WO2009093846A2 - 발광소자의 제조방법 - Google Patents
발광소자의 제조방법 Download PDFInfo
- Publication number
- WO2009093846A2 WO2009093846A2 PCT/KR2009/000319 KR2009000319W WO2009093846A2 WO 2009093846 A2 WO2009093846 A2 WO 2009093846A2 KR 2009000319 W KR2009000319 W KR 2009000319W WO 2009093846 A2 WO2009093846 A2 WO 2009093846A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- substrate
- semiconductor layer
- forming
- buffer layer
- layer
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 35
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 25
- 239000000758 substrate Substances 0.000 claims abstract description 104
- 239000004065 semiconductor Substances 0.000 claims abstract description 86
- 239000013078 crystal Substances 0.000 claims abstract description 12
- 238000005530 etching Methods 0.000 claims description 15
- 150000004767 nitrides Chemical class 0.000 claims description 14
- 229910052751 metal Inorganic materials 0.000 claims description 11
- 239000002184 metal Substances 0.000 claims description 11
- 238000002161 passivation Methods 0.000 claims description 4
- 229910044991 metal oxide Inorganic materials 0.000 claims description 3
- 150000004706 metal oxides Chemical class 0.000 claims description 3
- JMASRVWKEDWRBT-UHFFFAOYSA-N Gallium nitride Chemical compound [Ga]#N JMASRVWKEDWRBT-UHFFFAOYSA-N 0.000 description 34
- 229910002601 GaN Inorganic materials 0.000 description 27
- 229910052594 sapphire Inorganic materials 0.000 description 10
- 239000010980 sapphire Substances 0.000 description 10
- 238000000926 separation method Methods 0.000 description 10
- 230000007547 defect Effects 0.000 description 6
- 230000010287 polarization Effects 0.000 description 5
- 230000002269 spontaneous effect Effects 0.000 description 5
- 239000010409 thin film Substances 0.000 description 5
- -1 InN Chemical compound 0.000 description 4
- 238000003486 chemical etching Methods 0.000 description 3
- 239000010408 film Substances 0.000 description 3
- 230000005693 optoelectronics Effects 0.000 description 3
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000005684 electric field Effects 0.000 description 2
- 238000002248 hydride vapour-phase epitaxy Methods 0.000 description 2
- 238000002955 isolation Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 125000004433 nitrogen atom Chemical group N* 0.000 description 2
- 230000005701 quantum confined stark effect Effects 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 1
- QZPSXPBJTPJTSZ-UHFFFAOYSA-N aqua regia Chemical compound Cl.O[N+]([O-])=O QZPSXPBJTPJTSZ-UHFFFAOYSA-N 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 229910052733 gallium Inorganic materials 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 238000004020 luminiscence type Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 150000001247 metal acetylides Chemical class 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- YXJYBPXSEKMEEJ-UHFFFAOYSA-N phosphoric acid;sulfuric acid Chemical compound OP(O)(O)=O.OS(O)(=O)=O YXJYBPXSEKMEEJ-UHFFFAOYSA-N 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 230000006798 recombination Effects 0.000 description 1
- 238000005215 recombination Methods 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 150000003673 urethanes Chemical class 0.000 description 1
- 229910052984 zinc sulfide Inorganic materials 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/005—Processes
- H01L33/0062—Processes for devices with an active region comprising only III-V compounds
- H01L33/0066—Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound
- H01L33/007—Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound comprising nitride compounds
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02367—Substrates
- H01L21/0237—Materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02367—Substrates
- H01L21/02433—Crystal orientation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02436—Intermediate layers between substrates and deposited layers
- H01L21/02439—Materials
- H01L21/02491—Conductive materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02436—Intermediate layers between substrates and deposited layers
- H01L21/02494—Structure
- H01L21/02496—Layer structure
- H01L21/02502—Layer structure consisting of two layers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02436—Intermediate layers between substrates and deposited layers
- H01L21/02494—Structure
- H01L21/02496—Layer structure
- H01L21/02505—Layer structure consisting of more than two layers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02518—Deposited layers
- H01L21/02521—Materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02518—Deposited layers
- H01L21/02521—Materials
- H01L21/02538—Group 13/15 materials
- H01L21/0254—Nitrides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/005—Processes
- H01L33/0093—Wafer bonding; Removal of the growth substrate
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02612—Formation types
- H01L21/02617—Deposition types
- H01L21/02636—Selective deposition, e.g. simultaneous growth of mono- and non-monocrystalline semiconductor materials
- H01L21/02639—Preparation of substrate for selective deposition
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02612—Formation types
- H01L21/02617—Deposition types
- H01L21/02636—Selective deposition, e.g. simultaneous growth of mono- and non-monocrystalline semiconductor materials
- H01L21/02639—Preparation of substrate for selective deposition
- H01L21/02642—Mask materials other than SiO2 or SiN
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/02—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
- H01L33/12—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a stress relaxation structure, e.g. buffer layer
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/02—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
- H01L33/16—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular crystal structure or orientation, e.g. polycrystalline, amorphous or porous
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/02—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
- H01L33/20—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular shape, e.g. curved or truncated substrate
Definitions
- the embodiment relates to a method of manufacturing a light emitting device.
- LED Light Emitting Device
- LED is a semiconductor device that converts current into light, and has been used as a light source for electronic devices including information and communication devices, along with green LEDs, starting with the commercialization of red LEDs.
- Gallium Nitride (GaN) semiconductors have high thermal stability and wide bandgap, and can be combined with other elements such as In and Al to produce semiconductor layers that emit green, blue and white light, and emit Easy wavelength adjustment has attracted much attention in the development of high power electronic devices including LEDs.
- the GaN semiconductor growth is more difficult than other III-V compound semiconductors because there is no high-quality substrate, for example, a wafer of materials such as GaN, InN, AlN, or the like.
- the LED structure is grown on a dissimilar substrate such as sapphire, and many defects are generated, and these defects have a great influence on the LED performance.
- Embodiments provide a method of manufacturing a light emitting device capable of forming a high quality nitride semiconductor.
- a method of manufacturing a light emitting device includes the steps of preparing a substrate having a crystal growth surface a-plane or m-plane; Forming a buffer layer on the substrate; Forming a semiconductor layer on the buffer layer; And separating the semiconductor layer from the substrate by removing the buffer layer.
- the manufacturing method of the light emitting device comprises the steps of preparing a substrate; Forming a pattern on the substrate; Forming a semiconductor layer on the patterned substrate; And separating the semiconductor layer from the substrate based on the pattern.
- the manufacturing method of the light emitting device comprises the steps of preparing a substrate; Forming a first buffer layer on the substrate; Forming a pattern on the substrate on which the first buffer layer is formed; Forming a semiconductor layer on the patterned substrate; And separating the semiconductor layer from the substrate based on the pattern.
- the semiconductor layer can be formed on the nonpolar substrate by using the lateral growth method of the semiconductor and the nitride semiconductor of high quality can be formed.
- the embodiment has the effect of improving the luminous efficiency, reliability, and mass production in the case of forming a vertical light emitting device using a high-quality nitride semiconductor.
- FIG. 1 and 2 are cross-sectional views of a method of manufacturing a light emitting device according to a first embodiment.
- 3 to 9 are views for manufacturing the light emitting device according to the second embodiment.
- 10 to 14 are cross-sectional views of a method of manufacturing a light emitting device according to a third embodiment.
- 15 to 17 are process cross-sectional views of a method of manufacturing a light emitting device according to the fourth embodiment.
- 18 to 20 are process cross-sectional views of a method of manufacturing a light emitting device according to the fifth embodiment
- each layer (film), region, pattern or structure may be “on / over” of the substrate, each layer (film), region, pad or patterns or “.
