WO2016088321A1 - 磁極用熱延鋼板およびその製造方法、ならびに水力発電用リム部材 - Google Patents

磁極用熱延鋼板およびその製造方法、ならびに水力発電用リム部材 Download PDF

Info

Publication number
WO2016088321A1
WO2016088321A1 PCT/JP2015/005806 JP2015005806W WO2016088321A1 WO 2016088321 A1 WO2016088321 A1 WO 2016088321A1 JP 2015005806 W JP2015005806 W JP 2015005806W WO 2016088321 A1 WO2016088321 A1 WO 2016088321A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
hot
steel sheet
rolled steel
amount
Prior art date
Application number
PCT/JP2015/005806
Other languages
English (en)
French (fr)
Inventor
典晃 ▲高▼坂
船川 義正
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to CN201580065641.8A priority Critical patent/CN107002196B/zh
Priority to MX2017007019A priority patent/MX2017007019A/es
Priority to KR1020177013924A priority patent/KR101966313B1/ko
Priority to JP2016512156A priority patent/JP6020769B1/ja
Publication of WO2016088321A1 publication Critical patent/WO2016088321A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • C23C2/28Thermal after-treatment, e.g. treatment in oil bath
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1222Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/34Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
    • C23C2/36Elongated material
    • C23C2/40Plates; Strips
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/16Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of sheets
    • H01F1/18Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of sheets with insulating coating
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/02Details of the magnetic circuit characterised by the magnetic material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy

Definitions

  • the present invention relates to a hot-rolled steel sheet for magnetic poles suitable for a rim member for hydroelectric power generation, a manufacturing method thereof, and a rim member for hydroelectric power generation.
  • a generator such as a hydroelectric generator includes a rotor and a stator, and the rotor includes a pole core that serves as an iron core and a rim that supports the core.
  • the rim is required to maintain a high strength in order to withstand the centrifugal force of high-speed rotation.
  • the rim steel plate is required to have excellent magnetic properties.
  • steel plates are joined by welding, since a weld part is easy to change intensity
  • Patent Document 1 includes a ferrite phase including a ferrite phase having an area ratio of 95% or more, and containing Ti and V having an average particle size of less than 10 nm in crystal grains of the ferrite phase. ) And the average grain size of the ferrite phase is in the range of 2 ⁇ m or more and less than 10 ⁇ m, the yield strength in the rolling direction is 700 MPa or more, and the magnetic flux density B 50 is 1.5 T. As described above, it is said that a steel sheet having an electromagnetic property of B 100 of 1.6 T or more can be obtained.
  • Patent Document 2 hot rolling is performed on a steel sheet containing, by weight, C: 0.05 to 0.15%, Si: 0.5% or less, Mn: 0.70 to 2.00%, Ti: 0.10 to 0.30%, B: 0.0015 to 0.0050%. After that, a high-tensile hot-rolled steel sheet having a high magnetic flux density is obtained by winding at 500 ° C. or lower.
  • Patent Document 3 includes C ⁇ 0.10%, Ti: 0.02 to 0.2%, and further includes at least one of Mo ⁇ 0.7% and W ⁇ 1.5%.
  • the ferrite structure substantially includes at least Ti, Mo, and W.
  • a high workability high-strength hot-rolled steel sheet for a rotator iron core having a strength of 590 MPa or higher is disclosed.
  • Patent Document 1 contains solute V, it is extremely difficult to control the amount of cementite that precipitates coarsely, and the weldability deteriorates.
  • an object of the present invention is to provide a hot-rolled steel sheet for magnetic poles having excellent weldability and magnetic properties, yield strength in the rolling direction: 500 MPa or more, a manufacturing method thereof, and a rim member for hydroelectric power generation. To do.
  • Component composition is mass%, C: 0.02% to 0.12%, Si: 0.1% to 0.7%, Mn: 0.8% to 1.6%, P: 0.03% or less, S: 0.005% or less, Al: 0.08% or less, N: 0.006% or less, Nb: 0.06% or more and 0.20% or less, the balance is Fe and incidental impurities, and the structure has a ferrite phase area ratio of 98% or more
  • the precipitated Fe is 0.22% by mass or less based on the amount of Fe contained in the steel, and the precipitated Nb is 80% by mass or more based on the amount of Nb contained in the steel.
  • a method for producing a hot-rolled steel sheet for magnetic poles which is coiled at a temperature of 700 ° C. or lower.
  • the above described plating process is any one of a hot-dip galvanizing process, an alloyed hot-dip galvannealing process, and an electrogalvanized plating process.
  • Ferrite phase area ratio 98% or more (including 100%)
  • the dislocation density is high, the magnetic flux density is significantly reduced. For this reason, it is necessary to have a structure that does not include a low-temperature transformation phase (dislocation density) such as a bainite phase or a martensite phase containing a large amount of dislocation density.
  • the area ratio of the ferrite phase is set to 98% or more.
  • the balance includes bainite phase, martensite phase and pearlite.
  • the above formula (1) indicates that C is combined with Nb, V and / or Ti and precipitated as fine carbides to reduce cementite from the viewpoint of chemical composition when the production conditions are appropriate. It is a type
  • formula By making it 0.040 or less, the precipitation amount of cementite becomes the range which does not reduce magnetic flux density.
  • the magnetic flux density B 50 is more than 1.5T, especially excellent magnetic properties flux density B 100 is equal to or greater than 1.6T can be obtained by a 0.03 or less (1).
  • C forms fine carbides, it is desirable that the formula (1) is ⁇ 0.005 or more.
  • C that does not combine with Nb, V, and Ti precipitates as Fe carbide.
  • the amount of precipitated Nb is 80% by mass or more with respect to the amount of Nb contained in the steel.
  • a high strength having a yield strength of 500 MPa or more can be obtained by dispersing carbide containing fine Nb.
  • the ratio of the “precipitated Nb amount” to the “Nb amount contained in steel” (sometimes referred to as Nb precipitation amount or Nb precipitation ratio) is less than 80%, the desired strength cannot be obtained, and Magnetic flux density decreases due to the effect of molten Nb.
  • the Nb precipitation is 80% or more. Desirably, it is 85% or more.
  • the amount of Nb deposited can be measured by the method described in the examples described later.
  • the average particle diameter of the precipitated carbide containing Nb is 6 nm or less.
  • the amount of strength that is increased by dispersing the carbide containing Nb increases as the carbide particle diameter decreases.
  • the average particle diameter of the precipitated Nb-containing carbide needs to be 6 nm or less.
  • carbonized_material can be measured by the method as described in the Example mentioned later.
  • C 0.02% or more and 0.12% or less C is an element that forms fine carbides containing Nb by combining with Nb and contributes to increasing the strength of the steel sheet.
  • at least C must be contained by 0.02% or more.
  • it is 0.03% or more.
  • a content exceeding 0.12% generates cementite and lowers the magnetic flux density. Therefore, the upper limit of C is set to 0.12%. Preferably it is 0.10% or less.
  • Si 0.1% or more and 0.7% or less
  • Si is a solid solution strengthening element that is stable against heat and has an effect of suppressing softening of the heat affected zone. Furthermore, there is an effect that the cementite is refined and the adverse effect of the decrease in magnetic flux density due to the cementite precipitation is suppressed. Thus, Si is an important requirement in the present invention.
  • the lower limit of Si for obtaining these effects is 0.1%. Preferably it is 0.2% or more, more preferably 0.35% or more.
  • the Si content exceeds 0.7%, the adverse effect of the decrease in magnetic flux density due to the Si content becomes obvious, and a red scale is generated on the surface of the steel sheet, thereby deteriorating the appearance and reducing the plating performance. From the above, the upper limit of Si is 0.7%. Preferably, it is 0.6% or less.
  • Mn 0.8% or more and 1.6% or less
  • the carbide containing Nb becomes finer as the transformation temperature from austenite to ferrite decreases. Since Mn has the effect of lowering the transformation temperature from austenite to ferrite, the inclusion of Mn makes the carbide containing Nb finer and higher in strength. Yield strength: Mn needs to be 0.8% or more to obtain 500 MPa or more. On the other hand, when it exceeds 1.6%, a bainite phase is likely to be generated, which causes a decrease in strength and a variation in magnetic flux density due to the formation of coarse cementite. From the above, the range of Mn content is 0.8% or more and 1.6% or less. Preferably they are 0.9% or more and 1.5% or less.
  • P 0.03% or less
  • P is an element that segregates at the grain boundary and significantly deteriorates the toughness of the weld. Therefore, it is preferable to reduce P as much as possible.
  • the P content is set to 0.03% or less. Preferably it is 0.02% or less.
  • S 0.005% or less S is present in steel as an inclusion such as MnS. Since this inclusion is coarse, it causes a decrease in magnetic flux density. Therefore, in the present invention, it is preferable to reduce the S content as much as possible, and it is 0.005% or less. Preferably it is 0.003% or less.
  • Al 0.08% or less
  • the Al content is 0.08% or less.
  • the Al content is 0.08% or less.
  • it is 0.07% or less.
  • N 0.006% or less N is combined with Nb to form coarse nitrides, which causes a decrease in magnetic flux density.
  • the amount of precipitation of fine carbides containing Nb that contributes to strengthening decreases, leading to a decrease in strength. Therefore, the N content is preferably reduced as much as possible, and the upper limit is set to 0.006%. Preferably it is 0.005% or less.
  • the balance is Fe and inevitable impurities.
  • V 0.01% or more and less than 0.05%
  • Ti 0.01% or more and less than 0.05%
  • V and Ti are elements that combine with C and contribute to further strengthening. In order to acquire this effect, it is preferable to contain both V and Ti 0.01% or more.
  • V when V is contained in an amount of 0.05% or more, the influence of softening due to dissolution of carbide containing V in the welding heat-affected zone becomes obvious, and the weldability deteriorates.
  • Ti when Ti is contained in an amount of 0.05% or more, coarse carbides containing Ti remain in the slab heating step before hot rolling, which causes a decrease in magnetic flux density.
  • V 0.01% or more and less than 0.05%
  • Ti 0.01% or more and less than 0.05%.
  • V 0.01% to 0.04%
  • Ti 0.01% to 0.03%.
  • Strength is required when used in a rim member for hydroelectric power generation having a yield strength in the rolling direction of 500 MPa or more. If the yield strength in the rolling direction is 500 MPa or more, it is possible to reduce the plate thickness and apply it to a highly efficient hydroelectric rim member. In this case, since the yield strength by the tensile test in the direction parallel to the rolling direction is important, the yield strength in the rolling direction is defined.
  • the yield strength of the present invention is particularly suitable for steel plates up to 700 MPa.
  • the magnetic flux density B 50 is more than 1.4 T, hydropower when the magnetic flux density B 100 is 1.5T or higher magnetic flux density B 50 is more than 1.4 T, the magnetic flux density B 100 is equal to or greater than 1.5T, used for the rim member hydroelectric Can be made highly efficient.
  • rim members for hydroelectric power generation are joined by welding with a minimum value of Vickers hardness of the heat affected zone (average value of Vickers hardness of base material minus 30).
  • Vickers hardness of the weld heat affected zone By setting the Vickers hardness of the weld heat affected zone to (average Vickers hardness of base material minus 30) or more, it becomes possible to suppress defects and defects in the weld zone.
  • the welding conditions at this time may be equivalent to the conditions described in the examples.
  • the hot-rolled steel sheet for magnetic poles of the present invention heats a steel material (steel slab) having the above-described composition at 1100 ° C. or higher and 1350 ° C. or lower, and then completes rough rolling at a temperature of 1100 ° C. or higher and finish rolling temperature 840 ° C. It can be manufactured by performing hot rolling as described above, cooling at an average cooling rate of 30 ° C./s or higher within 3 seconds after finishing rolling, and then winding at 550 ° C. or higher and 700 ° C. or lower.
  • the method for melting steel is not particularly limited, and a known melting method such as a converter or an electric furnace can be employed. Further, secondary refining may be performed in a vacuum degassing furnace. After that, it is preferable to use slab (steel material) by continuous casting method from the viewpoint of productivity and quality, but known casting such as ingot-casting-and-blooming, thin slab continuous casting method, etc. It is good also as a slab by the method.
  • Heating temperature of steel material 1100 ° C or higher and 1350 ° C or lower
  • the heating temperature of the steel material is set to 1100 ° C or higher and 1350 ° C or lower. Preferably they are 1150 degreeC or more and 1300 degrees C or less.
  • Hot rolling in which rough rolling is completed at a temperature of 1100 ° C. or higher and the final rolling temperature is 840 ° C. or higher.
  • Nb, V, and C not bonded to Ti precipitate as Fe carbides.
  • carbides containing Nb, V, and Ti are coarsely precipitated in austenite by holding the strain introduced in rough rolling as the driving force for a long time, which is the strength and magnetic flux density.
  • the finish rolling temperature is 840 ° C. or higher.
  • the temperature in finish rolling is less than 1100 ° C., tandem rolling in finish rolling has no time for precipitation and growth as compared with rough rolling, and thus the above-described adverse effect during rough rolling does not become obvious.
  • Winding temperature 550 ° C. or higher and 700 ° C. or lower If the winding temperature exceeds 700 ° C., the carbide is coarsened, and desired strength and magnetic properties cannot be obtained. On the other hand, when the temperature is lower than 550 ° C., the bainite phase is generated, so that the magnetic properties are degraded. From the above, the coiling temperature range is set to 550 ° C or more and 700 ° C or less. Preferably, they are 580 degreeC or more and 680 degrees C or less.
  • the hot-rolled steel sheet for magnetic poles of the present invention is manufactured. Note that even if the hot-rolled steel sheet for magnetic poles of the present invention is passed through a continuous hot dipping line having an annealing temperature of 720 ° C. or lower, the material is not affected. Therefore, it is possible to further plate the steel plate surface and have a plating layer on the steel plate surface. In addition, since the material is not affected by the plating treatment or the composition of the plating bath, any of hot dip galvanizing treatment, alloying hot dip galvanizing treatment, and electrogalvanizing treatment can be applied as the plating treatment.
  • Specimens were collected from the hot-rolled steel sheet or galvannealed steel sheet having a thickness of 1.6 mm to 3.2 mm obtained as described above, and the structure was observed by the following method to evaluate the performance.
  • the area ratio of each phase was evaluated by the following method. Cut from hot-rolled steel sheet or galvannealed steel sheet so that the cross section parallel to the rolling direction becomes the observation surface, and the metal structure at the center of the plate thickness is etched with 3% nital, scanning type Ten fields of view were taken with an optical microscope at 400x magnification.
  • the ferrite phase is a structure having a form in which corrosion marks and cementite are not observed in the grains.
  • the bainite phase other than the ferrite phase, martensite phase, pearlite, and the like were separated from each other by image analysis, and the area ratio with respect to the observation field was obtained. In determining the area, the ferrite grain boundaries were counted as part of the ferrite phase.
  • the Nb precipitation amount (Nb precipitation ratio) was subjected to constant current electrolysis in the same manner as the Fe precipitation amount measurement method, and the Nb amount contained in the electrolyte was measured by the ICP-MS method.
  • the amount of Nb contained in this electrolytic solution is the amount of Nb in a solid solution state, and the amount of Nb precipitation was determined by subtracting the amount of Nb in a solid solution state from the Nb content.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Thermal Sciences (AREA)
  • Power Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Electromagnetism (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Dispersion Chemistry (AREA)
  • Soft Magnetic Materials (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)

