WO2023282365A1 - 반도체 발광 소자 및 디스플레이 장치 - Google Patents

반도체 발광 소자 및 디스플레이 장치 Download PDF

Info

Publication number
WO2023282365A1
WO2023282365A1 PCT/KR2021/008491 KR2021008491W WO2023282365A1 WO 2023282365 A1 WO2023282365 A1 WO 2023282365A1 KR 2021008491 W KR2021008491 W KR 2021008491W WO 2023282365 A1 WO2023282365 A1 WO 2023282365A1
Authority
WO
WIPO (PCT)
Prior art keywords
light emitting
semiconductor light
electrode
emitting device
layer
Prior art date
Application number
PCT/KR2021/008491
Other languages
English (en)
French (fr)
Inventor
김진성
장원재
최원석
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to KR1020237044519A priority Critical patent/KR20240021192A/ko
Priority to PCT/KR2021/008491 priority patent/WO2023282365A1/ko
Publication of WO2023282365A1 publication Critical patent/WO2023282365A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/075Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/075Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00
    • H01L25/0753Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00 the devices being arranged next to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/15Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components with at least one potential-jump barrier or surface barrier specially adapted for light emission
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/15Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components with at least one potential-jump barrier or surface barrier specially adapted for light emission
    • H01L27/153Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components with at least one potential-jump barrier or surface barrier specially adapted for light emission in a repetitive configuration, e.g. LED bars
    • H01L27/156Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components with at least one potential-jump barrier or surface barrier specially adapted for light emission in a repetitive configuration, e.g. LED bars two-dimensional arrays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/20Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular shape, e.g. curved or truncated substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/38Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes with a particular shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/44Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the coatings, e.g. passivation layer or anti-reflective coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/52Encapsulations
    • H01L33/54Encapsulations having a particular shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/62Arrangements for conducting electric current to or from the semiconductor body, e.g. lead-frames, wire-bonds or solder balls

