WO2021132789A1 - 발광 소자를 이용한 디스플레이의 제조 장치 및 그 제조 방법 - Google Patents

발광 소자를 이용한 디스플레이의 제조 장치 및 그 제조 방법 Download PDF

Info

Publication number
WO2021132789A1
WO2021132789A1 PCT/KR2020/000138 KR2020000138W WO2021132789A1 WO 2021132789 A1 WO2021132789 A1 WO 2021132789A1 KR 2020000138 W KR2020000138 W KR 2020000138W WO 2021132789 A1 WO2021132789 A1 WO 2021132789A1
Authority
WO
WIPO (PCT)
Prior art keywords
light emitting
emitting device
substrate
magnetic chuck
semiconductor light
Prior art date
Application number
PCT/KR2020/000138
Other languages
English (en)
French (fr)
Inventor
유재민
박성윤
이현호
전기성
김수현
양인범
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to CN202080091850.0A priority Critical patent/CN114946024A/zh
Priority to US17/789,049 priority patent/US20230048122A1/en
Priority to EP20907364.2A priority patent/EP4084067A4/en
Publication of WO2021132789A1 publication Critical patent/WO2021132789A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/89Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using at least one connector not provided for in any of the groups H01L24/81 - H01L24/86
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/075Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00
    • H01L25/0753Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00 the devices being arranged next to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/677Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
    • H01L21/67703Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations between different workstations
    • H01L21/67709Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations between different workstations using magnetic elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/677Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
    • H01L21/67703Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations between different workstations
    • H01L21/67721Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations between different workstations the substrates to be conveyed not being semiconductor wafers or large planar substrates, e.g. chips, lead frames
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/677Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
    • H01L21/67703Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations between different workstations
    • H01L21/6773Conveying cassettes, containers or carriers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6835Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/62Arrangements for conducting electric current to or from the semiconductor body, e.g. lead-frames, wire-bonds or solder balls
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67144Apparatus for mounting on conductive members, e.g. leadframes or conductors on insulating substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2221/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
    • H01L2221/67Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere
    • H01L2221/683Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L2221/68304Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L2221/68354Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support used to support diced chips prior to mounting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2221/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
    • H01L2221/67Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere
    • H01L2221/683Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L2221/68304Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L2221/68363Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support used in a transfer process involving transfer directly from an origin substrate to a target substrate without use of an intermediate handle substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/93Batch processes
    • H01L2224/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L2224/951Supplying the plurality of semiconductor or solid-state bodies
    • H01L2224/95101Supplying the plurality of semiconductor or solid-state bodies in a liquid medium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0033Processes relating to semiconductor body packages
    • H01L2933/0066Processes relating to semiconductor body packages relating to arrangements for conducting electric current to or from the semiconductor body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0095Post-treatment of devices, e.g. annealing, recrystallisation or short-circuit elimination