- “on” and “under” are “directly” or “indirectly through another layer.” “Includes all that are formed.
- the criteria for the top or bottom of each layer will be described with reference to the drawings.
- each layer is exaggerated, omitted, or schematically illustrated for convenience and clarity of description.
- the size of each component does not necessarily reflect the actual size.
- Embodiments will be described with reference to GaN-based light emitting devices formed on non-conductive substrates such as, for example, sapphire (Al 2 O 3 ) -based substrates.
- non-conductive substrates such as, for example, sapphire (Al 2 O 3 ) -based substrates.
- the present invention is not limited to this structure.
- embodiments may use other substrates, including conductive substrates.
- substrates including conductive substrates.
- combinations of AlGaInP diodes on GaP substrates, GaN diodes on SiC substrates, SiC diodes on SiC substrates, SiC diodes on sapphire substrates, and / or GaN, SiC, AlN, ZnO and / or nitride based diodes on other substrates may be included.
- the active region of the embodiment is not limited to the use of the diode region. Also, other forms of active area may be used in accordance with embodiments.
- GaN-based devices grown on the sapphire substrate have a dislocation density greater than 10 8 / cm 2 due to lattice mismatch between the sapphire and GaN and a mismatch in thermal expansion coefficient. Therefore, a method for reducing such lattice defects is required.
- GaN and its alloys are most stable in hexagonal wurtzite crystal structures.
- This crystal structure has 120 [deg.] Rotational symmetry with respect to each other and is represented by three equal basal plane axes a 1 , a 2 , a 3 which are all perpendicular to the vertical c-axis.
- Group III and nitrogen atoms alternately occupy c-planes (0001) along the c-axis of the crystal.
- the symmetrical elements included in this urethane structure show that the group III nitrides exhibit bulk spontaneous polarization along the c-axis.
- urethane nitrides may additionally exhibit piezoelectric polarization along the c-axis of the crystal.
- a method for removing the spontaneous and piezoelectric polarization effects in GaN optoelectronic devices is to grow the devices on non-polar planes of the crystal. These planes contain the same number of Ga and N atoms and are charge-neutral.
- subsequent nonpolar planes are equal to each other so that the whole crystal is not polarized in the growth direction.
- two families of symmetry-equivalent non-polar planes are collectively known as the a-planes ⁇ 11-20 ⁇ and collectively the m-plane ⁇ 1]. -100 ⁇ .
- GaN-based (AlGaInN) quantum well structures employing these non-polar growth directions, a- or m-directions, are an effective means of eliminating polarization-induced electric fields in urethane nitride structures. This can be
- Such a non-polar a-plane or m-plane GaN-based semiconductor thin film can be efficiently grown on a non-polar substrate having a a-plane or m-plane.
- nitride-based light emitting device structure is produced by growing a GaN semiconductor layer on a substrate such as sapphire, SiC, Si.
- the defect density is still large due to the difference in lattice constant and thermal expansion coefficient of the substrate and grown GaN semiconductor, and the defect density of 10 8 / cm 2 or more is included in the thin film in the device, which is low with the luminous efficiency of the light emitting device. Electrical characteristics may be degraded due to electrostatic characteristics, high leakage current, and the like.
- a laser lift-off method for removing a sapphire substrate to fabricate a vertical light emitting device requires a complicated process, requires a large process cost, and expensive equipment, and a peripheral semiconductor layer in the process of removing such a substrate. As a result, the development of low cost process is required.
- 1 and 2 are cross-sectional views illustrating a method of manufacturing the light emitting device according to the first embodiment.
- a buffer layer 20 is formed on a substrate 10 such as sapphire and SiC, and a semiconductor layer 30 is grown on the buffer layer 20.
- the semiconductor layer 30 may be a GaN semiconductor layer.
- the substrate 10 may be a non-polar substrate having a a-plane ⁇ 11-20 ⁇ or m-plane ⁇ 1-100 ⁇ , a-plane or m-plane nonpolar GaN This is because the semiconductor layer 30 can be efficiently grown on the nonpolar substrate.
- the buffer layer 20 may be a metallic buffer layer.
- the buffer layer 20 may be formed of a metal material such as a metal, an alloy of metals, a metal oxide, or a metal nitride.
- the metallic buffer layer 20 allows the substrate 10 to be separated by a chemical etching method or a spontaneous separation method in the process of removing the substrate 10 to manufacture a vertical light emitting device structure later.
- Regular or irregular grooves 21 may be located in the buffer layer 20, and the semiconductor layer 30 starts to grow mainly on the grooves 21, and is joined to each other by side growth to form a layer. In this process, crystal defects such as threading dislocations can be reduced.
- the buffer layer 20 may be formed of TiN, and as described above, may act as a mask layer to help the side surface growth of the semiconductor layer.
- the semiconductor layer 30 grown on the buffer layer 20 may be separated from the substrate 10 by a chemical etching method or a spontaneous separation method.
- the groove 21 formed in the buffer layer 20 may allow the etching solution to flow evenly to the interface during etching, thereby facilitating the etching process, and the separation process of the substrate 10 by the chemical etching is performed by laser lift. Compared with the off process, stress can be greatly reduced at the semiconductor layer 30 and the interface, and damage to the semiconductor layer 30 can be prevented.
- 3 to 9 are diagrams illustrating a method of manufacturing the light emitting device according to the second embodiment.
- the second embodiment may employ the technical features of the first embodiment and will be described below, which is different from the first embodiment.
- a pattern 11 is formed on a substrate 10 made of sapphire, Si, SiC, or the like.
- the pattern 11 may improve the quality of the semiconductor layer through side growth of the semiconductor layer 30 grown on the substrate 10, and when the substrate 10 is separated by etching, an etching solution may be formed. It can help to flow evenly.
- the pattern 11 may have a pattern 11 having a stripe-shaped groove, and may have a pattern 12 having a rectangular groove as shown in FIG. 5.
- the pattern may form a circular pattern 13.
- the circular pattern 13 may have a lenticular shape having a circular cross section as shown in FIG. 7.
- the cross section of the pattern 12 or the circular pattern 13 having a rectangular groove may form a square or well-shaped pattern, respectively.
- the first buffer layer 20 is formed on the patterned substrate 10.
- the first buffer layer 20 may be a metallic buffer layer.
- the first buffer layer 20 may be formed of a metal such as Ti, Cr, W, Ni, Mo, Ta, or Zr, a metal nitride such as TiN, CrN, WN, NiN, MoN, TaN, or ZrN, TiC, CrC, or WC.
- Metal carbides such as NiC, MoC, TaC, or ZrC, or metal oxides such as TiO, CrO, WO, NiO, MoO, TaO, ZrO, and the like can be used.
- the first buffer layer 20 may be deposited on a substrate using a sputter or e-beam evaporation method with a thickness of 50 ⁇ s to 5,000 ⁇ s.
- the GaN semiconductor layer 30 is grown on the substrate 10 on which the first buffer layer 20 is formed.
- the GaN semiconductor layer 30 may be grown after first growing the second buffer layer 31 at low temperature.
- the semiconductor is slowly grown or hardly grown in the portions where the patterns 11, 12, and 13 are formed, and the semiconductor is grown in the flat portions where the patterns 11, 12, and 13 are not formed.
- the semiconductors meet each other by side growth, thereby forming a flat GaN semiconductor layer 30.
- the laterally grown portion of the GaN semiconductor layer 30 grown as described above may have a threading dislocation dissipated, thereby improving crystalline characteristics.
- the GaN semiconductor layer 30 grown as described above may be used as a GaN substrate by separating the substrate 10.