Definitions

  • Embodiments relate to semiconductor light emitting devices and display devices.
  • a display device displays a high-quality image by using a self-light emitting device such as a light emitting diode as a light source of a pixel.
  • a self-light emitting device such as a light emitting diode as a light source of a pixel.
  • Light emitting diodes exhibit excellent durability even under harsh environmental conditions, and are in the limelight as a light source for next-generation display devices because of their long lifespan and high luminance.
  • Such display devices are expanding into various forms such as flexible displays, foldable displays, stretchable displays, and rollable displays beyond flat panel displays.
  • nano-level light emitting diodes as well as micro-level light emitting diodes are manufactured, and it is possible to implement ultra-high resolution displays using these light emitting diodes.
  • Nano-level light emitting diodes as well as micro-level light emitting diodes are usually manufactured through a growth process and an etching process.
  • the corresponding semiconductor layer is etched using a dry etching process to manufacture a light emitting diode.
  • Plasma is formed for the dry etching process, and the density of this plasma is different depending on the position of the wafer.
  • the etching process is performed using plasma having different densities for each position of the wafer, the etching degree of the semiconductor layer is different for each position of the wafer, and thus the manufactured light emitting diodes may have different diameters or lengths.
  • a nano-level pattern needs to be formed, and it is difficult to form such a nano-level pattern.
  • light emitting diodes manufactured using the nanoscale patterns as masks may have different diameters.
  • Different diameters mean different light emitting areas. Therefore, when a display is implemented using light emitting diodes different from each other, luminance of each pixel is different from each other, resulting in poor image quality.
  • FIG. 1 shows a state in which manufactured light emitting diodes are mounted on a substrate for display implementation.
  • the diameters and lengths of the nano-level light emitting diodes 3 are different, so the number of pixels that do not turn on during display implementation is too large for mass production. I have this impossible problem.
  • Embodiments are aimed at solving the foregoing and other problems.
  • Another object of the embodiments is to provide semiconductor light emitting devices having the same diameter and/or length (or height).
  • Another object of the embodiments is to provide a semiconductor light emitting device that does not need to form a separate electrode after manufacturing the semiconductor light emitting device.
  • Another object of the embodiments is to provide a semiconductor light emitting device that does not need to form a separate insulating layer after manufacturing the semiconductor light emitting device.
  • an embodiment is to provide a semiconductor light emitting device that can be freely manufactured in a desired shape.
  • Another object of the embodiments is to provide a display device capable of minimizing lighting failure.
  • another object of the embodiments is to provide a display device capable of ensuring lighting uniformity of each pixel.
  • a semiconductor light emitting device includes a light emitting unit having a first region and a second region along a major axis direction; an insulating layer surrounding side surfaces of the first region; and a first electrode surrounding a side surface of the second region, wherein the insulating layer has the same thickness as the first electrode.
  • a display device includes a substrate; first and second assembling wires on the substrate; a plurality of semiconductor light emitting elements disposed on the first and second assembled wires and generating light of different colors; a first wiring electrode on one side of each of the plurality of semiconductor light emitting elements; and a second wiring electrode on the other side of each of the plurality of semiconductor light emitting devices.
  • the semiconductor light emitting device 150 shown in FIG. 12 may be manufactured using the processes shown in FIGS. 13 to 17 . That is, a plurality of growth holes 510 may be formed on the wafer 501 ( FIGS. 15A and 15B ), and the light emitting parts 160 may be grown in the plurality of growth holes 510 . Thereafter, the plurality of semiconductor light emitting devices 150 may be manufactured by removing the insulating film 503 and separating the plurality of light emitting units from the wafer 501 .
  • each of the plurality of growth holes 510 has the same diameter and/or depth in the embodiment, the diameter and/or length of each of the plurality of light emitting parts 160 grown in the plurality of growth holes 510 may also be the same. .
  • each pixel has the same luminance when a display is implemented using a plurality of semiconductor light emitting devices having the same diameter, it is possible to improve image quality by eliminating luminance deviation between pixels.
  • all of the plurality of semiconductor light emitting elements 150B are electrically connected to the wiring electrodes 330 and 340, so that the light is turned on. defects can be prevented.
  • the semiconductor light emitting device 150A as shown in FIGS. 18 and 19 may be manufactured using the processes illustrated in FIGS. 20 to 28 . That is, after growing the light emitting part 160 in the plurality of growth holes 510 on the wafer 501, a portion of the upper portion of the insulating film 503 may be removed (FIG. 24). Thereafter, after the metal film is formed, an etching process is performed until all of the metal film on the removed insulating film is removed, so that upper electrodes 156 and 157 may be formed (FIGS. 25 and 26).
  • an etching process is performed using the upper electrodes 156 and 157 as a mask to remove the insulating film 503, so that the insulating film 503 overlapping the upper electrodes 156 and 157 is not removed and becomes the insulating layer 155. It can be (FIGS. 27 and 28).
  • a lower electrode 158 is formed on the opposite side of the upper electrodes 156 and 157 in the light emitting unit 160, so that a semiconductor light emitting device can be manufactured.
  • the upper electrodes 156 and 157 and the lower electrode 158 as well as the insulating layer 155 are formed, and after the light emitting unit 160 is manufactured, separate electrodes and an insulating layer are formed. Since there is no need to form, the process can be shortened and the material cost can be reduced.
  • FIG. 1 shows a state in which a conventional light emitting diode is mounted on a substrate for display implementation.
  • FIG. 2 illustrates a living room of a house in which a display device 100 according to an exemplary embodiment is disposed.
  • FIG. 3 is a schematic block diagram of a display device according to an exemplary embodiment.
  • FIG. 4 is a circuit diagram showing an example of a pixel of FIG. 3 .
  • FIG. 5 is a plan view showing the display panel of FIG. 3 in detail.
  • FIG. 6 is an enlarged view of a first panel area in the display device of FIG. 2 .
  • FIG. 8 is a view showing an example in which a light emitting device according to an embodiment is assembled to a substrate by a self-assembly method.
  • FIGS. 9 and 10 are diagrams illustrating examples in which a light emitting device according to an embodiment is transferred to a substrate by a transfer method.
  • FIG. 11 is a schematic cross-sectional view of the display panel of FIG. 3 .
  • 13 to 17 show manufacturing processes of the semiconductor light emitting device according to the first embodiment.
  • FIG. 18 is a cross-sectional view of a semiconductor light emitting device according to a second embodiment.
  • 20 to 28 show manufacturing processes of the semiconductor light emitting device according to the second embodiment.
  • 29 is a cross-sectional view of a semiconductor light emitting device according to a third embodiment.
  • FIG. 30 is a plan view illustrating a display device according to an exemplary embodiment.
  • 31 is a cross-sectional view of a display device according to an embodiment.
  • the display devices described in this specification include mobile phones, smart phones, laptop computers, digital broadcasting terminals, personal digital assistants (PDAs), portable multimedia players (PMPs), navigation devices, slate PCs, Tablet PCs, ultra-books, digital TVs, desktop computers, and the like may be included.
  • PDAs personal digital assistants
  • PMPs portable multimedia players
  • navigation devices slate PCs, Tablet PCs, ultra-books, digital TVs, desktop computers, and the like may be included.
  • slate PCs slate PCs
  • Tablet PCs ultra-books
  • digital TVs desktop computers, and the like
  • the configuration according to the embodiment described in this specification can be applied to a device capable of displaying even a new product type to be developed in the future.
  • FIG. 2 illustrates a living room of a house in which a display device 100 according to an exemplary embodiment is disposed.
  • the display device 100 of the embodiment can display the status of various electronic products such as the washing machine 101, the robot cleaner 102, and the air purifier 103, can communicate with each electronic product based on IOT, and can provide user It is also possible to control each electronic product based on the setting data of the .
  • the display device 100 may include a flexible display fabricated on a thin and flexible substrate.
  • a flexible display can be bent or rolled like paper while maintaining characteristics of a conventional flat panel display.
  • a unit pixel means a minimum unit for implementing one color.
  • a unit pixel of the flexible display may be implemented by a light emitting device.
  • the light emitting device may be a Micro-LED or a Nano-LED, but is not limited thereto.
  • FIG. 3 is a block diagram schematically illustrating a display device according to an exemplary embodiment
  • FIG. 4 is a circuit diagram illustrating an example of a pixel of FIG. 3 .
  • the display device may include a display panel 10 , a driving circuit 20 , a scan driving unit 30 and a power supply circuit 50 .
  • the display device 100 may drive a light emitting element in an active matrix (AM) method or a passive matrix (PM) method.
  • AM active matrix
  • PM passive matrix
  • the driving circuit 20 may include a data driver 21 and a timing controller 22 .
  • the display panel 10 may be formed in a rectangular shape, but is not limited thereto. That is, the display panel 10 may be formed in a circular or elliptical shape. At least one side of the display panel 10 may be formed to be bent with a predetermined curvature.
  • the display panel 10 may be divided into a display area DA and a non-display area NDA disposed around the display area DA.
  • the display area DA is an area where the pixels PX are formed to display an image.
  • the display panel 10 includes data lines (D1 to Dm, where m is an integer greater than or equal to 2), scan lines (S1 to Sn, where n is an integer greater than or equal to 2) crossing the data lines (D1 to Dm), and a high potential voltage. It may include pixels PXs connected to a high-potential voltage line supplied thereto, a low-potential voltage line supplied with a low-potential voltage, data lines D1 to Dm, and scan lines S1 to Sn.
  • Each of the pixels PX may include a first sub-pixel PX1 , a second sub-pixel PX2 , and a third sub-pixel PX3 .
  • the first sub-pixel PX1 emits light of a first color of a first main wavelength
  • the second sub-pixel PX2 emits light of a second color of a second main wavelength
  • the third sub-pixel PX3 emits light of a second color.
  • a third color light having a third main wavelength may be emitted.
  • the first color light may be red light
  • the second color light may be green light
  • the third color light may be blue light, but are not limited thereto.
  • FIG. 3 it is illustrated that each of the pixels PX includes three sub-pixels, but is not limited thereto. That is, each of the pixels PX may include four or more sub-pixels.
  • Each of the first sub-pixel PX1 , the second sub-pixel PX2 , and the third sub-pixel PX3 includes at least one of the data lines D1 to Dm, at least one of the scan lines S1 to Sn, and a high voltage signal. It can be connected to the above voltage line.
  • the first sub-pixel PX1 may include light emitting elements LD, a plurality of transistors for supplying current to the light emitting elements LD, and at least one capacitor Cst.
  • each of the first sub-pixel PX1 , the second sub-pixel PX2 , and the third sub-pixel PX3 may include only one light emitting element LD and at least one capacitor Cst. may be
  • Each of the light emitting elements LD may be a semiconductor light emitting diode including a first electrode, a plurality of conductive semiconductor layers, and a second electrode.
  • the first electrode may be an anode electrode and the second electrode may be a cathode electrode, but is not limited thereto.
  • the plurality of transistors may include a driving transistor DT supplying current to the light emitting elements LD and a scan transistor ST supplying a data voltage to a gate electrode of the driving transistor DT, as shown in FIG. 6 .
  • the driving transistor DT has a gate electrode connected to the source electrode of the scan transistor ST, a source electrode connected to a high potential voltage line to which a high potential voltage is applied, and a drain connected to the first electrodes of the light emitting elements LD. electrodes may be included.
  • the scan transistor ST has a gate electrode connected to the scan line (Sk, k is an integer satisfying 1 ⁇ k ⁇ n), a source electrode connected to the gate electrode of the driving transistor DT, and data lines Dj, j an integer that satisfies 1 ⁇ j ⁇ m).
  • the capacitor Cst is formed between the gate electrode and the source electrode of the driving transistor DT.
  • the storage capacitor Cst charges a difference between the gate voltage and the source voltage of the driving transistor DT.
  • the driving transistor DT and the scan transistor ST may be formed of thin film transistors.
  • the driving transistor DT and the scan transistor ST are formed of P-type MOSFETs (Metal Oxide Semiconductor Field Effect Transistors), but the present invention is not limited thereto.
  • the driving transistor DT and the scan transistor ST may be formed of N-type MOSFETs. In this case, positions of the source and drain electrodes of the driving transistor DT and the scan transistor ST may be changed.
  • each of the first sub-pixel PX1 , the second sub-pixel PX2 , and the third sub-pixel PX3 includes one driving transistor DT, one scan transistor ST, and one capacitor ( 2T1C (2 Transistor - 1 capacitor) having Cst) is illustrated, but the present invention is not limited thereto.
  • Each of the first sub-pixel PX1 , the second sub-pixel PX2 , and the third sub-pixel PX3 may include a plurality of scan transistors ST and a plurality of capacitors Cst.
  • the second sub-pixel PX2 and the third sub-pixel PX3 may be expressed with substantially the same circuit diagram as the first sub-pixel PX1 , a detailed description thereof will be omitted.
  • the driving circuit 20 outputs signals and voltages for driving the display panel 10 .
  • the driving circuit 20 may include a data driver 21 and a timing controller 22 .
  • the data driver 21 receives digital video data DATA and a source control signal DCS from the timing controller 22 .
  • the data driver 21 converts the digital video data DATA into analog data voltages according to the source control signal DCS and supplies them to the data lines D1 to Dm of the display panel 10 .
  • the timing controller 22 receives digital video data DATA and timing signals from the host system.
  • the timing signals may include a vertical sync signal, a horizontal sync signal, a data enable signal, and a dot clock.
  • the host system may be an application processor of a smart phone or tablet PC, a monitor, a system on chip of a TV, and the like.
  • the timing controller 22 generates control signals for controlling operation timings of the data driver 21 and the scan driver 30 .
  • the control signals may include a source control signal DCS for controlling the operation timing of the data driver 21 and a scan control signal SCS for controlling the operation timing of the scan driver 30 .
  • the driving circuit 20 may be disposed in the non-display area NDA provided on one side of the display panel 10 .
  • the driving circuit 20 may be formed of an integrated circuit (IC) and mounted on the display panel 10 using a chip on glass (COG) method, a chip on plastic (COP) method, or an ultrasonic bonding method.
  • COG chip on glass
  • COP chip on plastic
  • ultrasonic bonding method The present invention is not limited to this.
  • the driving circuit 20 may be mounted on a circuit board (not shown) instead of the display panel 10 .
  • the data driver 21 may be mounted on the display panel 10 using a chip on glass (COG) method, a chip on plastic (COP) method, or an ultrasonic bonding method, and the timing controller 22 may be mounted on a circuit board. there is.
  • COG chip on glass
  • COP chip on plastic
  • the scan driver 30 receives the scan control signal SCS from the timing controller 22 .
  • the scan driver 30 generates scan signals according to the scan control signal SCS and supplies them to the scan lines S1 to Sn of the display panel 10 .
  • the scan driver 30 may include a plurality of transistors and be formed in the non-display area NDA of the display panel 10 .
  • the scan driver 30 may be formed as an integrated circuit, and in this case, it may be mounted on a gate flexible film attached to the other side of the display panel 10 .
  • the circuit board may be attached to pads provided on one edge of the display panel 10 using an anisotropic conductive film. Due to this, the lead lines of the circuit board may be electrically connected to the pads.
  • the circuit board may be a flexible printed circuit board, a printed circuit board, or a flexible film such as a chip on film. The circuit board may be bent under the display panel 10 . Accordingly, one side of the circuit board may be attached to one edge of the display panel 10 and the other side may be disposed under the display panel 10 and connected to a system board on which a host system is mounted.
  • the power supply circuit 50 may generate voltages necessary for driving the display panel 10 from the main power supplied from the system board and supply the voltages to the display panel 10 .
  • the power supply circuit 50 generates a high potential voltage (VDD) and a low potential voltage (VSS) for driving the light emitting elements (LD) of the display panel 10 from the main power supply to generate the display panel 10. of high-potential voltage lines and low-potential voltage lines.
  • the power supply circuit 50 may generate and supply driving voltages for driving the driving circuit 20 and the scan driving unit 30 from the main power.
  • FIG. 5 is a plan view showing the display panel of FIG. 3 in detail.
  • data pads DP1 to DPp, where p is an integer greater than or equal to 2
  • floating pads FP1 and FP2 floating pads FP1 and FP2
  • power pads PP1 and PP2 floating lines FL1 and FL2
  • low potential voltage line VSSL low potential voltage line VSSL
  • data lines D1 to Dm first pad electrodes 210 and second pad electrodes 220 are shown.
  • data lines D1 to Dm, first pad electrodes 210, second pad electrodes 220, and pixels PX are provided in the display area DA of the display panel 10. can be placed.
  • the data lines D1 to Dm may extend long in the second direction (Y-axis direction). One sides of the data lines D1 to Dm may be connected to the driving circuit ( 20 in FIG. 5 ). For this reason, the data voltages of the driving circuit 20 may be applied to the data lines D1 to Dm.
  • the first pad electrodes 210 may be spaced apart from each other at predetermined intervals in the first direction (X-axis direction). For this reason, the first pad electrodes 210 may not overlap the data lines D1 to Dm.
  • the first pad electrodes 210 disposed on the right edge of the display area DA may be connected to the first floating line FL1 in the non-display area NDA.
  • the first pad electrodes 210 disposed on the left edge of the display area DA may be connected to the second floating line FL2 in the non-display area NDA.
  • Each of the second pad electrodes 220 may extend long in the first direction (X-axis direction). For this reason, the second pad electrodes 220 may overlap the data lines D1 to Dm. Also, the second pad electrodes 220 may be connected to the low potential voltage line VSSL in the non-display area NDA. For this reason, the low potential voltage of the low potential voltage line VSSL may be applied to the second pad electrodes 220 .
  • a pad part PA, a driving circuit 20, a first floating line FL1, a second floating line FL2, and a low potential voltage line VSSL are disposed in the non-display area NDA of the display panel 10. It can be.
  • the cap head part PA may include data pads DP1 to DPp, floating pads FP1 and FP2, and power pads PP1 and PP2.
  • the pad part PA may be disposed on one edge of the display panel 10, for example, on the lower edge.
  • the data pads DP1 to DPp, the floating pads FP1 and FP2, and the power pads PP1 and PP2 may be disposed side by side in the first direction (X-axis direction) of the pad part PA.
  • a circuit board may be attached to the data pads DP1 to DPp, the floating pads FP1 and FP2, and the power pads PP1 and PP2 using an anisotropic conductive film. Accordingly, the circuit board, the data pads DP1 to DPp, the floating pads FP1 and FP2, and the power pads PP1 and PP2 may be electrically connected.
  • the driving circuit 20 may be connected to the data pads DP1 to DPp through link lines.
  • the driving circuit 20 may receive digital video data DATA and timing signals through the data pads DP1 to DPp.
  • the driving circuit 20 may convert the digital video data DATA into analog data voltages and supply them to the data lines D1 to Dm of the display panel 10 .
  • the low potential voltage line VSSL may be connected to the first power pad PP1 and the second power pad PP2 of the pad part PA.
  • the low potential voltage line VSSL may extend long in the second direction (Y-axis direction) in the non-display area NDA outside the left and right sides of the display area DA.
  • the low potential voltage line VSSL may be connected to the second pad electrode 220 . Due to this, the low potential voltage of the power supply circuit 50 is applied to the second pad electrode 220 through the circuit board, the first power pad PP1 , the second power pad PP2 and the low potential voltage line VSSL. may be authorized.
  • the first floating line FL1 may be connected to the first floating pad FP1 of the pad part PA.
  • the first floating line FL1 may extend long in the second direction (Y-axis direction) in the non-display area NDA outside the left and right outside of the display area DA.
  • the first floating pad FP1 and the first floating line FL1 may be dummy pads and dummy lines to which no voltage is applied.
  • the second floating line FL2 may be connected to the second floating pad FP2 of the pad part PA.
  • the first floating line FL1 may extend long in the second direction (Y-axis direction) in the non-display area NDA outside the left and right outside of the display area DA.
  • the second floating pad FP2 and the second floating line FL2 may be dummy pads and dummy lines to which no voltage is applied.
  • the light emitting elements (LDs in FIG. 6 ) have a very small size, they are mounted on the first sub-pixel PX1 , the second sub-pixel PX2 , and the third sub-pixel PX3 of each of the pixels PX. is very difficult
  • the first sub-pixel PX1 , the second sub-pixel PX2 , and the third sub-pixel of each of the pixels PX are aligned to align the light emitting elements ( 150 in FIG. 6 ).
  • An electric field can be formed at (PX3).
  • the first sub-pixel PX1, the second sub-pixel PX2 and the third sub-pixel ( PX3) the light emitting elements 150 may be aligned.
  • the first pad electrodes 210 are spaced apart at predetermined intervals in the first direction (X-axis direction), but during the manufacturing process, the first pad electrodes 210 are separated in the first direction (X-axis direction). direction), and can be extended and arranged long.
  • the first pad electrodes 210 may be connected to the first floating line FL1 and the second floating line FL2 during the manufacturing process. Therefore, the first pad electrodes 210 may receive a ground voltage through the first floating line FL1 and the second floating line FL2. Therefore, after aligning the light emitting elements 150 using a dielectrophoretic method during the manufacturing process, the first pad electrodes 210 are disconnected in a predetermined direction in the first direction (X-axis direction) by disconnecting the first pad electrodes 210 . It can be arranged spaced apart from the interval of.
  • first floating line FL1 and the second floating line FL2 are lines for applying a ground voltage during a manufacturing process, and no voltage may be applied in a completed display device.
  • ground voltage may be applied to the first floating line FL1 and the second floating line FL2 to prevent static electricity or to drive the light emitting element 150 in the finished display device.
  • FIG. 6 is an enlarged view of a first panel area in the display device of FIG. 2 .
  • the display device 100 of the embodiment may be manufactured by mechanically and electrically connecting a plurality of panel areas such as the first panel area A1 by tiling.
  • the first panel area A1 may include a plurality of light emitting elements 150 arranged for each unit pixel (PX in FIG. 5 ).
  • the unit pixel PX may include a first sub-pixel PX1 , a second sub-pixel PX2 , and a third sub-pixel PX3 .
  • a plurality of red light emitting elements 150R are disposed in the first sub-pixel PX1
  • a plurality of green light emitting elements 150G are disposed in the second sub-pixel PX2
  • a plurality of blue light emitting elements 150B may be disposed in the third sub-pixel PX3.
  • the unit pixel PX may further include a fourth sub-pixel in which no light emitting element is disposed, but is not limited thereto.
  • FIG. 7 is an enlarged view of area A2 of FIG. 6 .
  • a display device 100 may include a substrate 200 , wiring electrodes 201 and 202 , an insulating layer 206 , and a plurality of light emitting elements 150 . More components than this may be included.
  • the wiring electrode may include a first wiring electrode 201 and a second wiring electrode 202 spaced apart from each other.
  • the first wire electrode 201 and the second wire electrode 202 may be provided to generate dielectrophoretic force to assemble the light emitting element 150 .
  • the light emitting element 150 may include, but is not limited to, a red light emitting element 150, a green light emitting element 150G, and a blue light emitting element 150B0 to form a sub-pixel, respectively. It is also possible to implement red and green colors by providing a green phosphor or the like.
  • the substrate 200 may be formed of glass or polyimide.
  • the substrate 200 may include a flexible material such as polyethylene naphthalate (PEN) or polyethylene terephthalate (PET).
  • PEN polyethylene naphthalate
  • PET polyethylene terephthalate
  • the substrate 200 may be a transparent material, but is not limited thereto.
  • the insulating layer 206 may include an insulating and flexible material such as polyimide, PEN, PET, or the like, and may be integrally formed with the substrate 200 to form a single substrate.
  • the insulating layer 206 may be a conductive adhesive layer having adhesiveness and conductivity, and the conductive adhesive layer may have flexibility and thus enable a flexible function of the display device.
  • the insulating layer 206 may be an anisotropy conductive film (ACF) or a conductive adhesive layer such as an anisotropic conductive medium or a solution containing conductive particles.
  • the conductive adhesive layer may be a layer that is electrically conductive in a direction perpendicular to the thickness but electrically insulating in a direction horizontal to the thickness.
  • the insulating layer 206 may include an assembly hole 203 into which the light emitting device 150 is inserted. Therefore, during self-assembly, the light emitting element 150 can be easily inserted into the assembly hole 203 of the insulating layer 206 .
  • the assembly hole 203 may be called an insertion hole, a fixing hole, an alignment hole, or the like.
  • a method of mounting the light emitting device 150 on the substrate 200 may include, for example, a self-assembly method (FIG. 8) and a transfer method (FIGS. 9 and 10).
  • FIG. 8 is a view showing an example in which a light emitting device according to an embodiment is assembled to a substrate by a self-assembly method.
  • the substrate 200 may be a panel substrate of a display device.
  • the substrate 200 will be described as a panel substrate of a display device, but the embodiment is not limited thereto.
  • the substrate 200 may be formed of glass or polyimide.
  • the substrate 200 may include a flexible material such as polyethylene naphthalate (PEN) or polyethylene terephthalate (PET).
  • PEN polyethylene naphthalate
  • PET polyethylene terephthalate
  • the substrate 200 may be a transparent material, but is not limited thereto.
  • a light emitting device 150 may be put into a chamber 1300 filled with a fluid 1200 .
  • the fluid 1200 may be water such as ultrapure water, but is not limited thereto.
  • a chamber may also be called a water bath, container, vessel, or the like.
  • the substrate 200 may be disposed on the chamber 1300 .
  • the substrate 200 may be introduced into the chamber 1300 .
  • a pair of wiring electrodes 201 and 202 corresponding to each of the light emitting elements 150 to be assembled may be disposed on the substrate 200 .
  • the wiring electrodes 201 and 202 may be formed of a transparent electrode (ITO) or may include a metal material having excellent electrical conductivity.
  • the wiring electrodes 201 and 202 may be titanium (Ti), chromium (Cr), nickel (Ni), aluminum (Al), platinum (Pt), gold (Au), tungsten (W), molybdenum (Mo) ) It may be formed of at least one or an alloy thereof.
  • An electric field is formed between the wiring electrodes 201 and 202 by an externally supplied voltage, and dielectrophoretic force may be formed between the wiring electrodes 201 and 202 by the electric field.
  • the light emitting element 150 can be fixed to the assembly hole 203 on the substrate 200 by this dielectrophoretic force.
  • the spacing between the wiring electrodes 201 and 202 is smaller than the width of the light emitting element 150 and the width of the assembly hole 203, so that the assembly position of the light emitting element 150 using an electric field can be more precisely fixed.
  • An insulating layer 206 is formed on the wiring electrodes 201 and 202 to protect the wiring electrodes 201 and 202 from the fluid 1200 and prevent current flowing through the wiring electrodes 201 and 202 from leaking.
  • the insulating layer 206 may be formed of a single layer or multiple layers of an inorganic insulator such as silica or alumina or an organic insulator.
  • the insulating layer 206 may include an insulating and flexible material such as polyimide, PEN, PET, or the like, and may be integrally formed with the substrate 200 to form a single substrate.
  • the insulating layer 206 may be an adhesive insulating layer or a conductive adhesive layer having conductivity. Since the insulating layer 206 is flexible, it can enable a flexible function of the display device.
  • the insulating layer 206 has a barrier rib, and an assembly hole 203 may be formed by the barrier rib. For example, when the substrate 200 is formed, a portion of the insulating layer 206 is removed, so that each of the light emitting elements 150 may be assembled into the assembly hole 203 of the insulating layer 206 .
  • An assembly hole 203 to which the light emitting devices 150 are coupled is formed in the substrate 200 , and a surface on which the assembly hole 203 is formed may contact the fluid 1200 .
  • the assembly hole 203 may guide an accurate assembly position of the light emitting device 150 .
  • the assembly hole 203 may have a shape and size corresponding to the shape of the light emitting element 150 to be assembled at the corresponding position. Accordingly, it is possible to prevent assembling another light emitting device or assembling a plurality of light emitting devices into the assembly hole 203 .
  • the assembly device 1100 including a magnetic material may move along the substrate 200 .
  • a magnetic material for example, a magnet or an electromagnet may be used.
  • the assembly device 1100 may move while in contact with the substrate 200 in order to maximize the area of the magnetic field into the fluid 1200 .
  • the assembly device 1100 may include a plurality of magnetic bodies or may include a magnetic body having a size corresponding to that of the substrate 200 . In this case, the moving distance of the assembling device 1100 may be limited within a predetermined range.
  • the light emitting device 150 in the chamber 1300 may move toward the assembly device 1100 .
  • the light emitting element 150 may enter the assembly hole 203 and come into contact with the substrate 200 .
  • the electric field applied by the wiring electrodes 201 and 202 formed on the substrate 200 prevents the light emitting element 150 contacting the substrate 200 from being separated by the movement of the assembly device 1100.
  • a predetermined solder layer 225 is further formed between the light emitting element 150 assembled on the assembly hole 203 of the substrate 200 and the second pad electrode 222 to improve the bonding strength of the light emitting element 150.
  • the first pad electrode 221 is connected to the light emitting element 150 to apply power.
  • a molding layer 230 may be formed on the barrier rib 200S and the assembly hole 203 of the substrate 200 .
  • the molding layer 230 may be a transparent resin or a resin containing a reflective material or a scattering material.
  • FIGS. 9 and 10 are diagrams illustrating examples in which a light emitting device according to an embodiment is transferred to a substrate by a transfer method.
  • a plurality of light emitting devices 150 may be attached to a substrate 1500 .
  • the substrate 1500 may be a donor substrate as an intermediate medium for mounting the light emitting device 150 on the display substrate.
  • the plurality of light emitting devices 150 manufactured on the wafer may be attached to the substrate 1500, and the plurality of light emitting devices 150 attached to the substrate 1500 may be transferred onto the display substrate.
  • the substrate 1500 as a donor substrate is described, but the substrate 1500 may be a display substrate for direct transfer of the plurality of light emitting elements 150 without passing through the donor substrate.
  • each of the plurality of light emitting elements 150 on the substrate 1500 corresponds to each pixel of the substrate 200 for display.
  • An alignment process may be performed to do so.
  • the substrate 1500 or the display substrate 200
  • the plurality of light emitting elements 150 on the substrate 1500 are transferred to each pixel on the display substrate 200. It can be.
  • the plurality of light emitting elements 150 are attached to the display substrate 200 through a post process and the plurality of light emitting elements 150 are electrically connected to a power source, so that the plurality of light emitting elements 150 emit light to display an image. can be displayed.
  • an image may be displayed using a light emitting element.
  • the light-emitting device of the embodiment is a self-emitting device that emits light by itself when electricity is applied, and may be a semiconductor light-emitting device. Since the light emitting element of the embodiment is made of an inorganic semiconductor material, it is resistant to deterioration and has a semi-permanent lifespan, so it can contribute to realizing high-quality and high-definition images in a display device by providing stable light.
  • a display device may use a light emitting element as a light source, include a color generator on the light emitting element, and display an image by the color generator (FIG. 11).
  • the display device may display projections through a display panel in which each of a plurality of light emitting elements generating light of different colors is arranged in a pixel.
  • FIG. 11 is a schematic cross-sectional view of the display panel of FIG. 5 .
  • the display panel 10 of the embodiment may include a first substrate 40 , a light emitting unit 41 , a color generating unit 42 and a second substrate 46 .
  • the display panel 10 of the embodiment may include more components than these, but is not limited thereto.
  • the first substrate 40 may be the substrate 200 shown in FIG. 9 .
  • One or more insulating layers may be disposed, but is not limited thereto.
  • the first substrate 40 may support the light emitting unit 41 , the color generating unit 42 , and the second substrate 46 .
  • the first substrate 40 includes various elements as described above, for example, data lines (D1 to Dm, m is an integer greater than or equal to 2), scan lines S1 to Sn, and high potential voltage as shown in FIG. line and low potential voltage line, as shown in FIG. 6, a plurality of transistors ST and DT and at least one capacitor Cst, and as shown in FIG. 7, a first pad electrode 210 and a second pad An electrode 220 may be provided.
  • the first substrate 40 may be formed of glass or a flexible material, but is not limited thereto.
  • the light emitting unit 41 may provide light to the color generating unit 42 .
  • the light emitting unit 41 may include a plurality of light sources that emit light themselves by applying electricity.
  • the light source may include a light emitting device ( 150 in FIG. 6 ).
  • the plurality of light emitting devices 150 are separately disposed for each sub-pixel of a pixel and independently emit light by controlling each sub-pixel.
  • the plurality of light emitting elements 150 may be disposed regardless of pixel division and simultaneously emit light from all sub-pixels.
  • the light emitting device 150 of the embodiment may emit blue light, but is not limited thereto.
  • the light emitting device 150 of the embodiment may emit white light or purple light.
  • the light emitting device 150 may emit red light, green light, and blue light for each sub-pixel.
  • a red light emitting element emitting red light is disposed in a first sub-pixel, that is, a red sub-pixel
  • a green light emitting element emitting green light is disposed in a second sub-pixel, that is, a green sub-pixel.
  • a blue light emitting device emitting blue light may be disposed in the three sub-pixels, that is, the blue sub-pixel.
  • each of the red light emitting device, the green light emitting device, and the blue light emitting device may include a group II-IV compound or a group III-V compound, but is not limited thereto.
  • the group III-V compound may be a binary element compound selected from the group consisting of GaN, GaP, GaAs, GaSb, AlN, AlP, AlAs, AlSb, InN, InP, InAs, InSb, and mixtures thereof;
  • it may be selected from the group consisting of quaternary compounds selected from the group consisting of AlGaInP, GaAlNAs, GaAlNSb, GaAlPAs, GaAlPS
  • the color generating unit 42 may generate light of a different color from the light provided by the light emitting unit 41 .
  • the color generator 42 may include a first color generator 43 , a second color generator 44 , and a third color generator 45 .
  • the first color generating unit 43 corresponds to the first sub-pixel PX1 of the pixel
  • the second color generating unit 44 corresponds to the second sub-pixel PX2 of the pixel
  • the third color generating unit ( 45) may correspond to the third sub-pixel PX3 of the pixel.
  • the first color generating unit 43 generates first color light based on the light provided from the light emitting unit 41
  • the second color generating unit 44 generates second color light based on the light provided from the light emitting unit 41.
  • Color light is generated
  • the third color generator 45 may generate third color light based on light provided from the light emitting unit 41 .
  • the first color generating unit 43 outputs blue light from the light emitting unit 41 as red light
  • the second color generating unit 44 outputs blue light from the light emitting unit 41 as green light.
  • the third color generating unit 45 may output blue light from the light emitting unit 41 as it is.
  • the first color generator 43 includes a first color filter
  • the second color generator 44 includes a second color filter
  • the third color generator 45 includes a third color filter.
  • the first color filter, the second color filter, and the third color filter may be formed of a transparent material through which light can pass.
  • the quantum dot of the embodiment may be selected from a group II-IV compound, a group III-V compound, a group IV-VI compound, a group IV element, a group IV compound, and a combination thereof.
  • the II-VI compound is a binary element compound selected from the group consisting of CdSe, CdTe, ZnS, ZnSe, ZnTe, ZnO, HgS, HgSe, HgTe, MgSe, MgS, and mixtures thereof;
  • Group III-V compound is a binary element compound selected from the group consisting of GaN, GaP, GaAs, GaSb, AlN, AlP, AlAs, AlSb, InN, InP, InAs, InSb and mixtures thereof;
  • it may be selected from the group consisting of quaternary compounds selected from the group consisting of AlGaInP, GaAlNAs, GaAlNSb, GaAlPAs, GaAlPSb, GaInNP, GaInNAs, GaInNSb, GaInPAs, GaInPSb, InAlNP, InAlNAs, InAlNSb, InAlPAs, InAlPSb
  • Group IV-VI compounds are SnS, SnSe, SnTe, PbS, PbSe, PbTe, and a binary element compound selected from the group consisting of mixtures thereof; a ternary compound selected from the group consisting of SnSeS, SnSeTe, SnSTe, PbSeS, PbSeTe, PbSTe, SnPbS, SnPbSe, SnPbTe, and mixtures thereof; And it may be selected from the group consisting of quaternary compounds selected from the group consisting of SnPbSSe, SnPbSeTe, SnPbSTe, and mixtures thereof.
  • Group IV elements may be selected from the group consisting of Si, Ge, and mixtures thereof.
  • the group IV compound may be a binary element compound selected from the group consisting of SiC, SiGe, and mixtures thereof.
  • quantum dots may have a full width of half maximum (FWHM) of an emission wavelength spectrum of about 45 nm or less, and light emitted through the quantum dots may be emitted in all directions. Accordingly, the viewing angle of the light emitting display device may be improved.
  • FWHM full width of half maximum
  • quantum dots may have a shape such as spherical, pyramidal, multi-arm, or cubic nanoparticles, nanotubes, nanowires, nanofibers, nanoplatelet particles, etc., but are not limited thereto. does not
  • the first color filter may include red quantum dots
  • the second color filter may include green quantum dots.
  • the third color filter may not include quantum dots, but is not limited thereto.
  • blue light from the light emitting device 150 is absorbed by the first color filter, and the absorbed blue light is wavelength-shifted by red quantum dots to output red light.
  • blue light from the light emitting device 150 is absorbed by the second color filter, and the wavelength of the absorbed blue light is shifted by green quantum dots to output green light.
  • blue light from a foot and an element may be absorbed by the third color filter, and the absorbed blue light may be emitted as it is.
  • the light emitting device 150 when the light emitting device 150 emits white light, not only the first color filter and the second color filter, but also the third color filter may include quantum dots. That is, the wavelength of white light of the light emitting device 150 may be shifted to blue light by the quantum dots included in the third color filter.
  • At least one of the first color filter, the second color filter, and the third color filter may include a phosphor.
  • some of the first color filters, the second color filters, and the third color filters may include quantum dots, and others may include phosphors.
  • each of the first color filter and the second color filter may include a phosphor and a quantum dot.
  • at least one of the first color filter, the second color filter, and the third color filter may include scattering particles. Since the blue light incident on each of the first color filter, the second color filter, and the third color filter is scattered by the scattering particles and the color of the scattered blue light is shifted by the corresponding quantum dots, light output efficiency may be improved.
  • the first color generator 43 may include a first color conversion layer and a first color filter.
  • the second color generator 44 may include a second color converter and a second color filter.
  • the third color generator 45 may include a third color conversion layer and a third color filter.
  • Each of the first color conversion layer, the second color conversion layer, and the third color conversion layer may be disposed adjacent to the light emitting unit 41 .
  • the first color filter, the second color filter and the third color filter may be disposed adjacent to the second substrate 46 .
  • the first color filter may be disposed between the first color conversion layer and the second substrate 46 .