Definitions

  • the present invention is applicable to a display device-related technical field, for example, relates to a display manufacturing apparatus using a micro LED (Light Emitting Diode) and a method for manufacturing the same.
  • a micro LED Light Emitting Diode
  • LCD Liquid Crystal Display
  • OLED Organic Light Emitting Diodes
  • a light emitting diode (Light Emitting Diode: LED) is a well-known semiconductor light emitting device that converts electric current into light, starting with the commercialization of red LED using GaAsP compound semiconductor in 1962, along with GaP:N series green LED. It has been used as a light source for display images of electronic devices including information and communication devices. Accordingly, a method for solving the above-described problems by implementing a display using a semiconductor light emitting device may be proposed.
  • the semiconductor light emitting device has various advantages, such as a long lifespan, low power consumption, excellent initial driving characteristics, and high vibration resistance, compared to a filament-based light emitting device.
  • the technical problem to be solved by the present invention is to provide an apparatus for manufacturing a display device using a light emitting device and a method for manufacturing the same, which can improve the assembly rate in a display device using a light emitting device.
  • An object of the present invention is to provide a manufacturing apparatus and a manufacturing method thereof.
  • the present invention provides a method of manufacturing a display device using a light emitting element, comprising: disposing a substrate on which individual pixel positions are defined by a pair of assembled electrodes; moving a light emitting device including a magnetic material on the substrate using a magnetic chuck having an electromagnet; assembling the light emitting device at the individual pixel positions using the magnetic chuck; and recovering the remaining light emitting devices that are not assembled at the individual pixel positions by using the magnetic chuck.
  • the moving the light emitting device may include applying a first current to the electromagnet of the magnetic chuck, and assembling the light emitting device may include applying a second current different from the first current to the electromagnet of the magnetic chuck.
  • the first current may be greater than the second current.
  • a third current may be applied to the electromagnet of the magnetic chuck.
  • the third current may have a magnitude between the first current and the second current.
  • the step of supplying the light emitting device using a vertically transferable tray may be further included.
  • the assembling of the light emitting device may be performed by rotating the magnetic chuck within a predetermined radius.
  • the magnetic chuck may be rotated at a predetermined frequency.
  • the present invention provides an apparatus for manufacturing a display device using a light emitting element, comprising: a plate for supporting a substrate including individual pixel positions; a supply unit for supplying a plurality of light emitting devices including a magnetic material from the first side of the substrate; and a magnetic chuck capable of being transported in three directions of X, Y, and Z and for assembling the light emitting device to individual pixel positions of the substrate by using an electromagnet at the second side of the substrate.
  • the magnetic chuck a cylindrical rod-shaped metal tip; a coil coupled to the metal tip; a rotating mechanism for rotating the metal tip; and a power supply unit for supplying power to the coil.
  • the rotating mechanism may rotate the metal tip within a certain radius.
  • the magnetic chuck may include a plurality of metal tips and coils provided at regular intervals.
  • the magnetic chuck may include a head provided with a plurality of metal tips.
  • the substrate may further include a tray that is movable in the vertical direction and supplies the light emitting device.
  • currents of different magnitudes may be applied to the magnetic chuck according to a process of assembling the light emitting device at individual pixel positions of the substrate.
  • the manufacturing apparatus of the display device of the present invention it is possible to adjust the magnetization intensity of the magnetic chuck during the manufacturing process of the display device.
  • the magnetization intensity (strength of magnetic force) can be adjusted for each process step, it may be useful to increase the successful assembly rate.
  • the magnetization strength can be optimally designed.
  • FIG. 1 is a conceptual diagram illustrating an example of a display device using a semiconductor light emitting device of the present invention.
  • FIG. 2 is a partially enlarged view of part A of FIG. 1 .
  • 3A and 3B are cross-sectional views taken along lines B-B and C-C in FIG. 2 .
  • FIG. 4 is a conceptual diagram illustrating the flip-chip type semiconductor light emitting device of FIG. 3 .
  • 5A to 5C are conceptual views illustrating various forms of implementing colors in relation to a flip-chip type semiconductor light emitting device.
  • FIG. 6 is a cross-sectional view illustrating a method of manufacturing a display device using a semiconductor light emitting device of the present invention.
  • FIG. 7 is a perspective view illustrating another example of a display device using the semiconductor light emitting device of the present invention.
  • FIG. 8 is a cross-sectional view taken along line D-D of FIG. 7 .
  • FIG. 9 is a conceptual diagram illustrating the vertical semiconductor light emitting device of FIG. 8 .
  • FIG. 10 is a schematic diagram illustrating a process of manufacturing a display device using an apparatus for manufacturing a display device using a light emitting device according to an embodiment of the present invention.
  • FIG. 11 is a conceptual diagram illustrating an example of a magnetic chuck applied to an apparatus for manufacturing a display device using a light emitting device according to an embodiment of the present invention.
  • FIG. 12 is a schematic diagram illustrating an example of a magnetic chuck applied to an apparatus for manufacturing a display device using a light emitting device according to an embodiment of the present invention.
  • FIG. 13 is a schematic diagram illustrating another example of a magnetic chuck applied to an apparatus for manufacturing a display device using a light emitting device according to an embodiment of the present invention.
  • FIG. 14 is a schematic diagram illustrating another example of a process of manufacturing a display device using an apparatus for manufacturing a display device using a light emitting device according to an embodiment of the present invention.
  • 15 is a schematic diagram illustrating a movement of a metal tip during a manufacturing process of a display device using a light emitting device according to an embodiment of the present invention.
  • 16 is a diagram illustrating an example of a light emitting device of a display device using a light emitting device according to an embodiment of the present invention.
  • 17 is a flowchart illustrating a method of manufacturing a display device using a light emitting device according to an embodiment of the present invention.
  • the display device described herein is a concept including all display devices that display information in a unit pixel or a set of unit pixels. Therefore, it can be applied not only to the finished product but also to the parts.
  • a panel corresponding to a part of a digital TV also independently corresponds to a display device in the present specification.
  • the finished products include mobile phones, smart phones, laptop computers, digital broadcasting terminals, personal digital assistants (PDA), portable multimedia players (PMPs), navigation systems, slate PCs, Tablet PCs, Ultra Books, digital TVs, desktop computers, etc. may be included.
  • the semiconductor light emitting device mentioned in this specification is a concept including an LED, a micro LED, and the like, and may be used interchangeably.
  • FIG. 1 is a conceptual diagram illustrating an embodiment of a display device using a semiconductor light emitting device of the present invention.
  • information processed by a controller (not shown) of the display apparatus 100 may be displayed using a flexible display.
  • the flexible display includes, for example, a display that can be bent, bent, or twisted by an external force, or that can be folded or rolled.
  • the flexible display can be, for example, a display fabricated on a thin and flexible substrate that can be bent, bent, folded, or rolled like paper while maintaining the display characteristics of a conventional flat panel display. .
  • the display area of the flexible display becomes a flat surface.
  • the display area in a state bent by an external force (eg, a state having a finite radius of curvature, hereinafter referred to as a second state), the display area may be a curved surface.
  • information displayed in the second state may be visual information output on a curved surface.
  • Such visual information is implemented by independently controlling the light emission of sub-pixels arranged in a matrix form.
  • the unit pixel means, for example, a minimum unit for implementing one color.
  • the unit pixel of the flexible display may be implemented by a semiconductor light emitting device.
  • a light emitting device is exemplified as a type of a semiconductor light emitting device that converts electric current into light.
  • An example of the light emitting device may be a light emitting diode (LED).
  • LED light emitting diode
  • Such a light emitting diode is formed to have a small size, so that it can serve as a unit pixel even in the second state.
  • FIG. 2 is a partially enlarged view of part A of FIG. 1 .
  • 3A and 3B are cross-sectional views taken along lines B-B and C-C in FIG. 2 .
  • the display device 100 using a semiconductor light emitting device As shown in FIGS. 2, 3A, and 3B , as the display device 100 using a semiconductor light emitting device, the display device 100 using a passive matrix (PM) type semiconductor light emitting device is exemplified. However, the examples described below are also applicable to an active matrix (AM) type semiconductor light emitting device.
  • PM passive matrix
  • AM active matrix
  • the display device 100 includes a substrate 110 , a first electrode 120 , a conductive adhesive layer 130 , a second electrode 140 , and at least one semiconductor light emitting device 150 . do.
  • the substrate 110 may be a flexible substrate.
  • the substrate 110 may include glass or polyimide (PI).
  • PI polyimide
  • any material such as polyethylene naphthalate (PEN) or polyethylene terephthalate (PET) may be used as long as it has insulating properties and is flexible.
  • the substrate 110 may be made of either a transparent material or an opaque material.
  • the substrate 110 may be a wiring substrate on which the first electrode 120 is disposed, and thus the first electrode 120 may be located on the substrate 110 .
  • the insulating layer 160 may be disposed on the substrate 110 on which the first electrode 120 is positioned, and the auxiliary electrode 170 may be positioned on the insulating layer 160 .
  • a state in which the insulating layer 160 is laminated on the substrate 110 may be a single wiring board.
  • the insulating layer 160 is made of an insulating and flexible material such as polyimide (PI, Polyimide), PET, or PEN, and is integrally formed with the substrate 110 to form a single substrate.
  • the auxiliary electrode 170 is an electrode that electrically connects the first electrode 120 and the semiconductor light emitting device 150 , is located on the insulating layer 160 , and is disposed to correspond to the position of the first electrode 120 .
  • the auxiliary electrode 170 may have a dot shape and may be electrically connected to the first electrode 120 by an electrode hole 171 penetrating the insulating layer 160 .
  • the electrode hole 171 may be formed by filling the via hole with a conductive material.
  • the conductive adhesive layer 130 is formed on one surface of the insulating layer 160, but the present invention is not necessarily limited thereto.
  • a layer performing a specific function is formed between the insulating layer 160 and the conductive adhesive layer 130 , or the conductive adhesive layer 130 is disposed on the substrate 110 without the insulating layer 160 .
  • the conductive adhesive layer 130 may serve as an insulating layer.
  • the conductive adhesive layer 130 may be a layer having adhesiveness and conductivity, and for this purpose, a material having conductivity and a material having adhesiveness may be mixed in the conductive adhesive layer 130 .
  • the conductive adhesive layer 130 has flexibility, thereby enabling a flexible function in the display device.
  • the conductive adhesive layer 130 may be an anisotropic conductive film (ACF), an anisotropic conductive paste, a solution containing conductive particles, or the like.
  • the conductive adhesive layer 130 may be configured as a layer that allows electrical interconnection in the Z direction passing through the thickness, but has electrical insulation in the horizontal X-Y direction. Accordingly, the conductive adhesive layer 130 may be referred to as a Z-axis conductive layer (however, hereinafter referred to as a 'conductive adhesive layer').
  • the anisotropic conductive film is a film in which an anisotropic conductive medium is mixed with an insulating base member, and when heat and/or pressure is applied, only a specific portion has conductivity by the anisotropic conductive medium.
  • heat and/or pressure are applied to the anisotropic conductive film, but other methods may be applied in order for the anisotropic conductive film to have partial conductivity.
  • Another method described above may be, for example, only one of heat and pressure is applied, UV curing, or the like.
  • the anisotropic conductive medium may be, for example, conductive balls or conductive particles.
  • the anisotropic conductive film is a film in which conductive balls are mixed with an insulating base member, and when heat and/or pressure is applied, only a specific portion has conductivity by the conductive balls.
  • the anisotropic conductive film may be in a state in which the core of the conductive material contains a plurality of particles covered by an insulating film made of a polymer material, and in this case, the portion to which heat and pressure is applied breaks the insulating film and has conductivity by the core. .
  • the shape of the core may be deformed to form a layer in contact with each other in the thickness direction of the film.
  • heat and pressure are applied as a whole to the anisotropic conductive film, and an electrical connection in the Z-axis direction is partially formed by a height difference of a counterpart adhered by the anisotropic conductive film.
  • the anisotropic conductive film may be in a state in which an insulating core contains a plurality of particles coated with a conductive material.
  • the conductive material is deformed (pressed) in the portion to which heat and pressure are applied, so that it has conductivity in the thickness direction of the film.
  • a form in which the conductive material penetrates the insulating base member in the Z-axis direction to have conductivity in the thickness direction of the film is also possible.
  • the conductive material may have a pointed end.
  • the anisotropic conductive film may be a fixed array ACF in which conductive balls are inserted into one surface of the insulating base member.
  • the insulating base member is formed of a material having an adhesive property, and the conductive balls are intensively disposed on the bottom portion of the insulating base member, and when heat or pressure is applied from the base member, it deforms together with the conductive balls in a vertical direction. to have conductivity.
  • the present invention is not necessarily limited thereto, and the anisotropic conductive film has a form in which conductive balls are randomly mixed in an insulating base member, or is composed of a plurality of layers and conductive balls are arranged on one layer (double-ACF). ) are all possible.
  • the anisotropic conductive paste is a combination of a paste and a conductive ball, and may be a paste in which a conductive ball is mixed with an insulating and adhesive base material. Also, a solution containing conductive particles may be a solution containing conductive particles or nanoparticles.
  • the second electrode 140 is spaced apart from the auxiliary electrode 170 and is positioned on the insulating layer 160 . That is, the conductive adhesive layer 130 is disposed on the insulating layer 160 in which the auxiliary electrode 170 and the second electrode 140 are located.
  • the semiconductor light emitting device 150 is connected in a flip-chip form by applying heat and pressure. In this case, the semiconductor light emitting device 150 is electrically connected to the first electrode 120 and the second electrode 140 .
  • FIG. 4 is a conceptual diagram illustrating the flip-chip type semiconductor light emitting device of FIG. 3 .
  • the semiconductor light emitting device may be a flip chip type light emitting device.
  • the semiconductor light emitting device includes a p-type electrode 156 , a p-type semiconductor layer 155 on which the p-type electrode 156 is formed, an active layer 154 formed on the p-type semiconductor layer 155 , and an active layer 154 . ) and an n-type semiconductor layer 153 formed on the n-type semiconductor layer 153 and an n-type electrode 152 spaced apart from the p-type electrode 156 in the horizontal direction.
  • the p-type electrode 156 may be electrically connected to the auxiliary electrode 170 and the conductive adhesive layer 130 shown in FIGS. 3A and 3B
  • the n-type electrode 152 is the second electrode 140 .
  • the auxiliary electrode 170 is formed to be elongated in one direction, so that one auxiliary electrode may be electrically connected to the plurality of semiconductor light emitting devices 150 .
  • one auxiliary electrode may be electrically connected to the plurality of semiconductor light emitting devices 150 .
  • p-type electrodes of left and right semiconductor light emitting devices with respect to the auxiliary electrode may be electrically connected to one auxiliary electrode.
  • the semiconductor light emitting device 150 is press-fitted into the conductive adhesive layer 130 by heat and pressure, and through this, a portion between the p-type electrode 156 and the auxiliary electrode 170 of the semiconductor light emitting device 150 . And, only the portion between the n-type electrode 152 and the second electrode 140 of the semiconductor light emitting device 150 has conductivity, and there is no press-fitting of the semiconductor light emitting device in the remaining portion, so that the semiconductor light emitting device does not have conductivity.
  • the conductive adhesive layer 130 not only interconnects the semiconductor light emitting device 150 and the auxiliary electrode 170 and between the semiconductor light emitting device 150 and the second electrode 140 , but also forms an electrical connection.
  • the plurality of semiconductor light emitting devices 150 constitute a light emitting device array
  • the phosphor layer 180 is formed on the light emitting device array.
  • the light emitting device array may include a plurality of semiconductor light emitting devices having different luminance values.
  • Each semiconductor light emitting device 150 constitutes a unit pixel and is electrically connected to the first electrode 120 .
  • the first electrode 120 may be plural, the semiconductor light emitting devices may be arranged in, for example, several columns, and the semiconductor light emitting devices in each column may be electrically connected to any one of the plurality of first electrodes.
  • the semiconductor light emitting devices are connected in a flip chip form, semiconductor light emitting devices grown on a transparent dielectric substrate can be used.
  • the semiconductor light emitting devices may be, for example, nitride semiconductor light emitting devices. Since the semiconductor light emitting device 150 has excellent luminance, individual unit pixels can be configured even with a small size.
  • a barrier rib 190 may be positioned between the semiconductor light emitting devices 150 .
  • the partition wall 190 may serve to separate individual unit pixels from each other, and may be integrally formed with the conductive adhesive layer 130 .
  • the base member of the anisotropic conductive film may form a barrier rib.
  • the barrier rib 190 may have reflective properties and increase contrast even without a separate black insulator.
  • a reflective barrier rib may be separately provided as the barrier rib 190 .
  • the barrier rib 190 may include a black or white insulator depending on the purpose of the display device. When the barrier ribs made of a white insulator are used, reflectivity may be increased, and when the barrier ribs made of a black insulator are used, it is possible to have reflective properties and increase contrast.
  • the phosphor layer 180 may be located on the outer surface of the semiconductor light emitting device 150 .
  • the semiconductor light emitting device 150 is a blue semiconductor light emitting device that emits blue (B) light
  • the phosphor layer 180 functions to convert the blue (B) light into a color of a unit pixel.
  • the phosphor layer 180 may be a red phosphor 181 or a green phosphor 182 constituting an individual pixel.
  • a red phosphor 181 capable of converting blue light into red (R) light may be stacked on the blue semiconductor light emitting device at a position constituting a unit pixel of red color, and at a position constituting a unit pixel of green color, a blue color may be stacked on the blue semiconductor light emitting device.
  • a green phosphor 182 capable of converting blue light into green (G) light may be stacked on the semiconductor light emitting device.
  • only the blue semiconductor light emitting device may be used alone in the portion constituting the blue unit pixel.
  • unit pixels of red (R), green (G), and blue (B) may form one pixel.
  • a phosphor of one color may be stacked along each line of the first electrode 120 . Accordingly, one line in the first electrode 120 may be an electrode for controlling one color. That is, red (R), green (G), and blue (B) may be sequentially disposed along the second electrode 140 , thereby realizing a unit pixel.
  • the present invention is not necessarily limited thereto, and instead of the phosphor, the semiconductor light emitting device 150 and the quantum dot (QD) are combined to implement unit pixels of red (R), green (G), and blue (B). have.
  • a black matrix 191 may be disposed between each of the phosphor layers to improve contrast. That is, the black matrix 191 may improve contrast of light and dark.
  • the present invention is not necessarily limited thereto, and other structures for implementing blue, red, and green colors may be applied.
  • 5A to 5C are conceptual views illustrating various forms of implementing colors in relation to a flip-chip type semiconductor light emitting device.
  • each semiconductor light emitting device 150 uses gallium nitride (GaN) as a main material, and indium (In) and/or aluminum (Al) are added together to emit a variety of light including blue. It may be implemented as a light emitting device.
  • GaN gallium nitride
  • Al aluminum
  • the semiconductor light emitting device 150 may be a red (R), green (G), and blue (B) semiconductor light emitting device to form a sub-pixel, respectively.
  • red, green, and blue semiconductor light emitting devices R, G, and B are alternately disposed, and unit pixels of red, green, and blue are formed by the red, green, and blue semiconductor light emitting devices.
  • the pixels form one pixel, through which a full-color display can be realized.
  • the semiconductor light emitting device 150a may include a white light emitting device W in which a yellow phosphor layer is provided for each individual device.
  • a red phosphor layer 181 , a green phosphor layer 182 , and a blue phosphor layer 183 may be provided on the white light emitting device W to form a unit pixel.
  • a unit pixel may be formed on the white light emitting device W by using a color filter in which red, green, and blue are repeated.
  • the semiconductor light emitting device 150b may have a structure in which a red phosphor layer 184 , a green phosphor layer 185 , and a blue phosphor layer 186 are provided on the ultraviolet light emitting device UV.
  • the semiconductor light emitting device can be used in the entire region from visible light to ultraviolet (UV) light, and can be extended to the form of a semiconductor light emitting device in which ultraviolet (UV) can be used as an excitation source of the upper phosphor. .
  • the semiconductor light emitting device is positioned on the conductive adhesive layer to constitute a unit pixel in the display device. Since the semiconductor light emitting device has excellent luminance, individual unit pixels can be configured even with a small size.
  • the size of the individual semiconductor light emitting devices 150 , 150a , and 150b may be, for example, a side length of 80 ⁇ m or less, and may be a rectangular or square device. In the case of a rectangular shape, the size may be 20 ⁇ 80 ⁇ m or less.
  • the distance between the semiconductor light emitting devices 150 , 150a , and 150b is relatively large enough.
  • the display device using the semiconductor light emitting device described above can be manufactured by a new type of manufacturing method. Hereinafter, a manufacturing method will be described with reference to FIG. 6 .
  • FIG. 6 is a cross-sectional view illustrating a method of manufacturing a display device using a semiconductor light emitting device of the present invention.
  • a conductive adhesive layer 130 is formed on the insulating layer 160 on which the auxiliary electrode 170 and the second electrode 140 are positioned.
  • An insulating layer 160 is laminated on the first substrate 110 to form one substrate (or wiring board), and the wiring substrate includes a first electrode 120 , an auxiliary electrode 170 , and a second electrode 140 . are placed In this case, the first electrode 120 and the second electrode 140 may be disposed in a mutually orthogonal direction.
  • the first substrate 110 and the insulating layer 160 may each include glass or polyimide (PI).
  • the conductive adhesive layer 130 may be implemented by, for example, an anisotropic conductive film, and for this purpose, the anisotropic conductive film may be applied to the substrate on which the insulating layer 160 is located.
  • the second substrate 112 corresponding to the positions of the auxiliary electrodes 170 and the second electrodes 140 and on which the plurality of semiconductor light emitting devices 150 constituting individual pixels are located is formed with the semiconductor light emitting device 150 .
  • the semiconductor light emitting device 150 is disposed to face the auxiliary electrode 170 and the second electrode 140 .
  • the second substrate 112 is a growth substrate on which the semiconductor light emitting device 150 is grown, and may be a sapphire substrate or a silicon substrate.
  • the semiconductor light emitting device When the semiconductor light emitting device is formed in a wafer unit, the semiconductor light emitting device can be effectively used in a display device by having an interval and a size that can form a display device.
  • the wiring board and the second board 112 are thermocompressed.
  • the wiring board and the second board 112 may be thermocompressed by applying an ACF press head.
  • the wiring board and the second board 112 are bonded by thermal compression. Due to the properties of the anisotropic conductive film having conductivity by thermal compression, only the portion between the semiconductor light emitting device 150 and the auxiliary electrode 170 and the second electrode 140 has conductivity, and through this, the electrodes and the semiconductor light emitting.
  • the device 150 may be electrically connected. At this time, the semiconductor light emitting device 150 is inserted into the anisotropic conductive film, through which a barrier rib may be formed between the semiconductor light emitting devices 150 .
  • the second substrate 112 is removed.
  • the second substrate 112 may be removed using a laser lift-off (LLO) method or a chemical lift-off (CLO) method.
  • LLO laser lift-off
  • CLO chemical lift-off
  • a transparent insulating layer may be formed by coating silicon oxide (SiOx) or the like on the wiring board to which the semiconductor light emitting device 150 is coupled.
  • the method may further include forming a phosphor layer on one surface of the semiconductor light emitting device 150 .
  • the semiconductor light emitting device 150 is a blue semiconductor light emitting device that emits blue (B) light, and a red or green phosphor for converting the blue (B) light into a color of a unit pixel is a blue semiconductor light emitting device.
  • a layer can be formed on one surface of
  • the manufacturing method or structure of the display device using the semiconductor light emitting device described above may be modified in various forms.
  • a vertical semiconductor light emitting device may also be applied to the display device described above.
  • FIG. 7 is a perspective view illustrating another embodiment of a display device using the semiconductor light emitting device of the present invention
  • FIG. 8 is a cross-sectional view taken along line DD of FIG. 7
  • FIG. 9 is a conceptual diagram illustrating the vertical semiconductor light emitting device of FIG. 8 . to be.
  • the display device may be a display device using a passive matrix (PM) type vertical semiconductor light emitting device.
  • PM passive matrix
  • the display device includes a substrate 210 , a first electrode 220 , a conductive adhesive layer 230 , a second electrode 240 , and at least one semiconductor light emitting device 250 .
  • the substrate 210 is a wiring substrate on which the first electrode 220 is disposed, and may include polyimide (PI) to implement a flexible display device.
  • PI polyimide
  • any material that has insulating properties and is flexible may be used.
  • the first electrode 220 is positioned on the substrate 210 and may be formed as a bar-shaped electrode long in one direction.
  • the first electrode 220 may serve as a data electrode.