- the separation of the substrate 10 may be performed by etching the first buffer layer 20.
- the patterns 11, 12, and 13 on the substrate 10 may be smoothly processed. Can help.
- the etching solution may be, for example, a high temperature phosphoric acid sulfuric acid mixture solution of 200 ° C to 300 ° C, aqua regia, or BOE (Buffered Oxide Etcher).
- FIGS. 10 to 14 are cross-sectional views illustrating a method of manufacturing the light emitting device according to the third embodiment.
- the third embodiment can adopt the technical features of the first and second embodiments, and will be described below, which is different from the first and second embodiments.
- the GaN semiconductor layer 30 may be grown on the substrate 10 on which the buffer layer 20 is formed to manufacture a light emitting device.
- the GaN semiconductor layer 30 may include an n-type semiconductor layer 32, an active layer 33, and a p-type semiconductor layer 34, and the GaN semiconductor layer 30 may be grown at low temperature. May be grown on the second buffer layer 31.
- each unit device isolation region may be etched to facilitate chip separation later.
- the unit device isolation region may coincide with the pattern 11 described above in the second embodiment.
- the substrate separation and chip separation processes for forming the vertical structure may be performed more smoothly.
- 11 illustrates a pattern 11 having a stripe-shaped groove, but is not limited thereto.
- the pattern 11 may include a pattern 12 having a rectangular groove, a circular pattern 13, and the like.
- a p-type electrode 40 may be formed on the p-type semiconductor layer 34 of the semiconductor layer 30.
- the p-type electrode 40 is an ohmic electrode, and a separate reflective electrode may be added or a reflective ohmic electrode may be formed.
- the support substrate 50 is formed or attached on the p-type electrode 40.
- the support substrate 50 may serve to support the light emitting device structure in the process of separating the substrate 10.
- the support substrate 50 may be formed by plating or bonding on the p-type electrode 40. In this case, a separate bonding metal layer (not shown) may be positioned between the p-type electrode 40 and the support substrate 50.
- the support substrate 50 may include a metal or semiconductor wafer.
- the substrate 10 is removed while being supported by the support substrate 50.
- the substrate 10 may be removed by etching the first buffer layer 20, and the separation of the substrate 10 may be performed in the same manner as in the above-described second embodiment.
- the second buffer layer 31, in which the substrate 10 is separated and exposed, is further etched and removed to form an n-type electrode 60 on the n-type semiconductor layer 32.
- a unit light emitting device having a support substrate 50 may be manufactured by separating each device division region from a support substrate 50 supporting a plurality of unit devices, and in some cases, such a support substrate ( When the 50 is removed, the unit light emitting device without the supporting substrate 50 may be manufactured.
- 15 to 17 are cross-sectional views illustrating a method of manufacturing the light emitting device according to the fourth embodiment.
- the fourth embodiment may employ the technical features of the first to third embodiments, and will be mainly described below.
- the first buffer layer 20 may be formed first before the pattern 11 is formed on the substrate 10.
- FIG. 16 illustrates a pattern 11 having a stripe-shaped groove, but is not limited thereto, and may include a pattern 12 having a rectangular groove, a circular pattern 13, and the like.
- the second buffer layer 31 may be formed at a low temperature, and then the GaN semiconductor layer 30 may be formed at a high temperature.
- the quality of the semiconductor layer 30 grown on the pattern 11 may be improved by side growth.
- the substrate 10 may be separated based on the first buffer layer 20 to use the semiconductor layer 30 as a GaN substrate, or a light emitting device structure may be formed.
- the fifth embodiment may employ the technical features of the first to fourth embodiments, and will be mainly described below.
- the GaN semiconductor layer 300 is grown on the substrate 100 on which the second pattern 110 is formed.
- one unit light emitting device structure may be disposed in the second pattern 110 over a plurality of unit patterns. That is, the unit structure of the second pattern 110 may be formed more densely than the area of the light emitting device.
- the third buffer layer 200 is formed on the substrate 100 having the dense second pattern 110, and the n-type semiconductor layer 310 and the active layer 320 are formed on the metallic third buffer layer 200. And a GaN semiconductor layer 300 formed of a p-type semiconductor layer 330.
- the second pattern 110 may be dense so that the third buffer layer 200 may not be formed in the second pattern 110, but is not limited thereto.
- the unit device division region may be etched to facilitate chip separation later.
- a p-type electrode 400 is formed on the p-type semiconductor layer 330.
- the passivation layer 500 may be formed on an exposed surface including the side surface of the semiconductor layer 300 exposed by etching the unit device division region.
- the passivation layer 500 may protect the semiconductor layer 300 while improving electrical characteristics by preventing leakage current when driving the light emitting device.
- the passivation layer 500 may serve to protect the semiconductor layer 300 from being etched during the removal of the substrate 100.
- the support substrate 600 is formed on the p-type electrode 400 and the substrate 100 is removed by etching the third buffer layer 200, the exposed n-type semiconductor layer ( If the n-type electrode 700 is formed on the 310, the light emitting device may be completed.
- the light emitting efficiency, reliability, and mass productivity can be improved by forming a vertical light emitting device using a high quality nitride semiconductor.
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Crystallography & Structural Chemistry (AREA)
- Led Devices (AREA)
Abstract
실시예는 발광소자의 제조방법에 관한 것이다. 실시예에 따른 발광소자의 제조방법은 실시예에 따른 발광소자의 제조방법은 결정 성장면이 a-면 또는 m-면을 갖는 기판을 준비하는 단계; 상기 기판 위에 버퍼층을 형성하는 단계; 상기 버퍼층 위에 반도체층을 형성하는 단계; 및 상기 버퍼층을 제거하여 상기 기판으로부터 상기 반도체층을 분리하는 단계;를 포함한다.
Description
실시예는 발광소자의 제조방법에 관한 것이다.
발광소자(Light Emitting Device:LED)는 전류를 빛으로 변환시키는 반도체소자로서, 적색 LED가 상품화된 것을 시작으로 녹색 LED와 함께 정보 통신기기를 비롯한 전자장치의 광원으로 이용되어 왔다.
예를 들어, Gallium Nitride(GaN) 반도체는 높은 열적 안정성과 폭넓은 밴드갭을 가지고 있고, In, Al 등 타 원소들과 조합되어 녹색, 청색 및 백색광을 방출하는 반도체층을 제조할 수 있고, 방출파장 조절이 용이하여 LED를 포함한 고출력 전자소자 개발 분야에서 많은 주목을 받아왔다.
한편, 이러한 GaN 반도체 성장이 다른 Ⅲ-Ⅴ족 화합물 반도체보다 어려운 이유는 고품질의 기판, 예를 들어 GaN, InN, AlN 등의 물질의 웨이퍼가 존재하지 않기 때문이다.
따라서 사파이어와 같은 이종기판 위에 LED 구조를 성장하게 되며, 이때 많은 결함이 발생하게 되고, 이러한 결함들은 LED 성능에 큰 영향을 미치게 된다.
실시예는 고품질의 질화물 반도체를 형성할 수 있는 발광소자의 제조방법을 제공하고자 한다.
실시예에 따른 발광소자의 제조방법은 결정 성장면이 a-면 또는 m-면을 갖는 기판을 준비하는 단계; 상기 기판 위에 버퍼층을 형성하는 단계; 상기 버퍼층 위에 반도체층을 형성하는 단계; 및 상기 버퍼층을 제거하여 상기 기판으로부터 상기 반도체층을 분리하는 단계;를 포함한다.
