WO2023132339A1 - Fe-Cr-Ni合金材 - Google Patents
Fe-Cr-Ni合金材 Download PDFInfo
- Publication number
- WO2023132339A1 WO2023132339A1 PCT/JP2023/000052 JP2023000052W WO2023132339A1 WO 2023132339 A1 WO2023132339 A1 WO 2023132339A1 JP 2023000052 W JP2023000052 W JP 2023000052W WO 2023132339 A1 WO2023132339 A1 WO 2023132339A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- alloy material
- content
- less
- alloy
- yield strength
- Prior art date
Links
- 239000000956 alloy Substances 0.000 title claims abstract description 252
- 229910000990 Ni alloy Inorganic materials 0.000 title claims abstract description 87
- 229910052761 rare earth metal Inorganic materials 0.000 claims abstract description 19
- 239000012535 impurity Substances 0.000 claims abstract description 15
- 229910045601 alloy Inorganic materials 0.000 claims description 55
- 229910001566 austenite Inorganic materials 0.000 claims description 28
- 239000003129 oil well Substances 0.000 claims description 13
- 229910052757 nitrogen Inorganic materials 0.000 abstract description 8
- 229910052804 chromium Inorganic materials 0.000 abstract description 5
- 229910052748 manganese Inorganic materials 0.000 abstract description 5
- 229910052750 molybdenum Inorganic materials 0.000 abstract description 5
- 229910052698 phosphorus Inorganic materials 0.000 abstract description 5
- 229910052782 aluminium Inorganic materials 0.000 abstract description 4
- 229910052759 nickel Inorganic materials 0.000 abstract description 4
- 229910052760 oxygen Inorganic materials 0.000 abstract description 4
- 229910052710 silicon Inorganic materials 0.000 abstract description 4
- 229910052717 sulfur Inorganic materials 0.000 abstract description 4
- 230000003247 decreasing effect Effects 0.000 abstract 1
- 238000005482 strain hardening Methods 0.000 description 71
- 239000000203 mixture Substances 0.000 description 40
- 239000000126 substance Substances 0.000 description 40
- 238000000034 method Methods 0.000 description 39
- 239000000243 solution Substances 0.000 description 38
- 238000004519 manufacturing process Methods 0.000 description 29
- 238000010438 heat treatment Methods 0.000 description 26
- 238000005260 corrosion Methods 0.000 description 22
- 230000007797 corrosion Effects 0.000 description 22
- 230000000694 effects Effects 0.000 description 20
- 239000011575 calcium Substances 0.000 description 18
- 239000011651 chromium Substances 0.000 description 18
- 239000010949 copper Substances 0.000 description 18
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 18
- 239000011777 magnesium Substances 0.000 description 17
- 239000010955 niobium Substances 0.000 description 17
- 239000010936 titanium Substances 0.000 description 17
- 239000000463 material Substances 0.000 description 16
- 230000006835 compression Effects 0.000 description 15
- 238000007906 compression Methods 0.000 description 15
- 239000011572 manganese Substances 0.000 description 13
- TZCXTZWJZNENPQ-UHFFFAOYSA-L barium sulfate Chemical compound [Ba+2].[O-]S([O-])(=O)=O TZCXTZWJZNENPQ-UHFFFAOYSA-L 0.000 description 11
- 238000012669 compression test Methods 0.000 description 9
- 238000009864 tensile test Methods 0.000 description 8
- 238000005096 rolling process Methods 0.000 description 7
- 229910052799 carbon Inorganic materials 0.000 description 6
- 238000005097 cold rolling Methods 0.000 description 6
- 238000005259 measurement Methods 0.000 description 6
- 229910052802 copper Inorganic materials 0.000 description 5
- 230000033001 locomotion Effects 0.000 description 5
- 238000001953 recrystallisation Methods 0.000 description 5
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical compound S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 description 4
- 229910052791 calcium Inorganic materials 0.000 description 4
- 238000010622 cold drawing Methods 0.000 description 4
- 239000013078 crystal Substances 0.000 description 4
- 230000007423 decrease Effects 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 229910000037 hydrogen sulfide Inorganic materials 0.000 description 4
- 238000009776 industrial production Methods 0.000 description 4
- 229910052749 magnesium Inorganic materials 0.000 description 4
- 229910052758 niobium Inorganic materials 0.000 description 4
- 238000002360 preparation method Methods 0.000 description 4
- 239000002994 raw material Substances 0.000 description 4
- 229910052719 titanium Inorganic materials 0.000 description 4
- 229910052721 tungsten Inorganic materials 0.000 description 4
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 3
- 239000012467 final product Substances 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 238000005098 hot rolling Methods 0.000 description 3
- 239000006104 solid solution Substances 0.000 description 3
- 230000006641 stabilisation Effects 0.000 description 3
- 238000011105 stabilization Methods 0.000 description 3
- 238000005728 strengthening Methods 0.000 description 3
- 229910052720 vanadium Inorganic materials 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 238000005266 casting Methods 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- 238000010191 image analysis Methods 0.000 description 2
- 229910000765 intermetallic Inorganic materials 0.000 description 2
- 150000001247 metal acetylides Chemical class 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229920006395 saturated elastomer Polymers 0.000 description 2
- 239000010935 stainless steel Substances 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- 230000001629 suppression Effects 0.000 description 2
- 229910000967 As alloy Inorganic materials 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229910000599 Cr alloy Inorganic materials 0.000 description 1
- 229910052765 Lutetium Inorganic materials 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- QZPSXPBJTPJTSZ-UHFFFAOYSA-N aqua regia Chemical compound Cl.O[N+]([O-])=O QZPSXPBJTPJTSZ-UHFFFAOYSA-N 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000003638 chemical reducing agent Substances 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 238000009749 continuous casting Methods 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 239000010779 crude oil Substances 0.000 description 1
- 238000005261 decarburization Methods 0.000 description 1
- 238000005242 forging Methods 0.000 description 1
- 238000001192 hot extrusion Methods 0.000 description 1
- 229910052747 lanthanoid Inorganic materials 0.000 description 1
- 150000002602 lanthanoids Chemical class 0.000 description 1
- OHSVLFRHMCKCQY-UHFFFAOYSA-N lutetium atom Chemical compound [Lu] OHSVLFRHMCKCQY-UHFFFAOYSA-N 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 229910052706 scandium Inorganic materials 0.000 description 1
- SIXSYDAISGFNSX-UHFFFAOYSA-N scandium atom Chemical compound [Sc] SIXSYDAISGFNSX-UHFFFAOYSA-N 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 238000004513 sizing Methods 0.000 description 1
- 239000011343 solid material Substances 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 229910052727 yttrium Inorganic materials 0.000 description 1
- VWQVUPCCIRVNHF-UHFFFAOYSA-N yttrium atom Chemical compound [Y] VWQVUPCCIRVNHF-UHFFFAOYSA-N 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/10—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of tubular bodies
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C30/00—Alloys containing less than 50% by weight of each constituent
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C30/00—Alloys containing less than 50% by weight of each constituent
- C22C30/02—Alloys containing less than 50% by weight of each constituent containing copper
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/58—Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
Definitions
- the present disclosure relates to alloy materials, and more particularly to Fe--Cr--Ni alloy materials.
- Oil wells and gas wells use alloy materials for oil wells, represented by oil country tubular goods.
- Many oil wells are sour environments containing hydrogen sulfide which is corrosive.
- a sour environment means an acidified environment containing hydrogen sulfide. Sour environments may contain carbon dioxide as well as hydrogen sulfide. Materials used in such sour environments are required to have excellent corrosion resistance.
- Materials that require excellent corrosion resistance include, for example, 18-8 stainless steel materials such as SUS304H, SUS316H, SUS321H, and SUS347H, and Fe-Cr-Ni alloy materials represented by Alloy800H, which is defined as NCF800H in JIS standards. .
- Fe--Cr--Ni alloy materials have excellent corrosion resistance compared to 18-8 stainless steel.
- Fe--Cr--Ni alloy materials are also more economical than Ni-based alloy materials represented by Alloy617. Therefore, an Fe--Cr--Ni alloy material is sometimes used as an alloy material for oil wells used in a sour environment.
- Patent Document 1 Japanese Patent Application Laid-Open No. 2-217445 (Patent Document 1) and International Publication No. 2015/072458 (Patent Document 2) propose an oil well alloy material having excellent corrosion resistance.
- the alloy material described in Patent Document 1 is an Fe—Cr—Ni alloy containing Ni: 27 to 32%, Cr: 24 to 28%, Cu: 1.25 to 3.0%, and Mo: 1.0. ⁇ 3.0%, Si: 1.5 to 2.75%, Mn: 1.0 to 2.0%, N: 0.015% or less, B: 0.10% or less, C: 0 .10% or less, Al: 0.30% or less, P: 0.03% or less, S: 0.02% or less, and the balance substantially consists of Fe and impurities.
- This alloy material is described in US Pat.
- the alloy material described in Patent Document 2 is a Ni--Cr alloy material, and contains Si: 0.01 to 0.5%, Mn: 0.01 to less than 1.0%, and Cu: 0.01% to less than 1.0% by mass. 01 to less than 1.0%, Ni: 48 to less than 55%, Cr: 22 to 28%, Mo: less than 5.6 to 7.0%, N: 0.04 to 0.16%, sol.
- This alloy material is excellent in hot workability and toughness, and is also excellent in corrosion resistance (stress corrosion cracking resistance at a temperature exceeding 200 ° C. in an environment containing hydrogen sulfide), yield strength (0. 2% proof stress) is 965 MPa or more.
- An inclined well is formed by excavating the well by bending the extending direction of the well from the vertically downward direction to the horizontal direction.
- an inclined well can cover a wide range of strata where production fluids such as crude oil and gas are buried, increasing the production efficiency of production fluids. be able to.
- the alloy material when used in such inclined wells, compressive force may be applied to the alloy material.
- the alloy material preferably has a high compressive yield strength as well as a tensile yield strength.
- the Fe--Cr--Ni alloy material which is expected to be used in inclined wells, not only has high strength but also has reduced strength anisotropy.
- Patent Documents 1 and 2 only the tensile yield strength is considered as the strength of the Fe--Cr--Ni alloy material. In other words, in Patent Documents 1 and 2, the strength anisotropy of the alloy material is not examined.
- An object of the present disclosure is to provide an Fe--Cr--Ni alloy material having high strength and reduced strength anisotropy.