  • the conductive adhesive layer 230 is formed on the substrate 210 on which the first electrode 220 is positioned.
  • the conductive adhesive layer 230 is an anisotropic conductive film (ACF), an anisotropic conductive paste, and a solution containing conductive particles. ), and so on.
  • ACF anisotropic conductive film
  • anisotropic conductive paste an anisotropic conductive paste
  • solution containing conductive particles a solution containing conductive particles.
  • the semiconductor light emitting device 250 is the first electrode (220) and electrically connected.
  • the semiconductor light emitting device 250 is preferably disposed on the first electrode 220 .
  • the anisotropic conductive film is divided into a conductive portion and a non-conductive portion in the thickness direction.
  • the conductive adhesive layer 230 implements not only electrical connection but also mechanical bonding between the semiconductor light emitting device 250 and the first electrode 220 .
  • the semiconductor light emitting device 250 is positioned on the conductive adhesive layer 230 and constitutes individual pixels in the display device through this. Since the semiconductor light emitting device 250 has excellent luminance, individual unit pixels can be configured even with a small size.
  • the size of such an individual semiconductor light emitting device 250 may be, for example, a side length of 80 ⁇ m or less, and may be a rectangular or square device. In the case of a rectangular shape, for example, it may have a size of 20X80 ⁇ m or less.
  • the semiconductor light emitting device 250 may have a vertical structure.
  • a plurality of second electrodes 240 disposed in a direction crossing the longitudinal direction of the first electrode 220 and electrically connected to the vertical semiconductor light emitting device 250 are positioned between the vertical semiconductor light emitting devices.
  • the vertical semiconductor light emitting device includes a p-type electrode 256 , a p-type semiconductor layer 255 formed on the p-type electrode 256 , and an active layer 254 formed on the p-type semiconductor layer 255 . ), an n-type semiconductor layer 253 formed on the active layer 254 , and an n-type electrode 252 formed on the n-type semiconductor layer 253 .
  • the lower p-type electrode 256 may be electrically connected to the first electrode 220 and the conductive adhesive layer 230
  • the upper n-type electrode 252 may be a second electrode 240 to be described later.
  • the vertical semiconductor light emitting device 250 has a great advantage in that it is possible to reduce the chip size because electrodes can be arranged up and down.
  • a phosphor layer 280 may be formed on one surface of the semiconductor light emitting device 250 .
  • the semiconductor light emitting device 250 is a blue semiconductor light emitting device 251 that emits blue (B) light, and a phosphor layer 280 for converting the blue (B) light into a color of a unit pixel is provided.
  • the phosphor layer 280 may be a red phosphor 281 and a green phosphor 282 constituting individual pixels.
  • a red phosphor 281 capable of converting blue light into red (R) light may be stacked on the blue semiconductor light emitting device at a position constituting a unit pixel of red color, and at a position constituting a unit pixel of green color, blue light
  • a green phosphor 282 capable of converting blue light into green (G) light may be stacked on the semiconductor light emitting device.
  • only the blue semiconductor light emitting device may be used alone in the portion constituting the blue unit pixel. In this case, unit pixels of red (R), green (G), and blue (B) may form one pixel.
  • the present invention is not necessarily limited thereto, and as described above in a display device to which a flip chip type light emitting device is applied, other structures for realizing blue, red, and green may be applied.
  • the second electrode 240 is positioned between the semiconductor light emitting devices 250 and is electrically connected to the semiconductor light emitting devices 250 .
  • the semiconductor light emitting devices 250 may be arranged in a plurality of columns, and the second electrode 240 may be located between the columns of the semiconductor light emitting devices 250 .
  • the second electrode 240 may be positioned between the semiconductor light emitting devices 250 .
  • the second electrode 240 may be formed as a bar-shaped electrode long in one direction, and may be disposed in a direction perpendicular to the first electrode.
  • the second electrode 240 and the semiconductor light emitting device 250 may be electrically connected to each other by a connection electrode protruding from the second electrode 240 .
  • the connection electrode may be an n-type electrode of the semiconductor light emitting device 250 .
  • the n-type electrode is formed as an ohmic electrode for ohmic contact, and the second electrode 240 covers at least a portion of the ohmic electrode by printing or deposition. Through this, the second electrode 240 and the n-type electrode of the semiconductor light emitting device 250 may be electrically connected.
  • the second electrode 240 may be positioned on the conductive adhesive layer 230 .
  • a transparent insulating layer (not shown) including silicon oxide (SiOx) may be formed on the substrate 210 on which the semiconductor light emitting device 250 is formed.
  • SiOx silicon oxide
  • the second electrode 240 is positioned after the transparent insulating layer is formed, the second electrode 240 is positioned on the transparent insulating layer.
  • the second electrode 240 may be formed to be spaced apart from the conductive adhesive layer 230 or the transparent insulating layer.
  • the present invention has the advantage of not using a transparent electrode such as ITO by locating the second electrode 240 between the semiconductor light emitting devices 250 . Therefore, it is possible to improve light extraction efficiency by using a conductive material having good adhesion to the n-type semiconductor layer as a horizontal electrode without being constrained by selection of a transparent material.
  • a transparent electrode such as indium tin oxide (ITO)
  • a barrier rib 290 may be positioned between the semiconductor light emitting devices 250 . That is, a barrier rib 290 may be disposed between the vertical semiconductor light emitting devices 250 to isolate the semiconductor light emitting devices 250 constituting individual pixels.
  • the partition wall 290 may serve to separate individual unit pixels from each other, and may be integrally formed with the conductive adhesive layer 230 .
  • the base member of the anisotropic conductive film may form the partition wall 290 by inserting the semiconductor light emitting device 250 into the anisotropic conductive film.
  • the barrier rib 290 may have reflective properties and increase contrast even without a separate black insulator.
  • a reflective barrier rib may be separately provided.
  • the barrier rib 290 may include a black or white insulator depending on the purpose of the display device.
  • the barrier rib 290 is formed between the vertical semiconductor light emitting device 250 and the second electrode 240 .
  • the barrier rib 290 is formed between the vertical semiconductor light emitting device 250 and the second electrode 240 .
  • individual unit pixels can be configured even with a small size by using the semiconductor light emitting device 250 , and the distance between the semiconductor light emitting devices 250 is relatively large enough to connect the second electrode 240 to the semiconductor light emitting device 250 . ), and there is an effect of realizing a flexible display device having HD picture quality.
  • a black matrix 291 may be disposed between each phosphor to improve contrast. That is, the black matrix 291 may improve contrast of light and dark.
  • the semiconductor light emitting device is disposed on a wiring board in a flip chip type and used as an individual pixel.
  • FIG. 10 is a schematic diagram illustrating a process of manufacturing a display device using an apparatus for manufacturing a display device using a light emitting device according to an embodiment of the present invention.
  • individual light emitting devices 400 may be assembled at pixel positions of an assembly substrate 300 in which individual pixel positions are defined by a pair of assembly electrodes 320 and barrier ribs 340 .
  • the individual light emitting device 400 may include a magnetic material 430 (refer to FIG. 16 ). Accordingly, the light emitting device 400 may be assembled at a pixel position by being guided by the magnetic force of the magnetic chuck 600 .
  • a substrate 300 containing individual pixel locations may be supported by a plate 350 .
  • the substrate 300 may be supported so that individual pixel positions face downward.
  • a plurality of light emitting devices 400 are supplied to the substrate 300 supported by the plate 350 , and these light emitting devices 400 are disposed on one side (hereinafter, referred to as) of the substrate 300 by the magnetic chuck 600 . can be assembled at individual pixel locations located on the first side).
  • the magnetic chuck 600 can be transported in three directions of X, Y and Z, and the light emitting device 400 is mounted on the substrate 300 by using an electromagnet from the second side opposite to the first side of the substrate 300 . It can be assembled at individual pixel locations.
  • the magnetic chuck 600 may include a cylindrical rod-shaped metal tip 620 (magnetic head), and a coil 610 (or solenoid) coupled to the metal tip 620 to generate a magnetic force.
  • the Z direction may be a direction in which the magnetic chuck 600 faces the substrate 300
  • the X and Y directions may be directions in which the magnetic chuck 600 moves on the main plane of the substrate 300 .
  • the magnitude of the magnetic force acting on the light emitting device 400 may be changed by transferring the magnetic chuck 600 in the Z direction.
  • the magnetic chuck 600 is transferred in the Z direction so that the magnetic chuck 600 is positioned at a position closest to the plate 350 , the largest magnetic force may act on the light emitting device 400 .
  • the magnetic chuck 600 may be transferred in the X and Y directions so that the light emitting device 400 can be mounted at individual pixel positions. In addition, by transferring the magnetic chuck 600 in the X and Y directions, the light emitting device 400 that is not mounted at the pixel position may be recovered.
  • a periodic force may be applied so that the light emitting device 400 may be accurately seated at the pixel position.
  • the metal tip 620 of the magnetic chuck 600 may periodically rotate with an eccentricity within a certain range. In this process, the probability that the light emitting device 400 positioned within this predetermined range can be assembled at an accurate position may be increased by being guided by the pixel position.
  • This assembly process may take place in a fluid.
  • the semiconductor light emitting device 400 and the substrate 300 are placed in a chamber filled with a fluid, and the light emitting device 400 is self-assembled on the substrate 300 using gravity, surface tension, magnetic force, electric force, etc. .
  • This process may be referred to as a self-assembly process.
  • the substrate 300 may be an assembly substrate.
  • the assembly substrate may be a substrate for temporarily mounting the light emitting device 400 and transferring the light emitting device 400 to a substrate (wiring substrate) constituting the display device.
  • a plurality of pairs of assembly electrodes 320 ; 321 and 322 are disposed on a base substrate 310 , and an insulating layer 330 may be located on the electrode 320 . Also, a partition wall 340 defining a pixel position may be positioned on the insulating layer 330 at a position corresponding to the assembly electrode 320 .
  • the substrate 300 may be a wiring substrate.
  • the substrate 300 is provided as an assembly substrate to illustrate that the light emitting devices 400 are seated.
  • the present invention proposes a method and apparatus for minimizing the influence of gravity or frictional force and preventing non-specific binding in order to increase the transfer yield.
  • the present invention is to propose an apparatus and method for assembling the light emitting device 400 more efficiently by applying an electromagnet to the magnetic chuck 600 to apply different magnitudes of magnetic force in the assembly process of the light emitting device 400 . .
  • a magnetic material 430 (refer to FIG. 16 ) is disposed on the semiconductor light emitting device 400 to move the semiconductor light emitting device 400 using the magnetic force of the magnetic chuck 600 .
  • the light emitting device 400 may be seated at a preset position using an electric field.
  • 11 is a conceptual diagram illustrating an example of a magnetic chuck applied to an apparatus for manufacturing a display device using a light emitting device according to an embodiment of the present invention.
  • 12 is a schematic diagram illustrating an example of a magnetic chuck applied to an apparatus for manufacturing a display device using a light emitting device according to an embodiment of the present invention.
  • the magnetic chuck 600 may include a cylindrical bar-shaped metal tip 620 and a coil 610 (solenoid) coupled to the metal tip 620 .
  • it may include a power supply unit (V) and a switch (S) for supplying power to the coil (610).
  • the magnetic chuck 600 may have an electromagnet shape.
  • the coil 610 may be referred to as an electromagnet.
  • the thickness, number of windings, and length of the coil 610 may vary depending on the substrate 300 , the light emitting device (chip) 400 , and other process equipment.
  • the thickness range of the coil 610 may be 0.1 to 5 mm.
  • the number of windings of the coil 610 may be 100 to 100,000 times.
  • the length of the coil 610 may be 1 to 100 m.
  • the metal tip 620 may be a metal structure made of a ferromagnetic material.
  • the model and size of the metal tip 620 can be selected according to the shape of the substrate 300 and the light emitting device 400 .
  • iron (Fe), nickel (Ni), cobalt (Co), etc. may be used as an example of such a metal tip 620.
  • a permanent magnet rather than an electromagnet is used for the magnetic chuck, it may be necessary to use a cylindrical magnet having the same model at both ends according to the symmetry of the magnetic field.
  • various types of metal tips 620 may be applied according to the shapes of the substrate 300 and the light emitting device 400 .
  • the size of the light emitting device 400 is small, the content of a magnetic material (eg, nickel (Ni)) that responds to the magnetic field of the light emitting device 400 is relatively small, or a portion of the light emitting device 400 .
  • a magnetic material eg, nickel (Ni)
  • the tip of the metal tip 620 may be formed narrowly and sharply.
  • various shapes of the metal tip 620 may be applied according to the shape of the pixel position in the substrate 300 . For example, if the shape of the light emitting device 400 and the pixel position has a shape other than a rectangle, a metal tip 620 having a corresponding shape may be applied.
  • the magnitude of the magnetic force acting on the metal tip 620 may vary according to the magnitude of the applied current/voltage.
  • the current flow can be adjusted to increase the assembly rate of the chip substrate by the electric field. Thereafter, when the assembly of the chip 400 in the substrate 300 is finished, when the chip is moved again, such as when the chip is collected, the current can be adjusted to smoothly control the movement of the chip.
  • a first current may be applied to the coil 610 (electromagnet) of the magnetic chuck 600 .
  • a second current having a smaller magnitude than the first current may be applied to the coil 610 .
  • a third current may be applied to the coil 610 of the magnetic chuck 600 .
  • the third current may have a magnitude between the first current and the second current.
  • a current may selectively flow through the magnetic chuck 600 .
  • a high voltage/current/frequency may be applied to facilitate movement of the light emitting device 400 .
  • a lower voltage/current/frequency may be applied to the coil 610 (electromagnet) of the magnetic chuck 600 than when the light emitting device 400 is moved. This may be to increase the probability of assembling the substrate of the light emitting device 400 .
  • a voltage/current/frequency having a size between the movement of the substrate and the time of assembly may be applied.
  • the magnetic chuck 600 may be coupled to a rotating mechanism 640 for rotating the metal tip 620 .
  • the rotation mechanism 640 may apply a rotational force so that the metal tip 620 can be rotated eccentrically within a certain range. This will be described in detail later.
  • FIG. 13 is a schematic diagram illustrating another example of a magnetic chuck applied to an apparatus for manufacturing a display device using a light emitting device according to an embodiment of the present invention.
  • the magnetic chuck 600 may use a large metal tip 621 and a large coil 611 wound around the large metal tip 621 .
  • the large metal tip 621 may use a removable head 630 having a plurality of small metal tips 632 on the disk-shaped base 631 .
  • the spacing of the plurality of small metal tips 632 may correspond to the spacing of (sub)pixel positions formed on the substrate 300 .
  • the pixel positions may be different depending on the substrate 300, and a head 630 having a distance between the metal tips 632 corresponding to the pixel positions may be selectively used.
  • the head 630 including a large metal tip 621 and a plurality of metal tips 632 may be a metal structure made of a ferromagnetic material.
  • the model and size of the metal tips 621 and 632 can be selected according to the shape of the substrate 300 and the light emitting device 400 .
  • iron (Fe), nickel (Ni), cobalt (Co), etc. may be used.
  • a rotating mechanism 640 (see FIG. 12 ) for rotating the metal tips 621 and 632 may be coupled. As described above, the rotating mechanism 640 may apply a rotational force so that the metal tips 621 and 632 are eccentrically rotated within a certain range.
  • the magnetic field strength of the electromagnet increases in proportion to the length of the coil and the number of turns. Therefore, the electromagnet matrix can be manufactured by separating it into components that can be transformed into various shapes, such as the tip (head) 630 part, which is an area for manufacturing and assembling a large instrument.
  • the assembly rate can be improved while maximizing the magnetic force by detachably separating the region (metal tip 621 and coil 611) and the head 630 region for generating a magnetic field.
  • the magnetic chuck 600 can be transported in three directions of X, Y, and Z, and the light emitting device 400 using an electromagnet from the second side opposite to the first side of the substrate 300 . ) can be assembled at individual pixel locations on the substrate 300 .
  • the Z direction may be a direction in which the magnetic chuck 600 faces the substrate 300
  • the X and Y directions may be directions in which the magnetic chuck 600 moves on the main plane of the substrate 300 .
  • the magnitude of the magnetic force acting on the light emitting device 400 may be changed by transferring the magnetic chuck 600 in the Z direction.
  • the magnetic chuck 600 is transferred in the Z direction so that the magnetic chuck 600 is positioned at a position closest to the plate 350 , the largest magnetic force may act on the light emitting device 400 .
  • the magnetic chuck 600 may be transferred in the X and Y directions so that the light emitting device 400 can be mounted at individual pixel positions. In addition, by transferring the magnetic chuck 600 in the X and Y directions, the light emitting device 400 that is not mounted at the pixel position may be recovered.
  • the magnetic chuck 600 may be configured by arranging several electromagnets in parallel.
  • the plurality of metal tips 620 and coils 610 may be disposed to correspond to intervals of (sub)pixel positions formed on the substrate 300 .
  • Pixel positions may be different depending on the substrate 300
  • the magnetic chuck 600 may be configured by setting an interval between the metal tips 620 corresponding to the pixel positions.
  • the magnetic chuck 600 is configured such that the coil 610 is located at the lower side of the metal tip 620 of the first row, and the coil 610 is located at the upper side of the metal tip 620 of the second row.
  • the volume of the coil 610 (solenoid) portion is relatively large when configuring the magnetic chuck 600 . That is, since the volume of the coil 610 is large, the position of one coil 610 may cross so as not to overlap the position of the adjacent coil 610 to configure the magnetic chuck 600 .
  • the magnetic chuck 600 may include a plurality of metal tips 620 and coils 610 provided at regular intervals.
  • a plurality of metal tips 620 and coils 610 provided at such regular intervals can be simultaneously transported in X, Y and Z directions.
  • a tray 500 for supplying the light emitting device 400 in the fluid may be provided. As shown, the plurality of light emitting devices 400 are positioned in the tray 500 through the vertical transfer unit 510 in the vertical direction, that is, it may be transported in the Z direction.
  • the light emitting devices 400 can be supplied closer to the substrate 300 through the tray 500 , and thereby, the light emitting devices 400 can be more accurately positioned at the (sub)pixel position.
  • the tray 500 may be raised to bring the light emitting device 400 for assembly closer to the substrate 300 .
  • the magnetic chuck 600 is rotated while supplying a magnetic force and periodically rotated within a radius larger than the pixel size on the pixel position, the light emitting device 400 may be attached to the pixel position by magnetic force.
  • an electric field may be generated by applying a current to the pair of assembly electrodes 320 to fix the light emitting device 400 .
  • the light emitting device 400 may be assembled at the pixel position with the upper electrode 420 positioned at the lower side. That is, the body 410 may be assembled at the pixel position. Although not shown, a lower electrode may be positioned below the body 410 . That is, the light emitting device 400 may be a vertical type light emitting device.
  • a horizontal light emitting device may be used for assembly, and of course, such a horizontal light emitting device may be flip-chip bonded or assembled in place.
  • FIG. 14 is a schematic diagram illustrating another example of a process of manufacturing a display device using an apparatus for manufacturing a display device using a light emitting device according to an embodiment of the present invention.
  • individual light emitting devices 400 are assembled at pixel positions of an assembly substrate 300 in which individual pixel positions are defined by a pair of assembly electrodes 320 and barrier ribs 340 . can be
  • a plurality of light emitting devices 400 are supplied to the substrate 300 supported by the plate 350 , and these light emitting devices 400 are disposed on one side (first part) of the substrate 300 by the magnetic chuck 600 . can be assembled at individual pixel locations located on the side).
  • the magnetic chuck 600 may be moved in the X and Y directions so that the light emitting device 400 can be mounted at individual pixel positions.
  • the light emitting device 400 that is not mounted at the pixel position may be recovered.
  • a magnetic material 430 (refer to FIG. 16 ) is disposed on the semiconductor light emitting device 400 to move the semiconductor light emitting device 400 using the magnetic force of the magnetic chuck 600 .
  • the light emitting device 400 may be seated at a preset position using an electric field.
  • the remaining light emitting device 400 chips may be collected using a magnetic field by applying a larger current.
  • the metal tip 620 is moved in one direction (for example, the X direction) while applying a certain magnetic force. can be recovered
  • the tray 500 may be used.
  • the remaining light emitting devices 400 may be recovered to the outside of the manufacturing equipment.
  • the tray 500 may not be used.
  • 15 is a schematic diagram illustrating a movement of a metal tip during a manufacturing process of a display device using a light emitting device according to an embodiment of the present invention.
  • a periodic force may be applied so that the light emitting device 400 may be accurately seated at a pixel position.
  • the metal tip 620 of the magnetic chuck 600 may be periodically rotated with an eccentricity within a certain range. That is, the metal tip 620 does not rotate around the center of the metal tip 620 itself, but is eccentric and can rotate with a certain frequency so as to scan an area larger than the area of the metal tip 620 .
  • the scanable area may be changed according to the size of the pixel. That is, if the size of a pixel is large, it can be rotated to scan the area occupied by this pixel with a larger eccentric radius.
  • the probability that the light emitting device 400 positioned within this predetermined range can be assembled at an accurate position may be increased by being guided by the pixel position.
  • the inner arrow of FIG. 15 schematically indicates the trajectory of the metal tip 620 rotation, and the outer arrow indicates that the scan area of the metal tip 620 can be changed.
  • the manufacturing apparatus of the present invention it is possible to adjust the magnetization intensity of the magnetic chuck 600 during the manufacturing process of the display device.
  • the magnetization strength (strength of magnetic force) can be adjusted for each process step, it may be useful to increase the successful assembly rate.
  • the resistance varies according to the position of the substrate 300, and the magnetization distance between the metal tip 620 and the light emitting device 400 chip may vary due to irregularities, curves, etc., depending on the size of the substrate 300. . Therefore, it is possible to optimally design the magnetization intensity according to the portion of the substrate 300 and the movement path of the light emitting device 400 chip.
  • a step such as unevenness/bending or a phenomenon in which the thickness varies by region may occur.
  • the assembly rate is reduced by adjusting the magnetic field of the magnetic chuck 600 that can be improved
  • 16 is a diagram illustrating an example of a light emitting device of a display device using a light emitting device according to an embodiment of the present invention.
  • the magnetic material 430 is included.
  • the light emitting device 400 has an n-electrode 440 positioned on the lower side, and a p-type gallium nitride (GaN)-based semiconductor layer on an n-type gallium nitride (GaN)-based semiconductor layer (N-GaN; 410). P-GaN; 450) is located. At this time, although not shown, an active layer may be positioned between the n-type gallium nitride (GaN)-based semiconductor layer 410 and the p-type gallium nitride (GaN)-based semiconductor layer 450 .
  • the p-electrode 420 is positioned on the p-type gallium nitride (GaN)-based semiconductor layer 450
  • the magnetic material 430 is positioned on both upper sides of the n-type gallium nitride (GaN)-based semiconductor layer 410 . can do.
  • the degree of magnetization may vary according to the volume and design of the magnetic material Ni of the light emitting device 400 .
  • the assembly rate may be reduced.
  • the assembly rate may be improved by adjusting the magnetic field of the magnetic chuck 600 .
  • 17 is a flowchart illustrating a method of manufacturing a display device using a light emitting device according to an embodiment of the present invention.
  • the substrate 300 may be loaded at an appropriate position (S10). That is, the substrate 300 in which individual pixel positions are defined by the pair of assembly electrodes 320 may be disposed.
  • the manufacturing of the display device according to the embodiment of the present invention may be performed in a fluid phase.
  • a substrate 300 comprising individual pixel locations may be supplied by a plate 350 supporting the substrate 300 .
  • the light emitting device may be supplied using the tray 500 that can be moved up and down.
  • the light emitting device 400 (chip) including the magnetic material 430 may be moved on the substrate 300 using the magnetic chuck 600 having the electromagnet 610 ( S20 ).
  • a first current may be applied to the coil 610 (electromagnet) of the magnetic chuck 600 .
  • the light emitting device 400 may be assembled by applying a second current smaller than the first current to the coil 610 ( S30 ).
  • the light emitting device 400 may not be assembled but chips drawn toward the magnetic chuck 600 may occur. Accordingly, in the assembling of the light emitting device 400 ( S30 ), a second current having a smaller magnitude than the first current may be applied.
  • the assembling of the light emitting device 400 may be performed by rotating the magnetic chuck 600 within a predetermined radius. That is, in the step of assembling the light emitting device 400 , the magnetic chuck 600 may be rotated at a predetermined frequency.
  • a step ( S40 ) of recovering the remaining non-assembled light emitting device 400 may be performed.
  • a third current may be applied to the coil 610 of the magnetic chuck 600 .
  • the third current may have a magnitude between the first current and the second current.
  • a current may selectively flow through the magnetic chuck 600 .
  • a high voltage/current/frequency may be applied to facilitate movement of the light emitting device 400 .
  • a lower voltage/current/frequency may be applied to the coil 610 (electromagnet) of the magnetic chuck 600 than when the light emitting device 400 is moved. This may be to increase the probability of assembling the substrate of the light emitting device 400 .
  • a voltage/current/frequency having a size between the movement of the substrate and the time of assembly may be applied.
  • the magnetization intensity (strength of magnetic force) can be adjusted for each process step, it may be useful to increase the successful assembly rate.
  • the present invention may provide a light emitting device, a manufacturing device, and a manufacturing method using a semiconductor light emitting device having a micrometer ( ⁇ m) unit size.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Led Device Packages (AREA)
  • Electroluminescent Light Sources (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

