.005~0.50%、Mn:0.10~0.70%、P:0.035%以下、S:0.050%以下、Al:0.005~1.300%、V:0.02~0.50%、及び、N:0.003~0.030%を含有し、残部はFe及び不純物からなる化学組成を有する。軟磁性部品用鋼材中のフェライト粒の平均結晶粒径は5~200μmである。さらに、フェライト粒中において、30nm以上の円相当径を有する析出物の個数Sv(個/mm2)が式(1)を満たす。 Sv≦10V×7.0×106 (1) ここで、式(1)中のVには、軟磁性部品用鋼材中のV含有量(質量%)が代入される。

Description

軟磁性部品用鋼材、軟磁性部品、及び、軟磁性部品の製造方法
 本発明は、軟磁性部品用鋼材、軟磁性部品用鋼材を用いた軟磁性部品、及び、軟磁性部品の製造方法に関する。
 モータ及び発電機等の電装部品のコア材として、軟磁性部品用鋼材が使用されている。軟磁性部品用鋼材はたとえば、軟鉄、純鉄、及び、珪素鋼である。本明細書では、軟磁性部品用鋼材を用いた部品を、軟磁性部品という。
 近年、軟磁性部品の形状が複雑化している。このような形状の複雑化に伴い、最近では、軟磁性部品は、棒鋼等の軟磁性部品用鋼材を冷間加工することにより製造される。この場合、軟磁性部品用鋼材としては、たとえば、炭素含有量が0.1%程度以下の低炭素鋼材が使用される。このような低炭素鋼材に対して、伸線、冷間鍛造、冷間引抜き等の冷間加工を実施して、軟磁性部品が製造される。したがって、冷間加工される棒鋼等の軟磁性部品用鋼材には、高い冷間加工性が求められる。
 しかしながら、上述の冷間加工により軟磁性部品用鋼材の磁気特性は低下する。そのため、冷間加工後の軟磁性部品用鋼材に対して磁気焼鈍を実施する。これにより、冷間加工により低下した磁気特性が回復する。
 磁気特性及び/又は冷間加工性の改善を目的とした軟磁性部品用鋼材が、特開2008-045182号公報(特許文献1)、特開2006-328461号公報(特許文献2)及び特開2006-328462号公報(特許文献3)に提案されている。
 特許文献1に開示された軟磁性鋼材は、C:0.005~0.05%、Si:1.8~3.0%、Mn:0.20~0.8%、P:0.02%以下(0%を含まない)、S:0.02~0.1%、Cu:0.1%以下(0%を含まない)、Ni:0.2%以下(0%を含まない)、Cr:1~3.5%、Al:0.05~2.8%、N:0.004%以下(0%を含まない)、およびO:0.02%以下(0%を含まない)を含有し、残部がFeおよび不可避不純物からなり、F1=97.0C+10.9Si+4.2Mn+23.8P+172.0S+15.0Cu-0.03Ni+5.1Cr+8.6Al+34.0N+8.38(記号は各元素の質量%である)で計算されるF1値が60以上である。この軟磁性鋼材では、高い交流磁束密度を示す軟磁性部品が製造でき、かつ、良好な冷間鍛造性が維持される、と特許文献1には記載されている。
 特許文献2に開示された軟磁性鋼材は、質量%で、C:0.015%以下、Si:0.005~0.30%、Mn:0.1~0.5%、P:0.02%以下、S:0.02%以下、Al:0.010超~1.3%、N:0.010%以下、O(酸素):0.020%以下を含有し、残部はFe及び不純物からなり、0.85≦0.8-0.57C+0.82Si+0.07Mn+0.78P-3.56S+0.82Al-1.0N≦2.0(記号は各元素の質量%である)を満たす。この軟磁性鋼材は、高い交流磁気特性及び変形能を有する、と特許文献2には記載されている。
 特許文献3に開示された軟磁性鋼材は、質量%で、C:0.015%以下、Si:0.005~0.30%、Mn:0.1~0.5%、P:0.02%以下、S:0.02%以下、Cr:0.01~2.0%、Al:0.010超~1.3%、N:0.010%以下、O:0.020%以下を含有し、残部はFe及び不純物からなり、0.85≦0.8-0.57C+0.82Si+0.07Mn+0.78P-3.56S+0.3Cr+0.82Al-1.0N≦2.0(記号は各元素の質量%である)を満たす。この軟磁性鋼材は、優れた交流磁気特性及び高い変形能を有する、と特許文献3には記載されている。
特開2008-045182号公報 特開2006-328461号公報 特開2006-328462号公報
 上述のとおり、軟磁性部品は、たとえば棒鋼又は線材である軟磁性部品用鋼材を冷間加工することにより製造される。最近では、上述のとおり複雑な形状を有する軟磁性部品が求められている。このような軟磁性部品を製造する場合、高い冷間加工性を得るために、軟磁性部品用鋼材の強度を低くして冷間加工性を高める。そして、冷間加工時に軟磁性部品用鋼材を加工硬化させることにより、軟磁性部品の強度を高めている。
 しかしながら、冷間加工時に、軟磁性部品用鋼材にひずみが導入されれば、このひずみにより、磁気特性が低下してしまう。低下した磁気特性を回復させるために、冷間加工後の軟磁性部品用鋼材に対して磁気焼鈍が実施される。この磁気焼鈍により、軟磁性部品用鋼材の磁気特性は回復する。しかしながら、磁気焼鈍を実施すれば、軟磁性部品用鋼材の強度が低下し、その結果、疲労強度が低下してしまう。したがって、軟磁性部品用鋼材には、冷間加工性、磁気焼鈍後における優れた磁気特性とともに、磁気焼鈍後における高い疲労強度も求められる。
 特許文献1~特許文献3に開示された軟磁性部品用鋼材では、磁気特性及び変形能については考慮されているものの、磁気焼鈍後の疲労強度については特に考慮されていない。また、特許文献1に開示された軟磁性部品用鋼材は、合金元素を多く含有する。そのため、十分な冷間加工性が得られない場合があり得る。
 本開示の目的は、優れた冷間加工性を有し、磁気焼鈍後において優れた磁気特性及び高い疲労強度を有する軟磁性部品用鋼材、その軟磁性部品用鋼材を用いた軟磁性部品、及び、軟磁性部品の製造方法を提供することである。
 本開示による軟磁性部品用鋼材は、質量%で、C:0.02~0.13%、Si:0.005~0.50%、Mn:0.10~0.70%、P:0.035%以下、S:0.050%以下、Al:0.005~1.300%、V:0.02~0.50%、N:0.003~0.030%、Cr:0~0.80%未満、Ti:0~0.20%、Nb:0~0.20%、B:0~0.005%、及び、Ca:0~0.005%を含有し、残部はFe及び不純物からなる化学組成を有する。軟磁性部品用鋼材中のフェライト粒の平均結晶粒径は5~200μmである。さらに、軟磁性部品用鋼材中のフェライト粒中において、30nm以上の円相当径を有する析出物の個数Sv(個/mm2)が式(1)を満たす。
 Sv≦10V×7.0×106 (1)
 ここで、式(1)中のVには、軟磁性部品用鋼材中のV含有量(質量%)が代入される。
 本開示による軟磁性部品は、質量%で、C:0.02~0.13%、Si:0.005~0.50%、Mn:0.10~0.70%、P:0.035%以下、S:0.050%以下、Al:0.005~1.300%、V:0.02~0.50%、N:0.003~0.030%、Cr:0~0.80%未満、Ti:0~0.20%、Nb:0~0.20%、B:0~0.005%、及び、Ca:0~0.005%を含有し、残部はFe及び不純物からなる化学組成を有する。さらに、フェライト粒中において、30nm以上の円相当径を有する析出物の個数Sv(個/mm2)が式(1)を満たす。軟磁性部品の最大透磁率は、0.0015N/A2以上である。
 Sv≦10V×7.0×106 (1)
 ここで、式(1)中のVには、軟磁性部品中のV含有量(質量%)が代入される。
 本開示による軟磁性部品の製造方法は、上述の軟磁性部品用鋼材を冷間加工して中間材を製造する工程と、中間材に対して磁気焼鈍を実施する工程とを備える。
 本開示による軟磁性部品用鋼材は、優れた冷間加工性を有し、磁気焼鈍後において優れた磁気特性及び高い疲労強度を有する。本開示による軟磁性部品は、優れた磁気特性及び高い疲労強度を有する。本開示による軟磁性部品の製造方法は、上述の軟磁性部品を製造できる。
図1は、粗大析出物個数Sv(個/mm2)と、最大透磁率(N/A2)との関係を示す図である。 図2は、実施例中の磁気特性評価試験で作製されたリング状試験片の正面図及び側面図である。 図3は、実施例中の冷間加工性評価試験で作製された丸棒試験片の側面図及び正面図である。 図4は、実施例中の磁気焼鈍後の疲労強度評価試験で作製された疲労試験片の側面図である。
 本発明者らは、優れた冷間加工性を有し、かつ、磁気焼鈍後における優れた磁気特性及び高い疲労強度を有する軟磁性部品用鋼材について調査及び検討を行った。その結果、本発明者らは次の知見を得た。
 優れた冷間加工性を得るためには、軟磁性部品用鋼材中の合金元素の含有量を低減することが有効であり、特に、C含有量を低く抑えることが有効である。具体的には、C含有量を0.13%以下に抑えることにより、軟磁性部品用鋼材の冷間加工性を改善できる。
 ところで、磁気特性は、軟磁性部品用鋼材に導入されるひずみにより低下する。磁気焼鈍を実施して軟磁性部品用鋼材中のひずみを除去すれば、磁気特性は回復する。しかしながら、上述のとおり、磁気焼鈍を実施すれば、ひずみによる加工硬化の効果が失われ、軟磁性部品用鋼材の疲労強度が低下する。