- the Fe--Cr--Ni alloy material according to the present disclosure is in % by mass, C: 0.030% or less, Si: 0.01 to 1.00%, Mn: 0.01 to 2.00%, P: 0.030% or less, S: 0.0050% or less, Ni: 29.0 to 36.5%, Cr: 23.0 to 27.5%, Mo: 2.00-6.00%, Al: 0.01 to 0.30%, Rare earth elements: 0.016 to 0.100%, N: 0.220 to 0.500%, O: 0.010% or less, W: 0 to 6.0%, Cu: 0 to 2.00%, Ca: 0 to 0.0100%, Mg: 0-0.0100%, V: 0 to 0.50%, Ti: 0 to 0.50%, Nb: 0 to 0.50%, Co: 0 to 2.00%, and The balance consists of Fe and impurities, satisfies the formula (1), In the microstructure, the standard deviation of the grain size number of the austenite grains is 0.80 or less, Tensile yield
- the Fe--Cr--Ni alloy material according to the present disclosure has high strength and reduced strength anisotropy.
- the present inventors first focused on an Fe--Cr--Ni alloy material with a tensile yield strength of 110 ksi (758 MPa) or more as a Fe--Cr--Ni alloy material with high strength. Next, the present inventors investigated the strength anisotropy of an Fe--Cr--Ni alloy material having a tensile yield strength of 758 MPa or more from the viewpoint of chemical composition.
- the present inventors found that in mass%, C: 0.030% or less, Si: 0.01 to 1.00%, Mn: 0.01 to 2.00%, P: 0.030% or less , S: 0.0050% or less, Ni: 29.0-36.5%, Cr: 23.0-27.5%, Mo: 2.00-6.00%, Al: 0.01-0.
- the strength anisotropy may increase. Accordingly, the present inventors have made detailed studies on reducing the strength anisotropy of the alloy material having the chemical composition described above and a tensile yield strength of 758 MPa or more.
- the stacking fault energy Since the alloy material having the chemical composition described above has a high Ni content, the stacking fault energy tends to increase. When the stacking fault energy is large, the degree of work hardening against applied strain is small. In other words, if the stacking fault energy can be reduced, it becomes easier to work harden against strain. As a result, it is less likely to be affected by the anisotropy of strain imparted during the manufacturing process, and the strength anisotropy of the alloy material can be reduced.
- the present inventors focused on the stacking fault energy of the Fe--Cr--Ni alloy material having the above-described chemical composition and a tensile yield strength of 758 MPa or more, and focused on a method for reducing the strength anisotropy of the alloy material. examined in detail.
- the Fe—Cr—Ni alloy material having the chemical composition described above satisfies other configurations of the present embodiment if the chemical composition further satisfies the following formula (1). condition, it has a tensile yield strength of 758 MPa or more, and furthermore, it has become clear that strength anisotropy can be reduced.
- the content of the corresponding element is substituted for the symbol of the element in formula (1) in terms of % by mass.
- FIG. 1 is a diagram showing the relationship between the value of I and the anisotropy index AI in this embodiment.
- FIG. 1 was created using the value of I and the anisotropy index AI for an example that satisfies the conditions of the present embodiment except for I, among examples described later.
- the anisotropy index AI can be increased to 0.800 or more.
- the anisotropy index AI decreases to less than 0.800. Therefore, the Fe--Cr--Ni alloy material according to the present embodiment satisfies the above-mentioned chemical composition and I is less than 15.0. As a result, the Fe--Cr--Ni alloy material according to the present embodiment can reduce the strength anisotropy on condition that the other configurations of the present embodiment are satisfied.
- the Fe--Cr--Ni alloy material having the chemical composition described above has a microstructure consisting of austenite.
- microstructure consisting of austenite means that phases other than austenite are negligible. Therefore, the present inventors have focused on the austenite grains of the Fe--Cr--Ni alloy material having the above-described chemical composition including the formula (1) and having a tensile yield strength of 758 MPa or more, and have focused on the strength anisotropy of the alloy material.
- FIG. 2 is a diagram showing the relationship between the value of the standard deviation ⁇ of the grain size number and the anisotropy index AI in this example.
- the standard deviation ⁇ of the grain size number is 0.80 or less. If so, the anisotropy index AI can be increased to 0.800 or more. On the other hand, when the standard deviation ⁇ of the grain size numbers exceeds 0.80, the anisotropy index AI decreases to less than 0.800. Therefore, the Fe—Cr—Ni alloy material according to the present embodiment satisfies the chemical composition described above, has an I of less than 15.0, has a tensile yield strength of 758 MPa or more, and furthermore has a standard deviation ⁇ of the grain size number. is 0.80 or less. As a result, the Fe--Cr--Ni alloy material according to this embodiment can reduce the strength anisotropy.
- the gist of the Fe--Cr--Ni alloy material according to the present embodiment completed based on the above knowledge is as follows.
- the shape of the Fe--Cr--Ni alloy material according to this embodiment is not particularly limited.
- the shape of the Fe--Cr--Ni alloy material according to this embodiment may be plate-like, bar-like with a circular cross section, or tubular. That is, the Fe--Cr--Ni alloy material according to the present embodiment may be an alloy plate, a bar having a circular cross section, or an alloy pipe.
- the alloy pipe may be a seamless alloy pipe or a welded alloy pipe. When the alloy material is an oil well alloy pipe, it is preferably a seamless alloy pipe.
- the chemical composition of the Fe--Cr--Ni alloy material according to this embodiment contains the following elements.
- Carbon (C) is an unavoidable impurity. That is, the lower limit of the C content is over 0%. If the C content is too high, Cr carbides are formed at the grain boundaries even if the contents of other elements are within the range of the present embodiment. Cr carbides increase crack susceptibility at grain boundaries. As a result, the corrosion resistance of the alloy material is lowered. Therefore, the C content is 0.030% or less.
- a preferable upper limit of the C content is 0.028%, more preferably 0.025%, still more preferably 0.020%, and still more preferably 0.015%.
- the C content is preferably as low as possible. However, a drastic reduction of the C content greatly increases manufacturing costs. Therefore, considering industrial production, the lower limit of the C content is preferably 0.001%, more preferably 0.003%.
- Si 0.01-1.00% Silicon (Si) deoxidizes the alloy. If the Si content is too low, the above effect cannot be sufficiently obtained even if the content of other elements is within the range of the present embodiment. On the other hand, if the Si content is too high, the hot workability of the alloy material deteriorates even if the content of other elements is within the range of the present embodiment. Therefore, the Si content is 0.01-1.00%.
- a preferable lower limit of the Si content is 0.05%, more preferably 0.10%, and still more preferably 0.20%.
- a preferable upper limit of the Si content is 0.80%, more preferably 0.60%, and still more preferably 0.50%.
- Mn 0.01-2.00%
- Manganese (Mn) deoxidizes and desulfurizes the alloy. If the Mn content is too low, the above effect cannot be sufficiently obtained even if the content of other elements is within the range of the present embodiment. On the other hand, if the Mn content is too high, the hot workability of the alloy material deteriorates even if the content of other elements is within the range of the present embodiment. Therefore, the Mn content is 0.01-2.00%.
- a preferable lower limit of the Mn content is 0.10%, more preferably 0.20%, and still more preferably 0.30%.
- the preferred upper limit of the Mn content is 1.80%, more preferably 1.50%, still more preferably 1.20%, still more preferably 1.00%, still more preferably 0.80 %.
- Phosphorus (P) is an unavoidable impurity. That is, the lower limit of the P content is over 0%. P segregates at grain boundaries. Therefore, if the P content is too high, the hot workability and corrosion resistance of the alloy material are lowered even if the content of other elements is within the range of the present embodiment. Therefore, the P content is 0.030% or less.
- a preferable upper limit of the P content is 0.025%, more preferably 0.020%. The lower the P content is, the better. However, an extreme reduction in the P content greatly increases manufacturing costs. Therefore, considering industrial production, the preferable lower limit of the P content is 0.001%, more preferably 0.002%, and still more preferably 0.003%.
- S 0.0050% or less Sulfur (S) is an unavoidable impurity. That is, the lower limit of the S content is over 0%. S segregates at grain boundaries. Therefore, if the S content is too high, the hot workability of the alloy material deteriorates even if the content of other elements is within the range of the present embodiment. Therefore, the S content is 0.0050% or less.
- a preferable upper limit of the S content is 0.0040%, more preferably 0.0030%, and still more preferably 0.0020%. It is preferable that the S content is as low as possible. However, an extreme reduction in the S content greatly increases manufacturing costs. Therefore, considering industrial production, the preferred lower limit of the S content is 0.0001%, more preferably 0.0003%, and still more preferably 0.0005%.
- Nickel (Ni) is an austenite-forming element and stabilizes austenite in the alloy material. If the Ni content is too low, the above effect cannot be sufficiently obtained even if the content of other elements is within the range of the present embodiment. On the other hand, if the Ni content is too high, even if the content of other elements is within the range of the present embodiment, the amount of dissolved N may decrease, and the strength of the alloy material may decrease. In addition, the manufacturing costs are considerably increased in this case. Therefore, the Ni content is 29.0-36.5%. A preferable lower limit of the Ni content is 29.5%, more preferably 30.0%. A preferable upper limit of the Ni content is 36.0%, more preferably 35.5%, further preferably 35.0%.
- Chromium (Cr) enhances the corrosion resistance of alloy materials. Cr further increases the amount of dissolved N and increases the strength of the alloy material. If the Cr content is too low, the above effect cannot be sufficiently obtained even if the content of other elements is within the range of the present embodiment. On the other hand, if the Cr content is too high, the hot workability of the alloy material deteriorates even if the content of other elements is within the range of the present embodiment. In this case, intermetallic compounds represented by the ⁇ phase are likely to be formed, and the corrosion resistance of the alloy material is lowered. Therefore, the Cr content is 23.0-27.5%. A preferable lower limit of the Cr content is 23.5%, more preferably 24.0%, further preferably 24.5%. A preferable upper limit of the Cr content is 27.0%, more preferably 26.5%.
- Mo 2.00-6.00% Molybdenum (Mo) contributes to the stabilization of the corrosion protection film and enhances the corrosion resistance of the alloy material. Mo further increases the strength of the alloy material through solid-solution strengthening. If the Mo content is too low, the above effect cannot be sufficiently obtained even if the content of other elements is within the range of the present embodiment. On the other hand, if the Mo content is too high, the hot workability of the alloy material deteriorates even if the content of other elements is within the range of the present embodiment. In addition, the manufacturing costs are considerably increased in this case. Therefore, the Mo content is 2.00-6.00%. A preferable lower limit of the Mo content is 2.20%, more preferably 2.40%, and still more preferably 2.50%. A preferable upper limit of the Mo content is 5.50%, more preferably 5.00%, still more preferably 4.50%, still more preferably 4.00%.