본 발명은 디스플레이 장치 관련 기술 분야에 적용 가능하며, 예를 들어 마이크로 LED(Light Emitting Diode)를 이용한 디스플레이의 제조 장치 및 그 제조 방법에 관한 것이다. 이러한 본 발명은, 발광 소자를 이용한 디스플레이 장치의 제조 방법에 있어서, 한 쌍의 조립 전극에 의하여 개별 픽셀 위치가 정의되는 기판을 배치하는 단계; 전자석을 구비한 자성척을 이용하여 상기 기판 상에서 자성체를 포함하는 발광 소자를 이동시키는 단계; 상기 자성척을 이용하여 상기 개별 픽셀 위치에 상기 발광 소자를 조립하는 단계; 및 상기 자성척을 이용하여 상기 개별 픽셀 위치에 조립되지 않는 잔여 발광 소자를 회수하는 단계를 포함할 수 있다.

Description

발광 소자를 이용한 디스플레이의 제조 장치 및 그 제조 방법
본 발명은 디스플레이 장치 관련 기술 분야에 적용 가능하며, 예를 들어 마이크로 LED(Light Emitting Diode)를 이용한 디스플레이의 제조 장치 및 그 제조 방법에 관한 것이다.
최근에는 디스플레이 기술 분야에서 박형, 플렉서블 등의 우수한 특성을 가지는 디스플레이 장치가 개발되고 있다. 이에 반해, 현재 상용화된 주요 디스플레이는 LCD(Liquid Crystal Display)와 OLED(Organic Light Emitting Diodes)로 대표되고 있다.
그러나, LCD의 경우에 빠르지 않은 반응 시간과, 플렉서블의 구현이 어렵다는 문제점이 있고, OLED의 경우에 수명이 짧고, 양산 수율이 좋지 않다는 문제점이 있다.
한편, 발광 다이오드(Light Emitting Diode: LED)는 전류를 빛으로 변환시키는 것으로 잘 알려진 반도체 발광 소자로서, 1962년 GaAsP 화합물 반도체를 이용한 적색 LED가 상품화된 것을 시작으로 GaP:N 계열의 녹색 LED와 함께 정보 통신기기를 비롯한 전자장치의 표시 화상용 광원으로 이용되어 왔다. 따라서, 반도체 발광 소자를 이용하여 디스플레이를 구현하여, 전술한 문제점을 해결하는 방안이 제시될 수 있다. 상기 반도체 발광 소자는 필라멘트 기반의 발광 소자에 비해 긴 수명, 낮은 전력 소모, 우수한 초기 구동 특성, 및 높은 진동 저항 등의 다양한 장점을 가진다.
이러한 반도체 발광 소자의 크기는 최근에 수십 마이크로미터까지 축소되고 있다. 따라서 이러한 작은 크기의 반도체 발광소자들을 이용하여 디스플레이 장치를 구현하는 경우, 매우 많은 수의 반도체 발광 소자들을 디스플레이 장치의 배선기판에 조립하여야 한다.
하지만, 이러한 발광 소자의 조립과정에서, 배선기판의 원하는 위치에 수많은 반도체 발광 소자를 정밀하게 위치시키는 것은 매우 어렵다는 문제점이 있다.
따라서, 이러한 문제점을 극복하기 위한 방안이 요구된다.
본 발명의 해결하고자 하는 기술적 과제는 발광 소자를 이용한 디스플레이 장치에 있어서 조립률을 향상시킬 수 있는 발광 소자를 이용한 디스플레이 장치의 제조 장치 및 그 제조 방법을 제공하고자 한다.
또한, 전자석을 이용한 자성척을 이용하여 공정 단계에 따라 자기력을 조절함으로써 기판 부위별, 발광 소자 칩의 이동 경로에 따라 자화 세기를 최적 설계하여 조립률을 향상시킬 수 있는 발광 소자를 이용한 디스플레이 장치의 제조 장치 및 그 제조 방법을 제공하고자 한다.
상기 목적을 달성하기 위한 제1관점으로서, 본 발명은, 발광 소자를 이용한 디스플레이 장치의 제조 방법에 있어서, 한 쌍의 조립 전극에 의하여 개별 픽셀 위치가 정의되는 기판을 배치하는 단계; 전자석을 구비한 자성척을 이용하여 상기 기판 상에서 자성체를 포함하는 발광 소자를 이동시키는 단계; 상기 자성척을 이용하여 상기 개별 픽셀 위치에 상기 발광 소자를 조립하는 단계; 및 상기 자성척을 이용하여 상기 개별 픽셀 위치에 조립되지 않는 잔여 발광 소자를 회수하는 단계를 포함할 수 있다.
또한, 상기 발광 소자를 이동시키는 단계는, 상기 자성척의 전자석에 제1 전류를 인가하고, 상기 발광 소자를 조립하는 단계는, 상기 자성척의 전자석에 상기 제1 전류와 다른 제2 전류를 인가할 수 있다.
또한, 상기 제1 전류는 상기 제2 전류보다 클 수 있다.
또한, 상기 잔여 발광 소자를 회수하는 단계는, 상기 자성척의 전자석에 제3 전류를 인가할 수 있다.
또한, 상기 제3 전류는 상기 제1 전류와 상기 제2 전류의 사이의 크기를 가질 수 있다.
또한, 상기 기판을 배치하는 단계 이후에, 상하 이송 가능한 트레이를 이용하여 발광 소자를 공급하는 단계를 더 포함할 수 있다.
또한, 상기 발광 소자를 조립하는 단계는, 상기 자성척을 일정 반경 내에서 회전시킴으로 수행할 수 있다.
또한, 상기 발광 소자를 조립하는 단계는, 상기 자성척을 일정 주파수로 회전시킬 수 있다.
상기 목적을 달성하기 위한 제2관점으로서, 본 발명은, 발광 소자를 이용한 디스플레이 장치의 제조 장치에 있어서, 개별 픽셀 위치를 포함하는 기판을 지지하는 플레이트; 상기 기판의 제1 측에서 자성체를 포함하는 다수의 발광 소자를 공급하는 공급부; 및 X, Y 및 Z의 세 방향으로 이송 가능하고, 상기 기판의 제2 측에서 전자석을 이용하여 상기 발광 소자를 기판의 개별 픽셀 위치에 조립하는 자성척을 포함하여 구성될 수 있다.
또한, 상기 자성척은, 원통형 막대 형태의 금속팁; 상기 금속팁에 결합된 코일; 상기 금속팁을 회전시키는 회전기구; 및 상기 코일에 전원을 공급하는 전원부를 포함할 수 있다.
또한, 상기 회전기구는, 상기 금속팁을 일정 반경 내에서 회전시킬 수 있다.
또한, 상기 자성척은 일정 간격으로 구비된 다수의 금속팁 및 코일을 포함할 수 있다.
또한, 상기 자성척은 다수의 금속팁이 구비된 헤드를 포함할 수 있다.
또한, 상기 기판에 대하여 상하 방향으로 이송 가능하며 상기 발광 소자를 공급하는 트레이를 더 포함할 수 있다.
또한, 상기 발광 소자를 기판의 개별 픽셀 위치에 조립하는 과정에 따라, 상기 자성척에는 서로 다른 크기의 전류를 인가할 수 있다.
본 발명의 일실시예에 따르면, 다음과 같은 효과가 있다.
먼저, 본 발명의 디스플레이 장치의 제작 장치에 의하면, 디스플레이 장치의 제작 공정 중 자성척의 자화 세기를 조절 가능하다.
이와 같이, 공정 단계별 자화 세기(자기력의 세기)를 조절할 수 있으면 성공적인 조립률을 높이는데 유용할 수 있다.
한편, 조립 부위별로, 기판의 위치에 따라 저항이 다르고, 기판의 크기에 따라 요철, 굴곡 등으로 금속팁과 발광 소자 칩 사이 자화 거리가 달라질 수 있으므로, 기판 부위별, 발광 소자 칩의 이동 경로에 따라 자화 세기를 최적 설계할 수 있다.
또한, 본 발명의 실시예에 의하면 다양한 형태의 기판에 대한 조립이 가능하다. 즉, 대면적 기판의 표면 요철이나 굴곡에서도 자기장의 세기를 조절하여 조립률을 유지할 수 있다.
나아가, 본 발명의 또 다른 일실시예에 따르면, 여기에서 언급하지 않은 추가적인 기술적 효과들도 있다. 당업자는 명세서 및 도면의 전취지를 통해 이해할 수 있다.
도 1은 본 발명의 반도체 발광 소자를 이용한 디스플레이 장치의 일례를 나타내는 개념도이다.
도 2는 도 1의 A부분의 부분 확대도이다.
도 3a 및 도 3b는 도 2의 라인 B-B 및 C-C를 따라 절단된 단면도들이다.
도 4는 도 3의 플립 칩 타입 반도체 발광 소자를 나타내는 개념도이다.
도 5a 내지 도 5c는 플립 칩 타입 반도체 발광 소자와 관련하여 컬러를 구현하는 여러 가지 형태를 나타내는 개념도들이다.
도 6은 본 발명의 반도체 발광 소자를 이용한 디스플레이 장치의 제조방법을 나타낸 단면도들이다.
도 7은 본 발명의 반도체 발광 소자를 이용한 디스플레이 장치의 다른 예를 나타내는 사시도이다.
도 8은 도 7의 라인 D-D를 따라 절단된 단면도이다.
도 9는 도 8의 수직형 반도체 발광 소자를 나타내는 개념도이다.
도 10은 본 발명의 일 실시예에 의한 발광 소자를 이용한 디스플레이 장치의 제조 장치를 이용하여 디스플레이 장치를 제조하는 과정을 나타내는 개략도이다.
도 11은 본 발명의 일 실시예에 의한 발광 소자를 이용한 디스플레이 장치의 제조 장치에 적용되는 자성척의 일례를 나타내는 개념도이다.
도 12는 본 발명의 일 실시예에 의한 발광 소자를 이용한 디스플레이 장치의 제조 장치에 적용되는 자성척의 일례를 나타내는 개략도이다.
도 13은 본 발명의 일 실시예에 의한 발광 소자를 이용한 디스플레이 장치의 제조 장치에 적용되는 자성척의 다른 예를 나타내는 개략도이다.
도 14는 본 발명의 일 실시예에 의한 발광 소자를 이용한 디스플레이 장치의 제조 장치를 이용하여 디스플레이 장치를 제조하는 과정의 다른 예를 나타내는 개략도이다.
도 15는 본 발명의 일 실시예에 의한 발광 소자를 이용한 디스플레이 장치의 제조 과정 중 금속팁의 운동을 표현하는 개략도이다.
도 16은 본 발명의 일 실시예에 의한 발광 소자를 이용한 디스플레이 장치의 발광 소자의 일례를 나타내는 도이다.
도 17은 본 발명의 일 실시예에 의한 발광 소자를 이용한 디스플레이 장치의 제조 방법을 나타내는 순서도이다.
이하, 첨부된 도면을 참조하여 본 명세서에 개시된 실시 예를 상세히 설명하되, 도면 부호에 관계없이 동일하거나 유사한 구성요소는 동일한 참조 번호를 부여하고 이에 대한 중복되는 설명은 생략하기로 한다. 이하의 설명에서 사용되는 구성요소에 대한 접미사 "모듈" 및 "부"는 명세서 작성의 용이함만이 고려되어 부여되거나 이하, 첨부된 도면을 참조하여 본 명세서에 개시된 실시 예를 상세히 설명하되, 도면 부호에 관계없이 동일하거나 유사한 구성요소는 동일한 참조 번호를 부여하고 이에 대한 중복되는 설명은 생략하기로 한다. 이하의 설명에서 사용되는 구성요소에 대한 접미사 "모듈" 및 "부"는 명세서 작성의 용이함만이 고려되어 부여되거나 혼용되는 것으로서, 그 자체로 서로 구별되는 의미 또는 역할을 갖는 것은 아니다. 또한, 본 명세서에 개시된 실시예를 설명함에 있어서 관련된 공지기술에 대한 구체적인 설명이 본 명세서에 개시된 실시 예의 요지를 흐릴 수 있다고 판단되는 경우 그 상세한 설명을 생략한다. 또한, 첨부된 도면은 본 명세서에 개시된 실시 예를 쉽게 이해할 수 있도록 하기 위한 것일 뿐, 첨부된 도면에 의해 본 명세서에 개시된 기술적 사상이 제한되는 것으로 해석되어서는 아니 됨을 유의해야 한다.
나아가, 설명의 편의를 위해 각각의 도면에 대해 설명하고 있으나, 당업자가 적어도 2개 이상의 도면을 결합하여 다른 실시예를 구현하는 것도 본 발명의 권리범위에 속한다.
또한, 층, 영역 또는 기판과 같은 요소가 다른 구성요소 "상(on)"에 존재하는 것으로 언급될 때, 이것은 직접적으로 다른 요소 상에 존재하거나 또는 그 사이에 중간 요소가 존재할 수도 있다는 것을 이해할 수 있을 것이다.
본 명세서에서 설명되는 디스플레이 장치는 단위 화소 또는 단위 화소의 집합으로 정보를 표시하는 모든 디스플레이 장치를 포함하는 개념이다. 따라서 완성품에 한정하지 않고 부품에도 적용될 수 있다. 예를 들어 디지털 TV의 일 부품에 해당하는 패널도 독자적으로 본 명세서 상의 디스플레이 장치에 해당한다. 완성품으로는 휴대폰, 스마트 폰(smart phone), 노트북 컴퓨터(laptop computer), 디지털방송용 단말기, PDA(personal digital assistants), PMP(portable multimedia player), 네비게이션, 슬레이트 피씨(Slate PC), Tablet PC, Ultra Book, 디지털 TV, 데스크 탑 컴퓨터 등이 포함될 수 있다.
그러나, 본 명세서에 기재된 실시예에 따른 구성은 추후 개발되는 새로운 제품 형태이라도, 디스플레이가 가능한 장치에는 적용될 수도 있음을 본 기술 분야의 당업자라면 쉽게 알 수 있을 것이다.
또한, 당해 명세서에서 언급된 반도체 발광 소자는 LED, 마이크로 LED 등을 포함하는 개념이며, 혼용되어 사용될 수 있다.
도 1은 본 발명의 반도체 발광 소자를 이용한 디스플레이 장치의 일실시예를 나타내는 개념도이다.
도 1에 도시된 바와 같이, 디스플레이 장치(100)의 제어부(미도시)에서 처리되는 정보는 플렉서블 디스플레이(flexible display)를 이용하여 표시될 수 있다.
플렉서블 디스플레이는, 예를 들어, 외력에 의하여 휘어질 수 있는, 또는 구부러질 수 있는, 또는 비틀어질 수 있는, 또는 접힐 수 있는, 또는 말려질 수 있는 디스플레이를 포함한다.
나아가, 플렉서블 디스플레이는, 예를 들어 기존의 평판 디스플레이의 디스플레이 특성을 유지하면서, 종이와 같이 휘어지거나, 또는 구부리거나, 또는 접을 수 있거나 또는 말려질 수 있는 얇고 유연한 기판 위에 제작되는 디스플레이가 될 수 있다.
플렉서블 디스플레이가 휘어지지 않는 상태(예를 들어, 무한대의 곡률반경을 가지는 상태, 이하 제1상태라 한다)에서는 플렉서블 디스플레이의 디스플레이 영역이 평면이 된다. 이러한 제1상태에서 외력에 의하여 휘어진 상태(예를 들어, 유한의 곡률 반경을 가지는 상태, 이하, 제2상태라 한다)에서는 디스플레이 영역이 곡면이 될 수 있다. 도 1에 도시된 바와 같이, 제2상태에서 표시되는 정보는 곡면상에 출력되는 시각 정보가 될 수 있다. 이러한 시각 정보는 매트릭스 형태로 배치되는 단위 화소(sub-pixel)의 발광이 독자적으로 제어됨에 의하여 구현된다. 여기서 단위 화소는, 예를 들어 하나의 색을 구현하기 위한 최소 단위를 의미한다.
이러한 플렉서블 디스플레이의 단위 화소는 반도체 발광 소자에 의하여 구현될 수 있다. 본 발명에서는 전류를 빛으로 변환시키는 반도체 발광 소자의 일 종류로서 발광 소자를 예시한다. 발광 소자의 일례는 발광 다이오드(Light Emitting Diode: LED)를 들 수 있다. 이러한 발광 다이오드는 작은 크기로 형성되며, 이를 통하여 상기 제2상태에서도 단위 화소의 역할을 할 수 있게 된다.
이와 같은 발광 다이오드를 이용하여 구현된 플렉서블 디스플레이에 대하여, 이하 도면들을 참조하여 상세히 설명한다.
도 2는 도 1의 A부분의 부분 확대도이다.
도 3a 및 도 3b는 도 2의 라인 B-B 및 C-C를 따라 절단된 단면도들이다.
도 2, 도 3a 및 도 3b에 도시된 바와 같이, 반도체 발광 소자를 이용한 디스플레이 장치(100)로서 패시브 매트릭스(Passive Matrix, PM) 방식의 반도체 발광 소자를 이용한 디스플레이 장치(100)를 예시한다. 다만, 이하 설명되는 예시는 액티브 매트릭스(Active Matrix, AM) 방식의 반도체 발광 소자에도 적용 가능하다.
도 2에 도시된 바와 같이, 디스플레이 장치(100)는 기판(110), 제1전극(120), 전도성 접착층(130), 제2전극(140) 및 적어도 하나의 반도체 발광 소자(150)를 포함한다.
기판(110)은 플렉서블 기판일 수 있다. 예를 들어, 플렉서블(flexible) 디스플레이 장치를 구현하기 위하여 기판(110)은 유리나 폴리이미드(PI, Polyimide)를 포함할 수 있다. 이외에도 절연성이 있고, 유연성 있는 재질이면, 예를 들어 PEN(Polyethylene Naphthalate), PET(Polyethylene Terephthalate) 등 어느 것이라도 사용될 수 있다. 또한, 기판(110)은 투명한 재질 또는 불투명한 재질 어느 것이나 될 수 있다.
기판(110)은 제1전극(120)이 배치되는 배선기판이 될 수 있으며, 따라서 제1전극(120)은 기판(110) 상에 위치할 수 있다.
도 3a에 도시된 바와 같이 절연층(160)은 제1전극(120)이 위치한 기판(110) 상에 배치될 수 있으며, 이 절연층(160)에는 보조전극(170)이 위치할 수 있다. 이 경우에, 기판(110)에 절연층(160)이 적층된 상태가 하나의 배선기판이 될 수 있다. 보다 구체적으로, 절연층(160)은 폴리이미드(PI, Polyimide), PET, PEN 등과 같이 절연성이 있고, 유연성 있는 재질로, 기판(110)과 일체로 이루어져 하나의 기판을 형성할 수 있다.
보조전극(170)은 제1전극(120)과 반도체 발광 소자(150)를 전기적으로 연결하는 전극으로서, 절연층(160) 상에 위치하고, 제1전극(120)의 위치에 대응하여 배치된다. 예를 들어, 보조전극(170)은 닷(dot) 형태이며, 절연층(160)을 관통하는 전극홀(171)에 의하여 제1전극(120)과 전기적으로 연결될 수 있다. 전극홀(171)은 비아홀에 도전물질이 채워짐에 의하여 형성될 수 있다.
도 2 또는 도 3a에 도시된 바와 같이, 절연층(160)의 일면에는 전도성 접착층(130)이 형성되나, 본 발명은 반드시 이에 한정되는 것은 아니다. 예를 들어, 절연층(160)과 전도성 접착층(130)의 사이에 특정 기능을 수행하는 레이어가 형성되거나, 절연층(160)이 없이 전도성 접착층(130)이 기판(110)상에 배치되는 구조도 가능하다. 전도성 접착층(130)이 기판(110)상에 배치되는 구조에서는 전도성 접착층(130)이 절연층의 역할을 할 수 있다.
전도성 접착층(130)은 접착성과 전도성을 가지는 층이 될 수 있으며, 이를 위하여 전도성 접착층(130)에서는 전도성을 가지는 물질과 접착성을 가지는 물질이 혼합될 수 있다. 또한, 전도성 접착층(130)은 연성을 가지며, 이를 통하여 디스플레이 장치에서 플렉서블 기능을 가능하게 한다.