 軟磁性部品の疲労強度を高めるためには、軟磁性部品用鋼材の強度を高めればよい。しかしながら、軟磁性部品用鋼材の強度が高ければ、優れた冷間加工性が得られない。すなわち、冷間加工時において、軟磁性部品用鋼材の強度は低い方が好ましい。そこで、本発明者らは、冷間加工時には軟磁性部品用鋼材の強度が低く、冷間加工後の鋼材に対して磁気焼鈍を実施した後、軟磁性部品用鋼材の強度を高めることができる方法を検討した。
 上述のとおり、磁気焼鈍によって、軟磁性部品用鋼材はひずみが除去されて強度が低下する。しかしながら、磁気焼鈍時において、軟磁性部品用鋼材中に炭窒化物等の析出物を析出できれば、ひずみ除去に伴う強度低下の代替として、析出強化により軟磁性部品用鋼材の強度を高めることができるのではないかと、本発明者らは考えた。
 しかしながら、炭窒化物等の析出物は、鋼材の磁気特性を低下する原因となる場合がある。そこで、本発明者らは、磁気特性の低下を抑制しつつ、磁気焼鈍後に強度を高めることができる炭窒化物についてさらなる検討を行った。その結果、本発明者らは、次の事項を見出した。
 (A)磁気焼鈍前の鋼材に、V、C、及び、Nが固溶していれば、磁気焼鈍によって鋼材中にV炭窒化物が微細に析出する。具体的には、磁気焼鈍によって析出するV炭窒化物は、円相当径で30nm未満である。微細なV炭窒化物を析出させれば、磁気焼鈍により回復した磁気特性の低下を抑制しつつ、析出強化によって磁気焼鈍後の鋼材の強度を高めることができる。つまり、V炭窒化物を利用すれば、磁気焼鈍後に優れた磁気特性及び高い疲労強度が得られる。
 (B)磁気焼鈍により微細なV炭窒化物を析出させるためには、磁気焼鈍前の軟磁性部品用鋼材中において、粗大なV炭窒化物をなるべく少なくする方が好ましい。つまり、磁気焼鈍前の軟磁性部品用鋼材中においては、V炭窒化物を構成しうる各元素(V、C及びN)は固溶している方が好ましい。V、C及びNが十分に固溶している場合、軟磁性部品用鋼材の冷間加工性も高まる。この場合さらに、磁気焼鈍において、固溶しているV、C、及び、Nにより、微細なV炭窒化物を形成できる。
 以上の知見に基づいて、本発明者らはさらに、磁気焼鈍前の軟磁性部品用鋼材中の適切なV炭窒化物と、磁気特性及び疲労強度との関係について検討を行った。その結果、本発明者らは次の知見を得た。
 質量%で、C:0.02~0.13%、Si:0.005~0.50%、Mn:0.10~0.70%、P:0.035%以下、S:0.050%以下、Al:0.005~1.300%、V:0.02~0.50%、N:0.003~0.030%、Cr:0~0.80%未満、Ti:0~0.20%、Nb:0~0.20%、B:0~0.005%、及び、Ca:0~0.005%を含有し、残部はFe及び不純物からなる化学組成を有する鋼材において、磁気焼鈍前の鋼材(軟磁性部品用鋼材)のフェライト粒中の析出物はほとんどがV炭窒化物である。フェライト粒中の他の析出物は主としてNb炭窒化物である。つまり、磁気焼鈍前の鋼材(軟磁性部品用鋼材)中のフェライト粒中の析出物のサイズは、実質的に、V炭窒化物のサイズと相関する。
 以上の知見に基づいて、本発明者らは、磁気焼鈍前の鋼材(軟磁性部品用鋼材)のフェライト粒中において、粗大な析出物が少なければ、フェライト粒中に粗大なV炭窒化物が少なく、磁気焼鈍前の鋼材において、V、C、及び、Nが十分に固溶していると考えた。そしてこの場合、磁気焼鈍後に微細なV炭窒化物が析出して、磁気特性の低下を抑制しつつ、高い疲労強度が得られると考えた。
 そこで、本発明者らはさらに、磁気焼鈍前の鋼材(軟磁性部品用鋼材)のフェライト粒中の析出物のサイズと、磁気焼鈍後の磁気特性及び疲労強度との関係について調査及び検討を行った。その結果、本発明者らは、磁気焼鈍前の鋼材である軟磁性部品用鋼材のフェライト粒中において、30nm以上の円相当径を有する析出物の個数Sv(個/mm2)が式(1)を満たせば、軟磁性部品用鋼材において優れた冷間加工性が得られ、かつ、磁気焼鈍後において、最大透磁率が0.0015N/A2以上となり、優れた磁気特性が得られ、かつ、高い疲労強度が得られることを見出した。
 Sv≦10V×7.0×106 (1)
 ここで、式(1)中のVには、軟磁性部品用鋼材中のV含有量(質量%)が代入される。
 以下、本明細書において、軟磁性部品用鋼材のフェライト粒中において、30nm以上の円相当径を有する析出物を「粗大析出物」と称する。図1は、粗大析出物個数Sv(個/mm2)と、最大透磁率(N/A2)との関係を示す図である。図1は後述の実施例における試験により得られた。
 図1を参照して、軟磁性部品用鋼材における粗大析出物個数Svが10V×7.0×106よりも多い場合、粗大析出物個数Svが減少しても、最大透磁率はそれほど大きく変化しない。一方、粗大析出物個数Svが10V×7.0×106以下の場合、粗大析出物個数Svの低下に伴い、最大透磁率が顕著に上昇する。つまり、図1のグラフにおいて、粗大析出物個数Sv=10V×7.0×106近傍に変曲点が存在する。そして、粗大析出物個数Svが式(1)を満たせば、600℃で60分保持した磁気焼鈍後の軟磁性部品用鋼材の最大透磁率が0.0015N/A2以上となり、優れた磁気特性が得られる。
 なお、本実施形態による軟磁性部品用鋼材のフェライト粒の平均結晶粒径は5~200μmである。フェライト粒の平均結晶粒径が5~200μmであれば、他の要件を満たすことを条件に、冷間加工性に優れ、かつ、磁気焼鈍後に優れた磁気特性及び高い疲労強度が得られる。
 以上の知見に基づいて完成した本実施形態による軟磁性部品用鋼材は、質量%で、C:0.02~0.13%、Si:0.005~0.50%、Mn:0.10~0.70%、P:0.035%以下、S:0.050%以下、Al:0.005~1.300%、V:0.02~0.50%、N:0.003~0.030%、Cr:0~0.80%未満、Ti:0~0.20%、Nb:0~0.20%、B:0~0.005%、及び、Ca:0~0.005%を含有し、残部はFe及び不純物からなる化学組成を有する。軟磁性部品用鋼材中のフェライト粒の平均結晶粒径は5~200μmである。さらに、フェライト粒中において、30nm以上の円相当径を有する析出物の個数Sv(個/mm2)が式(1)を満たす。
 Sv≦10V×7.0×106 (1)
 ここで、式(1)中のVには、軟磁性部品用鋼材中のV含有量(質量%)が代入される。
 上述の軟磁性部品用鋼材の化学組成は、Cr:0.02~0.80%未満を含有してもよい。
 上述の軟磁性部品用鋼材の化学組成は、Ti:0.01~0.20%、Nb:0.01~0.20%、及び、B:0.0008~0.005%からなる群から選択される1種以上を含有してもよい。
 上述の軟磁性部品用鋼材の化学組成は、Ca:0.0005~0.005%を含有してもよい。
 本実施形態による軟磁性部品は、質量%で、C:0.02~0.13%、Si:0.005~0.50%、Mn:0.10~0.70%、P:0.035%以下、S:0.050%以下、Al:0.005~1.300%、V:0.02~0.50%、N:0.003~0.030%、Cr:0~0.80%未満、Ti:0~0.20%、Nb:0~0.20%、B:0~0.005%、及び、Ca:0~0.005%を含有し、残部はFe及び不純物からなる化学組成を有する。軟磁性部品中のフェライト粒中において、30nm以上の円相当径を有する析出物の個数Sv(個/mm2)が式(1)を満たす。さらに、軟磁性部品の最大透磁率は、0.0015N/A2以上である。
 Sv≦10V×7.0×106 (1)
 ここで、式(1)中のVには、軟磁性部品中のV含有量(質量%)が代入される。
 上述の軟磁性部品の化学組成は、Cr:0.02~0.80%未満を含有してもよい。
 上述の軟磁性部品の化学組成は、Ti:0.01~0.20%、Nb:0.01~0.20%、及び、B:0.0008~0.005%からなる群から選択される1種以上を含有してもよい。
 上述の軟磁性部品の化学組成は、Ca:0.0005~0.005%を含有してもよい。
 本実施形態による軟磁性部品の製造方法は、上述の軟磁性部品用鋼材を冷間加工して中間材を製造する工程と、中間材に対して磁気焼鈍を実施する工程とを備える。
 ここで、本明細書において、磁気焼鈍とは、鋼材を加熱して回復、再結晶させることにより鋼材のひずみを低減し、磁気特性を高める熱処理を指す。加熱温度は特に制限されるものではないが、上記の効果を得るために、200℃~Ac1点であることが望ましい。
 以下、本実施形態の軟磁性部品用鋼材、軟磁性部品、及び、軟磁性部品の製造方法について詳しく説明する。以下の説明における各元素の含有量の「%」は、特に断りがない限り、質量%を意味する。
 [化学組成について]
 本実施形態による軟磁性部品用鋼材の化学組成は、次の元素を含有する。
 C:0.02~0.13%
 炭素(C)は、磁気焼鈍後に後述のVと結合してV炭窒化物を形成し、鋼材の強度を高める。その結果、磁気焼鈍後において、鋼材の疲労強度が高まる。C含有量が0.02%未満であれば、磁気焼鈍後の鋼材において、十分な強度が得られない。一方、C含有量が0.13%を超えれば、軟磁性部品用鋼材の冷間加工性が低下する。C含有量が0.13%を超えればさらに、鋼材の磁気焼鈍後の磁気特性が低下する。したがって、C含有量は0.02~0.13%である。C含有量の好ましい下限は0.03%である。C含有量の好ましい上限は0.10%未満であり、より好ましくは0.09%である。
 Si:0.005~0.50%