- Al 0.01-0.30%
- Aluminum (Al) deoxidizes the alloy. Al also forms oxides to fix oxygen and enhance the hot workability of the alloy material. Al also enhances the impact resistance and corrosion resistance of the alloy material. If the Al content is too low, the above effect cannot be sufficiently obtained even if the content of other elements is within the range of the present embodiment. On the other hand, if the Al content is too high, even if the contents of the other elements are within the range of the present embodiment, excessive Al oxides will be formed, and the hot workability of the alloy material will rather deteriorate. Therefore, the Al content is 0.01-0.30%. A preferable lower limit of the Al content is 0.02%, more preferably 0.03%, and still more preferably 0.05%. A preferable upper limit of the Al content is 0.25%, more preferably 0.20%.
- the Al content referred to in this specification means "acid-soluble Al", that is, sol. It means the content of Al.
- Rare earth element 0.016-0.100%
- a rare earth element (REM) fixes S in the alloy as a sulfide to render it harmless and enhances the hot workability of the alloy material.
- REM also enhances the corrosion resistance of alloy materials. If the REM content is too low, the above effect cannot be sufficiently obtained even if the content of other elements is within the range of the present embodiment. On the other hand, if the REM content is too high, coarse oxides are formed in the alloy material even if the content of other elements is within the range of the present embodiment, and the hot workability of the alloy material is rather reduced. . Therefore, the REM content is 0.016-0.100%.
- a preferred lower limit for the REM content is 0.018%, more preferably 0.020%.
- a preferred upper limit for the REM content is 0.080%, more preferably 0.060%, and still more preferably 0.050%.
- REM refers to scandium (Sc) with atomic number 21, yttrium (Y) with atomic number 39, and lanthanoid (La) with atomic number 57 to atomic number 71. It means one or more elements selected from the group consisting of lutetium (Lu). Moreover, the REM content in this specification means the total content of these elements.
- N 0.220-0.500% Nitrogen (N) enhances the strength of the alloy material through solid solution strengthening. If the N content is too low, the above effect cannot be sufficiently obtained even if the content of other elements is within the range of the present embodiment. On the other hand, if the N content is too high, a large amount of Cr nitride is formed even if the content of other elements is within the range of the present embodiment, and the corrosion resistance of the alloy material is lowered. Therefore, the N content is 0.220-0.500%. A preferable lower limit of the N content is 0.225%, more preferably 0.230%, still more preferably 0.235%, and still more preferably 0.240%. A preferable upper limit of the N content is 0.480%, more preferably 0.450%, and still more preferably 0.400%.
- Oxygen (O) is an unavoidable impurity. That is, the lower limit of the O content is over 0%. O combines with REM to form an oxide. Therefore, if the O content is too high, coarse oxides are formed in the alloy material even if the contents of other elements are within the range of the present embodiment, and the hot workability of the alloy material is deteriorated. In this case, the corrosion resistance of the alloy material is further lowered. Therefore, the O content is 0.010% or less. A preferable upper limit of the O content is 0.008%, more preferably 0.005%. It is preferable that the O content is as low as possible. However, the drastic reduction of the O content greatly increases the manufacturing cost. Therefore, when considering industrial production, the lower limit of the O content is preferably 0.0001%, more preferably 0.001%, and still more preferably 0.002%.
- the remainder of the chemical composition of the Fe--Cr--Ni alloy material according to this embodiment consists of Fe and impurities.
- the impurities are those that are mixed from ore, scrap, or the manufacturing environment as raw materials when industrially producing the Fe--Cr--Ni alloy material.
- - Means a permissible range that does not significantly adversely affect the function and effect of the Ni alloy material.
- the chemical composition of the Fe--Cr--Ni alloy material according to this embodiment may further contain one or more elements selected from the group consisting of W and Cu. All of these elements enhance the corrosion resistance of the alloy material.
- W 0-6.0% Tungsten (W) is an optional element and may not be contained. That is, the W content may be 0%. When contained, W contributes to the stabilization of the corrosion protection film and enhances the corrosion resistance of the alloy material. W further enhances the strength of the alloy material through solid solution strengthening. If even a small amount of W is contained, the above effect can be obtained to some extent. However, if the W content is too high, the hot workability of the alloy material deteriorates even if the content of other elements is within the range of the present embodiment. Therefore, the W content is 0-6.0%.
- the lower limit of the W content is preferably over 0%, more preferably 0.1%, still more preferably 0.5%, still more preferably 1.0%.
- the preferred upper limit of the W content is 5.5%, more preferably 5.0%, still more preferably 4.5%, still more preferably 4.0%.
- Cu 0-2.00% Copper (Cu) is an optional element and may not be contained. That is, the Cu content may be 0%. When contained, Cu contributes to the stabilization of the corrosion protection film and enhances the corrosion resistance of the alloy material. If even a small amount of Cu is contained, the above effects can be obtained to some extent. However, if the Cu content is too high, the hot workability of the alloy material deteriorates even if the content of other elements is within the range of the present embodiment. Therefore, the Cu content is 0-2.00%.
- the lower limit of the Cu content is preferably over 0%, more preferably 0.01%, still more preferably 0.02%, still more preferably 0.04%.
- a preferable upper limit of the Cu content is 1.80%, more preferably 1.50%, and still more preferably 1.00%.
- the chemical composition of the Fe--Cr--Ni alloy material according to this embodiment may further contain one or more elements selected from the group consisting of Ca and Mg. All of these elements enhance the hot workability of the alloy material.
- Ca 0-0.0100% Calcium (Ca) is an optional element and may not be contained. That is, the Ca content may be 0%. When Ca is contained, Ca fixes S in the alloy as a sulfide to render it harmless and enhances the hot workability of the alloy material. If even a little Ca is contained, the above effect can be obtained to some extent. However, if the Ca content is too high, even if the content of other elements is within the range of the present embodiment, coarse oxides are formed in the alloy material, and the hot workability of the alloy material is rather reduced. . Therefore, the Ca content is 0-0.0100%. A preferable lower limit of the Ca content is more than 0%, more preferably 0.0001%, still more preferably 0.0003%, still more preferably 0.0005%. A preferable upper limit of the Ca content is 0.0080%, more preferably 0.0060%, and still more preferably 0.0050%.
- Mg 0-0.0100%
- Mg Magnesium (Mg) is an optional element and may not be contained. That is, the Mg content may be 0%. When contained, Mg renders S in the alloy harmless by fixing it as a sulfide, and enhances the hot workability of the alloy material. If even a small amount of Mg is contained, the above effect can be obtained to some extent. However, if the Mg content is too high, coarse oxides are formed in the alloy material even if the content of other elements is within the range of the present embodiment, and the hot workability of the alloy material is rather reduced. . Therefore, the Mg content is 0-0.0100%.
- a preferable lower limit of the Mg content is more than 0%, more preferably 0.0001%, still more preferably 0.0003%, still more preferably 0.0005%.
- a preferable upper limit of the Mg content is 0.0080%, more preferably 0.0060%, and still more preferably 0.0040%.
- the chemical composition of the Fe--Cr--Ni alloy material according to this embodiment may further contain one or more elements selected from the group consisting of V, Ti, and Nb. All of these elements increase the strength of the alloy material.
- V 0-0.50% Vanadium (V) is an optional element and may not be contained. That is, the V content may be 0%. When contained, V forms carbonitrides and the like with C and N to increase the strength of the alloy material. If even a small amount of V is contained, the above effect can be obtained to some extent. However, if the V content is too high, carbonitrides and the like are excessively formed even if the contents of other elements are within the range of the present embodiment, and the ductility of the alloy material is lowered. Therefore, the V content is 0-0.50%.
- the lower limit of the V content is preferably over 0%, more preferably 0.01%, still more preferably 0.03%, still more preferably 0.05%.
- a preferable upper limit of the V content is 0.40%, more preferably 0.30%, and still more preferably 0.20%.
- Titanium (Ti) is an optional element and may not be contained. That is, the Ti content may be 0%. When contained, Ti forms carbonitrides and the like with C and N to increase the strength of the alloy material. If even a small amount of Ti is contained, the above effect can be obtained to some extent. However, if the Ti content is too high, carbonitrides and the like are excessively formed even if the content of other elements is within the range of the present embodiment, and the ductility of the alloy material is lowered. Therefore, the Ti content is 0-0.50%.
- the lower limit of the Ti content is preferably over 0%, more preferably 0.01%, still more preferably 0.03%, still more preferably 0.05%.
- the upper limit of the Ti content is preferably 0.40%, more preferably 0.30%, still more preferably 0.20%, still more preferably 0.10%.
- Niobium (Nb) is an optional element and may not be contained. That is, the Nb content may be 0%. When contained, Nb forms carbonitrides and the like with C and N to increase the strength of the alloy material. If even a small amount of Nb is contained, the above effect can be obtained to some extent. However, if the Nb content is too high, carbonitrides and the like are excessively formed even if the contents of other elements are within the range of the present embodiment, and the ductility of the alloy material is lowered. Therefore, the Nb content is 0-0.50%. A preferable lower limit of the Nb content is more than 0%, more preferably 0.01%, still more preferably 0.03%, still more preferably 0.05%. A preferable upper limit of the Nb content is 0.40%, more preferably 0.30%, still more preferably 0.20%, still more preferably 0.10%.
- the chemical composition of the Fe--Cr--Ni alloy material according to this embodiment may further contain Co.
- Co is an optional element and may not be contained. That is, the Co content may be 0%. When included, Co stabilizes the austenite in the alloy material. If even a small amount of Co is contained, the above effect can be obtained to some extent. However, if the Co content is too high, the manufacturing cost will increase significantly even if the content of other elements is within the range of this embodiment. Therefore, the Co content is 0-2.00%.
- the lower limit of the Co content is preferably over 0%, more preferably 0.01%, still more preferably 0.05%, still more preferably 0.10%.
- a preferable upper limit of the Co content is 1.50%, more preferably 1.20%, still more preferably 1.00%, still more preferably 0.50%.
- the Fe--Cr--Ni alloy material according to this embodiment has the chemical composition described above and further satisfies the following formula (1). 3 ⁇ Ni-2 ⁇ Cr-150 ⁇ N ⁇ 15.0 (1) Here, the content of the corresponding element is substituted for the symbol of the element in formula (1) in terms of % by mass.
- I is set to less than 15.0 on the assumption that it has the chemical composition described above.
- the Fe--Cr--Ni alloy material according to the present embodiment has a tensile yield strength of 758 MPa or more on the condition that other configurations of the present embodiment are satisfied, but the strength anisotropy is reduced. be able to.
- the preferred upper limit of I is 14.5, more preferably 14.0, still more preferably 13.5, still more preferably 13.0.
- the lower limit of I is not particularly limited, and is -70.0, for example.
- a preferred lower limit for I is -60.0.
