WO2021033801A1 - 마이크로 led를 이용한 디스플레이 장치 및 이의 제조 방법 - Google Patents
마이크로 led를 이용한 디스플레이 장치 및 이의 제조 방법 Download PDFInfo
- Publication number
- WO2021033801A1 WO2021033801A1 PCT/KR2019/010638 KR2019010638W WO2021033801A1 WO 2021033801 A1 WO2021033801 A1 WO 2021033801A1 KR 2019010638 W KR2019010638 W KR 2019010638W WO 2021033801 A1 WO2021033801 A1 WO 2021033801A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- light emitting
- semiconductor light
- emitting device
- assembly
- substrate
- Prior art date
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 21
- 239000004065 semiconductor Substances 0.000 claims abstract description 400
- 239000000758 substrate Substances 0.000 claims abstract description 172
- 239000010410 layer Substances 0.000 claims description 94
- 238000000034 method Methods 0.000 claims description 65
- 238000005192 partition Methods 0.000 claims description 54
- 239000012790 adhesive layer Substances 0.000 claims description 41
- 238000012546 transfer Methods 0.000 claims description 16
- 230000033001 locomotion Effects 0.000 claims description 15
- 239000012530 fluid Substances 0.000 claims description 11
- 230000005684 electric field Effects 0.000 claims description 10
- 239000000696 magnetic material Substances 0.000 claims description 8
- 239000003086 colorant Substances 0.000 abstract description 15
- 238000002156 mixing Methods 0.000 abstract description 3
- 238000013461 design Methods 0.000 abstract description 2
- 230000008569 process Effects 0.000 description 35
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 30
- 238000001338 self-assembly Methods 0.000 description 20
- 238000010586 diagram Methods 0.000 description 18
- 239000000463 material Substances 0.000 description 17
- 239000004642 Polyimide Substances 0.000 description 10
- 229920001721 polyimide Polymers 0.000 description 10
- 239000011159 matrix material Substances 0.000 description 9
- 239000012212 insulator Substances 0.000 description 7
- 239000002245 particle Substances 0.000 description 7
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 6
- 239000004020 conductor Substances 0.000 description 6
- 230000000694 effects Effects 0.000 description 5
- 239000011521 glass Substances 0.000 description 5
- 229920000139 polyethylene terephthalate Polymers 0.000 description 5
- 239000005020 polyethylene terephthalate Substances 0.000 description 5
- 239000000853 adhesive Substances 0.000 description 4
- 230000001070 adhesive effect Effects 0.000 description 4
- 230000008859 change Effects 0.000 description 4
- 238000004720 dielectrophoresis Methods 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- -1 polyethylene terephthalate Polymers 0.000 description 4
- 229910052814 silicon oxide Inorganic materials 0.000 description 4
- 230000008901 benefit Effects 0.000 description 3
- 230000005672 electromagnetic field Effects 0.000 description 3
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 230000006835 compression Effects 0.000 description 2
- 238000007906 compression Methods 0.000 description 2
- 239000004205 dimethyl polysiloxane Substances 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000009413 insulation Methods 0.000 description 2
- 229910052750 molybdenum Inorganic materials 0.000 description 2
- 239000011733 molybdenum Substances 0.000 description 2
- 238000000206 photolithography Methods 0.000 description 2
- 229920000435 poly(dimethylsiloxane) Polymers 0.000 description 2
- 239000011112 polyethylene naphthalate Substances 0.000 description 2
- 239000002861 polymer material Substances 0.000 description 2
- 239000002096 quantum dot Substances 0.000 description 2
- 239000002356 single layer Substances 0.000 description 2
- 239000012780 transparent material Substances 0.000 description 2
- 230000000007 visual effect Effects 0.000 description 2
- JMASRVWKEDWRBT-UHFFFAOYSA-N Gallium nitride Chemical compound [Ga]#N JMASRVWKEDWRBT-UHFFFAOYSA-N 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000001312 dry etching Methods 0.000 description 1
- 238000010292 electrical insulation Methods 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 238000007667 floating Methods 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 1
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000002105 nanoparticle Substances 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- 238000002161 passivation Methods 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 230000010287 polarization Effects 0.000 description 1
- 229920003207 poly(ethylene-2,6-naphthalate) Polymers 0.000 description 1
- 229920006264 polyurethane film Polymers 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000007639 printing Methods 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 238000002310 reflectometry Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
- 238000001039 wet etching Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/005—Processes
- H01L33/0095—Post-treatment of devices, e.g. annealing, recrystallisation or short-circuit elimination
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/36—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
- H01L33/38—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes with a particular shape
- H01L33/382—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes with a particular shape the electrode extending partially in or entirely through the semiconductor body
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L24/00—Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
- H01L24/80—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
- H01L24/81—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L24/00—Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
- H01L24/80—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
- H01L24/83—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L24/00—Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
- H01L24/93—Batch processes
- H01L24/95—Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L27/00—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
- H01L27/15—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission
- H01L27/153—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission in a repetitive configuration, e.g. LED bars
- H01L27/156—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission in a repetitive configuration, e.g. LED bars two-dimensional arrays
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/005—Processes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/02—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
- H01L33/20—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular shape, e.g. curved or truncated substrate
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/48—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
- H01L33/62—Arrangements for conducting electric current to or from the semiconductor body, e.g. lead-frames, wire-bonds or solder balls
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/683—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
- H01L21/6835—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2221/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
- H01L2221/67—Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere
- H01L2221/683—Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping
- H01L2221/68304—Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
- H01L2221/68368—Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support used in a transfer process involving at least two transfer steps, i.e. including an intermediate handle substrate
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/10—Bump connectors; Manufacturing methods related thereto
- H01L2224/12—Structure, shape, material or disposition of the bump connectors prior to the connecting process
- H01L2224/14—Structure, shape, material or disposition of the bump connectors prior to the connecting process of a plurality of bump connectors
- H01L2224/1401—Structure
- H01L2224/1403—Bump connectors having different sizes, e.g. different diameters, heights or widths
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/10—Bump connectors; Manufacturing methods related thereto
- H01L2224/15—Structure, shape, material or disposition of the bump connectors after the connecting process