이러한 예로서, 전도성 접착층(130)은 이방성 전도성 필름(anistropy conductive film, ACF), 이방성 전도 페이스트(paste), 전도성 입자를 함유한 솔루션(solution) 등이 될 수 있다. 전도성 접착층(130)은 두께를 관통하는 Z 방향으로는 전기적 상호 연결을 허용하나, 수평적인 X-Y 방향으로는 전기 절연성을 가지는 레이어로서 구성될 수 있다. 따라서 전도성 접착층(130)은 Z축 전도층으로 명명될 수 있다(다만, 이하 '전도성 접착층'이라 한다).
이방성 전도성 필름은 이방성 전도 매질(anisotropic conductive medium)이 절연성 베이스 부재에 혼합된 형태의 필름으로서, 열 및/또는 압력이 가해지면 특정 부분만 이방성 전도 매질에 의하여 전도성을 가지게 된다. 이하, 이방성 전도성 필름에는 열 및/또는 압력이 가해지는 것으로 설명하나, 이방성 전도성 필름이 부분적으로 전도성을 가지기 위하여 다른 방법이 적용될 수도 있다. 전술한 다른 방법은, 예를 들어, 열 및 압력 중 어느 하나만이 가해지거나 UV 경화 등이 될 수 있다.
또한, 이방성 전도 매질은 예를 들어, 도전볼이나 전도성 입자가 될 수 있다. 예를 들어, 이방성 전도성 필름은 도전볼이 절연성 베이스 부재에 혼합된 형태의 필름으로서, 열 및/또는 압력이 가해지면 특정 부분만 도전볼에 의하여 전도성을 가지게 된다. 이방성 전도성 필름은 전도성 물질의 코어가 폴리머 재질의 절연막에 의하여 피복된 복수의 입자가 함유된 상태가 될 수 있으며, 이 경우에 열 및 압력이 가해진 부분이 절연막이 파괴되면서 코어에 의하여 도전성을 가지게 된다. 이때, 코어의 형태는 변형되어 필름의 두께방향으로 서로 접촉하는 층을 이룰 수 있다. 보다 구체적인 예로서, 열 및 압력은 이방성 전도성 필름에 전체적으로 가해지며, 이방성 전도성 필름에 의하여 접착되는 상대물의 높이 차에 의하여 Z축 방향의 전기적 연결이 부분적으로 형성된다.
다른 예로서, 이방성 전도성 필름은 절연 코어에 전도성 물질이 피복된 복수의 입자가 함유된 상태가 될 수 있다. 이 경우에는 열 및 압력이 가해진 부분이 전도성 물질이 변형되어(눌러 붙어서) 필름의 두께방향으로 전도성을 가지게 된다. 또 다른 예로서, 전도성 물질이 Z축 방향으로 절연성 베이스 부재를 관통하여 필름의 두께방향으로 전도성을 가지는 형태도 가능하다. 이 경우에, 전도성 물질은 뽀족한 단부를 가질 수 있다.
이방성 전도성 필름은 도전볼이 절연성 베이스 부재의 일면에 삽입된 형태로 구성되는 고정배열 이방성 전도성 필름(fixed array ACF)이 될 수 있다. 보다 구체적으로, 절연성 베이스 부재는 접착성을 가지는 물질로 형성되며, 도전볼은 절연성 베이스 부재의 바닥 부분에 집중적으로 배치되며, 베이스 부재에서 열 또는 압력이 가해지면 도전볼과 함께 변형됨에 따라 수직 방향으로 전도성을 가지게 된다.
다만, 본 발명은 반드시 이에 한정되는 것은 아니며, 이방성 전도성 필름은 절연성 베이스 부재에 도전볼이 랜덤하게 혼입된 형태나, 복수의 층으로 구성되며 어느 한 층에 도전볼이 배치되는 형태(double-ACF) 등이 모두 가능하다.
이방성 전도 페이스트는 페이스트와 도전볼의 결합 형태로서, 절연성 및 접착성의 베이스 물질에 도전볼이 혼합된 페이스트가 될 수 있다. 또한, 전도성 입자를 함유한 솔루션은 전도성 파티클 혹은 나노 입자를 함유한 형태의 솔루션이 될 수 있다.
다시 도 3a를 참조하면, 제2전극(140)은 보조전극(170)과 이격되어 절연층(160)에 위치한다. 즉, 전도성 접착층(130)은 보조전극(170) 및 제2전극(140)이 위치하는 절연층(160) 상에 배치된다.
절연층(160)에 보조전극(170)과 제2전극(140)이 위치된 상태에서 전도성 접착층(130)을 형성한 후에, 반도체 발광 소자(150)를 열 및 압력을 가하여 플립 칩 형태로 접속시키면, 반도체 발광 소자(150)는 제1전극(120) 및 제2전극(140)과 전기적으로 연결된다.
도 4는 도 3의 플립 칩 타입 반도체 발광 소자를 나타내는 개념도이다.
도 4를 참조하면, 반도체 발광 소자는 플립 칩 타입(flip chiptype)의 발광 소자가 될 수 있다.
예를 들어, 반도체 발광 소자는 p형 전극(156), p형 전극(156)이 형성되는 p형 반도체층(155), p형 반도체층(155) 상에 형성된 활성층(154), 활성층(154) 상에 형성된 n형 반도체층(153) 및 n형 반도체층(153) 상에서 p형 전극(156)과 수평방향으로 이격 배치되는 n형 전극(152)을 포함한다. 이 경우, p형 전극(156)은 도 3a 및 도 3b에 도시된, 보조전극(170)과 전도성 접착층(130)에 의하여 전기적으로 연결될 수 있고, n형 전극(152)은 제2전극(140)과 전기적으로 연결될 수 있다.
다시 도 2, 도 3a 및 도 3b를 참조하면, 보조전극(170)은 일방향으로 길게 형성되어, 하나의 보조전극이 복수의 반도체 발광 소자(150)에 전기적으로 연결될 수 있다. 예를 들어, 보조전극을 중심으로 좌우의 반도체 발광 소자들의 p 형 전극들이 하나의 보조전극에 전기적으로 연결될 수 있다.
보다 구체적으로, 열 및 압력에 의하여 전도성 접착층(130)의 내부로 반도체 발광 소자(150)가 압입되며 이를 통하여 반도체 발광 소자(150)의 p형 전극(156)과 보조전극(170) 사이의 부분과, 반도체 발광 소자(150)의 n형 전극(152)과 제2전극(140) 사이의 부분에서만 전도성을 가지게 되고, 나머지 부분에서는 반도체 발광 소자의 압입이 없어 전도성을 가지지 않게 된다. 이와 같이, 전도성 접착층(130)은 반도체 발광 소자(150)와 보조전극(170) 사이 및 반도체 발광 소자(150)와 제2전극(140) 사이를 상호 결합시켜줄 뿐만 아니라 전기적 연결까지 형성시킨다.
또한, 복수의 반도체 발광 소자(150)는 발광 소자 어레이(array)를 구성하며, 발광 소자 어레이에는 형광체층(180)이 형성된다.
발광 소자 어레이는 자체 휘도 값이 상이한 복수의 반도체 발광 소자들을 포함할 수 있다. 각각의 반도체 발광 소자(150)는 단위 화소를 구성하며, 제1전극(120)에 전기적으로 연결된다. 예를 들어, 제1전극(120)은 복수 개일 수 있고, 반도체 발광 소자들은 예컨대 수 열로 배치되며, 각 열의 반도체 발광 소자들은 복수 개의 제1전극 중 어느 하나에 전기적으로 연결될 수 있다.
또한, 반도체 발광 소자들이 플립 칩 형태로 접속되므로, 투명 유전체 기판에 성장시킨 반도체 발광 소자들을 이용할 수 있다. 또한, 반도체 발광 소자들은 예컨대 질화물 반도체 발광 소자일 수 있다. 반도체 발광 소자(150)는 휘도가 우수하므로, 작은 크기로도 개별 단위 화소를 구성할 수 있다.
도 3a 및 도 3b에 도시된 바와 같이, 반도체 발광 소자(150)의 사이에 격벽(190)이 위치할 수 있다. 이 경우, 격벽(190)은 개별 단위 화소를 서로 분리하는 역할을 할 수 있으며, 전도성 접착층(130)과 일체로 형성될 수 있다. 예를 들어, 이방성 전도성 필름에 반도체 발광 소자(150)가 삽입됨에 의하여 이방성 전도성 필름의 베이스 부재가 격벽을 형성할 수 있다.
또한, 이방성 전도성 필름의 베이스 부재가 블랙이면, 별도의 블랙 절연체가 없어도 격벽(190)이 반사 특성을 가지는 동시에 대비비(contrast)가 증가될 수 있다.
다른 예로서, 격벽(190)으로 반사성 격벽이 별도로 구비될 수 있다. 이 경우에, 격벽(190)은 디스플레이 장치의 목적에 따라 블랙(Black) 또는 화이트(White) 절연체를 포함할 수 있다. 화이트 절연체의 격벽을 이용할 경우 반사성을 높이는 효과가 있을 수 있고, 블랙 절연체의 격벽을 이용할 경우, 반사 특성을 가지는 동시에 대비비(contrast)를 증가시킬 수 있다.
형광체층(180)은 반도체 발광 소자(150)의 외면에 위치할 수 있다. 예를 들어, 반도체 발광 소자(150)는 청색(B) 광을 발광하는 청색 반도체 발광 소자이고, 형광체층(180)은 상기 청색(B) 광을 단위 화소의 색상으로 변환시키는 기능을 수행한다. 형광체층(180)은 개별 화소를 구성하는 적색 형광체(181) 또는 녹색 형광체(182)가 될 수 있다.
즉, 적색의 단위 화소를 이루는 위치에서, 청색 반도체 발광 소자 상에는 청색 광을 적색(R) 광으로 변환시킬 수 있는 적색 형광체(181)가 적층될 수 있고, 녹색의 단위 화소를 이루는 위치에서는, 청색 반도체 발광 소자 상에 청색광을 녹색(G) 광으로 변환시킬 수 있는 녹색 형광체(182)가 적층될 수 있다. 또한, 청색의 단위 화소를 이루는 부분에는 청색 반도체 발광 소자만 단독으로 이용될 수 있다. 이 경우, 적색(R), 녹색(G), 및 청색(B)의 단위 화소들이 하나의 화소를 이룰 수 있다. 보다 구체적으로, 제1전극(120)의 각 라인을 따라 하나의 색상의 형광체가 적층될 수 있다. 따라서, 제1전극(120)에서 하나의 라인은 하나의 색상을 제어하는 전극이 될 수 있다. 즉, 제2전극(140)을 따라서, 적색(R), 녹색(G) 및 청색(B)이 차례로 배치될 수 있으며, 이를 통하여 단위 화소가 구현될 수 있다.
다만, 본 발명은 반드시 이에 한정되는 것은 아니며, 형광체 대신에 반도체 발광 소자(150)와 퀀텀닷(QD)이 조합되어 적색(R), 녹색(G) 및 청색(B)의 단위 화소들을 구현할 수 있다.
또한, 대비비(contrast) 향상을 위하여 각각의 형광체층들의 사이에는 블랙 매트릭스(191)가 배치될 수 있다. 즉, 이러한 블랙 매트릭스(191)는 명암의 대조를 향상시킬 수 있다.
다만, 본 발명은 반드시 이에 한정되는 것은 아니며, 청색, 적색, 녹색을 구현하기 위한 다른 구조가 적용될 수 있다.
도 5a 내지 도 5c는 플립 칩 타입 반도체 발광 소자와 관련하여 컬러를 구현하는 여러 가지 형태를 나타내는 개념도들이다.
도 5a를 참조하면, 각각의 반도체 발광 소자(150)는 질화 갈륨(GaN)을 주재료로 하여, 인듐(In) 및/또는 알루미늄(Al)이 함께 첨가되어 청색을 비롯한 다양한 빛을 발광하는 고출력의 발광 소자로 구현될 수 있다.
이 경우, 반도체 발광 소자(150)는 각각 단위 화소(sub-pixel)를 이루기 위하여 적색(R), 녹색(G) 및 청색(B) 반도체 발광 소자일 수 있다. 예컨대, 적색, 녹색 및 청색 반도체 발광 소자(R, G, B)가 교대로 배치되고, 적색, 녹색 및 청색 반도체 발광 소자에 의하여 적색(Red), 녹색(Green) 및 청색(Blue)의 단위 화소들이 하나의 화소(pixel)를 이루며, 이를 통하여 풀 칼라 디스플레이가 구현될 수 있다.
도 5b를 참조하면, 반도체 발광 소자(150a)는 황색 형광체층이 개별 소자 마다 구비된 백색 발광 소자(W)를 구비할 수 있다. 이 경우에는, 단위 화소를 이루기 위하여, 백색 발광 소자(W) 상에 적색 형광체층(181), 녹색 형광체층(182), 및 청색 형광체층(183)이 구비될 수 있다. 또한, 이러한 백색 발광 소자(W) 상에 적색, 녹색, 및 청색이 반복되는 컬러 필터를 이용하여 단위 화소를 이룰 수 있다.
도 5c를 참조하면, 반도체 발광 소자(150b)는 자외선 발광 소자(UV) 상에 적색 형광체층(184), 녹색 형광체층(185), 및 청색 형광체층(186)이 구비되는 구조도 가능하다. 이와 같이, 반도체 발광 소자는 가시광선뿐만 아니라 자외선(UV)까지 전 영역에 사용 가능하며, 자외선(UV)이 상부 형광체의 여기원(excitation source)으로 사용 가능한 반도체 발광 소자의 형태로 확장될 수 있다.
본 예시를 다시 살펴보면, 반도체 발광 소자는 전도성 접착층 상에 위치되어, 디스플레이 장치에서 단위 화소를 구성한다. 반도체 발광 소자는 휘도가 우수하므로, 작은 크기로도 개별 단위 화소를 구성할 수 있다.
이와 같은 개별 반도체 발광 소자(150, 150a, 150b)의 크기는 예를 들어, 한 변의 길이가 80㎛ 이하일 수 있고, 직사각형 또는 정사각형 소자일 수 있다. 직사각형인 경우에는 20×80㎛ 이하의 크기가 될 수 있다.
또한, 한 변의 길이가 10㎛인 정사각형의 반도체 발광 소자(150, 150a, 150b)를 단위 화소로 이용하여도 디스플레이 장치를 이루기 위한 충분한 밝기가 나타난다.
따라서, 단위 화소의 크기가 한 변이 600㎛, 나머지 한 변이 300㎛인 직사각형 화소인 경우를 예로 들면, 반도체 발광 소자(150, 150a, 150b)의 거리가 상대적으로 충분히 크게 된다.
따라서, 이러한 경우, HD화질 이상의 고화질을 가지는 플렉서블 디스플레이 장치를 구현할 수 있게 된다.
상기에서 설명된 반도체 발광 소자를 이용한 디스플레이 장치는 새로운 형태의 제조방법에 의하여 제조될 수 있다. 이하, 도 6을 참조하여 제조 방법에 대하여 설명한다.
도 6은 본 발명의 반도체 발광 소자를 이용한 디스플레이 장치의 제조 방법을 나타낸 단면도들이다.
도 6에 도시된 바와 같이, 먼저, 보조전극(170) 및 제2전극(140)이 위치된 절연층(160) 상에 전도성 접착층(130)을 형성한다. 제1기판(110)에 절연층(160)이 적층되어 하나의 기판(또는 배선기판)을 형성하며, 배선기판에는 제1전극(120), 보조전극(170) 및 제2전극(140)이 배치된다. 이 경우에, 제1전극(120)과 제2전극(140)은 상호 직교 방향으로 배치될 수 있다. 또한, 플렉서블(flexible) 디스플레이 장치를 구현하기 위하여 제1기판(110) 및 절연층(160)은 각각 유리 또는 폴리이미드(PI)를 포함할 수 있다.
전도성 접착층(130)은 예를 들어, 이방성 전도성 필름에 의하여 구현될 수 있으며, 이를 위하여 절연층(160)이 위치된 기판에 이방성 전도성 필름이 도포될 수 있다.
다음에, 보조전극(170) 및 제2전극(140)들의 위치에 대응하고, 개별 화소를 구성하는 복수의 반도체 발광 소자(150)가 위치된 제2기판(112)을, 반도체 발광 소자(150)가 보조전극(170) 및 제2전극(140)와 마주하도록 배치한다.
이 경우에, 제2기판(112)은 반도체 발광 소자(150)를 성장시키는 성장 기판으로서, 사파이어(spire) 기판 또는 실리콘(silicon) 기판이 될 수 있다.
반도체 발광 소자는 웨이퍼(wafer) 단위로 형성될 때, 디스플레이 장치를 이룰 수 있는 간격 및 크기를 가지도록 함으로써, 디스플레이 장치에 효과적으로 이용될 수 있다.
그 다음에, 배선기판과 제2기판(112)을 열 압착한다. 예를 들어, 배선기판과 제2기판(112)은 ACF 프레스 헤드를 적용하여 열 압착할 수 있다. 열 압착에 의하여 배선기판과 제2기판(112)은 본딩(bonding)된다. 열 압착에 의하여 전도성을 갖는 이방성 전도성 필름의 특성에 의해 반도체 발광 소자(150)와 보조전극(170) 및 제2전극(140)의 사이의 부분만 전도성을 가지게 되며, 이를 통하여 전극들과 반도체 발광 소자(150)는 전기적으로 연결될 수 있다. 이 때에, 반도체 발광 소자(150)가 이방성 전도성 필름의 내부로 삽입되며, 이를 통하여 반도체 발광 소자(150) 사이에 격벽이 형성될 수 있다.
그 다음에, 제2기판(112)을 제거한다. 예를 들어, 제2기판(112)은 레이저 리프트 오프법(Laser Lift-off, LLO) 또는 화학적 리프트 오프법(Chemical Lift-off, CLO)을 이용하여 제거할 수 있다.
마지막으로, 상기 제2기판(112)을 제거하여 반도체 발광 소자들(150)을 외부로 노출시킨다. 필요에 따라, 반도체 발광 소자(150)가 결합된 배선기판 상을 실리콘 옥사이드(SiOx) 등을 코팅하여 투명 절연층(미도시)을 형성할 수 있다.
또한, 반도체 발광 소자(150)의 일 면에 형광체층을 형성하는 단계를 더 포함할 수 있다. 예를 들어, 반도체 발광 소자(150)는 청색(B) 광을 발광하는 청색 반도체 발광 소자이고, 이러한 청색(B) 광을 단위 화소의 색상으로 변환시키기 위한 적색 형광체 또는 녹색 형광체가 청색 반도체 발광 소자의 일면에 레이어를 형성할 수 있다.
이상에서 설명된 반도체 발광 소자를 이용한 디스플레이 장치의 제조 방법이나 구조는 여러 가지 형태로 변형될 수 있다. 그 예로서, 상기에서 설명된 디스플레이 장치에는 수직형 반도체 발광 소자도 적용될 수 있다.
또한, 이하 설명되는 변형예 또는 실시예에서는 앞선 예와 동일 또는 유사한 구성에 대해서는 동일, 유사한 참조번호가 부여되고, 그 설명은 처음 설명으로 갈음된다.
도 7은 발명의 반도체 발광 소자를 이용한 디스플레이 장치의 다른 일 실시예를 나타내는 사시도이고, 도 8은 도 7의 라인 D-D를 따라 취한 단면도이며, 도 9은 도 8의 수직형 반도체 발광 소자를 나타내는 개념도이다.
본 도면들을 참조하면, 디스플레이 장치는 패시브 매트릭스(Passive Matrix, PM) 방식의 수직형 반도체 발광 소자를 이용한 디스플레이 장치가 될 수 있다.
이러한 디스플레이 장치는 기판(210), 제1전극(220), 전도성 접착층(230), 제2전극(240) 및 적어도 하나의 반도체 발광 소자(250)를 포함한다.
기판(210)은 제1전극(220)이 배치되는 배선기판으로서, 플렉서블(flexible) 디스플레이 장치를 구현하기 위하여 폴리이미드(PI)를 포함할 수 있다. 이외에도 절연성이 있고, 유연성 있는 재질이면 어느 것이라도 사용 가능할 것이다.
제1전극(220)은 기판(210) 상에 위치하며, 일 방향으로 긴 바(bar) 형태의 전극으로 형성될 수 있다. 제1 전극(220)은 데이터 전극의 역할을 하도록 이루어질 수 있다.