- the Fe--Cr--Ni alloy material according to the present embodiment has the chemical composition described above, satisfies the formula (1), and has a standard deviation ⁇ of the grain size number of the austenite grains of 0.80 or less. As a result, the Fe--Cr--Ni alloy material according to this embodiment can reduce the strength anisotropy even if it has a tensile yield strength of 758 MPa or more.
- the alloy material has a region where coarse austenite grains (coarse grains) are unevenly distributed and a region where fine austenite grains (fine grains) are unevenly distributed. It is inferred that the region where the Further, when the tensile yield strength of the Fe—Cr—Ni alloy material having the chemical composition described above including formula (1) is 758 MPa or more, in the manufacturing process described later, cold working after heat treatment typified by solution treatment etc., and strain may be introduced into the alloy material. Therefore, anisotropy may occur in strength depending on the direction in which the strain is introduced. Specifically, when cold drawing or cold rolling is performed as cold working or the like, the tensile yield strength becomes greater than the compressive yield strength.
- the standard deviation ⁇ of the grain size number of the austenite grains is 0.80 or less for the Fe—Cr—Ni alloy material that has the chemical composition described above and satisfies the formula (1) by a mechanism other than the above mechanism, , even if it has a tensile yield strength of 758 MPa or more, it may be possible to reduce the strength anisotropy.
- the standard deviation ⁇ of the grain size number of the austenite grains is 0.80 or less, 758 MPa or more It is proved by the examples described later that the strength anisotropy can be reduced even if the tensile yield strength is .
- the preferred upper limit of the standard deviation ⁇ of the grain size number of austenite grains is 0.78, more preferably 0.75, and still more preferably 0.73.
- the smaller the standard deviation ⁇ of the grain size number of the austenite grains the better. That is, the lower limit of the standard deviation ⁇ of the grain size number of austenite grains may be 0.00, 0.05, 0.10, or 0.15. .
- the standard deviation ⁇ of the grain size number of the austenite grains can be obtained by the following method. Specifically, a test piece for microstructure observation is produced from the Fe--Cr--Ni alloy material according to the present embodiment.
- a test piece for microstructure observation is produced from the Fe--Cr--Ni alloy material according to the present embodiment.
- the shape of the alloy material is plate-like, a test piece is prepared from the central part of the plate thickness.
- the shape of the alloy material is tubular, a test piece is prepared from the central part of the thickness.
- the shape of the alloy material is a bar with a circular cross section, a test piece is produced from the R/2 position.
- the R/2 position means the center position of the radius R in a cross section perpendicular to the axial direction.
- the size of the test piece is not particularly limited as long as the observation surface described later can be obtained.
- magnification in microscopic observation can be appropriately set depending on the crystal grain size. Specifically, in microscopic observation, the magnification is set so that, for example, 50 or more crystal grains are included in the field of view.
- the Fe--Cr--Ni alloy material according to this embodiment has the chemical composition described above, satisfies the formula (1), and further has a standard deviation ⁇ of the grain size number of the austenite grains of 0.80 or less. As a result, the Fe--Cr--Ni alloy material according to this embodiment has a reduced strength anisotropy even though it has a tensile yield strength of 758 MPa or more.
- the strength anisotropy may increase.
- the alloy material according to the present embodiment can reduce the stacking fault energy by further satisfying formula (1) with the chemical composition described above.
- the alloy material according to the present embodiment has a standard deviation ⁇ of the grain size number of the austenite grains of 0.80 or less, so that the manifestation of strength anisotropy due to variations in the grain size can be suppressed. Therefore, the alloy material according to the present embodiment can reduce strength anisotropy even if it has a high tensile yield strength of 758 MPa or more.
- the preferred lower limit of the tensile yield strength is 800 MPa, more preferably 830 MPa, still more preferably 860 MPa.
- the upper limit of tensile yield strength is not particularly limited, and may be, for example, 1240 MPa, 1200 MPa, or 1150 MPa.
- the compressive yield strength is not particularly limited in the Fe--Cr--Ni alloy material of the present embodiment.
- the lower limit of compressive yield strength may be, for example, 606 MPa, 630 MPa, or 660 MPa.
- the upper limit of compressive yield strength may be, for example, less than 1240 MPa, less than 1200 MPa, or less than 1150 MPa.
- the method for measuring the tensile yield strength and the compression yield strength in this embodiment will be described later.
- the Fe--Cr--Ni alloy material according to this embodiment has the chemical composition described above, satisfies the formula (1), and further has a standard deviation ⁇ of the grain size number of the austenite grains of 0.80 or less. As a result, the Fe--Cr--Ni alloy material according to this embodiment has a reduced strength anisotropy even though it has a tensile yield strength of 758 MPa or more.
- the strength anisotropy is reduced means that the anisotropy index AI is 0.800 or more.
- the anisotropy index AI means the ratio of the compression yield strength (compression YS) to the tensile yield strength (tensile YS) (compression YS/tensile YS).
- a preferable lower limit of the anisotropy index AI is 0.820, more preferably 0.830, and still more preferably 0.850.
- the upper limit of the anisotropy index AI is substantially less than 1.000, preferably 0.999, still more preferably 0.990, still more preferably 0.980.
- the anisotropy index AI, tensile yield strength, and compressive yield strength of the Fe--Cr--Ni alloy material according to this embodiment can be obtained by the following methods. First, the tensile yield strength and compressive yield strength of the Fe--Cr--Ni alloy material according to this embodiment are obtained.
- the tensile yield strength of Fe--Cr--Ni according to this embodiment can be obtained by the following method.
- a tensile test is performed by a method conforming to ASTM E8/E8M (2021).
- a round bar test piece is produced from the alloy material according to the present embodiment.
- the shape of the alloy material is plate-like, a round bar test piece is prepared from the center of the plate thickness.
- a round bar test piece is produced from the center of the thickness.
- the shape of the alloy material is a bar with a circular cross section, a round bar test piece is produced from the R/2 position.
- the size of the round bar test piece is, for example, a parallel portion diameter of 4 mm and a gauge length of 20 mm.
- the axial direction of the round bar test piece is parallel to the rolling direction of the alloy material.
- a tensile test is performed at room temperature (25° C.) in the atmosphere, and the obtained 0.2% offset yield strength is defined as the tensile yield strength (MPa).
- the tensile yield strength (MPa) is determined by rounding off the obtained value to the first decimal place.
- the compressive yield strength of the Fe--Cr--Ni alloy material according to this embodiment can be obtained by the following method.
- a compression test is performed by a method conforming to ASTM E9 (2019).
- a cylindrical test piece is produced from the alloy material according to this embodiment.
- the shape of the alloy material is plate-like, a cylindrical test piece is prepared from the central portion of the plate thickness.
- a cylindrical test piece is prepared from the center of the thickness.
- the shape of the alloy material is a bar with a circular cross section, a cylindrical test piece is produced from the R/2 position.
- the size of the cylindrical test piece is, for example, a parallel portion diameter of 4 mm and a length of 8 mm.
- the axial direction of the cylindrical test piece is parallel to the rolling direction of the alloy material.
- a compression test is performed at normal temperature (25° C.) in the air, and the obtained 0.2% offset yield strength is defined as compression yield strength (MPa).
- the compressive yield strength (MPa) is obtained by rounding off the obtained value to the first decimal place.
- the anisotropy index AI is obtained by rounding off the obtained value to the fourth decimal place.
- the method of manufacturing seamless alloy pipes includes a process of preparing a material (material preparation process), a process of manufacturing a mother tube from the material (hot working process), and a process of cold working the manufactured mother tube. (first cold working step), a step of performing solution treatment (solution treatment step), and a step of cold working the solution treated mother pipe (second cold working step). and
- the method for producing the Fe--Cr--Ni alloy material according to this embodiment is not limited to the production method described below.
- an Fe--Cr--Ni alloy having the chemical composition described above is melted.
- the Fe--Cr--Ni alloy may be melted by an electric furnace or by an Ar-- O.sub.2 mixed gas bottom blown decarburization furnace (AOD furnace). Alternatively, it may be melted in a vacuum decarburizing furnace (VOD furnace).
- the smelted Fe--Cr--Ni alloy may be made into ingots by ingot casting, or into slabs, blooms, or billets by continuous casting. If desired, the slab, bloom or ingot may be bloomed to produce a billet.
- a raw material (slab, bloom, or billet) is manufactured by the above steps.
- the prepared material is hot worked to produce an intermediate alloy material (base tube).
- the hot working method is not particularly limited, and a known method may be used. That is, in the present embodiment, the hot working may be hot rolling, hot extrusion, or hot forging. In hot working, the heating temperature of the material is, for example, 1100-1300.degree.
- the Mannesmann method when carried out as hot working to manufacture a mother tube, a round billet is pierced and rolled with a piercing machine.
- the perforation ratio is not particularly limited, and is, for example, 1.0 to 4.0.
- the pierced-rolled mother pipe may be hot-rolled by a mandrel mill, a reducer, a sizing mill, or the like to obtain a mother pipe.
- intermediate alloy material refers to a plate-like alloy material when the final product is an alloy plate, a blank pipe when the final product is an alloy pipe, and an intermediate alloy material whose final product has a circular cross section.
- the actual material is an alloy material with a circular cross section perpendicular to the axial direction.
- the alloy material is a solid material with a circular cross section
- the material is first heated in a heating furnace.
- the heating temperature is not particularly limited, it is, for example, 1100 to 1300.degree.
- the raw material extracted from the heating furnace is subjected to hot working to produce an intermediate alloy material having a circular cross section perpendicular to the axial direction.
- Hot working is, for example, blooming by a blooming mill or hot rolling by a continuous rolling mill.
- a horizontal stand having a pair of grooved rolls arranged vertically and a vertical stand having a pair of grooved rolls arranged horizontally are arranged alternately.
- the alloy material is an alloy plate
- the material is first heated in a heating furnace.
- the heating temperature is not particularly limited, it is, for example, 1100 to 1300.degree.
- the raw material extracted from the heating furnace is subjected to hot rolling using a blooming mill and a continuous rolling mill to produce an intermediate alloy material in the shape of an alloy plate.
- first cold working process cold working is performed on the produced intermediate alloy material (base tube).
- the cold working may be cold drawing or cold rolling.
- a continuous rolling mill with multiple cold rolling stands may be used. That is, in the first cold working step according to the present embodiment, known cold working may be performed under known conditions.
- the temperature of the intermediate alloy material (base tube) during cold working may be room temperature to 300° C., for example.
- the preferred cold working rate R1 (%) is 5% or more.
- the cold working rate R1 means the reduction rate of the cross-sectional area of the intermediate alloy material (base pipe) from before the start of the first cold working step to after the end of the first cold working step.