Abstract

高強度かつ溶接性および磁気特性に優れた磁極用熱延鋼板およびその製造方法、水力発電用リム部材を提供する。C :0.02%以上0.12%以下、Si:0.1%以上0.7%以下、Mn:0.8%以上1.6%以下、P :0.03%以下、S :0.005%以下、Al:0.08%以下、N :0.006%以下、Nb:0.06%以上0.20%以下を含有し、残部がFeおよび不可避的不純物からなる。フェライト相が面積率で98%以上であり、析出したFeが鋼中に含まれるFe量に対して0.22質量%以下、析出したNbが鋼中に含まれるNb量に対して80質量%以上、析出したNbを含む炭化物の平均粒子径が6nm以下であり、圧延方向の降伏強さが500MPa以上、磁束密度B50が1.4T以上、磁束密度B100が1.5T以上、溶接熱影響部のビッカース硬さの最低値が(母材のビッカース硬さの平均値-30)以上である。

Description

磁極用熱延鋼板およびその製造方法、ならびに水力発電用リム部材
 本発明は、水力発電用リム部材等に好適な磁極用熱延鋼板およびその製造方法、ならびに水力発電用リム部材に関する。
 近年、地球環境の保全という観点から、地球の温暖化が問題視され、二酸化炭素ガスを排出しない自然エネルギーの需要が高まっている。そして、このような地球温暖化の抑制という観点から、最近では、クリーンなエネルギー源として水力発電が有望視されている。水力発電機等の発電機はローターとステーターとを備え、ローターは鉄芯の役割を果たすポールコア(pole core)とこれを支えるリムとから構成されている。発電容量を稼ぐためには、ローターを高速で回転させる必要がある。そのため、リムには、高速回転の遠心力に耐えるために高強度を保持することが要求される。また、同時にリム用鋼板(リム部材)には、優れた磁気特性を保持することが要求される。そして、鋼板同士は溶接によって接合されるが、溶接部は強度が変動し易いため溶接性(weldability)に優れることも要求される。
 上記を受けて、これまでにも磁気特性や溶接性に着目した熱延鋼板について、様々な技術が提案されている。
 例えば、特許文献1では、面積率95%以上のフェライト相(ferrite phase)を含み、該フェライト相の結晶粒(crystal grain)内に平均粒径が10nm未満のTiおよびVを含む析出物(precipitate)が析出した組織を有し、該フェライト相の平均結晶粒径を2μm以上10μm未満の範囲内とすることで、圧延方向の降伏強さが700MPa以上の強度と、磁束密度B50が1.5T以上、B100が1.6T以上の電磁特性を有する鋼板が得られるとしている。
 特許文献2では、重量%で、C:0.05~0.15%、Si:0.5%以下、Mn:0.70~2.00%、Ti:0.10~0.30%、B:0.0015~0.0050%を含む鋼板を、熱間圧延した後500℃以下で巻き取ることにより高磁束密度を有する高張力熱延鋼板が得られるとしている。
 特許文献3には、C≦0.10%、Ti:0.02~0.2%を含み、さらにMo≦0.7%、W≦1.5%のうち少なくとも一方を含み、実質的にフェライト組織にTiとMoおよびWの少なくとも一方とを含む10nm未満の炭化物が分散してなり、590MPa級以上の強度を有する回転機(rotator)鉄芯用高加工性高強度熱延鋼板が開示されている。
国際公開第2013/115205号 特開昭63-166931公報 特開2003-268509公報
 しかしながら、特許文献1で提案された技術では固溶V(solute V)を含むため粗大に析出するセメンタイト(cementite)量の制御が著しく困難であり、さらに溶接性が悪化する。
 特許文献2で提案された技術では、巻取温度が500℃以下と、制御が困難な温度域で巻き取る必要があり、コイル間およびコイル内での特性のばらつきが問題となる。さらに、低温変態相は変態ひずみの不均一による板形状の悪化によりリム用部材として適さない。
 特許文献3で提案された技術では溶接性について考慮されていないばかりか、粗大なセメンタイトの影響について考慮されていないため安定した磁気特性が得られない。
 本発明はかかる事情に鑑み、圧延方向の降伏強さ:500MPa以上であり溶接性および磁気特性に優れた磁極用熱延鋼板およびその製造方法、ならびに水力発電用リム部材を提供することを目的とする。
 高強度で良好な溶接性および良好な磁気特性を兼ね備える鋼板の要件について鋭意検討した結果、溶接熱影響部(heat-affected zone)での硬度低下は溶解度の大きいVを含む炭化物の溶解(re-solution)によるところが大きいことがわかった。そして、この溶接熱影響部での軟化を抑制するには、Vを無添加もしくは含有量を制御したうえで、固溶強化元素(solute strengthening element)であるSiの含有が有効であることを知見した。一方で、Siの含有により高磁場での磁気特性は低下する。そこで、磁気特性を向上させるための検討を行った結果、粗大な(coarse)セメンタイト生成を極限まで抑え、母材(matrix)との整合関係(coherent relation)の良い炭化物を析出させることが高強度と良好な磁気特性を両立させる要件であることが明らかになった。
 本発明は以上の知見に基づいてなされたものであり、以下を要旨とするものである。
[1]成分組成は、質量%で、C :0.02%以上0.12%以下、Si:0.1%以上0.7%以下、Mn:0.8%以上1.6%以下、P :0.03%以下、S :0.005%以下、Al:0.08%以下、N :0.006%以下、Nb:0.06%以上0.20%以下を含有し、残部がFeおよび不可避的不純物(incidental impurities)からなり、組織は、フェライト相が面積率で98%以上であり、析出したFeが鋼中に含まれるFe量に対して0.22質量%以下、析出したNbが鋼中に含まれるNb量に対して80質量%以上、析出したNbを含む炭化物の平均粒子径が6nm以下であり、圧延方向(rolling direction)の降伏強さが500MPa以上、磁束密度B50が1.4T以上、磁束密度B100が1.5T以上、溶接熱影響部のビッカース硬さの最低値が(母材のビッカース硬さの平均値-30)以上であることを特徴とする磁極用熱延鋼板。
[2]さらに、下記式(1)を満たすことを特徴とする上記[1]に記載の磁極用熱延鋼板。
Figure JPOXMLDOC01-appb-M000001
[3]前記成分組成に加えて、質量%で、V:0.01%以上0.05%未満、Ti:0.01%以上0.05%未満の一種以上を含有することを特徴とする上記[1]または[2]に記載の磁極用熱延鋼板。