 珪素(Si)は、溶製時に鋼を脱酸する。Si含有量が0.005%未満であれば、この効果が得られない。一方、Siはフェライトを固溶強化する。したがって、Si含有量が0.50%を超えれば、フェライトの強度が高くなりすぎて、軟磁性部品用鋼材の冷間加工性が低下する。したがって、Si含有量は0.005~0.50%である。Si含有量の好ましい下限は0.010%である。Si含有量の好ましい上限は0.45%であり、より好ましくは0.40%である。
 Mn:0.10~0.70%
 マンガン(Mn)は、鋼に固溶して、鋼材の強度を高める。Mn含有量が0.10%未満であれば、この効果が得られない。一方、Mn含有量が0.70%を超えれば、フェライトの強度が高くなりすぎて、軟磁性部品用鋼材の冷間加工性が低下する。したがって、Mn含有量は0.10~0.70%である。Mn含有量の好ましい下限は0.20%である。Mn含有量の好ましい上限は0.65%であり、より好ましくは0.60%である。
 P:0.035%以下
 燐(P)は、不純物であり、鋼材中に不可避的に含有される。したがって、P含有量は0%超である。Pは鋼中で偏析しやすく、局所的な延性低下の原因となる。P含有量が0.035%を超えれば、局所的な延性低下が発生しやすくなる。この場合、軟磁性部品用鋼材の冷間加工性が低下する。したがって、P含有量は0.035%以下である。P含有量の好ましい上限は0.030%であり、より好ましくは0.025%である。P含有量はなるべく低い方が好ましい。したがって、P含有量の下限は特に限定されない。しかしながら、P含有量が0.002%未満であれば、上述の局所的な延性低下は発生しにくい。さらに、実際の操業において、P含有量を0.002%未満に低下するには製造コストが過剰に高くなる。したがって、P含有量の好ましい下限は0.002%である。
 S:0.050%以下
 硫黄(S)は、鋼材中に不可避的に含有される。したがって、S含有量は0%超である。SはMnと結合してMnSを形成し、鋼材の被削性を高める。しかしながら、S含有量が0.050%を超えれば、粗大なMnSが生成する。粗大なMnSは割れの起点となるため、軟磁性部品用鋼材の冷間加工性が低下する。したがって、S含有量は0.050%以下である。S含有量の好ましい上限は0.045%であり、より好ましくは0.040%である。脱硫コスト低減の観点から、S含有量の好ましい下限は0.0001%である。軟磁性部品用鋼材の被削性を有効に高める場合、S含有量の好ましい下限は0.005%であり、より好ましくは0.006%である。
 V:0.02%~0.50%
 バナジウム(V)は、冷間加工後の鋼材に対して磁気焼鈍を実施することにより、V炭窒化物を形成する。これにより、磁気焼鈍に起因した鋼材の強度低下が抑制される。V含有量が0.02%未満であれば、この効果が得られない。一方、V含有量が0.50%を超えれば、冷間加工前の軟磁性部品用鋼材の強度が高くなりすぎて、軟磁性部品用鋼材の冷間加工性が低下する。V含有量が0.50%を超えればさらに、磁気焼鈍後の鋼材の磁気特性が低下する。したがって、V含有量は0.02~0.50%である。V含有量の好ましい下限は0.03%であり、より好ましくは0.04%である。V含有量の好ましい上限は0.45%であり、より好ましくは0.40%である。
 Al:0.005~1.300%
 アルミニウム(Al)は溶製時に鋼を脱酸する。Alはさらに、鋼材の電気抵抗を高めて鋼材の磁気特性を高める。Al含有量が0.005%未満であれば、これらの効果が得られない。一方、Al含有量が1.300%を超えれば、フェライトの強度が高くなりすぎ、軟磁性部品用鋼材の冷間加工性が低下する。したがって、Al含有量は0.005~1.300%である。脱酸作用をさらに高めるためのAl含有量の好ましい下限は0.010%であり、より好ましくは0.014%である。Al含有量の好ましい上限は1.000%であり、より好ましくは0.950%である。
 N:0.003~0.030%
 窒素(N)は、磁気焼鈍によりV及びCと結合してV炭窒化物を形成する。これにより、磁気焼鈍に起因した鋼材の強度低下が抑制される。N含有量が0.003%未満であれば、この効果が得られない。一方、N含有量が0.030%を超えれば、軟磁性部品用鋼材の冷間加工性が低下する。したがって、N含有量は0.003~0.030%である。N含有量の好ましい上限は0.025%であり、より好ましくは0.020%である。N含有量の好ましい下限は0.005%である。
 本実施形態による軟磁性部品用鋼材の化学組成の残部はFe及び不純物からなる。ここで、不純物とは、本実施形態の軟磁性部品用鋼材を工業的に製造する際に、原料としての鉱石、スクラップ、または製造環境などから混入されるものであって、本実施形態の軟磁性部品用鋼材の冷間加工性、磁気焼鈍後の軟磁性部品の磁気特性及び疲労強度に顕著な悪影響を与えない範囲で許容されるものを意味する。
 不純物としては、上述した元素以外のあらゆる元素が上げられる。不純物としての元素は、1種のみであってもよいし、2種以上であってもよい。本実施形態の軟磁性部品用鋼材において、不純物はたとえば、以下のものが挙げられる。
 O:0.030%以下、Pb:0.05%以下、Cu:0.20%以下、Ni:0.20%以下、Mo:0.05%以下、希土類元素(REM):0.0003%以下、Mg:0.003%以下、W:0.003%以下、Sb:0.003%以下、Bi:0.003%以下、Co:0.003%以下、及び、Ta:0.003%以下。
 これらの不純物は上述の範囲で軟磁性部品用鋼材に含有され得る。その他の元素含有量については、後述の任意元素を除き、通常の範囲内であれば、特に制御しなくてよい。
 なお、本明細書におけるREMとは、原子番号39番のイットリウム(Y)、ランタノイドである原子番号57番のランタン(La)~原子番号71番のルテチウム(Lu)及び、アクチノイドである原子番号89番のアクチニウム(Ac)~103番のローレンシウム(Lr)からなる群から選択される1種以上の元素である。また、本明細書におけるREM含有量とは、これら元素の合計含有量である。
 [任意元素]
 本実施形態による軟磁性部品用鋼材の化学組成はさらに、Feの一部に代えて、Crを含有してもよい。
 Cr:0~0.80%未満
 クロム(Cr)は任意元素であり、含有されなくてもよい。つまり、Cr含有量は0%であってもよい。Crが含有される場合、Crは鋼材に固溶して鋼材の強度を高める。Crが少しでも含有されれば、この効果がある程度得られる。一方、Cr含有量が0.80以上であれば、フェライトの強度が高くなりすぎ、軟磁性部品用鋼材の冷間加工性が低下する。したがって、Cr含有量は0~0.80%未満である。上記効果を有効に得るためのCr含有量の好ましい下限は0%超であり、より好ましくは0.02%であり、さらに好ましくは0.03%であり、さらに好ましくは0.05%である。Cr含有量の好ましい上限は0.75%であり、より好ましくは0.50%である。
 本実施形態による軟磁性部品用鋼材の化学組成はさらに、Feの一部に代えて、Ti、Nb及びBからなる群から選択される1種以上を含有してもよい。これらの元素はいずれも、磁気焼鈍後の鋼材の疲労強度を高める。
 Ti:0~0.20%
 チタン(Ti)は任意元素であり、含有されなくてもよい。つまり、Ti含有量は0%であってもよい。Tiが含有される場合、Tiは炭窒化物を形成して、磁気焼鈍後の鋼材の強度をさらに高め、疲労強度をさらに高める。Tiが少しでも含有されれば、この効果がある程度得られる。しかしながら、Ti含有量が0.20%を超えれば、軟磁性部品用鋼材の冷間加工性が低下する。したがって、Ti含有量は0~0.20%である。上記効果をより有効に得るためのTi含有量の好ましい下限は0%超であり、より好ましくは0.01%であり、さらに好ましくは0.02%である。Ti含有量の好ましい上限は0.15%であり、より好ましくは0.13%である。
 Nb:0~0.20%
 ニオブ(Nb)任意元素であり、含有されなくてもよい。つまり、Nb含有量は0%であってもよい。Nbが含有される場合、Nbは炭窒化物を形成して、磁気焼鈍後の鋼材の強度を高め、疲労強度を高める。Nbが少しでも含有されれば、この効果がある程度得られる。しかしながら、Nb含有量が0.20%を超えれば、鋼材の冷間加工性が低下する。したがって、Nb含有量は0~0.20%である。上記効果をより有効に得るためのNb含有量の好ましい下限は0%超であり、より好ましくは0.01%であり、さらに好ましくは0.02%である。Nb含有量の好ましい上限は0.15%であり、より好ましくは0.13%である。
 B:0~0.005%
 ボロン(B)は任意元素であり、含有されなくてもよい。つまり、B含有量は0%であってもよい。Bが含有される場合、Bは窒化物を形成してNを固定する。これにより、熱間圧延後に粗大な窒化物が生成することによる、磁気焼鈍後の強度の低下が抑制される。Bが少しでも含有されれば、この効果がある程度得られる。しかしながら、B含有量が0.005%を超えれば、その効果が飽和する。したがって、B含有量は0~0.005%である。上記効果をより有効に得るためのB含有量の好ましい下限は0%超であり、さらに好ましくは0.0008%であり、より好ましくは0.0010%である。B含有量の好ましい上限は0.002%であり、より好ましくは0.0018%である。
 本実施形態の軟磁性部品用鋼材の化学組成はさらに、Feの一部に代えて、Caを含有してもよい。
 Ca:0~0.005%