- H01L2224/16—Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
- H01L2224/161—Disposition
- H01L2224/16151—Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
- H01L2224/16221—Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
- H01L2224/16225—Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/26—Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
- H01L2224/31—Structure, shape, material or disposition of the layer connectors after the connecting process
- H01L2224/32—Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
- H01L2224/321—Disposition
- H01L2224/32151—Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
- H01L2224/32221—Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
- H01L2224/32225—Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/73—Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
- H01L2224/732—Location after the connecting process
- H01L2224/73201—Location after the connecting process on the same surface
- H01L2224/73203—Bump and layer connectors
- H01L2224/73204—Bump and layer connectors the bump connector being embedded into the layer connector
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/80—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
- H01L2224/81—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
- H01L2224/81001—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector involving a temporary auxiliary member not forming part of the bonding apparatus
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/80—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
- H01L2224/81—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
- H01L2224/8119—Arrangement of the bump connectors prior to mounting
- H01L2224/81191—Arrangement of the bump connectors prior to mounting wherein the bump connectors are disposed only on the semiconductor or solid-state body
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/80—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
- H01L2224/83—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
- H01L2224/83001—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector involving a temporary auxiliary member not forming part of the bonding apparatus
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/80—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
- H01L2224/83—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
- H01L2224/831—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector the layer connector being supplied to the parts to be connected in the bonding apparatus
- H01L2224/83101—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector the layer connector being supplied to the parts to be connected in the bonding apparatus as prepeg comprising a layer connector, e.g. provided in an insulating plate member
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/80—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
- H01L2224/83—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
- H01L2224/8319—Arrangement of the layer connectors prior to mounting
- H01L2224/83192—Arrangement of the layer connectors prior to mounting wherein the layer connectors are disposed only on another item or body to be connected to the semiconductor or solid-state body
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/80—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
- H01L2224/83—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
- H01L2224/838—Bonding techniques
- H01L2224/8385—Bonding techniques using a polymer adhesive, e.g. an adhesive based on silicone, epoxy, polyimide, polyester
- H01L2224/83851—Bonding techniques using a polymer adhesive, e.g. an adhesive based on silicone, epoxy, polyimide, polyester being an anisotropic conductive adhesive
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/93—Batch processes
- H01L2224/95—Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/93—Batch processes
- H01L2224/95—Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
- H01L2224/95001—Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips involving a temporary auxiliary member not forming part of the bonding apparatus, e.g. removable or sacrificial coating, film or substrate
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/93—Batch processes
- H01L2224/95—Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
- H01L2224/95053—Bonding environment
- H01L2224/95085—Bonding environment being a liquid, e.g. for fluidic self-assembly
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/93—Batch processes
- H01L2224/95—Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
- H01L2224/9512—Aligning the plurality of semiconductor or solid-state bodies
- H01L2224/95121—Active alignment, i.e. by apparatus steering
- H01L2224/95133—Active alignment, i.e. by apparatus steering by applying an electromagnetic field
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/93—Batch processes
- H01L2224/95—Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
- H01L2224/9512—Aligning the plurality of semiconductor or solid-state bodies
- H01L2224/95143—Passive alignment, i.e. self alignment, e.g. using surface energy, chemical reactions, thermal equilibrium
- H01L2224/95144—Magnetic alignment, i.e. using permanent magnetic parts in the semiconductor or solid-state body
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L24/00—Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
- H01L24/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L24/10—Bump connectors ; Manufacturing methods related thereto
- H01L24/12—Structure, shape, material or disposition of the bump connectors prior to the connecting process
- H01L24/14—Structure, shape, material or disposition of the bump connectors prior to the connecting process of a plurality of bump connectors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L24/00—Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
- H01L24/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L24/10—Bump connectors ; Manufacturing methods related thereto
- H01L24/15—Structure, shape, material or disposition of the bump connectors after the connecting process
- H01L24/16—Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L24/00—Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
- H01L24/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L24/26—Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
- H01L24/31—Structure, shape, material or disposition of the layer connectors after the connecting process
- H01L24/32—Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L24/00—Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
- H01L24/73—Means for bonding being of different types provided for in two or more of groups H01L24/10, H01L24/18, H01L24/26, H01L24/34, H01L24/42, H01L24/50, H01L24/63, H01L24/71
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L25/00—Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
- H01L25/03—Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
- H01L25/04—Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
- H01L25/075—Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00
- H01L25/0753—Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00 the devices being arranged next to each other
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/10—Details of semiconductor or other solid state devices to be connected
- H01L2924/11—Device type
- H01L2924/12—Passive devices, e.g. 2 terminal devices
- H01L2924/1204—Optical Diode
- H01L2924/12041—LED
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/15—Details of package parts other than the semiconductor or other solid state devices to be connected
- H01L2924/181—Encapsulation
- H01L2924/1815—Shape
- H01L2924/1816—Exposing the passive side of the semiconductor or solid-state body
- H01L2924/18161—Exposing the passive side of the semiconductor or solid-state body of a flip chip
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2933/00—Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
- H01L2933/0008—Processes
- H01L2933/0016—Processes relating to electrodes
Definitions
- the present invention is applicable to the technical field related to a display device, and relates to, for example, a display device using a micro LED (Light Emitting Diode) and a method of manufacturing the same.