[4]上記[1]ないし[3]のいずれか一項に記載の成分組成を有する鋼素材を、1100℃以上1350℃以下の温度で加熱し、次いで、1100℃以上の温度で粗圧延(rough rolling)を完了し仕上げ圧延温度(finishing rolling temperature)840℃以上とする熱間圧延を施し、仕上げ圧延終了後3秒以内に30℃/s以上の平均冷却速度で冷却した後、550℃以上700℃以下の温度で巻き取る(coil)ことを特徴とする磁極用熱延鋼板の製造方法。
[5]鋼板表面にさらにめっき処理を施すことを特徴とする上記[4]に記載の磁極用熱延鋼板の製造方法。
[6]前記めっき処理が溶融亜鉛めっき(hot-dip galvanizing)処理、合金化溶融亜鉛めっき(hot-dip galvannealing)処理、電気亜鉛めっき(electrogalvanized plating)処理のいずれかであることを特徴とする上記[5]に記載の磁極用熱延鋼板の製造方法。
[7]前記めっき処理において形成されるめっき層の組成は、Zn、Si、Al、Ni、Mgの1種または2種以上を含むことを特徴とする上記[5]または[6]に記載の磁極用熱延鋼板の製造方法。
[8]上記[1]ないし[3]のいずれか一項に記載の磁極用熱延鋼板からなる水力発電用リム部材。
なお、本発明において、磁極用熱延鋼板とは、めっき処理を施していないもの(熱延鋼板)、溶融亜鉛めっき処理を施したもの(GI)、溶融亜鉛めっき処理後にさらに合金化処理を施したもの(GA)、電気亜鉛めっき処理を施したもの(EG)のいずれも対象とする。
 本発明によれば、圧延方向の降伏強さ:500MPa以上であり溶接性および磁気特性に優れた磁極用熱延鋼板が得られる。本発明の磁極用熱延鋼板は、水力発電用リム部材等に好適である。水力発電用リム部材に本発明の磁極用熱延鋼板を用いることで水力発電の高効率化や設備寿命の向上を実現することができ、その効果は著しい。
 以下、本発明について詳細に説明する。なお、以下の%は、特に断らない限り質量%を意味するものとする。
 まず、本発明鋼板の重要な要件である組織について説明する。
 フェライト相の面積率:98%以上(100%を含む)
 転位密度(dislocation density)が多い状態であると磁束密度は著しく低下する。そのため、転位密度を多く含むベイナイト相(bainite phase)やマルテンサイト相(martensite phase)といった低温変態相(dislocation density)は含まない組織とする必要がある。本発明においては、所望の磁気特性を満足するために、フェライト相の面積率は98%以上とする。残部は、ベイナイト相、マルテンサイト相およびパーライトが挙げられる。
 析出したFeが鋼中に含まれるFe量に対して0.22%以下
 析出物としてのFeはセメンタイトに由来する。粗大なセメンタイトは磁束密度を低下させる原因となるため、できる限り低減することが望ましい。セメンタイトを低減し本発明で求める磁束密度を得るには、「析出したFe量」の「鋼中に含まれるFe量」に対しての割合(以下、Fe析出量と称することもある)は0.22%以下とする必要がある。望ましくは0.20%以下である。なお、Fe析出量は、後述する実施例に記載の方法にて測定することができる。
 セメンタイト生成を抑制するには、含有したC量はできるだけNbを含む炭化物として析出させることが望ましい。そのため、下記(1)式を満たすことが望ましい。
Figure JPOXMLDOC01-appb-M000002
上記(1)式は製造条件が適切であった場合に、化学成分の観点からCがNb、Vおよび/またはTiと結合し微細な(fine)炭化物として析出させ、セメンタイトを低減させることを示す式であり、0.040以下とすることで、セメンタイトの析出量が磁束密度を低下させない範囲となる。磁束密度B50が1.5T以上、磁束密度B100が1.6T以上の特に優れた磁気特性は、(1)式を0.03以下とすることで得られる。一方、Cは微細な炭化物を形成するため、(1)式は-0.005以上であることが望ましい。
 さらに、Nb、V、およびTiと結合しないCはFe炭化物として析出する。含有したCのほぼ全てをNb、V、およびTiを含む微細な炭化物として析出させるには、仕上げ圧延前の粗圧延を1100℃以上で完了させることが好ましい。
 析出したNb量が鋼中に含まれるNb量に対して80質量%以上
 本発明においては、微細なNbを含む炭化物を分散させることにより降伏強さが500MPa以上の高強度を得ることができる。「析出したNb量」の「鋼中に含まれるNb量」に対する割合(Nb析出量もしくはNb析出割合と称することもある)が80%を下回る場合には所望の強度が得られず、さらに固溶Nbの影響により磁束密度が低下する。以上の観点から、Nb析出量は80%以上とする。望ましくは85%以上である。なお、Nb析出量は、後述する実施例に記載の方法にて測定することができる。
 析出したNbを含む炭化物の平均粒子径が6nm以下
 Nbを含む炭化物を分散させることにより上昇する強度量は、炭化物粒子径の低下にともない上昇する。降伏強さが500MPa以上の高強度を得るには、析出したNbを含む炭化物の平均粒子径が6nm以下である必要がある。なお、炭化物の平均粒子径は、後述する実施例に記載の方法にて測定することができる。
 次に、本発明の成分組成の限定理由を説明する。
 C :0.02%以上0.12%以下
 CはNbと結合することでNbを含む微細な炭化物を形成し、鋼板の高強度化に寄与する元素である。降伏強さが500MPa以上を得るには、少なくともCは0.02%以上含有する必要がある。好ましくは0.03%以上である。一方、0.12%を上回る含有はセメンタイトを生成させ、磁束密度を低下させる。従って、Cの上限量は0.12%とする。好ましくは0.10%以下である。
 Si:0.1%以上0.7%以下
 Siは、熱に対して安定な固溶強化元素であり、溶接熱影響部の軟化を抑制する効果がある。さらにセメンタイトを微細化し、セメンタイト析出による磁束密度低下の悪影響を抑制させる効果がある。このように、Siは本発明において重要な要件である。これらの効果を得るためのSiの下限量は0.1%である。好ましくは0.2%以上であり、より好ましくは0.35%以上である。一方、Si含有量が0.7%を超えるとSi含有による磁束密度低下の悪影響が顕在化するうえ、鋼板表面に赤スケール(red scale)が発生し、外観を損なったり、めっき性が低下する。以上から、Siの上限量は0.7%とする。好ましくは、0.6%以下である。
 Mn:0.8%以上1.6%以下