 カルシウム(Ca)は任意元素であり、含有されなくてもよい。つまり、Ca含有量は0%であってもよい。Caが含有される場合、Caは、鋼中のMnSを球状化して、軟磁性部品用鋼材の冷間加工性を高める。Caが少しでも含有されれば、この効果がある程度得られる。しかしながら、Ca含有量が0.005%を超えれば、その効果が飽和する。したがって、Ca含有量は0~0.005%である。上記効果をより有効に得るためのCa含有量の好ましい下限は0%超であり、さらに好ましくは0.0005%であり、より好ましくは0.0008%である。Ca含有量の好ましい上限は0.002%である。
 [軟磁性部品用鋼材のミクロ組織]
 本実施形態による軟磁性部品用鋼材のミクロ組織は、フェライト及び第二相からなる。第二相とは、パーライトである。パーライトは疑似パーライトも含む。本実施形態のミクロ組織において、主たる相はフェライトであり、フェライト粒の総面積率は80%以上である。
 [軟磁性部品用鋼材のフェライト粒の平均結晶粒径]
 本実施形態による軟磁性部品用鋼材では、上述のフェライト粒の平均結晶粒径が5~200μmである。フェライト粒の平均結晶粒径が5μm未満であれば、磁壁の移動が阻害され、磁気焼鈍後の軟磁性部品の磁性特性が低下する。一方、フェライト粒の平均結晶粒径が200μmを超える場合、磁気焼鈍後の疲労強度が低下する。したがって、フェライト粒の平均結晶粒径は5~200μmである。フェライト粒の平均結晶粒径の好ましい下限は10μmであり、さらに好ましくは20μmである。フェライト粒の平均結晶粒径の好ましい上限は180μmであり、さらに好ましくは150μmである。
 軟磁性部品用鋼材のフェライト粒の面積率及びフェライト粒の平均結晶粒径は、次の方法で測定できる。軟磁性部品用鋼材から組織観察用のサンプルを採取する。具体的には、軟磁性部品用鋼材が棒鋼又は線材である場合、棒鋼又は線材の横断面(長手方向に垂直な面)のうち、表面と中心軸とを結ぶ半径Rの中央部(以下、R/2部という)から、ミクロ組織を観察するためのサンプルを採取する。R/2部のサンプルのうち、軟磁性部品用鋼材の長手方向と垂直な表面を観察面とする。観察面を研磨した後、サンプルの観察面を3%硝酸アルコール(ナイタール腐食液)にてエッチングする。エッチングされた観察面を100倍の光学顕微鏡にて観察し、横断面の外周から1mmの位置において、任意の5視野を特定する。特定した各視野の写真画像を生成する。
 各視野において、フェライト粒をコントラストに基づいて特定する。具体的には、各視野において、フェライトは白く均一に観察され、パーライトは層状の組織が観察され、フェライトとパーライトとの粒界は、粒界腐食によって黒い線として観察される。さらに、フェライト及びパーライト以外の組織は、黒く観察される。したがって、各視野における黒い線に囲まれた白く均一に観察される領域をフェライト粒と判断する。以上の方法により、各視野におけるフェライト粒を特定する。
 各視野におけるフェライト粒を特定後、フェライト粒の面積をそれぞれ求める。求めたフェライト粒の面積から、フェライト粒の円相当径を求める。5視野において求めた円相当径の平均値を、フェライト粒の平均結晶粒径(μm)と定義する。さらに、5視野におけるフェライト粒の総面積の、5視野の総面積に対する割合を、フェライト粒の面積率(%)と定義する。なお、本明細書において、円相当径とは、組織観察における視野面において、観察された結晶粒又は析出物の面積を、同じ面積を有する円に換算した場合の円の直径を意味する。
 [粗大析出物個数Sv]
 本実施形態による軟磁性部品用鋼材ではさらに、フェライト粒中の粗大析出物個数Sv(個/mm2)が式(1)を満たす。
 Sv≦10V×7.0×106 (1)
 ここで、式(1)中のVには、軟磁性部品用鋼材中のV含有量(質量%)が代入される。
 上述のとおり、粗大析出物とは、軟磁性部品用鋼材のフェライト粒中に含まれる析出物のうち、円相当径が30nm以上の析出物を意味する。なお、上述のとおり本明細書において、円相当径とは、組織観察における視野面において、特定された結晶粒又は析出物の面積を、同じ面積を有する円に換算した場合の円の直径を意味する。なお、本実施形態の軟磁性部品用鋼材のフェライト中に含まれる析出物の円相当径の上限は、1000nm(1μm)である。すなわち、本実施形態において、粗大析出物の円相当径は、30nm~1000nmである。
 上述のとおり、本実施形態の軟磁性部品用鋼材のフェライト粒中の析出物は、V炭窒化物とNb炭窒化物とを含む。ここで、本明細書において、「炭窒化物」とは、炭化物、窒化物、及び、炭窒化物の総称である。すなわち、本明細書におけるV炭窒化物は、VとCとNとを含有する狭義のV炭窒化物だけでなく、VとCとを含有するV炭化物、及び、VとNとを含有するV窒化物も含む。
 本実施形態の軟磁性部品用鋼材のフェライト粒中に含まれる析出物は、上述した化学組成として含有する各元素に由来する。上述の化学組成に基づいて、軟磁性部品用鋼材のフェライト粒中に含まれる析出物は、そのほとんどがV炭窒化物であると考えられる。任意元素であるNbが含有される場合さらに、軟磁性部品用鋼材のフェライト粒中に含まれる析出物は、Nb炭窒化物も含むと考えられる。
 粗大析出物個数Svは次の方法により求めることができる。軟磁性部品用鋼材の断面の任意の箇所のうち、フェライト領域の組織観察用の薄膜サンプル(厚さ100nm)を採取する。軟磁性部品用鋼材が棒鋼又は線材である場合、R/2部(棒鋼又は線材の切断面(円形状)の中心点と外周との間を2等分する点を含む部分)から組織観察用の薄膜サンプルを採取し、フェライト粒部において、任意の5視野を特定する。
 特定した5視野に対して、40000倍の倍率での透過型電子顕微鏡(TEM)による組織観察を実施する。具体的には、任意の5視野(2.2μm×1.7μm)の写真画像を生成する。各視野の写真画像に対して画像処理を実施して、各視野中の析出物を特定する。析出物はコントラストに基づいて特定可能である。特定された各析出物の円相当径を、画像処理により求める。得られた円相当径に基づいて、30nm以上の円相当径の析出物(粗大析出物)を特定する。5視野において特定された粗大析出物の総個数を求め、総個数と5視野の総面積とに基づいて、粗大析出物個数Sv(個/mm2)を求める。
 図1を参照して、粗大析出物個数Svが10V×7.0×106個/mm2を超えれば、600℃で60分保持した磁気焼鈍後の最大透磁率が0.0015N/A2未満となる。この場合さらに、磁気焼鈍後の軟磁性部品の疲労強度も低下する。これは次の理由によると考えられる。
 軟磁性部品用鋼材の粗大析出物個数Svが10V×7.0×106個/mm2を超えれば、磁気焼鈍後の軟磁性部品中にも粗大な析出物が多数存在する。粗大化したV炭窒化物は磁気特性を阻害する。その結果、磁気焼鈍後の軟磁性部品の磁気特性が低下する。軟磁性部品用鋼材の粗大析出物個数Svが10V×7.0×106個/mm2を超えればさらに、軟磁性部品用鋼材中にV、C、及び、Nが十分に固溶していない。この場合、磁気焼鈍時にV炭窒化物が微細に析出しにくい。その結果、磁気焼鈍後の軟磁性部品の疲労強度を十分に高めることができない。
 一方、図1を参照して、粗大析出物個数Svが10V×7.0×106個/mm2以下であれば、磁気焼鈍後の最大透磁率が顕著に上昇して、0.0015N/A2以上となる。粗大析出物個数Svが10V×7.0×106個/mm2以下であれば、軟磁性部品用鋼材においてV炭窒化物が十分に固溶している。そのため、磁気焼鈍において、微細なV炭窒化物が析出し、十分な疲労強度を確保できる。この場合さらに、粗大なV炭窒化物による軟磁性部品の磁気特性の低下を抑制できる。
 粗大析出物個数Svは少ないほど好ましい。しかしながら、上述のV含有量を考慮すれば、実操業において製造される軟磁性部品用鋼材中において、粗大析出物個数Svは1.0×105個/mm2以上存在してもよい。
 [軟磁性部品用鋼材の磁気焼鈍後の磁気特性]
 本実施形態による軟磁性部品用鋼材は、200℃~Ac1点で30~180分保持すると、優れた磁気特性を示す。優れた磁気特性とは、具体的には、200℃~Ac1点で30~180分保持した軟磁性部品用鋼材は、JIS C 2504(2000)に準拠した、直流ヒステリシス測定試験において、最大透磁率が0.0015(N/A2)以上であることを意味する。
 軟磁性部品用鋼材の磁気焼鈍後の最大透磁率は次の方法で測定できる。軟磁性部品の加工を模擬した冷間加工(たとえば、冷間据え込みなど)を軟磁性部品用鋼材に対して実施する。冷間加工後の軟磁性部品用鋼材に対して、600℃で60分保持する磁気焼鈍を実施する。磁気焼鈍を実施した軟磁性部品鋼材から、機械加工により図2に示すリング状試験片を作製する。図2は、リング状試験片の正面図及び側面図である。リング状試験片の外径DOは30~50mmとし、外径DO/内径DIは1.2~1.4とする。もし、軟磁性部品用鋼材が棒鋼であって、その外径が30mm未満の場合、冷間での据込鍛造加工により、外径DOを30mm以上としたうえで、上の手順に従いリング状試験片を作製する。
 リング状試験片を用いて、JIS C 2504(2000)に準拠して、直流ヒステリシス測定試験を実施する。具体的には、10000A/mまでのB-Hカーブを測定して、最大透磁率(B/H、単位はN/A2)を求める。
 本実施形態による軟磁性部品用鋼材はたとえば、棒鋼又は線材である。軟磁性部品用鋼材が棒鋼である場合、棒鋼の長手方向に垂直な断面の円相当径はたとえば、20mm~100mmである。棒鋼の上記断面は円形状であってもよいし、矩形状であってもよし、多角形状であってもよい。