전도성 접착층(230)은 제1전극(220)이 위치하는 기판(210)상에 형성된다. 플립 칩 타입(flip chip type)의 발광 소자가 적용된 디스플레이 장치와 같이, 전도성 접착층(230)은 이방성 전도성 필름(Anisotropy Conductive Film, ACF), 이방성 전도 페이스트(paste), 전도성 입자를 함유한 솔루션(solution) 등이 될 수 있다. 다만, 본 실시 예에서도 이방성 전도성 필름에 의하여 전도성 접착층(230)이 구현되는 경우를 예시한다.
기판(210) 상에 제1전극(220)이 위치하는 상태에서 이방성 전도성 필름을 위치시킨 후에, 반도체 발광 소자(250)를 열 및 압력을 가하여 접속시키면, 반도체 발광 소자(250)가 제1전극(220)과 전기적으로 연결된다. 이때, 반도체 발광 소자(250)는 제1전극(220) 상에 위치되도록 배치되는 것이 바람직하다.
이와 같은 전기적 연결은 전술한 바와 같이, 이방성 전도성 필름에서 열 및 압력이 가해지면 부분적으로 두께 방향으로 전도성을 가지기 때문에 생성된다. 따라서, 이방성 전도성 필름에서는 두께 방향으로 전도성을 가지는 부분과 전도성을 가지지 않는 부분으로 구획된다.
또한, 이방성 전도성 필름은 접착 성분을 함유하기 때문에, 전도성 접착층(230)은 반도체 발광 소자(250)와 제1전극(220) 사이에서 전기적 연결뿐만 아니라 기계적 결합까지 구현한다.
이와 같이, 반도체 발광 소자(250)는 전도성 접착층(230) 상에 위치되며, 이를 통하여 디스플레이 장치에서 개별 화소를 구성한다. 반도체 발광 소자(250)는 휘도가 우수하므로, 작은 크기로도 개별 단위 픽셀을 구성할 수 있다. 이와 같은 개별 반도체 발광 소자(250)의 크기는 예를 들어, 한 변의 길이가 80㎛ 이하일 수 있고, 직사각형 또는 정사각형 소자일 수 있다. 직사각형인 경우에는 예를 들어, 20X80㎛ 이하의 크기가 될 수 있다.
이러한 반도체 발광 소자(250)는 수직형 구조가 될 수 있다.
수직형 반도체 발광 소자들의 사이에는, 제1전극(220)의 길이 방향과 교차하는 방향으로 배치되고, 수직형 반도체 발광 소자(250)와 전기적으로 연결된 복수의 제2전극(240)이 위치한다.
도 9를 참조하면, 이러한 수직형 반도체 발광 소자는 p형 전극(256), p형 전극(256) 상에 형성된 p형 반도체층(255), p형 반도체층(255) 상에 형성된 활성층(254), 활성층(254)상에 형성된 n형 반도체층(253) 및 n형 반도체층(253) 상에 형성된 n형 전극(252)을 포함한다. 이 경우, 하부에 위치한 p형 전극(256)은 제1전극(220)과 전도성 접착층(230)에 의하여 전기적으로 연결될 수 있고, 상부에 위치한 n형 전극(252)은 후술하는 제2전극(240)과 전기적으로 연결될 수 있다. 이러한 수직형 반도체 발광 소자(250)는 전극을 상/하로 배치할 수 있으므로, 칩 사이즈를 줄일 수 있다는 큰 강점을 가지고 있다.
다시 도 8을 참조하면, 반도체 발광 소자(250)의 일면에는 형광체층(280)이 형성될 수 있다. 예를 들어, 반도체 발광 소자(250)는 청색(B) 광을 발광하는 청색 반도체 발광 소자(251)이고, 이러한 청색(B) 광을 단위 화소의 색상으로 변환시키기 위한 형광체층(280)이 구비될 수 있다. 이 경우에, 형광체층(280)은 개별 화소를 구성하는 적색 형광체(281) 및 녹색 형광체(282) 일 수 있다.
즉, 적색의 단위 화소를 이루는 위치에서, 청색 반도체 발광 소자 상에는 청색 광을 적색(R) 광으로 변환시킬 수 있는 적색 형광체(281)가 적층될 수 있고, 녹색의 단위 화소를 이루는 위치에서는, 청색 반도체 발광 소자 상에 청색광을 녹색(G) 광으로 변환시킬 수 있는 녹색 형광체(282)가 적층될 수 있다. 또한, 청색의 단위 화소를 이루는 부분에는 청색 반도체 발광 소자만 단독으로 이용될 수 있다. 이 경우, 적색(R), 녹색(G), 및 청색(B)의 단위 화소들이 하나의 화소를 이룰 수 있다.
다만, 본 발명은 반드시 이에 한정되는 것은 아니며, 플립 칩 타입(flip chip type)의 발광 소자가 적용된 디스플레이 장치에서 전술한 바와 같이, 청색, 적색, 녹색을 구현하기 위한 다른 구조가 적용될 수 있다.
다시 본 실시예를 살펴보면, 제2전극(240)은 반도체 발광 소자들(250) 사이에 위치하고, 반도체 발광 소자들(250)과 전기적으로 연결된다. 예를 들어, 반도체 발광 소자들(250)은 복수의 열로 배치되고, 제2전극(240)은 반도체 발광 소자들(250)의 열들 사이에 위치할 수 있다.
개별 화소를 이루는 반도체 발광 소자(250) 사이의 거리가 충분히 크기 때문에 제2전극(240)은 반도체 발광 소자들(250) 사이에 위치될 수 있다.
제2전극(240)은 일 방향으로 긴 바(bar) 형태의 전극으로 형성될 수 있으며, 제1전극과 상호 수직한 방향으로 배치될 수 있다.
또한, 제2전극(240)과 반도체 발광 소자(250)는 제2전극(240)에서 돌출된 연결 전극에 의해 전기적으로 연결될 수 있다. 보다 구체적으로, 연결 전극이 반도체 발광 소자(250)의 n형 전극이 될 수 있다. 예를 들어, n형 전극은 오믹(ohmic) 접촉을 위한 오믹 전극으로 형성되며, 제2전극(240)은 인쇄 또는 증착에 의하여 오믹 전극의 적어도 일부를 덮게 된다. 이를 통하여 제2전극(240)과 반도체 발광 소자(250)의 n형 전극이 전기적으로 연결될 수 있다.
다시 도 8을 참조하면, 제2전극(240)은 전도성 접착층(230) 상에 위치될 수 있다. 경우에 따라, 반도체 발광 소자(250)가 형성된 기판(210) 상에 실리콘 옥사이드(SiOx) 등을 포함하는 투명 절연층(미도시)이 형성될 수 있다. 투명 절연층이 형성된 후에 제2전극(240)을 위치시킬 경우, 제2전극(240)은 투명 절연층 상에 위치하게 된다. 또한, 제2전극(240)은 전도성 접착층(230) 또는 투명 절연층에 이격되어 형성될 수도 있다.
만약 반도체 발광 소자(250) 상에 제2전극(240)을 위치시키기 위하여는 ITO(Indium Tin Oxide)와 같은 투명 전극을 사용한다면, ITO 물질은 n형 반도체층과는 접착성이 좋지 않은 문제가 있다. 따라서, 본 발명은 반도체 발광 소자(250) 사이에 제2전극(240)을 위치시킴으로써, ITO와 같은 투명 전극을 사용하지 않아도 되는 이점이 있다. 따라서, 투명한 재료 선택에 구속되지 않고, n형 반도체층과 접착성이 좋은 전도성 물질을 수평 전극으로 사용하여 광추출 효율을 향상시킬 수 있다.
다시 도 8을 참조하면, 반도체 발광 소자(250) 사이에는 격벽(290)이 위치할 수 있다. 즉, 개별 화소를 이루는 반도체 발광 소자(250)를 격리시키기 위하여 수직형 반도체 발광 소자(250) 사이에는 격벽(290)이 배치될 수 있다. 이 경우, 격벽(290)은 개별 단위 화소를 서로 분리하는 역할을 할 수 있으며, 전도성 접착층(230)과 일체로 형성될 수 있다. 예를 들어, 이방성 전도성 필름에 반도체 발광 소자(250)가 삽입됨에 의하여 이방성 전도성 필름의 베이스 부재가 격벽(290)을 형성할 수 있다.
또한, 이방성 전도성 필름의 베이스 부재가 블랙이면, 별도의 블랙 절연체가 없어도 상기 격벽(290)이 반사 특성을 가지는 동시에 대비비(contrast)가 증가될 수 있다.
다른 예로서, 격벽(290)으로서, 반사성 격벽이 별도로 구비될 수 있다. 격벽(290)은 디스플레이 장치의 목적에 따라 블랙(Black) 또는 화이트(White) 절연체를 포함할 수 있다.
만일 제2전극(240)이 반도체 발광 소자(250) 사이의 전도성 접착층(230) 상에 바로 위치된 경우, 격벽(290)은 수직형 반도체 발광 소자(250) 및 제2전극(240)의 사이 사이에 위치될 수 있다. 따라서, 반도체 발광 소자(250)를 이용하여 작은 크기로도 개별 단위 픽셀을 구성할 수 있고, 반도체 발광 소자(250)의 거리가 상대적으로 충분히 크게 되어 제2전극(240)을 반도체 발광 소자(250) 사이에 위치시킬 수 있고, HD 화질을 가지는 플렉서블 디스플레이 장치를 구현할 수 있는 효과가 있게 된다.
또한, 도 8에 도시된 바와 같이, 대비비(contrast) 향상을 위하여 각각의 형광체 사이에는 블랙 매트릭스(291)가 배치될 수 있다. 즉, 이러한 블랙 매트릭스(291)는 명암의 대조를 향상시킬 수 있다.
상기에서 설명된 본 발명의 반도체 발광 소자를 이용한 디스플레이 장치에서는 반도체 발광 소자가 플립 칩 타입으로 배선 기판에 배치되어 개별 화소로 이용된다.
도 10은 본 발명의 일 실시예에 의한 발광 소자를 이용한 디스플레이 장치의 제조 장치를 이용하여 디스플레이 장치를 제조하는 과정을 나타내는 개략도이다.
도 10을 참조하면, 한 쌍의 조립 전극(320) 및 격벽(340)에 의하여 개별 픽셀 위치가 정의된 조립 기판(300)의 픽셀 위치에 개별 발광 소자(400)가 조립될 수 있다.
이때, 개별 발광 소자(400)는 자성체(430; 도 16 참조)를 포함할 수 있다. 따라서, 발광 소자(400)는 자성척(600)의 자기력에 의하여 이끌리어 픽셀 위치에 조립될 수 있다.
개별 픽셀 위치를 포함하는 기판(300)은 플레이트(350)에 의하여 지지될 수 있다. 또한, 개별 픽셀 위치는 하측을 향하도록 기판(300)이 지지될 수 있다.
이와 같이, 플레이트(350)에 의하여 지지된 기판(300)에 다수의 발광 소자(400)가 공급되고, 이러한 발광 소자(400)는 자성척(600)에 의하여 기판(300)의 일측(이하, 제1 측)에 위치하는 개별 픽셀 위치에 조립될 수 있다.
자성척(600)은 X, Y 및 Z의 세 방향으로 이송 가능하고, 기판(300)의 제1 측과 반대 방향인 제2 측에서 전자석을 이용하여 발광 소자(400)를 기판(300)의 개별 픽셀 위치에 조립할 수 있다.
이러한 자성척(600)은 원통형 막대 형태의 금속팁(620; 자기 헤드)와, 이 금속팁(620)에 결합되어 자기력을 발생시키는 코일(610; 또는 솔레노이드)을 포함할 수 있다.
이때, Z 방향은 자성척(600)이 기판(300)을 향하는 방향일 수 있고, X 및 Y 방향은 기판(300)의 주 평면 상에서 움직이는 방향일 수 있다. 예를 들면, 자성척(600)을 Z 방향으로 이송하여 발광 소자(400)에 작용하는 자기력의 크기를 변화시킬 수 있다. 일례로, 자성척(600)을 Z 방향으로 이송하여 자성척(600)이 플레이트(350)와 가장 가까운 위치에 위치하게 될 때 발광 소자(400)에 가장 큰 자기력이 작용할 수 있다.
또한, 자성척(600)을 X 및 Y 방향으로 이송하여 발광 소자(400)가 개별 픽셀 위치에 장착될 수 있도록 할 수 있다. 또한, 자성척(600)을 X 및 Y 방향으로 이송함으로써, 픽셀 위치에 장착되지 않고 남은 발광 소자(400)를 회수할 수도 있다.
한편, 자성척(600)을 회전시킴으로써, 발광 소자(400)가 픽셀 위치에 정확히 안착될 수 있도록 주기적인 힘을 가할 수 있다. 예를 들어, 자성척(600)의 금속팁(620)이 일정 범위 내에서 편심을 가지고 주기적으로 회전할 수 있다. 이러한 과정에서, 이러한 일정 범위 내에 위치하는 발광 소자(400)는 픽셀 위치에 이끌리어 정확한 위치에 조립될 수 있는 확률이 커질 수 있다.
이러한 조립 과정은 유체 내에서 이루어질 수 있다. 예를 들어, 유체가 채워진 챔버 속에 반도체 발광 소자(400) 및 기판(300)을 위치시키고 중력, 표면 장력, 자기력, 전기력 등을 이용하여 발광 소자(400)가 기판(300)에 스스로 조립되도록 한다. 이러한 과정을 자가조립 과정이라고 칭할 수 있다.
이 경우에, 기판(300)은 조립기판이 될 수 있다. 이러한 조립기판은 임시적으로 발광 소자(400)를 장착하여 디스플레이 장치를 이루는 기판(배선 기판)에 전사하기 위한 기판일 수 있다.
이러한 조립기판은 기저기판(310) 상에 다수의 쌍의 조립 전극(320; 321, 322)이 배치되고, 이 전극(320) 상에는 절연층(330)이 위치할 수 있다. 또한, 절연층(330) 상에는 조립 전극(320)에 대응하는 위치에 픽셀 위치를 정의하는 격벽(340)이 위치할 수 있다.
다른 예로서, 조립기판 대신에 배선기판을 유체 챔버 내에 넣어, 발광 소자들(400)이 배선기판에 바로 안착되는 것도 가능하다. 이 경우에, 기판(300)은 배선기판이 될 수 있다. 다만, 설명의 편의상, 본 발명에서는 기판(300)이 조립기판으로서 구비되어 발광 소자들(400)이 안착되는 것을 예시한다.
한편, 이와 같이 설명된 자가조립 방법은 대화면 디스플레이의 제조에 적용하려면, 전사 수율을 높이는 것이 필요하다. 본 발명에서는 전사 수율을 높이기 위하여, 중력이나 마찰력의 영향을 최소화하고, 비특이적 결합을 막는 방법과 장치를 제안한다.
또한, 본 발명은 자성척(600)에 전자석을 적용하여 발광 소자(400)의 조립과정에서 자기력의 크기를 다르게 적용함으로써 보다 효율적으로 발광 소자(400)를 조립할 수 있는 장치 및 방법을 제안하고자 한다.
이 경우, 본 발명에 따른 디스플레이 장치는, 반도체 발광 소자(400)에 자성체(430; 도 16 참조)를 배치하여 자성척(600)의 자기력을 이용하여 반도체 발광 소자(400)를 이동시키고, 이러한 이동과정에서 전기장을 이용하여 발광 소자(400)를 기설정된 위치에 안착시킬 수 있다.
도 11은 본 발명의 일 실시예에 의한 발광 소자를 이용한 디스플레이 장치의 제조 장치에 적용되는 자성척의 일례를 나타내는 개념도이다. 또한, 도 12는 본 발명의 일 실시예에 의한 발광 소자를 이용한 디스플레이 장치의 제조 장치에 적용되는 자성척의 일례를 나타내는 개략도이다.
도 11을 참조하면, 자성척(600)은 원통형 막대 형태의 금속팁(620)과, 이 금속팁(620)에 결합된 코일(610; 솔레노이드)을 포함할 수 있다. 또한, 코일(610)에 전력을 공급하기 위한 전원부(V) 및 스위치(S)를 포함할 수 있다. 이와 같이, 자성척(600)은 전자석 형태를 가질 수 있다. 편의상, 코일(610)을 전자석이라고 칭할 수 있다.
따라서, 스위치(S)를 제어함으로써 코일(610)에 전류/전압을 인가할 수 있고, 금속팁(620)은 이와 같이 코일(전자석; 610)에 전류/전압이 인가될 때만 자력을 띠게 될 수 있다.
이때, 코일(610)의 두께와 감긴 횟수, 길이는 기판(300)과 발광 소자(칩; 400), 그리고 기타 공정 장비에 따라 달라질 수 있다. 예를 들면, 코일(610)의 두께 범위는 0.1 내지 5mm일 수 있다. 또한, 코일(610)의 감긴 횟수는 100 내지 100,000회일 수 있다. 한편, 코일(610)의 길이는 1 내지 100m일 수 있다.
금속팁(620)은 강자성을 띄는 재료로 만들어진 금속 구조물이 이용될 수 있다. 금속팁(620)의 모형과 크기는 기판(300)과 발광 소자(400)의 형태에 따라 선택 가능하다. 이러한 금속팁(620)의 예로, 철(Fe), 니켈(Ni), 코발트(Co) 등이 이용될 수 있다.
본 발명의 실시예와 달리, 자성척에 전자석이 아닌 영구 자석을 이용한다면, 자기장의 대칭성에 따라 양끝단이 동일한 모형의 원기둥 형태의 자석을 이용해야 할 수 있다. 그러나 본 발명의 실시예와 같이 자성척(600)에 전자석을 적용하면 기판(300)과 발광 소자(400)의 형태에 따라 다양한 형태의 금속팁(620)을 적용할 수 있다.
예를 들면, 발광 소자(400)의 크기가 작거나 발광 소자(400)의 자기장에 반응하는 자성체(예를 들어, 니켈(Ni)) 재료의 함량이 상대적으로 작거나 발광 소자(400)의 일부분을 이용하여 조립하는 경우 등에는 자기장을 집중시키 발광 소자(400)의 이동을 용이하게 할 수 있다. 이러한 경우에는 금속팁(620)의 끝 부분을 좁고 날카롭게 형성할 수 있다.
반면, 기판(300) 내 매우 많은 개수의 픽셀 위치가 존재하고, 이러한 상황에서 다량의 발광 소자(400)를 한꺼번에 조립해야 할 경우 넓은 크기의 금속팁(620)을 적용할 수 있다.
또한, 기판(300) 내 픽셀 위치의 형상에 따라 다양한 형상의 금속팁(620)을 적용할 수 있다. 일례로, 발광 소자(400)와 픽셀 위치의 형상이 사각형이 아닌 다른 형상을 가진다면 그에 따른 형상의 금속팁(620)을 적용할 수 있는 것이다.
한편, 인가되는 전류/전압의 크기에 따라 금속팁(620)에 작용하는 자기력의 크기는 달라질 수 있다.
이와 같이, 전기적 신호로 자기장을 형성함으로 발광 소자(400; 칩)의 이동 및 조립을 용이하게 제어할 수 있다.
예를 들어, 칩(400)의 이동시 전류를 흘려줌으로 자기장을 형성하여 칩(400)을 이동시키고, 조립이 진행되면서 전류의 흐름을 조절하여 전기장에 의한 칩의 기판 조립률을 높일 수 있다. 이후, 기판(300) 내 칩(400)의 조립이 끝나면 칩 수거 등 다시 칩을 이동시킬 때 전류를 조절하여 칩 이동을 원할하게 제어할 수 있다.
구체적인 예로, 발광 소자(400)를 이동시키는 과정에서는 자성척(600)의 코일(610; 전자석)에 제1 전류를 인가할 수 있다.
이후, 발광 소자(400)를 조립하는 과정에서는 코일(610)에 이러한 제1 전류보다 작은 크기의 제2 전류를 인가할 수 있다.
또한, 조립되지 않고 남은 잔여 발광 소자(400)를 회수하는 과정에서는, 자성척(600)의 코일(610)에 제3 전류를 인가할 수 있다. 이때, 제3 전류는 제1 전류와 제2 전류의 사이의 크기를 가질 수 있다.
