WO2012153955A2 - 미세조류 유용성분을 함유한 소금의 제조방법 및 제조된 소금 - Google Patents

미세조류 유용성분을 함유한 소금의 제조방법 및 제조된 소금 Download PDF

Info

Publication number
WO2012153955A2
WO2012153955A2 PCT/KR2012/003554 KR2012003554W WO2012153955A2 WO 2012153955 A2 WO2012153955 A2 WO 2012153955A2 KR 2012003554 W KR2012003554 W KR 2012003554W WO 2012153955 A2 WO2012153955 A2 WO 2012153955A2
Authority
WO
WIPO (PCT)
Prior art keywords
seawater
algae
salt
microalgae
concentrated
Prior art date
Application number
PCT/KR2012/003554
Other languages
English (en)
French (fr)
Other versions
WO2012153955A3 (ko
Inventor
김현주
문덕수
정동호
이승원
김아리
Original Assignee
한국해양연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국해양연구원 filed Critical 한국해양연구원
Priority to JP2014508302A priority Critical patent/JP5748254B2/ja
Priority to CN201280022912.8A priority patent/CN103517644B/zh
Publication of WO2012153955A2 publication Critical patent/WO2012153955A2/ko
Publication of WO2012153955A3 publication Critical patent/WO2012153955A3/ko

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • A23L33/10Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
    • A23L33/105Plant extracts, their artificial duplicates or their derivatives
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L27/00Spices; Flavouring agents or condiments; Artificial sweetening agents; Table salts; Dietetic salt substitutes; Preparation or treatment thereof
    • A23L27/40Table salts; Dietetic salt substitutes
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/10Protozoa; Culture media therefor

Definitions

  • the present invention is to prepare a salt containing a beta carotene ( ⁇ -Carotene) using seawater cultured algae such as Dunaliella (Sunaliella), spirulina (chlorulina), chlorella (chlorella)
  • ⁇ -Carotene beta carotene
  • seawater cultured algae such as Dunaliella (Sunaliella), spirulina (chlorulina), chlorella (chlorella)
  • the present invention relates to a method for preparing salt containing the useful ingredient of microalgae, and to salt prepared by the above method.
  • Salt is indispensable to humans and consists of many minerals such as calcium, magnesium and potassium, as well as NaCl, the main ingredient.
  • salt is collected from rock salt, a method of making it from abundant seawater has been used in Korea and other marine countries. Since sea salt is made from seawater in which all elements of the earth are dissolved, it depends on the decontamination method and contains various minerals. It is very important for human life to eat good salt with various minerals contained in salt.
  • freeze-drying, spray drying, vacuum spray freeze drying, sun salt decontamination method, etc. is relatively rich in minerals, it is known that clean mineral salts can be produced by using clean sea water, especially deep sea water.
  • beta-carotene is a carotenoid-based red pigment is a lot of green leafy vegetables such as carrots, tomatoes, etc. are red.
  • Beta-carotene has been used in addition to food due to its unique color and efficacy. Its efficacy is widely used as an anticancer agent, an antioxidant related to skin aging, a skin disease treatment agent, an antibacterial agent, and the like.
  • mass production is difficult and the amount of green leafy vegetables contained is limited, so it is not easy to secure.
  • the method of obtaining from the green leaf vegetables has a small amount of beta-carotene ( ⁇ -Carotene), and the harvest of green leaf vegetables depends on the seasonal and climate change, and the cultivation of the long time is consumed.
  • Korean Patent Registration No. 0448673 discloses a method for preparing vegetable salt and vegetable salt, but the method of preparing salt containing useful components of algae using seawater cultured with microalgae of the present invention The characteristics are different.
  • the present invention is derived to achieve the above object, by sterilizing or concentrating seawater or deep seawater in the manufacturing process of salt, algae such as Dunaliella (Sunruella), Spirulina, Chlorella (Chlorella) Beta-carotene in a consistent and economical way to create an environment where it can grow well, allow them to absorb nutrients and convert them into useful substances, and then dry seawater or concentrated seawater with these cultured algae.
  • algae such as Dunaliella (Sunruella), Spirulina, Chlorella (Chlorella) Beta-carotene in a consistent and economical way to create an environment where it can grow well, allow them to absorb nutrients and convert them into useful substances, and then dry seawater or concentrated seawater with these cultured algae.
  • the present invention is subjected to pretreatment such as sterilization method or filtration method, concentrated seawater (ocean deep water) in a high nutrition and high mineral state using a RO (reverse osmosis membrane) device and a vacuum multi-stage evaporation concentrator
  • pretreatment such as sterilization method or filtration method, concentrated seawater (ocean deep water) in a high nutrition and high mineral state using a RO (reverse osmosis membrane) device and a vacuum multi-stage evaporation concentrator
  • the algae such as Dunaliella, Spirulina and the like are efficiently cultivated so that the algae have a high content of useful substances such as beta-carotene ( ⁇ -Carotene).
  • ⁇ -Carotene useful substances
  • the present invention provides a salt prepared by mixing the salt containing the useful ingredient of the microalgae prepared by the above method and the salt containing the useful ingredient of the microalgae and the general salt.
  • salts containing useful substances such as beta-carotene ( ⁇ -Carotene) at low cost are consistently produced.
  • beta-carotene ⁇ -Carotene
  • it is possible to efficiently produce a variety of high-quality products, such as minerals and beta-carotene ( ⁇ -Carotene).
  • it can also be linked to the effective reuse of concentrated seawater, a by-product of seawater desalination, and is effective for preserving coastal environment.
  • Figure 2 compares the fungi contained in surface waters and deep sea water.
  • RO reverse osmosis membrane
  • VEC vacuum cascade evaporator
  • Figure 5 shows the relationship between the specific extraction and the extraction of minerals by the multi-stage vacuum evaporation method.
  • FIG. 6 shows an algae culture apparatus.
  • FIG. 1 is an overall process diagram showing a method for preparing salt containing useful components of the microalgae of the present invention, wherein the seawater or deep seawater is filtered through sand, rapid filtration membrane, microfilter (MF), nanofilter (NF), ultrafilter ( UF) and then pre-treated, and then passed through the RO (reverse osmosis membrane) to produce the first concentrated water and permeated water (demineralized water), and the second concentrated through the vacuum multi-stage evaporation system to concentrate the algae Prepare a high-salt, high-nutrient secondary concentrated water that can grow. Permeated water (demineralized water) generated at this time is commercialized separately for its purpose.
  • MF microfilter
  • NF nanofilter
  • UF ultrafilter
  • Secondary concentrated water is a high temperature water even higher than room temperature, so it is also a high temperature for culturing microalgae. Therefore, it is controlled to a temperature suitable for microalgae growth through a temperature control device. Temperature-controlled secondary concentrated water is transplanted by diluting the microalgae into an algae culture and transplant apparatus. Referring to the dilution step of the microalgae as an example.
  • One ton of concentrated water with temperature control is added to one ton of concentrated water that has been incubated in the algae culture and transplant apparatus. Therefore, two tons of concentrated water is present in the algae culturing and transplanting device, and the algae already cultured in the concentrated water are diluted. Since only 1 ton of this diluted water is sent to the algae culture unit, which is the next process, the original 1 ton of concentrated water remains in the algae dilution and the other 1 ton is transferred to the algae culture unit. do.
  • new concentrated water was also added to the algae in the algae culture and transplantation apparatus, and the algae in the cultured plant concentrate were simultaneously cultured based on the nutrients contained therein.
  • the culture and transplantation apparatus is supplied with freshly prepared secondary concentrated water, and the cultured microalgae are repeatedly transplanted by dilution.
  • the concentrated water containing the microalgae cultured in the culture apparatus is introduced into the algae stress applying process.
  • Algae culture apparatus refers to a device that can control the light (artificial light), air (CO 2 ) and temperature, etc. to incubate microalgae.
  • the concentration of temperature and concentration of the concentrated water gives stress to the microalgae to increase the content of useful substances such as beta carotene in the microalgae cells. It can increase.
  • the newly prepared concentrated seawater is added to the concentrated water of the algae culture and transplantation apparatus, and the concentrated water in the algae culture apparatus can be immediately dried or transferred to the algae stress applying device and dried. The process is repeated over and over again.
  • temperature control medium in thermostats throughout the process takes advantage of the low temperature of seawater or deep sea water.
  • temperature control medium used in the stressing device utilizes the high temperature energy of the concentrated water separated from the vacuum multi-stage evaporator.
  • the step-by-step configuration of the present invention patterned the overall process is as follows.
  • step (b) applying the sterilized or filtered seawater of step (a) to a membrane separation method or a phase change method one or more times to prepare concentrated seawater;
  • Salt production method containing the useful components of the microalgae is a membrane separation method or a phase change method RO process and vacuum multistage evaporation apparatus of the step (a) and (b) It may not further include the concentration step by the natural salt decontamination method.
  • step (a) The sterilization or filtration of step (a) is performed because the microalgae in the seawater are beneficial but also harmful and may unnecessarily consume the nutrients contained in the concentrated water.
  • Microalgae other than the microalgae to be removed in advance can be cultured in a clean state only the microalgae to be cultured.
  • the sterilization method may be UV, ozone treatment or thermal sterilization method, and the filtration method may be sand filtration, rapid filtration membrane, micro filter (MF), nano filter (NF) or ultra filter (UF), but is not limited thereto. Do not.
  • Sea water of step (a) is preferably a deep sea water, but is not limited thereto. Deep sea water is characterized by very little algae and fungi surviving from surface waters due to the absence of light and the presence of high pressure water pressure. Many algae are needed for microalgae to grow.
  • Concentration of the seawater of step (b) is carried out to create such an environment in order to promote the growth of these microalgae because the microalgae are active in high salt and high alkali state.
  • seawater has alkalinity, but when concentrated, it becomes more alkaline, which makes optimum conditions for microalgae.
  • the concentration method is membrane separation (reverse osmosis (RO) nanofiltration membrane (NF), electrodialysis (ED), etc.) or phase change (multistage flash evaporation (MSF), multi-effect evaporation (MED), vapor compression type) Evaporation (VCD), mechanical vapor recompression evaporation (MVR), vacuum cascade evaporation (VMEC), gas hydrate (GHF), indirect (heat pump) refrigeration, etc.) at least once, preferably Preferably, it may be performed 1 to 3 times, and may be concentrated by sun salt decontamination method, but is not limited thereto.
  • the microalgae of step (c) may include any of algae that can be grown at high salinity, preferably Dunaliella, Spirulina, Chlorella, Hematococcus, Haematococcus , May be one or more selected from the group consisting of Nanochloropsis, Isochrysis galbana, Nitzchia inconspicua, and Phaeodactylum, but is not limited thereto.
  • Useful ingredients of microalgae are meant to include various nutrients of microalgae, beta-carotene, chlorophyll, phycocyanin, polysaccharide, lutein, Zeaxanthin, omega-3 fatty acids, vitamins, protein components, and preferably beta-carotene ( ⁇ -Carotene), but is not limited thereto.
  • step (c) may be performed by a spray drying method, a freeze drying method, a reduced pressure evaporation drying method, a flat part method or a sun salt method, but is not limited thereto.
  • the drying may be performed using a spray drying method.
  • step (c) (c-1) by forming an algae culture apparatus that can adjust the light (artificial light), air (CO 2 ), temperature, salinity concentration to pre-treated seawater or concentrated seawater to the algae culture apparatus Injecting, inoculating (grafting) microalgae;
  • (c-2) absorbing nutrients and the like in the process of culturing the microalgae, applying salt by changing the salinity and temperature to increase the content of useful substances such as beta carotene in the microalgal cells;
  • (c-3) useful materials such as beta carotene by drying the seawater or concentrated water containing the microalgae by spray drying decontamination, sun salt decontamination, vacuum evaporation concentration decontamination, decontamination using a flat pot, and the like (flat method). It can be subdivided into a salt preparation method containing the useful ingredient of the microalgae comprising the step of preparing the salt containing the.
  • the present invention also comprises the steps of (a) sterilizing sea water using UV, ozone treatment or heat or filtering using sand filtration, rapid filtration membrane, micro filter (MF), nano filter (NF) or ultra filter (UF). ; And (b) provides a method for producing a salt containing the useful components of the microalgae, comprising the step of culturing the microalgae grow in high salinity in the sterilized or filtered seawater, followed by drying. .
  • a nutrient medium may be further added to promote the cultivation of the microalgae when the microalgae are cultivated in the sterilized or filtered seawater of step (b), wherein the nutrient medium which can be added includes f / 2 medium, SOT medium, J / l medium, PES medium, Zarrouk medium, Conwy medium, Schreiber medium and the like, but may not be limited thereto.
  • the nutrient media are media commonly used in the art.
  • step (b) preparing concentrated seawater by passing the sterilized or filtered seawater of step (a) through a reverse osmosis membrane (RO);
  • RO reverse osmosis membrane
  • step (c) concentrating the prepared seawater of step (b) for 8-12 hours at 500-700 mmHg and a temperature of 50-70 ° C. using a vacuum cascade evaporator;
  • step (d) The concentrated concentrated seawater of step (c) is cooled to 25-35 ° C., and Dunaliella, Spirulina, Chlorella, Haematococcus, and nanocropsis ( Nannochloropsis, Isochrysis galbana, Nitzchia inconspicua and Peodactilum (Phaodactylum) is added to incubate one or more microalgae and incubated, followed by spray drying It provides a method for producing a salt containing useful components of the microalgae, characterized in that the manufacturing.
  • Salt containing the useful ingredient of the microalgae prepared by the method of the present invention may be used as it is, and may be used after mixing with other salts.
  • nutrients such as beta-carotene may be destroyed, such as burning, so beta-carotene is separated and extracted separately.
  • Processing may be prepared by a process of mixing the nutritional substance, but is not limited thereto.
  • the quality of the salt containing the useful components of the microalgae prepared by the method of the present invention depends on the content of nutrients such as beta-carotene ( ⁇ -Carotene) and mineral content and balance of potassium, calcium, magnesium, etc. Depends
  • bacteria and algae are included in the seawater during the intake process and can be introduced and grown in the culture apparatus. Some of the algae are beneficial but harmful, and there is a possibility of unnecessary consumption of the nutrients contained in the concentrated water. Therefore, some parts of the algae are removed in the pretreatment process and sterilized and sterilized by the high temperature of the concentration process. Removed.
  • the removal method was sterilization by high temperature in the pretreatment process using micro filter and UF filter and the concentration process using vacuum multi-stage evaporation method.
  • Vacuum multistage evaporation was performed for more than 10 hours at a temperature of 60 °C or more proceeded to the concentration process.
  • the evaporation concentration time can vary depending on the amount to be concentrated. After the pretreatment and incubation with concentrated water produced by sterilization at high temperature in vacuum multi-stage evaporation, no other algae growth was found.
  • the purified water can produce mineral salts containing useful substances such as beta-carotene made from a single microalgae according to the salt manufacturer's choice without mixing other microalgae in the microalgae cultivation process.
  • seawater deep seawater
  • Seawater shallow seawater
  • the alkalinity is further increased.
  • the pH of seawater is maintained around 8, and if it is concentrated through the RO device, the pH rises to about 8.5, and if it is concentrated through the concentrator, the pH is above 9, which is good for high salt and high alkali environments.
  • the first concentrated water and the permeated water come out, and the permeated water can be commercialized according to its purpose separately, and the salt of the present invention is prepared.
  • the primary concentrated water is used, which has a specific gravity of 1.04 and a pH of about 8.5.
  • the primary concentrated water is prepared by using a vacuum multi-stage evaporation concentrator (VMEC).
  • Figure 3 shows a reverse osmosis membrane (RO) device.
  • VMEC vacuum cascade evaporator
  • Water usually boils at 100 °C, but since sea water contains various minerals, its boiling point is higher than 100 °C because of its high density. The boiling point becomes higher because the density increases as the concentration progresses. Therefore, the amount of energy required for evaporation is further increased, and various side effects may occur, such as the possibility of the denaturation of minerals and nutrients contained in seawater.
  • the vacuum cascade evaporator (VMEC) is used to vacuum the inside of the evaporator, thereby reducing the boiling point, thereby preventing these problems.
  • the vacuum multi-stage evaporation concentrator (VMEC) is energy efficient and easy to control because the energy input amount can be determined according to the characteristics of the seawater at each stage.
  • the concentration in the vacuum has the advantage of reducing mineral destruction and scale formation due to high temperature evaporation.
  • the vacuum inside the evaporator of the vacuum multistage evaporator is about 600 mmHg
  • the boiling point is lowered below 60 °C.
  • the energy input could be reduced by the difference, and the physicochemical change and scale of the mineral due to the high temperature could be reduced due to evaporation due to the low temperature.
  • VMEC vacuum multi-evaporation concentrator
  • the concentration method of the primary concentrated water using the vacuum multi-steam evaporator is described in more detail as follows.
  • Figure 5 shows the relationship between the mineral extraction and specific gravity of the multi-stage vacuum evaporation method, the concentration of the concentrated water is about 1.04 when the sea water is concentrated through the RO (reverse osmosis membrane).
  • the specific gravity of the concentrated water reaches 1.08.
  • the concentrated water concentrated by the first stage evaporator is transferred to a two stage evaporation system to proceed with evaporation.
  • calcium sulfate is crystallized, and a high purity calcium sulfate separated from calcium carbonate can be obtained.
  • Calcium sulfate is good for use as a raw material for various mineral products because its solubility is higher than that of calcium carbonate. Calcium sulfate to be separated and extracted can be added to the mineral salt produced in the final process to control the calcium content.
  • the specific gravity of the concentrated water reaches 1.18 and pH 9.
  • the specific gravity of the concentrate reaches 1.18, it can be separated from the evaporator and used for microalgae cultivation.
  • the purified concentrated seawater can produce salts containing useful substances such as beta-carotene ( ⁇ -Carotene) made of a single microalgae according to the salt manufacturer's choice without mixing other microalgae in the culture of the microalgae. .
  • beta-carotene beta-carotene
  • Temperature is very important for growth conditions of microalgae. Since these microalgae grow in a high temperature environment, they must create a high temperature environment. Because these conditions are difficult to formulate in everyday environments, despite the high utility of these microalgae, cultivation has been carried out only under certain circumstances in certain regions. The concentration process to make salt requires a lot of energy. And in the meantime, a lot of energy has actually been abandoned. In the present invention, economical production of salts containing useful substances such as beta carotene is made possible by utilizing these discarded low or high temperature energy.
  • the temperature control of the concentrated seawater and the temperature control in the algae culture apparatus may use low temperature deep seawater, high temperature concentrated seawater and evaporative condensate.
  • Seawater which has become a high salinity and alkali by pretreatment and concentration, has a high temperature close to 60 °C, and microalgae cannot grow in such a high temperature environment. Therefore, the concentrated seawater should be made to a temperature of about 30 °C to cultivate the microalgae here.
  • Deep sea water is clean seawater that maintains a constant temperature of around 2 °C per year. When this clean seawater is collected and reaches the plant, the temperature is kept constant at around 5 ⁇ 10 °C. Thus, this seawater can be used to cool the hot concentrated seawater.
  • microalgae requires considerable time. It takes at least one day to cultivate the required amount of microalgae, and several days to cultivate dense microalgae. In this case, it is necessary to maintain a constant temperature around 30 °C required for the growth of microalgae. Therefore, efforts to continuously maintain the temperature are required and enormous energy is required.
  • the energy required is efficient using waste heat from the evaporator.
  • the evaporator concentrates a huge amount of water vapor as seawater evaporates, which can be recovered in the form of hot condensate. This energy can be sent to the algae cultivation device on the one hand to control the temperature used for stressing while keeping the temperature of the culture device constant while lowering the high temperature of the condensate.
  • Deep sea water was sterilized using UV, ozone treatment or heat, or filtered through a micro filter (MF) or ultra filter (UF).
  • MF micro filter
  • UF ultra filter
  • the concentrated water is concentrated using a vacuum vacuum evaporator (VMEC).
  • VMEC vacuum vacuum evaporator
  • the deep sea water is concentrated in a single-stage evaporator, and when concentrated, 6 kg of calcium carbonate is crystallized. Concentrated.
  • the concentrated deep sea water was transferred to a two-stage evaporation system to evaporate, and 6 kg of calcium sulfate was crystallized.
  • the extracted and separated water was concentrated and concentrated until the specific gravity reached about 1.18 and pH 9 to prepare a concentrated water.
  • the silver took about 20 hours at 600 mmHg vacuum and a temperature of 60 ° C.
  • Seawater was concentrated to prepare concentrated water having various salinities (3.4%, 6%, 10%, 15%, 20%, 25%) and cultured the microalgae (Dunnaliella).
  • Microalgae was added to the brine at an initial concentration of 50 x 10 4 cells / mL and incubated at 25 ° C for 4 days under continuous fluorescent lighting at 80 ⁇ mol Photon / m 2 s for 4 days, using a hemocytometer and microscopy. Density and color of the cells were observed and beta-carotene ( ⁇ -Carotene) content of the microalgae by salt concentration was measured by HPLC analysis.
  • ⁇ -Carotene beta-carotene
  • beta-carotene As a result, the higher the salt concentration, the higher the beta-carotene ( ⁇ -Carotene) content was found to be orange color. As a result of the analysis, it was confirmed that the beta-carotene ( ⁇ -Carotene) content is actually higher. Therefore, in the case of actual commercial production, beta-carotene should be used to increase the content of beta-carotene ( ⁇ -Carotene) in a low-salt and high-salt environment, or to use consistently within 20% salt concentration. ( ⁇ -Carotene) was found to be a method of culturing a large amount of microalgae containing a lot.
  • the salt containing the useful ingredient of the microalgae was prepared as the salt prepared with the concentrated water containing the microalgae (dunaliellae) cultured under the condition of 20% salinity of the experiment in Example 1.
  • the reason why the concentrated water in which the microalgae were cultured with a salt concentration of 20% was chosen was that it would be advantageous for commercial production in the future considering the growth rate of microalgae and the content of beta-carotene ( ⁇ -Carotene).
  • salts containing useful substances such as beta-carotene ( ⁇ -Carotene) at low cost. It can also be used as an effective way to reuse concentrated seawater, a by-product of seawater desalination, and is effective for coastal environment conservation.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Nutrition Science (AREA)
  • Food Science & Technology (AREA)
  • Polymers & Plastics (AREA)
  • Mycology (AREA)
  • Organic Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • Biotechnology (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Botany (AREA)
  • Biomedical Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Virology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Seasonings (AREA)

Abstract

본 발명은 해양심층수를 처리하여 미네랄 소금을 제조함에 있어 두날리엘라(dunaliella), 스피루리나(spirulina), 클로렐라(chlorella) 등의 조류(藻類)에 함유된 베타카로틴(β-Carotene) 등 유용성분을 함유한 소금을 제조하는 방법에 관한 것으로, (a) 해수를 살균 또는 여과하고 농축하는 단계; (b) 상기 (a)단계의 농축한 해수에 조류를 배양하는 단계; 및 (c) 상기 (b)단계의 조류를 배양한 해수를 건조하는 단계를 포함하여 제조하는 것을 특징으로 하는 조류의 유용성분이 함유된 소금의 제조방법 및 상기 방법으로 제조된 소금에 관한 것이다. 이와 같은 방법으로 저렴한 비용으로 베타카로틴(β-Carotene) 등의 유용물질을 함유한 소금을 일관 생산할 수 있고 이로부터 해수담수화 부산물인 농축해수를 효과적으로 재이용하는 방법으로 연계가 가능하여 연안환경 보전에도 유효하다.

Description

미세조류 유용성분을 함유한 소금의 제조방법 및 제조된 소금
본 발명은 두날리엘라(Dunaliella), 스피루리나(spirulina), 클로렐라(chlorella) 등의 조류(藻類)를 배양한 해수를 이용하여 베타카로틴(β-Carotene)등 유용물질이 함유된 소금을 제조하는 것을 특징으로 하는 미세조류 유용성분을 함유한 소금의 제조방법 및 상기 방법으로 제조된 소금에 관한 것이다.

소금은 사람에게 없어서는 안 될 필수 섭취물질로서, 주성분인 NaCl을 비롯하여 칼슘, 마그네슘, 칼륨 등의 많은 미네랄 성분으로 구성된다. 소금은 암염으로부터 채취를 하기도 하지만 풍부한 해수로부터 제조하는 방법이 우리나라를 비롯한 해양국에서 이용되어 왔고, 해수 소금은 지구상의 모든 원소가 용존되어 있는 바닷물로부터 만들어지므로 제염방법에 따라 다르며 다양한 미네랄이 포함된 소금으로 제공될 수 있으며, 소금에 포함되어 있는 다양한 미네랄을 포함한 좋은 소금을 섭취하는 것은 인간의 생명유지에 매우 중요하다.
특히, 동결건조법, 분무건조, 진공분무동결건조법, 천일제염법 등을 이용할 경우, 미네랄이 상대적으로 많이 함유되며, 청정한 해수, 특히 해양심층수를 이용하면 청정한 미네랄 소금이 제조될 수 있는 것으로 알려져 있다.
한편, 우리 몸은 소금 및 소금에 포함된 미네랄 이외에도 단백질, 지방, 탄수화물, 비타민 등 수많은 영양분을 필요로 한다. 그 중에서 인간의 건강과 관련하여 현재 많은 주목을 받고 있는 것이 항산화제이다. 우리 몸은 끊임없이 발생하는 유해 활성산소와 과산화물이 벌이는 세포와 조직의 파괴 작용으로 노화와 세포질 저하, 면역력 감퇴 등 다양한 질환에 시달리고 있다. 이러한 문제들을 예방하거나 완화할 수 있는 기능성 소재로 베타카로틴(β-Carotene), 루테인(Lutein), 엽록소(Chlorophyll), 비타민(Vitamin) 등이 유효한 것으로 알려져 왔다.
최근, 현대인들의 다양한 수요에 대응하여 해수로부터 소금을 만드는 과정에, 또는 제염 후 특정 성분을 첨가하는 방식으로 녹차소금, 마늘소금, 후추소금, 키토산소금, 칼륨첨가소금, 요오드첨가소금, 죽염 등이 제공되고 있다. 첨가염 혹은 재제염으로 만들어진 소금은 그 첨가된 성분들이 다분히 소금의 맛 혹은 소금이 넣어지는 음식의 맛을 개선하기 위한 것으로 고급화를 통해 소금의 부가가치를 높이고 인류에 도움이 되는 활용방식이지만 기능성 소재인 베타카로틴(β-Carotene), 루테인(Lutein) 등을 효율적으로 함유시킨 소금은 찾아보기 힘든 실정이다.
한편, 베타카로틴(β-Carotene)은 카로티노이드계 적색 색소로 붉은색을 띄는 당근, 토마토 등의 녹엽 야채류에 많이 들어 있다. 베타카로틴(β-Carotene)은 특유의 색 및 효능으로 인해 식품에 첨가되어 사용이 되고 있다. 그 효능으로는 항암제, 피부노화와 관련된 산화방지제, 피부병 치료제, 항균제 등으로 널리 사용이 되고 있다. 그런데 이런 유용성에도 불구하고 대량생산이 어렵고 포함되어 있는 녹엽야채류에도 그 양이 한정되게 들어 있어서 그 확보가 쉽지 않다. 녹엽 야채류로부터 얻는 방법은 베타카로틴(β-Carotene)이 포함되어 있는 양이 적은데다가 녹엽 야채류의 수확이 계절과 기후 변동에 좌우되고 그 재배에 장시간이 소모되는 단점이 있다.
이러한 문제점을 극복하기 위해서 화학적으로 합성하는 방법이 제안되고 있으나, 이 방법은 안정성을 확보하기 어려운 문제점이 있었다. 안정성 문제를 극복하기 위한 방법으로 미세조류를 이용하여 베타카로틴(β-Carotene) 등을 대량 생산하는 방법이 모색되고 있고 일부에서는 그 성과를 보이고 있다. 표 1에는 해양성 미세 조류 및 주요 성분을 나타낸다.
그러나 미세조류를 이용하여 베타카로틴(β-Carotene) 등을 대량 생산하는 방법은 미세조류의 양식을 위해 넓은 면적의 공간을 필요로 하고, 양식을 위해 부족한 영양물질을 계속적으로 미세조류에 공급해주어야 하는 단점이 있으며, 다른 조류들이 함께 번식하여 순도가 확보되지 못하는 문제점을 가지고 있고, 고염도를 유지하는 것이 어렵기 때문에 최고의 생육조건을 만들어주고 있지 못하며, 나아가 양식된 조류를 수확하고 분리하는 방법에 있어 많은 비효율성을 초래하고 있다.
베타카로틴(β-Carotene)을 함유하는 미세조류인 두날리엘라(Dunaliella), 스피룰리나(Spirulina), 클로렐라(Chlorella) 등은 고염 환경에서 생존이 활발하다. 이들은 현재 아프리카의 염호, 이스라엘의 사해 그리고 농축과정이 어느 정도 진행이 된 천연염전 등지에서 활발하게 생존 번식하는 것이 확인이 되고 있다. 이런 고염, 고알칼리 환경이 그들에게 있어 생육의 최적 조건이 되고 있는 것이다. 따라서 이들은 자연스럽게 증발농축이 이루어져 고염이 된 염호에서 주로 생존해 왔다. 물론 이들은 이러한 고염 환경뿐 아니라 보통의 바닷물에서도 생존이 가능하다. 또한 이들이 성장하기 위해서는 많은 영양물질이 필요하다.
해양성 미세 조류 및 주요 성분
구분 주요성분 기능성 서식환경
(염분,%)
두날리엘라
(Dunaliella, 녹조류)
베타카로틴(β-carotene), 알파카로틴(α-carotene), 루테인(lutein), 제아크잔틴(zeaxanthin), 크립토잔틴(cryptoxanthin), 엽록소(chlorophyll), 오메가 3 지방산(omega-3 fatty acid) 등 시력보호, 노화방지, 면역력증강, 피부의 자외선 보호, 항산화 효과 3.3~31.0
스피루리나
(Spirulina, 남조류)
베타카로틴(β-carotene), 엽록소(chlorophyll), 감마리놀레닉산(GLA), 항산화제(SOD), 단백질(18종), 비타민(13종), 미네랄(14종), 핵산, 다당류, 섬유질 등 빈혈 및 골다공증 예방, 면역증강효과, 암 예방효과, 간질환 예방효과, 혈당량조절 효과, 면역기능강화, 필수아미노산공급원, 단백질공급원, 생리활성화성분함유, 건강유지 및 증진 3.3~27.0
클로렐라
(Chlorella, 녹조류)
베타카로틴(β-carotene), 엽록소(chlorophyll), 단백질, 필수아미노산, 비타민, 미네랄 체질개선 효과, 면역력 강화, 골다공증 예방, 변비 해소, 다이옥신 배출, 간기능 개선, 혈압 조절 3.3

그러나 보통의 해수환경에서는 이러한 조건을 충족시키는 것이 어렵고 많은 비용의 발생을 요구한다. 표 2에서와 같이, 보통의 바닷물에서는 미세조류가 필요로 하는 영양물질의 공급이 적지만 해양심층수를 이용하면 상대적으로 영양염이 풍부한 특성을 이용할 수 있다. 또한, 일반 바닷물이나 해양심층수를 농축하면, 그들이 필요로 하는 영양물질도 농축되어 더욱 양호한 생육환경이 만들어지게 되는 것이다. 이러한 조건을 소금 제조과정에서 실현하여 미세조류를 배양하고 이들이 가진 베타카로틴(β-Carotene) 등 유용물질을 소금에 포함시킨다면 1석 2조의 효과를 얻을 수 있을 것이다.
해수중에 포함되어 있는 영양염류 함량
구분 NO2(mg/L) NH4(mg/L) NO3(mg/L) PO4(mg/L) SiO2(mg/L)
표층수 0.001 0.004 0.002 0.002 0.015
해양심층수 0.028 0.198 0.705 0.195 2.718
농축해수 0.057 0.407 1.451 0.401 5.596

선행문헌으로 한국특허등록 제0448673호에는 식물성 소금의 제조방법 및 식물성 소금이 개시되어 있으나, 본 발명의 미세조류를 배양한 해수를 이용하여 조류의 유용성분을 함유시킨 소금의 제조방법과는 기술적인 특징이 상이하다.

본 발명은 상기와 같은 목적을 달성하기 위해 도출된 것으로서, 소금의 제조 과정에서 해수 또는 해양심층수를 살균하거나 이를 농축하여, 두날리엘라 (Dunaliella), 스피룰리나(Spirulina), 클로렐라(Chlorella) 등의 조류가 잘 성장할 수 있는 환경을 조성하고, 이들이 영양염을 흡수하여 유용한 물질로 전환시키도록 한 후 이렇게 배양한 조류를 포함한 채 해수나 농축해수를 건조시키는, 일관되고 경제적인 방법으로 베타카로틴(β-Carotene) 등의 유용물질이 함유된 소금을 제조하는 방법을 제시하고자 한다.

상기 과제를 해결하기 위해, 본 발명은 살균법 또는 여과법 등의 전처리를 거친 후, RO(역삼투막) 장치 및 진공다단증발농축장치 등을 이용하여 해수(해양심층수)를 고영양 및 고미네랄 상태로 농축하고, 이를 배양액으로 하여 두날리엘라 (Dunaliella), 스피룰리나(Spirulina) 등의 조류(藻類)를 효율적으로 배양함으로서, 이들 조류가 베타카로틴(β-Carotene)등 유용물질의 함유량을 높게 가지도록 하여 배양된 조류의 유용물질이 포함된 농축수를 건조하여 최종적으로 베타카로틴(β-Carotene) 등 유용물질을 함유한 소금을 제조하는 방법을 제공한다.
또한, 본 발명은 상기 방법으로 제조된 미세조류의 유용성분이 함유된 소금 및 상기 미세조류의 유용성분이 함유된 소금과 일반 소금을 혼합하여 제조한 소금을 제공한다.

본 발명에 따르면, 미네랄과 영양염이 풍부한 해수 또는 해양심층수를 농축하고 이를 배양액으로하여 미세조류를 배양하여 소금을 제조함으로써 저렴한 비용으로 베타카로틴(β-Carotene) 등의 유용물질을 함유한 소금을 일관 생산할 수 있으며, 생산 과정을 조절함에 따라 미네랄 및 베타카로틴(β-Carotene) 등의 함량이 다양한 고급 제품을 효율적으로 생산하는 것이 가능하다. 또한, 해수담수화 부산물인 농축해수를 효과적으로 재이용하는 방법으로도 연계 가능하여 연안환경 보전에도 유효하다.

도 1은 본 발명의 소금의 제조 공정을 나타낸다.
도 2는 표층수와 해양심층수에 포함된 균류를 비교한 것이다.
도 3는 역삼투막(RO) 장치를 나타낸다.
도 4은 진공다단증발농축기(VMEC)를 나타낸다.
도 5는 다단진공증발법에 의한 미네랄의 분리 추출과 비중과의 관계를 나타낸다.
도 6는 조류배양장치를 나타낸다.
도 7는 분무건조 제염장치를 나타낸다.

본 발명의 전체적인 공정을 설명하면 다음과 같다. 도 1은 본 발명의 미세조류의 유용성분을 함유한 소금의 제조 방법을 나타내는 전체 공정도로서, 해수 또는 해양심층수를 모래여과, 급속여과막, 마이크로필터(MF), 나노필터 (NF), 울트라필터 (UF) 등으로 여과하여 전처리한 후, RO(역삼투막)을 통과시켜 1차 농축수와 투과수(탈염수)를 제조하고, 1차 농축수를 진공다단증발농축시스템을 통해 2차 농축을 진행함으로써 조류가 성장할 수 있는 고염분 고영양의 2차 농축수를 제조한다. 이때 발생되는 투과수(탈염수)는 그 용도에 맞게 별도로 상품화 한다.
2차 농축수는 상온보다 높은 고온수이기 때문에 미세조류를 배양하기에도 고온이다. 따라서 이를 온도 조절장치를 통하여 미세조류가 성장하기에 적합한 온도로 조절한다. 온도가 조절된 2차 농축수는 조류배양 및 이식장치에 넣어 미세조류를 희석하여 이식한다. 미세조류의 희석 공정을 실시예를 들어 설명하면 다음과 같다.
조류 배양 및 이식 장치에 배양이 완료된 농축수 1톤에 온도가 조절된 농축수가 1톤이 더해지는 방식으로 진행이 된다. 따라서 조류 배양 및 이식 장치에는 2톤의 농축수가 존재하게 되어 농축수에 이미 배양된 조류가 희석되는 것이다. 이렇게 희석된 농축수가 다음공정인 조류 배양장치로 1톤만 보내지게 되므로 조류 배양 및 이식 장치에는 원래와 같은 1톤의 농축수가 조류가 희석이 된 채로 남게 되고, 다른 1톤은 조류 배양장치로 옮겨지게 된다.
이 과정에서 조류배양 및 이식장치의 농축수속의 조류에도 새로운 농축수가 첨가되었기 때문에 이들에 포함된 영양분을 토대로 하여 배양되고, 옮겨진 배양장치 농축수 속의 조류도 동시에 배양이 진행이 된다. 그 후 배양이 완료되면 배양 및 이식 장치에는 다시 새롭게 제조된 2차 농축수가 공급이 되어 배양된 미세조류를 희석에 의해 이식해 주는 작업을 반복한다.
배양장치에서 배양된 미세조류가 포함된 농축수는 조류 스트레스 부여 공정에 투입이 된다. 조류 배양장치는 미세조류를 배양하기 위해 빛(인공광), 공기(CO2) 및 온도 등을 조절할 수 있는 장치를 말한다. 조류 배양장치에 있는 농축수의 배양이 완료되면 조류 스트레스 부여 장치에 투입될 수 있는데, 농축수에 온도 및 농도 변화를 줘서 미세조류에 스트레스를 부여하여 미세조류 세포 내 베타카로틴 등 유용물질의 함량을 높일 수 있다. 각각 배양이 완료되면 조류 배양 및 이식장치의 농축수에 또다시 새롭게 제조된 농축된 해수를 첨가해주고, 조류 배양장치에 있는 농축수는 바로 건조하거나 조류 스트레스 부여 장치로 옮겨진 후 건조할 수 있고, 상기 공정을 계속 반복하게 된다.
전체 공정에서 온도조절장치에 온도조절매체로 사용되는 것은 해수 또는 해양심층수의 저온성을 활용한다. 또한 스트레스부여장치에 사용되는 온도조절 매체는 진공다단증발농축장치에서 분리되는 농축수의 고온 에너지를 활용한다.
본 발명의 목적을 달성하기 위하여, 상기의 전체적인 공정을 패턴화한 본 발명의 단계별 구성은 다음과 같다.
(a) 해수를 UV, 오존처리 또는 열을 이용하여 살균하거나 모래여과, 급속여과막, 마이크로필터(MF), 나노필터(NF) 또는 울트라필터(UF)를 이용하여 여과하는 전처리단계;
(b) 상기 (a)단계의 살균 또는 여과한 해수를 막분리법 또는 상변화법에 1회 이상 적용시켜 농축 해수를 제조하는 단계;
(c) 상기 농축 해수의 온도를 조절하고 여기에 고염도에 성장 가능한 미세조류를 넣고 배양한 후, 건조하는 단계를 포함하여 제조하는 것을 특징으로 하는 미세조류의 유용성분이 함유된 소금의 제조방법을 제공한다.
본 발명의 일 구현 예에 따른 미세조류의 유용성분을 함유한 소금제조방법은 상기 (a)단계 및 (b)단계의 농축수 제조공정이 막분리법 또는 상변화법 RO 공정 및 진공다단농축증발장치에 의한 것이 아니고 천일염 제염방법에 의한 농축 단계를 추가로 포함할 수 있다.
상기 (a)단계의 살균 또는 여과는 해수 속에 있는 미세조류는 유익한 것도 있지만 해로운 것도 있고 농축수 속에 포함된 영양물질을 불필요하게 소모시킬 가능성이 있기 때문에 실시하는 것이며, 살균 또는 여과 처리한 해수는 배양하려는 미세조류 이외의 미세조류를 사전에 제거하여 배양하려는 미세조류만을 청정한 상태에서 배양할 수 있다. 살균방법은 UV, 오존처리 또는 열 살균 방법을 이용할 수 있으며, 여과 방법은 모래여과, 급속여과막, 마이크로필터(MF), 나노필터(NF) 또는 울트라필터(UF)를 이용할 수 있으나, 이에 제한되지 않는다.
상기 (a)단계의 해수는 바람직하게는 해양심층수일 수 있으나, 이에 제한되지 않는다. 해양심층수는 빛이 없고 고압의 수압이 존재하는 특수한 환경으로 인해 생존하고 있는 조류 및 균류가 표층 해수에 비해 매우 적은 특징을 가지고 있다. 미세조류가 성장하기 위해서는 많은 영양물질이 필요하다.
그런데 보통의 바닷물에서는 이들이 필요로 하는 영양물질의 공급이 적지만 해양심층수를 이용하면 상대적으로 영양염이 풍부한 특성을 이용할 수 있다. 또한, 일반 바닷물이나 해양심층수를 농축하면, 그들이 필요로 하는 영양물질도 농축되어 더욱 양호한 생육환경이 만들어지게 되는 것이다.
상기 (b)단계의 해수의 농축은 미세조류가 고염도 및 고알칼리 상태에서 생육이 활발하기 때문에 이들 미세조류의 생육을 촉진하기 위해서 이러한 환경을 만들기 위해 실시하는 것이다. 해수는 담수와는 달리 알칼리 성질을 띠고 있지만, 이것을 농축하면 더욱 알칼리성이 올라가기 때문에 미세조류에게 최적의 조건을 만들어 주게 된다. 특히 농축방법은 막분리법(역삼투법(RO) 나노여과막(NF), 전기투석법(ED) 등)이나 상변화법(다단플래쉬식 증발법(MSF), 다중효용식 증발법(MED), 증기압축식 증발법(VCD), 기계적 증기재압축식 증발법(MVR), 진공다단증발농축식 증발법(VMEC), 가스수화물법(GHF), 간접(히트펌프)식 냉동법 등)을 1회 이상, 바람직하게는 1~3회 수행할 수 있으며, 천일염 제염방법에 의해 농축할 수도 있으나, 이에 제한되지 않는다.
상기 (c)단계의 미세조류는 고염도에서 성장가능한 조류라면 어떠한 것이라도 포함될 수 있으며, 바람직하게는 두날리엘라(Dunaliella), 스피루리나(Spirulina), 클로렐라(Chlorella), 헤마토코쿠스(Haematococcus), 나노크로롭시스(Nannochloropsis), 아이소크라이시스 갈바나(Isochrysis galbana), 니치시아 인콘스피쿠아(Nitzchia inconspicua) 및 페오닥틸룸(Phaeodactylum)으로 이루어진 군으로부터 선택되는 하나 이상일 수 있으나, 이에 제한되지 않는다.
미세조류의 유용성분은 미세조류가 가진 다양한 영양소를 포함하는 의미이며, 베타카로틴(β-Carotene), 엽록소(Chlorophyll), 피코시아닌(Phycocyanin), 폴리사카라이드(Polysaccharide), 루테인(Lutein), 제아크산틴(Zeaxanthin), 오메가-3 지방산(Omega-3 fatty acid), 비타민, 단백질 성분들일 수 있으며, 바람직하게는 베타카로틴(β-Carotene)일 수 있으나, 이에 제한되지 않는다.
상기 (c)단계의 건조는 분무건조법, 동결건조법, 감압증발건조법, 평부법 또는 천일염전법에 의해 수행할 수 있으나, 이에 제한되지 않으며, 바람직하게는 분무건조법을 이용하여 수행할 수 있다.
또한 상기(c)단계의 제조공정은 (c-1) 빛(인공광), 공기(CO2), 온도, 염분농도를 조절할 수 있는 조류 배양장치를 조성하여 전처리 해수 또는 농축해수를 조류 배양장치에 투입하고, 미세조류를 접종(이식)하는 단계;
(c-2) 미세조류를 배양하는 과정에 영양염 등은 흡수시키고, 미세조류 세포 속의 베타카로틴 등 유용물질의 함량을 높이기 위하여 염분, 온도를 변화시켜 스트레스를 가하는 단계;
(c-3) 상기 미세조류가 포함된 해수나 농축수를 분무건조 제염법, 천일염 제염법, 진공증발농축 제염법, 평부솥을 이용한 제염법(평부법) 등으로 건조하여 베타카로틴 등 유용물질이 함유된 소금을 제조하는 단계를 포함하는 미세조류의 유용성분이 함유된 소금 제조 방법으로 세분될 수 있다.
본 발명은 또한, (a) 해수를 UV, 오존처리 또는 열을 이용하여 살균하거나 모래여과, 급속여과막, 마이크로 필터(MF), 나노필터(NF) 또는 울트라필터(UF)를 이용하여 여과하는 단계; 및 (b) 상기 살균 또는 여과된 해수에 고염도에 성장 가능한 미세조류를 넣고 배양한 후, 건조하는 단계를 포함하여 제조하는 것을 특징으로 하는 미세조류의 유용성분이 함유된 소금의 제조방법을 제공한다.
상기 방법에서, 상기 (b)단계의 살균 또는 여과된 해수에 미세조류의 배양 시 미세조류의 배양을 촉진하기 위해 영양 배지를 추가로 첨가할 수 있으며, 이때 첨가할 수 있는 영양 배지로는 f/2 배지, SOT 배지, J/l 배지, PES 배지, Zarrouk 배지, Conwy 배지, Schreiber 배지 등이 있을 수 있으나, 이에 제한되지 않는다. 상기 영양 배지들은 당업계에서 통상적으로 이용되는 배지들이다.
본 발명은 일 구현예로서, (a) 해수를 UV, 오존처리 또는 열을 이용하여 살균하거나 마이크로필터(MF) 또는 울트라필터(UF)를 이용하여 여과하는 단계;
(b) 상기 (a)단계의 살균 또는 여과한 해수를 역삼투막(RO)을 통과시켜 농축 해수를 제조하는 단계;
(c) 상기 (b)단계의 제조된 농축 해수를 진공다단증발농축기를 이용하여 진공 500~700 mmHg 및 온도 50~70℃에서 8~12시간 동안 농축하는 단계; 및
(d) 상기 (c)단계의 농축한 농축 해수를 25~35℃로 식히고 두날리엘라(Dunaliella), 스피루리나(Spirulina), 클로렐라(Chlorella), 헤마토코쿠스(Haematococcus), 나노크로롭시스(Nannochloropsis), 아이소크라이시스 갈바나(Isochrysis galbana), 니치시아 인콘스피쿠아(Nitzchia inconspicua) 및 페오닥틸룸(Phaeodactylum)으로 이루어진 군으로부터 선택되는 하나 이상의 미세조류를 넣고 배양한 후, 분무 건조하는 단계를 포함하여 제조하는 것을 특징으로 하는 미세조류의 유용성분이 함유된 소금의 제조방법을 제공한다.
본 발명의 방법으로 제조된 미세조류의 유용성분이 함유된 소금은 그대로 사용할 수 있고, 다른 소금에 첨가한 후 혼합하여 사용할 수 있다. 다만 죽염 혹은 구운 소금과 같은 고온의 소금 제조과정을 거치는 소금에 적용하기 위해서는 베타카로틴(β-Carotene) 등의 영양물질이 타는 등 파괴될 가능성이 있기 때문에 베타카로틴 등을 별도로 분리 추출한 후 소금만을 가지고 가공하여 영양물질을 혼합하는 공정으로 제조할 수 있으나, 이에 제한되지 않는다.
또한, 본 발명의 방법으로 제조된 미세조류의 유용성분이 함유된 소금의 품질을 좌우하는 것은 베타카로틴(β-Carotene) 등의 영양물질의 함량과 칼륨, 칼슘, 마그네슘 등의 미네랄 함량 및 균형 여부에 달려있다.

이하 본 발명의 단계별 중요 제조공정을 실시 예와 함께 설명하면 다음과 같다.
1. 해수 전처리 및 청정 농축수의 제조 공정
베타카로틴 등 유용물질 함유 미네랄 소금을 제조하는 공정에 있어서 두날리엘라, 스피루리나 등의 미세조류가 성장할 수 있는 고염분, 고영양의 농축수를 저렴한 비용으로 제조하는 것이 중요하다. 또한 이 과정이 고온에 의해 소독 및 살균 과정이 되어 배양하려는 미세조류 이외의 미세조류를 사전에 제거하는 공정이 되어 배양 및 이식 장치로 보내지는 농축수가 청정한 상태를 유지하는 것이 필요하다. 표층수와 해양심층수에 포함된 균류를 비교한 결과에 의하면, 해양심층수에는 빛이 없고 고압의 수압이 존재하는 등 특수한 환경으로 인해 생존하고 있는 미세조류 및 균류가 표층 해수에 비해 매우 적다(도 2).
그러나 매우 적은 숫자이지만 세균 및 조류는 취수과정에 해수에 포함이 되어 유입이 되고 배양장치에서 성장할 수가 있다. 조류 중에는 유익한 것도 있지만 해로운 것도 있고 농축수속에 포함된 영양물질을 불필요하게 소모시킬 가능성이 있기 때문에 전처리 과정에서 일정부분을 제거하고 농축과정의 높은 온도에 의해 소독 및 살균과정을 거치는 등의 방법으로 이를 제거하였다.
제거방법은 마이크로필터 및 UF 필터를 통한 전처리 과정을 통한 제거와 진공다단 증발법을 이용한 농축과정에서 높은 온도에 의한 살균과정을 택하였다. 진공다단 증발법은 60℃ 이상의 온도에서 10시간 이상을 유지하여 농축과정이 진행이 되었다. 농축하고자 하는 양에 따라서 증발 농축시간은 달리질 수 있다. 전처리 과정을 거치고 진공다단 증발 농축과정에서 고온으로 살균한 결과 만들어진 농축수로 배양을 한 결과 다른 조류의 성장은 발견이 되지 않았다.
이와 같이 전처리 및 농축과정을 거치면 플랑크톤 및 조류들은 사멸이 되어 청정성은 높아지고 영양염은 농축해수가 만들어 지게 된다. 이렇게 만들어진 해수 또는 해양심층수는 두날리엘라, 스피루리나 등을 배양하기에 더 없이 좋은 환경이 된다. 결과적으로 청정해진 농축수는 미세조류의 배양과정에서 다른 미세조류의 섞임이 없이 소금제조자의 선택에 따라 단일 미세조류로 만들어진 베타카로틴 등 유용물질을 함유한 미네랄 소금을 만들 수도 있게 된다.
두날리엘라, 스피루리나 등의 미세조류는 고염도 고알카리 상태에서 생육이 활발하기 때문에 이들의 생육을 촉진하기 위해서는 이러한 환경을 만들어 주는 것이 중요하다. 이러한 해수 환경은 해수(해양심층수)를 농축시킴에 의해서 가능하다. 해수(해양심층수)는 담수와는 달리 알카리 성질을 띠고 있다. 이를 RO 장치 등을 통해 농축을 하면 알카리성은 더욱 올라간다. 해수는 평균적으로 PH가 8 내외에서 유지가 되고 있는데 이를 RO 장치를 통해 농축하면 PH 가 8.5 정도까지 상승을 하고 이를 농축장치를 통해 농축을 진행하면 PH 는 9 이상이 되어 고염 및 고알카리 환경을 좋아하는 두날리엘라 및 스피루리나에게는 최적의 조건을 만들어 주게 된다.

2. 진공다단증발농축장치에 의한 농축수의 제조 및 미세조류의 배양방법
전처리 과정에서 살균 또는 여과한 해수를 먼저 역삼투막(RO)을 통과시키면 1차 농축수와 투과수(탈염수)가 나오게 되는데, 투과수는 별도로 그 용도에 맞게 상품화할 수 있고, 본 발명의 소금의 제조에는 1차 농축수가 사용되는데 1차 농축수의 비중 1.04 및 pH는 8.5 정도가 된다. 상기 1차 농축수를 진공다단증발농축장치(VMEC)를 이용하여 2차 농축수를 제조한다. 도 3는 역삼투막(RO) 장치를 나타낸 것이다.
해수의 농축은 일반 담수의 농축과는 달리 그 농축과정에서 세심한 주의가 요구되고 설비 또한 달라지지 않으면 안 된다. 해수를 농축하면 그 농축과정이 진행됨에 따라 용해도가 낮은 일부 미네랄들의 결정화가 이루어지고 이들 미네랄은 가라앉거나 결정으로 농축장치의 내부에 부착하여 장치 내 해수의 흐름을 막거나 농축을 위한 에너지 효율을 떨어뜨리게 된다.
따라서 이러한 문제를 줄이고 저온 농축을 통한 에너지 절감 및 농축에너지의 절감을 위하여 진공다단증발농축장치(VMEC)를 사용하였다(도 4). 해수는 농축되어 감에 따라 그 농도 및 밀도가 증가하기 때문에 이를 반영하여 에너지 투입량 및 증발량을 고려하여 설비 용량을 고려할 필요가 있다.
물은 보통 100℃에서 끓지만 해수는 다양한 미네랄들을 함유하고 있기 때문에 밀도가 높아 끓는점이 100℃보다 높다. 끓는점은 농축이 진행되어 감에 따라 밀도가 더욱 증가하기 때문에 더욱 높아지게 된다. 따라서 증발에 필요한 에너지량은 더욱 증가하게 되고 해수 속에 포함되어 있는 미네랄 및 영양염류의 변성이 올 가능성이 커지게 되는 등 다양한 부작용이 초래될 수 있다.
이를 방지하고 에너지 효율을 높이기 위해서 진공다단증발농축장치(VMEC)는 사용함으로써 증발기 내부를 진공으로 만들면 끓는점이 하강하게 되어 이러한 문제들을 방지를 할 수 있다. 진공다단증발농축장치(VMEC)는 각 단계의 해수의 특성에 맞는 에너지 투입량을 결정하여 투입을 할 수 있기 때문에 에너지 효율이 높고 컨트롤이 쉽다. 또한 진공으로 농축하면 고온 증발에 따른 미네랄 파괴 및 스케일 형성을 줄일 수 있는 장점이 있다.
즉 진공다단증발농축장치 증발기 내부 진공을 600 mmHg 정도로 하면 끓은 점은 60℃ 이하로 내려오게 된다. 끓는점을 낮춤으로써 그 차이만큼 에너지 투입을 줄일 수 있었으며, 저온에 의한 증발로 인해 고온으로 인한 미네랄의 물리화학적 변화 및 스케일 등을 줄일 수 있었다. 그리고 진공다단증발농축장치(VMEC)를 이용하여 해수를 10시간 이상을 유지하여 농축한 결과 다른 미세조류의 성장은 발견되지 않았다.
진공다단증발농축장치(VMEC)를 이용한 1차 농축수의 농축 방법을 더욱 상세하게 기술하면 다음과 같다. 도 5는 다단진공 증발법에 의한 미네랄의 분리 추출과 비중과의 관계를 나타낸 것으로, 해수를 RO(역삼투막)을 통해 농축하면 농축수의 비중은 1.04 정도가 된다.
1차 농축수를 진공다단증발농축장치(VMEC)의 1단 증발기에 넣어 농축을 진행하면 농축이 진행됨에 따라 탄산칼슘이 결정화되기 시작한다. 탄산칼슘은 일단 결정화되면 잘 녹지 않기 때문에 이를 다시 용해하여 사용하기가 쉽지 않다. 또한 소금에 포함될 경우 음식에 넣었을 때 잘 녹지 않는 문제점이 있다. 따라서 탄산칼슘을 분리 추출하여 소금의 용도가 아닌 다른 용도로 사용하는 것이 좋다. 또한 그대로 두면 설비 내부에 부착하는 스케일의 원인이 되기 때문에 분리 추출하는 것이 설비 운전효율 강화에 도움이 된다.
실제 해수 100톤을 RO 농축을 한 후 다단진공 증발기에 넣어 증발을 실시했을 때 실제 해수 100톤은 각 공정 단계를 거칠 때마다 비중이 달라지고 생산되는 미네랄이 달라진다. 해수 100톤은 RO 농축과정을 거치면 60톤 정도의 농축수가 만들어 진다. 이 농축수가 1차 증발기를 통과 하면 약 6kg 정도의 탄산 칼슘을 결정으로서 남긴다. 2차 증발기에서는 60kg 정도의 황산칼슘을 결정으로서 남기게 된다. 이 2단계의 증발 농축과정으로 칼슘은 대부분 결정으로 분리가 되고 염화칼슘의 형태로 남은 것들만이 용해된 상태로 존재하게 된다.
증발이 진행되어 탄산칼슘의 결정의 분리 추출이 끝나갈 즈음이 되면 농축수의 비중은 1.08에 이른다. 이때 상기 1단 증발기에 의해 농축된 농축수를 2단 증발시스템으로 옮겨서 증발을 진행한다. 여기서부터는 황산칼슘이 결정화되는데 탄산칼슘과 분리된 순도 높은 황산칼슘을 얻을 수 있다. 황산칼슘은 용해성이 탄산칼슘에 비해 높기 때문에 다양한 미네랄 제품의 원료로서 사용하기에 좋다. 분리 추출할 황산칼슘을 최종 공정에서 생산한 미네랄 소금에 투입하여 칼슘함량을 조절하는 용도로 사용할 수 있다.
2차 증발시스템에서 황산칼슘의 결정화가 거의 끝나갈 때쯤이 되면 농축수의 비중 1.18 및 pH 9 정도에 이르게 된다. 농축수의 비중이 1.18 정도에 이르렀을 때 이를 증발농축장치에서 분리하여 미세조류배양에 사용할 수 있다.
이와 같은 방법으로 해수를 살균 또는 여과 및 농축과정을 거치면 플랑크톤 및 조류들은 사멸되어 청정성은 높은 농축수가 만들어지게 된다. 이렇게 만들어진 농축수는 두날리엘라(Dunaliella), 스피룰리나(Spirulina) 등을 배양하기에 더 없이 좋은 환경이 된다. 결과적으로 청정해진 농축 해수는 미세조류의 배양과정에서 다른 미세조류의 섞임이 없이 소금제조자의 선택에 따라 단일 미세조류로 만들어진 베타카로틴(β-Carotene) 등 유용물질을 함유한 소금을 제조할 수 있다.

3. 해수 또는 해양심층수에 의한 농축수의 온도 조절 및 미세조류배양 공정
미세조류의 생육조건에는 온도는 매우 중요하다. 이들 미세조류는 고온 환경에서 생육하기 때문에 고온의 환경을 조성해 주어야 한다. 이러한 조건을 일상 환경에서는 조성하기가 어렵기 때문에 이들 미세조류가 가진 높은 효용성에도 불구하고 배양이 특정한 지역의 특정한 환경하에서만 이루어져왔다. 소금을 만들기 위한 농축과정은 다량의 에너지를 필요로 한다. 그리고 그 와중에서 많은 에너지가 사실상 버려져 왔다. 본 발명에서는 이들 버려지는 저온 혹은 고온의 에너지를 활용함으로써 베타카로틴 등 유용물질 함유 소금의 경제적인 생산을 가능하게 하였다.
즉, 본 발명에서 농축 해수의 온도조절 및 조류배양장치에서의 온도조절은 저온의 해양심층수와 고온의 농축 해수 및 증발 응축수를 이용할 수 있다. 전처리 및 농축과정을 통해 고염도, 고알칼리가 된 해수는 60℃에 가까운 고온을 지니고 있으며, 이러한 고온 환경에서는 미세조류가 생육을 할 수가 없다. 따라서 상기 농축된 해수를 30℃ 내외의 온도를 만들어야 여기에 미세조류를 배양시킬 수 있다. 해양심층수는 연간 2℃ 내외의 온도를 일정하게 유지하고 있는 청정한 해수이다. 이 청정 해수를 취수하여 공장에 도달하면 5~10℃ 내외의 온도를 일정하게 유지한다. 따라서, 이 해수를 이용하여 고온의 상기 농축된 해수를 식히는 데 사용할 수 있다.
또한, 미세조류의 배양은 상당한 시간을 필요로 한다. 필요한 양의 미세조류를 배양시키기 위해서는 최소 하루, 고밀도의 미세조류를 배양하기 위해서는 몇 일이 소요되기도 한다. 이 경우 미세조류가 생장하는데 필요한 30℃ 내외의 온도를 일정하게 유지하여 주는 것이 필요하다. 따라서 계속하여 온도를 유지시켜주는 노력이 요구되고 막대한 에너지가 필요로 하게 된다. 이때 필요한 에너지는 증발 농축장치에서 나오는 폐열을 이용하면 효율적이다. 증발농축장치는 해수가 증발함에 따라 막대한 양의 수증기가 나오고 이는 고온의 응축수의 형태로 회수할 수 있다. 이를 조류배양장치로 보내서 한편으로는 응축수의 고온을 낮추면서 이 에너지를 이용하여 배양장치의 온도를 일정하게 유지하면서 스트레스부여에 사용되는 온도를 조절할 수 있다.
이렇게 하면 별도의 에너지 투입 없이도 배양장치의 온도를 일정하게 유지하는 것이 가능하게 된다. 따라서 열대지방에서나 가능한 조건이 시스템적으로 가능하게 되어 경제적인 비용으로 미세조류를 배양할 수 있고 결과적으로 저렴한 비용으로 베타카로틴(β-Carotene) 등 유용물질 함유 소금 제조가 가능하게 된다.
이하, 본 발명의 실시 예에 따른 제조방법 및 제조된 소금의 성분특성 및 관능검사결과에 대해 설명한다. 단, 하기 실시예는 본 발명을 예시하는 것일 뿐, 본 발명의 내용이 하기 실시예에 한정되는 것은 아니다.

4. 미세조류를 이용한 소금의 제조방법
1) 해양심층수를 UV, 오존처리 또는 열을 이용하여 살균하거나 마이크로필터(MF) 또는 울트라필터(UF)로 여과하였다.
2) 상기 살균 및 여과한 해양심층수 10톤을 역삼투막(RO)을 통과시켜 6톤으로 농축하여 비중 1.04 및 pH 8.5 정도의 농축수를 제조하였다.
3) 상기 농축수를 진공다단증발농축기(VMEC)를 이용하여 농축을 진행하는데, 먼저 해양심층수를 1단 증발기에 넣고 농축하면 농축이 진행됨에 따라 탄산칼슘 6 kg이 결정화되는데 이를 분리 추출하여 비중 1.08로 농축하였다.
상기 농축된 해양심층수를 2단 증발시스템에 옮겨 증발을 진행하면 황산칼슘 6 kg이 결정화되는데 이를 분리 추출하고, 비중이 1.18 및 pH 9 정도에 이를 때까지 농축하여 농축수를 제조하였고, 상기 농축과정은 진공 600 mmHg 및 온도 60℃에서 20시간 정도 소요되었다.
4) 상기 농축된 농축수를 미세조류가 살 수 있도록 온도를 30℃로 조절하고 두날리엘라(Dunaliella), 스피룰리나(Spirulina) 및 클로렐라(Chlorella)를 넣고 배양한 후 분무 건조하여 소금을 제조하였다.

5. 해수 농축에 따른 염도별 미세조류 배양 및 베타카로틴 함유량 측정
본 발명의 미세조류의 유용성분이 포함된 소금의 제조는 다음과 같이 실시되었고 그 결과는 표 3과 같다.
해수는 농축하면서 다양한 염도(3.4%, 6%, 10%, 15%, 20%, 25%)를 갖는 농축수를 제조하여 미세조류(두날리엘라)의 배양을 실시하였다. 농축수에 미세조류의 첨가는 초기 농도 50 x 104 cells/mL이 되도록 접종한 후 80μmol Photon/m2s 의 24시간 연속 형광등 조명하에서 4일간 25℃에서 배양하면서 혈구 계산기 및 현미경 측정방법으로 최대 밀도 및 세포의 색을 관찰하였으며 HPLC 분석을 통해 염 농도별 미세조류의 베타카로틴(β-Carotene) 함량을 측정하였다.
염 농도 변화에 따른 배양 결과 분석
염농도 최대 세포밀도
(x 104cells/ml)
세포의 색
(세포 현탁액)
베타카로틴 함량
(x 10-10uM/cell)
3.4% 200.5 밝은 녹색 9.1
6% 130.4 녹색 10.5
10% 120.0 녹색 9.8
15% 121.2 녹색 16.3
20% 155.4 주황 빛 녹색 60.0
25% 115.6 오렌지 색 107.4

실험결과 염 농도가 높을수록 베타카로틴(β-Carotene) 함량이 높아져서 오렌지색을 나타내는 것을 알 수 있었으며 분석결과 베타카로틴(β-Carotene) 함량이 실제적으로도 많은 것이 확인이 되었다. 따라서 실제 상업생산을 위한 경우에는 저염도에서 성장시킨 후 고염도로 바뀐 환경에서 베타카로틴(β-Carotene) 함량을 높이는 방법을 사용하든가 염 농도 20% 내외에서 일관되게 사용하는 방법을 택하는 것이 베타카로틴(β-Carotene)이 많이 포함된 미세조류를 대량으로 배양하는 방법임을 알 수 있었다.

6. 제조된 소금의 관능검사
본 발명의 미세조류의 유용성분이 함유된 소금의 관능검사 결과는 하기 표 3과 같다. 30대의 남녀 직장인 30명을 대상으로 5점 평점법에 의해 본 발명의 미세조류의 유용성분이 함유된 소금과 미세조류를 이용하지 않고 제조한 소금(대조구)을 가지고 외관, 냄새, 맛 및 전체적인 기호도를 테스트하였다.
관능검사 결과(측정값: 1: 나쁘다, 2: 조금 나쁘다, 3: 보통이다, 4: 조금 좋다, 5: 좋다.)

구 분
평균 설명 후 기호도
미세조류성분 함유소금 3.5 4.6 4.23 4.11 4.8
대조구 4.0 3.0 3.68 3.56 3.56

미세조류의 유용성분이 함유된 소금은 상기 실시예 1에서 실험한 것 중에서 염도 20%의 조건에서 배양한 미세조류(두날리엘라)가 포함된 농축수를 가지고 제조한 소금으로 하였다. 염 농도 20% 조건의 미세조류가 배양된 농축수를 택한 이유는 미세조류의 성장속도 및 베타카로틴(β-Carotene) 성분의 함유량을 고려하였을 때 향후 상업생산에 유리할 것이라고 판단하였기 때문이다.
상기 표 4에서 알 수 있는 바와 같이, 외관으로 보는 색에서는 미세조류 성분의 함유에 따른 색의 변화로 호감도가 떨어지나 맛과 향에서는 높은 점수를 받아 대조구와 비교했을 때 높은 기호도를 나타냄을 알 수 있었다. 또한, 관능검사 후 미세조류의 유용물질 함유 내용을 설명한 후의 선호도는 4.8로 매우 높게 나타나 본 발명의 소금이 대조구의 소금에 비해 더 높은 기호도를 나타내는 것을 알 수 있었다.

미네랄과 영양염이 풍부한 해수 또는 해양심층수를 농축하고 이를 배양액으로하여 미세조류를 배양하여 소금을 제조함으로써 저렴한 비용으로 베타카로틴(β-Carotene) 등의 유용물질을 함유한 소금을 일관 생산할 수 있고 이로부터 해수담수화 부산물인 농축해수를 효과적으로 재이용하는 방법으로도 연계 가능하여 연안환경 보전에도 유효하다.

Claims (16)

  1. (a) 해수를 UV, 오존처리 또는 열을 이용하여 살균하거나 모래여과, 급속여과막, 마이크로필터(MF), 나노필터(NF) 또는 울트라필터(UF)를 이용하여 여과하는 단계;
    (b) 상기 (a)단계의 살균 또는 여과한 해수를 막분리법 또는 상변화법에 1회 이상 적용시켜 농축 해수를 제조하는 단계; 및
    (c) 상기 농축 해수의 온도를 조절하고 여기에 고염도에 성장가능한 조류를 넣고 배양한 후, 배양된 조류가 포함된 농축 해수건조하는 단계를 포함하여 제조하는 것을 특징으로 하는 미세조류의 유용성분이 함유된 소금의 제조방법.

  2. 제1항에 있어서 상기 (c)단계의 농축 해수의 온도를 조절하고 여기에 고염도에 성장 가능한 조류를 넣고 배양하는 단계는
    (c-1) 빛(인공광), 공기(CO2), 온도, 염분농도를 조절할 수 있는 조류 배양장치를 조성하여 전처리 해수 또는 농축 해수를 조류 배양장치에 투입하고, 고염도에 성장 가능한 조류를 접종하는 단계;
    (c-2) 조류를 배양하는 과정에 영양염 등은 흡수시키고, 조류 세포 속의 베타카로틴 등 유용물질의 함량을 높이기 위하여 염분, 온도를 변화시켜 접종된 조류에게 스트레스를 가하는 단계로 세분되는 것을 특징으로 하는 미세조류의 유용성분이 함유된 소금의 제조방법.

  3. 제1항에 있어서, 상기 해수는 해양심층수인 것을 특징으로 하는 미세조류의 유용성분이 함유된 소금의 제조방법.

  4. 제1항에 있어서, 상기 유용성분은 베타카로틴(β-Carotene), 엽록소(Chlorophyll), 피코시아닌(Phycocyanin), 폴리사카라이드(Polysaccharide), 루테인(Lutein), 제아크산틴(Zeaxanthin), 오메가-3 지방산(Omega-3 fatty acid), 비타민, 미네랄 또는 단백질인 것을 특징으로 하는 미세조류의 유용성분이 함유된 소금의 제조방법.

  5. 제1항에 있어서, 상기 (b)단계의 막분리법은 역삼투법(RO), 나노여과막(NF) 또는 전기투석법(ED)이며, 상변화법은 다단플래쉬식 증발법(MSF), 다중효용식 증발법(MED), 증기압축식 증발법(VCD), 기계적 증기재압축식 증발법(MVR), 진공다단증발농축식 증발법(VMEC), 가스수화물법(GHF) 또는 간접(히트펌프)식 냉동법인 것을 특징으로 하는 미세조류의 유용성분이 함유된 소금의 제조방법.

  6. 제1항에 있어서, 상기 (c)단계의 농축 해수의 온도 조절은 저온의 해양심층수와 고온의 농축 해수 및 증발 응축수를 이용하는 것을 특징으로 하는 미세조류의 유용성분이 함유된 소금의 제조방법.

  7. 제1항에 있어서, 상기 (c)단계의 고염도에 성장가능한 조류는 두날리엘라(Dunaliella), 스피루리나(Spirulina), 클로렐라(Chlorella), 헤마토코쿠스(Haematococcus), 나노크로롭시스(Nannochloropsis), 아이소크라이시스 갈바나(Isochrysis galbana), 니치시아 인콘스피쿠아(Nitzchia inconspicua) 및 페오닥틸룸(Phaeodactylum)으로 이루어진 군으로부터 선택되는 하나 이상의 조류인 것을 특징으로 하는 미세조류의 유용성분이 함유된 소금의 제조방법.

  8. 제1항에 있어서, 상기 (c)단계의 농축 해수에 영양 배지를 추가로 첨가하는 것을 특징으로 하는 미세조류의 유용성분이 함유된 소금의 제조방법.

  9. 제1항에 있어서, 상기 (c)단계의 건조는 분무건조법, 동결건조법, 감압증발건조법, 평부법 또는 천일염전법에 의해 수행되는 것을 특징으로 하는 미세조류의 유용성분이 함유된 소금의 제조방법.

  10. (a) 해수를 UV, 오존처리 또는 열을 이용하여 살균하거나 모래여과, 급속여과막, 마이크로필터(MF), 나노필터(NF) 또는 울트라필터(UF)를 이용하여 여과하는 단계; 및 (b) 상기 살균 또는 여과된 해수에 고염도에 성장가능한 조류를 넣고 배양한 후, 건조하는 단계를 포함하여 제조하는 것을 특징으로 하는 미세조류의 유용성분이 함유된 소금의 제조방법.

  11. 제10항에 있어서 상기 (b)단계의 살균 또는 여과된 해수에 고염도에 성장가능한 조류를 넣고 배양하는 단계는
    (b-1) 빛(인공광), 공기(CO2), 온도, 염분농도를 조절할 수 있는 조류 배양장치를 조성하여 전처리해수 또는 농축해수를 조류 배양장치에 투입하고, 고염도에 성장가능한 조류를 접종하는 단계;
    (b-2) 조류를 배양하는 과정에 영양염 등은 흡수시키고, 조류 세포 속의 베타카로틴 등 유용물질의 함량을 높이기 위하여 염분, 온도를 변화시켜 접종된 조류에게 스트레스를 가하는 단계;로 세분되는 것을 특징으로 하는 미세조류의 유용성분이 함유된 소금의 제조방법.

  12. 제10항에 있어서, 상기 (b)단계의 살균 또는 여과된 해수에 영양 배지를 추가로 첨가하는 것을 특징으로 하는 미세조류의 유용성분이 함유된 소금의 제조방법.

  13. (a) 해수를 UV, 오존처리 또는 열을 이용하여 살균하거나 마이크로필터(MF) 또는 울트라필터(UF)를 이용하여 여과하는 단계;
    (b) 상기 (a)단계의 살균 또는 여과한 해수를 역삼투막(RO)을 통과시켜 농축 해수를 제조하는 단계;
    (c) 상기 (b)단계의 제조된 농축 해수를 진공다단증발농축기를 이용하여 진공 500~700 mmHg 및 온도 50~70℃에서 8~12시간 동안 농축하는 단계; 및
    (d) 상기 (c)단계의 농축한 농축 해수를 25~35℃로 식히고 두날리엘라(Dunaliella), 스피루리나(Spirulina), 클로렐라(Chlorella), 헤마토코쿠스(Haematococcus), 나노크로롭시스(Nannochloropsis), 아이소크라이시스 갈바나(Isochrysis galbana), 니치시아 인콘스피쿠아(Nitzchia inconspicua) 및 페오닥틸룸(Phaeodactylum)으로 이루어진 군으로부터 선택되는 하나 이상의 조류를 접종하고 배양한 후, 분무 건조하는 단계를 포함하여 제조하는 것을 특징으로 하는 미세조류의 유용성분이 함유된 소금의 제조방법.

  14. 제13항에 있어서 상기 (d)단계의 조류를 접종하고 배양하는 단계는
    (d-1) 빛(인공광), 공기(CO2), 온도, 염분농도를 조절할 수 있는 조류 배양장치를 조성하여 전처리해수 또는 농축해수를 조류 배양장치에 투입하고, 고염도에 성장가능한 조류를 접종하는 단계;
    (d-2) 조류를 배양하는 과정에 영양염 등은 흡수시키고, 조류 세포 속의 베타카로틴 등 유용물질의 함량을 높이기 위하여 염분, 온도를 변화시켜 접종된 조류에게 스트레스를 가하는 단계;로 세분되는 것을 특징으로 하는 미세조류의 유용성분이 함유된 소금의 제조방법.

  15. 제1항 내지 제14항 중 어느 한 항의 방법에 의해 제조된 미세조류의 유용성분이 함유된 소금.

  16. 제15항에 따른 미세조류의 유용성분이 함유된 소금에 일반 소금을 혼합하여 제조한 소금.
PCT/KR2012/003554 2011-05-12 2012-05-07 미세조류 유용성분을 함유한 소금의 제조방법 및 제조된 소금 WO2012153955A2 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2014508302A JP5748254B2 (ja) 2011-05-12 2012-05-07 微細藻類有用成分を含有した食塩の製造方法および製造された食塩
CN201280022912.8A CN103517644B (zh) 2011-05-12 2012-05-07 含有微藻类的有效成分的盐的制造方法以及所制造的盐

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2011-0044685 2011-05-12
KR1020110044685A KR101152020B1 (ko) 2011-05-12 2011-05-12 미세조류 유용성분을 함유한 소금의 제조방법 및 제조된 소금

Publications (2)

Publication Number Publication Date
WO2012153955A2 true WO2012153955A2 (ko) 2012-11-15
WO2012153955A3 WO2012153955A3 (ko) 2013-03-21

Family

ID=46688622

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/003554 WO2012153955A2 (ko) 2011-05-12 2012-05-07 미세조류 유용성분을 함유한 소금의 제조방법 및 제조된 소금

Country Status (4)

Country Link
JP (1) JP5748254B2 (ko)
KR (1) KR101152020B1 (ko)
CN (1) CN103517644B (ko)
WO (1) WO2012153955A2 (ko)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016523529A (ja) * 2013-06-12 2016-08-12 ソーラーベスト バイオエナジー インク 藻類細胞培養液およびバイオマス、脂質化合物および組成物、ならびに関連製品の製造方法
WO2016128589A1 (es) * 2015-02-12 2016-08-18 Lancaster Plus, Slu Composición salina comestible baja en sodio
ES2668814A1 (es) * 2016-11-18 2018-05-22 Instituto Tecnologico De Canarias, S.A. (Itc) Método de fabricación de un condimento culinario con dunaliella salina y sal marina
IT201700122163A1 (it) * 2017-10-26 2019-04-26 Ivan Tortarolo Procedimento di fabbricazione di un integratore alimentare naturale ottenuto concentrando l’acqua marina sino ad un punto prossimo al punto di equilibrio di saturazione salina
CN109880745A (zh) * 2019-03-15 2019-06-14 江苏大学 一种利用腌制废水、晒盐卤水分段培养盐藻的方法

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101413371B1 (ko) * 2012-10-02 2014-07-01 한국해양과학기술원 해양심층수를 이용한 특정한 유용성분을 증강시키는 미세조류 배양방법
KR101603294B1 (ko) * 2014-02-28 2016-03-14 (주)라누베 파상된 산양산삼으로부터 최대함량 진세노사이드 추출방법
KR101681672B1 (ko) * 2014-11-21 2016-12-01 (주) 오씨아드 나무의 유용성분 및 미세조류의 유용성분을 함유한 미네랄 소금의 제조방법 및 이로부터 제조된 소금
CN104643005B (zh) * 2015-01-28 2017-11-28 山东岱岳制盐有限公司 复合盐藻及其制备方法
JP2016185087A (ja) * 2015-03-27 2016-10-27 株式会社ファイトロックス 濃縮海水を用いた藻類の培養方法
KR101687742B1 (ko) * 2016-02-18 2016-12-19 이세용 미세조류를 함유한 잔디밭 잡초제거용 저염도 액상소금의 제조방법
KR20180041519A (ko) * 2016-10-14 2018-04-24 주식회사 오션허브 염전수로부터 두날리엘라의 유용성분을 함유하는 저염소금을 제조하는 방법 및 이에 따라 제조된 저염소금
JP6162308B1 (ja) * 2016-10-27 2017-07-12 日中東北物産有限会社 塩類製造システム
KR101928514B1 (ko) 2017-12-27 2018-12-12 푸름바이오 주식회사 해수를 이용한 친환경 잔디 보호제
JP7168942B2 (ja) * 2018-06-18 2022-11-10 五洲薬品株式会社 無血清iPS細胞培養用溶液の製造方法、無血清iPS細胞培養用溶液、無血清iPS細胞培養用液体培地、無血清iPS細胞培養用処理液、無血清培地用iPS細胞増殖活性増強剤、および無血清iPS細胞培養用代替血清剤
CN108949576A (zh) * 2018-09-05 2018-12-07 大连理工大学 一种利用浓海水在漂浮式光生物反应器中培养微藻的方法
KR101998229B1 (ko) * 2018-09-07 2019-07-09 강태곤 해수를 이용한 고염도 용액의 제조방법 및 이에 의해 제조된 고염도 용액
CN115279913A (zh) 2020-03-27 2022-11-01 住友林业株式会社 使用海水的pha的制造方法
CN114195302A (zh) * 2020-09-17 2022-03-18 中国石油化工股份有限公司 一种提取煤化工高盐废水中硫酸钠和氯化钠的设备和方法
CN114394677A (zh) * 2022-01-18 2022-04-26 山东海之宝海洋科技有限公司 处理含盐废水的方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030012055A (ko) * 2001-07-30 2003-02-12 이영남 소금 제조 방법 및 그를 위한 장치
KR20050015506A (ko) * 2003-08-06 2005-02-21 김영수 해조소금의 제조방법
KR20050088717A (ko) * 2004-03-02 2005-09-07 이진우 클로렐라소금 제조방법
KR20060029945A (ko) * 2004-10-04 2006-04-07 재단법인 포항산업과학연구원 나노여과시스템을 이용한 저염 미네랄 소금 제조방법
KR20070075151A (ko) * 2006-01-12 2007-07-18 서희동 해양 심층수로부터 염장식품에 이용하는 소금의 제조방법과이용방법
KR20070118055A (ko) * 2007-06-22 2007-12-13 서희동 해양 심층수로부터 소금을 제조하는 방법

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4383039A (en) * 1981-12-10 1983-05-10 Ethyl Corporation L-Proline production from algae
JPS58198269A (ja) * 1982-05-10 1983-11-18 Kenjirou Ninomiya 栄養強化減塩食塩
JPH01148142A (ja) * 1987-12-07 1989-06-09 Keigo Ogawa 魚貝類の干物製品の製造法
CN1030194C (zh) * 1990-01-25 1995-11-01 轻工业部制盐工业科学研究所 盐藻中胡萝卜素的提取方法
CN1118223A (zh) * 1994-09-08 1996-03-13 陈钦绍 营养型含钾低钠盐
JP3044458B2 (ja) * 1996-11-26 2000-05-22 有限会社高生連 海洋深層水を原材料とした自然塩
CN1069821C (zh) * 1996-12-03 2001-08-22 赵波 富碘螺旋藻粉及其应用
JP2001220134A (ja) * 2000-02-14 2001-08-14 S F C:Kk 天日塩とその製造方法とその製造装置ならびに酵素入り天日塩とその製造方法
JP2002306117A (ja) * 2001-04-09 2002-10-22 Rausu Kaiyo Shinsosui:Kk 昆布風味を有する海洋深層水を原料とする自然塩
JP2002306118A (ja) * 2001-04-16 2002-10-22 Hitachi Ltd 海洋深層水からの健康塩製造方法及びその装置
CN1446904A (zh) * 2003-04-11 2003-10-08 天津科技大学 极端嗜盐绿色杜氏藻培养方法
CN1276727C (zh) * 2003-05-12 2006-09-27 赵晓迪 天然藻类生物营养碘盐制作方法
CN1552252A (zh) * 2003-06-05 2004-12-08 赵晓迪 海藻生物营养碘浆料的制作方法
CN1475160A (zh) * 2003-07-25 2004-02-18 内蒙古兰太实业股份有限公司 盐藻粉的制备方法
JP4051448B2 (ja) * 2003-12-25 2008-02-27 独立行政法人産業技術総合研究所 海洋性微生物の培養法
JP2005237258A (ja) * 2004-02-26 2005-09-08 Chiaki Honma 添加物塩の製造方法
JP2006129725A (ja) * 2004-11-02 2006-05-25 Tateyama Kogen Kk 薬膳食塩
CN1899105A (zh) * 2006-04-17 2007-01-24 江涛 绿色保健碘盐
JP4909805B2 (ja) * 2007-05-24 2012-04-04 英信 仲村渠 保存機能を備えた濃縮海水の製造方法とその濃縮海水を用いた海産物の保存方法
KR20090116191A (ko) * 2008-05-06 2009-11-11 손옥태 기능성 복합조미 소금
CN101731562A (zh) * 2008-11-14 2010-06-16 中盐国本盐业有限公司 胡萝卜素含碘盐及其加工方法
JP5569874B2 (ja) * 2009-03-31 2014-08-13 静岡県 微細藻類の培養方法
JP2010252752A (ja) * 2009-04-28 2010-11-11 Owase Shinsosui Shio Gakusha Kk 植物系原料を含む食用塩の製造方法
CN101897427A (zh) * 2009-05-31 2010-12-01 中盐国本盐业有限公司 一种海藻碘盐及其加工方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030012055A (ko) * 2001-07-30 2003-02-12 이영남 소금 제조 방법 및 그를 위한 장치
KR20050015506A (ko) * 2003-08-06 2005-02-21 김영수 해조소금의 제조방법
KR20050088717A (ko) * 2004-03-02 2005-09-07 이진우 클로렐라소금 제조방법
KR20060029945A (ko) * 2004-10-04 2006-04-07 재단법인 포항산업과학연구원 나노여과시스템을 이용한 저염 미네랄 소금 제조방법
KR20070075151A (ko) * 2006-01-12 2007-07-18 서희동 해양 심층수로부터 염장식품에 이용하는 소금의 제조방법과이용방법
KR20070118055A (ko) * 2007-06-22 2007-12-13 서희동 해양 심층수로부터 소금을 제조하는 방법

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016523529A (ja) * 2013-06-12 2016-08-12 ソーラーベスト バイオエナジー インク 藻類細胞培養液およびバイオマス、脂質化合物および組成物、ならびに関連製品の製造方法
WO2016128589A1 (es) * 2015-02-12 2016-08-18 Lancaster Plus, Slu Composición salina comestible baja en sodio
ES2580678A1 (es) * 2015-02-12 2016-08-25 Lancaster Plus, Slu Composición salina comestible baja en sodio
ES2668814A1 (es) * 2016-11-18 2018-05-22 Instituto Tecnologico De Canarias, S.A. (Itc) Método de fabricación de un condimento culinario con dunaliella salina y sal marina
WO2018091628A1 (en) * 2016-11-18 2018-05-24 Instituto Tecnologico De Canarias, S.A. (Itc) Method for producing a culinary condiment with dunaliella salina and sea salt
IL266634A (en) * 2016-11-18 2019-07-31 Inst Tecnologico De Canarias S A A method of making a spice for cooking with Donnelly algae and sea salt
AU2017360017B2 (en) * 2016-11-18 2021-09-02 Instituto Tecnologico De Canarias, S.A. (Itc) Method for producing a culinary condiment with Dunaliella salina and sea salt
IT201700122163A1 (it) * 2017-10-26 2019-04-26 Ivan Tortarolo Procedimento di fabbricazione di un integratore alimentare naturale ottenuto concentrando l’acqua marina sino ad un punto prossimo al punto di equilibrio di saturazione salina
CN109880745A (zh) * 2019-03-15 2019-06-14 江苏大学 一种利用腌制废水、晒盐卤水分段培养盐藻的方法

Also Published As

Publication number Publication date
CN103517644A (zh) 2014-01-15
WO2012153955A3 (ko) 2013-03-21
CN103517644B (zh) 2015-04-08
JP2014512194A (ja) 2014-05-22
KR101152020B1 (ko) 2012-06-08
JP5748254B2 (ja) 2015-07-15

Similar Documents

Publication Publication Date Title
KR101152020B1 (ko) 미세조류 유용성분을 함유한 소금의 제조방법 및 제조된 소금
KR102130160B1 (ko) 두날리엘라의 배양액 조성물 및 이를 이용한 두날리엘라 배양방법, 및 이에 따라 제조된 두날리엘라 함유 저염소금
CN102894316A (zh) 多醋低盐微发酵醋酱渍菜的制作方法
CN103445124A (zh) 多菌种混合发酵制作酸笋的方法
AU2022283618A1 (en) Methods and systems for extracting reduced oxalic acid protein from aquatic species and compositions thereof
KR20180041519A (ko) 염전수로부터 두날리엘라의 유용성분을 함유하는 저염소금을 제조하는 방법 및 이에 따라 제조된 저염소금
KR101299205B1 (ko) 천일염의 간수 제거방법과 이를 이용한 기능성 칼라 소금의 제조방법 및 기능성 칼라 함수의 제조방법
US20110104791A1 (en) Media and Process for Culturing Algae
KR20140044419A (ko) 해양심층수를 이용한 특정한 유용성분을 증강시키는 미세조류 배양방법
KR101887860B1 (ko) 내염성 미생물로 발효한 함초를 유효성분으로 함유하는 함초소금 및 이의 제조방법
KR100871669B1 (ko) 함초 발효 진액 제조방법
KR100697610B1 (ko) 심층수를 이용한 스피루리나의 배양 방법 및 그배양방법으로 배양된 스피루리나 추출물
CN110938138B (zh) 一种同时提取藻蓝蛋白和甘油葡萄糖苷的方法
CN111386970B (zh) 一种富含花青素的花脸香蘑菌丝体及其培养方法与应用
KR101681672B1 (ko) 나무의 유용성분 및 미세조류의 유용성분을 함유한 미네랄 소금의 제조방법 및 이로부터 제조된 소금
CN106135960A (zh) 一种黄花梨饮料的生产方法
CN109566939A (zh) 一种葛仙米植物水及其制备方法
Sukanya et al. Cultivation of Spirulina using low-cost organic medium and preparation of phycocyanin based ice creams
CN110885369B (zh) 一种在提取甘油葡萄糖苷过程中回收藻蓝蛋白的方法
CN111004321B (zh) 一种藻蓝蛋白、甘油葡萄糖苷的提取及纯化方法
Stunda-Zujeva et al. Growing and Drying Spirulina/Arthrospira for Producing Food and Nutraceuticals: A Review
KR20100016685A (ko) 해양심층수로부터 분리된 미네랄을 포함하는 미네랄 소금의제조 방법
KR20170027188A (ko) 함초발효물을 이용한 함초소금의 제조방법 및 상기 방법으로 제조된 함초소금
CN113173666A (zh) 一种生理性深层海水的制备方法
Hoang Development of a stable and low-cost system for wasabi nursery plants production with photoautotrophic micropropagation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12781655

Country of ref document: EP

Kind code of ref document: A2

ENP Entry into the national phase

Ref document number: 2014508302

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12781655

Country of ref document: EP

Kind code of ref document: A2