 [軟磁性部品]
 本実施形態の軟磁性部品用鋼材は、軟磁性部品として使用される。軟磁性部品とは、モータ、発電装置、電磁スイッチ等における交流磁界用の電装部品に代表される部品であり、保磁力が小さく透磁率が大きいことを特徴とする部品である。
 本実施形態による軟磁性部品は、冷間加工された上述の軟磁性部品用鋼材を磁気焼鈍することにより得られる。つまり、軟磁性部品の化学組成は、上述の軟磁性部品用鋼材の化学組成と同じである。軟磁性部品はさらに、フェライト粒中の粗大析出物個数Svが式(1)を満たし、最大透磁率が0.0015N/A2以上である。本実施形態による軟磁性部品は、上述の軟磁性部品用鋼材を利用して製造されるため、優れた磁気特性を有し、高い疲労強度を有する。
 [製造方法]
 上述の本実施形態の軟磁性部品用鋼材及び軟磁性部品の製造方法を説明する。以下に説明する製造方法は軟磁性部品用鋼材及び軟磁性部品の製造方法の一例であって、本実施形態の軟磁性部品用鋼材及び軟磁性部品はこの製造方法に限定されない。
 [軟磁性部品用鋼材の製造方法]
 上述の化学組成を有する素材を準備する。素材はたとえば、鋳片(ブルーム、スラブ又はビレット)、又は、鋼塊である。素材は次の方法により製造される。上記化学組成の溶鋼を製造する。溶鋼を用いて連続鋳造法により鋳片を製造する。又は、溶鋼を用いて造塊法によりインゴットを製造する。以上の工程により、素材を準備する。
 準備された素材に対して熱間加工工程を実施して、軟磁性部品用鋼材を製造する。熱間加工工程では通常、1又は複数回の熱間加工を実施する。各熱間加工を実施する前に、素材を加熱する。その後、素材に対して熱間加工を実施する。熱間加工はたとえば、熱間鍛造や、熱間圧延、熱間押出である。複数回熱間加工を実施する場合、初期の熱間加工はたとえば、分塊圧延又は熱間鍛造による粗圧延工程であり、最終の熱間加工はたとえば、連続圧延機を用いた仕上げ圧延工程である。熱間圧延機では、一対の水平ロールを有する水平スタンドと、一対の垂直ロールを有する垂直スタンドとが交互に一列に配列される。上記熱間加工工程により製造される軟磁性部品用鋼材はたとえば、棒鋼又は線材である。
 最終の熱間加工は、たとえば、加熱温度は1000~1300℃で実施する。加熱温度が高すぎれば、オーステナイト粒が粗大化する場合がある。この場合、熱間加工および冷却後に得られるフェライト粒の平均結晶粒径が大きくなりすぎる。一方、加熱温度が低すぎれば、オーステナイト粒が微細となる場合がある。この場合、熱間加工および冷却後に得られるフェライト粒の平均結晶粒径が小さくなりすぎる。したがって、最終の熱間加工の加熱温度は1000~1300℃とするのが好ましい。
 最終の熱間加工はさらに、たとえば、加熱時間は30~120分で実施する。加熱時間が短すぎれば、オーステナイト変態が十分に完了せず、フェライトとの二相組織となる場合がある。この場合、熱間加工および冷却後に得られるフェライト粒の平均結晶粒径が大きくなりすぎる。一方、加熱時間が長すぎれば、オーステナイト粒が粗大化する場合がある。この場合、熱間加工および冷却後に得られるフェライト粒の平均結晶粒径が大きくなりすぎる。したがって、最終の熱間加工の加熱時間は30~120分とするのが好ましい。
 最終の熱間加工はさらに、たとえば、仕上げ温度は800~1100℃で実施する。仕上げ温度が低すぎれば、オーステナイト粒が微細となる場合がある。この場合、熱間加工および冷却後に得られるフェライト粒の平均結晶粒径が小さくなりすぎる。一方、仕上げ温度が高すぎれば、再結晶によりオーステナイト粒径が粗大となる場合がある。この場合、熱間加工および冷却後に得られるフェライト粒の平均結晶粒径が小さくなりすぎる。したがって、最終の熱間加工の仕上げ温度は800~1100℃とするのが好ましい。
 最終の熱間加工後における軟磁性部品用鋼材を、冷却速度CR1000-500で冷却する。本明細書において、冷却速度CR1000-500とは、仕上げ温度が1000~1100℃の場合、1000~500℃の温度域での冷却速度を意味する。冷却速度CR1000-500とはさらに、仕上げ温度が800~1000℃未満の場合、仕上げ温度~500℃の温度域での冷却速度を意味する。冷却速度CR1000-500は次のとおりである。
 冷却速度CR1000-500:0.10℃/秒以上
 最終の熱間加工後における軟磁性部品用鋼材の冷却速度CR1000-500は、軟磁性部品用鋼材中の粗大析出物個数Svに影響する。冷却速度CR1000-500が0.10℃/秒未満であれば、冷却中の鋼材中に析出するV炭窒化物が粗大になる。そのため、円相当径が30nm以上の析出物の個数(粗大析出物個数)Svが10V×7.0×106個/mm2を超える。冷却速度CR1000-500が0.10℃/秒未満であればさらに、フェライト粒が再結晶する場合がある。この場合、フェライト粒の平均結晶粒径が大きくなりすぎる。一方、冷却速度CR1000-500が0.10℃/秒以上であれば、析出するV炭窒化物が微細となる。その結果、粗大析出物個数Svが10V×7.0×106個/mm2以下になる。
 冷却速度CR1000-500の好ましい下限は0.30℃/秒であり、より好ましくは0.50℃/秒であり、さらに好ましくは0.80℃/秒である。冷却速度CR1000-500の好ましい上限は5.00℃/秒である。5.00℃/秒を超えると、ベイナイト及び/又はマルテンサイトが生成する場合がある。この場合、フェライト粒の面積率が低下する。その結果、冷間加工性が低下する。
 冷却速度CR1000-500は次の方法で求めることができる。最終の熱間圧延後の軟磁性部品用鋼材の表面温度を放射温度計で測定する。仕上げ温度が1000~1100℃の場合、1000℃から500℃になるまでの時間を測定する。仕上げ温度が800~1000℃未満の場合、仕上げ温度から500℃になるまでの時間を測定する。得られた時間に基づいて、冷却速度CR1000-500を求める。
 以上の製造工程により、本実施形態の軟磁性部品用鋼材である棒鋼又は線材が製造される。これらの軟磁性部品用鋼材は冷間加工性に優れる。また、上述の軟磁性部品用鋼材は、後述の磁気焼鈍後においても、優れた磁気特性を有する。
 [軟磁性部品の製造方法]
 軟磁性部品の製造方法の一例は次のとおりである。上述の軟磁性部品用鋼材に対して冷間加工を実施して、所望の部品形状に成型する。冷間加工はたとえば伸線加工、冷間鍛造、冷間引抜きである。
 所望の部品形状に成形された軟磁性部品用鋼材に対して、磁気焼鈍を実施する。これにより、冷間加工により軟磁性部品用鋼材に導入されたひずみが除去され、磁気特性が回復する。好ましい磁気焼鈍の温度(磁気焼鈍温度)は200℃~Ac1点である。この磁気焼鈍温度での好ましい保持時間は30分以上である。
 磁気焼鈍温度が200℃以上であれば、磁気焼鈍中に微細なV炭窒化物が十分に析出して、軟磁性部品の強度が十分に高くなる。軟磁性部品の内部への伝熱を考慮した場合、さらに好ましい磁気焼鈍温度は400℃である。磁気焼鈍温度がAc1点以下であれば、析出したV炭窒化物の粗大化を抑制できる。その結果、軟磁性部品において、高い強度が得られる。熱処理ひずみの観点から、さらに好ましい磁気焼鈍温度の上限は730℃である。
 また、上記磁気焼鈍温度での保持時間が30分以上であれば、微細なV炭窒化物が十分な量析出する。そのため、軟磁性部品において、高い疲労強度が得られる。保持時間が長くても、上記効果が得られる。しかしながら、保持時間が長すぎれば、製造コストが高くなる。したがって、保持時間の好ましい上限は180分である。
 以上の製造工程により軟磁性部品が製造される。本実施形態の軟磁性部品は、磁気特性に優れ、さらに、高い疲労強度を有する。
 以下、実施例により本実施形態の軟磁性部品用鋼材及び軟磁性部品を説明する。なお、本実施形態の軟磁性部品用鋼材及び軟磁性部品は本実施例に限定されるものではない。本実施例は、本実施形態の軟磁性部品用鋼材及び軟磁性部品の一例である。
 [軟磁性部品用鋼材の製造]
 表1に示す化学成分を有する鋼を真空溶解炉により溶製した。製造された溶鋼を用いて、造塊法により150kgのインゴットを製造した。
Figure JPOXMLDOC01-appb-T000001
 試験番号49以外の各試験番号のインゴットを1000~1300℃で30~120分加熱した。加熱されたインゴットに対して熱間加工(熱間鍛伸)を実施して、直径42mmの棒鋼(軟磁性部品用鋼材)を製造した。熱間鍛伸の仕上げ温度は800~1100℃であった。一方、試験番号49のインゴットを1300℃で120分加熱した。加熱されたインゴットに対して熱間鍛伸を実施して、直径42mmの棒鋼を製造した。熱間鍛伸の仕上げ温度は1150℃であった。各試験番号の熱間鍛伸の棒鋼の冷却速度CR1000-500は、表2に示すとおりであった。
Figure JPOXMLDOC01-appb-T000002
 [粗大析出物個数測定試験]
 各試験番号の棒鋼において、上述の方法で、R/2部から組織観察用の薄膜サンプルを採取した。薄膜サンプルの観察面は、20μm×15μm、厚さは100nmであった。薄膜サンプルのうちフェライト粒の領域から、任意の視野を5視野特定した。各視野(2.2μm×1.7μm)に対して、40000倍の倍率で、透過型電子顕微鏡(TEM)による組織観察を実施し、写真画像を生成した。各視野の写真画像に対して画像処理を実施して、各視野中の析出物を特定した。析出物は、コントラストに基づいて特定可能であった。特定された各析出物の円相当径を、画像処理により求めた。得られた円相当径に基づいて、30nm以上の円相当径の析出物(粗大析出物)を特定した。5視野において特定された粗大析出物の総個数を求め、総個数と5視野の総面積とに基づいて、粗大析出物個数Sv(個/mm2)を求めた。求めた粗大析出物個数Svを、粗大析出物個数Sv/(10V×106)(個/(mm2×質量%))として、表2に示す。