  • the second color filter may be disposed between the second color conversion layer and the second substrate 46 .
  • the third color filter may be disposed between the third color conversion layer and the second substrate 46 .
  • the first color filter may contact the upper surface of the first color conversion layer and have the same size as the first color conversion layer, but is not limited thereto.
  • the second color filter may contact the upper surface of the second color conversion layer and have the same size as the second color conversion layer, but is not limited thereto.
  • the third color filter may contact the upper surface of the third color conversion layer and have the same size as the third color conversion layer, but is not limited thereto.
  • the third color conversion layer as well as the first color conversion layer and the second color conversion layer may also include quantum dots. That is, the wavelength of white light of the light emitting device 150 may be shifted to blue light by the quantum dots included in the third color filter.
  • the second substrate 46 may be disposed on the color generator 42 to protect the color generator 42 .
  • the second substrate 46 may be formed of glass, but is not limited thereto.
  • the second substrate 46 may be called a cover window, cover glass, or the like.
  • the second substrate 46 may be formed of glass or a flexible material, but is not limited thereto.
  • the embodiment provides a plurality of semiconductor light emitting elements having the same size. That is, the size of a plurality of semiconductor light emitting devices manufactured on the wafer may be the same.
  • the size may mean at least one of diameter and/or length (or height).
  • the semiconductor light emitting device of the embodiment may have a short axis and a long axis.
  • the minor axis may be a radial direction of the semiconductor light emitting device, and the major axis direction may be a longitudinal direction of the semiconductor light emitting device. Therefore, in the semiconductor light emitting device of the embodiment, the length may be greater than the diameter.
  • the semiconductor light emitting device of the embodiment may have a rod shape, but is not limited thereto.
  • the semiconductor light emitting device of the embodiment may be a nano-level semiconductor light emitting device, but is not limited thereto.
  • the semiconductor light emitting device of the embodiment may be manufactured by growing in a growth hole previously formed in the form of a rod.
  • the corresponding growth hole may correspond to the size of the semiconductor light emitting device. That is, the corresponding growth hole may have a diameter corresponding to the diameter of the semiconductor light emitting device and a depth corresponding to the length of the semiconductor light emitting device.
  • a semiconductor light emitting device may be manufactured by growing a plurality of semiconductor layers in a corresponding growth hole through a growth process.
  • a plurality of semiconductor light emitting devices can be simultaneously manufactured by providing a plurality of growth holes on a wafer and sequentially growing a plurality of semiconductor layers in the plurality of growth holes.
  • the plurality of growth holes may have the same diameter and depth. Accordingly, a plurality of semiconductor light emitting devices manufactured in a plurality of growth holes having the same diameter and depth may have the same size.
  • a plurality of semiconductor light emitting devices are manufactured through an etching process.
  • the diameter of the upper side of the plurality of semiconductor light emitting devices is the diameter of the lower side.
  • the diameter of the active layer of each of the smaller and plurality of semiconductor light emitting devices was different from each other depending on the position of the wafer.
  • the light efficiency or light output of each semiconductor light emitting device was different depending on the diameter of the active layer that was different from each other. Therefore, in the case of implementing a display using such a plurality of semiconductor light emitting devices, a luminance difference occurs between each pixel, and this causes a problem in that image quality is deteriorated.
  • a plurality of growth holes having the same depth and diameter are prepared on the wafer in advance, and a plurality of semiconductor layers are grown on the plurality of growth holes using a deposition process, thereby forming a shape corresponding to each growth hole.
  • a plurality of semiconductor light emitting devices having may be manufactured.
  • the plurality of semiconductor light emitting devices manufactured above may have the same diameter and/or length regardless of the position of the wafer.
  • the diameter of the semiconductor light emitting device may be the same as the diameter of the growth hole.
  • the length of the semiconductor light emitting device may be the same as the depth of the growth hole.
  • semiconductor light emitting devices obtained in each of the plurality of growth holes may have the same diameter and/or length.
  • the length may be such that both ends of the semiconductor light emitting device may electrically contact each of the assembled wires spaced apart from each other on the display substrate. If the length of the semiconductor light emitting device is reduced, the reduced length of the semiconductor light emitting device does not electrically contact one of the assembly lines and thus does not emit light. However, since all semiconductor light emitting devices fabricated on the wafer have lengths electrically contactable to all assembled wires, lighting defects can be minimized, as in the embodiment.
  • the same light efficiency or light output can be obtained. Accordingly, when implementing a display using a plurality of semiconductor light emitting devices fabricated on a wafer, since there is no luminance deviation between pixels, image quality may be improved. At least one semiconductor light emitting device may be provided in each pixel.
  • an inner surface of the growth hole may have a plane perpendicular to the bottom surface. Accordingly, the side surface of the semiconductor light emitting device fabricated in the growth hole may have a plane perpendicular to the bottom or top surface of the semiconductor light emitting device.
  • the inner surface of the growth hole may have a smooth plane, that is, a plane with minimal roughness. Therefore, since the side surface of the semiconductor light emitting device fabricated in the growth hole has a smooth plane, roughness can be improved.
  • a plurality of semiconductor layers are grown through a growth process, and individual semiconductor light emitting devices are manufactured through a dry etching process.
  • the dry etching process since the plasma density is different for each position of the wafer and the nanoscale patterns formed for the etching process are different from each other, the sizes (diameter and/or length) of a plurality of semiconductor light emitting devices fabricated on the wafer are different from each other. Therefore, when a plurality of semiconductor light emitting elements having different sizes are mounted on a display substrate, there is a problem in that semiconductor light emitting elements not in contact with electrodes on the display substrate do not turn on.
  • a plurality of semiconductor light emitting devices manufactured on a wafer have the same size, when the plurality of semiconductor light emitting devices are mounted on a display substrate (301 in FIG. defects can be prevented.
  • each of the plurality of semiconductor light emitting devices may have the same luminance. Therefore, when a plurality of semiconductor light emitting devices are mounted on the display substrate 301, uniform luminance can be obtained in all pixels, and image quality can be improved.
  • a semiconductor light emitting device is manufactured through a growth process and an etching process, and then an insulating layer is formed through a separate process after an electrode is formed through a separate process.
  • an electrode or an insulating layer is formed during the manufacturing process of a semiconductor light emitting device, there is no need to form a separate electrode or insulating layer after the semiconductor light emitting device is manufactured, and thus the manufacturing process can be drastically shortened.
  • FIG. 12 is a cross-sectional view of the semiconductor light emitting device according to the first embodiment.
  • the semiconductor light emitting device 150 may include a first conductivity type semiconductor layer 151 , an active layer 152 and a second conductivity type semiconductor layer 153 .
  • the semiconductor light emitting device 150 according to the first embodiment may include more components than these.
  • the first conductivity type semiconductor layer 151 may include at least one layer.
  • the active layer 152 may include at least one or more layers.
  • the second conductivity type semiconductor layer 153 may include at least one layer.
  • the first conductivity type semiconductor layer 151 , the active layer 152 , and the second conductivity type semiconductor layer 153 may constitute the light emitting unit 160 .
  • the light emitting unit 160 may have a cylindrical shape, but is not limited thereto.
  • the semiconductor light emitting device 150 according to the first embodiment can generate light of a specific color.
  • the semiconductor light emitting device 150 according to the first embodiment may emit one of ultraviolet light, white light, blue light, green light, red light, and infrared light.
  • first conductivity-type semiconductor layer 151, the active layer 152, and the second conductivity-type semiconductor layer 153 may be sequentially grown using, for example, MOCVD equipment.
  • the active layer 152 and the second conductivity-type semiconductor layer 153 are sequentially grown on a wafer.
  • a dry etching process is used to form the second conductivity-type semiconductor layer 153.
  • the active layer 152 and the first conductivity type semiconductor layer 151 are sequentially etched to form a plurality of light emitting layers. Thereafter, a plurality of light emitting layers were separated from the wafer, and a plurality of semiconductor light emitting devices were manufactured.
  • the sizes (diameter and/or length) of a plurality of semiconductor light emitting devices fabricated on the wafer are different from each other. Therefore, when a plurality of semiconductor light emitting devices having different sizes are mounted on a display substrate (301 in FIG. 31), there is a problem in that semiconductor light emitting devices that do not contact electrodes on the display substrate 301 do not turn on. .
  • An embodiment may not use a conventional dry etch process. That is, the embodiment does not require an etching process.
  • the semiconductor light emitting device 150 may be manufactured in a pre-prepared growth hole using the principle of a mold. That is, the pre-prepared growth hole may have a shape corresponding to the semiconductor light emitting device 150 of the embodiment.
  • a member constituting the growth hole For example, by removing the insulating film (503 in FIG. 16), the first conductive semiconductor layer 151, the active layer 152, and the second conductive semiconductor layer 153 grown in the growth hole have the light emitting portion 160 as they are.
  • the semiconductor light emitting device 150 may be manufactured.
  • a desired semiconductor light emitting device is manufactured through an etching process.
  • the semiconductor light emitting device is further miniaturized, it is very difficult to manufacture a semiconductor light emitting device having a desired small size and the same shape throughout the entire manufacturing process.
  • a growth hole having a minimum diameter and a desired depth in the vertical direction may be formed by performing dry etching on the insulating film ( 503 in FIG. 15A ) formed on the wafer. Therefore, even if the diameter and length of the semiconductor light emitting device 150 to be manufactured are minimized, a growth hole serving as a formwork is formed to correspond to the diameter and length of the semiconductor light emitting device 150, thereby minimizing the size of the semiconductor light emitting device 150. may be obtained, and semiconductor light emitting devices 150 having various shapes may be freely obtained, and each of the plurality of semiconductor light emitting devices 150 manufactured in the plurality of growth holes may have the same diameter and/or length.
  • the embodiment since the embodiment does not use a conventional dry etching process, it is possible to solve problems caused by using a conventional dry etching process.
  • the plurality of semiconductor light emitting devices 150 manufactured on the wafer have the same size, when the plurality of semiconductor light emitting devices 150 are mounted on the display substrate (301 in FIG. 31), all pixels are lit. It is possible to prevent lighting defects.
  • each of the plurality of semiconductor light emitting devices 150 may have the same luminance. Therefore, when a plurality of semiconductor light emitting devices 150 are mounted on the display substrate 301, uniform luminance can be obtained in all pixels, and image quality can be improved.
  • the active layer 152 may be disposed on the first conductive semiconductor layer 151 , and the second conductive tongue semiconductor layer may be disposed on the active layer 152 .
  • the first conductivity-type semiconductor layer 151, the active layer 152, and the second conductivity-type semiconductor layer 153 may be made of a compound semiconductor material.
  • the compound semiconductor material may be a Group 3-5 compound semiconductor material, a Group 2-6 compound material, or the like.
  • the compound semiconductor material may include GaN, InGaN, AlN, AlInN, AlGaN, AlInGaN, InP, GaAs, GaP, GaInP, and the like.
  • the first conductivity type semiconductor layer 151 may include a first conductivity type dopant
  • the second conductivity type semiconductor layer 153 may include a second conductivity type dopant.
  • the first conductivity type dopant may be an n-type dopant such as silicon (Si)
  • the second conductivity type dopant may be a p-type dopant such as boron (B).
  • the active layer 152 is a region that generates light, and can generate light having a specific wavelength band according to the material properties of the compound semiconductor. That is, the wavelength band may be determined by the energy band gap of the compound semiconductor included in the active layer 152 . Therefore, light of various colors may be generated according to the energy band gap of the compound semiconductor included in the active layer 152 .
  • the active layer of each of the plurality of semiconductor light emitting devices 150 is different. That is, the light intensity of the semiconductor light emitting device 150 having a large diameter of the active layer 152 is greater than the light intensity of the semiconductor light emitting device 150 having a small diameter of the active layer 152 .
  • the amount of light can be directly related to luminance. That is, as the amount of light increases, the luminance may increase.
  • each diameter (or size) of the plurality of semiconductor light emitting elements 150 manufactured on the wafer is the same, luminance is uniform in each pixel in a display device using the plurality of semiconductor light emitting elements 150. This can improve picture quality.
  • the lengths of the plurality of semiconductor light emitting devices 150 manufactured in the plurality of growth holes may be the same by making the depths of the plurality of growth holes provided on the wafer the same. In this way, both ends of the plurality of semiconductor light emitting devices 150 having the same length are stably contacted with the wire electrode, and thus, lighting failure of the semiconductor light emitting devices 150 can be prevented.
  • the inner surfaces of the plurality of growth holes provided on the wafer have a vertical surface with respect to the bottom surface, and the vertical surface has an enviable surface with minimized roughness, semiconductor light emitting from the growth holes is produced.
  • the side surface of the element 150 has a vertical plane with respect to the lower surface, and roughness of the vertical plane can be minimized.
  • the growth hole is limited to being circular when viewed from above, but the growth hole in the embodiment may have a rectangular shape, a polygonal shape, a star shape, and the like.
  • the inner surface of the growth hole as a surface other than a vertical surface, for example, a curved surface, a round surface, or a concave surface, the side surface of the semiconductor light emitting device 150 manufactured in the growth hole may also have various shapes.
  • 13 to 17 show manufacturing processes of the semiconductor light emitting device according to the first embodiment.
  • a wafer 501 may be prepared.
  • the wafer 501 may be made of, for example, sapphire, but is not limited thereto.
  • a seed layer 502 may be formed on the wafer 501 .
  • the seed layer 502 may include a group II-IV compound or a group III-V compound, but is not limited thereto.
  • the seed layer 502 may serve as a seed for growing a plurality of semiconductor layers constituting the semiconductor light emitting device.
  • the seed layer 502 may be omitted.
  • an insulating layer 503 and a mask layer 504 may be sequentially formed on the seed layer 502 .
  • the insulating film 503 may be made of an inorganic material such as SiOx or SiNx.
  • the mask layer 504 may be made of a metal such as chromium (Cr).
  • the photoresist pattern 505 may be formed by patterning the photoresist film.
  • the insulating layer 503 may be formed using, for example, thermal deposition equipment.
  • the film quality of the insulating film 503 is hard and excellent in film quality, so that a semiconductor light emitting device can be formed with excellent film quality later to improve electrical and optical properties. .
  • a mask pattern 504a may be formed by patterning the mask film 504 using the photoresist pattern 505 as a mask.
  • the photoresist pattern 505 and the mask pattern 504a may have a transmissive area corresponding to the growth hole 510 and a non-transmissive area that is the remaining area.
  • a plurality of growth holes 510 may be formed on the wafer 501 by patterning the insulating film 503 using the mask pattern 504a as a mask.
  • the etching gas for forming the growth hole 510 is reflected with the insulating layer 503 through the transmission region of the mask pattern 504a, and the insulating layer 503 corresponding to the transmission region of the mask pattern 504a is removed to remove the growth hole. (510) may be formed.
  • the mask pattern 504a may be formed by considering the shape of the growth hole 510 or the diameter of the growth hole 510 .
  • the bottom of the growth hole 510 may be the upper surface of the seed layer 502 . That is, the upper surface of the seed layer 502 may be exposed through the growth hole 510 .
  • the plurality of growth holes 510 may be formed considering the number of semiconductor light emitting devices to be manufactured per wafer 501 .
  • the plurality of growth holes 510 may be spaced apart from each other at an appropriate distance.
  • the distance between the plurality of growth holes 510 may be equal to or greater than the diameter of the growth holes 510, but is not limited thereto.
  • the growth hole 510 may be formed using photolithography or laser interference lithography.
  • the growth hole 510 can be formed in a constant shape with the same diameter and deep depth. That is, the growth hole 510 may be formed to a deep depth by etching mainly in the depth direction using photolithography.
  • the inner surface of the growth hole 510 may have a straight line perpendicular to the bottom, but is not limited thereto.
  • a growth hole 510 having a smaller diameter than when using photolithography may be formed.
  • the diameter of the hole may be 1 ⁇ m or less.
  • the diameter of the hole may be 500 nm to 1 ⁇ m.
  • the light emitting unit 160 may be grown in the growth hole 510 by using the seed layer 502 exposed in the growth hole 510 as a seed.
  • the light emitting unit 160 may include a first conductivity type semiconductor layer 151 , an active layer 152 and a second conductivity type semiconductor layer 153 .
  • the first conductivity type semiconductor layer 151 is grown on the seed layer 502 using the seed layer 502 as a seed in the growth hole 510 using MOCVD equipment, and the first conductivity type semiconductor layer ( 151 ), an active layer 152 may be grown, and a second conductivity type semiconductor layer 153 may be grown on the active layer 152 .
  • the light emitting part 160 grows only in the growth hole 510. and is not grown on the upper surface of the insulating film 503.
  • the upper surface of the light emitting part 160 may be grown within the growth hole 510 to match the upper surface of the insulating film 503, or may be grown lower or higher than the upper surface of the insulating film 503. there is.
  • the upper surface of the light emitting part 160 when the upper surface of the light emitting part 160 is grown lower than the upper surface of the insulating film 503, the upper surface of the light emitting part 160 may have a concave downward shape.
  • the top surface of the light emitting part 160 when the top surface of the light emitting part 160 is grown higher than the top surface of the insulating film 503, the top surface of the light emitting part 160 may have an upwardly convex shape.
  • the bottom may be a direction toward the wafer 501 and the top may be a direction away from the wafer 501 .
  • a plurality of light emitting units 160 may be positioned on the wafer 501 by removing the insulating film 503 .
  • the insulating layer 503 may be removed using a wet etching process, but is not limited thereto.
  • a separate insulating layer 503 may be formed along the circumference of the light emitting unit 160 . Then, after the insulating layer 503 formed on the upper side of the light emitting unit 160 is removed, an upper electrode may be formed on the upper side of the light emitting unit 160 . Thereafter, after the upper side of the plurality of light emitting units 160 is attached to a separate substrate, the wafer 501 may be separated. Then, a lower electrode may be formed on the lower side of the light emitting part 160 from which the wafer 501 is separated.
  • the insulating film 503 , the upper electrode and the lower electrode may be formed.
  • the plurality of light emitting parts 160 manufactured by growing in the plurality of growth holes 510 having the same diameter and the same depth may also have the same diameter and the same depth.
  • the light emitting unit 160 is a semiconductor light emitting device, and the side of the light emitting unit 160 may have a straight line perpendicular to the lower surface of the light emitting unit 160, but is not limited thereto.
  • the light emitting part 160 may have a shape corresponding to the shape of the growth hole 510 .
  • the light emitting unit 160 may have a circular shape, a rectangular shape, a polygonal shape, or a star shape.
  • a plurality of light emitting units 160 having the same diameter and the same depth can be easily manufactured in large quantities.
  • a display using the plurality of light emitting units 160 manufactured as described above that is, a semiconductor light emitting device, it is possible to secure uniform luminance and minimize lighting defects.
  • semiconductor light emitting devices having various shapes may be freely manufactured by changing the shape of the growth hole 510 .
  • FIG. 18 is a cross-sectional view of a semiconductor light emitting device according to a second embodiment. 19 is a cross-sectional view showing the light emitting part of FIG. 18 in detail.
  • the second embodiment is the same as the first embodiment except for the insulating layer 155 and the electrodes 156 to 158.
  • the same reference numerals are given to the same components having the same shape, structure and/or function as those in the first embodiment, and detailed descriptions are omitted.
  • a semiconductor light emitting device 150A may include a light emitting unit 160 , an insulating layer 155 , and electrodes 156 to 158 .
  • the light emitting unit 160 may have a first region 161 and a second region 162 .
  • the first region 161 and the second region 162 may be positioned along the long axis direction of the light emitting unit 160 .
  • the major axis direction may be the length direction of the light emitting unit 160 .
  • the second area 162 may be disposed on the first area 161 .
  • the first region 161 may be disposed below the second region 162 .
  • both the first region 161 and the second region 162 of the light emitting part 160 are manufactured in the growth hole formed on the wafer 501, so no etching process is involved. Since the light emitting part 160 corresponding to the inner surface of the growth hole is manufactured, the diameter of the first region 161 and the diameter of the second region 162 may be the same. In addition, the side surface of the first region 161 and the side surface of the second region 162 may coincide along the long axis direction or the length direction of the light emitting unit 160 .
  • the semiconductor light emitting device 150A in which the insulating layer 155 and the electrodes 156 to 158 are disposed on the light emitting part 160 manufactured in the plurality of growth holes on the wafer 501 has the same diameter on both the lower and upper sides. and may have the same length.
  • both ends of each of the plurality of semiconductor light emitting elements 150A are electrically contacted with an assembly line to prevent undesirable lighting, and the luminance between pixels is uniform to improve image quality. can improve
  • the light emitting unit 160 may include a first conductivity type semiconductor layer 151 , an active layer 152 and a second conductivity type semiconductor layer 153 .
  • the first region 161 may include the first conductivity type semiconductor layer 151 and the active layer 152
  • the second region 162 may include the second conductivity type semiconductor layer 153 .
  • the first region 161 includes not only the first conductivity type semiconductor layer 151 and the active layer 152 but also a part of the second conductivity type semiconductor layer 153 (the 2-1 conductivity type semiconductor layer 153_1).
  • the second region 162 may include another region (the second-second conductivity type semiconductor layer 153 - 2 ) of the second conductivity type semiconductor layer 153 .
  • the 2-1st conductivity type semiconductor layer 153_1 and the 2-2nd conductivity type semiconductor layer 153-2 are separated for convenience, and may be integrally formed of substantially the same material through the same process.
  • the insulating layer 155 may surround side surfaces of the first region 161 .
  • the insulating layer 155 may be a protective layer that protects the light emitting unit 160 .
  • the insulating layer 155 may be disposed along the circumference of the side of the first region 161 .
  • the insulating layer 155 may surround side surfaces of the first conductivity type semiconductor layer 151 , the active layer 152 , and the second-first conductivity type semiconductor layer 153_1 .
  • the insulating layer 155 may be made of an inorganic material such as SiOx or SiNx.
  • the insulating layer 155 may prevent leakage current flowing along the side of the light emitting unit 160 during light emission.
  • the insulating layer 155 may prevent an electrical short between the first conductivity type semiconductor layer 151 and the second conductivity type semiconductor layer 153 caused by foreign substances or the like.
  • the semiconductor light emitting devices 150A are assembled to a display substrate (301 in FIG. 31 ) by a self-assembly method, the insulating layer 155 is the lower side of the semiconductor light emitting device 150A, that is, the first conductivity type semiconductor layer ( 151) is in contact with the display substrate 301 so that the semiconductor light emitting device 150A is properly assembled.
  • the electrodes may include a first electrode 156 , a second electrode 157 , and a third electrode 158 .
  • the first electrode 156 and the second electrode 157 constitute an upper electrode, and the third electrode 158 may be a lower electrode.
  • the electrodes 156 to 158 may be made of a highly conductive metal.
  • the electrodes 156 to 158 may include at least one of copper (Cu), aluminium (Al), titanium (Ti), nickel (Ni), platinum (Pt), gold (Au), and silver (Ag).
  • the first electrode 156 may surround a side surface of the second region 162 .
  • the insulating layer 155 may be formed using the first electrode 156 as a mask. Accordingly, the thickness t2 of the insulating layer 155 may be the same as the thickness t1 of the first electrode 156 . Since the insulating layer 155 is formed using the first electrode 156 as a mask, there is no need to form a separate mask for forming the insulating layer 155, so the process is simple and material costs can be reduced.
  • the first electrode 156 may not contact the active layer 152 .
  • the first electrode 156 When the first electrode 156 is in contact with the active layer 152, current flows directly into the active layer 152 through the first electrode 156 without flowing into the active layer 152 through the second conductive semiconductor layer 153. Therefore, holes are not generated in the second conductivity-type semiconductor layer 153 and thus the semiconductor light emitting device 150A does not emit light.
  • the first electrode 156 is disposed around the upper side of the second conductivity type semiconductor layer 153 and is spaced apart from the active layer 152, it may not come into contact with the active layer 152.
  • the first electrode 156 may overlap the insulating layer 155 along the long axis direction.
  • the first electrode 156 and the insulating layer 155 may come into contact with each other along the circumference of the light emitting unit 160 .
  • the insulating layer 155 since the insulating layer 155 is formed using the first electrode 156 as a mask, the insulating layer 155 may be formed in the same shape as the first electrode 156 . Therefore, the thickness t2 of the insulating layer 155 is the same as the thickness t1 of the first electrode 156, the upper surface of the insulating layer 155 is in contact with the lower surface of the first electrode 156, and the first electrode 156 and the insulating layer 155 may overlap along the long axis direction.
  • the second electrode 157 may be disposed on the upper surface of the second region 162 of the light emitting part 160 .
  • the second electrode 157 may be omitted.
  • the first electrode 156 and the second electrode 157 may be integrally formed, but are not limited thereto.
  • the second electrode 157 may be formed to extend from the first electrode 156 . That is, the first electrode 156 surrounds the side surface of the second region 162 of the light emitting unit 160 and the second electrode 157 extends from the first electrode 156 to form a top surface of the second region 162. can be placed in
  • the thickness t1 of the first electrode 156 and the thickness t3 of the second electrode 157 may be different.
  • the thickness t1 of the first electrode 156 may be greater than the thickness t3 of the second electrode 157 .
  • the metal film 511 on the top surface of the light emitting unit 160 emits light. It is removed faster than the metal film 511 on the side of the portion 160 .
  • the thickness t1 of the metal film 511 on the side surface of the light emitting part 160 is equal to the thickness t1 of the metal film 511 on the upper surface of the light emitting part 160, that is, the second electrode 157. may be greater than the thickness t3 of The metal film 511 on the upper surface of the light emitting part 160, that is, the second electrode 157, may be removed, and only the metal film 511, that is, the first electrode 156, on the side surface of the light emitting part 160 may remain.
  • the third electrode 158 may be disposed on the lower surface of the first region 161 of the light emitting part 160 .
  • the third electrode 158 may include one or more layers.
  • the third electrode 158 may be disposed on the lower surface of the insulating layer 155 . That is, the insulating layer 155 and the third electrode 158 may come into contact with each other along the circumference of the light emitting unit 160 . For example, the insulating layer 155 and the third electrode 158 may overlap along the long axis direction.
  • the third electrode 158 may not be disposed on the lower surface of the insulating layer 155 and may be disposed only on the lower surface of the first region 161 of the light emitting unit 160 .
  • 20 to 28 show manufacturing processes of the semiconductor light emitting device according to the second embodiment.
  • FIGS. 20 to 28 may refer to FIGS. 18 and 19 .
  • FIGS. 20 to 23 are the same as FIGS. 13 to 16, detailed descriptions are omitted.
  • a portion of the insulating layer 503 may be removed using an etching process.
  • a portion of the light emitting unit 160 for example, a portion of the second conductivity type semiconductor layer 153, that is, the 2-2 conductivity type semiconductor layer 153-2 may be exposed.
  • the depth d1 of the removed insulating layer 503 may be the same as the thickness of the 2-2nd conductivity type semiconductor layer 153-2.
  • the active layer 152 of the light emitting unit 160 may not be exposed because it is buried in the insulating film 503 .
  • another part of the second conductivity type semiconductor layer 153, that is, the 2-1 conductivity type semiconductor layer 153_1 is also buried in the insulating film 503 and may not be exposed.
  • a metal layer 511 may be formed on the insulating layer 503 and the light emitting unit 160 .
  • the metal film 511 may be formed using a deposition process by sputtering, but is not limited thereto.
  • the insulating film 503 and the metal film 511 formed on the light emitting unit 160 may have different thicknesses, but are not limited thereto.
  • the thickness of the metal film 511 on the insulating film 503 is the smallest, and the metal film 511 is formed on the side surface and top surface of the 2-2 conductivity type semiconductor layer 153-2 of the light emitting unit 160. may be formed relatively thick.
  • a dry etching process may be performed on the metal layer 511 . Since the etching rate is greater in the vertical direction than in the horizontal direction by the dry etching process, even if all of the metal film 511 on the insulating film 503 having the smallest thickness is removed, the 2-2 conductivity type semiconductor layer 153-2 A portion of the metal film 511 formed on the side and top surfaces of the metal film 511 may be removed. In particular, the metal film 511 on the top surface of the 2-2nd conductivity type semiconductor layer 153-2 is removed faster than the metal film 511 on the side surface of the 2-2nd conductivity type semiconductor layer 153-2. can
  • the metal film 511 on the insulating film 503 is completely removed, and the thickness of the metal film 511 on the side surface of the 2-2 conductivity type semiconductor layer 153-2 is reduced to the 2-2 conductivity type semiconductor layer ( 153-2) may be greater than the thickness of the metal layer 511 on the upper surface.
  • the metal film 511 on the side surface of the 2-2nd conductivity type semiconductor layer 153-2 is the first electrode 156 and has a thickness of the metal film 511 on the top surface of the 2-2nd conductivity type semiconductor layer 153-2. 511 may be the second electrode 157 .
  • the insulating film 503 may be removed by performing a dry etching process using the upper electrodes 156 and 157 including the first electrode 156 and the second electrode 157 as a mask. . Since etching proceeds along the vertical direction by the dry etching process, the insulating layer 503 exposed between the upper electrodes 156 and 157 may be vertically removed. In this case, the insulating layer 503 vertically overlapping the upper electrodes 156 and 157, particularly the first electrode 156, may remain without being removed by the dry etching process to form the insulating layer 155.
  • the insulating layer 155 is formed by a dry etching process, an outer surface of the insulating layer 155 may have irregularities. Accordingly, the light extraction efficiency of the light emitting unit 160 is increased by the irregularities provided on the outer surface of the insulating layer 155 to improve light efficiency or light output, which may lead to an increase in luminance when implementing a display.
  • the dry etching process may be continuously performed until the upper surface of the seed layer 502 is exposed.
  • the insulating layer 155 may be disposed around the light emitting unit 160 , and an upper electrode including the first and second electrodes 156 and 157 may be disposed above the light emitting unit 160 .
  • a substrate 520 may be placed on the wafer 501 and attached to the upper electrodes 156 and 157 . That is, the substrate 520 may be attached to the upper electrodes 156 and 157 using an adhesive member 521 such as a tape.
  • the substrate 520 may be glass, but is not limited thereto.
  • the plurality of light emitting units 160 on the wafer 501 may be transferred onto the substrate 520 using a laser lift-off process. That is, as the laser is focused on the seed layer 502 , the plurality of light emitting units 160 may be separated from the wafer 501 based on the seed layer 502 .
  • the plurality of light emitting units 160 on the wafer 501 may be transferred onto the substrate 520 using a chemical lift-off process. For example, when ultrasonic waves are applied after immersing the wafer 501 in a water tank containing an etchant, the seed layer 502 is removed by the etchant and vibration is applied to the wafer 501 by ultrasonic waves, thereby removing the seed layer 502 as a reference. A plurality of light emitting units 160 may be separated from the wafer 501 .
  • the lower surface of the light emitting unit 160 may have a smooth flat surface.
  • a lower electrode 158 is formed on the lower surface of the light emitting unit 160 in a subsequent process, so that a semiconductor light emitting device can be manufactured. Thereafter, the semiconductor light emitting devices may be separated from the substrate 520 .
  • a plurality of light emitting units 160 having the same diameter and/or length may be obtained by growing a plurality of semiconductor layers in the growth hole 510 previously formed on the wafer 501 .
  • the electrodes 156 to 158 and the insulating layer 155 are formed in the process of manufacturing the plurality of light emitting units 160, so there is no need to form a separate electrode or insulating layer 155, so the process is simplified. It is simple and material cost can be reduced.
  • the insulating layer 155 is formed using the upper electrodes 156 and 157, particularly the first electrode 156 as a mask, there is no need to form a separate mask, so the process is simple and the material cost is reduced.
  • the plurality of semiconductor light emitting devices manufactured on the wafer 501 have the same diameter and/or length, it is possible to improve image quality by preventing lighting defects and eliminating luminance deviation when implementing a display using these semiconductor devices.
  • 29 is a cross-sectional view of a semiconductor light emitting device according to a third embodiment.
  • the third embodiment is the same as the second embodiment except for the shape of the insulating layer 155 .
  • the same reference numerals are given to the same components having the same shape, structure and/or function as those in the second embodiment, and detailed descriptions are omitted.
  • the semiconductor light emitting device 150B may include light emitting units 160 and 160 , an insulating layer 155 and electrodes 156 to 158 .
  • the insulating layer 155 may include a first insulating layer 155-1 and a second insulating layer 155-2.
  • the thickness t21 of the first insulating layer 155-1 may be greater than the thickness t22 of the second insulating layer 155-2.
  • an outer surface of the first insulating layer 155-1 may have a concave round shape.
  • the thickness t21 of the first insulating layer 155 - 1 may be the thickest below the first region 161 . That is, the first insulating layer 155-1 may have the same thickness as the thickness t22 of the second insulating layer 155-2 in the first insulating region in contact with the second insulating layer 155-2.
  • the first insulating layer 155 - 1 extends from the first insulating region and increases in thickness t21 so that the outer surface of the first insulating layer 155 - 1 may have a concave round shape.
  • the concave round shape of the first insulating layer 155-1 can be explained in the manufacturing process of the semiconductor light emitting device 150B. 27, when the insulating film 503 is removed by the dry etching process, since the etching rate in the vertical direction is greater than the etching rate in the horizontal direction, the insulating film 503 is mainly removed along the vertical direction, but also finely removed in the horizontal direction. It can be.
  • the first layer having a concave round shape as shown in FIG. 29 An insulating layer 155-1 may be formed.
  • the lower electrode 158 may be disposed on the lower surface of the light emitting unit 160 and the lower surface of the insulating layer 155 . Since the insulating layer 155, that is, the lower side of the first insulating layer 155-1 has the thickest thickness t21, the lower electrode 158 may have a larger diameter than the upper electrodes 156 and 157. .
  • the contact area between the distribution electrode and the lower electrode 158 is large during the wiring electrode pattern process after mounting on the display substrate (301 in FIG. 31), thereby preventing poor contact. .
  • reference numerals for components not shown in FIGS. 30 and 31 may refer to FIGS. 12 to 29 .
  • a display device 300 may include a substrate 301, a dielectric layer 302, assembled wires 310 and 320, and wire electrodes 330 and 340. At least one layer may be disposed on the wire electrodes 330 and 340 .
  • the substrate 301 is the same as the substrate 200 of FIG. 9 and the assembled wirings 310 and 320 are the same as the wiring electrodes 201 and 202 of FIG. 9 , a detailed description thereof will be omitted.
  • a plurality of semiconductor light emitting devices 150A may be aligned between the assembled wires 310 and 320 by dielectrophoretic force caused by an electric field generated between the assembled wires 310 and 320 .
  • the display device 300 is manufactured using the semiconductor light emitting devices 150 and 150B according to the first and third embodiments. It could be.
  • the dielectric layer 302 may be disposed on the assembled wires 310 and 320 to help generate an electric field and prevent a short circuit between the assembled wires 310 and 320 .
  • the wire electrodes 330 and 340 may be disposed on the assembled wires 310 and 320 and electrically connected to each of the plurality of semiconductor light emitting devices 150A.
  • the first wiring electrode 330 is commonly connected to one side of the plurality of semiconductor light emitting devices 150A, and the second The wire electrode 340 may be commonly connected to the other side of the plurality of semiconductor power elements.
  • a portion of the first wire electrode 330 is disposed on one side of each of the plurality of semiconductor light emitting devices 150A, for example, on the upper electrodes 156 and 157, and a portion of the second wire electrode 340 is disposed on the plurality of semiconductor light emitting devices 150A.
  • (150A) may be disposed on the other side of each, for example, the lower electrode 158.
  • the first wire electrode 330 may be an anode electrode and the second wire electrode 340 may be a cathode electrode, but is not limited thereto.
  • the first and second wire electrodes 330 and 340 share a power source for emitting light of the plurality of semiconductor light emitting elements 150A, while firmly fixing the plurality of semiconductor light emitting elements 150A to the dielectric layer 302 . there is.
  • the plurality of semiconductor light emitting devices 150A may include a first semiconductor light emitting device generating red light, a second semiconductor light emitting device generating green light, and a third semiconductor light emitting device generating blue light. .
  • the first wire electrode 330 may include a 1-1 wire electrode, a 1-2 wire electrode, and a 1-3 wire electrode.
  • the 1-1st wiring electrode is electrically connected to the upper electrodes 156 and 157 of the first semiconductor light emitting device
  • the 1-2nd wiring electrode is electrically connected to the upper electrodes 156 and 157 of the second semiconductor light emitting device.
  • the first to third wire electrodes may be electrically connected to the upper electrodes 156 and 157 of the third semiconductor light emitting device.
  • the second wiring electrode 340 may be commonly connected to the lower electrodes 158 of each of the first to third semiconductor power elements.
  • the embodiment can be adopted in the field of display displaying images or information using a semiconductor light emitting device.
  • the embodiment can be adopted in the display field for displaying images or information using micro or nano semiconductor light emitting devices.