 Nbを含む炭化物はオーステナイト(austenite)からフェライトへの変態温度の低温化にともない、微細化する。Mnは、オーステナイトからフェライトへの変態温度を下げる効果があるため、Mnを含有することでNbを含む炭化物が微細化し高強度化する。降伏強さ:500MPa以上を得るには、Mnは0.8%以上とする必要がある。一方、1.6%を超えるとベイナイト相が生成しやすくなり、粗大なセメンタイト生成による強度低下や磁束密度のばらつきの原因となる。以上から、Mn含有量の範囲は0.8%以上1.6%以下とする。好ましくは0.9%以上1.5%以下である。
 P:0.03%以下
 Pは、粒界(grain boundary)に偏析して溶接部の靱性(toughness)を著しく悪化させる元素である。そのため、Pは極力低減することが好ましい。本発明では上記問題を回避すべく、P含有量を0.03%以下とする。好ましくは0.02%以下である。
 S :0.005%以下
 Sは、鋼中でMnSなどの介在物(inclusion)として存在する。この介在物は、粗大であることから磁束密度低下の要因となる。したがって、本発明では、S含有量を極力低減することが好ましく、0.005%以下とする。好ましくは0.003%以下である。
 Al:0.08%以下
 Alを製鋼の段階で脱酸剤として含有する場合、0.02%以上含有することとなる。一方で、Al含有量が0.08%を超えるとアルミナなどの粗大な介在物により磁束密度が低下する。したがって、Al含有量は0.08%以下とする。好ましくは0.07%以下である。
 N :0.006%以下
 Nは、Nbと結合して粗大な窒化物を形成させることにより磁束密度低下の要因となる。さらに、強化に寄与するNbを含む微細な炭化物の析出量が減少するために強度低下にもつながる。そのため、N含有量は極力低減することが好ましく、上限量を0.006%とする。好ましくは0.005%以下である。
 Nb:0.06%以上0.20%以下
 Nbは微細な炭化物を形成し、鋼板の高強度化に寄与する元素である。降伏強さ500MPa以上を得るには、Nb量は0.06%以上含有する必要がある。一方、0.20%を超えると熱間圧延前のスラブ加熱時に粗大なNbを含む炭化物を溶解することができず、高強度化への寄与が飽和するばかりか、磁束密度が低下する要因となる。以上から、Nb含有量の範囲を0.06%以上0.20%以下とする。好ましくは0.08%以上0.18%以下である。圧延方向の降伏強さが550MPa以上を得るための好適範囲は、0.10%以上0.18%以下である。
 残部はFeおよび不可避的不純物である。
 以上が本発明における成分組成であるが、上記した成分組成に加えて、以下の目的に応じて、さらに、V:0.01%以上0.05%未満、Ti:0.01%以上0.05%未満の一種以上を含有することができる。
 VおよびTiはCと結合して、さらなる高強度化に寄与する元素である。この効果を得るには、VおよびTiのいずれも0.01%以上含有させることが好ましい。一方、Vを0.05%以上含有した場合、溶接熱影響部でのVを含む炭化物の溶解による軟化の影響が顕在化し、溶接性が低下する。Tiを0.05%以上含有した場合、熱間圧延前のスラブ加熱工程で粗大なTiを含む炭化物が残存し、磁束密度低下の要因となる。以上から、含有する場合、V:0.01%以上0.05%未満、Ti:0.01%以上0.05%未満とする。好ましくは、V:0.01%以上0.04%以下、Ti:0.01%以上0.03%以下である。
 次に、本発明の磁極用熱延鋼板の特性の限定理由を説明する。
 圧延方向の降伏強さが500MPa以上
水力発電用リム部材等に用いる場合、強度が要求される。圧延方向の降伏強さが500MPa以上であれば、板厚を減じ高効率の水力発電用リム部材への適用が可能となる。この場合、圧延方向と平行方向の引張試験による降伏強さが重要となるため、圧延方向の降伏強さを規定した。本発明の降伏強さは700MPaまでの鋼板に特に好適である。
 磁束密度B50が1.4T以上、磁束密度B100が1.5T以上
磁束密度B50が1.4T以上、磁束密度B100が1.5T以上であれば、水力発電用リム部材に用いた場合に水力発電の高効率化をはかることができる。
 溶接熱影響部のビッカース硬さの最低値が(母材のビッカース硬さの平均値-30)以上
水力発電用リム部材の多くは、溶接によって接合される。溶接熱影響部のビッカース硬さを(母材のビッカース硬さの平均値-30)以上とすることで溶接部での欠陥や不具合を抑えることが可能となる。このときの溶接条件は実施例に記載の条件と同等であれば良い。
 次に、本発明の磁極用熱延鋼板の製造方法について説明する。
本発明の磁極用熱延鋼板は、上記した成分組成の鋼素材(鋼スラブ)を1100℃以上1350℃以下で加熱し、次いで、1100℃以上の温度で粗圧延を完了し仕上げ圧延温度840℃以上とする熱間圧延を施し、仕上げ圧延終了後3秒以内に30℃/s以上の平均冷却速度で冷却した後、550℃以上700℃以下で巻き取ることで製造することができる。
 本発明において、鋼の溶製方法は特に限定されず、転炉(converter)、電気炉等、公知の溶製方法を採用することができる。また、真空脱ガス炉(vacuum degassing furnace)にて2次精錬(secondary refining)を行ってもよい。その後、生産性や品質上の問題から連続鋳造法によりスラブ(鋼素材)とするのが好ましいが、造塊-分塊圧延法(ingot casting and blooming)、薄スラブ連鋳法等、公知の鋳造方法でスラブとしても良い。
 鋼素材の加熱温度:1100℃以上1350℃以下
 熱間圧延に先立ち鋼素材を加熱して実質的に均質なオーステナイト相とする必要がある。加熱温度が1100℃を下回るとNbおよびTiを含む粗大な炭化物を溶解することができず、強度および磁束密度が低下する。一方、加熱温度が1350℃を上回ると、スケール(scale)生成量が多くなり、熱間圧延時にスケールが噛み込み、熱延鋼板の表面性状が悪化する。そのため、鋼素材の加熱温度は1100℃以上1350℃以下とする。好ましくは1150℃以上1300℃以下である。但し、鋼素材に熱間圧延を施すに際し、鋳造後の鋼素材が1100℃以上1350℃以下の温度域にある場合、或いは鋼素材の炭化物が溶解している場合には、鋼素材を加熱することなく直送圧延してもよい。
 1100℃以上の温度で粗圧延を完了し仕上げ圧延温度840℃以上とする熱間圧延
 Nb、V、およびTiと結合しないCはFe炭化物として析出する。含有したCのほぼ全てをNb、VおよびTiを含む微細な炭化物として析出させるには、仕上げ圧延前の粗圧延を1100℃以上で完了させる必要がある。粗圧延を1100℃未満で完了した場合、粗圧延で導入されたひずみを駆動力としてその後の長時間保持によりオーステナイト中にNb、VおよびTiを含む炭化物が粗大に析出し、これが強度および磁束密度に対する悪影響を顕在化するためである。仕上げ圧延温度が840℃未満では、仕上げ圧延中にフェライト変態が開始してフェライト粒が伸展された組織となる。この伸展したフェライト粒の内部には多量の転位が導入されるため、磁束密度低下の要因となる。したがって、仕上げ圧延温度は840℃以上とする。好ましくは860℃以上である。なお、仕上げ圧延での温度は1100℃未満であるが、仕上げ圧延でのタンデム圧延では粗圧延に比べ析出し成長する時間がないため、上記の粗圧延時の悪影響が顕在化しない。