- the area of the cross section of the mother tube before the first cold working process is defined as S0(1)
- the area of the cross section of the mother tube after the first cold working process is defined as S1(1).
- the cold working rate R1 (%) in the first cold working step is defined by the following formula (A).
- R1 (%) 100 (1-S1(1)/S0(1)) (A)
- the cold working rate R1 in the first cold working step is preferably 5% or more.
- the upper limit of the cold working rate R1 in the first cold working step is not particularly limited, but is, for example, 30%.
- the cold-worked intermediate alloy material (base pipe) is subjected to solution treatment.
- the solution treatment method is not particularly limited, and a known method may be used.
- a blank tube is put into a heat treatment furnace, held at a desired temperature, and then quenched.
- the temperature at which solution treatment is performed (solution treatment temperature) is the temperature at which solution treatment is performed. It means the temperature (° C.) of the heat treatment furnace for carrying out.
- the time (holding time) during which the solution treatment is performed means the time during which the blank tube is held at the solution treatment temperature.
- the residence time at 900 to 1050° C. is set to 9 minutes or longer.
- the residence time at 900 to 1,050° C. is too short, temperature variations in the intermediate alloy material tend to occur, and recrystallization and grain growth tend to become non-uniform.
- the residence time at 900 to 1050° C. is 9 minutes or more, recrystallization and grain growth tend to be uniform. In this case, recrystallization is further facilitated in the heat treatment at 1060° C. or higher.
- the standard deviation ⁇ of the grain size number of the manufactured Fe—Cr—Ni alloy material can be stably reduced.
- the residence time at 900 to 1050° C. during heating in the solution treatment step is 9 minutes or longer.
- a more preferable lower limit of the residence time at 900 to 1050° C. during heating in the solution treatment step is 10 minutes. If the residence time at 900 to 1050° C. is too long, the above effect is saturated. Therefore, in the present embodiment, the upper limit of the residence time at 900 to 1050° C. during heating in the solution treatment step is, for example, 30 minutes.
- the solution temperature in the solution treatment process according to this embodiment is 1060 to 1300°C. If the solution heat treatment temperature is too low, precipitates (for example, the ⁇ phase, which is an intermetallic compound, etc.) may remain in the mother tube after the solution heat treatment. In this case, the corrosion resistance of the manufactured Fe--Cr--Ni alloy material may deteriorate. On the other hand, if the solution heat treatment temperature is too high, the effect of the solution heat treatment is saturated. Therefore, in the present embodiment, it is preferable to set the solution temperature in the solution treatment process to 1060 to 1300.degree.
- the holding time is not particularly limited, and it may be carried out under well-known conditions.
- the retention time is, for example, 5-180 minutes.
- a rapid cooling method is, for example, water cooling.
- the solution-treated intermediate alloy material (base tube) is cold worked to produce an Fe--Cr--Ni alloy material.
- the cold working may be cold drawing or cold rolling. That is, in the second cold working step according to the present embodiment as well, well-known cold working may be performed under well-known conditions as in the first cold working step.
- the temperature of the intermediate alloy material (base tube) during cold working may be room temperature to 300° C., for example.
- the preferred cold working rate R2 (%) is 5 to 50%.
- the cold working rate R2 means the reduction rate of the cross-sectional area of the intermediate alloy material (base pipe) from before the start of the second cold working step to after the end of the second cold working step.
- the area of the cross section of the mother pipe before the second cold working process is defined as S0(2)
- the area of the cross section of the Fe--Cr--Ni alloy material after the second cold working process is defined as S1.
- the cold working rate R2 (%) is defined by the following formula (B).
- R2 (%) 100 (1-S1(2)/S0(2)) (B)
- the cold working rate R2 is 5 to 50%, the Fe--Cr--Ni alloy material after the second cold working step can stably have a tensile yield strength of 758 MPa or more. Therefore, it is preferable to set the cold working rate R2 to 5 to 50%.
- the cold working rate R1 (%) in the first cold working step and the cold working rate R2 (%) in the second cold working step satisfy the above ranges. is preferable, and the total cold working rate in the manufacturing process is not particularly limited.
- the Fe--Cr--Ni alloy material according to this embodiment can be produced by the above production method.
- the method for manufacturing a seamless alloy pipe has been described as an example.
- the Fe--Cr--Ni alloy material according to this embodiment may have other shapes such as a plate shape.
- a manufacturing method for other shapes such as a plate shape also includes, for example, a material preparation step, a hot working step, a solution heat treatment step, and a cold working step, similar to the manufacturing method described above.
- the manufacturing method described above is merely an example, and other manufacturing methods may be used.
- Table 2 shows the element content of each test number and I obtained from the above formula (1).
- Solution treatment was performed on the alloy plate of each test number that had undergone the first cold working.
- the alloy plate that has undergone the first cold working is heated and held at the solution temperature (° C.) shown in Table 2 for the holding time (minutes) shown in Table 2, and then water-cooled. bottom.
- the residence time at 900 to 1050° C. when heating to the solution temperature is shown in Table 2, “residence time (minutes)” column.
- Table 2 shows the cold working rate R2 (%) of the second cold working performed on the alloy plate of each test number. In test numbers 2 and 5, cold drawing was performed as cold working. In each test number except test numbers 2 and 5, cold rolling was performed as cold working.
- Table 2 shows the total cold working rate R (%) of the cold working performed on the alloy sheets of each test number.
- the total cold working rate R (%) is defined by the following formula (C).
- R (%) R1 (%) + R2 (%) (C)
- the cold working rate (%) of the first cold working is substituted for R1 in the formula (C)
- the cold working rate (%) of the second cold working is substituted for R2. be.
- a strength anisotropy measurement test was performed on the alloy plate of each test number to obtain an anisotropy index AI. Specifically, first, tensile yield strength (MPa) and compressive yield strength (MPa) were obtained by the method described above. Specifically, a round bar test piece for a tensile test and a cylindrical test piece for a compression test were produced from the plate thickness central portion of the alloy plate of each test number. The round bar test piece had a parallel portion diameter of 4 mm and a gauge length of 20 mm. The cylindrical specimen had a parallel section diameter of 4 mm and a length of 8 mm. The axial direction of the round bar test piece and the cylindrical test piece was parallel to the rolling direction of the alloy plate.
- a tensile test was performed on the round bar test piece for the tensile test at room temperature (25°C) in the atmosphere according to ASTM E8/E8M (2021). The 0.2% offset yield strength obtained by the tensile test was taken as the tensile yield strength (MPa). Furthermore, a compression test was performed on the cylindrical test piece for the compression test at room temperature (25°C) in the air by a method conforming to ASTM E9 (2019). The 0.2% offset yield strength obtained by the compression test was taken as the compression yield strength (MPa).
- the ratio (compression YS/tensile YS) of the compression yield strength (compression YS) to the obtained tensile yield strength (tensile YS) was determined and used as an anisotropy index AI.
- the obtained tensile yield strength is indicated in the "tensile YS (MPa)” column
- the compressive yield strength is indicated in the “compressive YS (MPa)” column
- the anisotropic index AI is indicated in the "anisotropic index AI” column.
- the alloy plates of test numbers 15 to 18 had too low a N content. Furthermore, I was 15.0 or more and did not satisfy the formula (1). As a result, although these alloy sheets had a tensile yield strength of 758 MPa or more, the anisotropy index AI was less than 0.800, indicating that the strength anisotropy was not reduced.
- the alloy plate of test number 19 had too high a Ni content. Furthermore, I was 15.0 or more and did not satisfy the formula (1). As a result, although this alloy plate had a tensile yield strength of 758 MPa or more, the anisotropy index AI was less than 0.800, indicating that the strength anisotropy was not reduced.
- the alloy plate of test number 20 had too low Cr content and too low N content. Furthermore, I was 15.0 or more and did not satisfy the formula (1). As a result, although this alloy plate had a tensile yield strength of 758 MPa or more, the anisotropy index AI was less than 0.800, indicating that the strength anisotropy was not reduced.
- the alloy plates of test numbers 21 to 23 had I of 15.0 or more and did not satisfy formula (1). As a result, although these alloy sheets had a tensile yield strength of 758 MPa or more, the anisotropy index AI was less than 0.800, indicating that the strength anisotropy was not reduced.
- the cold working rate R1 in the first cold working step was too low.
- the standard deviation ⁇ of the grain size number of these alloy sheets exceeded 0.80.
- the anisotropy index AI was less than 0.800, indicating that the strength anisotropy was not reduced.