Abstract

반도체 발광 소자는, 장축 방향을 따라 제1 영역과 제2 영역을 갖는 발광부와, 제1 영역의 측면을 둘러싸는 절연층과, 제2 영역의 측면을 둘러싸는 제1 전극을 포함한다. 절연층의 두께는 제1 전극의 두께와 동일하다. 따라서, 디스플레이 구현시 점등 불량을 방지하고 휘도 편차를 없애 화질을 향상시킬 수 있다.

Description

반도체 발광 소자 및 디스플레이 장치
실시예는 반도체 발광 소자 및 디스플레이 장치에 관한 것이다.
디스플레이 장치는 발광 다이오드(Light Emitting Diode)와 같은 자발광 소자를 화소의 광원으로 이용하여 고화 질의 영상을 표시한다. 발광 다이오드는 열악한 환경 조건에서도 우수한 내구성을 나타내며, 장수명 및 고휘도가 가능하여 차세대 디스플레이 장치의 광원으로 각광받고 있다.
최근, 신뢰성이 높은 무기 결정 구조의 재료를 이용하여 초소형의 발광 다이오드를 제조하고, 이를 디스플레이 장치의 패널(이하, "디스플레이 패널"이라 함)에 배치하여 차세대 화소 광원으로 이용하기 위한 연구가 진행되고 있다.
이러한 디스플레이 장치는 평판 디스플레이를 넘어, 플렉서블 디스플레이, 폴더블(folderable) 디스플레이, 스트레처블(strecheable) 디스플레이, 롤러블(ROLLABLE) 디스플레이 등과 같이 다양한 형태로 확대되고 있다.
고해상도를 구현하기 위해서 점차 화소의 사이즈가 작아지고 있고, 이와 같이 작아진 사이즈의 화소에 수많은 발광 소자가 정렬되어야 하므로, 마이크로 또는 나노 스케일 정도로 작은 초소형의 발광 다이오드의 제조에 대한 연구가 활발하게 이루어지고 있다.
제조 공정의 향상으로 인해 마이크로급 발광 다이오드뿐만 나노급 발광 다이오드가 제조되고, 이러한 발광 다이오드를 이용한 초고해상도의 디스플레이 구현이 가능하다.
마이크로급 발광 다이오드뿐만 아니라 나노급 발광 다이오드는 통상 성장(growth) 공정과 식각 공정을 통하여 제조되고 있다.
예컨대, 웨이퍼 상에 반도체층이 성장된 후, 건식 식각 공정을 이용하여 해당 반도체층이 식각되어 발광 다이오드가 제조되고 있다.
건식 식각 공정을 위해서 플라즈마가 형성되는데, 이러한 플라즈마의 밀도가 웨이퍼의 위치에 따라 상이하다. 웨이퍼의 위치별로 상이한 밀도를 갖는 플라즈마를 이용하여 식각 공정이 수행되는 경우, 웨이퍼의 위치별로 반도체층의 식각 정도가 상이해져, 상기 제조된 발광 다이오드의 직경이나 길이가 제각각일 수 있다.
아울러, 나노급 발광 다이오드를 제조하기 위해서는 나노급 패턴이 형성되어야 하는데, 이러한 나노급 패턴을 형성하기 어려운 문제가 있다. 아울러, 상기 형성된 나노급 패턴의 서로 상이한 사이즈를 갖는 경우, 이 나노급 패턴을 마스크로 하여 제조된 발광 다이오드의 직경이 서로 상이할 수 있다.
직경이 상이함은 곧 발광 영역의 상이함을 의미한다. 따라서, 이와 서로 상이한 발광 다이오드를 이용하여 디스플레이를 구현하는 경우, 각 화소의 휘도가 서로 상이해 화질 불량이 야기된다.
도 1은 제조된 발광 다이오드가 디스플레이 구현을 위해 기판 상에 실장된 모습을 도시한다.
상기 제조된 발광 다이오드의 길이가 서로 상이한 경우, 도 1에 도시한 바와 같이 배선 전극(5, 6)에 발광 다이오드의 양단의 적어도 하나가 접촉되지 않아 점등 불량이 야기된다. 도 1에 도시한 바와 같이, 정상적인 길이를 갖는 발광 다이오드(1)는 전극 상에 배치되어 점등이 되는데 반해, 길이가 짧은 발광 다이오드(3)는 적어도 하나의 전극에 접촉되지 않아 점등이 되지 않는다.
따라서, 종래와 같이 식각 공정을 이용하여 나노급 발광 다이오드를 제조하는 경우, 상기 제조된 나노급 발광 다이오드(3)의 직경이나 길이가 제각각이라 디스플레이 구현시 점등이 되지 않는 화소의 개수가 너무 많아 양산이 불가능한 문제가 있다.
한편, 종래에는 건식 식각을 이용하여 반도체층의 식각되므로, 반도체층의 식각된 표면의 거치기(roughness)가 좋지 않은 문제점이 있다.
실시예는 전술한 문제 및 다른 문제를 해결하는 것을 목적으로 한다.
실시예의 다른 목적은 동일한 직경 및/또는 길이(또는 높이)를 갖는 반도체 발광 소자를 제공하는 것이다.
또한 실시예의 또 다른 목적은 반도체 발광 소자 제조 후 별도의 전극을 형성할 필요가 없는 반도체 발광 소자를 제공하는 것이다.
또한 실시예의 또 다른 목적은 반도체 발광 소자 제조 후 별도의 절연층을 형성할 필요가 없는 반도체 발광 소자를 제공하는 것이다.
또한, 실시예는 자유자재로 원하는 형상이 제조될 수 있는 반도체 발광 소자를 제공하는 것이다.
또한 실시예의 또 다른 목적은 점등 불량을 최소화할 수 있는 디스플레이 장치를 제공하는 것이다.
또한, 실시예의 또 다른 목적은 각 화소의 점등 균일도를 확보할 수 있는 디스플레이 장치를 제공하는 것이다.
실시예의 기술적 과제는 본 항목에 기재된 것에 한정되지 않으며, 발명의 설명을 통해 파악될 수 있는 것을 포함한다.
상기 또는 다른 목적을 달성하기 위해 실시예의 제1 측면에 따르면, 반도체 발광 소자는, 장축 방향을 따라 제1 영역과 제2 영역을 갖는 발광부; 상기 제1 영역의 측면을 둘러싸는 절연층; 및 상기 제2 영역의 측면을 둘러싸는 제1 전극을 포함하고, 상기 절연층의 두께는 상기 제1 전극의 두께와 동일하다.
상기 또는 다른 목적을 달성하기 위해 실시예의 제2 측면에 따르면, 디스플레이 장치는, 기판; 상기 기판 상에 제1 및 제2 조립 배선; 상기 제1 및 제2 조립 배선 상에 배치되고 서로 상이한 컬러 광을 생성하는 복수의 반도체 발광 소자; 상기 복수의 반도체 발광 소자 각각의 일측 상에 제1 배선 전극; 및 상기 복수의 반도체 발광 소자 각각의 타측 상에 제2 배선 전극을 포함한다.
실시예에 따른 반도체 발광 소자 및 디스플레이 장치의 효과에 대해 설명하면 다음과 같다.
실시예에 따르면, 도 13 내지 도 17에 도시된 공정을 이용하여 도 12에 도시한 바와 같은 반도체 발광 소자(150)를 제조할 수 있다. 즉, 웨이퍼(501) 상에 복수의 성장 홀(510)이 형성되고(도 15a 및 도 15b), 복수의 성장 홀(510) 내에 발광부(160)를 성장할 수 있다. 이후 절연막(503)이 제거되고 복수의 발광부가 웨이퍼(501)로부터 분리됨으로써 복수의 반도체 발광 소자(150)가 제조될 수 있다.
실시예에서 복수의 성장 홀(510) 각각의 직경 및/또는 깊이가 동일하므로, 복수의 성장 홀(510)에서 성장된 복수의 발광부(160) 각각의 직경 및/또는 길이 또한 동일할 수 있다.
이와 같이 서로 동일한 직경을 갖는 복수의 반도체 발광 소자를 이용하여 디스플레이 구현시 각 화소의 휘도가 동일하므로, 화소 간 휘도 편차를 없애 화질을 향상시킬 수 있다. 아울러, 이와 같이 서로 동일한 길이를 갖는 복수의 반도체 발광 소자를 이용하여 디스플레이 구현시 도 30에 도시한 바와 같이 복수의 반도체 발광 소자(150B) 모두 배선 전극(330, 340)에 전기적으로 연결되므로, 점등 불량을 방지할 수 있다.
실시예에 따르면, 도 20 내지 도 28에 도시된 공정을 이용하여 도 18 및 도 19에 도시한 바와 같은 반도체 발광 소자(150A)를 제조할 수 있다. 즉, 웨이퍼(501) 상의 복수의 성장 홀(510) 내에 발광부(160)를 성장한 후, 절연막(503)의 상측 일부를 제거할 수 있다(도 24). 이후, 금속막이 형성된 후, 상기 제거된 절연막 상의 금속막이 모두 제거될 때까지 식각 공정이 수행됨으로써, 상부 전극(156, 157)이 형성될 수 있다(도 25 및 도 26). 이후 상부 전극(156, 157)을 마스크로 하여 식각 공정을 수행하여 절연막(503)을 제거함으로써, 상부 전극(156, 157)과 중첩하는 절연막(503)은 제거되지 않고 절연층(155)이 될 수 있다(도 27 및 도 28). 이후, 발광부(160)에서 상부 전극(156, 157)의 반대편에 하부 전극(158)이 형성되어, 반도체 발광 소자가 제조될 수 있다.
따라서, 발광부(160)의 제조 과정에서 상부 전극(156, 157) 및 하부 전극(158)뿐만 아니라 절연층(155)이 형성되어, 발광부(160)가 제조된 후에 별도의 전극과 절연층을 형성할 필요가 없어 공정이 단수하고 재료비를 절감할 수 있다.
실시예의 적용 가능성의 추가적인 범위는 이하의 상세한 설명으로부터 명백해질 것이다. 그러나 실시예의 사상 및 범위 내에서 다양한 변경 및 수정은 당업자에게 명확하게 이해될 수 있으므로, 상세한 설명 및 바람직한 실시예와 같은 특정 실시예는 단지 예시로 주어진 것으로 이해되어야 한다.
도 1은 종래의 발광 다이오드가 디스플레이 구현을 위해 기판 상에 실장된 모습을 도시한다.
도 2은 실시예에 따른 디스플레이 장치(100)가 배치된 주택의 거실을 도시한다.
도 3는 실시예에 따른 디스플레이 장치를 개략적으로 보여주는 블록도이다.
도 4은 도 3의 화소의 일 예를 보여주는 회로도이다.
도 5는 도 3의 디스플레이 패널을 상세히 보여주는 평면도이다.
도 6은 도 2의 디스플레이 장치에서 제1 패널영역의 확대도이다.
도 7은 도 6의 A2 영역의 확대도이다.
도 8은 실시예에 따른 발광 소자가 자가 조립 방식에 의해 기판에 조립되는 예를 나타내는 도면이다.
도 9 및 도 10는 실시예에 따른 발광 소자가 전사 방식에 의해 기판에 전사되는 예를 나타내는 도면이다.
도 11은 도 3의 디스플레이 패널을 개략적으로 보여주는 단면도이다.
도 12는 제1 실시예에 따른 반도체 발광 소자를 도시한 단면도이다.
도 13 내지 도 17은 제1 실시예에 따른 반도체 발광 소자의 제조 공정을 도시한다.
도 18은 제2 실시예에 따른 반도체 발광 소자를 도시한 단면도이다.
도 19는 도 18의 발광부를 상세히 도시한 단면도이다.
도 20 내지 도 28은 제2 실시예에 따른 반도체 발광 소자의 제조 공정을 도시한다.
도 29는 제3 실시예에 따른 반도체 발광 소자를 도시한 단면도이다.
도 30은 실시예에 따른 디스플레이 장치를 도시한 평면도이다.
도 31은 실시예에 따른 디스플레이 장치를 도시한 단면도이다.
이하, 첨부된 도면을 참조하여 본 명세서에 개시된 실시예를 상세히 설명하되, 도면 부호에 관계없이 동일하거나 유사한 구성요소는 동일한 참조 번호를 부여하고 이에 대한 중복되는 설명은 생략하기로 한다. 이하의 설명에서 사용되는 구성요소에 대한 접미사 '모듈' 및 '부'는 명세서 작성의 용이함이 고려되어 부여되거나 혼용되는 것으로서, 그 자체로 서로 구별되는 의미 또는 역할을 갖는 것은 아니다. 또한, 첨부된 도면은 본 명세서에 개시된 실시예를 쉽게 이해할 수 있도록 하기 위한 것이며, 첨부된 도면에 의해 본 명세서에 개시된 기술적 사상이 제한되는 것은 아니다. 또한, 층, 영역 또는 기판과 같은 요소가 다른 구성요소 '상(on)'에 존재하는 것으로 언급될 때, 이것은 직접적으로 다른 요소 상에 존재하거나 또는 그 사이에 다른 중간 요소가 존재할 수도 있는 것을 포함한다.
본 명세서에서 설명되는 디스플레이 장치에는 휴대폰, 스마트 폰(smart phone), 노트북 컴퓨터(laptop computer), 디지털방송용 단말기, PDA(personal digital assistants), PMP(portable multimedia player), 네비게이션, 슬레이트(Slate) PC, 태블릿(Tablet) PC, 울트라 북(Ultra-Book), 디지털 TV, 데스크탑 컴퓨터 등이 포함될 수 있다. 그러나, 본 명세서에 기재된 실시예에 따른 구성은 추후 개발되는 새로운 제품형태이라도, 디스플레이가 가능한 장치에도 적용될 수 있다.
이하 실시예에 따른 발광 소자 및 이를 포함하는 디스플레이 장치에 대해 설명한다.
도 2은 실시예에 따른 디스플레이 장치(100)가 배치된 주택의 거실을 도시한다.
실시예의 디스플레이 장치(100)는 세탁기(101), 로봇 청소기(102), 공기 청정기(103) 등의 각종 전자 제품의 상태를 표시할 수 있고, 각 전자 제품들과 IOT 기반으로 통신할 수 있으며 사용자의 설정 데이터에 기초하여 각 전자 제품들을 제어할 수도 있다.
실시예에 따른 디스플레이 장치(100)는 얇고 유연한 기판 위에 제작되는 플렉서블 디스플레이(flexible display)를 포함할 수 있다. 플렉서블 디스플레이는 기존의 평판 디스플레이의 특성을 유지하면서, 종이와 같이 휘어지거나 말릴 수 있다.
플렉서블 디스플레이에서 시각정보는 매트릭스 형태로 배치되는 단위 화소(unit pixel)의 발광이 독자적으로 제어됨에 의하여 구현될 수 있다. 단위 화소는 하나의 색을 구현하기 위한 최소 단위를 의미한다. 플렉서블 디스플레이의 단위 화소는 발광 소자에 의하여 구현될 수 있다. 실시예에서 발광 소자는 Micro-LED나 Nano-LED일 수 있으나 이에 한정되는 것은 아니다.
도 3은 실시예에 따른 디스플레이 장치를 개략적으로 보여주는 블록도이고, 도 4는 도 3의 화소의 일 예를 보여주는 회로도이다.
도 3 및 도 4를을 참조하면, 실시예에 따른 디스플레이 장치는 디스플레이 패널(10), 구동 회로(20), 스캔 구동부(30) 및 전원 공급 회로(50)를 포함할 수 있다.
실시예의 디스플레이 장치(100)는 액티브 매트릭스(AM, Active Matrix)방식 또는 패시브 매트릭스(PM, Passive Matrix) 방식으로 발광 소자를 구동할 수 있다.
구동 회로(20)는 데이터 구동부(21)와 타이밍 제어부(22)를 포함할 수 있다.
디스플레이 패널(10)은 직사각형으로 이루어질 수 있지만, 이에 대해서는 한정하지 않는다. 즉, 디스플레이 패널(10)은 원형 또는 타원형으로 형성될 수 있다. 디스플레이 패널(10)의 적어도 일 측은 소정의 곡률로 구부러지도록 형성될 수 있다.
디스플레이 패널(10)은 표시 영역(DA)과 표시 영역(DA)의 주변에 배치된 비표시 영역(NDA)으로 구분될 수 있다. 표시 영역(DA)은 화소(PX)들이 형성되어 영상을 디스플레이하는 영역이다. 디스플레이 패널(10)은 데이터 라인들(D1~Dm, m은 2 이상의 정수), 데이터 라인들(D1~Dm)과 교차되는 스캔 라인들(S1~Sn, n은 2 이상의 정수), 고전위 전압이 공급되는 고전위 전압 라인, 저전위 전압이 공급되는 저전위 전압 라인 및 데이터 라인들(D1~Dm)과 스캔 라인들(S1~Sn)에 접속된 화소(PX)들을 포함할 수 있다.
화소(PX)들 각각은 제1 서브 화소(PX1), 제2 서브 화소(PX2) 및 제3 서브 화소(PX3)를 포함할 수 있다. 제1 서브 화소(PX1)는 제1 주 파장의 제1 컬러 광을 발광하고, 제2 서브 화소(PX2)는 제2 주 파장의 제2 컬러 광을 발광하며, 제3 서브 화소(PX3)는 제3 주 파장의 제3 컬러 광을 발광할 수 있다. 제1 컬러 광은 적색 광, 제2 컬러 광은 녹색 광, 제3 컬러 광은 청색 광일 수 있으나, 이에 한정되지 않는다. 또한, 도 3에서는 화소(PX)들 각각이 3 개의 서브 화소들을 포함하는 것을 예시하였으나, 이에 한정되지 않는다. 즉, 화소(PX)들 각각은 4 개 이상의 서브 화소들을 포함할 수 있다.
제1 서브 화소(PX1), 제2 서브 화소(PX2) 및 제3 서브 화소(PX3) 각각은 데이터 라인들(D1~Dm) 중 적어도 하나, 스캔 라인들(S1~Sn) 중 적어도 하나 및 고전위 전압 라인에 접속될 수 있다. 제1 서브 화소(PX1)는 도 4과 같이 발광 소자(LD)들과 발광 소자(LD)들에 전류를 공급하기 위한 복수의 트랜지스터들과 적어도 하나의 커패시터(Cst)를 포함할 수 있다.
도면에 도시되지 않았지만, 제1 서브 화소(PX1), 제2 서브 화소(PX2) 및 제3 서브 화소(PX3) 각각은 단지 하나의 발광 소자(LD)와 적어도 하나의 커패시터(Cst)를 포함할 수도 있다.
발광 소자(LD)들 각각은 제1 전극, 복수의 도전형 반도체층 및 제2 전극을 포함하는 반도체 발광 다이오드일 수 있다. 여기서, 제1 전극은 애노드 전극, 제2 전극은 캐소드 전극일 수 있지만, 이에 대해서는 한정하지 않는다.
복수의 트랜지스터들은 도 6과 같이 발광 소자(LD)들에 전류를 공급하는 구동 트랜지스터(DT), 구동 트랜지스터(DT)의 게이트 전극에 데이터 전압을 공급하는 스캔 트랜지스터(ST)를 포함할 수 있다. 구동 트랜지스터(DT)는 스캔 트랜지스터(ST)의 소스 전극에 접속되는 게이트 전극, 고전위 전압이 인가되는 고전위 전압 라인에 접속되는 소스 전극 및 발광 소자(LD)들의 제1 전극들에 접속되는 드레인 전극을 포함할 수 있다. 스캔 트랜지스터(ST)는 스캔 라인(Sk, k는 1≤k≤n을 만족하는 정수)에 접속되는 게이트 전극, 구동 트랜지스터(DT)의 게이트 전극에 접속되는 소스 전극 및 데이터 라인(Dj, j는 1≤j≤m을 만족하는 정수)에 접속되는 드레인 전극을 포함할 수 있다.
커패시터(Cst)는 구동 트랜지스터(DT)의 게이트 전극과 소스 전극 사이에 형성된다. 스토리지 커패시터(Cst)는 구동 트랜지스터(DT)의 게이트 전압과 소스 전압의 차이값을 충전한다.
구동 트랜지스터(DT)와 스캔 트랜지스터(ST)는 박막 트랜지스터(thin film transistor)로 형성될 수 있다. 또한, 도 6에서는 구동 트랜지스터(DT)와 스캔 트랜지스터(ST)가 P 타입 MOSFET(Metal Oxide Semiconductor Field Effect Transistor)으로 형성된 것을 중심으로 설명하였으나, 본 발명은 이에 한정되지 않는다. 구동 트랜지스터(DT)와 스캔 트랜지스터(ST)는 N 타입 MOSFET으로 형성될 수도 있다. 이 경우, 구동 트랜지스터(DT)와 스캔 트랜지스터(ST)들 각각의 소스 전극과 드레인 전극의 위치는 변경될 수 있다.
또한, 도 4에서는 제1 서브 화소(PX1), 제2 서브 화소(PX2) 및 제3 서브 화소(PX3) 각각이 하나의 구동 트랜지스터(DT), 하나의 스캔 트랜지스터(ST) 및 하나의 커패시터(Cst)를 갖는 2T1C (2 Transistor - 1 capacitor)를 포함하는 것을 예시하였으나, 본 발명은 이에 한정되지 않는다. 제1 서브 화소(PX1), 제2 서브 화소(PX2) 및 제3 서브 화소(PX3) 각각은 복수의 스캔 트랜지스터(ST)들과 복수의 커패시터(Cst)들을 포함할 수 있다.
제2 서브 화소(PX2)와 제3 서브 화소(PX3)는 제1 서브 화소(PX1)와 실질적으로 동일한 회로도로 표현될 수 있으므로, 이들에 대한 자세한 설명은 생략한다.
구동 회로(20)는 디스플레이 패널(10)을 구동하기 위한 신호들과 전압들을 출력한다. 이를 위해, 구동 회로(20)는 데이터 구동부(21)와 타이밍 제어부(22)를 포함할 수 있다.
데이터 구동부(21)는 타이밍 제어부(22)로부터 디지털 비디오 데이터(DATA)와 소스 제어 신호(DCS)를 입력 받는다. 데이터 구동부(21)는 소스 제어 신호(DCS)에 따라 디지털 비디오 데이터(DATA)를 아날로그 데이터 전압들로 변환하여 디스플레이 패널(10)의 데이터 라인들(D1~Dm)에 공급한다.
타이밍 제어부(22)는 호스트 시스템으로부터 디지털 비디오 데이터(DATA)와 타이밍 신호들을 입력받는다. 타이밍 신호들은 수직동기신호(vertical sync signal), 수평동기신호(horizontal sync signal), 데이터 인에이블 신호(data enable signal) 및 도트 클럭(dot clock)을 포함할 수 있다. 호스트 시스템은 스마트폰 또는 태블릿 PC의 어플리케이션 프로세서, 모니터, TV의 시스템 온 칩 등일 수 있다.
타이밍 제어부(22)는 데이터 구동부(21)와 스캔 구동부(30)의 동작 타이밍을 제어하기 위한 제어신호들을 생성한다. 제어신호들은 데이터 구동부(21)의 동작 타이밍을 제어하기 위한 소스 제어 신호(DCS)와 스캔 구동부(30)의 동작 타이밍을 제어하기 위한 스캔 제어 신호(SCS)를 포함할 수 있다.
구동 회로(20)는 디스플레이 패널(10)의 일 측에 마련된 비표시 영역(NDA)에서 배치될 수 있다. 구동 회로(20)는 집적회로(integrated circuit, IC)로 형성되어 COG(chip on glass) 방식, COP(chip on plastic) 방식, 또는 초음파 접합 방식으로 디스플레이 패널(10) 상에 장착될 수 있으나, 본 발명은 이에 한정되지 않는다. 예를 들어, 구동 회로(20)는 디스플레이 패널(10)이 아닌 회로 보드(미도시) 상에 장착될 수 있다.
데이터 구동부(21)는 COG(chip on glass) 방식, COP(chip on plastic) 방식, 또는 초음파 접합 방식으로 디스플레이 패널(10) 상에 장착되고, 타이밍 제어부(22)는 회로 보드 상에 장착될 수 있다.
스캔 구동부(30)는 타이밍 제어부(22)로부터 스캔 제어 신호(SCS)를 입력 받는다. 스캔 구동부(30)는 스캔 제어 신호(SCS)에 따라 스캔 신호들을 생성하여 디스플레이 패널(10)의 스캔 라인들(S1~Sn)에 공급한다. 스캔 구동부(30)는 다수의 트랜지스터들을 포함하여 디스플레이 패널(10)의 비표시 영역(NDA)에 형성될 수 있다. 또는, 스캔 구동부(30)는 집적 회로로 형성될 수 있으며, 이 경우 디스플레이 패널(10)의 다른 일 측에 부착되는 게이트 연성 필름 상에 장착될 수 있다.
회로 보드는 이방성 도전 필름(anisotropic conductive film)을 이용하여 디스플레이 패널(10)의 일 측 가장자리에 마련된 패드들 상에 부착될 수 있다. 이로 인해, 회로 보드의 리드 라인들은 패드들에 전기적으로 연결될 수 있다. 회로 보드는 연성 인쇄 회로 보드(flexible printed circuit board), 인쇄 회로 보드(printed circuit board) 또는 칩온 필름(chip on film)과 같은 연성 필름(flexible film)일 수 있다. 회로 보드는 디스플레이 패널(10)의 하부로 벤딩(bending)될 수 있다. 이로 인해, 회로 보드의 일 측은 디스플레이 패널(10)의 일 측 가장자리에 부착되며, 타 측은 디스플레이 패널(10)의 하부에 배치되어 호스트 시스템이 장착되는 시스템 보드에 연결될 수 있다.
전원 공급 회로(50)는 시스템 보드로부터 인가되는 메인 전원으로부터 디스플레이 패널(10)의 구동에 필요한 전압들을 생성하여 디스플레이 패널(10)에 공급할 수 있다. 예를 들어, 전원 공급 회로(50)는 메인 전원으로부터 디스플레이 패널(10)의 발광 소자(LD)들을 구동하기 위한 고전위 전압(VDD)과 저전위 전압(VSS)을 생성하여 디스플레이 패널(10)의 고전위 전압 라인과 저전위 전압 라인에 공급할 수 있다. 또한, 전원 공급 회로(50)는 메인 전원으로부터 구동 회로(20)와 스캔 구동부(30)를 구동하기 위한 구동 전압들을 생성하여 공급할 수 있다.
도 5는 도 3의 디스플레이 패널을 상세히 보여주는 평면도이다. 도 5에서는 설명의 편의를 위해, 데이터 패드들(DP1~DPp, p는 2 이상의 정수), 플로팅 패드들(FP1, FP2), 전원 패드들(PP1, PP2), 플로팅 라인들(FL1, FL2), 저전위 전압 라인(VSSL), 데이터 라인들(D1~Dm), 제1 패드 전극(210)들 및 제2 패드 전극(220)들만을 도시하였다.
도 5를 참조하면, 디스플레이 패널(10)의 표시 영역(DA)에는 데이터 라인들(D1~Dm), 제1 패드 전극(210)들, 제2 패드 전극(220)들 및 화소(PX)들이 배치될 수 있다.
데이터 라인들(D1~Dm)은 제2 방향(Y축 방향)으로 길게 연장될 수 있다. 데이터 라인들(D1~Dm)의 일 측들은 구동 회로(도 5의 20)에 연결될 수 있다. 이로 인해, 데이터 라인들(D1~Dm)에는 구동 회로(20)의 데이터 전압들이 인가될 수 있다.
제1 패드 전극(210)들은 제1 방향(X축 방향)으로 소정의 간격으로 이격되어 배치될 수 있다. 이로 인해, 제1 패드 전극(210)들은 데이터 라인들(D1~Dm)과 중첩되지 않을 수 있다. 제1 패드 전극(210)들 중 표시 영역(DA)의 우측 가장자리에 배치된 제1 패드 전극(210)들은 비표시 영역(NDA)에서 제1 플로팅 라인(FL1)에 접속될 수 있다. 제1 패드 전극(210)들 중 표시 영역(DA)의 좌측 가장자리에 배치된 제1 패드 전극(210)들은 비표시 영역(NDA)에서 제2 플로팅 라인(FL2)에 접속될 수 있다.
제2 패드 전극(220)들 각각은 제1 방향(X축 방향)으로 길게 연장될 수 있다. 이로 인해, 제2 패드 전극(220)들은 데이터 라인들(D1~Dm)과 중첩될 수 있다. 또한, 제2 패드 전극(220)들은 비표시 영역(NDA)에서 저전위 전압 라인(VSSL)에 연결될 수 있다. 이로 인해, 제2 패드 전극(220)들에는 저전위 전압 라인(VSSL)의 저전위 전압이 인가될 수 있다.