 仕上げ圧延終了後3秒以内に30℃/s以上の平均冷却速度で冷却
 Nbを含む炭化物はオーステナイトからフェライトへの変態温度の低温化にともない微細化する。平均粒子径6nm以下の炭化物を得るには、オーステナイトからフェライトへの変態温度は700℃以下とする必要がある。そのためには、仕上げ圧延終了後3秒以内に平均冷却速度30℃/s以上で冷却する必要がある。なお、平均冷却速度は仕上げ圧延温度から700℃までの平均冷却速度である。
 巻取り温度:550℃以上700℃以下
 巻取温度が700℃を超えると炭化物が粗大化し、所望の強度および磁気特性が得られない。一方で、550℃未満ではベイナイト相が生成することにより、磁気特性が低下する。以上から、巻取温度の範囲を550℃以上700℃以下とする。好ましくは、580℃以上680℃以下である。
 以上により、本発明の磁極用熱延鋼板が製造される。なお、本発明の磁極用熱延鋼板を焼鈍温度が720℃以下の連続溶融めっきラインに通板しても材質に影響をおよぼさない。そのため、鋼板表面にさらにめっき処理を施し、鋼板表面にめっき層を有することが可能である。また、めっき処理やめっき浴の組成によっても材質に影響をおよぼさないため、めっき処理としては、溶融亜鉛めっき処理、合金化溶融亜鉛めっき処理、電気亜鉛めっき処理のいずれも適用できる。また、めっき浴の組成としては、Zn、Si、Al、Ni、Mgの1種または2種以上を含むものであれば良い。すなわち、めっき処理において形成されるめっき層の組成は、Zn、Si、Al、Ni、Mgの1種または2種以上を含むことが可能である。
 以上により得られる本発明の磁極用熱延鋼板は、高磁極が要求される部品に好適であり、特に水力発電用リム部材としての使用に最適である。例えば本発明の熱延鋼板をせん断、打抜き、レーザーカットなどの手段で所定の形状に切り出し、積層して、リムやコア(ポールコアなど)向けの電磁部材として用いることができる。特に本発明の熱延鋼板は、高強度と良好な磁気特性との両立が必要な、発電機リムに好適に適用できる。鋼板の積層に際しては、鋼板に絶縁被覆を施す又は絶縁素材を間に挟むなど、積層される鋼板と鋼板との間を電気的に絶縁することが好ましい。
 表1に示す成分組成を有する肉厚250mmの鋼素材に対して、表2に示す熱延条件で熱延鋼板を製造した。一部のものについては、さらに、合金化溶融亜鉛めっき処理を施した。合金化溶融めっき処理は、焼鈍温度が700℃以下、めっき浴(molten bath)の組成がZn-0.13mass%Al、めっき浴の温度が460℃、合金化温度が530℃の連続溶融めっきラインで製造し、めっき付着量(coating weight)は片面当たり45~65g/m2とした。
 上記により得られた板厚1.6mm~3.2mmの熱延鋼板もしくは合金化溶融めっき鋼板から試験片を採取し、以下の方法で組織を観察し性能を評価した。
 (i)組織観察
 各相の面積率は以下の手法により評価した。熱延鋼板もしくは合金化溶融めっき鋼板から、圧延方向に平行な断面が観察面となるよう切り出し、板厚中心部の金属組織を3%ナイタール(nital)で腐食現出(etching)し、走査型光学顕微鏡で400倍に拡大して10視野分撮影した。フェライト相は粒内に腐食痕やセメンタイトが観察されない形態を有する組織である。これらを画像解析によりフェライト相以外のベイナイト相やマルテンサイト相、パーライト(pearlite)等を分離し、観察視野に対する面積率によって求めた。面積を求めるにあたりフェライト粒界はフェライト相の一部として計上した。
 析出したNbを含む炭化物の平均粒子径は、透過型電子顕微鏡を用いて135000倍以上で観察し100点以上の炭化物の粒子径の平均を取り、円相当径を各炭化物の粒子径として求めた。
 Fe析出量は、10%AA系電解液(10vol%アセチルアセトン-1質量%塩化テトラメチルアンモニウム-メタノール)中で、約0.2gを電流密度20mA/cm2で定電流電解した後、電解液から濾過により析出物を捕集し、ICP-MS法により析出物に含まれるFe量を求め、定電流電解により電解した地鉄の質量との割合を求めることによって得た。
 Nb析出量(Nb析出割合)は、Fe析出量の測定方法と同様の手順で定電流電解し、電解液中に含まれるNb量をICP-MS法により測定した。この電解液中に含まれるNb量は、固溶状態にあるNb量であり、Nb析出量はNb含有量から固溶状態にあるNb量を差し引くことによって求めた。
 (ii)引張試験
 熱延鋼板もしくは合金化溶融めっき鋼板から圧延方向に対して平行方向にJIS5号引張試験片を作製し、JIS Z 2241(2011)の規定に準拠した引張試験を5回行い、平均の降伏強さ(YS)、引張強さ(TS)、全伸び(El)を求めた。引張試験のクロスヘッドスピードは10mm/minとした。
 (iii)磁束密度測定
 熱延鋼板もしくは合金化溶融めっき鋼板から30mm×280mmのサンプルを採取し、直流磁気特性測定装置を用いて、JIS C 2555に準拠した測定により磁束密度B50および磁束密度B100を求めた。B50およびB100は、それぞれ磁化力5000A/mおよび10000A/mにおける磁束密度を示す。
 (iv)溶接性評価
 溶接試験として直径1.2mmのワイヤーを用いた炭酸ガスアーク溶接を行い評価した。溶接条件は、溶接速度が80cm/min、溶接電流が220A、溶接電圧が25V、板隙(gap)1mmの突き合わせ溶接である。溶接後、ビード部断面を切り出し、その断面の板厚中央部を0.5mm間隔で溶接部を横切る方向に対して試験荷重0.49Nのビッカース硬さ試験を行った。一方、母材の硬さは溶接部から30mm以上離れた位置を試験荷重0.49Nで5点測定した平均値とした。表3には母材の硬さ(母材硬度の平均値)と熱影響部での最小硬さ(溶接熱影響部硬度最低値)との差を記した。
 以上により得られた結果を表3に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 本発明例はいずれも、圧延方向の降伏強さYS:500MPa以上であり、かつ、溶接熱影響部のビッカース硬さの最低値が(母材のビッカース硬さの平均値-30)以上の溶接性であり、かつ、磁束密度B50が1.4T以上、磁束密度B100が1.5T以上の磁気特性に優れた熱延鋼板(合金化溶融亜鉛めっき鋼板)が得られていることがわかる。一方、本発明の範囲を外れる比較例は、降伏強さ、溶接性、磁気特性のいずれか一つ以上が劣っている。