- the alloy plates of test numbers 26 and 27 had too short a residence time at 900 to 1050°C during heating in the solution treatment process. As a result, the standard deviation ⁇ of the grain size number of these alloy sheets exceeded 0.80. As a result, although these alloy sheets had a tensile yield strength of 758 MPa or more, the anisotropy index AI was less than 0.800, indicating that the strength anisotropy was not reduced.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Heat Treatment Of Steel (AREA)
Abstract
Description
質量%で、
C:0.030%以下、
Si:0.01~1.00%、
Mn:0.01~2.00%、
P:0.030%以下、
S:0.0050%以下、
Ni:29.0~36.5%、
Cr:23.0~27.5%、
Mo:2.00~6.00%、
Al:0.01~0.30%、
希土類元素:0.016~0.100%、
N:0.220~0.500%、
O:0.010%以下、
W:0~6.0%、
Cu:0~2.00%、
Ca:0~0.0100%、
Mg:0~0.0100%、
V:0~0.50%、
Ti:0~0.50%、
Nb:0~0.50%、
Co:0~2.00%、及び、
残部がFe及び不純物からなり、
式(1)を満たし、
ミクロ組織において、オーステナイト粒の結晶粒度番号の標準偏差が0.80以下であり、
引張降伏強度が758MPa以上である。
3×Ni-2×Cr-150×N<15.0 (1)
ここで、式(1)中の元素記号には、対応する元素の含有量が質量%で代入される。
上述の化学組成を有する合金材では、Ni含有量が高いことから、積層欠陥エネルギーが大きくなりやすい。積層欠陥エネルギーが大きい場合、付与された歪に対する加工硬化の程度が小さくなる。つまり、積層欠陥エネルギーを小さくできれば、歪に対して加工硬化がされやすくなる。その結果、製造過程において付与される歪の異方性の影響を受けにくくなり、合金材の強度異方性を低減できる可能性がある。
3×Ni-2×Cr-150×N<15.0 (1)
ここで、式(1)中の元素記号には、対応する元素の含有量が質量%で代入される。
まず、上述の化学組成を有するFe-Cr-Ni合金材は、オーステナイトからなるミクロ組織を有する。本明細書において、「オーステナイトからなるミクロ組織」とは、オーステナイト以外の相が、無視できるほど少ないことを意味する。そこで本発明者らは、式(1)を含む上述の化学組成を有し、758MPa以上の引張降伏強度を有するFe-Cr-Ni合金材のオーステナイト粒に着目して、合金材の強度異方性を低減する手法について詳細に検討した。
質量%で、
C:0.030%以下、
Si:0.01~1.00%、
Mn:0.01~2.00%、
P:0.030%以下、
S:0.0050%以下、
Ni:29.0~36.5%、
Cr:23.0~27.5%、
Mo:2.00~6.00%、
Al:0.01~0.30%、
希土類元素:0.016~0.100%、
N:0.220~0.500%、
O:0.010%以下、
W:0~6.0%、
Cu:0~2.00%、
Ca:0~0.0100%、
Mg:0~0.0100%、
V:0~0.50%、
Ti:0~0.50%、
Nb:0~0.50%、
Co:0~2.00%、及び、
残部がFe及び不純物からなり、
式(1)を満たし、
ミクロ組織において、オーステナイト粒の結晶粒度番号の標準偏差が0.80以下であり、
引張降伏強度が758MPa以上である、
Fe-Cr-Ni合金材。
3×Ni-2×Cr-150×N<15.0 (1)
ここで、式(1)中の元素記号には、対応する元素の含有量が質量%で代入される。
[1]に記載のFe-Cr-Ni合金材であって、
W:0.1~6.0%、
Cu:0.01~2.00%、
Ca:0.0001~0.0100%、
Mg:0.0001~0.0100%、
V:0.01~0.50%、
Ti:0.01~0.50%、
Nb:0.01~0.50%、及び、
Co:0.01~2.00%からなる群から選択される1元素以上を含有する、
Fe-Cr-Ni合金材。
油井用継目無合金管である、
[1]又は[2]に記載のFe-Cr-Ni合金材。
本実施形態によるFe-Cr-Ni合金材の化学組成は、次の元素を含有する。
炭素(C)は、不可避に含有される不純物である。すなわち、C含有量の下限は0%超である。C含有量が高すぎれば、他の元素含有量が本実施形態の範囲内であっても、結晶粒界にCr炭化物が生成する。Cr炭化物は、粒界での割れ感受性を高める。その結果、合金材の耐食性が低下する。したがって、C含有量は0.030%以下である。C含有量の好ましい上限は0.028%であり、さらに好ましくは0.025%であり、さらに好ましくは0.020%であり、さらに好ましくは0.015%である。C含有量はなるべく低い方が好ましい。しかしながら、C含有量の極端な低減は、製造コストを大幅に高める。したがって、工業生産を考慮した場合、C含有量の好ましい下限は0.001%であり、さらに好ましくは0.003%である。
ケイ素(Si)は合金を脱酸する。Si含有量が低すぎれば、他の元素含有量が本実施形態の範囲内であっても、上記効果が十分に得られない。一方、Si含有量が高すぎれば、他の元素含有量が本実施形態の範囲内であっても、合金材の熱間加工性が低下する。したがって、Si含有量は0.01~1.00%である。Si含有量の好ましい下限は0.05%であり、さらに好ましくは0.10%であり、さらに好ましくは0.20%である。Si含有量の好ましい上限は0.80%であり、さらに好ましくは0.60%であり、さらに好ましくは0.50%である。
マンガン(Mn)は合金を脱酸し、脱硫する。Mn含有量が低すぎれば、他の元素含有量が本実施形態の範囲内であっても、上記効果が十分に得られない。一方、Mn含有量が高すぎれば、他の元素含有量が本実施形態の範囲内であっても、合金材の熱間加工性が低下する。したがって、Mn含有量は0.01~2.00%である。Mn含有量の好ましい下限は0.10%であり、さらに好ましくは0.20%であり、さらに好ましくは0.30%である。Mn含有量の好ましい上限は1.80%であり、さらに好ましくは1.50%であり、さらに好ましくは1.20%であり、さらに好ましくは1.00%であり、さらに好ましくは0.80%である。
燐(P)は、不可避に含有される不純物である。すなわち、P含有量の下限は0%超である。Pは粒界に偏析する。そのため、P含有量が高すぎれば、他の元素含有量が本実施形態の範囲内であっても、合金材の熱間加工性及び耐食性が低下する。したがって、P含有量は0.030%以下である。P含有量の好ましい上限は0.025%であり、さらに好ましくは0.020%である。P含有量はなるべく低い方が好ましい。ただし、P含有量の極端な低減は、製造コストを大幅に高める。したがって、工業生産を考慮した場合、P含有量の好ましい下限は0.001%であり、さらに好ましくは0.002%であり、さらに好ましくは0.003%である。
硫黄(S)は、不可避に含有される不純物である。すなわち、S含有量の下限は0%超である。Sは粒界に偏析する。そのため、S含有量が高すぎれば、他の元素含有量が本実施形態の範囲内であっても、合金材の熱間加工性が低下する。したがって、S含有量は0.0050%以下である。S含有量の好ましい上限は0.0040%であり、さらに好ましくは0.0030%であり、さらに好ましくは0.0020%である。S含有量はなるべく低い方が好ましい。ただし、S含有量の極端な低減は、製造コストを大幅に高める。したがって、工業生産を考慮した場合、S含有量の好ましい下限は0.0001%であり、さらに好ましくは0.0003%であり、さらに好ましくは0.0005%である。
ニッケル(Ni)はオーステナイト形成元素であり、合金材中のオーステナイトを安定化する。Ni含有量が低すぎれば、他の元素含有量が本実施形態の範囲内であっても、上記効果が十分に得られない。一方、Ni含有量が高すぎれば、他の元素含有量が本実施形態の範囲内であっても、固溶N量が低下して、合金材の強度が低下する場合がある。この場合さらに、製造コストが大幅に高まる。したがって、Ni含有量は29.0~36.5%である。Ni含有量の好ましい下限は29.5%であり、さらに好ましくは30.0%である。Ni含有量の好ましい上限は36.0%であり、さらに好ましくは35.5%であり、さらに好ましくは35.0%である。
クロム(Cr)は、合金材の耐食性を高める。Crはさらに、固溶N量を高め、合金材の強度を高める。Cr含有量が低すぎれば、他の元素含有量が本実施形態の範囲内であっても、上記効果が十分に得られない。一方、Cr含有量が高すぎれば、他の元素含有量が本実施形態の範囲内であっても、合金材の熱間加工性が低下する。この場合さらに、σ相に代表される金属間化合物が形成されやすくなり、合金材の耐食性が低下する。したがって、Cr含有量は23.0~27.5%である。Cr含有量の好ましい下限は23.5%であり、さらに好ましくは24.0%であり、さらに好ましくは24.5%である。Cr含有量の好ましい上限は27.0%であり、さらに好ましくは26.5%である。
モリブデン(Mo)は、腐食保護皮膜の安定化に寄与し、合金材の耐食性を高める。Moはさらに、固溶強化により合金材の強度を高める。Mo含有量が低すぎれば、他の元素含有量が本実施形態の範囲内であっても、上記効果が十分に得られない。一方、Mo含有量が高すぎれば、他の元素含有量が本実施形態の範囲内であっても、合金材の熱間加工性が低下する。この場合さらに、製造コストが大幅に高まる。したがって、Mo含有量は2.00~6.00%である。Mo含有量の好ましい下限は2.20%であり、さらに好ましくは2.40%であり、さらに好ましくは2.50%である。Mo含有量の好ましい上限は5.50%であり、さらに好ましくは5.00%であり、さらに好ましくは4.50%であり、さらに好ましくは4.00%である。
アルミニウム(Al)は、合金を脱酸する。Alはさらに、酸化物を生成して酸素を固定し、合金材の熱間加工性を高める。Alはさらに、合金材の耐衝撃特性及び耐食性を高める。Al含有量が低すぎれば、他の元素含有量が本実施形態の範囲内であっても、上記効果が十分に得られない。一方、Al含有量が高すぎれば、他の元素含有量が本実施形態の範囲内であっても、Al酸化物が過剰に生成して、合金材の熱間加工性がかえって低下する。したがって、Al含有量は0.01~0.30%である。Al含有量の好ましい下限は0.02%であり、さらに好ましくは0.03%であり、さらに好ましくは0.05%である。Al含有量の好ましい上限は0.25%であり、さらに好ましくは0.20%である。なお、本明細書にいうAl含有量は、「酸可溶Al」、つまり、sol.Alの含有量を意味する。
希土類元素(REM)は、合金中のSを硫化物として固定することで無害化し、合金材の熱間加工性を高める。REMはさらに、合金材の耐食性を高める。REM含有量が低すぎれば、他の元素含有量が本実施形態の範囲内であっても、上記効果が十分に得られない。一方、REM含有量が高すぎれば、他の元素含有量が本実施形態の範囲内であっても、合金材中に粗大な酸化物が形成され、合金材の熱間加工性がかえって低下する。したがって、REM含有量は0.016~0.100%である。REM含有量の好ましい下限は0.018%であり、さらに好ましくは0.020%である。REM含有量の好ましい上限は0.080%であり、さらに好ましくは0.060%であり、さらに好ましくは0.050%である。
窒素(N)は、固溶強化により合金材の強度を高める。N含有量が低すぎれば、他の元素含有量が本実施形態の範囲内であっても、上記効果が十分に得られない。一方、N含有量が高すぎれば、他の元素含有量が本実施形態の範囲内であっても、Cr窒化物が多量に形成され、合金材の耐食性が低下する。したがって、N含有量は0.220~0.500%である。N含有量の好ましい下限は0.225%であり、さらに好ましくは0.230%であり、さらに好ましくは0.235%であり、さらに好ましくは0.240%である。N含有量の好ましい上限は0.480%であり、さらに好ましくは0.450%であり、さらに好ましくは0.400%である。