디스플레이 패널(10)의 비표시 영역(NDA)에는 패드부(PA), 구동 회로(20), 제1 플로팅 라인(FL1), 제2 플로팅 라인(FL2) 및 저전위 전압 라인(VSSL)이 배치될 수 있다. 패두부(PA)는 데이터 패드들(DP1~DPp), 플로팅 패드들(FP1, FP2) 및 전원 패드들(PP1, PP2)을 포함할 수 있다.
패드부(PA)는 표시패널(10)의 일 측 가장자리, 예를 들어 하측 가장자리에 배치될 수 있다. 데이터 패드들(DP1~DPp), 플로팅 패드들(FP1, FP2) 및 전원 패드들(PP1, PP2)은 패드부(PA)에서 제1 방향(X축 방향)으로 나란하게 배치될 수 있다.
데이터 패드들(DP1~DPp), 플로팅 패드들(FP1, FP2) 및 전원 패드들(PP1, PP2) 상에는 회로 보드가 이방성 도전 필름(anisotropic conductive film)을 이용하여 부착될 수 있다. 이로 인해, 회로 보드와 데이터 패드들(DP1~DPp), 플로팅 패드들(FP1, FP2) 및 전원 패드들(PP1, PP2)은 전기적으로 연결될 수 있다.
구동 회로(20)는 링크 라인들을 통해 데이터 패드들(DP1~DPp)에 연결될 수 있다. 구동 회로(20)는 데이터 패드들(DP1~DPp)을 통해 디지털 비디오 데이터(DATA)와 타이밍 신호들을 입력 받을 수 있다. 구동 회로(20)는 디지털 비디오 데이터(DATA)를 아날로그 데이터 전압들로 변환하여 디스플레이 패널(10)의 데이터 라인들(D1~Dm)에 공급할 수 있다.
저전위 전압 라인(VSSL)은 패드부(PA)의 제1 전원 패드(PP1)와 제2 전원 패드(PP2)에 연결될 수 있다. 저전위 전압 라인(VSSL)은 표시 영역(DA)의 좌측 바깥쪽과 우측 바깥쪽의 비표시 영역(NDA)에서 제2 방향(Y축 방향)으로 길게 연장될 수 있다. 저전위 전압 라인(VSSL)은 제2 패드 전극(220)에 연결될 수 있다. 이로 인해, 전원 공급 회로(50)의 저전위 전압은 회로 보드, 제1 전원 패드(PP1), 제2 전원 패드(PP2) 및 저전위 전압 라인(VSSL)을 통해 제2 패드 전극(220)에 인가될 수 있다.
제1 플로팅 라인(FL1)은 패드부(PA)의 제1 플로팅 패드(FP1)에 연결될 수 있다. 제1 플로팅 라인(FL1)은 표시 영역(DA)의 좌측 바깥쪽과 우측 바깥쪽의 비표시 영역(NDA)에서 제2 방향(Y축 방향)으로 길게 연장될 수 있다. 제1 플로팅 패드(FP1)와 제1 플로팅 라인(FL1)은 어떠한 전압도 인가되지 않는 더미 패드와 더미 라인일 수 있다.
제2 플로팅 라인(FL2)은 패드부(PA)의 제2 플로팅 패드(FP2)에 연결될 수 있다. 제1 플로팅 라인(FL1)은 표시 영역(DA)의 좌측 바깥쪽과 우측 바깥쪽의 비표시 영역(NDA)에서 제2 방향(Y축 방향)으로 길게 연장될 수 있다. 제2 플로팅 패드(FP2)와 제2 플로팅 라인(FL2)은 어떠한 전압도 인가되지 않는 더미 패드와 더미 라인일 수 있다.
한편, 발광 소자(도 6의 LD)들은 매우 작은 사이즈를 가지므로 화소(PX)들 각각의 제1 서브 화소(PX1), 제2 서브 화소(PX2) 및 제3 서브 화소(PX3)에 장착하기가 매우 어렵다.
이러한 문제를 해소하기 위해, 유전영동(dielectrophoresis) 방식을 이용한 정렬 방법이 제안되었다.
즉, 디스플레이 패널(10)의 제조 공정 중에 발광 소자(도 6의 150)들을 정렬하기 위해 화소(PX)들 각각의 제1 서브 화소(PX1), 제2 서브 화소(PX2) 및 제3 서브 화소(PX3)에 전기장을 형성할 수 있다. 구체적으로, 제조 공정 중에 유전영동 방식을 이용하여 발광 소자(150)들에 유전영동힘(Dielectrophoretic Force)을 가함으로써 제1 서브 화소(PX1), 제2 서브 화소(PX2) 및 제3 서브 화소(PX3) 각각에 발광 소자(150)들을 정렬시킬 수 있다.
그러나, 제조 공정 중에는 박막 트랜지스터들을 구동하여 제1 패드 전극(210)들에 그라운드 전압을 인가하기 어렵다.
따라서, 완성된 디스플레이 장치에서는 제1 패드 전극(210)들이 제1 방향(X축 방향)으로 소정의 간격으로 이격되어 배치되나, 제조 공정 중에 제1 패드 전극(210)들은 제1 방향(X축 방향)으로 단선되지 않고, 길게 연장 배치될 수 있다.
이로 인해, 제조 공정 중에는 제1 패드 전극(210)들이 제1 플로팅 라인(FL1) 및 제2 플로팅 라인(FL2)과 연결될 수 있다. 그러므로, 제1 패드 전극(210)들은 제1 플로팅 라인(FL1) 및 제2 플로팅 라인(FL2)을 통해 그라운드 전압을 인가받을 수 있다. 따라서, 제조 공정 중에 유전영동 방식을 이용하여 발광 소자(150)들을 정렬시킨 후에, 제1 패드 전극(210)들을 단선함으로써, 제1 패드 전극(210)들이 제1 방향(X축 방향)으로 소정의 간격으로 이격되어 배치될 수 있다.
한편, 제1 플로팅 라인(FL1)과 제2 플로팅 라인(FL2)은 제조 공정 중에 그라운드 전압을 인가하기 위한 라인이며, 완성된 디스플레이 장치에서는 어떠한 전압도 인가되지 않을 수 있다. 또는, 완성된 디스플레이 장치에서 정전기 방지용으로 또는 발광 소자(150) 구동용으로 제1 플로팅 라인(FL1)과 제2 플로팅 라인(FL2)에는 그라운드 전압이 인가될 수도 있다.
도 6은 도 2의 디스플레이 장치에서 제1 패널영역의 확대도이다.
도 6에 의하면, 실시예의 디스플레이 장치(100)는 제1 패널영역(A1)과 같은 복수의 패널영역들이 타일링에 의해 기구적, 전기적 연결되어 제조될 수 있다.
제1 패널영역(A1)은 단위 화소(도 5의 PX) 별로 배치된 복수의 발광 소자(150)를 포함할 수 있다.
예컨대, 단위 화소(PX)는 제1 서브 화소(PX1), 제2 서브 화소(PX2) 및 제3 서브 화소(PX3)를 포함할 수 있다. 예컨대, 복수의 적색 발광 소자(150R)가 제1 서브 화소(PX1)에 배치되고, 복수의 녹색 발광 소자(150G)가 제2 서브 화소(PX2)에 배치되며, 복수의 청색 발광 소자(150B)가 제3 서브 화소(PX3)에 배치될 수 있다. 단위 화소(PX)는 발광 소자가 배치되지 않는 제4 서브 화소를 더 포함할 수도 있지만, 이에 대해서는 한정하지 않는다.
도 7은 도 6의 A2 영역의 확대도이다.
도 7을 참조하면, 실시예의 디스플레이 장치(100)는 기판(200), 배선 전극(201, 202), 절연층(206) 및 복수의 발광 소자(150)를 포함할 수 있다. 이보다 더 많은 구성 요소들이 포함될 수 있다.
배선 전극은 서로 이격된 제1 배선 전극(201) 및 제2 배선 전극(202)을 포함할 수 있다. 제1 배선 전극(201) 및 제2 배선 전극(202)은 발광 소자(150)를 조립하기 위해 유전영동힘을 생성하기 위해 구비될 수 있다.
발광 소자(150)는 각각 단위 화소(sub-pixel)를 이루기 위하여 적색 발광 소자(150), 녹색 발광 소자(150G) 및 청색 발광 소자(150B0를 포함할 수 있으나 이에 한정되는 것은 아니며, 적색 형광체와 녹색 형광체 등을 구비하여 각각 적색과 녹색을 구현할 수도 있다.
기판(200)은 유리나 폴리이미드(Polyimide)로 형성될 수 있다. 또한 기판(200)은 PEN(Polyethylene Naphthalate), PET(Polyethylene Terephthalate) 등의 유연성 있는 재질을 포함할 수 있다. 또한, 기판(200)은 투명한 재질일 수 있으나 이에 한정되는 것은 아니다.
절연층(206)은 폴리이미드, PEN, PET 등과 같이 절연성과 유연성 있는 재질을 포함할 수 있으며, 기판(200)과 일체로 이루어져 하나의 기판을 형성할 수도 있다.
절연층(206)은 접착성과 전도성을 가지는 전도성 접착층일 수 있고, 전도성 접착층은 연성을 가져서 디스플레이 장치의 플렉서블 기능을 가능하게 할 수 있다. 예를 들어, 절연층(206)은 이방성 전도성 필름(ACF, anisotropy conductive film)이거나 이방성 전도매질, 전도성 입자를 함유한 솔루션(solution) 등의 전도성 접착층일 수 있다. 전도성 접착층은 두께에 대해 수직방향으로는 전기적으로 전도성이나, 두께에 대해 수평방향으로는 전기적으로 절연성을 가지는 레이어일 수 있다.
절연층(206)은 발광 소자(150)가 삽입되기 위한 조립 홀(203)을 포함할 수 있다. 따라서, 자가 조립시, 발광 소자(150)가 절연층(206)의 조립 홀(203)에 용이하게 삽입될 수 있다. 조립 홀(203)은 삽입 홀, 고정 홀, 정렬 홀 등으로 불릴 수 있다.
한편, 발광 소자(150)를 기판(200) 상에 장착하는 방식은 예컨대, 자가 조립 방식(도 8)과 전사 방식(도 9 및 도 10) 등이 있을 수 있다.
도 8은 실시예에 따른 발광 소자가 자가 조립 방식에 의해 기판에 조립되는 예를 나타내는 도면이다.
도 7 및 도 8을 참조하여 발광 소자의 자가 조립 방식을 설명한다.
기판(200)은 디스플레이 장치의 패널 기판일 수 있다. 이후 설명에서는 기판(200)은 디스플레이 장치의 패널 기판인 경우로 설명하나 실시예가 이에 한정되는 것은 아니다.
기판(200)은 유리나 폴리이미드(Polyimide)로 형성될 수 있다. 또한 기판(200)은 PEN(Polyethylene Naphthalate), PET(Polyethylene Terephthalate) 등의 유연성 있는 재질을 포함할 수 있다. 또한, 기판(200)은 투명한 재질일 수 있으나 이에 한정되는 것은 아니다.
도 8을 참조하면, 발광 소자(150)는 유체(1200)가 채워진 챔버(1300)에 투입될 수 있다. 유체(1200)는 초순수 등의 물일 수 있으나 이에 한정되는 것은 아니다. 챔버는 수조, 컨테이너, 용기 등으로 불릴 수 있다.
이 후, 기판(200)이 챔버(1300) 상에 배치될 수 있다. 실시예에 따라, 기판(200)은 챔버(1300) 내로 투입될 수도 있다.
도 7에 도시한 바와 같이, 기판(200)에는 조립될 발광 소자(150) 각각에 대응하는 한 쌍의 배선 전극(201, 202)이 배치될 수 있다.
배선 전극(201, 202)은 투명 전극(ITO)으로 형성되거나, 전기 전도성이 우수한 금속물질을 포함할 수 있다. 예를 들어, 배선 전극(201, 202)은 티탄(Ti), 크롬(Cr), 니켈(Ni), 알루미늄(Al), 백금(Pt), 금(Au), 텅스텐(W), 몰리브덴(Mo) 중 적어도 어느 하나 또는 이들의 합금으로 형성될 수 있다.
배선 전극(201, 202)은 외부에서 공급된 전압에 의해 전기장이 형성되고, 이 전기장에 의해 유전영동힘이 배선 전극(201, 202) 사이에 형성될 수 있다. 이 유전영동힘에 의해 기판(200) 상의 조립 홀(203)에 발광 소자(150)를 고정시킬 수 있다.
배선 전극(201, 202) 간의 간격은 발광 소자(150)의 폭 및 조립 홀(203)의 폭보다 작게 형성되어, 전기장을 이용한 발광 소자(150)의 조립 위치를 보다 정밀하게 고정할 수 있다.
배선 전극(201, 202) 상에는 절연층(206)이 형성되어, 배선 전극(201, 202)을 유체(1200)로부터 보호하고, 배선 전극(201, 202)에 흐르는 전류의 누출을 방지할 수 있다. 절연층(206)은 실리카, 알루미나 등의 무기물 절연체 또는 유기물 절연체가 단일층 또는 다층으로 형성될 수 있다.
또한 절연층(206)은 폴리이미드, PEN, PET 등과 같이 절연성과 유연성 있는 재질을 포함할 수 있으며, 기판(200)과 일체로 이루어져 하나의 기판을 형성할 수도 있다.
절연층(206)은 접착성이 있는 절연층일 수 있거나, 전도성을 가지는 전도성 접착층일 수 있다. 절연층(206)은 연성이 있어서 디스플레이 장치의 플렉서블 기능을 가능하게 할 수 있다.
절연층(206)은 격벽을 가지고, 이 격벽에 의해 조립 홀(203)이 형성될 수 있다. 예컨대, 기판(200)의 형성 시, 절연층(206)의 일부가 제거됨으로써, 발광 소자(150)들 각각이 절연층(206)의 조립 홀(203)에 조립될 수 있다.
기판(200)에는 발광 소자(150)들이 결합되는 조립 홀(203)이 형성되고, 조립 홀(203)이 형성된 면은 유체(1200)와 접촉할 수 있다. 조립 홀(203)은 발광 소자(150)의 정확한 조립 위치를 가이드할 수 있다.
한편, 조립 홀(203)은 대응하는 위치에 조립될 발광 소자(150)의 형상에 대응하는 형상 및 크기를 가질 수 있다. 이에 따라, 조립 홀(203)에 다른 발광 소자가 조립되거나 복수의 발광 소자들이 조립되는 것을 방지할 수 있다.
다시 도 8을 참조하면, 기판(200)이 배치된 후, 자성체를 포함하는 조립 장치(1100)가 기판(200)을 따라 이동할 수 있다. 자성체로 예컨대, 자석이나 전자석이 사용될 수 있다. 조립 장치(1100)는 자기장이 미치는 영역을 유체(1200) 내로 최대화하기 위해, 기판(200)과 접촉한 상태로 이동할 수 있다. 실시예에 따라서는, 조립 장치(1100)가 복수의 자성체를 포함하거나, 기판(200)과 대응하는 크기의 자성체를 포함할 수도 있다. 이 경우, 조립 장치(1100)의 이동 거리는 소정 범위 이내로 제한될 수도 있다.
조립 장치(1100)에 의해 발생하는 자기장에 의해, 챔버(1300) 내의 발광 소자(150)는 조립 장치(1100)를 향해 이동할 수 있다.
발광 소자(150)는 조립 장치(1100)를 향해 이동 중, 조립 홀(203)로 진입하여 기판(200)과 접촉될 수 있다.
이때, 기판(200)에 형성된 배선 전극(201, 202)에 의해 가해지는 전기장에 의해, 기판(200)에 접촉된 발광 소자(150)가 조립 장치(1100)의 이동에 의해 이탈되는 것이 방지될 수 있다.
즉, 상술한 전자기장을 이용한 자가 조립 방식에 의해, 발광 소자(150)들 각각이 기판(200)에 조립되는 데 소요되는 시간을 급격히 단축시킬 수 있으므로, 대면적 고화소 디스플레이를 보다 신속하고 경제적으로 구현할 수 있다.
기판(200)의 조립 홀(203) 상에 조립된 발광 소자(150)와 제2 패드전극(222) 사이에는 소정의 솔더층(225)이 더 형성되어 발광 소자(150)의 결합력을 향상시킬 수 있다.
이후 발광 소자(150)에 제1 패드전극(221)이 연결되어 전원을 인가할 수 있다.
다음으로 기판(200)의 격벽(200S)과 조립 홀(203)에 몰딩층(230)이 형성될 수 있다. 몰딩층(230)은 투명 레진이거나 또는 반사물질, 산란물질이 포함된 레진일 수 있다.
도 9 및 도 10은 실시예에 따른 발광 소자가 전사 방식에 의해 기판에 전사되는 예를 나타내는 도면이다.
도 9에 도시한 바와 같이, 기판(1500) 상에 복수의 발광 소자(150)가 부착될 수 있다. 예컨대, 기판(1500)은 디스플레이 기판 상에 발광 소자(150)를 장착하기 위한 중간 매개체로서의 도너(doner) 기판일 수 있다. 이러한 경우, 웨이퍼 상에서 제조된 복수의 발광 소자(150)은 기판(1500)로 부착되고, 기판(1500) 상에 부착된 복수의 발광 소자(150)가 디스플레이 기판 상에 전사될 수 있다.
이하에서는 도너 기판으로서의 기판(1500)으로 설명되지만, 기판(1500)은 복수의 발광 소자(150)가 도너 기판을 경유하지 않고 직접 전사되기 위한 디스플레이 기판일 수도 있다.
도 9에 도시한 바와 같이, 디스플레이용 기판(200) 상에 기판(1500)이 위치된 후, 기판(1500) 상의 복수의 발광 소자(150) 각각이 디스플레이용 기판(200)의 각 화소에 대응하도록 얼라인 공정이 수행될 수 있다.
이후, 기판(1500)(또는 디스플레이용 기판(200))을 가압함으로써, 도 10에 도시한 바와 같이 기판(1500) 상의 복수의 발광 소자(150)가 디스플레이용 기판(200) 상의 각 화소에 전사될 수 있다.
이후, 후 공정을 통해 복수의 발광 소자(150)가 디스플레이용 기판(200)에 부착되고 복수의 발광 소자(150)가 전원에 전기적으로 연결됨으로써, 복수의 발광 소자(150)가 발광되어 영상이 디스플레이될 수 있다.
한편, 실시예에 따른 디스플레이 장치에서는 발광 소자를 이용하여 영상을 디스플레이할 수 있다. 실시예의 발광 소자는 전기의 인가에 의해 스스로 광을 발산하는 자발광 소자로서, 반도체 발광 소자일 수 있다. 실시예의 발광 소자는 무기질 반도체 재질로 이루어지므로, 열화에 강하고 수명이 반영구적이어서 안정적인 광을 제공하여 디스플레이 장치가 고품질과 고화질의 영상을 구현하는데 기여할 수 있다.
예컨대, 디스플레이 장치는 발광 소자를 광원으로 이용하고, 발광 소자 상에 컬러 생성부를 구비하여 이 컬러 생성부에 의해 영상을 디스플레이할 수 있다(도 11).
도시되지 않았지만, 디스플레이 장치는 서로 상이한 컬러 광을 생성하는 복수의 발광 소자 각각을 화소에 배치한 디스플레이 패널을 통해 영사을 디스플레이할 수도 있다.
도 11은 도 5의 디스플레이 패널을 개략적으로 보여주는 단면도이다.
도 11을 참조하면, 실시예의 디스플레이 패널(10)은 제1 기판(40), 발광부(41), 컬러 생성부(42) 및 제2 기판(46)를 포함할 수 있다. 실시예의 디스플레이 패널(10)은 이보다 더 많은 구성을 포함할 수 있지만, 이에 대해서는 한정하지 않는다. 제1 기판(40)은 도 9에 도시된 기판(200)일 수 있다.
도시되지 않았지만, 제1 기판(40)과 발광부(41) 사이, 발광부(41)와 컬러 생성부(42) 사이 및/또는 컬러 생성부(42)와 제2 기판(46) 사이에 적어도 하나 이상의 절연층이 배치될 수 있지만, 이에 대해서는 한정하지 않는다.
제1 기판(40)은 발광부(41), 컬러 생성부(42) 및 제2 기판(46)을 지지할 수 있다. 제1 기판(40)은 상술한 바와 같은 다양한 소자들, 예컨대 도 5에 도시된 바와 같이 데이터 라인들(D1~Dm, m은 2 이상의 정수), 스캔 라인들(S1~Sn), 고전위 전압 라인 및 저전위 전압 라인, 도 6에 도시된 바와 같이 복수의 트랜지스터들(ST, DT)과 적어도 하나의 커패시터(Cst) 그리고 도 7에 도시된 바와 같이 제1 패드 전극(210) 및 제2 패드 전극(220)이 구비될 수 있다.
제1 기판(40)은 유리나 플렉서블 재질로 형성될 수 있지만, 이에 대해서는 한정하지 않는다.
발광부(41)는 광을 컬러 생성부(42)로 제공할 수 있다. 발광부(41)는 전기의 인가에 의해 스스로 빛을 발산하는 복수의 광원을 포함할 수 있다. 예컨대, 광원은 발광 소자(도 6의 150)를 포함할 수 있다.
일 예로, 복수의 발광 소자(150)는 화소의 각 서브 화소 별로 구분되어 배치되어 개별적인 각 서브 화소의 제어에 의해 독립적으로 발광할 수 있다.
다른 예로, 복수의 발광 소자(150)는 화소의 구분에 관계없이 배치되어 모든 서브 화소에서 동시에 발광할 수 있다.
실시예의 발광 소자(150)는 청색 광을 발광할 수 있지만, 이에 대해서는 한정하지 않는다. 예컨대, 실시예의 발광 소자(150)는 백색 광이나 자주색 광을 발광할 수도 있다.
한편, 발광 소자(150)는 각 서브 화소별로 적색 광, 녹색 광 및 청색 광을 발광할 수도 있다. 이를 위해, 예컨대, 제1 서브 화소, 즉 적색 서브 화소에 적색 광을 발광하는 적색 발광 소자가 배치되고, 제2 서브 화소, 즉 녹색 서브 화소에 녹색 광을 발광하는 녹색 발광 소자가 배치되며, 제3 서브 화소, 즉 청색 서브 화소에 청색 광을 발광하는 청색 발광 소자가 배치될 수 있다.
예컨대, 적색 발광 소자, 녹색 발광 소자 및 청색 발광 소자 각각은 Ⅱ-Ⅳ족 화합물 또는 III-V족 화합물을 포함할 수 있지만, 이에 대해서는 한정하지 않는다. 예컨대, III-V족 화합물은 GaN, GaP, GaAs, GaSb, AlN, AlP, AlAs, AlSb, InN, InP, InAs, InSb 및 이들의 혼합물로 이루어진 군에서 선택되는 이원소 화합물; GaNP, GaNAs, GaNSb, GaPAs, GaPSb, AlInP, AlNP, AlNAs, AlNSb, AlPAs, AlPSb, InNP, InNAs, InNSb, InPAs, InPSb, GaAlNP 및 이들의 혼합물로 이루어진 군에서 선택되는 삼원소 화합물; 및 AlGaInP, GaAlNAs, GaAlNSb, GaAlPAs, GaAlPSb, GaInNP, GaInNAs, GaInNSb, GaInPAs, GaInPSb, InAlNP, InAlNAs, InAlNSb, InAlPAs, InAlPSb 및 이들의 혼합물로 이루어진 군에서 선택되는 사원소 화합물로 이루어진 군에서 선택될 수 있다.
컬러 생성부(42)는 발광부(41)에서 제공된 광과 상이한 컬러 광을 생성할 수 있다.
예컨대, 컬러 생성부(42)는 제1 컬러 생성부(43), 제2 컬러 생성부(44) 및 제3 컬러 생성부(45)를 포함할 수 있다. 제1 컬러 생성부(43)는 화소의 제1 서브 화소(PX1)에 대응되고, 제2 컬러 생성부(44)는 화소의 제2 서브 화소(PX2)에 대응되며, 제3 컬러 생성부(45)는 화소의 제3 서브 화소(PX3)에 대응될 수 있다.
제1 컬러 생성부(43)는 발광부(41)에서 제공된 광에 기초하여 제1 컬러 광을 생성하고, 제2 컬러 생성부(44)는 발광부(41)에서 제공된 광에 기초하여 제2 컬러 광을 생성하며, 제3 컬러 생성부(45)는 발광부(41)에서 제공된 광에 기초하여 제3 컬러 광을 생성할 수 있다. 예컨대, 제1 컬러 생성부(43)는 발광부(41)의 청색 광을 적색 광으로 출력하고, 제2 컬러 생성부(44)는 발광부(41)의 청색 광을 녹색 광으로 출력하며, 제3 컬러 생성부(45)는 발광부(41)의 청색 광을 그대로 출력할 수 있다.
일 예로, 제1 컬러 생성부(43)는 제1 컬러 필터를 포함하고, 제2 컬러 생성부(44)는 제2 컬러 필터를 포함하며, 제3 컬러 생성부(45)는 제3 컬러 필터를 포함할 수 있다.
제1 컬러 필터, 제2 컬러 필터 및 제3 컬러 필터는 빛이 투과할 수 있는 투명한 재질로 형성될 수 있다.
예컨대, 제1 컬러 필터, 제2 컬러 필터 및 제3 컬러 필터 중 적어도 하나 이상은 양자점(quantum dot)을 포함할 수 있다.
실시예의 양자점은 Ⅱ-Ⅳ족 화합물, III-V족 화합물, IV-VI족 화합물, IV족 원소, IV족 화합물 및 이들의 조합에서 선택될 수 있다.
Ⅱ-VI족 화합물은 CdSe, CdTe, ZnS, ZnSe, ZnTe, ZnO, HgS, HgSe, HgTe, MgSe, MgS 및 이들의 혼합물로 이루어진 군에서 선택되는 이원소 화합물; CdSeS, CdSeTe, CdSTe, ZnSeS, ZnSeTe, ZnSTe, HgSeS, HgSeTe, HgSTe, CdZnS, CdZnSe, CdZnTe, CdHgS, CdHgSe, CdHgTe, HgZnS, HgZnSe, HgZnTe, MgZnSe, MgZnS 및 이들의 혼합물로 이루어진 군에서 선택되는 삼원소 화합물; 및 HgZnTeS, CdZnSeS, CdZnSeTe, CdZnSTe, CdHgSeS, CdHgSeTe, CdHgSTe, HgZnSeS, HgZnSeTe, HgZnSTe 및 이들의 혼합물로 이루어진 군에서 선택되는 사원소 화합물로 이루어진 군에서 선택될 수 있다.
III-V족 화합물은 GaN, GaP, GaAs, GaSb, AlN, AlP, AlAs, AlSb, InN, InP, InAs, InSb 및 이들의 혼합물로 이루어진 군에서 선택되는 이원소 화합물; GaNP, GaNAs, GaNSb, GaPAs, GaPSb, AlInP, AlNP, AlNAs, AlNSb, AlPAs, AlPSb, InNP, InNAs, InNSb, InPAs, InPSb, GaAlNP 및 이들의 혼합물로 이루어진 군에서 선택되는 삼원소 화합물; 및 AlGaInP, GaAlNAs, GaAlNSb, GaAlPAs, GaAlPSb, GaInNP, GaInNAs, GaInNSb, GaInPAs, GaInPSb, InAlNP, InAlNAs, InAlNSb, InAlPAs, InAlPSb 및 이들의 혼합물로 이루어진 군에서 선택되는 사원소 화합물로 이루어진 군에서 선택될 수 있다.
IV-VI족 화합물은 SnS, SnSe, SnTe, PbS, PbSe, PbTe 및 이들의 혼합물로 이루어진 군에서 선택되는 이원소 화합물; SnSeS, SnSeTe, SnSTe, PbSeS, PbSeTe, PbSTe, SnPbS, SnPbSe, SnPbTe 및 이들의 혼합물로 이루어진 군에서 선택되는 삼원소 화합물; 및 SnPbSSe, SnPbSeTe, SnPbSTe 및 이들의 혼합물로 이루어진 군에서 선택되는 사원소 화합물로 이루어진 군에서 선택될 수 있다.
IV족 원소로는 Si, Ge 및 이들의 혼합물로 이루어진 군에서 선택될 수 있다. IV족 화합물로는 SiC, SiGe 및 이들의 혼합물로 이루어진 군에서 선택되는 이원소 화합물일 수 있다.
이러한 양자점은 대략 45nm 이하의 발광 파장 스펙트럼의 반치폭(full width of half maximum, FWHM)을 가질 수 있으며, 양자점을 통해 발광되는 광은 전 방향으로 방출될 수 있다. 이에 따라, 발광 표시 장치의 시야각이 향상될 수 있다.