Claims (8)

  1.  成分組成は、質量%で、C :0.02%以上0.12%以下、Si:0.1%以上0.7%以下、Mn:0.8%以上1.6%以下、P :0.03%以下、S :0.005%以下、Al:0.08%以下、N :0.006%以下、Nb:0.06%以上0.20%以下を含有し、残部がFeおよび不可避的不純物からなり、
    組織は、フェライト相が面積率で98%以上であり、
    析出したFeが鋼中に含まれるFe量に対して0.22質量%以下、析出したNbが鋼中に含まれるNb量に対して80質量%以上、析出したNbを含む炭化物の平均粒子径が6nm以下であり、
    圧延方向の降伏強さが500MPa以上、磁束密度B50が1.4T以上、磁束密度B100が1.5T以上、溶接熱影響部のビッカース硬さの最低値が(母材のビッカース硬さの平均値-30)以上であることを特徴とする磁極用熱延鋼板。
  2.  さらに、下記式(1)を満たすことを特徴とする請求項1に記載の磁極用熱延鋼板。
    Figure JPOXMLDOC01-appb-M000003
  3.  前記成分組成に加えて、質量%で、V:0.01%以上0.05%未満、Ti:0.01%以上0.05%未満の一種以上を含有することを特徴とする請求項1または2に記載の磁極用熱延鋼板。
  4.  請求項1ないし3のいずれか一項に記載の成分組成を有する鋼素材を、1100℃以上1350℃以下の温度で加熱し、次いで、1100℃以上の温度で粗圧延を完了し仕上げ圧延温度840℃以上とする熱間圧延を施し、仕上げ圧延終了後3秒以内に30℃/s以上の平均冷却速度で冷却した後、550℃以上700℃以下の温度で巻き取ることを特徴とする磁極用熱延鋼板の製造方法。
  5.  鋼板表面にさらにめっき処理を施すことを特徴とする請求項4に記載の磁極用熱延鋼板の製造方法。
  6.  前記めっき処理が溶融亜鉛めっき処理、合金化溶融亜鉛めっき処理、電気亜鉛めっき処理のいずれかであることを特徴とする請求項5に記載の磁極用熱延鋼板の製造方法。
  7.  前記めっき処理において形成されるめっき層の組成は、Zn、Si、Al、Ni、Mgの1種または2種以上を含むことを特徴とする請求項5または6に記載の磁極用熱延鋼板の製造方法。
  8.  請求項1ないし3のいずれか一項に記載の磁極用熱延鋼板からなる水力発電用リム部材。
     
PCT/JP2015/005806 2014-12-05 2015-11-20 磁極用熱延鋼板およびその製造方法、ならびに水力発電用リム部材 WO2016088321A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201580065641.8A CN107002196B (zh) 2014-12-05 2015-11-20 磁极用热轧钢板及其制造方法、以及水力发电用轮缘构件
MX2017007019A MX2017007019A (es) 2014-12-05 2015-11-20 Lamina de acero laminada en caliente para polo magnetico, metodo para la fabricacion de la misma, y miembro de corona para la generacion de energia hidraulica.
KR1020177013924A KR101966313B1 (ko) 2014-12-05 2015-11-20 자극용 열연 강판 및 그의 제조 방법, 그리고 수력 발전용 림 부재
JP2016512156A JP6020769B1 (ja) 2014-12-05 2015-11-20 磁極用熱延鋼板およびその製造方法、ならびに水力発電用リム部材

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-246562 2014-12-05
JP2014246562 2014-12-05

Publications (1)

Publication Number Publication Date
WO2016088321A1 true WO2016088321A1 (ja) 2016-06-09

Family

ID=56091287

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/005806 WO2016088321A1 (ja) 2014-12-05 2015-11-20 磁極用熱延鋼板およびその製造方法、ならびに水力発電用リム部材

Country Status (5)

Country Link
JP (1) JP6020769B1 (ja)
KR (1) KR101966313B1 (ja)
CN (1) CN107002196B (ja)
MX (1) MX2017007019A (ja)
WO (1) WO2016088321A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230140766A1 (en) * 2020-05-08 2023-05-04 Nippon Steel Corporation Hot-rolled steel sheet and manufacturing method thereof
CN115198187B (zh) * 2022-07-08 2024-04-26 山西太钢不锈钢股份有限公司 400MPa级热轧磁极钢及其制造方法和应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003268509A (ja) * 2001-12-28 2003-09-25 Jfe Steel Kk 回転機鉄芯用高加工性高強度熱延鋼板およびその製造方法
WO2013115205A1 (ja) * 2012-01-31 2013-08-08 Jfeスチール株式会社 発電機リム用熱延鋼板およびその製造方法
CN103451532A (zh) * 2013-09-12 2013-12-18 武汉钢铁(集团)公司 屈服强度≥750MPa的热轧磁轭钢及其生产方法
WO2014148001A1 (ja) * 2013-03-19 2014-09-25 Jfeスチール株式会社 780MPa以上の引張強度を有する高強度熱延鋼板

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63166931A (ja) 1986-12-27 1988-07-11 Nippon Steel Corp 高磁束密度を有する高張力熱延鋼板の製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003268509A (ja) * 2001-12-28 2003-09-25 Jfe Steel Kk 回転機鉄芯用高加工性高強度熱延鋼板およびその製造方法
WO2013115205A1 (ja) * 2012-01-31 2013-08-08 Jfeスチール株式会社 発電機リム用熱延鋼板およびその製造方法
WO2014148001A1 (ja) * 2013-03-19 2014-09-25 Jfeスチール株式会社 780MPa以上の引張強度を有する高強度熱延鋼板
CN103451532A (zh) * 2013-09-12 2013-12-18 武汉钢铁(集团)公司 屈服强度≥750MPa的热轧磁轭钢及其生产方法

Also Published As

Publication number Publication date
JP6020769B1 (ja) 2016-11-02
JPWO2016088321A1 (ja) 2017-04-27
MX2017007019A (es) 2017-08-14
KR101966313B1 (ko) 2019-04-05
CN107002196B (zh) 2019-01-01
KR20170072312A (ko) 2017-06-26
CN107002196A (zh) 2017-08-01

Similar Documents

Publication Publication Date Title
JP4791992B2 (ja) スポット溶接用合金化溶融亜鉛めっき鋼板の製造方法
KR102145293B1 (ko) 도금 강판 및 그의 제조 방법
JP5958667B1 (ja) 高強度溶融亜鉛めっき鋼板およびその製造方法
JP5892147B2 (ja) 高強度熱延鋼板およびその製造方法
JPWO2018092817A1 (ja) 高強度鋼板およびその製造方法
JP5578288B2 (ja) 発電機リム用熱延鋼板およびその製造方法
JP6004139B1 (ja) 磁極用熱延鋼板およびその製造方法、ならびに水力発電用リム部材
JP6103160B1 (ja) 高強度薄鋼板およびその製造方法
JP2013124395A (ja) 打ち抜き性に優れた高強度熱延鋼板およびその製造方法
JP6020769B1 (ja) 磁極用熱延鋼板およびその製造方法、ならびに水力発電用リム部材
JP2015147966A (ja) 高強度高降伏比冷延鋼板およびその製造方法
JP6131872B2 (ja) 高強度薄鋼板およびその製造方法
JP5887903B2 (ja) 溶接性に優れた高強度熱延鋼板およびその製造方法
JP6390573B2 (ja) 冷延鋼板およびその製造方法
JP5903883B2 (ja) 耐食性に優れためっき用高強度熱延薄鋼板とその製造方法
JP7147968B2 (ja) 鋼板
KR102590780B1 (ko) 강판
JP2017008367A (ja) 溶接性と成形性に優れた高強度溶融亜鉛めっき鋼板
JP6086077B2 (ja) 加工性に優れた高強度冷延鋼板およびその製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2016512156

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15865717

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20177013924

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: MX/A/2017/007019

Country of ref document: MX

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15865717

Country of ref document: EP

Kind code of ref document: A1