또한, 실시예에 따른 발광소자의 제조방법은 기판을 준비하는 단계; 상기 기판 위에 패턴을 형성하는 단계; 상기 패턴이 형성된 기판 위에 반도체층을 형성하는 단계; 및 상기 패턴을 기준으로 상기 기판으로부터 상기 반도체층을 분리하는 단계;를 포함한다.
또한, 실시예에 따른 발광소자의 제조방법은 기판을 준비하는 단계; 상기 기판 위에 제1 버퍼층을 형성하는 단계; 상기 제1 버퍼층이 형성된 기판에 패턴을 형성하는 단계; 상기 패턴이 형성된 기판 위에 반도체층을 형성하는 단계; 및 상기 패턴을 기준으로 상기 기판으로부터 상기 반도체층을 분리하는 단계;를 포함한다.
실시예에 따른 발광소자의 제조방법에 의하면 반도체의 측면 성장법을 이용하고 비극성 기판 위에 비극성을 가지도록 반도체층을 형성할 수 있어 고품질의 질화물 반도체를 형성할 수 있다.
또한, 실시예에 의하면 식각에 의하여 충격 및 스트레스 없이 안정적으로 기판을 분리할 수 있어, 고품질의 질화물 반도체 기판을 제공하는 것이 가능하다.
또한, 실시예는 고품질의 질화물 반도체를 이용하여 수직형 발광소자를 형성하는 경우에 발광효율, 신뢰성, 및 양산성을 향상시킬 수 있는 효과가 있다.
도 1 및 도 2는 제1 실시예에 따른 발광소자의 제조방법의 공정 단면도.
도 3 내지 도 9는 제2 실시예에 따른 발광소자의 제조방법에 대한 도면.
도 10 내지 도 14는 제3실시예에 따른 발광소자의 제조방법의 공정 단면도.
도 15 내지 도 17은 제4실시예에 따른 발광소자의 제조방법의 공정 단면도.
도 18 내지 도 20은 제5실시예에 따른 발광소자의 제조방법의 공정 단면도.
이하에서 첨부된 도면을 참조하여 실시예를 상세히 설명한다.
본 발명에 따른 실시 예의 설명에 있어서, 각 층(막), 영역, 패턴 또는 구조물들이 기판, 각 층(막), 영역, 패드 또는 패턴들의 "상(on)/위(over)"에 또는 "아래(under)"에 형성되는 것으로 기재되는 경우에 있어, "상(on)/위(over)"와 "아래(under)"는 "직접(directly)" 또는 "다른 층을 개재하여 (indirectly)" 형성되는 것을 모두 포함한다. 또한 각 층의 위 또는 아래에 대한 기준은 도면을 기준으로 설명한다.
도면에서 각층의 두께나 크기는 설명의 편의 및 명확성을 위하여 과장되거나 생략되거나 또는 개략적으로 도시되었다. 또한 각 구성요소의 크기는 실제크기를 전적으로 반영하는 것은 아니다.
실시예들은 예를 들어, 사파이어(Al2O3)계 기판과 같은 비도전성 기판위에 형성된 GaN계 발광소자를 참조하여 설명될 것이다. 그러나 본 발명은 이러한 구조에 한정되는 것은 아니다.
또한, 실시예들은 도전성 기판을 포함하여 다른 기판을 사용할 수 있다. 따라서 GaP 기판상의 AlGaInP 다이오드, SiC 기판상의 GaN 다이오드, SiC 기판상의 SiC 다이오드, 사파이어 기판상의 SiC 다이오드, 및/또는 GaN, SiC, AlN, ZnO 및/또는 다른 기판상의 질화물계 다이오드 등의 조합이 포함될 수 있다. 또한, 실시예의 활성영역은 다이오드 영역의 사용에 한정되는 것은 아니다. 또한, 활성영역의 다른 형태들이 실시예들에 따라서 사용될 수도 있다.
한편, 이러한 사파이어 기판 위에 성장되는 GaN 계열의 소자들은 사파이어와 GaN 사이의 격자 불일치(lattice mismatch)와 열팽창 계수의 불일치 때문에 전위 밀도(dislocation density)가 108/cm2보다 크게 된다. 따라서, 이러한 격자 결함을 줄이기 위한 방안이 요구된다.
GaN 및 그 합금들은 육방정계 우르차이트(hexagonal wurtzite) 결정 구조에서 가장 안정적이다. 이러한 결정구조는 서로에 대하여 120°회전 대칭을 가지고, 수직방향인 c-축에 대하여 모두 수직인 세 개의 동등한 기저면 축들(basal plane axes; a1, a2, a3)로 표시된다.
Ⅲ족 및 질소 원자들은 결정의 c-축을 따라 교대로 c-면(0001)들을 점유한다. 이러한 우르차이트 구조 내에 포함된 대칭 요소들은 Ⅲ족 질화물들이 c-축을 따라서 벌크 자발분극(bulk spontaneous polarization)을 나타낸다.
더욱이, 이러한 우르차이트 결정구조는 비중심대칭(noncentrosymmetric)이므로, 우르차이트 질화물들은 결정의 c-축을 따라서 압전분극(piezoelectric polarization)을 추가적으로 보일 수 있다.
전자 및 광전자 소자들을 위한 현재의 질화물 기술은 극성의 c-방향을 따라서 성장한 질화물 박막들을 이용한다. 그러나, 강한 압전 및 자발적 분극의 존재로 인하여, Ⅲ족 질화물계 광전자 및 전자 소자들 내의 통상적인 c-면 양자우물 구조들(quantum well structures)은 바람직하지 않은 양자구속 스타크효과(quantum-confined Stark effect, QCSE)의 영향을 받는다.
따라서, c-방향을 따른 강한 내부전기장(built-in electric fields)은 에너지 밴드를 휘게 하여 전자 및 홀들을 공간적으로 분리하며, 이에 따라 캐리어 재결합 효율(recombination efficiency)을 제한하고, 진동자 강도를 감소시킬 수 있으며, 또한 적색 편이(red shift) 발광을 야기한다.
GaN 광전자 소자들에서 상기 자발 및 압전 분극 효과를 제거하기 위한 방법은 상기 결정의 비극성 면(non-polar plane)들 위에 소자들을 성장시키는 것이다. 이러한 면들은 동일한 수의 Ga와 N원자들을 포함하며, 전하-중성(charge-neutral)이다.
더욱이, 계속되는 비극성 면들은 서로 균등하여 전체 결정은 성장방향으로 분극되지 않는다. GaN 결정 구조 내에서 대칭-등가 비극성 면들(symmetry-equivalent non-polar planes)의 두 족들(families)은 집합적으로 a-면{11-20}들로 알려진 군과 집합적으로 m-면{1-100}들로 알려진 군이다.
이와 같은 비극성 성장 방향인 a-방향 또는 m-방향을 채용하는 GaN 계열(AlGaInN) 양자 우물 구조들은 우르차이트 질화물 구조들 내에 분극-유발 전기장 효과(polarization-induced electric fields)를 제거하기 위한 효율적인 수단이 될 수 있다.
왜냐하면, 상기 극성 축은 필름의 성장면 내에 놓여져 있고, 이에 따라 양자 우물들의 이종 계면(heterointerfaces)에 평행하기 때문이다.
이와 같은 비극성을 갖는 a-면 또는 m-면 GaN 계열 반도체 박막은 a-면 또는 m-면을 갖는 비극성 기판(non-polar substrate) 위에서 효율적으로 성장될 수 있다.
따라서, 비극성을 갖는 사파이어, SiC 등의 기판 위에 GaN 계열 반도체 박막을 성장시킴으로써, 효율적으로 비극성 GaN 계열 반도체 소자를 제조할 수 있는 것이다.