부연하면, 발광 소자(400)의 이동시에만 선택적으로 자성척(600)에 전류를 흘릴 수 있다. 이때, 발광 소자(400)의 이동을 원활하게 하기 위하여 높은 전압/전류/주파수를 적용할 수 있다.
이후, 발광 소자(400)의 조립시 자성척(600)의 코일(610; 전자석)에 발광 소자(400)의 이동시보다 낮은 전압/전류/주파수 적용할 수 있다. 이는 발광 소자(400)의 기판 조립의 확률을 높이기 위함일 수 있다.
다음, 발광 소자(400)의 조립이 끝나고 기판의 클리닝(cleaning) 및 칩 수거시에는 기판의 이동시와 조립시 사이의 크기를 가지는 전압/전류/주파수를 적용할 수 있다.
한편, 도 12를 참조하면, 자성척(600)은 금속팁(620)을 회전시키는 회전기구(640)가 결합될 수 있다. 이러한 회전기구(640)는 위에서 설명한 바와 같이, 금속팁(620)이 일정 범위 내에서 편심되어 회전할 수 있도록 회전력을 가할 수 있다. 이에 대해서는 자세히 후술한다.
도 13은 본 발명의 일 실시예에 의한 발광 소자를 이용한 디스플레이 장치의 제조 장치에 적용되는 자성척의 다른 예를 나타내는 개략도이다.
도 13을 참조하면, 자성척(600)은 대형의 금속팁(621)과 이러한 대형의 금속팁(621)에 감길 수 있는 대형의 코일(611)을 이용할 수 있다. 또한, 이러한 대형의 금속팁(621)에는 원반형 베이스(631)에 소형 금속팁(632)이 다수 개 구비된 착탈식 헤드(630)를 이용할 수 있다.
이러한 다수의 소형 금속팁(632)의 간격은 기판(300)에 형성된 (서브)픽셀 위치의 간격에 대응될 수 있다. 기판(300)에 따라 픽셀 위치는 서로 다를 수 있고, 이러한 픽셀 위치에 대응되는 금속팁(632)의 간격을 가지는 헤드(630)를 선별적으로 이용할 수 있다.
위에서 도 12를 참조하여 설명한 경우와 마찬가지로, 대형 금속팁(621) 및 다수의 금속팁(632)을 포함하는 헤드(630)는 강자성을 띄는 재료로 만들어진 금속 구조물이 이용될 수 있다. 금속팁(621, 632)의 모형과 크기는 기판(300)과 발광 소자(400)의 형태에 따라 선택 가능하다. 이러한 금속팁(621, 632)의 예로, 철(Fe), 니켈(Ni), 코발트(Co) 등이 이용될 수 있다.
별도로 표기되지 않았으나, 금속팁(621, 632)을 회전시키는 회전기구(640; 도 12 참조)가 결합될 수 있다. 이러한 회전기구(640)는 위에서 설명한 바와 같이, 금속팁(621, 632)이 일정 범위 내에서 편심되어 회전할 수 있도록 회전력을 가할 수 있다.
전자석의 자기장 세기는 코일의 길이와 감은 횟수에 비례하여 증가한다. 따라서 전자석의 모체는 대형 기구로 제작하고 조립하는 영역인 팁(헤드; 630) 부분과 같이 다양한 형태로 변형 가능한 구성품으로 분리하여 제작 가능하다.
이때, 자기장을 생성하는 영역(금속팁(621) 및 코일(611))과 헤드(630) 영역을 탈착식으로 분리함으로 자기력을 극대화 시키면서 조립률을 향상시킬 수 있다.
또한, 위에서 설명한 바와 같이, 자성척(600)은 X, Y 및 Z의 세 방향으로 이송 가능하고, 기판(300)의 제1 측과 반대 방향인 제2 측에서 전자석을 이용하여 발광 소자(400)를 기판(300)의 개별 픽셀 위치에 조립할 수 있다.
이때, Z 방향은 자성척(600)이 기판(300)을 향하는 방향일 수 있고, X 및 Y 방향은 기판(300)의 주 평면 상에서 움직이는 방향일 수 있다. 예를 들면, 자성척(600)을 Z 방향으로 이송하여 발광 소자(400)에 작용하는 자기력의 크기를 변화시킬 수 있다. 일례로, 자성척(600)을 Z 방향으로 이송하여 자성척(600)이 플레이트(350)와 가장 가까운 위치에 위치하게 될 때 발광 소자(400)에 가장 큰 자기력이 작용할 수 있다.
또한, 자성척(600)을 X 및 Y 방향으로 이송하여 발광 소자(400)가 개별 픽셀 위치에 장착될 수 있도록 할 수 있다. 또한, 자성척(600)을 X 및 Y 방향으로 이송함으로써, 픽셀 위치에 장착되지 않고 남은 발광 소자(400)를 회수할 수도 있다.
다시 도 10을 참조하면, 여러 개의 전자석을 병렬로 위치시켜서 자성척(600)을 구성할 수 있다. 이때, 이러한 다수의 금속팁(620) 및 코일(610)을 기판(300)에 형성된 (서브)픽셀 위치의 간격에 대응시켜 배치할 수 있다. 기판(300)에 따라 픽셀 위치는 서로 다를 수 있고, 이러한 픽셀 위치에 대응되는 금속팁(620)의 간격을 설정하여 자성척(600)을 구성할 수 있다.
이때, 도 10에서 도시하는 바와 같이, 금속팁(620)과 코일(610)의 상대적인 위치를 다변화함으로 서로 근접한 위치에서 중첩이 가능하도록 구성할 수 있다. 즉, 첫 열의 금속팁(620)에는 코일(610)이 상대적으로 하측에 위치하도록 하고, 두번째 열의 금속팁(620)에는 코일(610)이 상대적으로 상측에 위치하도록 자성척(600)을 구성할 수 있다.
이는 자성척(600)을 구성할 때, 코일(610; 솔레노이드) 부분의 부피가 상대적으로 크기 때문일 수 있다. 즉, 코일(610)의 부피가 크므로 하나의 코일(610)의 위치가 인접 코일(610)의 위치와 중첩되지 않도록 교차하여 자성척(600)을 구성할 수 있는 것이다.
이와 같이, 자성척(600)은 일정 간격으로 구비된 다수의 금속팁(620) 및 코일(610)을 포함할 수 있다. 물론, 이러한 일정 간격으로 구비된 다수의 금속팁(620) 및 코일(610)은 동시에 X, Y 및 Z 방향으로 이송 가능하다.
한편, 도 10을 참조하면, 유체 내에서 발광 소자(400)를 공급하는 트레이(500)가 구비될 수 있다. 도시하는 바와 같이, 트레이(500) 내에는 다수의 발광 소자(400)가 위치하는 상태로 수직 이송부(510)를 통하여 수직 방향, 즉, Z 방향으로 이송 가능할 수 있다.
이러한 트레이(500)를 통하여 발광 소자(400)들을 기판(300) 상에 더 근접하게 공급할 수 있고, 이를 통하여, (서브)픽셀 위치에 발광 소자(400)를 보다 정확하게 위치시킬 수 있다.
예를 들면, 자성척(600)을 기판(300)에 근접시킨 후에, 트레이(500)를 상승시켜서 조립을 위한 발광 소자(400)를 기판(300)에 보다 근접시킬 수 있다. 이때, 자성척(600)에 자기력을 공급하면서 회전시키면서 픽셀 위치 상에서 픽셀 크기보다 큰 반경 내에서 주기적으로 회전시키면 이러한 픽셀 위치에 발광 소자(400)가 자기력에 의하여 부착될 수 있다.
이후에는 한 쌍의 조립 전극(320)에 전류를 인가하여 전기장을 발생시켜 발광 소자(400)를 고정시킬 수 있다.
이때, 발광 소자(400)는 상부전극(420)이 하측에 위치하는 상태로 픽셀 위치에 조립될 수 있다. 즉, 몸체부(410)가 픽셀 위치에 조립될 수 있다. 도시되지는 않았으나 몸체부(410)의 하측에는 하부전극이 위치할 수 있다. 즉, 발광 소자(400)는 수직형 발광 소자일 수 있다. 그러나 본 발명은 이에 한정되지는 않는다. 예를 들어, 수평형 발광 소자가 조립에 이용될 수도 있고, 이러한 수평형 발광 소자가 플립칩 본딩되거나 정위치에 조립될 수도 있음은 물론이다.
도 14는 본 발명의 일 실시예에 의한 발광 소자를 이용한 디스플레이 장치의 제조 장치를 이용하여 디스플레이 장치를 제조하는 과정의 다른 예를 나타내는 개략도이다.
도 14를 참조하면, 위에서 설명한 과정에 의하여, 한 쌍의 조립 전극(320) 및 격벽(340)에 의하여 개별 픽셀 위치가 정의된 조립 기판(300)의 픽셀 위치에 개별 발광 소자(400)가 조립될 수 있다.
이와 같이, 플레이트(350)에 의하여 지지된 기판(300)에 다수의 발광 소자(400)가 공급되고, 이러한 발광 소자(400)는 자성척(600)에 의하여 기판(300)의 일측(제1 측)에 위치하는 개별 픽셀 위치에 조립될 수 있다.
위에서 설명한 바와 같이, 자성척(600)을 X 및 Y 방향으로 이송하여 발광 소자(400)가 개별 픽셀 위치에 장착될 수 있도록 할 수 있다. 또한, 자성척(600)을 X 및 Y 방향으로 이송함으로써, 픽셀 위치에 장착되지 않고 남은 발광 소자(400)를 회수할 수도 있다.
이 경우, 본 발명에 따른 디스플레이 장치는, 반도체 발광 소자(400)에 자성체(430; 도 16 참조)를 배치하여 자성척(600)의 자기력을 이용하여 반도체 발광 소자(400)를 이동시키고, 이러한 이동과정에서 전기장을 이용하여 발광 소자(400)를 기설정된 위치에 안착시킬 수 있다.
전기장을 통하여 발광 소자(400)가 픽셀 위치에 조립된 후에는 더 큰 전류를 인가함으로써 자기장을 이용하여 잔여 발광 소자(400) 칩들을 수거할 수 있다.
이때, 픽셀 위치에는 발광 소자(400)가 각각 조립된 상태에서 전기장을 이용하여 고정된 상태이므로, 일정 자기력을 가하면서 금속팁(620)을 일 방향(예를 들어, X 방향)으로 잔여 칩을 회수할 수 있다.
도 14에서는 이러한 금속팁(620)의 이송에 의하여 잔여 칩들의 무리(F)가 이송되는 과정을 도시하고 있다.
위에서 설명한 바와 같이, 이때, 트레이(500)를 이용할 수 있다.
이후, 트레이(500)를 하강시킴으로써 잔여 발광 소자(400)들을 제작 장비 외측으로 회수할 수 있다.
한편, 이와 같이, 자기장의 크기를 달리하여 자성척(600)에 의하여 칩의 수거 과정이 이루어지는 경우에는 트레이(500)를 이용하지 않을 수도 있다.
도 15는 본 발명의 일 실시예에 의한 발광 소자를 이용한 디스플레이 장치의 제조 과정 중 금속팁의 운동을 표현하는 개략도이다.
위에서 설명한 바와 같이, 자성척(600)을 회전시킴으로써, 발광 소자(400)가 픽셀 위치에 정확히 안착될 수 있도록 주기적인 힘을 가할 수 있다.
예를 들어, 자성척(600)의 금속팁(620)을 일정 범위 내에서 편심을 가지고 주기적으로 회전시킬 수 있다. 즉, 금속팁(620)은 금속팁(620) 자체의 중심으로 회전하는 것이 아니라, 편심되어 금속팁(620)의 면적보다 큰 면적을 스캔할 수 있도록 일정 주파수를 가지고 회전할 수 있다.
이때, 픽셀의 크기에 따라 스캔할 수 있는 면적이 변경될 수 있다. 즉, 픽셀의 크기가 크다면 더 큰 편심 반경을 가지고 이 픽셀이 차지하는 면적을 스캔할 수 있도록 회전할 수 있다.
이러한 과정에서, 이러한 일정 범위 내에 위치하는 발광 소자(400)는 픽셀 위치에 이끌리어 정확한 위치에 조립될 수 있는 확률이 커질 수 있다.
도 15의 내부의 화살표는 금속팁(620)이 회전하는 궤적을 개략적으로 표시하고 있고, 외부의 화살표는 금속팁(620)의 스캔 면적이 변경될 수 있음을 표시하고 있다.
이와 같이, 본 발명의 제작 장치에 의하면, 디스플레이 장치의 제작 공정 중 자성척(600)의 자화 세기를 조절 가능하다.
먼저, 공정별로, 조립 공정 초기에 다수의 발광 소자(400) 칩의 이동을 원활히 효율적으로 진행하기 위해서는 자화 세기가 큰 자석이 필요하다.
그러나, 기판(300) 상에서 조립이 진행되는 도중에는 자력이 크면 오히려 발광 소자(400)가 조립되지 않고 자성척(600) 쪽으로 이끌리는 칩들이 발생할 수 있다. 따라서, 공정 단계별 자화 세기(자기력의 세기)를 조절할 수 있으면 성공적인 조립률을 높이는데 유용할 수 있다.
한편, 조립 부위별로, 기판(300)의 위치에 따라 저항이 다르고, 기판(300)의 크기에 따라 요철, 굴곡 등으로 금속팁(620)과 발광 소자(400) 칩 사이 자화 거리가 달라질 수 있다. 따라서 기판(300) 부위별, 발광 소자(400) 칩의 이동 경로에 따라 자화 세기를 최적 설계할 수 있다.
또한, 본 발명의 실시예에 의하면 다양한 형태의 기판에 대한 조립이 가능하다.
즉, 대면적 기판의 표면 요철이나 굴곡에서도 자기장의 세기를 조절하여 조립률을 유지할 수 있다.
일례로, 지름이 150mm인 기판보다 큰 기판에서 요철/휨 등의 단차가 발생하거나, 두께가 부위별로 달라지는 현상이 발생할 수 있는데, 이러한 경우에, 자성척(600)의 자기장을 조절하여 조립률을 향상시킬 수 있는 것이다.
도 16은 본 발명의 일 실시예에 의한 발광 소자를 이용한 디스플레이 장치의 발광 소자의 일례를 나타내는 도이다.
디스플레이 장치에 이용되는 발광 소자(400)의 경우, 예를 들어, 마이크로미터 단위의 크기를 가지는 마이크로 LED(400)의 경우, 위에서 언급한 바와 같이, 자성체(430)를 포함하고 있다.
이러한 발광 소자(400)는 하측에 n-전극(440)이 위치하고, n-형 질화갈륨(GaN) 계열 반도체층(N-GaN; 410) 상에 p-형 질화갈륨(GaN) 계열 반도체층(P-GaN; 450)이 위치한다. 이때, 도시되지 않았으나 n-형 질화갈륨(GaN) 계열 반도체층(410)과 p-형 질화갈륨(GaN) 계열 반도체층(450) 사이에는 활성층이 위치할 수 있다.
또한, p-형 질화갈륨(GaN) 계열 반도체층(450) 상에는 p-전극(420)이 위치하고, n-형 질화갈륨(GaN) 계열 반도체층(410)의 양측 상부측에는 자성체(430)가 위치할 수 있다.
이때, 이러한 발광 소자(400)의 자성체(Ni)의 부피와 디자인에 따라 자화되는 정도가 달라질 수 있다.
이러한 경우, 점등 효율을 극대화하기 위하여 칩 내부 자성체(430; Ni)의 양을 줄이거나, 자성체(430)의 형상, 크기 등을 제한할 경우 조립률이 저하될 수 있다.
그러나, 위에서 설명한 바와 같이, 이러한 경우에도, 자성척(600)의 자기장을 조절하여 조립률을 향상시킬 수 있는 것이다.
도 17은 본 발명의 일 실시예에 의한 발광 소자를 이용한 디스플레이 장치의 제조 방법을 나타내는 순서도이다.
이하, 도 10 및 도 17을 함께 참조하여, 위에서 설명한 본 발명의 일 실시예에 의한 발광 소자를 이용한 디스플레이 장치의 제조 장치를 이용한 제조 방법을 단계적으로 설명한다.
먼저, 기판(300)을 적정 위치에 로딩할 수 있다(S10). 즉, 한 쌍의 조립 전극(320)에 의하여 개별 픽셀 위치가 정의되는 기판(300)을 배치할 수 있다.
위에서 설명한 바와 같이, 본 발명의 실시예에 의한 디스플레이 장치의 제작은 유체 상에서 이루어질 수 있다.
위에서 언급한 바와 같이, 개별 픽셀 위치를 포함하는 기판(300)은 이 기판(300)을 지지하는 플레이트(350)에 의하여 공급될 수 있다.
이때, 경우에 따라, 상하 이송 가능한 트레이(500)를 이용하여 발광 소자를 공급할 수 있다.
이후, 전자석(610)을 구비한 자성척(600)을 이용하여 기판(300) 상에서 자성체(430)를 포함하는 발광 소자(400; 칩)를 이동시킬 수 있다(S20).
이때, 발광 소자(400)를 이동시키는 과정(S20)에서는 자성척(600)의 코일(610; 전자석)에 제1 전류를 인가할 수 있다.
이후, 코일(610)에 이러한 제1 전류보다 작은 크기의 제2 전류를 인가하여 발광 소자(400)를 조립할 수 있다(S30).
위에서 언급한 바와 같이, 기판(300) 상에서 조립이 진행되는 도중에는 자력이 크면 오히려 발광 소자(400)가 조립되지 않고 자성척(600) 쪽으로 이끌리는 칩들이 발생할 수 있다. 따라서, 발광 소자(400)를 조립하는 단계(S30)에서는 제1 전류보다 작은 크기의 제2 전류를 인가할 수 있다.
이때, 발광 소자(400)를 조립하는 단계는, 자성척(600)을 일정 반경 내에서 회전시킴으로 수행할 수 있다. 즉, 발광 소자(400)를 조립하는 단계는, 자성척(600)을 일정 주파수로 회전시킬 수 있다.
다음, 조립되지 않고 남은 잔여 발광 소자(400)를 회수하는 단계(S40)가 수행될 수 있다. 이와 같이, 조립되지 않고 남은 잔여 발광 소자(400)를 회수하는 과정(S40)에서는, 자성척(600)의 코일(610)에 제3 전류를 인가할 수 있다. 이때, 제3 전류는 제1 전류와 제2 전류의 사이의 크기를 가질 수 있다.
부연하면, 발광 소자(400)의 이동시에만 선택적으로 자성척(600)에 전류를 흘릴 수 있다. 이때, 발광 소자(400)의 이동을 원활하게 하기 위하여 높은 전압/전류/주파수를 적용할 수 있다.
이후, 발광 소자(400)의 조립시 자성척(600)의 코일(610; 전자석)에 발광 소자(400)의 이동시보다 낮은 전압/전류/주파수 적용할 수 있다. 이는 발광 소자(400)의 기판 조립의 확률을 높이기 위함일 수 있다.
다음, 발광 소자(400)의 조립이 끝나고 기판의 클리닝(cleaning) 및 칩 수거시에는 기판의 이동시와 조립시 사이의 크기를 가지는 전압/전류/주파수를 적용할 수 있다.
이와 같이, 공정 단계별 자화 세기(자기력의 세기)를 조절할 수 있으면 성공적인 조립률을 높이는데 유용할 수 있다.
이상의 설명은 본 발명의 기술 사상을 예시적으로 설명한 것에 불과한 것으로서, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자라면 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 다양한 수정 및 변형이 가능할 것이다.
따라서, 본 발명에 개시된 실시 예들은 본 발명의 기술 사상을 한정하기 위한 것이 아니라 설명하기 위한 것이고, 이러한 실시 예에 의하여 본 발명의 기술 사상의 범위가 한정되는 것은 아니다.
본 발명의 보호 범위는 아래의 청구범위에 의하여 해석되어야 하며, 그와 동등한 범위 내에 있는 모든 기술 사상은 본 발명의 권리범위에 포함되는 것으로 해석되어야 할 것이다.
본 발명은 마이크로미터(㎛) 단위 크기의 반도체 발광 소자를 이용하는 발광 장치, 제조 장치 및 제조 방법을 제공할 수 있다.