 [ミクロ組織観察]
 各試験番号の棒鋼から、図3に示す丸棒試験片を作製した。丸棒試験片は、直径42mmの棒鋼のR/2位置を中心とした直径D=14mm、長さL=21mmの試験片であった。丸棒試験片の長手方向は、棒鋼の長手方向と平行であった。丸棒試験片の横断面の中心部からサンプルを採取した。上述の方法により、フェライト粒を特定し、フェライト粒の平均結晶粒径(μm)を求めた。求めたフェライト粒の平均結晶粒径を表2に示す。なお、いずれの試験片においても、フェライト粒の総面積率は80%以上であった。
 [冷間加工性評価試験]
 各試験番号の棒鋼から、図3に示す丸棒試験片を作製した。丸棒試験片は、直径42mmの棒鋼のR/2位置を中心とした直径D=14mm、長さL=21mmの試験片であった。丸棒試験片の長手方向は、棒鋼の長手方向と平行であった。
 作製された丸棒試験片に対して、冷間圧縮試験を実施した。冷間圧縮試験には500ton油圧プレスを使用した。複数の丸棒試験片を使用して圧縮率(圧縮加工量)を段階的に引き上げて、冷間圧縮を実施した。具体的には、初期の圧縮率で複数の丸棒試験片を冷間圧縮した。冷間圧縮後、各丸棒試験片に割れが発生したか否かを目視により確認した。割れが確認された丸棒試験片を排除した後、残った丸棒試験片(つまり、割れが観察されなかった丸棒試験片)に対して、圧縮率を引き上げて冷間圧縮を再度実施した。実施後、割れの有無を確認した。割れが確認された丸棒試験片を排除した後、残った丸棒試験片に対して、圧縮率をさらに引き上げて冷間圧縮を再度実施した。以上の圧縮試験を繰り返し、割れが確認された丸棒試験片の個数が、丸棒試験片の総個数の半数になるまで、上記工程を繰り返した。
 上記圧縮試験において、割れの発生した試験片の数が50%以上となった最低の圧縮率(圧縮加工量)、つまり、割れが確認された丸棒試験片の個数が、丸棒試験片総数の半数となったときの圧縮率を、限界圧縮率(%)と定義した。
 本実施例では、限界圧縮率が75%以上であれば、冷間加工性に非常に優れると判断した(表2中において「E(Excellent)」で表示)。限界圧縮率が65%~75%未満であれば、冷間加工性に優れると判断した(表2中において「G(Good)」で表示)。限界圧縮率が65%未満であれば、冷間加工性が低いと判断した(表2中において「NA(Not Acceptable)」で表示)。
 [軟磁性部品の製造]
 各試験番号の直径42mmの棒鋼に対して機械加工を実施して、直径30mmの円柱状の丸棒試験片を作製した。丸棒試験片の中心軸は、棒鋼の中心軸と同軸であった。各試験番号の丸棒試験片に対して、同一の条件で、冷間にて据込加工を実施して、中間材を複数製造した。据込加工の加工率は75%であった。試験番号4以外の中間材に対して、磁気焼鈍を実施した。磁気焼鈍温度は600℃であり、磁気焼鈍温度での保持時間は60分であった。磁気焼鈍後の中間材から、機械加工により図2に示すリング状試験片を作製した。リング状試験片の外径DOは45mm、内径DIは33mm、厚さTは5mmであった。
 [磁気特性評価試験]
 製造された軟磁性部品を用いて、JIS C 2504(2000)に準拠して、直流ヒステリシス測定試験を実施した。具体的には、10000A/mまでのB-Hカーブを測定して、最大透磁率(N/A2)を求めた。
 本実施例では、最大透磁率μが0.0025N/A2以上であれば、磁気特性が非常に優れると判断した(表2中において「E」で表示)。最大透磁率μが0.0015~0.0025N/A2未満であれば、磁気特性に優れると判断した(表2中において「G」で表示)。最大透磁率μが0.0015N/A2未満であれば、磁気特性が低いと判断した(表2中において「NA」で表示)。
 [磁気焼鈍後の疲労強度評価試験]
 各試験番号の直径42mmの棒鋼に対してピーリング加工を実施して、直径36mmの丸棒試験片を作製した。各試験番号の丸棒試験片に対して、同じ条件(加工率75%)で冷間引抜き加工を実施して、中間材を製造した。製造された中間材に対して、磁気焼鈍を実施した。磁気焼鈍温度は600℃であり、保持時間は60分であった。以上の工程により、軟磁性部品を製造した。
 製造された軟磁性部品から、図4に示す疲労試験片を作製した。図4中の各数値は該当部分の寸法(単位はmm)を示す。疲労試験片を用いて、小野式回転曲げ疲労試験を実施した。回転曲げ疲労試験は、室温(25℃)、大気雰囲気にて、回転数3600rpmの両振り条件で実施した。複数の疲労試験片に対して加える応力を変えて拾う試験を実施して、107サイクル後に破断しなかった最も高い応力を疲労強度FS1(MPa)と定義した。
 同様に、冷間引抜き加工前の直径36mmの丸棒試験片から、図4に示す疲労試験片を作製し、軟磁性部品の場合と同じ条件で小野式回転曲げ疲労試験を実施して、疲労強度FS2(MPa)を求めた。
 得られた疲労強度FS1の疲労強度FS2に対する比(疲労強度比、単位は%)を、次式により求めた。
 疲労強度比=FS1/FS2×100
 本実施例では、得られた疲労強度比が110%を超える場合、非常に高い強度が得られたと判断した(表2中において「E」で表示)。疲労強度比が90~110%である場合、高い強度が得られたと判断した(表2中において「G」で表示)。疲労強度比が90%未満であれば、強度が低いと判断した(表2中において「NA」で表示)。
 [試験結果]
 試験結果を表2に示す。試験番号1、3、6、7、10、11、13、14、16、18、19、21、22、24、25、28、29、31、32、34~36、38~44、及び、46~48では、化学組成が適切であり、製造方法も適切であった。その結果、軟磁性部品用鋼材における粗大析出物個数Svはいずれも10V×7.0×106個/mm2以下であった。そのため、いずれの試験番号においても、冷間加工性に優れた。さらに、これらの試験番号の軟磁性部品では、最大透磁率が0.0015N/A2以上であり、磁気焼鈍後の磁気特性に優れた。さらに、これらの試験番号の軟磁性部品では、磁気焼鈍後の疲労強度に優れた。
 また、同じ化学組成の試験番号42~44を参照して、冷却速度CR1000-500が速くなるに従い、最大透磁率が高くなった。具体的には、冷却速度CR1000-500が最も速い試験番号42の最大透磁率が最も高く、冷却速度CR1000-500最も低い試験番号44の最大透磁率が最も低くなった。さらに、冷却速度CR1000-500が最も速い試験番号42の疲労強度は、他の試験番号43及び44の疲労強度よりも高かった。
 一方、試験番号2、試験番号5及び試験番号23では、熱間加工後の冷却速度CR1000-500が遅すぎた。そのため、軟磁性部品用鋼材中の粗大析出物個数Svが10V×7.0×106個/mm2を超えた。その結果、磁気焼鈍後の軟磁性部品の磁気特性及び疲労強度が低かった。
 試験番号4では、磁気焼鈍を実施しなかった。その結果、軟磁性部品の磁気特性が低かった。
 試験番号8では、C含有量が高すぎた。その結果、軟磁性部品用鋼材の冷間加工性が低かった。さらに、磁気焼鈍後の軟磁性部品の最大透磁率が0.0015N/A2未満であり、磁気特性が低かった。
 試験番号9では、C含有量が低すぎた。その結果、磁気焼鈍後の軟磁性部品の疲労強度が低かった。
 試験番号12では、Si含有量が高すぎた。その結果、軟磁性部品用鋼材の冷間加工性が低かった。
 試験番号15では、Mn含有量が高すぎた。その結果、軟磁性部品用鋼材の冷間加工性が低かった。
 試験番号17では、P含有量が高すぎた。その結果、軟磁性部品用鋼材の冷間加工性が低かった。
 試験番号20では、S含有量が高すぎた。その結果、軟磁性部品用鋼材の冷間加工性が低かった。
 試験番号26では、V含有量が高すぎた。そのため、粗大析出物個数Svが10V×7.0×106個/mm2を超えた。その結果、軟磁性部品用鋼材の冷間加工性が低かった。さらに、磁気焼鈍後の軟磁性部品の最大透磁率が0.0015N/A2未満であり、磁気特性が低かった。
 試験番号27及び45では、V含有量が低すぎた。その結果、磁気焼鈍後の軟磁性部品の疲労強度が低かった。
 試験番号30では、Al含有量が高すぎた。その結果、軟磁性部品用鋼材の冷間加工性が低かった。
 試験番号33では、Cr含有量が高すぎた。その結果、軟磁性部品用鋼材の冷間加工性が低かった。
 試験番号37では、N含有量が高すぎた。その結果、軟磁性部品用鋼材の冷間加工性が低かった。
 試験番号49では、フェライト粒の平均結晶粒径が大きすぎた。その結果、磁気焼鈍後の軟磁性部品の疲労強度が低かった。
 以上、本発明の実施の形態を説明した。しかしながら、上述した実施の形態は本発明を実施するための例示に過ぎない。したがって、本発明は上述した実施の形態に限定されることなく、その趣旨を逸脱しない範囲内で上述した実施の形態を適宜変更して実施することができる。
 本実施形態による軟磁性部品用鋼材は、優れた磁気特性及び高い強度が求められる部品に広く利用可能である。特に、モータ、発電装置、電磁スイッチ等における交流磁界用のコア材に代表される、電装部品に適式である。