한편, 양자점은 구형, 피라미드형, 다중 가지형(multi-arm), 또는 입방체(cubic)의 나노 입자, 나노 튜브, 나노 와이어, 나노 섬유, 나노 판상 입자 등의 형태를 가질 수 있으나, 이에 한정되지는 않는다.
예컨대, 발광 소자(150)가 청색 광을 발광하는 경우, 제1 컬러 필터는 적색 양자점을 포함하고, 제2 컬러 필터는 녹색 양자점을 포함할 수 있다. 제3 컬러 필터는 양자점을 포함하지 않을 수 있지만, 이에 대해서는 한정하지 않는다. 예컨대, 발광 소자(150)의 청색 광이 제1 컬러 필터에 흡수되고, 이 흡수된 청색 광이 적색 양자점에 의해 파장 쉬트프되어 적색 광이 출력될 수 있다. 예컨대, 발광 소자(150)의 청색 광이 제2 컬러 필터에 흡수되고, 이 흡수된 청색 광이 녹색 양자점에 의해 파장 쉬프트되어 녹색 광이 출력될 수 있다. 예컨대, 발과 소자의 청색 광이 제3 컬러 필터에 흡수되고, 이 흡수된 청색 광이 그대로 출사될 수 있다.
한편, 발광 소자(150)가 백색 광인 경우, 제1 컬러 필터 및 제2 컬러 필터뿐만 아니라 제3 컬러 필터 또한 양자점을 포함할 수 있다. 즉, 제3 컬러 필터에 포함된 양자점에 의해 발광 소자(150)의 백색 광이 청색 광으로 파장 쉬프트될 수 있다.
예컨대, 제1 컬러 필터, 제2 컬러 필터 및 제3 컬러 필터 중 적어도 하나 이상은 형광체를 포함할 수 있다. 예컨대, 제1 컬러 필터, 제2 컬러 필터 및 제3 컬러 필터 중 일부 컬러 필터는 양자점을 포함하고, 다른 일부는 형광체를 포함할 수 있다. 예컨대, 제1 컬러 필터 및 제2 컬러 필터 각각은 형광체와 양자점을 포함할 수 있다. 예컨대, 제1 컬러 필터, 제2 컬러 필터 및 제3 컬러 필터 중 적어도 하나 이상은 산란 입자를 포함할 수 있다. 산란 입자에 의해 제1 컬러 필터, 제2 컬러 필터 및 제3 컬러 필터 각각으로 입사된 청색 광이 산란되고 산란된 청색 광이 해당 양자점에 의해 컬러 쉬프트되므로, 광 출력 효율이 향상될 수 있다.
다른 예로, 제1 컬러 생성부(43)는 제1 컬러 변환층 및 제1 컬러 필터를 포함할 수 있다. 제2 컬러 생성부(44)는 제2 컬러 변환부 및 제2 컬러 필터를 포함할 수 있다. 제3 컬러 생성부(45)는 제3 컬러 변환층 및 제3 컬러 필터를 포함할 수 있다. 제1 컬러 변환층, 제2 컬러 변환층 및 제3 컬러 변환층 각각은 발광부(41)에 인접하여 배치될 수 있다. 제1 컬러 필터, 제2 컬러 필터 및 제3 컬러 필터는 제2 기판(46)에 인접하여 배치될 수 있다.
예컨대, 제1 컬러 필터는 제1 컬러 변환층과 제2 기판(46) 사이에 배치될 수 있다. 예컨대, 제2 컬러 필터는 제2 컬러 변환층과 제2 기판(46) 사이에 배치될 수 있다. 예컨대, 제3 컬러 필터는 제3 컬러 변환층과 제2 기판(46) 사이에 배치될 수 있다.
예컨대, 제1 컬러 필터는 제1 컬러 변환층의 상면과 접하고 제1 컬러 변환층과 동일한 사이즈를 가질 수 있지만, 이에 대해서는 한정하지 않는다. 예컨대, 제2 컬러 필터는 제2 컬러 변환층의 상면과 접하고, 제2 컬러 변환층과 동일한 사이즈를 가질 수 있지만, 이에 대해서는 한정하지 않는다. 예컨대, 제3 컬러 필터는 제3 컬러 변환층의 상면과 접하고, 제3 컬러 변환층과 동일한 사이즈를 가질 수 있지만, 이에 대해서는 한정하지 않는다.
예컨대, 제1 컬러 변환층은 적색 양자점을 포함하고, 제2 컬러 변환층은 녹색 양자점을 포함할 수 있다. 제3 컬러 변환층은 양자점을 포함하지 않을 수 있다. 예대, 제1 컬러 필터는 제1 컬러 변환층에서 변환된 적색 광을 선택적으로 투과시키는 적색 계열 재질을 포함하고, 제2 컬러 필터는 제2 컬러 변환층에서 변환된 녹색 광을 선택적으로 투과시키는 녹색 계열 재질을 포함하며, 제3 컬러 필터는 제3 컬러 변환층에서 그대로 투과한 청색 광을 선택적으로 투과시키는 청색 계열 재질을 포함할 수 있다.
한편, 발광 소자(150)가 백색 광인 경우, 제1 컬러 변환층 및 제2 컬러 변환층뿐만 아니라 제3 컬러 변환층 또한 양자점을 포함할 수 있다. 즉, 제3 컬러 필터에 포함된 양자점에 의해 발광 소자(150)의 백색 광이 청색 광으로 파장 쉬프트될 수 있다.
다시 도 11을 참조하면, 제2 기판(46)은 컬러 생성부(42) 상에 배치되어, 컬러 생성부(42)를 보호할 수 있다. 제2 기판(46)은 유리로 형성될 수 있지만, 이에 대해서는 한정하지 않는다.
제2 기판(46)은 커버 윈도우, 커버 글라스 등으로 불릴 수 있다.
제2 기판(46)은 유리나 플렉서블 재질로 형성될 수 있지만, 이에 대해서는 한정하지 않는다.
실시예는 동일한 사이즈를 갖는 복수의 반도체 발광 소자를 제공한다. 즉, 웨이퍼 상에서 제조된 복수의 반도체 발광 소자의 사이즈가 동일할 수 있다. 여기서, 사이즈는 직경 및/또는 길이(또는 높이) 중 적어도 하나를 의미할 수 있다. 실시예의 반도체 발광 소자는 단축과 장축을 가질 수 있다. 단축은 반도체 발광 소자의 직경 방향이고, 장축 방향은 반도체 발광 소자의 길이 방향일 수 있다. 따라서, 실시예의 반도체 발광 소자에서 길이가 직경보다 클 수 있다. 실시예의 반도체 발광 소자는 라드(rdod) 형태를 가질 수 있지만, 이에 대해서는 한정하지 않는다 실시예의 반도체 발광 소자는 나노급 반도체 발광 소자일 수 있지만, 이에 대해서는 한정하지 않는다.
실시예의 반도체 발광 소자는 미리 라드 형태로 형성된 성장 홀에서 성장되어 제조될 수 있다. 해당 성장 홀은 반도체 발광 소자의 사이즈에 대응할 수 있다. 즉, 해당 성장 홀은 반도체 발광 소자의 직경에 상응하는 직경을 가지고, 반도체 발광 소자의 길이에 상응하는 깊이를 가질 수 있다. 성장 공정을 통해 해당 성장 홀에서 복수의 반도체층이 성장됨으로써, 반도체 발광 소자가 제조될 수 있다.
웨이퍼 상에 복수의 성장 홀이 마련되고, 이 복수의 성장 홀에 복수의 반도체층이 순차적으로 성장됨으로써, 복수의 반도체 발광 소자가 동시에 제조될 수 있다. 이때, 복수의 성장 홀은 서로 동일한 직경과 깊이를 가질 수 있다. 따라서, 서로 동일한 직경과 깊이를 갖는 복수의 성장 홀에서 제조된 복수의 반도체 발광 소자는 동일한 사이즈를 가질 수 있다.
종래에는 증착 공정을 통해 웨이퍼 상에 복수의 반도체층이 순차적으로 성장된 후, 식각 공정을 통해 복수의 반도체 발광 소자를 제조하였다. 이러한 경우, 식각 공정시 웨이퍼의 위치에 따라 플라즈다 밀도가 상이할 뿐만 아니라, 식각 공정 특성 상 수직 방향뿐만 아니라 수평 방향으로도 식각이 수행되므로, 복수의 반도체 발광 소자의 상측의 직경이 하측의 직경보다 작고 복수의 반도체 발광 소자 각각의 활성층의 직경이 웨이퍼의 위치에 따라 서로 상이하였다. 서로 상이한 활성층의 직경에 의해 반도체 발광 소자 각각의 광 효율이나 광 출력이 상이하였다. 따라서, 이러한 복수의 반도체 발광 소자를 이용하여 디스플레이를 구현하는 경우, 각 화소 간에 휘도 차이가 발생하고, 이는 곧 화질의 저하를 초래하는 문제가 있었다.
하지만, 실시예에서는 미리 동일한 깊이와 직경을 갖는 복수의 성장 홀이 웨이퍼 상에 마련되고, 이러한 복수의 성장 홀에 증착 공정을 이용하여 복수의 반도체층이 성장함으로써, 성장 홀 각각에 대응하는 형상을 갖는 복수의 반도체 발광 소자가 제조될 수 있다. 상기 제조된 복수의 반도체 발광 소자는 웨이퍼의 위치에 관계없이 동일한 직경 및/또는 길이를 가질 수 있다. 반도체 발광 소자의 직경은 성장 홀의 직경과 동일할 수 있다. 반도체 발광 소자의 길이는 성장 홀의 깊이와 동일할 수 있다.
따라서, 실시예에서는 플라즈마 공정시 웨이퍼의 밀도가 상이하더라도 성장 홀에서 복수의 반도체층이 성장되므로, 복수의 성장 홀 각각에서 얻어진 반도체 발광 소자는 동일한 직경 및/또는 길이를 가질 수 있다.
여기서, 길이는 반도체 발광 소자의 양단이 디스플레이 기판 상에서 서로 이격되어 배치된 조립 배선 각각에 전기적으로 접촉될 수 있는 길이일 수 있다. 만일 반도체 발광 소자의 길이가 줄어들면, 길이가 줄어든 반도체 발광 소자는 조립 배선 중 적으로 하나의 조립 배선에 전기적으로 접촉되지 않으므로 발광되지 않는다. 하지만, 실시예서와 같이 웨이퍼 상에서 제조된 모든 반도체 발광 소자 각각의 길이가 조립 배선 모두에 전기적으로 접촉될 수 있는 길이를 가지므로, 점등 불량을 최소화할 수 있다.
한편, 실시예에서 웨이퍼의 복수의 성장 홀에서 제조된 복수의 반도체 발광 소자 모두 직경이 동일하므로, 동일한 광 효율이나 광 출력을 얻을 수 있다. 따라서, 웨이퍼 상에 제조된 복수의 반도체 발광 소자를 이용하여 디스플레이 구현시 각 화소 간의 휘도 편차가 없으므로 화질이 향상될 수 있다. 각 화소에 적어도 하나 이상의 반도체 발광 소자가 구비될 수 있다.
한편, 성장 홀의 내측면은 바닥면에 대해 수직인 평면을 가질 수 있다. 따라서, 성장 홀 내에서 제조된 반도체 발광 소자의 측면은 반도체 발광 소자의 하면 또는 상면에 대해 수직인 평면을 가질 수 있다.
성장 홀의 내측면은 부드러운 평면, 즉 최소한의 거칠기를 갖는 평면을 가질 수 있다. 따라서, 성장 홀 내에서 제조된 반도체 발광 소자의 측면은 부드러운 평면을 가지므로, 거칠기개선될 수 있다.
한편, 종래에는 성장 공정을 통해 복수의 반도체층이 성장되고, 건식 식각 공정을 통해 개별 반도체 발광 소자가 제조되었다. 건식 식각 공정시 웨이퍼의 위치별로 플라즈마 밀도가 상이하고 식각 공정을 위해 형성된 나노급 패턴이 서로 상이하여, 웨이퍼 상에서 제조된 복수의 반도체 발광 소자의 사이즈(직경 및/또는 길이)가 서로 상이하다. 따라서, 이와 같이 서로 상이한 사이즈를 갖는 복수의 반도체 발광 소자가 디스플레이 기판 상에 실장되는 경우, 디스플레이 기판 상의 전극에 접촉되지 않는 반도체 발광 소자가 점등되지 않는 문제가 있다.
실시예에 따르면, 웨이퍼 상에서 제조된 복수의 반도체 발광 소자가 동일한 사이즈를 가지므로, 이러한 복수의 반도체 발광 소자가 디스플레이 기판(도 31의 301) 상에 실장되는 경우, 모든 화소에서 점등이 가능하여 점등 불량을 방지할 수 있다.
또한, 실시예에 따르면, 복수의 반도체 발광 소자가 동일한 사이즈를 가지므로, 복수의 반도체 발광 소자 각각이 동일한 휘도를 가질 수 있다. 따라서, 복수의 반도체 발광 소자가 디스플레이 기판(301) 상에 실장되는 경우, 모든 화소에서 균일한 휘도가 얻어져, 화질이 향상될 수 있다.
한편, 종래에는 성장 공정과 식각 공정을 통해 반도체 발광 소자가 제조되고, 이후 별도의 공정을 통해 전극이 형성된 후 별도의 공정을 통해 절연층이 형성되었다. 실시예에 따르면, 반도체 발광 소자의 제조 과정에서 전극이나 절연층이 형성되어, 반도체 발광 소자가 제조된 후에 별도의 전극이나 절연층을 형성할 필요가 없어 제조 공정이 획기적으로 단축될 수 있다.
이하 도 12 내지 도 30을 참조하여 실시예에 따른 반도체 발광 소자 및 디스플레이 장치를 상세히 설명한다.
[반도체 발광 소자]
도 12는 제1 실시예에 따른 반도체 발광 소자를 도시한 단면도이다.
도 12를 참조하면, 제1 실시예에 따른 반도체 발광 소자(150)는 제1 도전형 반도체층(151), 활성층(152) 및 제2 도전형 반도체층(153)을 포함할 수 있다. 제1 실시예에 따른 반도체 발광 소자(150)는 이보다 더 많은 구성 요소를 포함할 수도 있다 예컨대, 제1 도전형 반도체층(151)은 적어도 하나 이상의 층을 포함할 수 있다. 예컨대, 활성층(152)는 적어도 하나 이상의 층을 포함할 수 있다. 예컨대, 제2 도전형 반도체층(153)은 적어도 하나 이상의 층을 포함할 수 있다.
제1 도전형 반도체층(151), 활성층(152) 및 제2 도전형 반도체층(153)은 발광부(160)을 구성할 수 있다. 발광부(160)은 원통형을 가질 수 있지만, 이에 대해서는 한정하지 않는다.
제1 실시예에 따른 반도체 발광 소자(150)는 특정 컬러의 광을 생성할 수 있다. 제1 실시예에 따른 반도체 발광 소자(150)는 자외선 광, 백색 광, 청색 광, 녹색 광, 적색 광 및 적외선 광 중 하나일 수 있다.
한편, 제1 도전형 반도체층(151), 활성층(152) 및 제2 도전형 반도체층(153)은 예컨대, MOCVD 장비를 이용하여 순차적으로 성장될 수 있다.
종래에는 웨이퍼 상에 제1 도전형 반도체층(151), 활성층(152) 및 제2 도전형 반도체층(153)이 순차적으로 성장된 후, 건식 식각 공정을 이용하여 제2 도전형 반도체층(153), 활성층(152) 및 제1 도전형 반도체층(151)이 순차적으로 식각되어 복수의 발광층가 형성될 수 있다. 이후, 웨이퍼로부터 복수의 발광층이 분리되어, 복수의 반도체 발광 소자가 제조되었다.
건식 식각 공정시 웨이퍼의 위치별로 플라즈마 밀도가 상이하고 식각 공정을 위해 형성된 나노급 패턴이 서로 상이하여, 웨이퍼 상에서 제조된 복수의 반도체 발광 소자의 사이즈(직경 및/또는 길이)가 서로 상이하다. 따라서, 이와 같이 서로 상이한 사이즈를 갖는 복수의 반도체 발광 소자가 디스플레이 기판(도 31의 301) 상에 실장되는 경우, 디스플레이 기판(301) 상의 전극에 접촉되지 않는 반도체 발광 소자가 점등되지 않는 문제가 있다.
실시예는 종래의 건식 식각 공정을 사용하지 않을 수 있다. 즉, 실시예는 식 식각 공정이 필요하지 않는다.
통상 거푸집(mould)의 형상에 따라 자유로운 객체가 자유자재로 만들어질 수 있다. 실시예는 거푸집의 원리를 이용하여, 미리 마련된 성장 홀에서 반도체 발광 소자(150)가 제조될 수 있다. 즉, 미리 마련된 성장 홀은 실시예의 반도체 발광 소자(150)에 상응하는 형상을 가질 수 있다. 이러한 경우, 미리 마련된 성장 홀에서 MOCVD 장비를 이용하여 제1 도전형 반도체층(151), 활성층(152) 및 제2 도전형 반도체층(153)을 순차적으로 성장한 후, 성장 홀을 구성하는 부재, 예컨대 절연막(도 16의 503)을 제거함으로써, 성장 홀 내에 성장된 제1 도전형 반도체층(151), 활성층(152) 및 제2 도전형 반도체층(153)이 그대로 발광부(160)를 갖는 반도체 발광 소자(150)가 제조될 수 있다.
종래에는 웨이퍼 상에 제1 도전형 반도체층(151), 활성층(152) 및 제2 도전형 반도체층(153)을 순차적으로 성장한 후, 식각 공정을 통해 원하는 반도체 발광 소자를 제조하였다. 이러한 경우, 식각 공정시 플라즈마 밀도의 불균일, 온도 또는 파워의 불안정 등과 같은 복합적인 요인에 의해 동일한 형상의 반도체 발광 소자를 제조하기 어려웠다. 특히, 반도체 발광 소자를 더욱 더 소형화하는 경우, 전반적인 제조 공정 전체에 걸쳐 원하는 소형 사이즈이면서 동일한 형상을 갖는 반도체 발광 소자를 제조하기 매우 어려웠다.
하지만, 실시예에서는 웨이퍼 상에 형성된 절연막(도 15a의 503)에 대해 건식 식각을 수행함으로써, 최소한의 직경을 갖고 수직 방향으로 원하는 깊이를 갖는 성장 홀이 형성될 수 있다. 따라서, 제조하고자 하는 반도체 발광 소자(150)의 직경과 길이가 최소화되더라도 거푸집 역할을 하는 성장 홀을 해당 반도체 발광 소자(150)의 직경과 길이에 대응하도록 형성함으로써, 초소형의 반도체 발광 소자(150)를 얻을 수 있고, 다양한 형상의 반도체 발광 소자(150)를 자유자재로 얻을 수 있으며, 복수의 성장 홀에서 제조된 복수의 반도체 발광 소자(150) 각각은 동일한 직경 및/또는 길이를 가질 수 있다.
상술한 바와 같이, 실시예는 종래와 같은 건식 식각 공정을 이용하지 않기 때문에, 종래에 건식 식각 공정을 이용함에 따른 문제점들을 해소할 수 있다.
즉, 웨이퍼 상에서 제조된 복수의 반도체 발광 소자(150)가 동일한 사이즈를 가지므로, 이러한 복수의 반도체 발광 소자(150)가 디스플레이 기판(도 31의 301) 상에 실장되는 경우, 모든 화소에서 점등이 가능하여 점등 불량을 방지할 수 있다.
또한, 복수의 반도체 발광 소자(150)가 동일한 사이즈를 가지므로, 복수의 반도체 발광 소자(150) 각각이 동일한 휘도를 가질 수 있다. 따라서, 복수의 반도체 발광 소자(150)가 디스플레이 기판(301) 상에 실장되는 경우, 모든 화소에서 균일한 휘도가 얻어져, 화질이 향상될 수 있다.
실시예의 반도체 발광 소자(150)의 구체적인 공정은 나중에 설명한다.
다시 도 12를 참조하면, 활성층(152)은 제1 도전형 반도체층(151) 상에 배치되고, 제2 도전혀 반도체층은 활성층(152) 상에 배치될 수 있다.
제1 도전형 반도체층(151), 활성층(152) 및 제2 도전형 반도체층(153)은 화합물 반도체 물질로 이루어질 수 있다. 예컨대, 화합물 반도체 물질은 3족-5족 화합물 반도체 물질, 2족-6족 화합물 물질 등일 수 있다. 예컨대, 화합물 반도체 물질은 GaN, InGaN, AlN, AlInN, AlGaN, AlInGaN, InP, GaAs, GaP, GaInP 등을 포함할 수 있다.
예컨대, 제1 도전형 반도체층(151)은 제1 도전형 도펀트를 포함하고, 제2 도전형 반도체층(153)은 제2 도전형 도펀트를 포함할 수 있다. 예컨대, 제1 도전형 도펀트는 실리콘(Si)과 같은 n형 도펀트이고, 제2 도전형 도펀트는 보론(B)과 같은 p형 도펀트일 수 있다.
활성층(152)은 광을 생성하는 영역으로서, 화합물 반도체의 물질 특성에 따라 특정 파장 대역을 갖는 광을 생성할 수 있다. 즉, 활성층(152)에 포함된 화합물 반도체의 에너지 밴드갭에 의해 파장 대역이 결정될 수 있다. 따라서, 활성층(152)에 포함된 화합물 반도체의 에너지 밴드갭에 따라 다양한 컬러 광이 생성될 수 있다.
활성층(152)에서 광이 생성되므로, 웨이퍼 상에서 제조된 복수의 반도체 발광 소자(150) 각각의 활성층(152)의 직경(또는 사이즈)이 상이한 경우, 복수의 반도체 발광 소자(150) 각각의 활성층(152)의 광량이 상이하다. 즉, 활성층(152)의 직경이 작은 반도체 발광 소자(150)의 광량보다 활성층(152)의 직경이 큰 반도체 발광 소자(150)의 광량이 더 크다. 광량은 휘도와 직접적으로 관련될 수 있다. 즉, 광량이 많을수록 휘도가 커질 수 있다.
이와 같이 웨이퍼 상에서 제조된 서로 상이한 직경을 갖는 복수의 반도체 발광 소자(150)를 이용하여 디스플레이 장치가 제조된 경우, 디스플레이 장치에서 각 화소의 휘도가 서로 상이해 화질 불량을 야기할 수 있다.
실시예에 따르면, 웨이퍼 상에서 제조된 복수의 반도체 발광 소자(150)의 각각의 직경(또는 사이즈)가 모두 동일하므로, 이들 복수의 반도체 발광 소자(150)를 이용한 디스플레이 장치에서 각 화소에서 휘도가 균일하여 화질을 향상시킬 수 있다.
또한, 실시예에 따르면, 웨이퍼 상에 마련된 복수의 성장 홀의 깊이를 동일하게 하여, 복수의 성장 홀에서 제조된 복수의 반도체 발광 소자(150)의 길이가 동일할 수 있다. 이와 같이 길이가 동일한 복수의 반도체 발광 소자(150)의 양단은 안정적으로 배선 전극과 접촉되므로, 반도체 발광 소자(150)의 점등 불량을 방지할 수 있다.
아울러, 실시예에 따르면, 웨이퍼 상에 마련된 복수의 성장 홀의 내측면이 바닥면에 대해 수직 면을 가지며, 해당 수직 면이 거칠기가 최소화된 부러러운 면을 가지므로, 이 성장 홀에서 제조된 반도체 발광 소자(150)의 측면이 하면에 대해 수직 면을 가지며 그 수직 면의 거칠기가 최소화될 수 있다.
아울러, 실시예에 따르면, 웨이퍼 상에 마련된 복수의 성장 홀의 형상을 다양하게 형성함으로써, 이 성장 홀에서 제조된 반도체 발광 소자(150)의 형상이 자유자재로 형성될 수 있다.
이하의 실시예에서, 성장 홀이 위에서 보았을 때, 원형인 것에 한정하여 설명하고 이지만, 실시예의 성장 홀은 사각형, 다각형, 별형 등을 가질 수 있다. 또한, 성장 홀의 내측면을 수직 면이 아닌 다른 면, 예컨대 굴곡진 면, 라운드 면, 오목한 면으로 형성함으로써, 이 성장 홀에서 제조된 반도체 발광 소자(150)의 측면 또한 다양한 형상을 가질 수 있다.
도 13 내지 도 17은 제1 실시예에 따른 반도체 발광 소자의 제조 공정을 도시한다.
이하의 설명에서 도 13 내지 도 17에서 도시되지 않은 구성 요소에 대한 도면 부호는 도 12를 참고할 수 있다.
도 13에 도시한 바와 같이, 웨이퍼(501)가 마련될 수 있다. 웨이퍼(501)는 예컨대, 사파이어 재질일 수 있지만, 이에 대해서는 한정하지 않는다.
시드층(502)이 웨이퍼(501) 상에 형성될 수 있다. 시드층(502)은 Ⅱ-Ⅳ족 화합물 또는 III-V족 화합물을 포함할 수 있지만, 이에 대해서는 한정하지 않는다. 시드층(502)은 반도체 발광 소자를 구성하는 복수의 반도체층을 성장하기 위한 시드 역할을 할 수 있다.
웨이퍼(501)가 Ⅱ-Ⅳ족 화합물 또는 III-V족 화합물을 포함하여 시드로서의 역할을 가능한 경우, 시드층(502)은 생략될 수 있다.
도 14에 도시한 바와 같이, 시드층(502) 상에 절연막(503)과 마스크막(504)이 순차적으로 형성될 수 있다. 예컨대, 절연막(503)은 SiOx, SiNx 등과 같은 무기질 재질로 이루어질 수 있다. 마스크막(504)은 크롬(Cr)과 같은 금속으로 이루어질 수 있다. 이후, 감광막을 패턴닝하여 감광 패턴(505)이 형성될 수 있다.
절연막(503)은 예컨대, 열(thermal) 증착 장비를 이용하여 형성될 수 있다. 열 증착 장비를 이용하여 절연막(503)이 형성되는 경우, 절연막(503)의 막질이 단단하고 막질 특성이 우수하여, 나중에 반도체 발광 소자가 우수한 막질로 형성되어 전기적 특성 및 광학적 특성이 향상될 수 있다.
도 15a 및 도 15b에 도시한 바와 같이, 감광 패턴(505)을 마스크로 하여 마스크막(504)을 패터닝하여 마스크 패턴(504a)이 형성될 수 있다.
감광 패턴(505) 및 마스크 패턴(504a)은 성장 홀(510)에 상응하는 투과 영역과 나머지 영역인 비투과 영역을 가질 수 있다.
이후, 감광 패턴(505)이 제거된 후, 마스크 패턴(504a)을 마스크로 하여 절연막(503)을 패터닝하여 웨이퍼(501) 상에 복수의 성장 홀(510)을 형성할 수 있다. 성장 홀(510)을 형성하기 위한 식각 가스가 마스크 패턴(504a)의 투과 영역을 통해 절연막(503)과 반영하여, 마스크 패턴(504a)의 투과 영역에 상응하는 절연막(503)이 제거되어 성장 홀(510)이 형성될 수 있다. 따라서, 성장 홀(510)의 형상이나 성장 홀(510)의 직경을 고려하여 마스크 패턴(504a)이 형성될 수 있다.
성장 홀(510)은 바닥부는 시드층(502)의 상면일 수 있다. 즉, 시드층(502)의 상면이 성장 홀(510)에 의해 노출될 수 있다.
복수의 성장 홀(510)은 웨이퍼(501) 한 개당 제조될 반도체 발광 소자의 개수 등을 고려하여 형성될 수 있다. 또한, 복수의 성장 홀(510)은 서로 간이 적당한 거리로 이격될 수 있다. 예컨대, 복수의 성장 홀(510) 사이의 간격은 성장 홀(510)의 직경과 같거나 클 수 있지만, 이에 대해서는 한정하지 않는다.
성장 홀(510)은 포토리소그라피나 레이저 간섭(interference) 리소그라피를 이용하여 형성될 수 있다.
포토리소그라피를 이용하는 경우 일방성 식각이 가능하므로, 동일한 직경으로 그리고 깊숙한 깊이로 일정한 형상으로 성장 홀(510)이 형성될 수 있다. 즉, 포토리소그라피를 이용하여 주로 깊이 방향으로 식각되도록 하여 깊숙한 깊이로 성장 홀(510)이 형성될 수 있다. 예컨대, 성장 홀(510)의 내측면은 바닥부에 대해 수직인 직선 면을 가질 수 있지만, 이에 대해서는 한정하지 않는다.
레이저 간섭 리소그라피를 이용하는 경우 포토리소그라피를 이용하는 경우보다 더 작은 직경을 갖는 성장 홀(510)이 형성될 수 있다.
예컨대, 홀의 직경은 1㎛이하일 수 있다. 예컨대, 홀의 직경은 500nm 내지 1㎛일 수 있다.
도 16에 도시한 바와 같이, 성장 홀(510) 내에 노출된 시드층(502)을 시드로 이용하여 성장 홀(510) 내에 발광부(160)가 성장될 수 있다. 발광부(160)는 도 12에 도시한 바와 같이, 제1 도전형 반도체층(151), 활성층(152) 및 제2 도전형 반도체층(153)을 포함할 수 있다. 예컨대, MOCVD 장비를 이용하여 성장 홀(510) 내에서 시드층(502)을 시드로 하여 시드층(502) 상에 제1 도전형 반도체층(151)이 성장되고, 제1 도전형 반도체층(151) 상에 활성층(152)이 성장되며, 활성층(152) 상에 제2 도전형 반도체층(153)이 성장될 수 있다. 이때, 성장 홀(510) 내에만 시드층(502)이 배치되고, 절연막(503)의 상면에는 시드층(502)이 배치되지 않으므로, 발광부(160)는 오직 성장 홀(510) 내에서만 성장되고 절연막(503)의 상면에서는 성장되지 않는다.