Claims (15)

  1. 발광 소자를 이용한 디스플레이 장치의 제조 방법에 있어서,
    한 쌍의 조립 전극에 의하여 개별 픽셀 위치가 정의되는 기판을 배치하는 단계;
    전자석을 구비한 자성척을 이용하여 상기 기판 상에서 자성체를 포함하는 발광 소자를 이동시키는 단계;
    상기 자성척을 이용하여 상기 개별 픽셀 위치에 상기 발광 소자를 조립하는 단계; 및
    상기 자성척을 이용하여 상기 개별 픽셀 위치에 조립되지 않는 잔여 발광 소자를 회수하는 단계를 포함하는 것을 특징으로 하는 발광 소자를 이용한 디스플레이 장치의 제조 방법.
  2. 제1항에 있어서, 상기 발광 소자를 이동시키는 단계는, 상기 자성척의 전자석에 제1 전류를 인가하고,
    상기 발광 소자를 조립하는 단계는, 상기 자성척의 전자석에 상기 제1 전류와 다른 제2 전류를 인가하는 것을 특징으로 하는 발광 소자를 이용한 디스플레이 장치의 제조 방법.
  3. 제2항에 있어서, 상기 제1 전류는 상기 제2 전류보다 큰 것을 특징으로 하는 발광 소자를 이용한 디스플레이 장치의 제조 방법.
  4. 제2항에 있어서, 상기 잔여 발광 소자를 회수하는 단계는, 상기 자성척의 전자석에 제3 전류를 인가하는 것을 특징으로 하는 발광 소자를 이용한 디스플레이 장치의 제조 방법.
  5. 제4항에 있어서, 상기 제3 전류는 상기 제1 전류와 상기 제2 전류의 사이의 크기를 가지는 것을 특징으로 하는 발광 소자를 이용한 디스플레이 장치의 제조 방법.
  6. 제1항에 있어서, 상기 기판을 배치하는 단계 이후에, 상하 이송 가능한 트레이를 이용하여 발광 소자를 공급하는 단계를 더 포함하는 것을 특징으로 하는 발광 소자를 이용한 디스플레이 장치의 제조 방법.
  7. 제1항에 있어서, 상기 발광 소자를 조립하는 단계는, 상기 자성척을 일정 반경 내에서 회전시킴으로 수행하는 것을 특징으로 하는 발광 소자를 이용한 디스플레이 장치의 제조 방법.
  8. 제7항에 있어서, 상기 발광 소자를 조립하는 단계는, 상기 자성척을 일정 주파수로 회전시키는 것을 특징으로 하는 발광 소자를 이용한 디스플레이 장치의 제조 방법.
  9. 발광 소자를 이용한 디스플레이 장치의 제조 장치에 있어서,
    개별 픽셀 위치를 포함하는 기판을 지지하는 플레이트;
    상기 기판의 제1 측에서 자성체를 포함하는 다수의 발광 소자를 공급하는 공급부; 및
    X, Y 및 Z의 세 방향으로 이송 가능하고, 상기 기판의 제2 측에서 전자석을 이용하여 상기 발광 소자를 기판의 개별 픽셀 위치에 조립하는 자성척을 포함하여 구성되는 것을 특징으로 하는 발광 소자를 이용한 디스플레이 장치의 제조 장치.
  10. 제9항에 있어서, 상기 자성척은,
    원통형 막대 형태의 금속팁;
    상기 금속팁에 결합된 코일;
    상기 금속팁을 회전시키는 회전기구; 및
    상기 코일에 전원을 공급하는 전원부를 포함하는 것을 특징으로 하는 발광 소자를 이용한 디스플레이 장치의 제조 장치.
  11. 제10항에 있어서, 상기 회전기구는, 상기 금속팁을 일정 반경 내에서 회전시키는 것을 특징으로 하는 발광 소자를 이용한 디스플레이 장치의 제조 장치.
  12. 제10항에 있어서, 상기 자성척은 일정 간격으로 구비된 다수의 금속팁 및 코일을 포함하는 것을 특징으로 하는 발광 소자를 이용한 디스플레이 장치의 제조 장치.
  13. 제9항에 있어서, 상기 자성척은 다수의 금속팁이 구비된 헤드를 포함하는 것을 특징으로 하는 발광 소자를 이용한 디스플레이 장치의 제조 장치.
  14. 제9항에 있어서, 상기 기판에 대하여 상하 방향으로 이송 가능하며 상기 발광 소자를 공급하는 트레이를 더 포함하는 것을 특징으로 하는 발광 소자를 이용한 디스플레이 장치의 제조 장치.
  15. 제9항에 있어서, 상기 발광 소자를 기판의 개별 픽셀 위치에 조립하는 과정에 따라, 상기 자성척에는 서로 다른 크기의 전류를 인가하는 것을 특징으로 하는 발광 소자를 이용한 디스플레이 장치의 제조 장치.
PCT/KR2020/000138 2019-12-26 2020-01-03 발광 소자를 이용한 디스플레이의 제조 장치 및 그 제조 방법 WO2021132789A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202080091850.0A CN114946024A (zh) 2019-12-26 2020-01-03 利用发光元件的显示器的制造装置及其制造方法
US17/789,049 US20230048122A1 (en) 2019-12-26 2020-01-03 Apparatus and method of manufacturing display using light emitting element
EP20907364.2A EP4084067A4 (en) 2019-12-26 2020-01-03 APPARATUS AND METHOD FOR MANUFACTURING A DISPLAY DEVICE USING AN ELECTROLUMINESCENT ELEMENT

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2019-0175386 2019-12-26
KR1020190175386A KR20200005516A (ko) 2019-12-26 2019-12-26 발광 소자를 이용한 디스플레이의 제조 장치 및 그 제조 방법

Publications (1)

Publication Number Publication Date
WO2021132789A1 true WO2021132789A1 (ko) 2021-07-01

Family

ID=69156672

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/000138 WO2021132789A1 (ko) 2019-12-26 2020-01-03 발광 소자를 이용한 디스플레이의 제조 장치 및 그 제조 방법

Country Status (5)

Country Link
US (1) US20230048122A1 (ko)
EP (1) EP4084067A4 (ko)
KR (1) KR20200005516A (ko)
CN (1) CN114946024A (ko)
WO (1) WO2021132789A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4354501A1 (en) * 2022-10-14 2024-04-17 LG Electronics Inc. Magnet unit of semiconductor light emitting device for display pixel and self-assembly device using the same

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200014867A (ko) * 2020-01-22 2020-02-11 엘지전자 주식회사 반도체 발광소자의 자가조립 장치 및 방법
WO2021167125A1 (ko) * 2020-02-19 2021-08-26 엘지전자 주식회사 반도체 발광 소자를 이용한 디스플레이 장치 및 이의 제조방법
KR20220005962A (ko) * 2020-07-07 2022-01-14 삼성전자주식회사 나노와이어 led, 디스플레이 모듈 및 그 제조 방법
WO2022097784A1 (ko) * 2020-11-06 2022-05-12 엘지전자 주식회사 반도체 발광소자의 자가조립 장치 및 방법
WO2022145555A1 (ko) * 2021-01-04 2022-07-07 엘지전자 주식회사 발광 소자를 이용한 디스플레이 장치의 기판 조립체 및 그 제조 방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006140398A (ja) * 2004-11-15 2006-06-01 Sony Corp 素子転写方法
KR20110082834A (ko) * 2010-01-12 2011-07-20 삼성모바일디스플레이주식회사 패턴 형성 방법 및 유기 발광 소자의 제조방법
KR20130033450A (ko) * 2010-07-14 2013-04-03 샤프 가부시키가이샤 미세한 물체의 배치 방법, 배열 장치, 조명 장치 및 표시 장치
KR101793542B1 (ko) * 2016-08-26 2017-11-03 엘지전자 주식회사 반도체 발광소자의 이송 헤드, 이송 시스템 및 반도체 발광소자를 이송하는 방법
KR20190122117A (ko) * 2018-04-19 2019-10-29 엘지전자 주식회사 반도체 발광 소자를 이용한 디스플레이 장치 및 이의 제조방법

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003248436A (ja) * 2002-02-27 2003-09-05 Ishikawa Seisakusho Ltd 大画面平面ディスプレイ装置並びにその製造方法及び製造装置
JP4609759B2 (ja) * 2005-03-24 2011-01-12 三井造船株式会社 成膜装置
JP2010106359A (ja) * 2008-09-30 2010-05-13 Canon Anelva Corp 基板保持装置、基板処理装置、マスク、および画像表示装置の製造方法
US9122966B2 (en) * 2012-09-07 2015-09-01 Lawrence F. Glaser Communication device
US9721931B2 (en) * 2015-01-15 2017-08-01 Industrial Technology Research Institute Semiconductor light emitting device and fabricating method thereof
KR102588852B1 (ko) * 2016-10-21 2023-10-13 엘지디스플레이 주식회사 나노 입자, 이를 이용한 발광다이오드 어셈블리 및 표시장치
KR102458007B1 (ko) * 2018-02-13 2022-10-24 엘지전자 주식회사 반도체 발광소자를 이용한 디스플레이 장치의 제조방법
WO2019203404A1 (ko) * 2018-04-19 2019-10-24 엘지전자 주식회사 반도체 발광 소자를 이용한 디스플레이 장치 및 이의 제조방법
US10607515B2 (en) * 2018-04-19 2020-03-31 Lg Electronics Inc. Display device using semiconductor light emitting device and method for manufacturing the same
CN110265341B (zh) * 2019-07-05 2021-04-02 深超光电(深圳)有限公司 发光元件的转移方法、显示面板及其制备方法、基板
KR20190092330A (ko) * 2019-07-19 2019-08-07 엘지전자 주식회사 반도체 발광 소자를 이용한 디스플레이 장치 및 그 제조 방법
KR20190099164A (ko) * 2019-08-06 2019-08-26 엘지전자 주식회사 디스플레이 장치의 제조 방법 및 디스플레이 장치 제조를 위한 기판

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006140398A (ja) * 2004-11-15 2006-06-01 Sony Corp 素子転写方法
KR20110082834A (ko) * 2010-01-12 2011-07-20 삼성모바일디스플레이주식회사 패턴 형성 방법 및 유기 발광 소자의 제조방법
KR20130033450A (ko) * 2010-07-14 2013-04-03 샤프 가부시키가이샤 미세한 물체의 배치 방법, 배열 장치, 조명 장치 및 표시 장치
KR101793542B1 (ko) * 2016-08-26 2017-11-03 엘지전자 주식회사 반도체 발광소자의 이송 헤드, 이송 시스템 및 반도체 발광소자를 이송하는 방법
KR20190122117A (ko) * 2018-04-19 2019-10-29 엘지전자 주식회사 반도체 발광 소자를 이용한 디스플레이 장치 및 이의 제조방법

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4084067A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4354501A1 (en) * 2022-10-14 2024-04-17 LG Electronics Inc. Magnet unit of semiconductor light emitting device for display pixel and self-assembly device using the same

Also Published As

Publication number Publication date
EP4084067A1 (en) 2022-11-02
EP4084067A4 (en) 2024-01-24
CN114946024A (zh) 2022-08-26
US20230048122A1 (en) 2023-02-16
KR20200005516A (ko) 2020-01-15

Similar Documents

Publication Publication Date Title
WO2021002490A1 (ko) 마이크로 led를 이용한 디스플레이 장치 및 이의 제조 방법
WO2021132789A1 (ko) 발광 소자를 이용한 디스플레이의 제조 장치 및 그 제조 방법
WO2021040066A1 (ko) 마이크로 led를 이용한 디스플레이 장치 및 이의 제조 방법
WO2021033802A1 (ko) 마이크로 led를 이용한 디스플레이 장치 및 이의 제조 방법
WO2021117979A1 (ko) 마이크로 led와 관련된 디스플레이 장치 및 이의 제조 방법
WO2021080028A1 (ko) 마이크로 led를 이용한 디스플레이 장치 및 이의 제조 방법
WO2021040102A1 (ko) 마이크로 led를 이용한 디스플레이 장치 및 이의 제조 방법
WO2021125421A1 (ko) 발광 소자를 이용한 디스플레이 장치 및 그 제조 방법
WO2021066221A1 (ko) 마이크로 led를 이용한 디스플레이 장치 및 이의 제조 방법
WO2021070977A1 (ko) 마이크로 led를 이용한 디스플레이 장치 및 이의 제조 방법
WO2017034268A1 (ko) 반도체 발광 소자를 이용한 디스플레이 장치
WO2015072685A1 (en) Display apparatus using semiconductor light emitting device
WO2021054491A1 (ko) 마이크로 led를 이용한 디스플레이 장치 및 이의 제조 방법
WO2019151550A1 (ko) 반도체 발광소자를 이용한 디스플레이 장치 및 이의 제조방법
WO2021060595A1 (ko) 마이크로 led를 이용한 디스플레이 장치 및 이의 제조 방법
WO2021060577A1 (ko) 마이크로 led를 이용한 디스플레이 장치 및 이의 제조 방법
WO2021100955A1 (ko) 발광 소자를 이용한 디스플레이 장치
WO2021033801A1 (ko) 마이크로 led를 이용한 디스플레이 장치 및 이의 제조 방법
WO2021015350A1 (ko) 반도체 발광 소자를 이용한 디스플레이 장치 및 그 제조 방법
WO2021025243A1 (ko) 반도체 발광 소자를 이용한 디스플레이 장치
WO2020175756A1 (ko) 반도체 발광 소자를 디스플레이 패널에 조립하는 조립 장치
WO2021080030A1 (ko) 마이크로 led를 이용한 디스플레이 장치 및 이의 제조 방법
WO2022019348A1 (ko) 디스플레이 장치
WO2020251070A1 (ko) 마이크로 led를 이용한 디스플레이 장치 및 이의 제조 방법
WO2022065544A1 (ko) 디스플레이 장치의 제조에 사용되는 전사 기판, 디스플레이 장치 및 디스플레이 장치의 제조 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20907364

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020907364

Country of ref document: EP

Effective date: 20220726