酸素(O)は、不可避に含有される不純物である。すなわち、O含有量の下限は0%超である。OはREMと結合して、酸化物を形成する。そのため、O含有量が高すぎれば、他の元素含有量が本実施形態の範囲内であっても、合金材中に粗大な酸化物が形成され、合金材の熱間加工性が低下する。この場合さらに、合金材の耐食性が低下する。したがって、O含有量は0.010%以下である。O含有量の好ましい上限は0.008%であり、さらに好ましくは0.005%である。O含有量はなるべく低い方が好ましい。ただし、O含有量の極端な低減は、製造コストを大幅に高める。したがって、工業生産を考慮した場合、O含有量の好ましい下限は0.0001%であり、さらに好ましくは0.001%であり、さらに好ましくは0.002%である。
本実施形態によるFe-Cr-Ni合金材の化学組成はさらに、W、及び、Cuからなる群から選択される1元素以上を含有してもよい。これらの元素はいずれも、合金材の耐食性を高める。
タングステン(W)は任意元素であり、含有されなくてもよい。つまり、W含有量は0%であってもよい。含有される場合、Wは腐食保護皮膜の安定化に寄与し、合金材の耐食性を高める。Wはさらに、固溶強化により合金材の強度を高める。Wが少しでも含有されれば、上記効果がある程度得られる。しかしながら、W含有量が高すぎれば、他の元素含有量が本実施形態の範囲内であっても、合金材の熱間加工性が低下する。したがって、W含有量は0~6.0%である。W含有量の好ましい下限は0%超であり、さらに好ましくは0.1%であり、さらに好ましくは0.5%であり、さらに好ましくは1.0%である。W含有量の好ましい上限は5.5%であり、さらに好ましくは5.0%であり、さらに好ましくは4.5%であり、さらに好ましくは4.0%である。
銅(Cu)は任意元素であり、含有されなくてもよい。つまり、Cu含有量は0%であってもよい。含有される場合、Cuは腐食保護皮膜の安定化に寄与し、合金材の耐食性を高める。Cuが少しでも含有されれば、上記効果がある程度得られる。しかしながら、Cu含有量が高すぎれば、他の元素含有量が本実施形態の範囲内であっても、合金材の熱間加工性が低下する。したがって、Cu含有量は0~2.00%である。Cu含有量の好ましい下限は0%超であり、さらに好ましくは0.01%であり、さらに好ましくは0.02%であり、さらに好ましくは0.04%である。Cu含有量の好ましい上限は1.80%であり、さらに好ましくは1.50%であり、さらに好ましくは1.00%である。
カルシウム(Ca)は任意元素であり、含有されなくてもよい。つまり、Ca含有量は0%であってもよい。含有される場合、Caは合金中のSを硫化物として固定することで無害化し、合金材の熱間加工性を高める。Caが少しでも含有されれば、上記効果がある程度得られる。しかしながら、Ca含有量が高すぎれば、他の元素含有量が本実施形態の範囲内であっても、合金材中に粗大な酸化物が形成され、合金材の熱間加工性がかえって低下する。したがって、Ca含有量は0~0.0100%である。Ca含有量の好ましい下限は0%超であり、さらに好ましくは0.0001%であり、さらに好ましくは0.0003%であり、さらに好ましくは0.0005%である。Ca含有量の好ましい上限は0.0080%であり、さらに好ましくは0.0060%であり、さらに好ましくは0.0050%である。
マグネシウム(Mg)は任意元素であり、含有されなくてもよい。つまり、Mg含有量は0%であってもよい。含有される場合、Mgは合金中のSを硫化物として固定することで無害化し、合金材の熱間加工性を高める。Mgが少しでも含有されれば、上記効果がある程度得られる。しかしながら、Mg含有量が高すぎれば、他の元素含有量が本実施形態の範囲内であっても、合金材中に粗大な酸化物が形成され、合金材の熱間加工性がかえって低下する。したがって、Mg含有量は0~0.0100%である。Mg含有量の好ましい下限は0%超であり、さらに好ましくは0.0001%であり、さらに好ましくは0.0003%であり、さらに好ましくは0.0005%である。Mg含有量の好ましい上限は0.0080%であり、さらに好ましくは0.0060%であり、さらに好ましくは0.0040%である。
バナジウム(V)は任意元素であり、含有されなくてもよい。つまり、V含有量は0%であってもよい。含有される場合、VはCやNと炭窒化物等を形成し、合金材の強度を高める。Vが少しでも含有されれば、上記効果がある程度得られる。しかしながら、V含有量が高すぎれば、他の元素含有量が本実施形態の範囲内であっても、炭窒化物等が過剰に形成され、合金材の延性が低下する。したがって、V含有量は0~0.50%である。V含有量の好ましい下限は0%超であり、さらに好ましくは0.01%であり、さらに好ましくは0.03%であり、さらに好ましくは0.05%である。V含有量の好ましい上限は0.40%であり、さらに好ましくは0.30%であり、さらに好ましくは0.20%である。
チタン(Ti)は任意元素であり、含有されなくてもよい。つまり、Ti含有量は0%であってもよい。含有される場合、TiはCやNと炭窒化物等を形成し、合金材の強度を高める。Tiが少しでも含有されれば、上記効果がある程度得られる。しかしながら、Ti含有量が高すぎれば、他の元素含有量が本実施形態の範囲内であっても、炭窒化物等が過剰に形成され、合金材の延性が低下する。したがって、Ti含有量は0~0.50%である。Ti含有量の好ましい下限は0%超であり、さらに好ましくは0.01%であり、さらに好ましくは0.03%であり、さらに好ましくは0.05%である。Ti含有量の好ましい上限は0.40%であり、さらに好ましくは0.30%であり、さらに好ましくは0.20%であり、さらに好ましくは0.10%である。
ニオブ(Nb)は任意元素であり、含有されなくてもよい。つまり、Nb含有量は0%であってもよい。含有される場合、NbはCやNと炭窒化物等を形成し、合金材の強度を高める。Nbが少しでも含有されれば、上記効果がある程度得られる。しかしながら、Nb含有量が高すぎれば、他の元素含有量が本実施形態の範囲内であっても、炭窒化物等が過剰に形成され、合金材の延性が低下する。したがって、Nb含有量は0~0.50%である。Nb含有量の好ましい下限は0%超であり、さらに好ましくは0.01%であり、さらに好ましくは0.03%であり、さらに好ましくは0.05%である。Nb含有量の好ましい上限は0.40%であり、さらに好ましくは0.30%であり、さらに好ましくは0.20%であり、さらに好ましくは0.10%である。
コバルト(Co)は任意元素であり、含有されなくてもよい。つまり、Co含有量は0%であってもよい。含有される場合、Coは合金材中のオーステナイトを安定化する。Coが少しでも含有されれば、上記効果がある程度得られる。しかしながら、Co含有量が高すぎれば、他の元素含有量が本実施形態の範囲内であっても、製造コストが大幅に高まる。したがって、Co含有量は0~2.00%である。Co含有量の好ましい下限は0%超であり、さらに好ましくは0.01%であり、さらに好ましくは0.05%であり、さらに好ましくは0.10%である。Co含有量の好ましい上限は1.50%であり、さらに好ましくは1.20%であり、さらに好ましくは1.00%であり、さらに好ましくは0.50%である。
本実施形態によるFe-Cr-Ni合金材は、上述の化学組成を有し、さらに、次の式(1)を満たす。
3×Ni-2×Cr-150×N<15.0 (1)
ここで、式(1)中の元素記号には、対応する元素の含有量が質量%で代入される。
本実施形態によるFe-Cr-Ni合金材は、上述の化学組成を有し、式(1)を満たし、さらに、オーステナイト粒の結晶粒度番号の標準偏差σを0.80以下とする。その結果、本実施形態によるFe-Cr-Ni合金材は、758MPa以上の引張降伏強度を有していても、強度異方性を低減できる。
本実施形態によるFe-Cr-Ni合金材は、上述の化学組成を有し、式(1)を満たし、さらに、オーステナイト粒の結晶粒度番号の標準偏差σが0.80以下である。その結果、本実施形態によるFe-Cr-Ni合金材は、758MPa以上の引張降伏強度を有していても、強度異方性が低減されている。
本実施形態によるFe-Cr-Ni合金材は、上述の化学組成を有し、式(1)を満たし、さらに、オーステナイト粒の結晶粒度番号の標準偏差σが0.80以下である。その結果、本実施形態によるFe-Cr-Ni合金材は、758MPa以上の引張降伏強度を有していても、強度異方性が低減されている。本明細書において、強度異方性が低減されているとは、異方性指標AIが0.800以上であることを意味する。また、本明細書において、異方性指標AIとは、引張降伏強度(引張YS)に対する圧縮降伏強度(圧縮YS)の比(圧縮YS/引張YS)を意味する。
本実施形態によるFe-Cr-Ni合金材の製造方法の一例を説明する。以下、本実施形態によるFe-Cr-Ni合金材の一例として、継目無合金管の製造方法を説明する。継目無合金管の製造方法は、素材を準備する工程(素材準備工程)と、素材から素管を製造する工程(熱間加工工程)と、製造された素管に冷間加工を実施する工程(第一冷間加工工程)と、溶体化処理を実施する工程(溶体化処理工程)と、溶体化処理された素管に対して冷間加工を実施する工程(第二冷間加工工程)とを備える。なお、本実施形態によるFe-Cr-Ni合金材の製造方法は、以下に説明する製造方法に限定されない。
素材準備工程では、上述した化学組成を有するFe-Cr-Ni合金を溶製する。Fe-Cr-Ni合金は、電気炉によって溶製してもよく、Ar-O2混合ガス底吹き脱炭炉(AOD炉)によって溶製してもよい。また、真空脱炭炉(VOD炉)によって溶製してもよい。溶製したFe-Cr-Ni合金は、造塊法によってインゴットにしてもよく、連続鋳造法によってスラブ、ブルーム、又はビレットにしてもよい。必要に応じて、スラブ、ブルーム又はインゴットを分塊圧延して、ビレットを製造してもよい。以上の工程により素材(スラブ、ブルーム、又は、ビレット)を製造する。
熱間加工工程では、準備された素材を熱間加工して中間合金材(素管)を製造する。熱間加工の方法はとくに限定されず、周知の方法でよい。すなわち、本実施形態において、熱間加工は、熱間圧延であってもよく、熱間押出であってもよく、熱間鍛造であってもよい。熱間加工において、素材の加熱温度は、たとえば、1100~1300℃である。
第一冷間加工工程では、製造された中間合金材(素管)に対して冷間加工を実施する。本実施形態において、冷間加工は、冷間引抜であってもよく、冷間圧延であってもよい。冷間圧延を実施する場合、たとえば、複数の冷間圧延スタンドを備える連続圧延機を用いてもよい。すなわち、本実施形態による第一冷間加工工程では、周知の冷間加工を周知の条件で実施すればよい。具体的に、冷間加工時の中間合金材(素管)の温度は、たとえば、室温~300℃であってもよい。
R1(%)=100(1-S1(1)/S0(1)) (A)
溶体化処理工程では、冷間加工が実施された中間合金材(素管)に対して、溶体化処理を実施する。溶体化処理の方法は、特に限定されず、周知の方法でよい。たとえば、素管を熱処理炉に装入し、所望の温度で保持した後、急冷する。なお、素管を熱処理炉に装入し、所望の温度で保持した後、急冷して溶体化処理を実施する場合、溶体化処理を実施する温度(溶体化温度)とは、溶体化処理を実施するための熱処理炉の温度(℃)を意味する。この場合さらに、溶体化処理を実施する時間(保持時間)とは、素管が溶体化温度で保持される時間を意味する。
冷間加工工程では、溶体化処理された中間合金材(素管)を冷間加工して、Fe-Cr-Ni合金材を製造する。上述のとおり、本実施形態において、冷間加工は、冷間引抜であってもよく、冷間圧延であってもよい。すなわち、本実施形態による第二冷間加工工程でも、第一冷間加工工程と同様に、周知の冷間加工を周知の条件で実施すればよい。具体的に、冷間加工時の中間合金材(素管)の温度は、たとえば、室温~300℃であってもよい。
R2(%)=100(1-S1(2)/S0(2)) (B)
R(%)=R1(%)+R2(%) (C)
ここで、式(C)中のR1には、第一冷間加工の冷間加工率(%)が代入され、R2には、第二冷間加工の冷間加工率(%)が代入される。
以上の方法で製造された各試験番号の合金板に対して、以下に説明する結晶粒度番号測定試験、及び、強度異方性測定試験を実施した。
各試験番号の合金板に対して、結晶粒度番号測定試験を実施して、結晶粒度番号の標準偏差σを求めた。具体的に、上述の方法で作製された試験片に対して、上述の方法で顕微鏡観察を実施した。顕微鏡観察により得られた写真画像に対して画像解析を実施して、ASTM E112(2021)に準拠して、結晶粒度番号を測定した。各試験番号について、10視野で得られた結晶粒度番号を、表3に示す。得られた10個の結晶粒度番号から得られた結晶粒度番号の平均値と、標準偏差σとを、表3に示す。