발광부(160)의 상면은 도 16에 도시한 바와 같이, 절연막(503)의 상면과 일치되도록 성장 홀(510) 내에서 성장될 수도 있고, 절연막(503)의 상면보다 낮게 또는 높게 성장될 수도 있다. 예컨대, 발광부(160)의 상면이 절연막(503)의 상면보다 낮게 성장되는 경우, 발광부(160)의 상면은 아래로 오목한 형상을 가질 수 있다. 예컨대, 발광부(160)의 상면이 절연막(503)의 상면보다 높게 성장되는 경우, 발광부(160)의 상면은 위로 볼록한 형상을 가질 수 있다. 여기서, 아래는 웨이퍼(501)를 향하는 방향이고, 위는 웨이퍼(501)로부터 멀어지는 방향일 수 있다.
도 17에 도시한 바와 같이, 절연막(503)이 제거됨으로써, 웨이퍼(501) 상에 복수의 발광부(160)가 위치될 수 있다. 예컨대, 절연막(503)은 습식 식각 공정을 이용하여 제거될 수 있지만, 이에 대해서는 한정하지 않는다.
도시되지 않았지만, 별도의 절연막(503)이 발광부(160)의 둘레를 따라 형성될 수 있다. 이후, 발광부(160)의 상측에 형성된 절연막(503)이 제거된 후, 발광부(160)의 상측에 상부 전극이 형성될 수 있다. 이후, 복수의 발광부(160)가 상측이 별도의 기판 상에 부착된 후, 웨이퍼(501)가 분리될 수 있다. 이후, 웨이퍼(501)가 분리된 발광부(160)의 하측 상에 하부 전극이 형성될 수 있다.
다른 예로서, 먼저 복수의 발광부(160)를 웨이퍼(501)로부터 분리한 후, 절연막(503), 상부 전극 및 하부 전극이 형성될 수도 있다.
도 17에 도시한 바와 같이, 동일한 직경과 동일한 깊이를 갖는 복수의 성장 홀(510)에 성장되어 제조된 복수의 발광부(160) 또한 동일한 직경과 동일한 깊이를 가질 수 있다. 이때, 발광부(160)는 반도체 발광 소자로서, 발광부(160)의 측면은 발광부(160)의 하면에 대해 수직인 직선 면을 가질 수 있지만, 이에 대해서는 한정하지 않는다.
발광부(160)는 성장 홀(510)의 형상에 대응하는 형상을 가질 수 있다. 발광부(160)는 원형, 사각형, 다각형, 별형 등을 가질 수 있다.
실시예에 따르면, 동일한 직경과 동일한 깊이를 갖는 복수의 발광부(160)가 대량으로 용이하게 제조될 수 있다. 이와 같이 제조된 복수의 발광부(160), 즉 반도체 발광 소자를 이용하여 디스플레이 구현시 균일한 휘도를 확보하고, 점등 불량을 최소화할 수 있다.
실시예에 따르면, 성장 홀(510)의 형상을 달리하여 다양한 형상의 반도체 발광 소자가 자유자재로 제조될 수 있다.
이하, 도 18을 참조하여 제2 실시예를 설명한다.
도 18은 제2 실시예에 따른 반도체 발광 소자를 도시한 단면도이다. 도 19는 도 18의 발광부를 상세히 도시한 단면도이다.
제2 실시예는 절연층(155) 및 전극(156 내지 158)을 제외하고 제1 실시예와 동일하다. 제2 실시예에서 제1 실시예와 동일한 형상, 구조 및/또는 기능을 갖는 동일한 구성 요소에 대해서는 동일한 도면 부호를 부여하고 상세한 설명은 생략한다.
도 18을 참조하면, 제2 실시예에 따른 반도체 발광 소자(150A)는 발광부(160), 절연층(155) 및 전극(156 내지 158)을 포함할 수 있다.
발광부(160)는 제1 영역(161) 및 제2 영역(162)을 가질 수 있다. 제1 영역(161)과 제2 영역(162)은 발광부(160)의 장축 방향을 따라 위치될 수 있다. 장축 방향은 발광부(160)의 길이 방향일 수 있다. 제2 영역(162)은 제1 영역(161) 상에 배치될 수 있다. 또는 제1 영역(161)은 제2 영역(162) 아래에 배치될 수 있다.
나중에 설명하겠지만, 발광부(160)의 제1 영역(161) 및 제2 영역(162) 모두 웨이퍼(501) 상에 형성된 성장 홀에서 제조되어 식각 공정이 전혀 개입되지 않는다. 성장 홀의 내측면에 대응하는 발광부(160)가 제조되므로, 제1 영역(161)의 직경과 제2 영역(162)의 직경은 동일할 수 있다. 아울러, 제1 영역(161)의 측면과 제2 영역(162)의 측면은 발광부(160)의 장축 방향 또는 길이 방향에 따라 일치할 수 있다.
따라서, 웨이퍼(501) 상의 복수의 성장 홀에서 제조된 발광부(160) 상에 절연층(155)과 전극(156 내지 158)이 배치된 반도체 발광 소자(150A)는 하측과 상측 모두 동일한 직경을 가지며, 동일한 길이를 가질 수 있다. 복수의 반도체 발광 소자(150A)를 이용하여 디스플레이 구현시 복수의 반도체 발광 소자(150A) 각각의 양단이 조립 배선에 전기적으로 접촉되어 점등 불향을 방지할 수 있고 또한 각 화소 간의 휘도가 균일하여 화질을 향상시킬 수 있다.
도 19에 도시한 바와 같이, 발광부(160)는 제1 도전형 반도체층(151), 활성층(152) 및 제2 도전형 반도체층(153)을 포함할 수 있다. 이러한 경우, 제1 영역(161)은 제1 도전형 반도체층(151) 및 활성층(152)을 포함하고, 제2 영역(162)은 제2 도전형 반도체층(153)을 포함할 수 있다. 예컨대, 제1 영역(161)은 제1 도전형 반도체층(151) 및 활성층(152)뿐만 아니라 제2 도전형 반도체층(153)의 일부 영역(제2-1 도전형 반도체층(153_1))을 포함할 수 있다. 예컨대, 제2 영역(162)은 제2 도전형 반도체층(153)의 다른 영역(제2-2 도전형 반도체층(153-2))을 포함할 수 있다. 제2-1 도전형 반도체층(153_1)과 제2-2 도전형 반도체층(153-2)은 편의상 구분한 것으로서, 실질적으로 동일 재질로 동일 공정에 의해 일체로 형성될 수 있다.
절연층(155)은 제1 영역(161)의 측면을 둘러쌀 수 있다. 절연층(155)은 발광부(160)를 보호하는 보호층일 수 있다.
예컨대, 절연층(155)은 제1 영역(161)의 측면 둘레를 따라 배치될 수 있다. 예컨대, 절연층(155)은 제1 도전형 반도체층(151), 활성층(152) 및 제2-1 도전형 반도체층(153_1) 각각의 측면을 둘러쌀 수 있다.
예컨대, 절연층(155)은 SiOx, SiNx 등과 같은 무기질 재질로 이루어질 수 있다.
예컨대, 절연층(155)은 발광시 발광부(160)의 측면을 따라 흐르는 누설 전류를 방지할 수 있다. 예컨대, 절연층(155)은 이물질 등에 의해 제1 도전형 반도체층(151)과 제2 도전형 반도체층(153) 사이의 전기적인 쇼트를 방지할 수 있다. 예컨대, 자가 조립 방식에 의해 반도체 발광 소자(150A)들이 디스플레이 기판(도 31의 301)에 조립되는 경우, 절연층(155)은 반도체 발광 소자(150A)의 하측 즉, 제1 도전형 반도체층(151)이 디스플레이 기판(301)에 접하도록 하여 반도체 발광 소자(150A)가 올바르게 조립되도록 한다.
전극은 제1 전극(156), 제2 전극(157) 및 제3 전극(158)을 포함할 수 있다. 제1 전극(156) 및 제2 전극(157)은 상부 전극을 구성하고, 제3 전극(158)은 하부 전극일 수 있다.
전극(156 내지 158)은 도전성 우수한 금속으로 이루어질 수 있다. 전극(156 내지 158)은, 구리(Cu), 알루미윰(Al), 티타늄(Ti), 니켈(Ni), 백금(Pt), 금(Au), 은(Ag) 중에서 적어도 하나 이상을 포함할 수 있다.
제1 전극(156)은 제2 영역(162)의 측면을 둘러쌀 수 있다.
나중에 설명하겠지만, 제1 전극(156)을 마스크로 하여 절연층(155)이 형성될 수 있다. 이에 따라, 절연층(155)의 두께(t2)는 제1 전극(156)의 두께(t1)과 동일할 수 있다. 제1 전극(156)을 마스크로 하여 절연층(155)이 형성되므로, 절연층(155)을 형성하기 위한 별도의 마스크를 형성할 필요가 없으므로 공정이 단순하고 재료비를 절감할 수 있다.
한편, 제1 전극(156)은 활성층(152)에 접하지 않을 수 있다. 제1 전극(156)이 활성층(152)에 접하는 경우, 전류가 제2 도전형 반도체층(153)을 통해 활성층(152)으로 흐르지 않고 제1 전극(156)을 통해 활성층(152)으로 직접 흐르므로, 제2 도전형 반도체층(153)에서 정공이 생성되지 않아 반도체 발광 소자(150A)가 발광되지 않는다.
따라서, 제1 전극(156)은 제2 도전형 반도체층(153)의 상측 둘레에 배치되고, 활성층(152)으로부터 이격되어 배치되므로, 활성층(152)과 접하지 않을 수 있다.
예컨대, 제1 전극(156)은 절연층(155)과 장축 방향을 따라 서로 중첩될 수 있다. 예컨대, 제1 전극(156)과 절연층(155)은 발광부(160)의 둘레를 따라 접할 수 있다. 나중에 설명하겠지만, 제1 전극(156)을 마스크로 하여 절연층(155)이 형성되므로, 제1 전극(156)의 형상 그대로 절연층(155)이 형성될 수 있다. 따라서, 절연층(155)의 두꼐(t2)는 제1 전극(156)의 두께(t1)과 동일하고, 절연층(155)의 상면은 제1 전극(156)의 하면과 접하며, 제1 전극(156)과 절연층(155)은 장축 방향을 따라 중첩될 수 있다.
한편, 제2 전극(157)은 발광부(160)의 제2 영역(162)의 상면 상에 배치될 수 있다. 제2 전극(157)은 생략될 수도 있다.
제1 전극(156)과 제2 전극(157)은 일체로 형성될 수 있지만, 이에 대해서는 한정하지 않는다. 예컨대, 제2 전극(157)은 제1 전극(156)으로부터 연장되어 형성될 수 있다. 즉, 제1 전극(156)이 발광부(160)의 제2 영역(162)의 측면을 둘러싸고 제2 전극(157)이 제1 전극(156)로부터 연장되어 제2 영역(162)의 상면 상에 배치될 수 있다.
제1 전극(156)의 두께(t1)과 제2 전극(157)의 두께(t3)은 상이할 수 있다. 예컨대, 제1 전극(156)의 두께(t1)은 제2 전극(157)의 두께(t3)보다 클 수 있다. 나중에 설명하겠지만, 금속막(도 25의 511)이 발광부(160)의 측면과 상면 상에 형성된 후, 마스크 없이 식각 공정이 수행되는 경우 발광부(160)의 상면 상의 금속막(511)이 발광부(160)의 측면 상의 금속막(511)보다 빠르게 제거된다. 따라서, 발광부(160)의 측면 상의 금속막(511), 즉 제1 전극(156)의 두께(t1)가 발광부(160)의 상면 상의 금속막(511), 즉 제2 전극(157)의 두께(t3)보다 클 수 있다. 발광부(160)의 상면 상의 금속막(511), 즉 제2 전극(157)이 제거되고 발광부(160)의 측면 상의 금속막(511), 즉 제1 전극(156)만 남을 수도 있다.
한편, 제3 전극(158)은 발광부(160)의 제1 영역(161)의 하면 상에 배치될 수 있다. 예컨대, 제3 전극(158)은 적어도 하나 이상의 층을 포함할 수 있다.
제3 전극(158)은 절연층(155)의 하면 상에 배치될 수 있다. 즉, 절연층(155)과 제3 전극(158)은 발광부(160)의 둘레를 따라 접할 수 있다. 예컨대, 절연층(155)과 제3 전극(158)은 장축 방향을 따라 중첩될 수 있다.
도면에 도시되지 않았지만, 제3 전극(158)은 절연층(155)의 하면 상에는 배치되지 않고 발광부(160)의 제1 영역(161)의 하면 상에만 배치될 수도 있다.
도 20 내지 도 28은 제2 실시예에 따른 반도체 발광 소자의 제조 공정을 도시한다.
이하의 설명에서 도 20 내지 도 28에서 도시되지 않은 구성 요소에 대한 도면 부호는 도 18 및 도 19를 참고할 수 있다.
도 20 내지 도 23은 도 13 내지 16과 동일하므로, 상세한 설명을 생략한다.
도 24에 도시한 바와 같이, 식각 공정을 이용하여 절연막(503)의 일부를 제거할 수 있다. 절연막(503)의 일부가 제거됨으로써, 발광부(160)의 일부, 예컨대 제2 도전형 반도체층(153)의 일부, 즉 제2-2 도전형 반도체층(153-2)이 노출될 수 있다. 제거된 절연막(503)의 깊이(d1)은 제2-2 도전형 반도체층(153-2)의 두께와 동일할 수 있다.
예컨대, 발광부(160)의 활성층(152)은 절연막(503)에 매립되어 있어 노출되지 않을 수 있다. 아울러, 제2 도전형 반도체층(153)의 다른 일부, 즉 제2-1 도전형 반도체층(153_1) 또한 절연막(503)에 매립되어 있어 노출되지 않을 수 있다.
도 25에 도시한 바와 같이, 절연막(503) 및 발광부(160) 상에 금속막(511)이 형성될 수 있다. 예컨대, 금속막(511)은 스퍼터링에 의한 증착 공정을 이용하여 형성될 수 있지만, 이에 대해서는 한정하지 않는다.
절연막(503) 및 발광부(160) 상에 형성된 금속막(511)의 두께는 상이할 수 있지만, 이에 대해서는 한정하지 않는다. 예컨대, 절연막(503) 상에 금속막(511)의 두께가 가장 작고, 발광부(160)의 제2-2 도전형 반도체층(153-2)의 측면 및 상면 상에 형성된 금속막(511)은 비교적 두껍게 형성될 수 있다.
도 26에 도시한 바와 같이, 금속막(511)을 대상으로 건식 식각 공정이 수행될 수 있다. 건식 식각 공정에 의해 식각률이 수평 방향에 비해 수직 방향으로 더 크므로, 가장 두께가 작은 절연막(503)의 상의 금속막(511)이 모두 제거되더라도 제2-2 도전형 반도체층(153-2)의 측면 및 상면 상에 형성된 금속막(511)은 일부만이 제거될 수 있다. 특히, 제2-2 도전형 반도체층(153-2)의 측면 상의 금속막(511)보다는 제2-2 도전형 반도체층(153-2)의 상면 상의 금속막(511)이 더 빠르게 제거될 수 있다.
따라서, 절연막(503) 상의 금속막(511)은 모두 제거되고, 제2-2 도전형 반도체층(153-2)의 측면 상의 금속막(511)의 두께가 제2-2 도전형 반도체층(153-2)의 상면 상의 금속막(511)의 두께보다 더 클 수 있다. 제2-2 도전형 반도체층(153-2)의 측면 상의 금속막(511)은 제1 전극(156)이고, 두께가 제2-2 도전형 반도체층(153-2)의 상면 상의 금속막(511)은 제2 전극(157)일 수 있다.
도 27에 도시한 바와 같이, 제1 전극(156) 및 제2 전극(157)을 포함하는 상부 전극(156, 157)을 마스크로 하여 건식 식각 공정을 수행하여 절연막(503)을 제거할 수 있다. 건식 식각 공정에 의해 수직 방향을 따라 식각이 진행되므로, 상부 전극(156, 157) 사이에 노출된 절연막(503)이 수직으로 제거될 수 있다. 이때, 상부 전극(156, 157), 특히 제1 전극(156)에 수직으로 중첩되는 절연막(503)은 건식 식각 공정에 의해 제거되지 않고 남아 절연층(155)을 형성할 수 있다.
절연층(155)은 건식 식각 공정에 의해 형성되므로, 절연층(155)의 외측면은 요철을 가질 수 있다. 따라서, 절연층(155)의 외측면에 구비된 요철에 의해 발광부(160)의 광 추출 효율이 증가되어 광 효율 또는 광 출력이 향상되고, 이는 디스플레이 구현시 휘도 증가로 이어질 수 있다.
건식 식각 공정은 시드층(502)의 상면이 노출될 때가지 지속적으로 수행될 수 있다.
따라서, 발광부(160)의 둘레에 절연층(155)이 배치되고, 발광부(160)의 상측에 제1 및 제2 전극(156, 157)을 포함하는 상부 전극이 배치될 수 있다.
도 28에 도시한 바와 같이, 기판(520)이 웨이퍼(501) 상에 위치되어 상부 전극(156, 157)에 부착될 수 있다. 즉, 테이프와 같은 접착 부재(521)를 이용하여 기판(520)이 상부 전극(156, 157)에 부착될 수 있다. 기판(520)은 글라스일 수 있지만, 이에 대해서는 한정하지 않는다.
이후, 레이저 리프트 오프 공정을 이용하여 웨이퍼(501) 상의 복수의 발광부(160)가 기판(520) 상으로 전사될 수 있다. 즉, 레이저가 시드층(502)에 포커스 조사됨으로써, 시드층(502)을 기준으로 복수의 발광부(160)가 웨이퍼(501)로부터 분리될 수 있다.
다른 실시예로서, 화학적 리프트 오프 공정을 이용하여 웨이퍼(501) 상의 복수의 발광부(160)가 기판(520) 상으로 전사될 수 있다. 예컨대, 식각액이 수용된 수조에 웨이퍼(501)를 침지시킨 후 초음파를 가해 주면, 식각액에 의해 시드층(502)이 제거되고 초음파에 의해 웨이퍼(501)에 진동이 가해져 시드층(502)을 기준으로 복수의 발광부(160)가 웨이퍼(501)로부터 분리될 수 있다.
화학적 리프트 오프 공정을 이용하는 경우, 발광부(160)의 하면이 부드러운 평탄면을 가질 수 있다.
도시되지 않았지만, 이후 공정에서 발광부(160)의 하면 상에 하부 전극(158)이 형성되어, 반도체 발광 소자가 제조될 수 있다. 이후 기판(520)으로부터 반도체 발광 소자들이 분리될 수 있다.
실시예에 따르면, 웨이퍼(501) 상에 미리 형성된 성장 홀(510)에 복수의 반도체층을 성장하여 직경 및/또는 길이가 동일한 복수의 발광부(160)가 얻어질 수 있다.
실시예에 따르면, 복수의 발광부(160)를 제조하는 과정에서 전극(156 내지 158)과 절연층(155)이 형성되어, 별도의 전극이나 절연층(155)이 형성될 필요가 없어 공정이 단순하고 재료비가 절감될 수 있다.
실시예에 따르면, 상부 전극(156, 157), 특히 제1 전극(156)을 마스크로 하여 절연층(155)이 형성됨으러, 별도의 마스크를 형성할 필요가 없으므로 공정이 단순하고 재료비를 절감할 수 있다.
이상과 같이 웨이퍼(501) 상에서 제조된 복수의 반도체 발광 소자의 직경 및/또는 길이가 동일하므로, 이들 반도체 소자들을 이용하여 디스플레이 구현시 점등 불량을 방지하고 휘도 편차를 없애 화질을 향상시킬 수 있다.
이하, 도 29를 참조하여 제3 실시예를 설명한다.
도 29는 제3 실시예에 따른 반도체 발광 소자를 도시한 단면도이다.
제3 실시예는 절연층(155)의 형상을 제외하고 제2 실시예와 동일하다. 제3 실시예에서 제2 실시예와 동일한 형상, 구조 및/또는 기능을 갖는 동일한 구성 요소에 대해서는 동일한 도면 부호를 부여하고 상세한 설명은 생략한다.
도 29를 참조하면, 제3 실시예에 따른 반도체 발광 소자(150B)는 발광부(160)(160), 절연층(155) 및 전극(156 내지 158)을 포함할 수 있다.
발광부(160)는 제1 실시예 및 제2 실시예에서 상세히 설명한 바, 상세한 설명은 생략하다.
절연층(155)은 제1 절연층(155-1) 및 제2 절연층(155-2)를 포함할 수 있다.
제1 절연층(155-1)은 제1 영역(161)의 일부 둘레를 따라 배치되고, 제2 절연층(155-2)은 제1 영역(161)의 다른 일부 둘레를 따라 배치될 수 있다. 예컨대, 제1 절연층(155-1)은 제1 도전형 반도체층(151)의 측면을 둘러싸고, 제2 절연층(155-2)은 활성층(152)의 측면을 둘러쌀 수 있다. 제2 절연층(155-2)은 활성층(152)뿐만 아니라 제2 도전형 반도체층(153), 즉 제2-1 도전형 반도체층(153_1)의 측면을 둘러쌀 수 있다.
예컨대, 제1 절연층(155-1)의 두께(t21)은 제2 절연층(155-2)의 두께(t22)보다 클 수 있다. 예컨대, 제1 절연층(155-1)의 외측면은 오목한 라운드 형상을 가질 수 있다. 예컨대, 제1 절연층(155-1)의 두께(t21)는 제1 영역(161)의 하측에서 가장 두꺼울 수 있다. 즉, 제1 절연층(155-1)은 제2 절연층(155-2)과 접하는 제1 절연 영역에서 제2 절연층(155-2)의 두께(t22)와 동일한 두께를 가질 수 있다. 제1 절연층(155-1)은 제1 절연 영역에서 연장되되 그 두께(t21)의 증가 폭이 커짐으로써, 제1 절연층(155-1)의 외측면이 오목한 라운드 형상을 가질 수 있다. 제1 절연층(155-1)의 오목한 라운드 형상은 반도체 발광 소자(150B)의 제조 공정에서 설명될 수 있다. 도 27에서, 건식 식각 공정에 의해 절연막(503)이 제거될 때 수직 방향의 식각율이 수평 방향의 식각율보다 크므로 절연막(503)이 주로 수직 방향을 따라 제거되지만 수평 방향으로도 미세하게 제거될 수 있다. 따라서, 절연막(503)의 하측에 식각되는 동안 절연막(503)의 상측에서는 지속적으로 수평 방향을 따라 제거됨에 따라, 건식 식각 공정이 완료되는 경우 도 29에 도시한 바와 같이 오목한 라운드 형상을 갖는 제1 절연층(155-1)이 형성될 수 있다.
한편, 하부 전극(158)은 발광부(160)의 하면 및 절연층(155)의 하면 상에 배치될 수 있다. 절연층(155), 즉 제1 절연층(155-1)의 하측에서 가장 두꺼운 두께(t21)를 가지므로, 하부 전극(158)은 상부 전극(156, 157)에 비해 큰 직경을 가질 수 있다.
하부 전극(158)이 비교적 큰 직경을 가지므로, 디스플레이 기판(도 31의 301) 상에 실장 후 배선 전극 패턴 공정시 배전 전극과 하부 전극(158) 간의 접촉 면적이 커 접촉 불량을 방지할 수 있다.
[디스플레이 장치]
도 30은 실시예에 따른 디스플레이 장치를 도시한 평면도이다. 도 31은 실시예에 따른 디스플레이 장치를 도시한 단면도이다.
이하의 설명에서 도 30 및 도 31에서 도시되지 않은 구성 요소에 대한 도면 부호는 도 12 내지 도 29를 참고할 수 있다.
도 30 및 도 31을 참조하면, 실시예에 따른 디스플레이 장치(300)는 기판(301), 유전층(302), 조립 배선(310, 320) 및 배선 전극(330, 340)을 포함할 수 있다. 배선 전극(330, 340) 상에 적어도 하나 이상의 층이 배치될 수 있다.
기판(301)은 도 9의 기판(200), 조립 배선(310, 320)은 도 9의 배선 전극(201, 202)과 동일하므로, 상세한 설명은 생략한다.
조립 배선(310, 320) 사이에 발생된 전기장에 의한 유전영동힘에 의해 복수의 반도체 발광 소자(150A)가 조립 배선(310, 320) 사이에 정렬될 수 있다.
도 30 및 도 31는 제2 실시예에 따른 반도체 발광 소자(150A)를 도시하고 있지만, 제1 및 제3 실시예에 따른 반도체 발광 소자(150, 150B)를 이용하여 디스플레이 장치(300)이 제조될 수도 있다.
유전층(302)은 조립 배선(310, 320) 상에 배치되어, 전기장의 발생을 도와주고 조립 배선(310, 320) 간의 쇼트를 방지할 수 있다.
배선 전극(330, 340)은 조립 배선(310, 320) 상에 배치되고, 복수의 반도체 발광 소자(150A) 각각에 전기적으로 연결될 수 있다.
일 예로서, 복수의 반도체 발광 소자(150A)가 단색 광, 예컨대 청색 광을 생성하는 경우, 제1 배선 전극(330)은 복수의 반도체 발광 소자(150A)의 일측에 공통으로 연결되고, 제2 배선 전극(340)은 복수의 반도체 발공 소자의 타측에 공통으로 연결될 수 있다. 제1 배선 전극(330)의 일부는 복수의 반도체 발광 소자(150A) 각각의 일측, 예컨대 상부 전극(156, 157) 상에 배치되고, 제2 배선 전극(340)의 일부는 복수의 반도체 발광 소자(150A) 각각의 타측, 예컨대 하부 전극(158) 상에 배치될 수 있다. 예컨대, 제1 배선 전극(330)은 아노드 전극이고, 제2 배선 전극(340)은 캐소드 전극일 수 있지만, 이에 대해서는 한정하지 않는다.
제1 및 제2 배선 전극(330, 340)은 복수의 반도체 발광 소자(150A)를 발광시키기 위한 전원을 공통하는 한편, 복수의 반도체 발광 소자(150A)를 유전층(302)에 단단하게 고정시킬 수 있다.
다른 예로서, 복수의 반도체 발광 소자(150A)는 적색 광을 생성하는 제1 반도체 발광 소자, 녹색 광을 생성하는 제2 반도체 발광 소자 및 청색 광을 생성하는 제3 반도체 발광 소자를 포함할 수 있다.
이러한 경우, 제1 배선 전극(330)은 제1-1 배선 전극, 제1-2 배선 전극 및 제1-3 배선 전극을 포함할 수 있다. 제1-1 배선 전극은 제1 반도체 발광 소자의 상부 전극(156, 157)에 전기적으로 연결되고, 제1-2 배선 전극은 제2 반도체 발광 소자의 상부 전극(156, 157)에 전기적으로 연결되며, 제1-3 배선 전극은 제3 반도체 발광 소자의 상부 전극(156, 157)에 전기적으로 연결될 수 있다. 예컨대, 제2 배선 전극(340)은 제1 내지 제3 반도체 발공 소자 각각의 하부 전극(158)에 공통으로 연결될 수 있다.
상기의 상세한 설명은 모든 면에서 제한적으로 해석되어서는 아니되고 예시적인 것으로 고려되어야 한다. 실시예의 범위는 첨부된 청구항의 합리적 해석에 의해 결정되어야 하고, 실시예의 등가적 범위 내에서의 모든 변경은 실시예의 범위에 포함된다.
실시예는 영상이나 정보를 디스플레이하는 디스플레이 분야에 채택될 수 있다.
실시예는 반도체 발광 소자를 이용하여 영상이나 정보를 디스플레이하는 디스플레이 분야에 채택될 수 있다.
실시예는 마이크로급이나 나노급 반도체 발광 소자를 이용하여 영상이나 정보를 디스플레이하는 디스플레이 분야에 채택될 수 있다.