한편, 질화물계 발광소자 구조는 사파이어, SiC, Si 등의 기판 위에 GaN 반도체층을 성장하여 제작된다. 그러나 여전히 기판과 성장된 GaN 반도체의 격자 상수 및 열팽창계수의 차이로 인한 결함밀도가 크며, 108/cm2 이상의 결함밀도를 소자 내의 박막에 포함하고 있으며, 이는 발광소자의 발광 효율 저하와 더불어 낮은 정전기적 특성, 높은 누설 전류 등으로 인해 전기적 특성이 저하될 수 있다.
또한, 전기적으로 절연성 기판인 사파이어 기판을 이용할 경우, 기판 하측에 전극을 형성하는 것이 불가능하므로 전극 형성을 위하여 반도체 박막을 식각해야 하는 복잡한 공정이 요구된다.
최근 HVPE(hydride vapor phase epitaxy) 법을 이용하여 GaN 기판을 제작하여, 이를 발광소자에 적용하는 사례가 발표되고 있으나 GaN 기판의 가격이 너무 고가이므로 실용화되지 못하고 있는 실정이다.
또한, 수직형 발광소자를 제작하기 위하여 사파이어 기판을 제거하는 레이저 리프트 오프(laser lift-off) 방법은 공정이 복잡하고 많은 공정 비용과 고가의 장비가 필요하고, 이러한 기판의 제거 과정에서 주변 반도체층에 손상을 가져오게 되어 보다 간판하면서 저비용의 공정 개발이 요구되고 있다.
<제1실시예>
도 1 및 도 2는 제1 실시예에 따른 발광소자의 제조방법을 도시하는 공정 단면도이다.
도 1과 같이, 사파이어, SiC와 같은 기판(10) 위에는 버퍼층(buffer)(20)형성되고, 상기 버퍼층(20) 위에 반도체층(30)이 성장된다. 상기 반도체층(30)은 GaN 반도체층일 수 있다.
이때, 상기 기판(10)은 a-면{11-20} 또는 m-면{1-100}을 갖는 비극성 기판(non-polar substrate)이 이용될 수 있는데, a-면 또는 m-면 비극성 GaN 반도체층(30)은 비극성 기판 위에서 효율적으로 성장될 수 있기 때문이다.
또한, 상기 버퍼층(20)은 금속성 버퍼층(metallic buffer layer)일 수 있다. 예를 들어, 상기 버퍼층(20)은 금속, 금속들의 합금, 금속 산화물, 또는 금속 질화물과 같은 금속성 물질이 이용될 수 있다. 이러한 금속성 버퍼층(20)은 추후 수직형 발광소자 구조를 제작하기 위하여 기판(10)을 제거하는 과정에서 기판(10)이 화학적 식각 방법 또는 자발적 분리 방법으로 분리될 수 있도록 한다.
이러한 버퍼층(20)에는 규칙적 또는 불규칙적 홈(21)이 위치할 수 있으며, 반도체층(30)은 이러한 홈(21) 위에서 주로 성장이 시작되어, 측면 성장에 의하여 서로 합쳐져 층을 이루게 된다. 이러한 과정에서 관통 전위(threading dislocation)와 같은 결정 결함들이 감소될 수 있다.
상기 버퍼층(20)은, 일례로 TiN으로 이루어질 수 있으며, 상술한 바와 같이, 마스크층으로 작용할 수 있어서, 반도체층의 측면 성장을 돕게 된다.
다음으로 도 2와 같이, 화학적 식각 방법 또는 자발적 분리 방법으로 버퍼층(20) 위에 성장된 반도체층(30)을 기판(10)으로부터 분리할 수 있다.
이때, 버퍼층(20)에 형성된 홈(21)은 식각시 식각 용액이 계면에 고르게 흘러들어갈 수 있도록 하여, 식각과정을 촉진시킬 수 있고, 이러한 화학적 식각에 의한 기판(10)의 분리과정은 레이저 리프트 오프 공정에 비하여 반도체층(30) 및 계면에 스트레스를 크게 감소시킬 수 있어, 반도체층(30)의 손상을 방지할 수 있다.
<제2실시예>
도 3 내지 도 9는 제2 실시예에 따른 발광소자의 제조방법에 대한 도면이다. 제2 실시예는 상기 제1 실시예의 기술적인 특징을 채용할 수 있으며 이하 제1 실시예와 차별되는 점을 위주로 설명한다.
도 3과 같이, 사파이어, Si, 또는 SiC 등으로 이루어지는 기판(10) 위에 패턴(11)을 형성한다. 이때, 상기 패턴(11)은 기판(10) 위에 성장되는 반도체층(30)의 측면 성장을 통하여 반도체층의 품질을 향상시킬 수 있고, 식각에 의하여 기판(10)을 분리하는 경우에 식각 용액이 고르게 흘러들어갈 수 있도록 도울 수 있다.
이러한 패턴(11)의 형상은 도 4에서와 같이, 스트라이프 형태의 홈을 가지는 패턴(11)을 형성할 수 있고, 도 5와 같이 사각형 홈을 가지는 패턴(12)을 형성할 수도 있다.
또한, 도 6과 같이, 상기 패턴은 원형 패턴(13)을 형성할 수도 있는데, 이때, 이 원형 패턴(13)은 도 7에서와 같이, 단면이 원형인 렌즈형 형상을 이룰 수도 있다. 한편, 사각형 홈을 가지는 패턴(12) 또는 원형 패턴(13)의 단면은 각각 사각 형상 또는 우물 형상의 패턴을 이룰 수 있다.
다음으로, 도 8과 같이, 패턴이 형성된 기판(10) 위에, 제1 버퍼층(20)을 형성한다. 상기 제1 버퍼층(20)은 금속성 버퍼층일 수 있다. 상기 제1 버퍼층(20)은 Ti, Cr, W, Ni, Mo, Ta, 또는 Zr과 같은 금속, TiN, CrN, WN, NiN, MoN, TaN, 또는 ZrN과 같은 금속 질화물, TiC, CrC, WC, NiC, MoC, TaC, 또는 ZrC와 같은 금속 탄화물, 또는 TiO, CrO, WO, NiO, MoO, TaO, 또는 ZrO와 같은 금속 산화물 등이 이용될 수 있다.
상기 제1 버퍼층(20)은 50Å 내지 5,000Å의 두께로 스퍼터(sputter) 또는 e-빔 증착법(electron beam evaporation)을 이용하여 기판 위에 증착시킬 수 있다.
다음으로, 도 9와 같이, 제1 버퍼층(20)이 형성된 기판(10) 위에 GaN 반도체층(30)을 성장시킨다. 이때, 이러한 GaN 반도체층(30)은 먼저, 저온에서 제2 버퍼층(31)을 성장시킨 후에 성장될 수 있다.
이때, 패턴(11, 12, 13)이 형성된 부분에서는 반도체가 느리게 성장되거나 성장이 거의 이루어지지 않고, 패턴(11, 12, 13)이 형성되지 않은 평탄한 부분에서 반도체가 성장되고, 이와 같이 성장된 반도체는 측면 성장에 의하여 서로 만나게 되어, 평탄한 GaN 반도체층(30)을 이루게 된다. 이와 같이 성장된 GaN 반도체층(30)의 측면 성장된 부분은 관통 전위(threading dislocation)가 소멸되어 결정질 특성이 향상될 수 있다.
이와 같이 성장된 GaN 반도체층(30)은 기판(10)을 분리하여 GaN 기판으로 이용될 수 있다. 이때, 기판(10)의 분리는 제1 버퍼층(20)을 식각하여 이루어질 수 있으며, 상술한 바와 같이, 기판(10) 위의 패턴들(11, 12, 13)은 이러한 식각 과정이 원활히 진행되도록 도울 수 있다.
이때, 식각 용액은, 예를 들어, 200 ℃ 내지 300 ℃의 고온의 인산 황산 혼합액이나, 왕수, 또는 BOE(Buffered Oxide Etcher)를 이용할 수 있다.
<제3실시예>
도 10 내지 도 14는 제3실시예에 따른 발광소자의 제조방법에 대한 공정 단면도이다. 제3 실시예는 상기 제1 실시예 및 제2 실시예의 기술적인 특징을 채용할 수 있으며 이하 제1 실시예 및 제2 실시예와 차별되는 점을 위주로 설명한다.
도 10과 같이, 버퍼층(20)이 형성된 기판(10) 위에 GaN 반도체층(30)을 성장하여 발광소자를 제작할 수 있다. 이때, 이러한 GaN 반도체층(30)은 n-형 반도체층(32), 활성층(33), 및 p-형 반도체층(34)을 포함할 수 있고, 이러한 GaN 반도체층(30)은 저온에서 성장되는 제2 버퍼층(31) 위에 성장될 수 있다.
이후, 도 11과 같이, 각 단위소자 분리 영역을 식각하여 추후 칩 분리가 용이하게 이루어질 수 있도록 할 수 있다. 이때, 단위소자 분리 영역은 제2 실시예에서 상술한 패턴(11)과 일치할 수 있다. 이와 같이 분리 영역이 패턴(11)과 일치하는 경우에는 수직형 구조를 이루기 위한 기판 분리 및 칩 분리 과정이 보다 원활히 이루어질 수 있다. 한편, 도 11은 스트라이프 형태의 홈을 가진 패턴(11)을 도시하고 있으나 이에 한정되는 것이 아니며, 사각형 홈을 가진 패턴(12), 원형 패턴(13) 등을 포함할 수 있다.
다음에 반도체층(30)의 p-형 반도체층(34) 위에는 p-형 전극(40)이 형성될 수 있다. 이러한 p-형 전극(40)은 오믹전극이며, 별도의 반사형 전극이 추가되거나, 반사형 오믹전극이 형성될 수도 있다.
다음으로 도 12와 같이, p-형 전극(40) 위에 지지기판(50)을 형성하거나 부착시킨다. 이러한 지지기판(50)은 기판(10) 분리 과정에서 발광소자 구조를 지지하는 역할을 수행할 수 있다.
이러한 지지기판(50)은 p-형 전극(40) 위에 도금 또는 본딩에 의하여 형성될 수 있다. 이때, 경우에 따라 p-형 전극(40)과 지지기판(50) 사이에 별도의 결합금속층(미도시)이 위치할 수도 있다. 이러한 지지기판(50)은 금속 또는 반도체 웨이퍼를 포함할 수 있다.
이후, 지지기판(50)으로 지지되는 상태에서 기판(10)을 제거한다. 이러한 기판(10)의 제거는 제1 버퍼층(20)을 식각하여 제거할 수 있으며, 이러한 기판(10) 분리 과정은 상술한 제2실시예와 동일한 과정을 거칠 수 있다.
다음으로, 도 13과 같이, 기판(10)이 분리되어 드러난 제2 버퍼층(31)을 추가로 식각하여 제거하고, n-형 반도체층(32) 위에 n-형 전극(60)을 형성한다.
이후, 도 14와 같이 여러 개의 단위 소자를 지지하는 지지기판(50)을 각 소자 구분 영역을 분리하여 지지기판(50)을 가지는 단위 발광소자가 제작될 수 있고, 경우에 따라, 이러한 지지기판(50)을 제거하면 지지기판(50)이 없는 단위 발광소자가 제작될 수도 있다.
<제4실시예>
도 15 내지 도 17은 제4실시예에 따른 발광소자의 제조방법의 공정 단면도이다. 제4 실시예는 제1 실시예 내지 제3 실시예의 기술적인 특징을 채용할 수 있으며, 이하 차별되는 점을 위주로 설명한다.
도 15와 같이, 제4 실시예는 제3실시예와 달리, 기판(10)에 패턴(11)을 형성하기 이전에 제1 버퍼층(20)을 먼저 형성할 수 있다.
다음으로, 도 16과 같이 제1 버퍼층(20)이 형성된 기판(10)에 패턴(11)을 형성한다. 도 16은 스트라이프 형태의 홈을 가진 패턴(11)을 도시하고 있으나 이에 한정되는 것이 아니며, 사각형 홈을 가진 패턴(12), 원형 패턴(13) 등을 포함할 수 있다.
이후에, 도 17과 같이, 저온에서 제2 버퍼층(31)을 형성하고, 이어서 고온에서 GaN 반도체층(30)을 형성할 수 있다. 이와 같은 패턴(11) 위에 성장되는 반도체층(30)은 측면 성장에 의하여 그 품질이 향상될 수 있다.
이후, 상기 제1 버퍼층(20)을 기준으로 기판(10)을 분리하여 반도체층(30)을 GaN 기판으로 이용할 수도 있고, 발광소자 구조를 형성할 수도 있다.
<제5실시예>
도 18 내지 도 20은 제5실시예에 따른 발광소자의 제조방법의 공정 단면도이다. 제5 실시예는 제1 실시예 내지 제4 실시예의 기술적인 특징을 채용할 수 있으며, 이하 차별되는 점을 위주로 설명한다.
도 18과 같이, 제2 패턴(110)이 형성된 기판(100) 위에 GaN 반도체층(300)을 성장한다. 이때, 제2 패턴(110)은 다수개의 단위 패턴에 걸쳐서 하나의 단위 발광소자 구조가 위치할 수 있다. 즉, 제2 패턴(110)의 단위 구조를 발광소자 면적보다 매우 조밀하게 형성할 수 있다.
이와 같이, 조밀한 제2 패턴(110)을 가지는 기판(100) 위에 제3 버퍼층(200)이 형성되고, 이러한 금속성 제3 버퍼층(200) 위에는 n-형 반도체층(310), 활성층(320), 및 p-형 반도체층(330)으로 이루어지는 GaN 반도체층(300)이 형성된다. 이때, 상기 제2 패턴(110)은 조밀하여 제2 패턴(110) 내에 제3 버퍼층(200)이 형성되지 않을 수 있으나 이에 한정되는 것은 아니다.
이후, 도 18과 같이, 단위 소자 구분 영역을 식각하여 추후 칩 분리가 용이하도록 할 수 있다. 다음에, p-형 반도체층(330) 위에는 p-형 전극(400)을 형성한다.
다음으로 도 19와 같이, 단위 소자 구분 영역을 식각하여 드러난 반도체층(300)의 측면을 포함한 노출면에 패시베이션층(500)을 형성할 수 있다. 이러한 패시베이션층(500)은 발광소자 구동시 누설 전류를 방지하여 전기적 특성을 향상시키는 동시에 반도체층(300)을 보호할 수 있다.
또한, 이러한 패시베이션층(500)은 기판(100) 제거 과정에서 반도체층(300)이 식각되지 않도록 보호하는 역할을 수행할 수 있다.
다음으로 도 20과 같이, p-형 전극(400) 위에는 지지기판(600)이 형성되고, 제3 버퍼층(200)을 식각함으로써 기판(100)이 제거된 후에, 노출된 n-형 반도체층(310) 위에 n-형 전극(700)을 형성하면 발광소자가 완성될 수 있다.
실시예에 따른 발광소자의 제조방법에 의하면 고품질의 질화물 반도체를 이용하여 수직형 발광소자를 형성함으로써 발광효율, 신뢰성, 및 양산성을 향상시킬 수 있다.
이상에서 본 발명에 대하여 그 바람직한 실시예를 중심으로 설명하였으나 이는 단지 예시일 뿐 본 발명을 한정하는 것이 아니며, 본 발명이 속하는 분야의 통상의 지식을 가진 자라면 본 발명의 본질적인 특성을 벗어나지 않는 범위에서 이상에 예시되지 않은 여러 가지의 변형과 응용이 가능함을 알 수 있을 것이다. 예를 들어, 본 발명의 실시예에 구체적으로 나타난 각 구성 요소는 변형하여 실시할 수 있는 것이다. 그리고 이러한 변형과 응용에 관계된 차이점들은 첨부된 청구 범위에서 규정하는 본 발명의 범위에 포함되는 것으로 해석되어야 할 것이다.
Claims (16)
- 결정 성장면이 a-면 또는 m-면을 갖는 기판을 준비하는 단계;상기 기판 위에 버퍼층을 형성하는 단계;상기 버퍼층 위에 반도체층을 형성하는 단계; 및상기 버퍼층을 제거하여 상기 기판으로부터 상기 반도체층을 분리하는 단계;를 포함하는 발광소자의 제조방법.
- 제1 항에 있어서, 상기 기판은 비극성 기판인 발광소자의 제조방법.
- 제1 항에 있어서, 상기 반도체층을 분리하는 단계전에상기 반도체층 위에 제1 전극층을 형성하는 단계 및 상기 제2전극층 위에 지지기판을 형성하는 단계를 포함하고,상기 기판의 제거로 노출된 반도체층 위에 제2 전극층을 형성하는 단계를 포함하는 발광소자의 제조방법.
- 제1 항에 있어서, 상기 버퍼층은 금속, 금속 질화물, 금속 탄화물, 및 금속 산화물 중 어느 하나를 포함하는 발광소자의 제조방법.
- 제1 항에 있어서, 상기 버퍼층에는 홈이 형성된 발광소자의 제조방법.
- 기판을 준비하는 단계;상기 기판 위에 패턴을 형성하는 단계;상기 패턴이 형성된 기판 위에 반도체층을 형성하는 단계; 및상기 패턴을 기준으로 상기 기판으로부터 상기 반도체층을 분리하는 단계;를 포함하는 발광소자의 제조방법.
- 제6 항에 있어서, 상기 패턴의 평면은 평행한 스트라이프 패턴, 다수의 사각형 홈을 가진 패턴 또는 원형 패턴 중 어느 하나인 발광소자의 제조방법.
- 제6 항에 있어서, 상기 패턴이 형성된 기판 위에 제1 버퍼층을 형성하는 단계를 포함하는 발광소자의 제조방법.
- 제8 항에 있어서, 상기 제1 버퍼층 위에 제2 버퍼층을 형성하고, 상기 제2 버퍼층 위에 반도체층을 형성하는 발광소자의 제조방법.
- 제6 항에 있어서, 상기 버퍼층 위에 반도체층을 형성하는 단계 후에, 상기 반도체층을 단위소자 구분 영역으로 식각하는 단계를 포함하는 발광소자의 제조방법.
- 제10 항에 있어서, 상기 단위소자 구분 영역은 상기 기판 위에 형성된 패턴과 적어도 일부분이 일치하는 발광소자의 제조방법.
- 제10 항에 있어서, 상기 단위소자로 구분된 반도체층 위에 제1 전극을 형성하는 단계;상기 제1 전극 위에 지지기판을 형성하는 단계;상기 제1 버퍼층을 기준으로 상기 기판을 제거하는 단계; 및상기 기판의 제거로 노출된 반도체층에 제2 전극을 형성하는 단계;를 포함하는 발광소자의 제조방법.
- 제10 항에 있어서, 상기 반도체층을 단위소자 구분 영역으로 식각하는 단계 후에 상기 노출된 반도체층의 적어도 일부 면에 패시베이션층을 형성하는 단계를 포함하는 발광소자의 제조방법.
- 기판을 준비하는 단계;상기 기판 위에 제1 버퍼층을 형성하는 단계;상기 제1 버퍼층이 형성된 기판에 패턴을 형성하는 단계;상기 패턴이 형성된 기판 위에 반도체층을 형성하는 단계; 및상기 패턴을 기준으로 상기 기판으로부터 상기 반도체층을 분리하는 단계;를 포함하는 발광소자의 제조방법.
- 제14 항에 있어서, 상기 패턴이 형성된 제1 버퍼층 위에 제2 버퍼층을 형성하고, 상기 제2 버퍼층 위에 반도체층을 형성하는 발광소자의 제조방법.
- 제14 항에 있어서, 상기 반도체층을 형성하는 단계 후에, 상기 반도체층을 단위소자 구분 영역으로 식각하는 단계를 포함하고,상기 단위소자 구분 영역은 상기 기판 위에 형성된 패턴과 적어도 일부분이 일치하는 발광소자의 제조방법.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/514,751 US8017414B2 (en) | 2008-01-21 | 2009-01-21 | Method for manufacturing light emitting device using non-polar substrate |
EP09703277.5A EP2239790B1 (en) | 2008-01-21 | 2009-01-21 | Method for manufacturing light emitting device |
CN2009801027615A CN101926012B (zh) | 2008-01-21 | 2009-01-21 | 制造发光器件的方法 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2008-0006071 | 2008-01-21 | ||
KR20080006071A KR101510377B1 (ko) | 2008-01-21 | 2008-01-21 | 질화물 반도체 및 수직형 발광 소자의 제조방법 |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2009093846A2 true WO2009093846A2 (ko) | 2009-07-30 |
WO2009093846A3 WO2009093846A3 (ko) | 2009-10-22 |
Family
ID=40901545
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2009/000319 WO2009093846A2 (ko) | 2008-01-21 | 2009-01-21 | 발광소자의 제조방법 |
Country Status (5)
Country | Link |
---|---|
US (1) | US8017414B2 (ko) |
EP (1) | EP2239790B1 (ko) |
KR (1) | KR101510377B1 (ko) |
CN (1) | CN101926012B (ko) |
WO (1) | WO2009093846A2 (ko) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8071401B2 (en) * | 2009-12-10 | 2011-12-06 | Walsin Lihwa Corporation | Method of forming vertical structure light emitting diode with heat exhaustion structure |
CN102185071B (zh) * | 2011-04-22 | 2013-04-24 | 浙江大学 | 一种非极性ZnO基发光器件及其制备方法 |
CN103066179B (zh) * | 2013-01-14 | 2015-12-02 | 楼刚 | 蓝宝石衬底可自剥离的氮化镓薄膜制备用外延结构及方法 |
DE102014105208A1 (de) * | 2014-04-11 | 2015-10-29 | Osram Opto Semiconductors Gmbh | Verfahren zur Herstellung eines Nitridverbindungshalbleiter-Bauelements |
DE102015118042A1 (de) * | 2015-10-22 | 2017-04-27 | Nexwafe Gmbh | Verfahren und Vorrichtung zum Herstellen einer Halbleiterschicht |
CN109309082A (zh) * | 2017-07-27 | 2019-02-05 | 兆远科技股份有限公司 | 紫外光发光二极管及其基板以及其基板的制造方法 |
CN114335274B (zh) * | 2022-03-10 | 2022-06-17 | 江西兆驰半导体有限公司 | 一种发光二极管的外延结构及其制备方法 |
Family Cites Families (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5814533A (en) * | 1994-08-09 | 1998-09-29 | Rohm Co., Ltd. | Semiconductor light emitting element and manufacturing method therefor |
JPH0864912A (ja) * | 1994-08-26 | 1996-03-08 | Rohm Co Ltd | 半導体発光素子およびその製法 |
US7141444B2 (en) * | 2000-03-14 | 2006-11-28 | Toyoda Gosei Co., Ltd. | Production method of III nitride compound semiconductor and III nitride compound semiconductor element |
JP4016566B2 (ja) * | 2000-03-14 | 2007-12-05 | 豊田合成株式会社 | Iii族窒化物系化合物半導体の製造方法及びiii族窒化物系化合物半導体素子 |
KR100864912B1 (ko) | 2001-05-25 | 2008-10-22 | 충화 픽처 튜브스, 엘티디. | 동적인 색온도 및 색편차 교정방법 |
US20030189215A1 (en) * | 2002-04-09 | 2003-10-09 | Jong-Lam Lee | Method of fabricating vertical structure leds |
KR101363377B1 (ko) * | 2002-04-15 | 2014-02-14 | 더 리전츠 오브 더 유니버시티 오브 캘리포니아 | 무극성 질화 갈륨 박막의 전위 감소 |
JP2006521984A (ja) * | 2003-03-18 | 2006-09-28 | クリスタル フォトニクス,インコーポレイテッド | Iii族の窒化物装置を製作する方法およびそのように製作された装置 |
JP4136795B2 (ja) * | 2003-06-03 | 2008-08-20 | 株式会社沖データ | 半導体装置の製造方法 |
US7157297B2 (en) * | 2004-05-10 | 2007-01-02 | Sharp Kabushiki Kaisha | Method for fabrication of semiconductor device |
JP4345626B2 (ja) * | 2004-09-27 | 2009-10-14 | 豊田合成株式会社 | 半導体素子及びその製造方法。 |
ATE522643T1 (de) * | 2005-04-04 | 2011-09-15 | Tohoku Techno Arch Co Ltd | Verfahren zum züchten eines gan-einzelkristalls, verfahren zur herstellung eines gan-substrats, verfahren zur herstellung eines elements auf gan- basis und element auf gan-basis |
TW200703463A (en) * | 2005-05-31 | 2007-01-16 | Univ California | Defect reduction of non-polar and semi-polar III-nitrides with sidewall lateral epitaxial overgrowth (SLEO) |
KR100663016B1 (ko) * | 2005-09-06 | 2006-12-28 | 엘지전자 주식회사 | 수직형 발광 다이오드 및 그 제조방법 |
KR100648813B1 (ko) * | 2005-12-23 | 2006-11-23 | 엘지전자 주식회사 | 수직형 발광소자 제조방법 |
KR101163788B1 (ko) * | 2006-03-05 | 2012-07-09 | 엘지이노텍 주식회사 | 질화물 반도체 발광소자 및 그 제조방법 |
KR20070091901A (ko) * | 2006-03-08 | 2007-09-12 | 오인모 | 나노구조층을 이용한 고품위 그룹 3족 질화물계 단결정반도체 박막층 구조 성장을 위한 호모에피택셜 기판 제작및 발광 다층구조체 성장 |
KR100809209B1 (ko) * | 2006-04-25 | 2008-02-29 | 삼성전기주식회사 | 비극성 m면 질화물 반도체 제조방법 |
JP4854566B2 (ja) * | 2006-06-15 | 2012-01-18 | シャープ株式会社 | 窒化物半導体発光素子の製造方法および窒化物半導体発光素子 |
CN101093867B (zh) * | 2006-06-19 | 2010-12-08 | 财团法人工业技术研究院 | 三族氮化物垂直柱阵列衬底 |
-
2008
- 2008-01-21 KR KR20080006071A patent/KR101510377B1/ko active IP Right Grant
-
2009
- 2009-01-21 CN CN2009801027615A patent/CN101926012B/zh active Active
- 2009-01-21 US US12/514,751 patent/US8017414B2/en not_active Expired - Fee Related
- 2009-01-21 EP EP09703277.5A patent/EP2239790B1/en not_active Not-in-force
- 2009-01-21 WO PCT/KR2009/000319 patent/WO2009093846A2/ko active Application Filing
Non-Patent Citations (2)
Title |
---|
None |
See also references of EP2239790A4 |
Also Published As
Publication number | Publication date |
---|---|
CN101926012B (zh) | 2013-04-24 |
US8017414B2 (en) | 2011-09-13 |
EP2239790A2 (en) | 2010-10-13 |
WO2009093846A3 (ko) | 2009-10-22 |
KR101510377B1 (ko) | 2015-04-06 |
US20100317131A1 (en) | 2010-12-16 |
KR20090080216A (ko) | 2009-07-24 |
EP2239790B1 (en) | 2018-04-04 |
EP2239790A4 (en) | 2015-03-18 |
EP2239790A9 (en) | 2010-11-24 |
CN101926012A (zh) | 2010-12-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR20190117706A (ko) | 수직으로 적층된 다색 발광 다이오드(led) 디스플레이를 위한 방법들 및 장치들 | |
WO2009093846A2 (ko) | 발광소자의 제조방법 | |
US20240079856A1 (en) | Method of fabricating a resonant cavity and distributed bragg reflector mirrors for a vertical cavity surface emitting laser on a wing of an epitaxial lateral overgrowth region | |
WO2011025291A2 (ko) | 요철 패턴 기판 상의 고품질 비극성/반극성 반도체 소자 및 그 제조 방법 | |
WO2010143778A1 (ko) | 반도체 기판, 그 제조 방법, 반도체 소자 및 그 제조 방법 | |
WO2010085042A2 (en) | Semiconductor device, light emitting device and method for manufacturing the same | |
WO2013015472A1 (ko) | 반도체 발광소자 및 그 제조방법 | |
US8765584B2 (en) | Semiconductor device and manufacturing method therefor | |
WO2010147357A2 (ko) | 이종 기판, 그를 이용한 질화물계 반도체 소자 및 그의 제조 방법 | |
WO2010098606A2 (en) | Method for fabricating light emitting device | |
WO2016159614A1 (en) | Uv light emitting device | |
US9012934B2 (en) | Method of forming semiconductor layer and semiconductor light emitting device | |
US20230411554A1 (en) | Small size light emiting diodes fabricated via regrowth | |
WO2015016507A1 (ko) | 발광 소자 제조용 템플릿 및 자외선 발광 소자 제조 방법 | |
TWI819447B (zh) | 半導體基板、半導體基板之製造方法、半導體基板之製造裝置、電子零件及電子機器 | |
KR102466001B1 (ko) | 반도체 소자 제조방법 및 제조된 반도체 소자 | |
WO2014042461A1 (ko) | 고휘도 질화물 발광소자 및 그 제조 방법 | |
WO2014007419A1 (ko) | 질화물계 반도체 발광 소자 및 그의 제조 방법 | |
WO2012036472A2 (ko) | 결정성 막대를 이용한 수직형 발광 다이오드의 제조방법 | |
WO2018221752A1 (ko) | 3차원 장파장 발광다이오드 및 그 제조 방법 | |
WO2024025165A1 (ko) | 2차원 소재를 이용한 반분극/무분극 기판, 다파장 광소자 및 이의 제조 방법 | |
WO2019216684A1 (ko) | 반도체 기판의 제조 방법 | |
US20240313151A1 (en) | Semiconductor device manufacturing method and manufacturing apparatus, semiconductor device and electronic device | |
KR20090074358A (ko) | 질화물계 발광 소자 및 그 제조방법 | |
CN117616161A (zh) | 在高品质外延晶体层上制备小尺寸发光二极管的方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 200980102761.5 Country of ref document: CN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 12514751 Country of ref document: US |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 09703277 Country of ref document: EP Kind code of ref document: A2 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2009703277 Country of ref document: EP |