各試験番号の合金板に対して、強度異方性測定試験を実施して、異方性指標AIを求めた。具体的に、まず、上述の方法で引張降伏強度(MPa)及び圧縮降伏強度(MPa)を求めた。具体的に、各試験番号の合金板の板厚中央部から、引張試験用の丸棒試験片及び圧縮試験用の円柱試験片を作製した。丸棒試験片は、平行部直径4mm、標点距離20mmであった。円柱試験片は、平行部直径4mm、長さ8mmであった。丸棒試験片及び円柱試験片の軸方向は、合金板の圧延方向と平行であった。
表1A~表3を参照して、試験番号1~14の合金板はいずれも、化学組成が適切であり、Iが15.0未満であり、式(1)を満たした。これらの合金板はさらに、結晶粒度番号の標準偏差σが0.80以下であった。その結果、これらの合金板は、引張降伏強度が758MPa以上を満たしていた。さらに、異方性指標AIが0.800以上となり、強度異方性が低減されていた。
Claims (3)
- 質量%で、
C:0.030%以下、
Si:0.01~1.00%、
Mn:0.01~2.00%、
P:0.030%以下、
S:0.0050%以下、
Ni:29.0~36.5%、
Cr:23.0~27.5%、
Mo:2.00~6.00%、
Al:0.01~0.30%、
希土類元素:0.016~0.100%、
N:0.220~0.500%、
O:0.010%以下、
W:0~6.0%、
Cu:0~2.00%、
Ca:0~0.0100%、
Mg:0~0.0100%、
V:0~0.50%、
Ti:0~0.50%、
Nb:0~0.50%、
Co:0~2.00%、及び、
残部がFe及び不純物からなり、
式(1)を満たし、
ミクロ組織において、オーステナイト粒の結晶粒度番号の標準偏差が0.80以下であり、
引張降伏強度が758MPa以上である、
Fe-Cr-Ni合金材。
3×Ni-2×Cr-150×N<15.0 (1)
ここで、式(1)中の元素記号には、対応する元素の含有量が質量%で代入される。 - 請求項1に記載のFe-Cr-Ni合金材であって、
W:0.1~6.0%、
Cu:0.01~2.00%、
Ca:0.0001~0.0100%、
Mg:0.0001~0.0100%、
V:0.01~0.50%、
Ti:0.01~0.50%、
Nb:0.01~0.50%、及び、
Co:0.01~2.00%からなる群から選択される1元素以上を含有する、
Fe-Cr-Ni合金材。 - 油井用継目無合金管である、
請求項1又は請求項2に記載のFe-Cr-Ni合金材。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CA3240642A CA3240642A1 (en) | 2022-01-06 | 2023-01-05 | Fe-cr-ni alloy material |
JP2023524122A JP7397391B2 (ja) | 2022-01-06 | 2023-01-05 | Fe-Cr-Ni合金材 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022000845 | 2022-01-06 | ||
JP2022-000845 | 2022-01-06 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023132339A1 true WO2023132339A1 (ja) | 2023-07-13 |
Family
ID=87073725
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2023/000052 WO2023132339A1 (ja) | 2022-01-06 | 2023-01-05 | Fe-Cr-Ni合金材 |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP7397391B2 (ja) |
CA (1) | CA3240642A1 (ja) |
WO (1) | WO2023132339A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116891984A (zh) * | 2023-09-11 | 2023-10-17 | 成都先进金属材料产业技术研究院股份有限公司 | 抗氢不锈钢用Fe-Cr-Ni中间合金及其制备方法 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02217445A (ja) | 1988-11-14 | 1990-08-30 | Babcock & Wilcox Co:The | 油井分野チューブ製品向けの改善されたオーステナイト型Fe―Cr―Ni合金 |
WO2010113843A1 (ja) * | 2009-04-01 | 2010-10-07 | 住友金属工業株式会社 | 高強度Cr-Ni合金継目無管の製造方法 |
WO2012128258A1 (ja) * | 2011-03-24 | 2012-09-27 | 住友金属工業株式会社 | オーステナイト系合金管及びその製造方法 |
WO2015072458A1 (ja) | 2013-11-12 | 2015-05-21 | 新日鐵住金株式会社 | Ni-Cr合金材およびそれを用いた油井用継目無管 |
JP2018031028A (ja) * | 2016-08-22 | 2018-03-01 | 日本冶金工業株式会社 | Fe−Ni−Cr−Mo合金とその製造方法 |
WO2018225869A1 (ja) * | 2017-06-09 | 2018-12-13 | 新日鐵住金株式会社 | オーステナイト系合金管及びその製造方法 |
WO2021256128A1 (ja) * | 2020-06-19 | 2021-12-23 | Jfeスチール株式会社 | 合金管およびその製造方法 |
-
2023
- 2023-01-05 CA CA3240642A patent/CA3240642A1/en active Pending
- 2023-01-05 JP JP2023524122A patent/JP7397391B2/ja active Active
- 2023-01-05 WO PCT/JP2023/000052 patent/WO2023132339A1/ja active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02217445A (ja) | 1988-11-14 | 1990-08-30 | Babcock & Wilcox Co:The | 油井分野チューブ製品向けの改善されたオーステナイト型Fe―Cr―Ni合金 |
WO2010113843A1 (ja) * | 2009-04-01 | 2010-10-07 | 住友金属工業株式会社 | 高強度Cr-Ni合金継目無管の製造方法 |
WO2012128258A1 (ja) * | 2011-03-24 | 2012-09-27 | 住友金属工業株式会社 | オーステナイト系合金管及びその製造方法 |
WO2015072458A1 (ja) | 2013-11-12 | 2015-05-21 | 新日鐵住金株式会社 | Ni-Cr合金材およびそれを用いた油井用継目無管 |
JP2018031028A (ja) * | 2016-08-22 | 2018-03-01 | 日本冶金工業株式会社 | Fe−Ni−Cr−Mo合金とその製造方法 |
WO2018225869A1 (ja) * | 2017-06-09 | 2018-12-13 | 新日鐵住金株式会社 | オーステナイト系合金管及びその製造方法 |
WO2021256128A1 (ja) * | 2020-06-19 | 2021-12-23 | Jfeスチール株式会社 | 合金管およびその製造方法 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116891984A (zh) * | 2023-09-11 | 2023-10-17 | 成都先进金属材料产业技术研究院股份有限公司 | 抗氢不锈钢用Fe-Cr-Ni中间合金及其制备方法 |
CN116891984B (zh) * | 2023-09-11 | 2024-02-02 | 成都先进金属材料产业技术研究院股份有限公司 | 抗氢不锈钢用Fe-Cr-Ni中间合金及其制备方法 |
Also Published As
Publication number | Publication date |
---|---|
CA3240642A1 (en) | 2023-07-13 |
JP7397391B2 (ja) | 2023-12-13 |
JPWO2023132339A1 (ja) | 2023-07-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102090201B1 (ko) | 오스테나이트계 내열합금 및 그 제조 방법 | |
AU2011246246B2 (en) | High-strength stainless steel for oil well and high-strength stainless steel pipe for oil well | |
EP2725113B1 (en) | Method for producing austenitic stainless steel and austenitic stainless steel material | |
US20190284666A1 (en) | NiCrFe Alloy | |
WO2010134498A1 (ja) | 油井用ステンレス鋼、油井用ステンレス鋼管及び油井用ステンレス鋼の製造方法 | |
WO2021033672A1 (ja) | 二相ステンレス鋼材 | |
JP7425360B2 (ja) | マルテンサイト系ステンレス鋼材、及び、マルテンサイト系ステンレス鋼材の製造方法 | |
JP6614347B2 (ja) | オーステナイト系ステンレス鋼 | |
US20190112694A1 (en) | Austenitic Stainless Steel Material | |
US20210062314A1 (en) | Austenitic heat resistant alloy | |
JP2021167446A (ja) | 二相ステンレス鋼材 | |
JP2021127517A (ja) | オーステナイト系ステンレス鋼材 | |
WO2023132339A1 (ja) | Fe-Cr-Ni合金材 | |
JP7406177B1 (ja) | サワー環境での使用に適した鋼材 | |
WO2020067444A1 (ja) | オーステナイト系合金 | |
WO2021225103A1 (ja) | 二相ステンレス継目無鋼管 | |
JP7364955B1 (ja) | 二相ステンレス鋼材 | |
JP7323858B1 (ja) | 二相ステンレス鋼材 | |
WO2023162817A1 (ja) | 二相ステンレス鋼材 | |
JP7564499B1 (ja) | 鋼材 | |
JP7417180B1 (ja) | 鋼材 | |
WO2023195494A1 (ja) | 鋼材 | |
JP7498420B1 (ja) | 二相ステンレス鋼材 | |
WO2018105698A1 (ja) | 軟磁性部品用鋼材、軟磁性部品、及び、軟磁性部品の製造方法 | |
WO2024214486A1 (ja) | 鋼材 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 2023524122 Country of ref document: JP |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23737290 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 3240642 Country of ref document: CA |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2023737290 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2023737290 Country of ref document: EP Effective date: 20240806 |