Claims (20)

  1. 장축 방향을 따라 제1 영역과 제2 영역을 갖는 발광부;
    상기 제1 영역의 측면을 둘러싸는 절연층; 및
    상기 제2 영역의 측면을 둘러싸는 제1 전극을 포함하고,
    상기 절연층의 두께는 상기 제1 전극의 두께와 동일한
    반도체 발광 소자.
  2. 제1항에 있어서,
    상기 발광부는,
    제1 도전형 반도체층;
    상기 제1 도전형 반도체층 상에 활성층; 및
    상기 활성층 상에 제2 도전형 반도체층을 포함하는
    반도체 발광 소자.
  3. 제2항에 있어서,
    상기 제1 영역은 상기 제1 도전형 반도체층과 상기 활성층을 포함하고,
    상기 제2 영역은 상기 제2 도전형 반도체층을 포함하는
    반도체 발광 소자.
  4. 제3항에 있어서,
    상기 제1 영역은 상기 제2 도전형 반도체층의 일부를 포함하는
    반도체 발광 소자.
  5. 제3항에 있어서,
    상기 제1 영역의 직경과 상기 제2 영역의 직경은 동일한
    반도체 발광 소자.
  6. 제3항에 있어서,
    상기 제1 영역의 상기 측면과 상기 제2 영역의 상기 측면은 상기 장축 방향을 따라 일치하는
    반도체 발광 소자.
  7. 제2항에 있어서,
    상기 절연층은,
    상기 제1 도전형 반도체층의 측면을 둘러싸는 제1 절연층; 및
    상기 활성층의 측면을 둘러싸는 제2 절연층을 포함하는
    반도체 발광 소자.
  8. 제7항에 있어서,
    상기 제1 절연층의 두께는 상기 제2 절연층의 두께보다 큰
    반도체 발광 소자.
  9. 제8항에 있어서,
    상기 제1 절연층의 외측면은 오목한 라운드 형상을 갖는
    반도체 발광 소자.
  10. 제9항에 있어서,
    상기 제1 절연층의 두께는 상기 제1 영역의 하측에서 가장 두꺼운
    반도체 발광 소자.
  11. 제2항에 있어서,
    상기 제1 전극은 상기 활성층에 접하지 않는
    반도체 발광 소자.
  12. 제1항에 있어서,
    상기 제1 전극과 상기 절연층은 상기 장축 방향을 따라 서로 중첩되는
    반도체 발광 소자.
  13. 제1항에 있어서,
    상기 제1 전극과 상기 절연층은 상기 발광부의 둘레를 따라 접하는
    반도체 발광 소자.
  14. 제1항에 있어서,
    상기 제2 영역의 상면 상에 배치되는 제2 전극을 포함하는
    반도체 발광 소자.
  15. 제14항에 있어서,
    상기 제1 전극과 상기 제2 전극은 일체로 형성되는
    반도체 발광 소자.
  16. 제14항에 있어서,
    상기 제1 전극의 상기 두께와 상기 제2 전극의 두께는 상이한
    반도체 발광 소자.
  17. 제16항에 있어서,
    상기 제1 전극의 상기 두께는 상기 제2 전극의 두께보다 큰
    반도체 발광 소자.
  18. 제1항에 있어서,
    상기 제1 영역의 하면 상에 제3 전극을 포함하는
    반도체 발광 소자.
  19. 제1항에 있어서,
    상기 발광부는 원통형을 갖는
    반도체 발광 소자.
  20. 기판;
    상기 기판 상에 제1 및 제2 조립 배선;
    상기 제1 및 제2 조립 배선 상에 배치되고 서로 상이한 컬러 광을 생성하는 복수의 반도체 발광 소자;
    상기 복수의 반도체 발광 소자 각각의 일측 상에 제1 배선 전극; 및
    상기 복수의 반도체 발광 소자 각각의 타측 상에 제2 배선 전극을 포함하는
    디스플레이 장치.
PCT/KR2021/008491 2021-07-05 2021-07-05 반도체 발광 소자 및 디스플레이 장치 WO2023282365A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020237044519A KR20240021192A (ko) 2021-07-05 2021-07-05 반도체 발광 소자 및 디스플레이 장치
PCT/KR2021/008491 WO2023282365A1 (ko) 2021-07-05 2021-07-05 반도체 발광 소자 및 디스플레이 장치

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/KR2021/008491 WO2023282365A1 (ko) 2021-07-05 2021-07-05 반도체 발광 소자 및 디스플레이 장치

Publications (1)

Publication Number Publication Date
WO2023282365A1 true WO2023282365A1 (ko) 2023-01-12

Family

ID=84801740

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/008491 WO2023282365A1 (ko) 2021-07-05 2021-07-05 반도체 발광 소자 및 디스플레이 장치

Country Status (2)

Country Link
KR (1) KR20240021192A (ko)
WO (1) WO2023282365A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120122159A (ko) * 2011-04-28 2012-11-07 국민대학교산학협력단 초소형 led 소자 및 그 제조방법
KR20160059576A (ko) * 2014-11-18 2016-05-27 피에스아이 주식회사 수평배열 어셈블리용 초소형 led 소자, 이의 제조방법 및 이를 포함하는 수평배열 어셈블리
KR20200085977A (ko) * 2019-01-07 2020-07-16 삼성디스플레이 주식회사 표시 장치 및 그의 제조 방법
KR20200088959A (ko) * 2019-01-15 2020-07-24 삼성디스플레이 주식회사 발광 장치, 이를 포함하는 표시 장치 및 표시 장치의 제조 방법
KR20200088961A (ko) * 2019-01-15 2020-07-24 삼성디스플레이 주식회사 발광 장치, 이를 포함하는 표시 장치

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120122159A (ko) * 2011-04-28 2012-11-07 국민대학교산학협력단 초소형 led 소자 및 그 제조방법
KR20160059576A (ko) * 2014-11-18 2016-05-27 피에스아이 주식회사 수평배열 어셈블리용 초소형 led 소자, 이의 제조방법 및 이를 포함하는 수평배열 어셈블리
KR20200085977A (ko) * 2019-01-07 2020-07-16 삼성디스플레이 주식회사 표시 장치 및 그의 제조 방법
KR20200088959A (ko) * 2019-01-15 2020-07-24 삼성디스플레이 주식회사 발광 장치, 이를 포함하는 표시 장치 및 표시 장치의 제조 방법
KR20200088961A (ko) * 2019-01-15 2020-07-24 삼성디스플레이 주식회사 발광 장치, 이를 포함하는 표시 장치

Also Published As

Publication number Publication date
KR20240021192A (ko) 2024-02-16

Similar Documents

Publication Publication Date Title
WO2020230989A1 (ko) 표시 장치 및 그의 제조 방법
WO2020050467A1 (ko) 발광 장치 및 이를 구비하는 표시 장치
WO2020027401A1 (ko) 발광 장치 및 이를 구비한 표시 장치
WO2017034379A1 (ko) 반도체 발광소자의 이송 헤드, 이송 시스템 및 반도체 발광소자를 이송하는 방법
WO2017034268A1 (ko) 반도체 발광 소자를 이용한 디스플레이 장치
WO2016003019A1 (en) Display device using semiconductor light emitting device
WO2021118181A1 (ko) 발광 소자 및 이를 포함하는 표시 장치
WO2020105809A1 (ko) 화소, 이를 구비하는 표시 장치, 및 그의 제조 방법
WO2021132789A1 (ko) 발광 소자를 이용한 디스플레이의 제조 장치 및 그 제조 방법
WO2021002598A1 (ko) 발광 소자, 이의 제조 방법 및 표시 장치
WO2020111417A1 (ko) 표시 장치 및 그의 제조 방법
WO2022097785A1 (ko) 발광 소자 및 이를 포함하는 디스플레이 장치
WO2021015350A1 (ko) 반도체 발광 소자를 이용한 디스플레이 장치 및 그 제조 방법
WO2021162158A1 (ko) 자가 조립용 칩 트레이 및 반도체 발광소자의 공급 방법
WO2023003049A1 (ko) 디스플레이 장치
WO2022119018A1 (ko) 디스플레이 장치
WO2023282365A1 (ko) 반도체 발광 소자 및 디스플레이 장치
WO2020251070A1 (ko) 마이크로 led를 이용한 디스플레이 장치 및 이의 제조 방법
WO2023277215A1 (ko) 디스플레이 장치
WO2023013801A1 (ko) 디스플레이 장치
WO2022203099A1 (ko) 발광 소자 패키지 및 디스플레이 장치
WO2023008604A1 (ko) 디스플레이 장치
WO2022265139A1 (ko) 디스플레이 장치
WO2022114255A1 (ko) 발광 소자 및 이를 포함하는 디스플레이 장치
WO2022080514A1 (ko) 디스플레이 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21949406

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20237044519

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE