WO2012148228A2 - 초소형 led 소자 및 그 제조방법 - Google Patents

초소형 led 소자 및 그 제조방법 Download PDF

Info

Publication number
WO2012148228A2
WO2012148228A2 PCT/KR2012/003309 KR2012003309W WO2012148228A2 WO 2012148228 A2 WO2012148228 A2 WO 2012148228A2 KR 2012003309 W KR2012003309 W KR 2012003309W WO 2012148228 A2 WO2012148228 A2 WO 2012148228A2
Authority
WO
WIPO (PCT)
Prior art keywords
layer
semiconductor layer
conductive semiconductor
forming
led device
Prior art date
Application number
PCT/KR2012/003309
Other languages
English (en)
French (fr)
Other versions
WO2012148228A3 (ko
Inventor
도영락
성연국
Original Assignee
국민대학교 산학협력단
피에스아이 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 국민대학교 산학협력단, 피에스아이 주식회사 filed Critical 국민대학교 산학협력단
Priority to US14/114,317 priority Critical patent/US9112112B2/en
Priority to EP12777172.3A priority patent/EP2704215B1/en
Priority to CN201280029867.9A priority patent/CN103608937B/zh
Publication of WO2012148228A2 publication Critical patent/WO2012148228A2/ko
Publication of WO2012148228A3 publication Critical patent/WO2012148228A3/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0095Post-treatment of devices, e.g. annealing, recrystallisation or short-circuit elimination
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/08Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a plurality of light emitting regions, e.g. laterally discontinuous light emitting layer or photoluminescent region integrated within the semiconductor body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/44Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the coatings, e.g. passivation layer or anti-reflective coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/93Batch processes
    • H01L2224/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0093Wafer bonding; Removal of the growth substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/04Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction
    • H01L33/06Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction within the light emitting region, e.g. quantum confinement structure or tunnel barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/16Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular crystal structure or orientation, e.g. polycrystalline, amorphous or porous
    • H01L33/18Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular crystal structure or orientation, e.g. polycrystalline, amorphous or porous within the light emitting region
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/20Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular shape, e.g. curved or truncated substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/52Encapsulations