Claims (9)

  1.  軟磁性部品用鋼材であって、
     質量%で、
     C:0.02~0.13%、
     Si:0.005~0.50%、
     Mn:0.10~0.70%、
     P:0.035%以下、
     S:0.050%以下、
     Al:0.005~1.300%、
     V:0.02~0.50%、
     N:0.003~0.030%、
     Cr:0~0.80%未満、
     Ti:0~0.20%、
     Nb:0~0.20%、
     B:0~0.005%、及び、
     Ca:0~0.005%を含有し、残部はFe及び不純物からなる化学組成を有し、
     前記軟磁性部品用鋼材中のフェライト粒の平均結晶粒径が5~200μmであり、
     前記フェライト粒中において、30nm以上の円相当径を有する析出物の個数Sv(個/mm2)が式(1)を満たす、軟磁性部品用鋼材。
     Sv≦10V×7.0×106 (1)
     ここで、式(1)中のVには、前記軟磁性部品用鋼材中のV含有量(質量%)が代入される。
  2.  請求項1に記載の軟磁性部品用鋼材であって、
     前記化学組成は、
     Cr:0.02~0.80%未満を含有する、軟磁性部品用鋼材。
  3.  請求項1又は請求項2に記載の軟磁性部品用鋼材であって、
     前記化学組成は、
     Ti:0.01~0.20%、
     Nb:0.01~0.20%、及び、
     B:0.0008~0.005%からなる群から選択される1種以上を含有する、軟磁性部品用鋼材。
  4.  請求項1~請求項3のいずれか1項に記載の軟磁性部品用鋼材であって、
     前記化学組成は、
     Ca:0.0005~0.005%を含有する、軟磁性部品用鋼材。
  5.  軟磁性部品であって、
     質量%で、
     C:0.02~0.13%、
     Si:0.005~0.50%、
     Mn:0.10~0.70%、
     P:0.035%以下、
     S:0.050%以下、
     Al:0.005~1.300%、
     V:0.02~0.50%、
     N:0.003~0.030%、
     Cr:0~0.80%未満、
     Ti:0~0.20%、
     Nb:0~0.20%、
     B:0~0.005%、及び、
     Ca:0~0.005%を含有し、残部はFe及び不純物からなる化学組成を有し、
     軟磁性部品中のフェライト粒中において、30nm以上の円相当径を有する析出物の個数Sv(個/mm2)が式(1)を満たし、
     最大透磁率が0.0015N/A2以上である、軟磁性部品。
     Sv≦10V×7.0×106 (1)
     ここで、式(1)中のVには、前記軟磁性部品中のV含有量(質量%)が代入される。
  6.  請求項5に記載の軟磁性部品であって、
     前記化学組成は、
     Cr:0.02~0.80%未満を含有する、軟磁性部品。
  7.  請求項5又は請求項6に記載の軟磁性部品であって、
     前記化学組成は、
     Ti:0.01~0.20%、
     Nb:0.01~0.20%、及び、
     B:0.0008~0.005%からなる群から選択される1種以上を含有する、軟磁性部品。
  8.  請求項5~請求項7のいずれか1項に記載の軟磁性部品であって、
     前記化学組成は、
     Ca:0.0005~0.005%を含有する、軟磁性部品。
  9.  請求項1~請求項4のいずれか1項に記載の軟磁性部品用鋼材を冷間加工して中間材を製造する工程と、
     前記中間材に対して磁気焼鈍を実施する工程とを備える、軟磁性部品の製造方法。
PCT/JP2017/044037 2016-12-08 2017-12-07 軟磁性部品用鋼材、軟磁性部品、及び、軟磁性部品の製造方法 WO2018105698A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/463,172 US11248283B2 (en) 2016-12-08 2017-12-07 Steel material for soft magnetic part, soft magnetic part, and method for producing soft magnetic part
JP2018555063A JP6801721B2 (ja) 2016-12-08 2017-12-07 軟磁性部品用鋼材、軟磁性部品、及び、軟磁性部品の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-238390 2016-12-08
JP2016238390 2016-12-08

Publications (1)

Publication Number Publication Date
WO2018105698A1 true WO2018105698A1 (ja) 2018-06-14

Family

ID=62491104

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/044037 WO2018105698A1 (ja) 2016-12-08 2017-12-07 軟磁性部品用鋼材、軟磁性部品、及び、軟磁性部品の製造方法

Country Status (3)

Country Link
US (1) US11248283B2 (ja)
JP (1) JP6801721B2 (ja)
WO (1) WO2018105698A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004256831A (ja) * 2003-02-24 2004-09-16 Jfe Steel Kk 窒化後の磁気特性に優れた窒化用鋼材およびその成形体
JP2007291519A (ja) * 2006-03-31 2007-11-08 Jfe Steel Kk 電磁棒鋼およびその製造方法
JP2007291520A (ja) * 2006-03-31 2007-11-08 Jfe Steel Kk 電磁棒鋼及びその製造方法
WO2013115205A1 (ja) * 2012-01-31 2013-08-08 Jfeスチール株式会社 発電機リム用熱延鋼板およびその製造方法
JP2014196535A (ja) * 2013-03-29 2014-10-16 日新製鋼株式会社 弱め界磁性に優れたipmモータのロータ鉄心用鋼板及びその製造方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4438687B2 (ja) 2005-05-25 2010-03-24 住友金属工業株式会社 軟磁性条鋼
JP4360349B2 (ja) 2005-05-25 2009-11-11 住友金属工業株式会社 軟磁性条鋼
JP4464889B2 (ja) * 2005-08-11 2010-05-19 株式会社神戸製鋼所 冷間鍛造性、被削性および磁気特性に優れた軟磁性鋼材、並びに磁気特性に優れた軟磁性鋼部品
JP4646872B2 (ja) 2006-08-18 2011-03-09 株式会社神戸製鋼所 軟磁性鋼材、並びに軟磁性部品およびその製造方法
DE102009038386A1 (de) * 2009-08-24 2011-03-03 Stahlwerk Ergste Gmbh Weichmagnetischer ferritischer Chromstahl
JP6453683B2 (ja) * 2015-03-24 2019-01-16 株式会社神戸製鋼所 軟磁性用線材、棒鋼及び軟磁性鋼部品

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004256831A (ja) * 2003-02-24 2004-09-16 Jfe Steel Kk 窒化後の磁気特性に優れた窒化用鋼材およびその成形体
JP2007291519A (ja) * 2006-03-31 2007-11-08 Jfe Steel Kk 電磁棒鋼およびその製造方法
JP2007291520A (ja) * 2006-03-31 2007-11-08 Jfe Steel Kk 電磁棒鋼及びその製造方法
WO2013115205A1 (ja) * 2012-01-31 2013-08-08 Jfeスチール株式会社 発電機リム用熱延鋼板およびその製造方法
JP2014196535A (ja) * 2013-03-29 2014-10-16 日新製鋼株式会社 弱め界磁性に優れたipmモータのロータ鉄心用鋼板及びその製造方法

Also Published As

Publication number Publication date
US11248283B2 (en) 2022-02-15
US20190330722A1 (en) 2019-10-31
JP6801721B2 (ja) 2020-12-16
JPWO2018105698A1 (ja) 2019-10-31

Similar Documents

Publication Publication Date Title
JP5811282B2 (ja) 冷間鍛造用丸鋼材
US20190284666A1 (en) NiCrFe Alloy
JP6946737B2 (ja) 二相ステンレス鋼材及びその製造方法
JP6384626B2 (ja) 高周波焼入れ用鋼
WO2021033672A1 (ja) 二相ステンレス鋼材
JP6384627B2 (ja) 高周波焼入れ用鋼
JP2021167445A (ja) 二相ステンレス鋼材
JP6055343B2 (ja) 低温曲げ加工性に優れた非磁性鋼およびその製造方法
US20220127707A1 (en) Duplex stainless seamless steel pipe and method for producing duplex stainless seamless steel pipe
JP7036238B2 (ja) サワー環境での使用に適した鋼材
CN108431246B (zh) 油井用不锈钢管的制造方法及油井用不锈钢管
JP4793298B2 (ja) 非調質鋼材およびその製造方法
JP6137082B2 (ja) 低温靭性に優れた油井用高強度ステンレス継目無鋼管およびその製造方法
WO2023132339A1 (ja) Fe-Cr-Ni合金材
JP2021167446A (ja) 二相ステンレス鋼材
JP6315076B2 (ja) 油井用高強度ステンレス継目無鋼管の製造方法
WO2020067444A1 (ja) オーステナイト系合金
JP2019173168A (ja) 冷間鍛造用鋼材
US20200332378A1 (en) Duplex stainless steel and method for producing duplex stainless steel
US10329645B2 (en) Steel for carburizing or carbonitriding use
JP6206423B2 (ja) 低温靭性に優れた高強度ステンレス厚鋼板およびその製造方法
WO2018105698A1 (ja) 軟磁性部品用鋼材、軟磁性部品、及び、軟磁性部品の製造方法
JP7401841B1 (ja) 鋼材
JP7469696B2 (ja) 鋼素形材、及び、その製造方法
JP6601295B2 (ja) 冷間鍛造用鋼

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17877724

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018555063

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17877724

Country of ref document: EP

Kind code of ref document: A1