Definitions

  • the present invention relates to an ultra-small LED device and a method of manufacturing the same. More specifically, the nano- or micro-sized ultra-small LED device is effectively produced by combining a top-down method and a bottom-up method, and the surface of the ultra-small LED device produced. It relates to an ultra-small LED device and a method of manufacturing the same that can prevent the defect to improve the luminous efficiency.
  • LED TV is LCD as a LCD TV employing a cold cathode fluorescent lamp (cold cathode fluorescent lamp, CCFL) white or tri-color LED devices on behalf of the backlight in the backlight used in conventional LCD TV, precisely with the LED back light TV.
  • CCFL cold cathode fluorescent lamp
  • the current commercially available full-color LED display is the only product that can be encountered in everyday life, the display for outdoor billboards in which tens of thousands to hundreds of thousands of red, green and blue three-color LED lamps are inserted into a very large substrate.
  • a full-featured LED full-color display has not been realized as a home TV or computer monitor.
  • LED device manufacturing method is a metal organic chemical vapor deposition (MOCVD) method on the sapphire substrate of 2 ⁇ 8 inches size p-semiconductor layer, quantum well layer, n-semiconductor layer of III-V material After depositing these, it is a method of manufacturing the LED device of the required form through various post-processing such as cutting / wiring / packaging. If you build your own display for a TV using this method, you can simply calculate the 40-inch TV only by connecting 5 to 40 sheets of 2 to 8 inch wafers.
  • MOCVD metal organic chemical vapor deposition
  • Another approach being pushed by many researchers to realize LED displays is a bottom-up approach based on nanotechnology.
  • This method is a method of realizing a large-area display by growing a nanorod type LED on a single crystal substrate, and then removing a portion and rearranging it in a bottom-up manner on an electrode patterned with pixels.
  • the nanorod LED manufactured by the bottom-up method has poor luminous efficiency compared to the thin film LEDs grown on the wafer, even if the LED display is implemented with this technology, there is a problem of efficiency degradation for a considerable period of time. Can't solve it.
  • nanorod LED device grown in the bottom-up method on the electrode by the bottom-up self-assembly
  • VLS Vapor-Liquid-Solid
  • Another method is a top-down method that cuts high-efficiency LED devices to create an LED display.
  • this method is a method of implementing a display in a one-to-one correspondence method in which micro-LED devices manufactured in a top-down manner are arranged one by one in a sub-pixel position of a large area glass substrate.
  • the individual micro LEDs manufactured by the top-down method are manufactured for each sub-pixel, and thus, were developed for the small micro LED display.
  • the LED device is grown on a sapphire substrate, and then patterned to a micro size to manufacture a micro LED device, and then the electrodes are wired to implement a micro LED display smaller than the wafer substrate size. If this method is used, there is no problem in efficiency, but it is impossible to realize a large-area LED display due to limitations in substrate size and manufacturing process.
  • the ultra-small LED device manufactured by the conventional top-down or bottom-up method is very likely to cause problems of efficiency and stability due to an increase in surface defects caused by etching.
  • the ultra-small LED device manufactured by the conventional top-down or bottom-up method is very likely to cause problems of efficiency and stability due to an increase in surface defects caused by etching.
  • an independent micro LED device due to the surface polarity between the micro devices, mutual cohesion occurs and aggregates are formed, which may result in a large number of defects in the pixel patterning process. Therefore, there is a limitation in implementing mass-efficient high efficiency / large-area LED display devices only by manufacturing independent micromini LED devices.
  • the ultra-small LED device manufactured by the conventional method is placed in a subpixel (pixel position) of the LED display substrate, the micro LED device is too small to stand on the subpixel of the LED display because the size of the LED device is too small. There was a problem of lying down or upside down.
  • the present invention has been made to solve the above-mentioned problems, the first technical problem of the present invention, the surface defects caused by the etching operation of the small LED device can be solved the problem of efficiency and stability and the cohesion between the small LED device due to the increase in surface defects It is to provide a method of manufacturing a small LED device.
  • a second technical problem of the present invention is to provide an ultra-small LED element in which an ultra-small LED element can be accurately positioned on a subpixel (pixel position) of the LED display without lying on its side or upside down.
  • the present invention to solve the first technical problem
  • the first conductive semiconductor layer may include at least one n-type semiconductor layer
  • the second conductive semiconductor layer may include at least one p-type semiconductor layer
  • the step 2) is;
  • step 2 the step 2);
  • the nanospheres or microspheres may be a polystyrene material.
  • step 3 is performed;
  • step 3 is performed;
  • a first conductive semiconductor layer An active layer formed on the first conductive semiconductor layer; Including a micro- or nano-sized semiconductor light emitting device including a second conductive semiconductor layer formed on the active layer, the semiconductor light emitting device provides an ultra-small LED device including an insulating coating coated on the outer peripheral surface.
  • a hydrophobic coating may be coated on the insulating coating.
  • a first electrode layer may be formed below the first conductive semiconductor layer, and a second electrode layer may be formed above the second conductive semiconductor layer.
  • a coupling linker for self-assembly may be included on the surface of at least one electrode layer of the lower surface of the first electrode layer and the upper surface of the second electrode layer.
  • the coupling linker may be complementarily coupled to the substrate of the LED display.
  • the first conductive semiconductor layer may include at least one n-type semiconductor layer
  • the second conductive semiconductor layer may include at least one p-type semiconductor layer
  • the insulating film includes any one or more selected from the group consisting of SiO 2 , Si 3 N 4 , Al 2 O 3 and TiO 2 , wherein the hydrophobic film is formed of SAMs and fluorine.
  • At least one component of the olefin polymer, and the linking linker may include a thiol group.
  • each layer (film), region, pattern or structures is described as being formed on or “under” a substrate, each layer (film), region, or pattern.
  • the terms “on” and “under” include both “directly” and “indirectly”.
  • standard about the top or bottom of each layer is demonstrated based on drawing.
  • the manufacturing method of the ultra-small LED device according to the present invention can solve the problem of cohesion between the ultra-small LED device, the surface defects increase due to the etching operation, thereby reducing efficiency and stability and the ultra-small LED device.
  • the micro LED device according to the present invention not only has surface defects and aggregation problems, but also the LED display can be accurately positioned on the sub-pixel (pixel position) of the LED display without lying on its side or flipped over. It can dramatically improve the efficiency of the.
  • the ultra-small LED device according to the present invention can be freely assembled to the desired pixel pattern position by the coupling of the linkers by using the coupling linker can be various applications of the LED display.
  • FIG. 1 is a cross-sectional view showing a step of forming an LED basic device layer according to an embodiment of the present invention.
  • FIG. 2 is a cross-sectional view illustrating a step of forming a second electrode layer, an insulating layer, and a metal mask layer on a second conductive semiconductor layer of the present invention.
  • FIG 3 is a cross-sectional view showing a step of forming a nanosphere or microsphere monolayer film on the metal mask layer of the present invention.
  • FIG. 4 is a cross-sectional view showing the ashing step of the nanospheres or microspheres monolayer film of the present invention.
  • FIG. 5 is a cross-sectional view showing an etching step of the present invention.
  • FIG. 6 is a cross-sectional view showing a step of removing a spear monolayer film, a metal mask layer, and an insulating layer of the present invention.
  • FIG. 7 is a cross-sectional view showing a step of attaching a support film on the second electrode layer of the present invention.
  • FIG. 8 is a cross-sectional view showing a step of coating the outer peripheral surface of the LED device of the present invention with an insulating film.
  • FIG. 9 is a cross-sectional view showing a step of coating the insulating film formed on the outer peripheral surface of the LED device of the present invention with a hydrophobic film.
  • FIG. 10 is a cross-sectional view showing a step of removing a substrate formed under the first conductive semiconductor layer of the LED device of the present invention.
  • FIG. 11 is a cross-sectional view illustrating depositing an electrode under a first conductive semiconductor layer from which a substrate of the present invention is removed.
  • FIG. 12 is a cross-sectional view showing a step of coating a coupling linker for self-assembly on the surface of the electrode of the present invention.
  • FIG. 13 is a cross-sectional view showing a step of manufacturing the independent ultra-small LED device by removing the support film of the present invention.
  • FIG. 14 is a perspective view showing a micro LED device having an outer circumferential surface of the LED device of the present invention coated with an insulating coating.
  • FIG. 15 is a perspective view of a micro LED device having an insulating coating formed on an outer circumferential surface of the present invention coated with a hydrophobic coating.
  • FIG. 16 is a perspective view of a micro LED device in which a coupling linker for self-assembly is formed on a surface of an electrode of the present invention.
  • Figure 17 is an ink or paste containing the micro LED elements of the present invention.
  • 19 is an electron microscope photograph of a cross section in which an insulating layer and a metal mask layer are formed on a second conductive semiconductor layer of the present invention.
  • FIG. 20A is an electron microscope photograph of a cross section of a nanosphere monolayer film formed on a metal mask layer of the present invention
  • FIG. 20B is an electron microscope photograph of a plane thereof.
  • Fig. 21A is an electron microscope photograph of a cross section obtained by ashing the nanosphere monolayer film of the present invention under an O 2 gas atmosphere
  • Fig. 21B is an electron microscope photograph of the plane thereof.
  • FIG. 22A is an electron microscope photograph of a cross-section of a metal mask layer etched in a Cl 2 gas atmosphere using a nanosphere of which the size of the present invention is reduced
  • FIG. 22B is an electron microscope photograph of the plane thereof.
  • FIG. 23A is an electron microscope photograph of a cross section of a metal mask layer pattern transferred as it is in the shape of polystyrene by an etching process of the present invention
  • FIG. 23B is an electron microscope photograph of a plane thereof.
  • FIG. 24A is an electron microscope photograph of a cross section obtained by etching SiO 2 (insulating layer) under CF 4 and O 2 gas atmospheres using the metal mask layer pattern of the present invention
  • FIG. 24B is an electron microscope photograph of the plane thereof. to be.
  • FIG. 25A is an electron microscope photograph of a section etched by the ICP method under an SiCl 4 and Ar gas atmosphere using the etched insulating layer of the present invention
  • FIG. 25B is an electron microscope photograph of the plane.
  • FIG. 26A is an electron micrograph of a cross-sectional view after removing an insulating layer used as a mask of the present invention
  • FIG. 26B is an electron micrograph of a plane thereof.
  • 27A and 27B show a contact angle before (27a) and after (b) of coating a hydrophobic coating (octadecyltrichlorosilane) on a semiconductor layer coated with an insulating coating (Al 2 O 3 ) of the present invention. ) Is a drawing measured.
  • 28A and 28B are electron micrographs of cross-sections of laser-lift-off processes using a buffer layer or an undoped semiconductor layer and a sapphire substrate to which the supporting film of the present invention is not attached.
  • 29A and 29B are electron micrographs of a cross section obtained by etching the buffer layer or the undoped semiconductor layer to some extent in order to expose the first conductive semiconductor layer of the present invention.
  • 30a and 30b are electron micrographs observed in cross section after further etching by the ICP method of the present invention.
  • FIG. 31A is an electron microscope photograph of a cross section etched to expose a first conductive semiconductor layer by the ICP method of the present invention
  • FIG. 31B is an electron microscope photograph of a plane thereof.
  • FIG. 32 is an electron micrograph of a cross section in which an electrode Ti is deposited on a first conductive semiconductor layer of a micro LED of the present invention by sputtering.
  • FIG. 33 is a photograph of an independent micro LED in the state of removing the supporting film of the present invention with acetone using an electron microscope.
  • FIG. 34 is a photograph of one independent micro LED of FIG. 33 observed with an electron microscope.
  • FIG. 35 is a photograph of observing the independent micro LED devices of FIG. 33 on an electrode substrate with an electron microscope.
  • 37A to 37C are photographs visually observing a state in which the micro LED of the present invention emits blue light.
  • the ultra-small LED device manufactured by the conventional top-down or bottom-up method is very likely to cause problems of efficiency and stability due to the increase of surface defects caused by etching.
  • an aggregate is formed by mutual cohesion due to the polarity of the surface between the micro devices, and a plurality of defects may occur in the pixel patterning process. Therefore, there is a limitation in implementing mass-efficient high efficiency / large-area LED display devices only by manufacturing independent micromini LED devices.
  • the ultra-small LED device manufactured by the conventional method is placed at a subpixel (pixel position) of the LED display substrate, the LED device is too small, and therefore the micro LED device cannot lie on the side of the subpixel of the LED display. There was a problem of being placed upside down.
  • step 1) a first conductive semiconductor layer, an active layer, and a second conductive semiconductor layer are sequentially formed on a substrate.
  • Figure 1 is a cross-sectional view showing the step of forming the LED elementary device layer according to an embodiment of the present invention, the first conductive semiconductor layer 11, the active layer 12 and the second conductive semiconductor on the substrate 10 Forming a layer (13).
  • the substrate 10 may be a transparent substrate such as sapphire substrate (Al 2 O 3 ) and glass.
  • the substrate 10 may be selected from the group consisting of GaN, SiC, ZnO, Si, GaP and GaAs, conductive substrates.
  • the embodiment will be described as an example of the sapphire substrate.
  • An uneven pattern may be formed on the upper surface of the substrate 10.
  • the nitride semiconductor is grown on the substrate 10, and the growth equipment includes electron beam deposition, physical vapor deposition (PVD), chemical vapor deposition (CVD), and plasma laser deposition (PLD). ), Dual-type thermal evaporator, sputtering, metal organic chemical vapor deposition (MOCVD), etc., but is not limited thereto.
  • a buffer layer and / or an undoped semiconductor layer may be formed on the substrate 10.
  • the buffer layer may be formed of at least one of GaN, InN, AlN, InGaN, AlGaN, InAlGaN, and AlInN as a layer for reducing a difference in lattice constant from the substrate 10.
  • the undoped semiconductor layer may be implemented as an undoped GaN layer, and functions as a substrate on which a nitride semiconductor is grown.
  • the buffer layer and the undoped semiconductor layer may be formed of only one layer, or both layers may or may not be formed.
  • the thickness of the substrate may be 400 to 1500 ⁇ m, but is not limited thereto.
  • the first conductive semiconductor layer 11 is formed on the substrate 10.
  • the first conductive semiconductor layer 11 may include, for example, an n-type semiconductor layer, and the n-type semiconductor layer may include InxAlyGa1-x-yN (0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1, 0 ⁇ x
  • a semiconductor material having a compositional formula of + y ⁇ 1) for example, InAlGaN, GaN, AlGaN, InGaN, AlN, InN, or the like, may be selected, and the first conductive dopant (eg, Si, Ge, Sn, etc.) may be doped.
  • the thickness of the first conductive semiconductor layer may be 1.5 to 5 ⁇ m, but is not limited thereto.
  • the active layer 12 is formed on the first conductive semiconductor layer 11 and may be formed in a single or multiple quantum well structure.
  • a cladding layer (not shown) doped with a conductive dopant may be formed on and / or under the active layer 12, and the cladding layer doped with the conductive dopant may be implemented as an AlGaN layer or an InAlGaN layer.
  • materials such as AlGaN and AlInGaN may also be used as the active layer 12.
  • the thickness of the active layer may be 0.05 to 0.25 ⁇ m, but is not limited thereto.
  • a second conductive semiconductor layer 13 is formed on the active layer 12, and the second conductive semiconductor layer 13 may be implemented with at least one p-type semiconductor layer, wherein the p-type semiconductor layer is InxAlyGa1-x.
  • the p-type semiconductor layer is InxAlyGa1-x.
  • the second conductive dopant eg, Mg
  • Mg may be doped.
  • the light emitting structure includes the first conductive semiconductor layer 11, the active layer 12, and the second conductive semiconductor layer 13 as minimum components, and different phosphor layers and active layers above and below each layer. , May further include a semiconductor layer and / or an electrode layer. According to a preferred embodiment of the present invention, the thickness of the second conductive semiconductor layer may be 0.08 to 0.25 ⁇ m, but is not limited thereto.
  • step 2) includes the first conductive semiconductor layer, the active layer and the second conductive semiconductor layer is etched so that the diameter of the LED device has a nano or micro size.
  • 2-5) forming a second electrode layer, an insulating layer and a metal mask layer on the second conductive semiconductor layer; 2-6) forming a nanosphere or microsphere monolayer on the metal mask layer and performing self-assembly; 2-7) dry or wet etching the first conductive semiconductor layer, the active layer and the second conductive semiconductor layer at nano or micro intervals according to a pattern; And 2-8) removing the insulating layer, the metal mask layer, and the single layer film.
  • the second electrode layer 20 may use a metal or a metal oxide used in a conventional LED device, preferably Cr, Ti, Al, Au, Ni, ITO and oxides or alloys thereof, alone or mixed. It can be used, but is not limited thereto.
  • the thickness of the metal mask layer may be 0.02 ⁇ 0.1 ⁇ m, but is not limited thereto.
  • the insulating layer 21 formed on the second electrode layer 20 may serve as a mask for continuous etching of the second electrode layer, the second conductive semiconductor layer, the active layer, and the first conductive semiconductor layer.
  • Nitride may be used, and as a representative example, silicon oxide (SiO 2 ) or silicon nitride (SiN) may be used, but is not limited thereto.
  • the thickness of the insulating layer may be 0.5 to 1.5 ⁇ m, but is not limited thereto.
  • the metal mask layer 22 formed on the insulating layer 21 serves as a mask layer for etching, and may be a metal commonly used.
  • chromium (Cr) metal may be used. May be, but is not limited thereto.
  • the thickness of the metal mask layer may be 30 ⁇ 150 nm, but is not limited thereto.
  • FIG. 3 is a cross-sectional view showing a step of forming a nanosphere or microsphere monolayer film 30 on the metal mask layer 22 of the present invention.
  • the nanospheres or microspheres monolayer film is formed to serve as a mask for etching the metal mask layer 22, and the method of forming the sphere particles may use the self-assembly of the spheres.
  • the spears are sent on the surface of the water at a constant speed to self-assemble each other.
  • the spear monolayer film can be formed.
  • the diameter of the sphere particles can be selectively used according to the desired diameter of the ultra-small LED device to be produced, preferably polystyrene spheres, silica spheres and the like having a diameter of 50 ⁇ 3000nm, but is not limited thereto.
  • FIG. 4 is a cross-sectional view showing the ashing step of the nanospheres or microspheres monolayer film 30 of the present invention, the spacing of the sphere particles are spaced apart. It can be achieved through an ashing process of a conventional spear monolayer film, and preferably, an ashing process (eg, heating) is performed through oxygen (O 2 ) -based reactive ion ashing and plasma ashing. Can be performed.
  • an ashing process eg, heating
  • oxygen (O 2 ) -based reactive ion ashing and plasma ashing can be performed.
  • FIG. 5 is a cross-sectional view illustrating an etching step of the present invention.
  • FIG. 4 illustrates a process of forming holes by etching between spear particles spaced through an ashing process.
  • the portion in which the sphere particles 30 are formed is not etched, and the spaced part spaced between the sphere particles and the sphere particles is etched to form holes.
  • the hole may be selectively formed from the metal mask layer 22 to the substrate 10.
  • the etching process may use a dry etching method such as reactive ion etching (RIE) or inductively coupled plasma reactive ion etching (ICP-RIE).
  • RIE reactive ion etching
  • ICP-RIE inductively coupled plasma reactive ion etching
  • the dry etching method is capable of unidirectional etching and is suitable for forming such a pattern. That is, the wet etching method is an isotropic etching, the etching is performed in all directions, but the dry etching method can be etched mainly in the depth direction to form a hole, the size and spacing of the holes, etc. It can be formed in a desired pattern.
  • Cl 2 , O 2, or the like may be used as an etching gas capable of etching the metal mask.
  • the spacing (A) of the LED device manufactured by the etching process is matched with the diameter of the sphere particles 30, in this case, the spacing (A) of the LED device may be in the nanometer unit or micrometer unit, more preferably Preferably from 50 to 3000 nm.
  • the removal process may be performed by a conventional wet etching or dry etching method. .
  • the step 2) is; 2-1) sequentially forming a second electrode layer, an insulating layer, and a metal mask layer on the second conductive semiconductor layer; 2-2) forming a polymer layer on the metal mask layer and forming a pattern on the polymer layer at nano or micro intervals; 2-3) dry or wet etching the first conductive semiconductor layer, the active layer and the second conductive semiconductor layer at nano or micro intervals according to a pattern; And 2-4) removing the insulating layer, the metal mask layer, and the polymer layer.
  • a conventional polymer layer that can be used for conventional lithography, etc. is formed on the metal mask layer, and a photo on the polymer layer Achieved by forming patterns at nano or micro intervals through methods such as lithography, e-beam lithography, or nano imprint lithography, followed by dry or wet etching and removal of insulating layers, metal mask layers, and polymer layers Can be.
  • an insulating film is formed on the outer circumferential surfaces of the first conductive semiconductor layer, the active layer, and the second conductive semiconductor layer, and a micro LED device is manufactured by removing the substrate.
  • the support film 70 supports a plurality of ultra-small LED devices so as not to be dispersed when the substrate 10 is removed through a laser lift-off (LLO) method, and also prevents cracking of the LED devices.
  • LLO laser lift-off
  • the material of the support film may be a polymer exposure or bonding metal, the thickness may be 0.3 ⁇ 70 ⁇ m, but is not limited thereto.
  • FIG. 8 illustrates an insulating film 80 formed on an outer circumferential surface including the first conductive semiconductor layer, the active layer, and the second conductive semiconductor layer with respect to the micro LED devices having the supporting film of the present invention. This minimizes defects on the surface of tiny LED devices, resulting in improved lifetime and efficiency.
  • the insulating film may be formed not only on the first conductive semiconductor layer 11, the active layer 12, and the second conductive semiconductor layer 13, but also on the outer circumferential surface of the first electrode layer and / or the second electrode layer and other layers.
  • the method of forming an insulating film on the outer circumferential surface of the micro LED devices may be a method of applying or dipping an insulating material on the outer circumferential surfaces of the micro LED devices to which the support film 70 and the substrate 10 are attached, but are not limited thereto. Do not.
  • a material that may be used as the insulating film any one or more selected from the group consisting of SiO 2 , Si 3 N 4 , Al 2 O 3, and TiO 2 may be used, but is not limited thereto.
  • the Al 2 O 3 film can be formed by atomic layer deposition (ALD), and trimethyl aluminum (TMA) and H 2 O sources are supplied in the form of pulses for chemical adsorption and desorption.
  • the thin film can be formed by using.
  • FIG. 9 is a cross-sectional view showing a step of coating the insulating film 80 formed on the outer circumferential surface of the LED device of the present invention with a hydrophobic film 90.
  • the hydrophobic film 90 is intended to prevent the aggregation phenomenon between the elements by having a hydrophobic characteristic on the surface of the ultra-small LED device, a problem of the characteristic inhibition of the independent ultra-small device by the aggregation and the pixel patterning process of the ultra-small LED device. It is a method of eliminating the defect problem, it may be formed on the insulating film (80).
  • the usable hydrophobic film can be used without limitation as long as it is formed on the insulating film and can prevent aggregation between micro LED devices, for example, octadecyltrichlorosilane (OTS) and fluorine.
  • OTS octadecyltrichlorosilane
  • fluorine Self-assembled monolayers (SAMs) such as fluoroalkyltrichlorosilane, perfluoroalkyltriethoxysilane, and fluoropolymers such as teflon and cytop. (fluoropolymer) or the like may be used alone or in combination.
  • the method of removing the substrate 10 may be a conventionally used method, preferably chemical lift-off (CLO) or laser lift-off (LLO) method. Can be used, but is not limited thereto.
  • CLO chemical lift-off
  • LLO laser lift-off
  • the first electrode 110 may be used without limitation as long as it is a material generally used in an LED device.
  • the material is a single or mixed material such as Cr, Ti, Al, Au, Ni, ITO and oxides or alloys thereof. This can be used.
  • the thickness of the electrode may be 0.02 ⁇ 1 ⁇ m, but is not limited thereto.
  • FIG. 12 is a cross-sectional view illustrating a step of coating a coupling linker 120 for self-assembly on the surface of the first electrode 110 of the present invention.
  • the coupling linker 120 for self-assembly may be coated on the surface of the first electrode 110, and the coupling linker 12O may be coupled to a subpixel (pixel position) of the corresponding LED display substrate.
  • a second linker (not shown) is formed, even when the micro LED element is transferred or added to the sub pixel in the form of ink or paste, the micro LED element does not lie down or flipped, and the electrode surface is positioned on the sub pixel at a desired position. It can be attached.
  • the second linker is not formed, if the functional group remaining in the coupling linker is bonded to the surface of the subpixel of the LED display substrate, the small LED device may not solve the problem of laying down or flipping.
  • the coupling linker must be coupled to the electrode surface of the micro LED device and the surface of the subpixel of the display substrate and / or the second linker formed on the subpixel, and thus may have two or more functional groups.
  • a thiol-based aminoethanethiol and an oxide reacting with a metal and an aminopropyltrirthoxysilane reacting with the metal may be used, but are not limited thereto.
  • the second linker formed on the surface of the subpixel of the display substrate may be used without limitation as long as it can be complementarily bonded to the coupling linker of the present invention.
  • the same series as the coupling linker may be used.
  • FIG. 13 is to manufacture the independent micro LEDs 130 and 131 by removing the support film 70.
  • the coupling linker 120 may be formed on at least one surface of the second electrode 20 and the first electrode 110 after removing the support film 70.
  • the present invention the first conductive semiconductor layer; An active layer formed on the first conductive semiconductor layer; Including a micro- or nano-sized semiconductor light emitting device including a second conductive semiconductor layer formed on the active layer, the semiconductor light emitting device provides an ultra-small LED device including an insulating coating coated on the outer peripheral surface.
  • FIG. 14 is a perspective view illustrating a micro LED device according to the present invention.
  • the micro LED device according to the present invention includes an active layer 141 formed on the first conductive semiconductor layer 140 and a second conductive semiconductor layer formed on the active layer 141. 142, wherein a first electrode 143 is formed under the first conductive semiconductor layer 140, and a second electrode 144 is formed on the second conductive semiconductor layer 142.
  • a separate buffer layer, an active layer, a phosphor layer, and / or a semiconductor layer may be further included.
  • the insulating film 150 to surround the active layer 141 formed on the first conductive semiconductor layer 140, including the outer peripheral surface of part or all of the second conductive semiconductor layer 142 formed on the active layer 141 Can be formed.
  • the first and second electrodes 143 and / or the second electrode 144 may be formed to include an outer circumferential surface thereof.
  • FIG. 15 is a perspective view illustrating a micro LED device coated with a hydrophobic film 160 to prevent a cohesion between micro LED devices and the insulating film 150 formed on an outer circumferential surface of the present invention.
  • the hydrophobic coating 160 may be formed to include a portion or the entirety of the insulating coating 150.
  • FIG. 16 is a perspective view of a micro LED device in which a coupling linker for self-assembly is formed on a surface of an electrode of the present invention.
  • FIG. 16 As described above, since the micro LED device is too small in size, when the micro LED device is attached to a subpixel (pixel position) of the LED display substrate, there may be a problem that the micro LED device does not stand upright and is lying or flipped over. In order to prevent this, a coupling linker 170 for self-assembly may be formed on at least one surface of the first electrode 143 and the second electrode 144.
  • a second linker (170) is formed on the surface of the first electrode (143) and can be coupled to the coupling linker (17O) in a subpixel (pixel position) of the LED display substrate corresponding thereto.
  • the electrode surface may be attached to the sub-pixel at the desired position without lying or upside down even when the micro-LED element is transferred or added to the sub-pixel in the form of ink or paste. .
  • the coupling linker 170 is formed on both the first electrode 143 and the second electrode 144, a part of the ultra-small LED device coupled to the subpixel (pixel position) of the LED display substrate may be the first electrode ( 143 is coupled and the second electrode 144 is coupled. In this case, when an alternating current is applied to the LED display substrate, the LED display can be driven.
  • the shape of the ultra-small LED device of the present invention may be formed without limitation, such as cylindrical, rectangular parallelepiped, preferably cylindrical, in the case of a cylindrical diameter (circle diameter) may be 50 ⁇ 3000nm, height (second Length from one electrode to the second electrode) may be 1.5 ⁇ 7 ⁇ m, but is not limited thereto.
  • FIG. 17 is an ink or paste comprising the micro LEDs of the present invention and may be transferred directly to a subpixel of the micro LEDs display substrate of the present invention or in the form of an ink or paste.
  • Buffered or undoped semiconductor layer (undoped GaN, 2.4-2.8 ⁇ m thick), first conductive semiconductor layer (n ⁇ ) on a sapphire substrate (2 inch wafer size, 430 ⁇ 25 ⁇ m) to manufacture an LED basic device layer (GaN) Type GaN, 2.0-2.4 ⁇ m thick), active layer (InGaN / GaN multi-quantum well, 100-140 ⁇ m), and second conductive semiconductor layer (p-type GaN, 200 nm thick) were formed using MOCVD method (FIG. 18). Reference).
  • the LED basic device layer manufactured as described above was manufactured as a micro LED device by the following method.
  • SiO 2 800 nm to 1 ⁇ m thick
  • a chromium layer 100 to 120 nm thick
  • PECVD thermal evaporation, respectively
  • thermal deposition 130 ⁇ 140A, 9.0x10 -6 torr , 20 ⁇ 30 minutes) (see FIG. 19).
  • polystyrene nanospheres were prepared as monolayer films (960-1000 nm thick) well aligned in hexagonal form and formed on the metal mask layer (see FIGS. 20A and 20B).
  • the monolayer film was reduced to a size of 500-800 nm through an ashing process (50W, 0.05torr, O 2 100sccm) in an O 2 gas atmosphere (see FIGS. 21A and 21B).
  • the metal mask layer was etched under Cl 2 gas atmosphere by RIE method (dry etching method) (50W, 0.08torr, Cl 2 40sccm) (see FIGS. 22A and 22B).
  • the semiconductor layer (GaN) was etched by ICP method under SiCl 4 and Ar gas atmosphere using the insulating layer etched by the rod pattern (RF 50W, ICP 300W, 3 torr, SiCl 4 2sccm, Ar 20sccm)
  • the pattern was prepared (see FIGS. 25A and 25B).
  • the insulating layer which was used as a mask to manufacture the semiconductor layer rod pattern, was removed by etching under a CF 4 and O 2 gas atmosphere (see FIGS. 26A and 26B).
  • Atomic layer deposition (ALD) method trimethylaluminum (TMA) as metal reactant, water vapor as oxygen source, TMA vapor pressure of 0.04 torr
  • TMA trimethylaluminum
  • Ar was used as the carrier gas and the purging gas
  • an insulating film Al 2 O 3
  • OTS octadecyltrichlorosilane
  • a supporting film was attached on the second electrode layer by using an epoxy resin (cyanoacrylate adhesive metal-type, purchased from Sigma Aldrich) (thickness: 3.5-5 ⁇ m). Subsequently, the sapphire substrate was removed by performing a lift-off process using a laser toward the buffer layer or the undoped semiconductor layer and the sapphire substrate to which the support film was not attached (see FIGS. 28A and 28B).
  • an epoxy resin cyanoacrylate adhesive metal-type, purchased from Sigma Aldrich
  • the buffer layer or the undoped semiconductor layer was removed by etching by the ICP method under SiCl 4 and Ar gas atmosphere (RF 50W, ICP 300W, 3 torr, SiCl 4 2sccm, Ar 20sccm), Through this process, it was possible to obtain an independent ultra-small LED rod form to which the support film was attached (see FIGS. 29A and 29B, 30A and 30B, and FIGS.
  • a Ti electrode was deposited on the first conductive semiconductor layer of the ultra-small LED using a sputtering equipment (DC-sputtering system) (300 V, 0.17 A, Ar 100 sccm) (see FIG. 32).
  • DC-sputtering system 300 V, 0.17 A, Ar 100 sccm
  • dithiol was coated on the surface of the electrode as a bonding linker by liquid or gas phase self-assembly.
  • the coating process was performed in the liquid phase, 1mM nonanedithiol solution was prepared by mixing ethanol anhydride (10ml) and nonanedithiol (20 ⁇ l), and the ultra-small LED rod form on which the electrode was deposited was added to the nonanedithiol solution.
  • the micro LED rod was taken out and washed.
  • the support film was removed using acetone to produce independent micro LEDs in the form of ink or paste (see FIGS. 33 and 34).
  • the ink or paste was aligned by dropping onto an electrode substrate having a linker (fine metal powder: silver nanoparticles) reacting with the bonding linker.
  • a pattern was formed by patterning on the electrode using silver nanoparticles, which are fine metal powders that can react with the dithiol linker reacting with the electrode substrate and the coupling linker of the micro LED.
  • the nonanedithiol linker was first reacted with the electrode substrate, and then coated with silver nanoparticles on the opposite side of the nonanedithiol linker, which is not attached to the electrode substrate.
  • the coating was carried out by taking an electrode substrate having a nonanedithiol linker in a toluene solution in which silver nanoparticles were dispersed, and then removing the electrode substrate.
  • a micro LED device according to the present invention was manufactured by forming a metal ohmic layer through a soldering process (annealing at 100-200 ° C.) ( 35). Meanwhile, FIG.
  • FIGS. 37A to 37C illustrates a spectrum measured after aligning the ultra-small LED devices manufactured as described above to an electrode substrate, and also visually observed photographs of the micro LED devices manufactured in FIGS. 37A to 37C. As can be seen from the drawings, it can be seen that the blue light is emitted from the ultra-small LED device according to the present invention.
  • micro LED device according to the present invention can be widely used throughout the display industry.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Led Devices (AREA)

Abstract

본 발명은 초소형 LED 소자 및 그 제조방법에 관한 것으로, 보다 상세하게는, 제1 도전성 반도체층; 상기 제1 도전성 반도체층 위에 형성된 활성층; 상기 활성층 위에 형성된 제2 도전성 반도체층을 포함하는 마이크로 또는 나노 크기의 반도체 발광소자를 포함하되, 상기 반도체 발광소자는 외주면에 코팅된 절연피막을 포함하는 초소형 LED 소자 및, 1) 기판위에 제1 도전성 반도체층, 활성층 및 제2 도전성 반도체층을 순차적으로 형성하는 단계; 2) 상기 제1 도전성 반도체층, 활성층 및 제2 도전성 반도체층을 LED 소자의 직경이 나노 또는 마이크로 크기를 가지도록 식각하는 단계; 및 3) 상기 제1 도전성 반도체층, 활성층 및 제2 도전성 반도체층의 외주면에 절연피막을 형성하고 상기 기판을 제거하는 단계를 포함하는 초소형 LED 소자의 제조방법에 관한 것이다. 본 발명에 따르면, 나노 또는 마이크로 사이즈의 초소형 LED 소자를 탑-다운 방식과 바텀-업 방식을 조합하여 효과적으로 생산하고, 생산되는 초소형 LED 소자의 표면결함을 방지하여 발광효율을 개선할 수 있다.

Description

초소형 LED 소자 및 그 제조방법
본 발명은 초소형 LED 소자 및 그 제조방법에 관한 것으로, 보다 상세하게는 나노 또는 마이크로 사이즈의 초소형 LED 소자를 탑-다운 방식과 바텀-업 방식을 조합하여 효과적으로 생산하고, 생산되는 초소형 LED 소자의 표면결함을 방지하여 발광효율을 개선할 수 있는 초소형 LED 소자 및 그 제조방법에 관한 것이다.
현재 큰 밴드갭을 가진 질화물계 반도체를 이용하여 질화물계 반도체 성장 구조나 성장된 박막의 제작공정을 개선시켜 광변환 효율이 높은 발광 소자(LED: light emitting diode)를 개발하려는 노력이 활발히 이루어지고 있다.
그런데, 지금까지 알려진 LED TV 기존의 LCD TV에 사용되는 냉음극형광등 (cold cathode fluorescent lamp, CCFL) 백라이트를 대신해 백색 또는 삼원색 LED 소자를 백라이트로 채용한 LCD TV로서, 정확하게 말하면 LED 백라이트를 사용한 LCD TV이다. 구체적으로, 현재 상용화된 풀칼라 LED 디스플레이는 초대형 기판에 적, 녹, 청 3원색 LED 램프를 수만개에서 수십만 개 이상 삽입한 옥외전광판용 디스플레이가 유일하게 일상에서 접할 수 있는 제품이다. 따라서, 현재까지는 진정한 의미의 LED 풀칼라 디스플레이를 가정용 TV나 컴퓨터용 모니터로는 구현하지 못하고 있다.
기존의 LED 소자를 이용해서 TV나 모니터급 사이즈의 디스플레이로 발전시키지 못하는 이유는 LED 소자를 이용해서 디스플레이를 제조하는 기술적 방법과 풀칼라를 구현하는 방법의 근본적인 한계에 기인한다. 기존 LED 소자의 제조방법은 2 ~ 8 인치 사이즈의 사파이어 기판에 금속 유기물 화학 증착 (metal organic chemical vapor deposition: MOCVD) 방법으로 III-V족 물질의 p-반도체층, 양자우물층, n-반도체층 들을 증착시킨 후, 절단/배선/패키징 등의 다양한 후공정을 통해서 필요한 형태의 LED 소자를 제조하는 방법이다. 이러한 방법을 사용해서 직접 TV용 디스플레이를 만들 경우, 단순히 계산해보면 2 ~ 8 인치 웨이퍼를 5 ~ 40 장 연결해야만 40인치 급 TV를 제작할 수 있다. 따라서, 현재 알려진 제조기술을 사용해서 LED소자로 직접 TV급 디스플레이를 실현하는 데는 현재의 기술로는 극복할 수 없는 수 많은 문제점들이 산재해 있다. 이와 더불어, 풀칼라를 구현하기 위해서는 적, 녹, 청 3원색 LED 소자를 한 개의 픽셀 (pixel)에 같이 박아 넣어야 하므로 단순히 적, 녹, 청 LED 웨이퍼를 이어 붙여서는 LED 풀칼라 디스플레이를 구현할 수 없다.
고효율 LED 디스플레이를 실현하기 위해서는 실제 디스플레이용 대면적 유리기판의 패턴된 픽셀 위치에 III-V족 박막 및 나노로드 LED 소자를 직접 성장시키는 바텀-업 (bottom-up) 방법이 있다. 지금까지 많은 연구를 통해서 알려진 바에 의하면, III-V 족 박막을 성장시키는 MOCVD 방법으로는 TV용 디스플레이급 사이즈와 같은 대형기판에 직접 증착하는 공정은 설비상 불가능한 것으로 알려져 있다. 이 뿐만 아니라, 투명한 비결정질 유리기판에 패턴된 투명전극 위에 고결정성/고효율 III-V족 박막 및 나노로드 헤테로접합 (heterojunction) LED 소자를 성장시키는 것 역시 결정학적으로도 매우 어려운 것으로 알려져 있다. 이와 같은 기술적 한계 때문에 작은 소자를 제외하고 대면적 유리기판에 LED 소자를 직접 성장시켜서 TV 또는 모니터급 풀칼라 디스플레이를 구현하는 방법은 거의 시도되지 않고 있다.
LED 디스플레이를 실현하기 위해서 많은 연구자들에 의해서 추진되고 있는 또 다른 접근법은 나노기술을 기반으로 한 바텀-업 방식이다. 이 방법은 단결정 기판 위에 나노로드형 LED를 성장시킨 후, 일부를 떼어 내어서 픽셀로 패턴된 전극 위에 바텀-업 방식으로 재배열시킴으로써, 대면적 디스플레이를 구현하는 방법이다. 하지만, 이와 같이 바텀-업 방식으로 제조한 나노로드 LED는 기존에 웨이퍼에 성장시킨 박막형 LED에 비교하여 발광효율이 형편없이 떨어지므로, 이 기술로 LED 디스플레이를 구현하더라도 상당한 기간 동안 효율 저하의 문제점을 해결할 수 없다. 뿐만 아니라, 바텀-업 방식으로 성장시킨 나노로드 LED 소자를 바텀-업 방식의 자기조립법으로 전극위에 배열하기 위해서는 사이즈와 높이가 균일한 나노로드 소자를 얻는 것이 필수적이다. 하지만, 잘 알려진 기상-액상-고상 (Vapor-Liquid-Solid: VLS) 방법과 같은 나노로드 성장법을 이용해서 자기조립에 용이한 균일한 사이즈와 특성을 갖는 나노로드 LED 소자를 대량으로 제조할 가능성이 매우 적다.
또 다른 방법으로는, 고효율 LED 소자를 잘라서 LED 디스플레이를 구현하는 탑-다운 (top-down) 방법이 있다. 일반적으로, 이 방법은 대면적 유리 기판의 써브-픽셀 위치에 탑-다운 방식으로 제조한 마이크로 LED 소자를 한 개씩 배열하는 일대일 대응 방식으로 디스플레이를 구현하는 방법이다. 구체적으로, 마이크로 사이즈의 LED 디스플레이의 경우는 탑-다운 방식으로 제조한 개개의 마이크로 LED를 각각의 써브-픽셀로 제작하므로, 소형 마이크로 LED 디스플레이용으로 개발되었다. 이 경우 LED 소자를 사파이어 기판에 성장시킨 후, 마이크로 사이즈로 패터닝하여 마이크로 LED 소자를 제조한 후 전극을 배선하므로 웨이퍼 기판사이즈보다 적은 마이크로 LED 디스플레이를 구현한다. 이 방법을 이용할 경우, 효율에는 문제가 없으나, 기판 사이즈 및 제조 공정의 한계로 대면적 사이즈의 LED 디스플레이를 구현하는 것은 불가능하다.
결국, 종래의 탑-다운 또는 바텀-업 방식으로 제조한 초소형 LED 소자는 에칭작업에 의한 표면 결함의 증가로 효율 및 안정성 저하의 문제가 발생할 가능성이 매우 높다. 또한, 독립된 초소형 LED 소자의 경우, 초소형 소자간의 표면 극성으로 인해서 상호 응집력이 발생하고 응집체가 형성되며, 그에 따른 픽셀 패터닝 공정에서 다수의 불량을 초래할 수 있다. 따라서, 독립된 초소형 마이크로 LED 소자의 제조만으로 양산성 있는 고효율/대면적 LED 디스플레이 소자를 구현하는 데는 한계가 있다.
나아가, 종래의 방법으로 제조된 초소형 LED 소자를 LED 디스플레이 기판의 서브픽셀 (픽셀위치)에 위치시키는 경우, LED 소자의 크기가 너무 작으므로 LED 디스플레이의 서브픽셀 상에 초소형 LED 소자가 바로서지 못하고 옆으로 눕거나 뒤집혀서 위치하게 되는 문제가 있었다.
본 발명은 상술한 문제점을 해결하기 위해 안출된 것으로, 본 발명의 첫 번째 기술적 과제는, 초소형 LED 소자의 에칭작업에 의한 표면 결함의 증가로 효율 및 안정성 저하 및 초소형 LED 소자간의 응집 문제를 해결할 수 있는 초소형 LED 소자의 제조방법을 제공하는 것이다.
본 발명의 두 번째 기술적 과제는, LED 디스플레이의 서브픽셀 (픽셀위치) 상에서 초소형 LED 소자가 옆으로 눕거나 뒤집히지 않고 정확하게 위치할 수 있는 초소형 LED 소자를 제공하는 것이다.
본 발명은 상기 첫 번째 기술적 과제를 해결하기 위해서,
1) 기판위에 제1 도전성 반도체층, 활성층 및 제2 도전성 반도체층을 순차적으로 형성하는 단계; 2) 상기 제1 도전성 반도체층, 활성층 및 제2 도전성 반도체층을 LED 소자의 직경이 나노 또는 마이크로 크기를 가지도록 식각하는 단계; 및 3) 상기 제1 도전성 반도체층, 활성층 및 제2 도전성 반도체층의 외주면에 절연피막을 형성하고 상기 기판을 제거하는 단계를 포함하는 초소형 LED 소자의 제조방법을 제공한다.
본 발명의 일 실시예에 따르면, 상기 제1 도전성 반도체층은 적어도 하나의 n형 반도체층을 포함하고, 상기 제2 도전성 반도체층은 적어도 하나의 p형 반도체층을 포함할 수 있다.
본 발명의 다른 실시예에 따르면, 상기 2) 단계는;
2-1) 제2 도전성 반도체층의 위에 제2 전극층, 절연층 및 금속 마스크층을 순차적으로 형성하는 단계; 2-2) 상기 금속 마스크층 위에 폴리머층을 형성하고 상기 폴리머층에 나노 또는 마이크로 간격으로 패턴을 형성하는 단계; 2-3) 상기 제1 도전성 반도체층, 활성층 및 제2 도전성 반도체층을 패턴에 따라 나노 또는 마이크로 간격으로 건식 또는 습식 식각하는 단계; 및 2-4) 상기 절연층, 금속 마스크층 및 폴리머층을 제거하는 단계를 포함할 수 있다.
본 발명의 또 다른 실시예에 따르면, 상기 2) 단계는;
2-5) 제2 도전성 반도체층의 위에 제2 전극층, 절연층 및 금속 마스크층을 형성하는 단계; 2-6) 상기 금속 마스크층 위에 나노스피어 또는 마이크로스피어 단층막을 형성하고 자기조립을 수행하는 단계; 2-7) 상기 제1 도전성 반도체층, 활성층 및 제2 도전성 반도체층을 패턴에 따라 나노 또는 마이크로 간격으로 건식 또는 습식 식각하는 단계; 및 2-8) 상기 절연층, 금속 마스크층 및 단층막을 제거하는 단계를 포함할 수 있다.
본 발명의 또 다른 실시예에 따르면, 상기 나노스피어 또는 마이크로스피어는 폴리스티렌 재질일 수 있다.
본 발명의 또 다른 실시예에 따르면, 상기 3) 단계는;
3-1) 제2 전극층의 위에 지지필름을 형성하는 단계; 3-2) 상기 제1 도전성 반도체층, 활성층 및 제2 도전성 반도체층을 포함하는 외주면에 절연피막을 형성하는 단계; 3-3) 상기 절연피막 위에 소수성 피막을 코팅하는 단계; 3-4) 상기 기판을 제거하는 단계; 3-5) 상기 제1 도전성 반도체층의 하부에 제1 전극층을 형성하는 단계; 및 3-6) 상기 지지필름을 제거하여 복수개의 초소형 LED 소자를 제조하는 단계를 포함할 수 있다.
본 발명의 또 다른 실시예에 따르면, 상기 3) 단계는;
3-7) 제2 전극층의 위에 지지필름을 형성하는 단계; 3-8) 상기 제1 도전성 반도체층, 활성층 및 제2 도전성 반도체층을 포함하는 외주면에 절연피막을 형성하는 단계; 3-9) 상기 기판을 제거하는 단계; 3-10) 상기 제1 도전성 반도체층의 하부에 제1 전극층을 형성하는 단계; 3-11) 상기 제1 전극층 및 제2 전극충 중 적어도 일면에 결합링커를 형성하는 단계; 및 3-12) 상기 지지필름을 제거하여 복수개의 초소형 LED 소자를 제조하는 단계를 포함할 수 있다.
한편, 본 발명은 상기 두 번째 기술적 과제를 해결하기 위해서,
제1 도전성 반도체층; 상기 제1 도전성 반도체층 위에 형성된 활성층; 상기 활성층 위에 형성된 제2 도전성 반도체층을 포함하는 마이크로 또는 나노 크기의 반도체 발광소자를 포함하되, 상기 반도체 발광소자는 외주면에 코팅된 절연피막을 포함하는 초소형 LED 소자를 제공한다.
본 발명의 일 실시예에 따르면, 상기 절연피막 위에는 소수성 피막이 코팅될 수 있다.
본 발명의 다른 실시예에 따르면, 상기 제1 도전성 반도체층의 하부에는 제1 전극층이 형성되고, 상기 제2 도전성 반도체층의 상부에는 제2 전극층이 형성될 수 있다.
본 발명의 또 다른 실시예에 따르면, 상기 제1 전극층의 하부면 및 제2 전극층의 상부면 중 적어도 하나의 전극층의 표면에 자기조립을 위한 결합링커가 포함될 수 있다.
본 발명의 또 다른 실시예에 따르면, 상기 결합링커는 LED 디스플레이의 기판과 상보적으로 결합할 수 있다.
본 발명의 또 다른 실시예에 따르면, 상기 제1 도전성 반도체층은 적어도 하나의 n형 반도체층을 포함하고, 상기 제2 도전성 반도체층은 적어도 하나의 p형 반도체층을 포함할 수 있다.
본 발명의 또 다른 실시예에 따르면, 상기 절연피막은 SiO2, Si3N4, Al2O3 및 TiO2로 구성되는 군으로부터 선택되는 어느 하나 이상을 포함하고, 상기 소수성 피막은 SAMs와 플루오로폴리머 중 어느 하나 이상의 성분을 포함하며, 상기 결합링커는 티올그룹을 포함할 수 있다.
이하, 본 발명에 있어서, 각 층 (막), 영역, 패턴 또는 구조물들이 기판, 각 층 (막), 영역, 패턴들의 "위(on)"에 또는 "아래(under)"에 형성되는 것으로 기재되는 경우에 있어, "위(on)"와 "아래(under)"는 "직접적으로 (directly)"와 "간접적으로 (indirectly)"의 의미를 모두 포함한다. 또한, 각 층의 위 또는 아래에 대한 기준은 도면을 기준으로 설명한다.
본 발명에 따른 초소형 LED 소자의 제조방법은 종래 초소형 LED 소자의 문제점이었던, 에칭작업에 의한 표면 결함 증가, 그에 따른 효율 및 안정성 저하 및 초소형 LED 소자간의 응집문제를 해결할 수 있다.
또한, 본 발명에 따른 초소형 LED 소자는 표면결함 및 응집문제가 발생하지 않을 뿐 아니라, LED 디스플레이의 서브픽셀 (픽셀위치) 상에서 초소형 LED 소자가 옆으로 눕거나 뒤집히지 않고 정확하게 위치할 수 있어 LED 디스플레이의 효율을 획기적으로 개선할 수 있다.
또한, 본 발명에 따른 초소형 LED 소자는 결합링커를 사용함으로서 링커끼리의 결합에 의하여 원하는 픽셀 패턴 위치로 자유자재로 조립할 수 있어 LED 디스플레이의 다양한 응용이 가능할 수 있다.
도 1은 본 발명의 일 실시예에 따른 LED 기본소자층을 형성하는 단계를 나타내는 단면도이다.
도 2는 본 발명의 제2 도전성 반도체층 위에 제2 전극층, 절연층 및 금속 마스크층을 형성하는 단계를 나타내는 단면도이다.
도 3은 본 발명의 금속 마스크층 위에 나노스피어 또는 마이크로스피어 단층막을 형성하는 단계를 나타내는 단면도이다.
도 4는 본 발명의 나노스피어 또는 마이크로스피어 단층막의 애싱 (ashing) 단계를 나타내는 단면도이다.
도 5는 본 발명의 식각단계를 나타내는 단면도이다.
도 6은 본 발명의 스피어 단층막, 금속 마스크층 및 절연층을 제거하는 단계를 나타내는 단면도이다.
도 7은 본 발명의 제2 전극층 위에 지지필름을 부착하는 단계를 나타내는 단면도이다.
도 8은 본 발명의 LED 소자의 외주면을 절연피막으로 코팅하는 단계를 나타내는 단면도이다.
도 9는 본 발명의 LED 소자의 외주면에 형성된 절연피막을 소수성 피막으로 코팅하는 단계를 나타내는 단면도이다.
도 10은 본 발명의 LED 소자의 제1 도전성 반도체층의 아래에 형성된 기판을 제거하는 단계를 나타내는 단면도이다.
도 11은 본 발명의 기판이 제거된 제1 도전성 반도체층의 아래에 전극을 증착하는 단계를 나타내는 단면도이다.
도 12는 본 발명의 전극의 표면에 자기조립을 위한 결합링커를 코팅하는 단계를 나타내는 단면도이다.
도 13은 본 발명의 지지필름을 제거하여 독립적인 초소형 LED 소자들을 제조하는 단계를 나타내는 단면도이다.
도 14는 본 발명의 LED 소자의 외주면이 절연피막으로 코팅된 초소형 LED 소자를 나타내는 사시도이다.
도 15은 본 발명의 외주면에 형성된 절연피막이 소수성 피막으로 코팅된 초소형 LED 소자를 나타내는 사시도이다.
도 16은 본 발명의 전극의 표면에 자기조립을 위한 결합링커가 형성된 초소형 LED 소자를 나타내는 사시도이다.
도 17은 본 발명의 초소형 LED 소자들을 포함하는 잉크 또는 페이스트이다.
도 18은 본 발명의 LED 기본소자층 단면에 대한 전자현미경 관찰사진이다.
도 19는 본 발명의 제2 도전성 반도체층 위에 절연층과 금속 마스크층을 형성한 단면에 대한 전자현미경 관찰사진이다.
도 20a는 본 발명의 금속 마스크층 위에 나노스피어 단층막을 형성한 단면을 관찰한 전자현미경 사진이고, 도 20b는 그 평면을 관찰한 전자현미경 사진이다.
도 21a는 본 발명의 나노스피어 단층막을 O2 가스 분위기 하에서 애싱 처리한 단면을 관찰한 전자현미경 사진이고, 도 21b는 그 평면을 관찰한 전자현미경 사진이다.
도 22a는 본 발명의 크기가 축소된 나노스피어를 마스크로 하여 Cl2 가스 분위기 하에서 금속 마스크층을 에칭한 단면을 관찰한 전자현미경 사진이고, 도 22b는 그 평면을 관찰한 전자현미경 사진이다.
도 23a는 본 발명의 에칭 공정에 의해서 폴리스티렌의 모양 그대로 전사 (transfer)된 금속 마스크층 패턴의 단면을 관찰한 전자현미경 사진이고, 도 23b는 그 평면을 관찰한 전자현미경 사진이다.
도 24a는 본 발명의 금속 마스크층 패턴을 이용해서 CF4 및 O2 가스 분위기하에서 SiO2 (절연층)를 식각한 단면을 관찰한 전자현미경 사진이고, 도 24b는 그 평면을 관찰한 전자현미경 사진이다.
도 25a는 본 발명의 식각된 절연층을 이용해서 SiCl4 및 Ar 가스 분위기 하에서 ICP 방법으로 식각한 단면을 관찰한 전자현미경 사진이고, 도 25b는 그 평면을 관찰한 전자현미경 사진이다.
도 26a는 본 발명의 마스크로 사용된 절연층을 제거한 후 단면을 관찰한 전자현미경 사진이고, 도 26b는 그 평면을 관찰한 전자현미경 사진이다.
도 27a 및 27b는 본 발명의 절연피막 (Al2O3)이 코팅된 반도체층에 소수성 피막 (옥타데실트리클로로실란)을 코팅하기 전 (27a) 및 코팅한 후 (27b)의 접촉각 (contact angle)을 측정한 도면이다.
도 28a 및 28b는 본 발명의 지지 필름이 부착되지 않은 버퍼층 또는 언도프드 반도체층과 사파이어 기판 쪽으로 레이저를 이용한 리프트-오프 공정을 수행한 단면을 관찰한 전자현미경 사진이다.
도 29a 및 29b는 본 발명의 제1 도전성 반도체층이 노출되도록 하기 위해서 버퍼층 또는 언도프드 반도체층을 ICP 방법으로 어느 정도 식각한 단면을 관찰한 전자현미경 사진이다.
도 30a 및 30b는 본 발명의 ICP 방법으로 더욱 식각을 진행한 후 단면을 관찰한 전자현미경 사진이다.
도 31a는 본 발명의 ICP 방법으로 제1 도전성 반도체층이 노출되도록 식각된 단면을 관찰한 전자현미경 사진이고, 도 31b는 그 평면을 관찰한 전자현미경 사진이다.
도 32는 본 발명의 초소형 LED의 제1 도전성 반도체 층에 스퍼터링 방벙으로 전극 (Ti)을 증착한 단면을 관찰한 전자현미경 사진이다.
도 33은 본 발명의 지지 필름을 아세톤으로 제거한 상태의 독립적인 초소형 LED를 전자현미경으로 관찰한 사진이다.
도 34는 도 33의 독립적 초소형 LED 하나를 전자현미경으로 관찰한 사진이다.
도 35는 도 33의 독립적 초소형 LED 소자들을 전극 기판에 정렬시킨 것을 전자현미경으로 관찰한 사진이다.
도 36은 본 발명의 초소형 LED 소자들을 전극 기판에 정렬시킨 후 측정한 스펙트럼이다.
도 37a 내지 37c는 본 발명의 초소형 LED가 청색 발광하는 모습을 육안으로 관찰한 사진이다.
이하, 첨부된 도면을 참조하여 본 발명을 보다 상세히 설명한다.
상술한 바와 같이, 종래의 탑-다운 또는 바텀-업 방식으로 제조한 초소형 LED 소자는 에칭작업에 의한 표면 결함의 증가로 효율 및 안정성 저하의 문제가 발생할 가능성이 매우 높다. 또한, 독립된 초소형 LED 소자의 경우 초소형 소자 간의 표면의 극성에 의한 상호 응집력에 의해서 응집체가 형성되고 그에 따른 픽셀 패터닝 공정에서 다수의 불량이 발생될 수 있다. 따라서, 독립된 초소형 마이크로 LED 소자의 제조만으로 양산성 있는 고효율/대면적 LED 디스플레이 소자를 구현하는 데는 한계가 있다.
나아가, 종래의 방법으로 제조된 초소형 LED 소자를 LED 디스플레이 기판의 서브픽셀 (픽셀위치)에 위치시키는 경우 LED 소자의 크기가 너무 작으므로 LED 디스플레이의 서브픽셀상에서 초소형 LED 소자가 바로서지 못하고 옆으로 눕거나 뒤집혀서 위치하게 되는 문제가 있었다.
이에 본 발명에서는, 1) 기판위에 제1 도전성 반도체층, 활성층 및 제2 도전성 반도체층을 순차적으로 형성하는 단계; 2) 상기 제1 도전성 반도체층, 활성층 및 제2 도전성 반도체층을 LED 소자의 직경이 나노 또는 마이크로 크기를 가지도록 식각하는 단계; 및 3) 상기 제1 도전성 반도체층, 활성층 및 제2 도전성 반도체층의 외주면에 절연피막을 형성하고 상기 기판을 제거하는 단계를 포함하는 초소형 LED 소자의 제조방법을 제공하여 상술한 문제의 해결을 모색하였다.
먼저, 1) 단계로서 기판위에 제1 도전성 반도체층, 활성층 및 제2 도전성 반도체층을 순차적으로 형성한다. 구체적으로, 도 1은 본 발명의 일구현예에 따른 LED 기본소자층을 형성하는 단계를 나타내는 단면도로서, 기판(10)위에 제1 도전성 반도체층(11), 활성층(12) 및 제2 도전성 반도체층(13)을 형성하는 단계를 포함한다.
상기 기판(10)은 사파이어 기판(Al203) 및 유리와 같은 투과성 기판이 사용될 수 있다. 또한, 상기 기판(10)은 GaN, SiC, ZnO, Si, GaP 및 GaAs, 도전성 기판 등으로 이루어진 군에서 선택될 수 있다. 이하, 실시예에서는 사파이어 기판의 예로 설명하기로 한다. 상기 기판(10)의 상면은 요철 패턴이 형성될 수도 있다.
상기 기판(10) 위에는 질화물 반도체가 성장되는데, 그 성장 장비는 전자빔 증착, 물리적 기상증착 (physical vapor deposition: PVD), 화학적 기상증착 (chemical vapor deposition: CVD), 플라즈마 레이저 증착 (plasma laser deposition: PLD), 이중형 열증착 (dual-type thermal evaporator), 스퍼터링(sputtering), 금속 유기 화학적 기상증착 (metal organic chemical vapor deposition: MOCVD) 등에 의해 형성할 수 있으나, 이러한 방법으로만 제한되는 것은 아니다.
상기 기판(10) 위에는 버퍼층(미도시) 및/또는 미도핑 반도체층(미도시)이 형성될 수 있다. 상기 버퍼층은 상기 기판(10)과의 격자 상수 차이를 줄여주기 위한 층으로서, GaN, InN, AlN, InGaN, AlGaN, InAlGaN, AlInN 중 적어도 하나로 형성될 수 있다. 상기 미도핑 반도체층은 미도핑 GaN층으로 구현될 수 있으며, 질화물 반도체가 성장되는 기판으로 기능하게 된다. 상기 버퍼층 및 미도핑 반도체층은 어느 한 층만 형성하거나, 두 층 모두 형성되거나 형성되지 않을 수도 있다.
본 발명의 바람직한 일구현예에 따르면 상기 기판의 두께는 400 ~ 1500㎛일 수 있으나, 이에 제한되지 않는다.
상기 기판(10) 위에는 제1 도전성 반도체층(11)이 형성된다. 상기 제1 도전성 반도체층(11)은 예컨대, n형 반도체층을 포함할 수 있는 데, 상기 n형 반도체층은 InxAlyGa1-x-yN (0≤x≤1, 0 ≤y≤1, 0≤x+y≤1)의 조성식을 갖는 반도체 재료 예컨대, InAlGaN, GaN, AlGaN, InGaN, AlN, InN 등에서 어느 하나 이상이 선택될 수 있으며, 제1 도전성 도펀트(예: Si, Ge, Sn 등)가 도핑될 수 있다. 본 발명의 바람직한 일구현예에 따르면, 상기 제1 도전성 반도체층의 두께는 1.5 ~ 5㎛일 수 있으나, 이에 제한되지 않는다.
상기 활성층(12)은 상기 제1 도전성 반도체층(11) 위에 형성되며, 단일 또는 다중 양자 우물 구조로 형성될 수 있다. 상기 활성층(12)의 위 및/또는 아래에는 도전성 도펀트가 도핑된 클래드층(미도시)이 형성될 수도 있으며, 상기 도전성 도펀트가 도핑된 클래드층은 AlGaN층 또는 InAlGaN층으로 구현될 수 있다. 그 외에, AlGaN, AlInGaN 등의 물질도 활성층(12)으로 이용될 수 있음은 물론이다. 이러한 활성층(12)에서는 전계를 인가하였을 때, 전자-정공 쌍의 결합에 의하여 빛이 발생하게 된다. 본 발명의 바람직한 일구현예에 따르면 상기 활성층의 두께는 0.05 ~ 0.25㎛일 수 있으나, 이에 제한되지 않는다.
상기 활성층(12) 위에는 제2 도전성 반도체층(13)이 형성되며, 상기 제2 도전성 반도체층(13)은 적어도 하나의 p형 반도체층으로 구현될 수 있는데, 상기 p형 반도체층은 InxAlyGa1-x-yN (0≤x≤1, 0 ≤y≤1, 0≤x+y≤1)의 조성식을 갖는 반도체 물질 예컨대, InAlGaN, GaN, AlGaN, InGaN, AlN, InN 등에서 어느 하나 이상이 선택될 수 있으며, 제2 도전성 도펀트(예: Mg)가 도핑될 수 있다. 여기서, 발광 구조물은 상기 제1 도전성 반도체층(11), 상기 활성층(12), 상기 제2 도전성 반도체층(13)을 최소 구성 요소로 포함하며, 각 층의 위/아래에 다른 형광체층, 활성층, 반도체층 및/또는 전극층을 더 포함할 수도 있다. 본 발명의 바람직한 일구현예에 따르면 상기 제2 도전성 반도체층의 두께는 0.08 ~ 0.25㎛일 수 있으나, 이에 제한되지 않는다.
다음, 2) 단계는 상기 제1 도전성 반도체층, 활성층 및 제2 도전성 반도체층을 포함하여 LED 소자의 직경이 나노 또는 마이크로 크기를 가지도록 식각한다. 이를 위하여 본 발명의 바람직한 일구현예에 따르면, 2-5) 제2 도전성 반도체층의 위에 제2 전극층, 절연층 및 금속 마스크층을 형성하는 단계; 2-6) 상기 금속 마스크층 위에 나노스피어 또는 마이크로스피어 단층막을 형성하고 자기조립을 수행하는 단계; 2-7) 상기 제1 도전성 반도체층, 활성층 및 제2 도전성 반도체층을 패턴에 따라 나노 또는 마이크로 간격으로 건식 또는 습식 식각하는 단계; 및 2-8) 상기 절연층, 금속 마스크층 및 단층막을 제거하는 단계를 포함할 수 있다.
구체적으로 도 2는 본 발명의 제2 도전성 반도체(13)층 위에 제2 전극층(20), 절연층(21) 및 금속 마스크층(22)을 형성하는 단계를 나타내는 단면도이다. 먼저, 제2 전극층(20)은 통상의 LED 소자에 사용되는 금속 또는 금속산화물을 이용할 수 있으며, 바람직하게는 Cr, Ti, Al, Au, Ni, ITO 및 이들의 산화물 또는 합금 등을 단독 또는 혼합하여 사용할 수 있으나, 이에 제한되지 않는다. 본 발명의 바람직한 일구현예에 따르면, 상기 금속 마스크층의 두께는 0.02 ~ 0.1㎛일 수 있으나, 이에 제한되지 않는다.
상기 제2 전극층(20) 위에 형성되는 절연층(21)은 제2 전극층, 제2 도전성 반도체층, 활성층 및 제1 도전성 반도체층의 연속적인 에칭을 위한 마스크의 역할을 수행할 수 있으며, 산화물 또는 질화물을 이용할 수 있고, 대표적인 예로, 실리콘 산화물(SiO2) 또는 실리콘 질화물(SiN)이 이용될 수 있으나, 이에 제한되는 것은 아니다.
본 발명의 바람직한 일구현예에 따르면 상기 절연층의 두께는 0.5 ~ 1.5㎛일 수 있으나, 이에 제한되지 않는다.
상기 절연층(21)의 위에 형성되는 금속 마스크층(22)은 에칭을 위한 마스크층의 역할을 수행하는 것으로, 통상적으로 사용되는 금속을 이용할 수 있으며, 대표적인 예로, 크롬(Cr) 금속이 이용될 수 있으나, 이에 제한되는 것은 아니다. 본 발명의 바람직한 일구현예에 따르면, 상기 금속 마스크층의 두께는 30 ~ 150 nm일 수 있으나, 이에 제한되지 않는다.
도 3은 본 발명의 금속 마스크층(22) 위에 나노스피어 또는 마이크로스피어 단층막(30)을 형성하는 단계를 나타내는 단면도이다. 구체적으로, 나노스피어 또는 마이크로스피어 단층막은 금속 마스크층(22)의 에칭을 위한 마스크 역할을 하기 위하여 형성하는 것으로서, 스피어 입자의 형성방법은 스피어의 자기조립 특성을 이용할 수 있다. 스피어들의 자기조립에 의한 완전한 한층의 구조 배열 형성을 위하여 물 표면위에 스피어를 일정한 속도로 띄어 보내어 서로 자기조립되도록 만든다. 물에서 퍼지면서 형성된 스피어 영역은 작고 불규칙적이기 때문에, 추가적인 에너지와 계면활성제를 가하여 크고 규칙적인 배열을 가진 스피어 1층을 형성하고, 상기 금속 마스크층(22) 위로 스피어 1층을 떠냄으로서 금속층 위에 규칙적으로 배열된 스피어 단층막을 형성할 수 있다. 스피어 입자의 직경은 최종 생산하려는 초소형 LED 소자의 원하는 직경에 따라 선택적으로 사용될 수 있으며, 바람직하게는 50 ~ 3000㎚의 직경을 갖는 폴리스티렌 스피어, 실리카 스피어 등을 사용할 수 있으나, 이에 제한되지 않는다.
도 4는 본 발명의 나노스피어 또는 마이크로스피어 단층막(30)의 애싱(ashing) 단계를 나타내는 단면도로서, 스피어 입자의 간격이 이격된다. 통상의 스피어 단층막의 애싱공정을 통해 달성될 수 있으며, 바람직하게는, 산소(O2) 기반의 반응성 이온 애싱 (Reactive ion ashing)과 플라즈마 애싱 (plasma ashing)을 통해서 (예: 가열) 애싱공정이 수행될 수 있다.
도 5는 본 발명의 식각단계를 나타내는 단면도로서, 구체적으로 도 4에서 애싱공정을 통해 이격된 스피어 입자 사이를 식각하여 홀을 형성하는 공정이다. 이 경우, 스피어 입자(30)가 형성된 부분은 식각되지 않고 스피어 입자와 스피어 입자 사이의 이격된 공간부분이 식각되어 홀을 형성한다. 상기 홀은 금속 마스크층(22)부터 기판(10)의 위까지 선택적으로 형성될 수 있다. 이러한 식각공정은 반응성 이온 에칭 (reactive ion etching: RIE) 또는 유도 결합 플라즈마 반응성 이온 에칭 (inductively coupled plasma reactive ion etching: ICP-RIE)과 같은 건식 식각법이 이용될 수 있다.
이러한 건식 식각법은 습식 식각법과 달리, 일방성 식각이 가능하여 이러한 패턴을 형성하기에 적합하다. 즉, 습식 식각법은 등방성(isotropic) 식각이 이루어져, 모든 방향으로 식각이 이루어지나, 이와 달리 건식 식각법은 홀을 형성하기 위한 깊이 방향이 주로 식각되는 식각이 가능하여, 홀의 크기 및 간격 등을 원하는 패턴으로 형성할 수 있다.
이때, 상기 RIE 또는 ICP-RIE법을 이용할 경우, 금속 마스크를 식각할 수 있는 에칭 가스로는 Cl2, O2 등이 이용될 수 있다.
상기 식각공정을 통해 제조된 LED 소자의 간격(A)은 스피어 입자(30)의 직경과 일치하게 되고, 이 경우 LED 소자의 간격(A)은 나노미터 단위 또는 마이크로미터 단위일 수 있으며, 보다 바람직하게는 50 ~ 3000㎚일 수 있다.
도 6은 식각공정 이후 상기 스피어 입자(30), 금속 마스크층(22) 및 절연층(21)을 제거하는 단계로서, 통상의 습식식각 또는 건식식각 등의 방법을 통해 제거공정을 수행할 수 있다.
본 발명의 다른 구현예에 따르면, 상기 2) 단계는; 2-1) 제2 도전성 반도체층의 위에 제2 전극층, 절연층 및 금속 마스크층을 순차적으로 형성하는 단계; 2-2) 상기 금속 마스크층 위에 폴리머층을 형성하고 상기 폴리머층에 나노 또는 마이크로 간격으로 패턴을 형성하는 단계; 2-3) 상기 제1 도전성 반도체층, 활성층 및 제2 도전성 반도체층을 패턴에 따라 나노 또는 마이크로 간격으로 건식 또는 습식 식각하는 단계; 및 2-4) 상기 절연층, 금속 마스크층 및 폴리머층을 제거하는 단계를 포함할 수 있다.
구체적으로, 제2 도전성 반도체층의 위에 제2 전극층, 금속 마스크층 및 절연층을 형성한 후, 상기 금속 마스크층 위에 통상의 리소그래피 등에 사용될 수 있는 통상의 폴리머층을 형성하고, 상기 폴리머층에 포토 리소그레피, e-빔 리소그래피, 또는 나노 임프린트 리소그래피 등의 방법을 통해 나노 또는 마이크로 간격으로 패턴을 형성한 후, 이를 건식 또는 습식식각하고 절연층, 금속 마스크층 및 폴리머층을 제거하는 것을 통해 달성될 수 있다.
다음, 3) 단계로서 상기 제1 도전성 반도체층, 활성층 및 제2 도전성 반도체층의 외주면에 절연피막을 형성하고, 상기 기판을 제거하는 단계를 통하여 초소형 LED 소자를 제조한다.
구체적으로, 본 발명의 바람직한 일구현에 따르면, 상기 3) 단계는; 3-1) 제2 전극층의 위에 지지필름을 형성하는 단계; 3-2) 상기 제1 도전성 반도체층, 활성층 및 제2 도전성 반도체층을 포함하는 외주면에 절연피막을 형성하는 단계; 3-3) 상기 절연피막 위에 소수성 피막을 코팅하는 단계; 3-4) 상기 기판을 제거하는 단계; 3-5) 상기 제1 도전성 반도체층의 하부에 제1 전극층을 형성하는 단계; 및 3-6) 상기 지지필름을 제거하여 복수개의 초소형 LED 소자를 제조하는 단계를 포함할 수 있다.
도 7은 본 발명의 제2 전극층(20) 위에 지지필름(70)을 부착하는 단계를 나타내는 단면도이다. 상기 지지필름(70)은 기판(10)을 레이저 리프트-오프 (laser lift-off: LLO) 방법을 통해 제거할 때 복수개의 초소형 LED 소자가 분산되지 않도록 지지하며, 또한 LED 소자의 크랙을 방지하기 위해 부착하는 것으로서, 상기 지지필름의 재질은 폴리머 엑포시 또는 본딩 메탈일 수 있으며, 두께는 0.3 ~ 70 ㎛일 수 있으나, 이에 제한되지 않는다.
도 8은 본 발명의 지지필름이 형성된 초소형 LED 소자들에 대하여 상기 제1 도전성 반도체층, 활성층 및 제2 도전성 반도체층을 포함하는 외주면에 절연피막(80)을 형성한다. 이를 통해 초소형 LED 소자 표면의 결함을 최소화하여 수명과 효율을 향상시키는 효과를 달성할 수 있다.
상기 절연피막은 제1 도전성 반도체층(11), 활성층(12) 및 제2 도전성 반도체층(13) 뿐만 아니라, 제1 전극층 및/또는 제2 전극층 및 기타 다른 층의 외주면에도 형성될 수 있다.
초소형 LED 소자들의 외주면에 절연피막을 형성하는 방법은 상기 지지필름(70) 및 기판(10)이 부착된 초소형 LED 소자들의 외주면에 절연물질을 도포하거나 이를 침지하는 방법을 이용할 수 있으나, 이에 제한되지 않는다. 상기 절연피막으로 사용될 수 있는 물질로는, SiO2, Si3N4, Al2O3 및 TiO2로 이루어지는 군으로부터 선택되는 어느 하나 이상이 사용될 수 있으나, 이에 제한되지 않는다. 예를 들어, Al2O3막은 원자층 증착 (atomic layer deposition: ALD)방식을 통하여 형성할 수 있으며, 트리메틸알루미늄 (trimethyl aluminum: TMA)와 H2O 소스를 펄스형태로 공급하여 화학적 흡착과 탈착을 이용하여 박막을 형성할 수 있다.
도 9는 본 발명의 LED 소자의 외주면에 형성된 절연피막(80)을 소수성 피막(90)으로 코팅하는 단계를 나타내는 단면도이다. 상기 소수성 피막(90)은 초소형 LED 소자의 표면에 소수성 특성을 갖게 하여 소자들간에 응집현상을 방지하기 위한 것으로서, 응집에 의한 독립된 초소형 소자의 특성 저해 문제와 초소형 LED 소자의 픽셀 패터닝 공정의 다수의 불량 문제를 없앨 수 있는 방법이며, 상기 절연피막(80) 상에 형성될 수 있다. 이 경우, 사용가능한 소수성 피막은 절연피막 상에 형성되어 초소형 LED 소자들간에 응집현상을 방지할 수 있는 것이면 제한없이 사용될 수 있으며, 예를 들어 옥타데실트리크로로실리란 (octadecyltrichlorosilane, OTS)과 플루오로알킬트리크로로실란 (fluoroalkyltrichlorosilane), 퍼플루오로알킬트리에톡시실란 (perfluoroalkyltriethoxysilane) 등과 같은 자기조립 단분자막 (self-assembled monolayers: SAMs)과 테프론 (teflon), 싸이탑 (Cytop) 등과 같은 플루오로 폴리머 (fluoropolymer) 등을 단독 또는 혼합하여 사용할 수 있다.
도 10은 본 발명의 LED 소자의 제1 도전성 반도체층(11)의 아래에 형성된 기판(10)을 제거하는 단계를 나타내는 단면도이다. 상기 기판(10)을 제거하는 방법은 통상적으로 사용되는 방법을 이용할 수 있으며, 바람직하게는 화학적 리프트-오프 (chemical lift-off: CLO)나 레이저 리프트-오프 (laser lift-off: LLO) 방식을 이용할 수 있으나, 이에 제한되지 않는다.
도 11은 본 발명의 기판(10)이 제거된 제1 도전성 반도체층(11)의 아래에 제1 전극(110)을 형성하는 단계를 나타내는 단면도이다. 상기 제1 전극(110)은 통상적으로 LED 소자에 사용되는 재질이면 제한없이 사용될 수 있으며, 바람직하게는 Cr, Ti, Al, Au, Ni, ITO 및 이들의 산화물 또는 합금 등을 단독 또는 혼합한 재질이 사용될 수 있다. 또한, 전극의 두께는 0.02 ~ 1 ㎛일 수 있으나, 이에 제한되지 않는다.
도 12는 본 발명의 제1 전극(110)의 표면에 자기조립을 위한 결합링커(120)를 코팅하는 단계를 나타내는 단면도이다. 상술한 바와 같이, 초소형 LED 소자는 크기가 너무 작기 때문에 이를 LED 디스플레이 기판의 서브픽셀(픽셀자리)에 부착하는 경우, 초소형 LED 소자가 바로서지 못하고 누워있거나 뒤집히는 문제가 발생할 수 있다. 이를 방지하기 위하여 제1 전극(110)의 표면에 자기조립을 위한 결합링커(120)를 코팅하고, 이에 대응하는 LED 디스플레이 기판의 서브픽셀(픽셀자리)에 상기 결합링커(12O)와 결합할 수 있는 제2 링커(미도시)를 형성한다면, 상기 초소형 LED 소자를 전사하거나 잉크 또는 페이스트 형태로 상기 서브픽셀에 부가하는 경우에도 초소형 LED 소자가 누워있거나 뒤집히지 않고 전극표면이 원하는 위치의 서브픽셀에 부착될 수 있는 것이다. 또한 제2 링커를 형성하지 않더라도 결합링커에 남아있는 관능기가 LED 디스플레이 기판의 서브픽셀의 표면에 결합한다면 초소형 LED 소자가 바로서지 못하고 누워있거나 뒤집히는 문제를 해결할 수 있다.
결합링커는 초소형 LED 소자의 전극표면과 디스플레이 기판의 서브픽셀의 표면 및/또는 서브픽셀에 형성된 제2 링커와 결합하여야 하므로, 이를 위하여 2개 이상의 관능기를 가질 수 있다. 구체적으로, 메탈과 반응하는 티올계열의 아미노에테인싸이올 (aminoethanethiol)과 산화물 및 이와 반응하는 아미노프로필트리에톡시실란 (aminopropyltrirthoxysilane) 등이 사용될 수 있으나, 이에 제한되는 것은 아니다. 또한, 디스플레이 기판의 서브픽셀의 표면에 형성되는 제2 링커는 본 발명의 결합링커에 상보적으로 결합할 수 있는 것이면 제한없이 사용될 수 있으며, 바람직하게는 결합링커와 동일한 계열을 사용할 수 있다.
도 13은 상기 지지필름(70)을 제거하여 독립된 초소형 LED 소자들(130, 131)을 제조하는 것이다. 한편, 본 발명의 다른 일구현예에 따르면, 상기 결합링커(120)는 지지필름(70)을 제거한 후, 제2 전극(20)과 제1 전극(110) 중 적어도 일면에 형성될 수 있다.
한편, 본 발명은, 제1 도전성 반도체층; 상기 제1 도전성 반도체층 위에 형성된 활성층; 상기 활성층 위에 형성된 제2 도전성 반도체층을 포함하는 마이크로 또는 나노 크기의 반도체 발광소자를 포함하되, 상기 반도체 발광소자는 외주면에 코팅된 절연피막을 포함하는 초소형 LED 소자를 제공한다.
도 14는 본 발명의 초소형 LED 소자를 나타내는 사시도로서, 본 발명에 따른 초소형 LED 소자는, 제1 도전성 반도체층(140) 위에 형성된 활성층(141), 상기 활성층(141) 위에 형성된 제2 도전성 반도체층(142)를 포함하며, 상기 제1 도전성 반도체층(140)의 아래에는 제1 전극(143)이 형성되고, 상기 제2 도전성 반도체층(142)의 상부에는 제2 전극(144)이 형성될 수 있다. 물론, 상술한 바와 같이 별도의 버퍼층, 활성층, 형광체층 및/또는 반도체층 등을 더 포함되는 것도 가능하다. 한편, 절연피막(150)은 상기 제1 도전성 반도체층(140) 위에 형성된 활성층(141), 상기 활성층(141) 위에 형성된 제2 도전성 반도체층(142)의 일부 또는 전부의 외주면을 포함하여 감싸도록 형성될 수 있다. 또한, 상기 제1 전극(143) 및/또는 제2 전극(144)의 일부 또는 전부의 외주면을 포함하여 감싸도록 형성될 수 있다.
도 15는 본 발명의 일 구현예에 따른 외주면에 형성된 절연피막(150)을 초소형 LED 소자간의 응집을 방지하기 위하여 소수성 피막(160)으로 코팅한 초소형 LED 소자를 나타내는 사시도이다. 상기 소수성 피막(160)은 상기 절연피막(150)의 일부 또는 전부를 포함하여 감싸도록 형성될 수 있다.
도 16은 본 발명의 전극의 표면에 자기조립을 위한 결합링커가 형성된 초소형 LED 소자를 나타내는 사시도이다. 상술한 바와 같이, 초소형 LED 소자는 크기가 너무 작기 때문에 이를 LED 디스플레이 기판의 서브픽셀(픽셀자리)에 부착하는 경우 초소형 LED 소자가 바로서지 못하고 누워있거나 뒤집히는 문제가 발생할 수 있다. 이를 방지하기 위하여 제1 전극(143) 및 제2 전극(144) 중 적어도 일면에 자기조립을 위한 결합링커(170)가 형성될 수 있다. 구체적으로, 상기 제1 전극(143)의 표면에 결합링커(170)가 형성되고 이에 대응하는 LED 디스플레이 기판의 서브픽셀(픽셀자리)에 상기 결합링커(17O)와 결합할 수 있는 제2 링커(미도시)를 형성한다면, 상기 초소형 LED 소자를 전사하거나 잉크 또는 페이스트 형태로 상기 서브픽셀에 부가하는 경우에도 초소형 LED 소자가 누워있거나 뒤집히지 않고 전극 표면이 원하는 위치의 서브픽셀에 부착될 수 있는 것이다.
나아가, 제1 전극(143)과 제2 전극(144)에 모두 결합링커(170)가 형성된다면, LED 디스플레이 기판의 서브픽셀(픽셀자리)에 결합되는 초소형 LED 소자의 일부는 상기 제1 전극(143)이 결합되고 나머지는 제2 전극(144)이 결합될 것이다. 이 경우, LED 디스플레이 기판에 교류를 인가하면 LED 디스플레이를 구동할 수 있게 된다.
본 발명의 초소형 LED 소자의 형상은 원통형, 직육면체형 등 제한없이 형성될 수 있으나, 바람직하게는 원통형일 수 있으며, 원통형인 경우 직경(원의 직경)은 50 ~ 3000㎚일 수 있으며, 높이(제1전극에서 제2 전극까지의 길이)는 1.5 ~7㎛일 수 있으나, 이에 제한되지 않는다.
도 17은 본 발명의 초소형 LED 소자들을 포함하는 잉크 또는 페이스트로서 본 발명의 초소형 LED 소자들 디스플레이 기판의 서브픽셀에 직접 전사되거나 잉크 또는 페이스트의 형태로 전사될 수 있다.
이하, 실시예를 통하여 본 발명을 더욱 상세하게 설명하기로 하되, 하기 실시예는 본 발명의 이해를 돕기 위한 것일 뿐, 본 발명의 범위를 제한하는 것은 아니다.
LED 기본 소자층 (GaN)을 제조하기 위해서 사파이어 기판 (2인치 웨이퍼 사이즈, 430±25㎛) 위에 버퍼층 또는 언도프드 반도체층 (undoped GaN, 2.4~2.8㎛ 두께), 제1 도전성 반도체층 (n-타입 GaN, 2.0~2.4㎛ 두께), 활성층 (InGaN/GaN 다중 양자 우물, 100~140㎛), 제2 도전성 반도체층 (p-타입 GaN, 200nm 두께)을 MOCVD 방법을 이용하여 형성하였다 (도 18 참조).
위와 같이 제조된 LED 기본 소자층을 하기와 같은 방법에 의해서 초소형 LED 소자로 제조하였다. 먼저, 제2 도전성 반도체층 위에 절연층으로서 SiO2 (800nm~1㎛ 두께)와 금속 마스크층으로서 크롬층 (100~120nm 두께)을 각각 PECVD 방법과 열증착 (thermal evaporation) 방법으로 형성하였다 (PECVD: 60W, 550mtorr, SiH4 160sccm, N2 240sccm, N2O 1500sccm, 35~40분; 열증착: 130~140A, 9.0x10-6torr, 20~30분) (도 19 참조). 이어서, 폴리스티렌 나노스피어를 헥사고날 형태로 잘 정렬된 단층막 (960~1000nm 두께)으로 제조하여 상기 금속 마스크층 위에 형성하였다 (도 20a 및 20b 참조). 상기 단층막을 O2 가스 분위기하에서 애싱공정 (50W, 0.05torr, O2 100sccm)을 통해 500~800nm의 크기로 줄여 주었다 (도 21a 및 21b 참조). 크기가 축소된 폴리스티렌 나노스피어를 마스크로 사용하여, 상기 금속 마스크층을 건식 식각 방법인 RIE 방법으로 Cl2 가스 분위기하에서 에칭하였다 (50W, 0.08torr, Cl2 40sccm) (도 22a 및 22b 참조). 상기 에칭공정에 의해서 폴리스티렌의 모양 그대로 전사(transfer)된 금속 마스크층 패턴을 제조하였으며 (도 23a 및 23b 참조), 제조된 금속 마스크층 패턴을 이용해서 하부에 존재하는 절연층 부분을 CF4와 O2 가스 분위기 하에서 다시 에칭하였다 (100W, 0.042torr, CF4 40sccm, O2 2sccm) (도 24a 및 24b 참조). 라드패턴으로 식각된 절연층을 이용하여 반도체층 (GaN)을 SiCl4와 Ar 가스 분위기 하에서 ICP 방법으로 에칭하여 (RF 50W, ICP 300W, 3 torr, SiCl4 2sccm, Ar 20sccm), 반도체층의 라드패턴을 제조하였다 (도 25a 및 25b 참조). 이어서, 반도체층 라드패턴을 제조하기 위해서 마스크로 사용되었던 절연층을 CF4와 O2 가스 분위기 하에서 에칭하여 제거하였다 (도 26a 및 26b 참조).
상기와 같이 제조된 반도체층의 외주면에 원자층 증착 (atomic layer deposition: ALD) 방법 (금속 반응물질로서 트리메틸알루미늄 (trimethylaluminum: TMA)를, 산소 소스로서 수증기를 사용하고, TMA 증기압은 0.04 torr로, 챔버 온도는 80℃로 유지, 캐리어 가스 및 퍼징 가스로는 Ar을 사용, 성장 속도: ~1.5Å)에 의해서 절연피막(Al2O3)을 코팅하였으며 (두께: 20nm), 액상의 자기조립공정을 통하여 소수성 피막으로서, 옥타데실트리클로로실란 (octadecyltrichlorosilane: OTS)을 수 nm의 두께로 코팅하였다. 도 27a 및 27b를 참조하면, 이러한 소수성 피막 코팅에 의해서 물과의 접촉각이 증가함을 알 수 있다. 절연피막과 소수성 피막을 코팅한 후, 제2 전극층 위에 에폭시 수지 (시아노아크릴레이트 접착제 금속-타입, Sigma Aldrich사로부터 구입)를 이용하여 지지필름을 부착하였다 (두께: 3.5~5㎛). 이어서, 지지필름이 부착되어 있지 않은 버퍼층 또는 언도프드 반도체층과 사파이어 기판 쪽으로 레이저를 이용한 리프트-오프 공정을 수행함으로써 사파이어 기판을 제거하였다 (도 28a 및 28b 참조). 제1 도전성 반도체층이 노출되도록 하기 위해서, 버퍼층 또는 언도프드 반도체층을 SiCl4와 Ar 가스 분위기 하에서 ICP 방법으로 식각하여 제거하였으며 (RF 50W, ICP 300W, 3 torr, SiCl4 2sccm, Ar 20sccm), 이러한 과정을 통해서 지지필름이 부착된 독립적인 초소형 LED 라드형태를 얻을 수 있었다 (도 29a 및 29b, 도 30a 및 30b, 도 31a 및 31b 참조).
이어서, 상기 초소형 LED의 제1 도전성 반도체 층에 스퍼터링 장비 (DC-스퍼터링 시스템)를 사용하여 Ti 전극을 증착하였다 (300V, 0.17A, Ar 100sccm) (도 32 참조). 다음으로, 전극 표면에 결합링커로서 디티올을 액상 또는 기상의 자기조립방법으로 코팅하였다. 코팅 공정은 액상으로 진행되었으며, 에탈올 무수물 (10ml)와 노네인디티올 (20㎕)을 혼합하여 1mM 노네인디티올 용액을 제조하고, 전극이 증착되어 있는 초소형 LED 라드형태를 상기 노네인디티올 용액에 하루 동안 담근 다음, 초소형 LED 라드를 꺼내어 세척하였다. 상기 지지필름은 아세톤을 이용해 제거함으로써 독립적인 초소형 LED들을 잉크 또는 페이스트 형태로 제조하였다 (도 33 및 34 참조). 상기 잉크 또는 페이스트를 그 결합링커와 반응하는 링커 (금속미분말: 은 나노입자)를 가지고 있는 전극 기판에 떨어뜨림으로써 정렬시켰다. 전극 기판의 경우, 전극 기판과 반응하는 디티올 링커와 초소형 LED의 결합링커와 반응할 수 있는 금속미분말인 은 나노입자를 이용해서 전극 위에 패턴함으로써 패턴을 형성하였다. 구체적으로, 노네인디티올 링커를 먼저 전극 기판에 반응시켜 붙인 후, 전극 기판과 붙어있지 않은 노네인디티올 링커 반대쪽으로 은 나노입자를 코팅하였다. 코팅은 노네인디티올 링커가 붙어 있는 전극 기판을 은 나노입자가 분산되어 있는 톨루엔 용액에 넣어 반응시킨 후 꺼냄으로써 수행하였다. 이러한 과정에 의해서 전극 기판의 금속 미분말과 초소형 LED의 결합링커를 반응시킨 다음, 솔더링 공정 (100~200℃의 어닐링 과정)을 통하여 금속 오믹층을 형성함으로써 본 발명에 따른 초소형 LED 소자를 제조하였다 (도 35 참조). 한편, 도 36에는 전술한 바와 같이 제조된 초소형 LED 소자들을 전극 기판에 정렬시킨 후 측정한 스펙트럼을 도시하였으며, 또한 도 37a 내지 37c에는 제조된 초소형 LED 소자에 대한 육안으로 관찰한 사진을 도시하였다. 상기 도면들로부터 알 수 있는 바와 같이, 본 발명에 따른 초소형 LED 소자에서 청색광이 발광되는 것을 확인할 수 있다.
본 발명에 따른 초소형 LED 소자는 디스플레이 산업 전반에 걸쳐서 폭넓게 활용될 수 있다.

Claims (14)

1) 기판위에 제1 도전성 반도체층, 활성층 및 제2 도전성 반도체층을 순차적으로 형성하는 단계;
2) 상기 제1 도전성 반도체층, 활성층 및 제2 도전성 반도체층을 LED 소자의 직경이 나노 또는 마이크로 크기를 가지도록 식각하는 단계; 및
3) 상기 제1 도전성 반도체층, 활성층 및 제2 도전성 반도체층의 외주면에 절연피막을 형성하고 상기 기판을 제거하는 단계를 포함하는 초소형 LED 소자의 제조방법.
제1항에 있어서, 상기 제1 도전성 반도체층은 적어도 하나의 n형 반도체층을 포함하고, 상기 제2 도전성 반도체층은 적어도 하나의 p형 반도체층을 포함하는 것을 특징으로 하는 초소형 LED 소자의 제조방법.
제1항에 있어서, 상기 2) 단계는;
2-1) 제2 도전성 반도체층의 위에 제2 전극층, 절연층 및 금속 마스크층을 순차적으로 형성하는 단계;
2-2) 상기 금속 마스크층 위에 폴리머층을 형성하고 상기 폴리머층에 나노 또는 마이크로 간격으로 패턴을 형성하는 단계;
2-3) 상기 제1 도전성 반도체층, 활성층 및 제2 도전성 반도체층을 패턴에 따라 나노 또는 마이크로 간격으로 건식 또는 습식 식각하는 단계; 및
2-4) 상기 절연층, 금속 마스크층 및 폴리머층을 제거하는 단계를 포함하는 것을 특징으로 하는 초소형 LED 소자의 제조방법.
제1항에 있어서, 상기 2) 단계는;
2-5) 제2 도전성 반도체층의 위에 제2 전극층, 절연층 및 금속 마스크층을 형성하는 단계;
2-6) 상기 금속 마스크층 위에 나노스피어 또는 마이크로스피어 단층막을 형성하고 자기조립을 수행하는 단계;
2-7) 상기 제1 도전성 반도체층, 활성층 및 제2 도전성 반도체층을 패턴에 따라 나노 또는 마이크로 간격으로 건식 또는 습식 식각하는 단계; 및
2-8) 상기 절연층, 금속 마스크층 및 단층막을 제거하는 단계를 포함하는 것을 특징으로 하는 초소형 LED 소자의 제조방법.
제4항에 있어서, 상기 나노스피어 또는 마이크로스피어는 폴리스티렌 재질인 것을 특징으로 하는 초소형 LED 소자의 제조방법.
제3항 또는 제4항에 있어서, 상기 3) 단계는;
3-1) 제2 전극층의 위에 지지필름을 형성하는 단계;
3-2) 상기 제1 도전성 반도체층, 활성층 및 제2 도전성 반도체층을 포함하는 외주면에 절연피막을 형성하는 단계;
3-3) 상기 절연피막 위에 소수성 피막을 코팅하는 단계;
3-4) 상기 기판을 제거하는 단계;
3-5) 상기 제1 도전성 반도체층의 하부에 제1 전극층을 형성하는 단계; 및
3-6) 상기 지지필름을 제거하여 복수개의 초소형 LED 소자를 제조하는 단계를 포함하는 것을 특징으로 하는 초소형 LED 소자의 제조방법.
제3항 또는 제4항에 있어서, 상기 3) 단계는;
3-7) 제2 전극층의 위에 지지필름을 형성하는 단계;
3-8) 상기 제1 도전성 반도체층, 활성층 및 제2 도전성 반도체층을 포함하는 외주면에 절연피막을 형성하는 단계;
3-9) 상기 기판을 제거하는 단계;
3-10) 상기 제1 도전성 반도체층의 하부에 제1 전극층을 형성하는 단계;
3-11) 상기 제1 전극층 및 제2 전극충 중 적어도 일면에 결합링커를 형성하는 단계; 및
3-12) 상기 지지필름을 제거하여 복수개의 초소형 LED 소자를 제조하는 단계를 포함하는 것을 특징으로 하는 초소형 LED 소자의 제조방법.
제1 도전성 반도체층;
상기 제1 도전성 반도체층 위에 형성된 활성층;
상기 활성층 위에 형성된 제2 도전성 반도체층을 포함하는 마이크로 또는 나노 크기의 반도체 발광소자를 포함하되, 상기 반도체 발광소자는 외주면에 코팅된 절연피막을 포함하는 초소형 LED 소자.
제8항에 있어서, 상기 절연피막 위에는 소수성 피막이 코팅되는 것을 특징으로 하는 초소형 LED 소자.
제9항에 있어서, 상기 제1 도전성 반도체층의 하부에는 제1 전극층이 형성되고, 상기 제2 도전성 반도체층의 상부에는 제2 전극층이 형성되는 것을 특징으로 하는 초소형 LED 소자.
제10항에 있어서, 상기 제1 전극층의 하부면 및 제2 전극층의 상부면 중 적어도 하나의 전극층의 표면에 자기조립을 위한 결합링커가 포함되는 것을 특징으로 하는 초소형 LED 소자.
제11항에 있어서, 상기 결합링커는 LED 디스플레이의 기판과 상보적으로 결합하는 것을 특징으로 하는 초소형 LED 소자.
제8항에 있어서, 상기 제1 도전성 반도체층은 적어도 하나의 n형 반도체층을 포함하고, 상기 제2 도전성 반도체층은 적어도 하나의 p형 반도체층을 포함하는 것을 특징으로 하는 초소형 LED 소자.
제8항 내지 제12항 중 어느 한 항에 있어서, 상기 절연피막은 SiO2, Si3N4, Al2O3 및 TiO2로 구성되는 군으로부터 선택되는 어느 하나 이상을 포함하고, 상기 소수성 피막은 SAMs와 플루오로폴리머 중 어느 하나 이상의 성분을 포함하며, 상기 결합링커는 티올그룹을 포함하는 것을 특징으로 하는 초소형 LED 소자.
PCT/KR2012/003309 2011-04-28 2012-04-27 초소형 led 소자 및 그 제조방법 WO2012148228A2 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US14/114,317 US9112112B2 (en) 2011-04-28 2012-04-27 Subminiature led element and manufacturing method thereof
EP12777172.3A EP2704215B1 (en) 2011-04-28 2012-04-27 Ultra small led and method for manufacturing same
CN201280029867.9A CN103608937B (zh) 2011-04-28 2012-04-27 超小型led元件及其制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020110040174A KR101244926B1 (ko) 2011-04-28 2011-04-28 초소형 led 소자 및 그 제조방법
KR10-2011-0040174 2011-04-28

Publications (2)

Publication Number Publication Date
WO2012148228A2 true WO2012148228A2 (ko) 2012-11-01
WO2012148228A3 WO2012148228A3 (ko) 2012-12-20

Family

ID=47072950

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/003309 WO2012148228A2 (ko) 2011-04-28 2012-04-27 초소형 led 소자 및 그 제조방법

Country Status (5)

Country Link
US (1) US9112112B2 (ko)
EP (1) EP2704215B1 (ko)
KR (1) KR101244926B1 (ko)
CN (1) CN103608937B (ko)
WO (1) WO2012148228A2 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109270729A (zh) * 2013-07-09 2019-01-25 三星显示有限公司 包括超小型发光二极管的显示器及其制造方法

Families Citing this family (119)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101429095B1 (ko) * 2013-07-09 2014-08-12 피에스아이 주식회사 초소형 led 전극어셈블리를 이용한 led 램프
US9773761B2 (en) 2013-07-09 2017-09-26 Psi Co., Ltd Ultra-small LED electrode assembly and method for manufacturing same
DE102014103133A1 (de) * 2014-03-10 2015-09-10 Osram Opto Semiconductors Gmbh Optoelektronisches Bauelement und Verfahren zu seiner Herstellung
KR101628345B1 (ko) * 2014-07-08 2016-06-09 피에스아이 주식회사 초소형 led 전극어셈블리의 제조방법
KR101723822B1 (ko) * 2014-11-18 2017-04-07 피에스아이 주식회사 초소형 led 전극어셈블리 제조용 복합섬유 및 이를 포함하는 원단
KR101674052B1 (ko) * 2014-11-18 2016-11-09 피에스아이 주식회사 초소형 led 소자를 전극어셈블리에 배치시키는 방법
KR101713818B1 (ko) 2014-11-18 2017-03-10 피에스아이 주식회사 초소형 led 소자를 포함하는 전극어셈블리 및 그 제조방법
KR101672781B1 (ko) * 2014-11-18 2016-11-07 피에스아이 주식회사 수평배열 어셈블리용 초소형 led 소자, 이의 제조방법 및 이를 포함하는 수평배열 어셈블리
DE102015101888A1 (de) 2015-02-10 2016-08-11 Osram Opto Semiconductors Gmbh Optoelektronisches Halbleiterbauelement und Verfahren zur Herstellung eines optoelektronischen Halbleiterbauelements
KR101730929B1 (ko) 2015-11-17 2017-04-28 피에스아이 주식회사 선택적 금속오믹층을 포함하는 초소형 led 전극어셈블리 제조방법
KR101770632B1 (ko) 2016-01-07 2017-08-24 피에스아이 주식회사 자가 조립형 초소형 led 전극어셈블리 제조용 용매 및 이를 통해 자가 조립형 초소형 led 전극어셈블리를 제조하는 방법
KR101730977B1 (ko) 2016-01-14 2017-04-28 피에스아이 주식회사 초소형 led 전극어셈블리
KR101845907B1 (ko) 2016-02-26 2018-04-06 피에스아이 주식회사 초소형 led 모듈을 포함하는 디스플레이 장치
KR101787435B1 (ko) * 2016-02-29 2017-10-19 피에스아이 주식회사 나노 로드 제조방법
KR101987196B1 (ko) 2016-06-14 2019-06-11 삼성디스플레이 주식회사 픽셀 구조체, 픽셀 구조체를 포함하는 표시장치 및 그 제조 방법
KR20180007025A (ko) * 2016-07-11 2018-01-22 삼성디스플레이 주식회사 초소형 발광 소자를 포함하는 픽셀 구조체, 표시장치 및 그 제조방법
KR102608419B1 (ko) 2016-07-12 2023-12-01 삼성디스플레이 주식회사 표시장치 및 표시장치의 제조방법
KR102592276B1 (ko) 2016-07-15 2023-10-24 삼성디스플레이 주식회사 발광장치 및 그의 제조방법
KR102574603B1 (ko) 2016-07-15 2023-09-07 삼성디스플레이 주식회사 발광장치 및 그의 제조방법
KR102568252B1 (ko) 2016-07-21 2023-08-22 삼성디스플레이 주식회사 발광 장치 및 그의 제조방법
KR102587215B1 (ko) 2016-12-21 2023-10-12 삼성디스플레이 주식회사 발광 장치 및 이를 구비한 표시 장치
KR101874993B1 (ko) 2016-12-28 2018-07-05 피에스아이 주식회사 전기적 컨택이 향상된 초소형 led 전극 어셈블리 및 이의 제조방법
KR102621662B1 (ko) * 2017-01-09 2024-01-09 삼성디스플레이 주식회사 발광 소자 및 이의 제조 방법
KR102513267B1 (ko) 2017-10-13 2023-03-23 삼성디스플레이 주식회사 표시 장치 및 이의 제조 방법
US11961875B2 (en) 2017-12-20 2024-04-16 Lumileds Llc Monolithic segmented LED array architecture with islanded epitaxial growth
US10879431B2 (en) 2017-12-22 2020-12-29 Lumileds Llc Wavelength converting layer patterning for LED arrays
KR102503168B1 (ko) 2018-02-08 2023-02-27 삼성디스플레이 주식회사 표시 장치 및 그의 제조 방법
KR102448104B1 (ko) 2018-02-08 2022-09-29 삼성디스플레이 주식회사 발광 장치 및 그의 제조 방법
KR102552300B1 (ko) 2018-02-08 2023-07-10 삼성디스플레이 주식회사 표시 장치
KR102503172B1 (ko) 2018-02-13 2023-02-27 삼성디스플레이 주식회사 표시 장치
KR102546733B1 (ko) 2018-03-30 2023-06-23 삼성디스플레이 주식회사 표시 장치
KR102299992B1 (ko) 2018-04-25 2021-09-10 삼성디스플레이 주식회사 발광 장치, 이를 구비한 표시 장치, 및 그의 제조 방법
KR102058503B1 (ko) 2018-05-11 2019-12-23 영남대학교 산학협력단 초소형 발광다이오드의 제조방법 및 이에 의해 제조된 초소형 발광다이오드
KR102502608B1 (ko) * 2018-06-11 2023-02-22 삼성디스플레이 주식회사 발광 소자, 그 제조방법 및 발광 소자를 포함하는 표시 장치
KR102634586B1 (ko) 2018-06-11 2024-02-07 삼성디스플레이 주식회사 발광 소자, 그 제조방법 및 발광 소자를 포함하는 표시 장치
KR20180077114A (ko) * 2018-06-22 2018-07-06 피에스아이 주식회사 전기적 컨택이 향상된 초소형 led 전극 어셈블리
KR102585158B1 (ko) 2018-07-04 2023-10-05 삼성디스플레이 주식회사 표시 장치
KR102552602B1 (ko) * 2018-07-10 2023-07-10 삼성디스플레이 주식회사 발광 장치, 그의 제조 방법, 및 이를 구비한 표시 장치
KR102604659B1 (ko) 2018-07-13 2023-11-21 삼성디스플레이 주식회사 발광 장치 및 이의 제조 방법
KR102520554B1 (ko) * 2018-07-30 2023-04-13 삼성디스플레이 주식회사 발광 장치 및 이를 구비한 표시 장치
KR102557754B1 (ko) * 2018-08-03 2023-07-20 삼성디스플레이 주식회사 발광 소자, 이의 제조방법 및 발광 소자를 포함하는 표시 장치
CN110828646B (zh) * 2018-08-09 2020-12-08 汕头超声显示器技术有限公司 一种微led显示器的制造方法
KR102626051B1 (ko) * 2018-08-14 2024-01-19 삼성디스플레이 주식회사 발광 소자, 발광 소자를 포함하는 픽셀 구조체 및 그 제조 방법
KR102568353B1 (ko) * 2018-08-16 2023-08-18 삼성디스플레이 주식회사 발광 소자, 이의 제조방법 및 발광 소자를 포함하는 표시 장치
KR102581666B1 (ko) * 2018-08-24 2023-09-22 삼성디스플레이 주식회사 발광 소자, 이를 포함하는 표시 장치 및 표시 장치의 제조 방법
US10964845B2 (en) 2018-09-27 2021-03-30 Lumileds Llc Micro light emitting devices
US11271033B2 (en) 2018-09-27 2022-03-08 Lumileds Llc Micro light emitting devices
US10923628B2 (en) 2018-09-27 2021-02-16 Lumileds Llc Micrometer scale light emitting diode displays on patterned templates and substrates
US10811460B2 (en) 2018-09-27 2020-10-20 Lumileds Holding B.V. Micrometer scale light emitting diode displays on patterned templates and substrates
KR102568713B1 (ko) 2018-10-12 2023-08-22 삼성디스플레이 주식회사 화소 및 이를 구비한 표시 장치
KR102590984B1 (ko) * 2018-10-30 2023-10-18 삼성디스플레이 주식회사 발광 소자 구조물 및 발광 소자의 제조방법
KR102651789B1 (ko) * 2018-11-06 2024-03-27 삼성디스플레이 주식회사 발광 소자 구조물 및 이의 제조방법
WO2020111453A1 (ko) 2018-11-27 2020-06-04 삼성디스플레이 주식회사 표시 장치
KR20200063411A (ko) * 2018-11-27 2020-06-05 삼성디스플레이 주식회사 발광 소자, 이의 제조 방법 및 발광 소자를 구비한 표시 장치
KR20200066438A (ko) 2018-11-30 2020-06-10 삼성디스플레이 주식회사 표시 장치 및 그의 제조 방법
KR102626452B1 (ko) * 2019-01-15 2024-01-18 삼성디스플레이 주식회사 발광 소자의 제조방법 및 발광 소자를 포함하는 표시 장치
US11302248B2 (en) 2019-01-29 2022-04-12 Osram Opto Semiconductors Gmbh U-led, u-led device, display and method for the same
US11610868B2 (en) 2019-01-29 2023-03-21 Osram Opto Semiconductors Gmbh μ-LED, μ-LED device, display and method for the same
US11156759B2 (en) 2019-01-29 2021-10-26 Osram Opto Semiconductors Gmbh μ-LED, μ-LED device, display and method for the same
US11271143B2 (en) 2019-01-29 2022-03-08 Osram Opto Semiconductors Gmbh μ-LED, μ-LED device, display and method for the same
KR20200105598A (ko) 2019-02-28 2020-09-08 삼성디스플레이 주식회사 표시 장치
US11538852B2 (en) 2019-04-23 2022-12-27 Osram Opto Semiconductors Gmbh μ-LED, μ-LED device, display and method for the same
KR102430815B1 (ko) 2019-06-03 2022-08-10 삼성디스플레이 주식회사 픽셀 구조체 및 이를 포함하는 표시장치
KR102091810B1 (ko) 2019-06-03 2020-03-23 삼성디스플레이 주식회사 픽셀 구조체 및 이를 포함하는 표시장치
US11275473B2 (en) 2019-06-13 2022-03-15 Samsung Display Co., Ltd. Display panel and display device including the same
KR20210000351A (ko) * 2019-06-24 2021-01-05 삼성전자주식회사 반도체 발광소자 및 디스플레이 장치
KR20210008206A (ko) * 2019-07-10 2021-01-21 삼성디스플레이 주식회사 발광 소자, 이의 제조 방법 및 표시 장치
KR20210044938A (ko) 2019-10-15 2021-04-26 삼성디스플레이 주식회사 표시 장치
KR20210053391A (ko) 2019-11-01 2021-05-12 삼성디스플레이 주식회사 표시 장치
US11869880B2 (en) 2019-11-05 2024-01-09 Samsung Electronics Co., Ltd. Method of transferring micro-light emitting diode for LED display
KR20210056483A (ko) 2019-11-08 2021-05-20 삼성디스플레이 주식회사 표시 장치
KR20210059107A (ko) 2019-11-14 2021-05-25 삼성디스플레이 주식회사 표시 장치
KR20210059110A (ko) 2019-11-14 2021-05-25 삼성디스플레이 주식회사 표시 장치
KR20210078649A (ko) 2019-12-18 2021-06-29 삼성디스플레이 주식회사 표시 패널 및 이를 구비하는 표시 장치
KR20210081506A (ko) 2019-12-23 2021-07-02 삼성디스플레이 주식회사 표시 장치 및 그의 제조 방법
US11923398B2 (en) 2019-12-23 2024-03-05 Lumileds Llc III-nitride multi-wavelength LED arrays
US11404473B2 (en) 2019-12-23 2022-08-02 Lumileds Llc III-nitride multi-wavelength LED arrays
KR20210082316A (ko) 2019-12-24 2021-07-05 삼성디스플레이 주식회사 표시 패널 및 이를 구비하는 표시 장치
KR20210098589A (ko) * 2020-01-31 2021-08-11 삼성디스플레이 주식회사 잉크 조성물, 이를 이용한 발광 장치 및 이의 제조 방법
KR20210098661A (ko) * 2020-02-03 2021-08-11 삼성전자주식회사 반도체 발광소자 및 디스플레이 장치
KR20210103048A (ko) 2020-02-12 2021-08-23 삼성디스플레이 주식회사 표시 장치
KR20210109079A (ko) * 2020-02-26 2021-09-06 삼성디스플레이 주식회사 잉크 조성물, 이를 이용한 발광 소자 및 이의 제조 방법
US11569415B2 (en) 2020-03-11 2023-01-31 Lumileds Llc Light emitting diode devices with defined hard mask opening
US11942507B2 (en) 2020-03-11 2024-03-26 Lumileds Llc Light emitting diode devices
US11735695B2 (en) 2020-03-11 2023-08-22 Lumileds Llc Light emitting diode devices with current spreading layer
US11848402B2 (en) 2020-03-11 2023-12-19 Lumileds Llc Light emitting diode devices with multilayer composite film including current spreading layer
KR20210130889A (ko) 2020-04-22 2021-11-02 삼성디스플레이 주식회사 발광 소자 잉크 및 표시 장치의 제조 방법
CN115668517A (zh) * 2020-04-27 2023-01-31 国民大学校产学协力团 Micro-Nano PIN LED元件及其制造方法
KR102332349B1 (ko) * 2020-04-28 2021-11-26 국민대학교산학협력단 마이크로-나노핀 led 소자 및 이의 제조방법
KR102414266B1 (ko) * 2020-04-27 2022-06-29 국민대학교산학협력단 마이크로-나노핀 led 소자를 이용한 풀-컬러 led 디스플레이 및 이의 제조방법
KR102345917B1 (ko) * 2020-04-27 2021-12-30 국민대학교산학협력단 마이크로-나노핀 led 소자 및 이의 제조방법
KR20210145049A (ko) 2020-05-22 2021-12-01 삼성디스플레이 주식회사 표시 장치 및 그의 제조 방법
KR102332350B1 (ko) * 2020-05-25 2021-11-26 국민대학교산학협력단 마이크로-나노핀 led 전극어셈블리 및 이의 제조방법
KR20210147158A (ko) * 2020-05-27 2021-12-07 삼성디스플레이 주식회사 발광 소자, 이의 제조 방법, 발광 소자를 포함한 잉크 조성물 및 장치
KR20210149962A (ko) * 2020-06-02 2021-12-10 삼성디스플레이 주식회사 발광 소자의 제조 장치 및 제조 방법
KR20210154295A (ko) * 2020-06-11 2021-12-21 삼성디스플레이 주식회사 발광 소자 잉크, 표시 장치 및 그 제조 방법
CN113808937B (zh) * 2020-06-16 2023-11-21 重庆康佳光电科技有限公司 一种显示背板的制备方法、显示背板及显示装置
TWI735263B (zh) * 2020-06-19 2021-08-01 台灣愛司帝科技股份有限公司 紅光晶片承載結構的製作方法
KR20220014388A (ko) * 2020-07-24 2022-02-07 삼성디스플레이 주식회사 발광 소자, 이의 제조 방법 및 표시 장치
KR102375861B1 (ko) * 2020-07-28 2022-03-16 광운대학교 산학협력단 백투백 구조의 초소형 이중 led 소자 및 그 제조 방법과 백투백 구조의 초소형 이중 led 의 전극 어셈블리 및 그 제조방법
KR20220019902A (ko) * 2020-08-10 2022-02-18 삼성디스플레이 주식회사 발광 소자 및 이를 이용한 표시 장치와 그의 제조 방법
KR20220021946A (ko) * 2020-08-13 2022-02-23 삼성디스플레이 주식회사 발광 소자, 이의 제조 방법 및 표시 장치
KR20220033538A (ko) * 2020-09-07 2022-03-17 삼성디스플레이 주식회사 발광 소자, 발광 소자의 제조 방법 및 표시 장치
US11901491B2 (en) 2020-10-29 2024-02-13 Lumileds Llc Light emitting diode devices
US11626538B2 (en) 2020-10-29 2023-04-11 Lumileds Llc Light emitting diode device with tunable emission
US11631786B2 (en) 2020-11-12 2023-04-18 Lumileds Llc III-nitride multi-wavelength LED arrays with etch stop layer
US11705534B2 (en) 2020-12-01 2023-07-18 Lumileds Llc Methods of making flip chip micro light emitting diodes
US11955583B2 (en) 2020-12-01 2024-04-09 Lumileds Llc Flip chip micro light emitting diodes
KR20220078016A (ko) * 2020-12-02 2022-06-10 삼성디스플레이 주식회사 표시 장치 및 발광 소자의 제조 방법
US11600656B2 (en) 2020-12-14 2023-03-07 Lumileds Llc Light emitting diode device
DE112021005850T5 (de) * 2021-01-06 2023-08-24 Lg Electronics Inc. Lichtausstrahlendes element und anzeigevorrichtung
CN112951924B (zh) * 2021-02-02 2022-07-12 Tcl华星光电技术有限公司 Tft器件及其制备方法
KR102463022B1 (ko) * 2021-06-08 2022-11-03 광주과학기술원 나노로드 led의 제조방법
KR20220170236A (ko) * 2021-06-22 2022-12-29 삼성전자주식회사 나노 막대 발광 소자, 복수의 나노 막대 발광 소자를 포함하는 기판 구조물, 및 기판 구조물의 제조 방법
WO2023282365A1 (ko) * 2021-07-05 2023-01-12 엘지전자 주식회사 반도체 발광 소자 및 디스플레이 장치
KR20230013705A (ko) * 2021-07-19 2023-01-27 삼성디스플레이 주식회사 발광 소자 및 이를 포함하는 표시 장치
US11935987B2 (en) 2021-11-03 2024-03-19 Lumileds Llc Light emitting diode arrays with a light-emitting pixel area
WO2023171833A1 (ko) * 2022-03-10 2023-09-14 엘지전자 주식회사 반도체 발광소자를 포함하는 디스플레이 장치 및 이의 제조방법
KR20240020311A (ko) * 2022-08-03 2024-02-15 삼성디스플레이 주식회사 도전성 소자, 표시 장치, 및 표시 장치의 제조 방법

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06244457A (ja) * 1993-02-16 1994-09-02 Nisshin Steel Co Ltd 発光ダイオードの製造方法
JP2002088357A (ja) * 2000-09-14 2002-03-27 Three Bond Co Ltd 有機物被覆発光体粒子の製造方法及び有機物被覆発光体粒子
JP3813599B2 (ja) * 2003-06-13 2006-08-23 ローム株式会社 白色発光の発光ダイオード素子を製造する方法
JP2005267991A (ja) 2004-03-18 2005-09-29 Hitachi Ltd 表示装置
DE102004044179B4 (de) * 2004-06-30 2010-04-22 Osram Opto Semiconductors Gmbh Verfahren zur Montage von Halbleiterchips
JP4450207B2 (ja) * 2005-01-14 2010-04-14 セイコーエプソン株式会社 発光素子の製造方法
FR2898434B1 (fr) 2006-03-13 2008-05-23 Centre Nat Rech Scient Diode electroluminescente blanche monolithique
KR100763894B1 (ko) * 2006-03-21 2007-10-05 삼성에스디아이 주식회사 Led 칩을 이용한 디스플레이 장치의 제조방법
KR100888440B1 (ko) * 2007-11-23 2009-03-11 삼성전기주식회사 수직구조 발광다이오드 소자의 제조방법
US8263990B2 (en) * 2008-03-14 2012-09-11 Panasonic Corporation Compound semiconductor light-emitting element and illumination device using the same, and method for manufacturing compound semiconductor light-emitting element
WO2010068460A2 (en) * 2008-12-12 2010-06-17 3M Innovative Properties Company Particle reflow etching
TWI399869B (zh) * 2009-02-05 2013-06-21 Huga Optotech Inc 發光二極體
WO2010149027A1 (en) * 2009-06-22 2010-12-29 Industrial Technology Research Institute Light-emitting unit array, method for fabricating the same and projection apparatus
KR101140096B1 (ko) * 2009-10-12 2012-04-30 전북대학교산학협력단 나노로드 발광 다이오드 및 이의 제조방법
KR20110041401A (ko) 2009-10-15 2011-04-21 샤프 가부시키가이샤 발광 장치 및 그 제조 방법
KR100996446B1 (ko) * 2010-05-24 2010-11-25 엘지이노텍 주식회사 발광 소자, 발광 소자의 제조방법 및 발광 소자 패키지

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
None
See also references of EP2704215A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109270729A (zh) * 2013-07-09 2019-01-25 三星显示有限公司 包括超小型发光二极管的显示器及其制造方法

Also Published As

Publication number Publication date
WO2012148228A3 (ko) 2012-12-20
US9112112B2 (en) 2015-08-18
KR20120122159A (ko) 2012-11-07
EP2704215A2 (en) 2014-03-05
US20140145237A1 (en) 2014-05-29
EP2704215A4 (en) 2014-09-10
EP2704215B1 (en) 2018-04-11
KR101244926B1 (ko) 2013-03-18
CN103608937A (zh) 2014-02-26
CN103608937B (zh) 2017-03-22

Similar Documents

Publication Publication Date Title
WO2012148228A2 (ko) 초소형 led 소자 및 그 제조방법
WO2012148231A2 (ko) 초소형 led 소자 번들 및 그 제조방법
US10517155B2 (en) Methods and apparatus for vertically stacked multicolor light-emitting diode (LED) display
WO2012148234A2 (ko) 풀컬러 led 디스플레이 장치 및 그 제조방법
CN105453284B (zh) 超小型发光二极管电极组件及其制造方法
Wang et al. Characteristics and techniques of GaN-based micro-LEDs for application in next-generation display
WO2012070784A2 (en) Light emitting device and method of fabricating the same
TWI541992B (zh) 發光二極體顯示器與其製造方法
WO2016080712A1 (ko) 수평배열 어셈블리용 초소형 led 소자, 이의 제조방법 및 이를 포함하는 수평배열 어셈블리
WO2012047068A2 (ko) 발광소자 및 그 제조방법
WO2016080710A1 (ko) 초소형 led 소자를 포함하는 전극어셈블리 및 그 제조방법
US20060273328A1 (en) Light emitting nanowires for macroelectronics
WO2010085042A2 (en) Semiconductor device, light emitting device and method for manufacturing the same
WO2010101332A1 (ko) 발광소자
WO2010013936A2 (en) Semiconductor device, light emitting device and method of manufacturing the same
WO2012047069A2 (ko) 발광소자 및 그 제조방법
CN101580267A (zh) 低温加热锌和催化剂生长氧化锌纳米结构的方法及其应用
WO2009093846A2 (ko) 발광소자의 제조방법
Singh et al. van der Waals integration of GaN light-emitting diode arrays on foreign graphene films using semiconductor/graphene heterostructures
WO2013157875A1 (ko) 고효율 발광다이오드 제조방법
WO2014157772A2 (ko) 그래핀에 의하여 광증폭된 발광 소자 및 이의 제조방법
CN112331747A (zh) 一种全色Micro/Nano LED阵列直接外延方法和结构
EP4044263A1 (en) SINGLE-END ELECTRICAL CONTACTING AND SINGLE-END CHARGE CARRIER INJECTING µLED LIGHT-EMITTING AND DISPLAY DEVICE AND PREPARATION METHOD THEREFOR
WO2021221437A1 (ko) 마이크로-나노핀 led 소자 및 이의 제조방법
WO2014042461A1 (ko) 고휘도 질화물 발광소자 및 그 제조 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12777172

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2012777172

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14114317

Country of ref document: US