- a micro LED Light Emitting Diode
- LCD Liquid Crystal Display
- OLED Organic Light Emitting Diodes
- LED Light Emitting Diode
- GaAsP compound semiconductor in 1962 has been used as a light source for display images in electronic devices including information communication devices. Accordingly, a method for solving the above-described problems by implementing a display using the semiconductor light emitting device may be proposed.
- the semiconductor light emitting device has various advantages such as long life, low power consumption, excellent initial driving characteristics, and high vibration resistance.
- the present invention proposes a new type of semiconductor light emitting device and a substrate structure in which semiconductor light emitting devices emitting various colors can be quickly and accurately assembled in a substrate.
- An object of an embodiment of the present invention is to provide a display device and a manufacturing method using a semiconductor light emitting device.
- Another object of an embodiment of the present invention is to provide a display device capable of improving the assembly speed and a method of manufacturing the same when assembling semiconductor light emitting devices of various colors on a substrate.
- Another object of an embodiment of the present invention is to solve various problems not mentioned herein. Those skilled in the art can understand through the entire purpose of the specification and drawings.
- a display device using a semiconductor light emitting device for achieving the above object includes: a substrate; An assembly electrode positioned on the substrate; An insulating layer positioned on the assembly electrode; A partition wall positioned on the insulating layer; A first assembly groove defined by the partition wall; And a first semiconductor light emitting device that is assembled in the first assembly groove and has a bump portion in a lateral direction of the assembly surface, wherein the partition wall surrounding the first assembly groove is inside the first assembly groove. It characterized in that it comprises a protrusion facing in the direction.
- the shortest width X1 of the first assembly groove is equal to or greater than the shortest width Y1 of the first semiconductor light emitting device
- the longest width X2 of the first assembly groove is the longest width Y2 of the first semiconductor light emitting device
- Y2 is characterized in that greater than the X1.
- the assembly surface of the first semiconductor light emitting device excluding the bump portion is characterized in that the circular shape.
- the shape of the first assembly groove defined by the partition wall excluding the protrusion is characterized in that it is circular.
- the number of bump portions of the first semiconductor light emitting device is the same as the number of the protrusions of the partition wall.
- it is characterized in that it further comprises a second semiconductor light emitting device and a second assembly groove in which the second semiconductor light emitting device is assembled.
- the second semiconductor light emitting device has a different shape from the first semiconductor light emitting device, and the second assembly groove corresponds to the shape of the second semiconductor light emitting device.
- the first semiconductor light emitting device emits light of a first color
- the second semiconductor light emitting device emits light of a second color different from the first color
- the first semiconductor light-emitting device and the second semiconductor light-emitting device include a magnetic layer.
- a method of manufacturing a display device using a plurality of semiconductor light emitting devices includes forming a plurality of semiconductor light emitting devices having different shapes on individual growth substrates; Preparing an assembly substrate having assembly grooves for assembly of the semiconductor light emitting devices; Separating the semiconductor light emitting devices of the growth substrate and introducing them into a chamber filled with a fluid; And placing the assembly substrate on the upper surface of the chamber, and assembling the semiconductor light emitting element into the assembly groove of the substrate using a magnetic field and an electric field, wherein at least one of the semiconductor light emitting elements It characterized in that it has at least one bump (bump) portion in the lateral direction of the surface to be assembled.
- bump bump
- the first assembly groove in which the semiconductor light emitting device having the bump portion is assembled is defined by a partition wall surrounding the first assembly groove, and the partition wall is positioned to protrude in the inner direction of the first assembly groove. It characterized in that it comprises at least one protrusion.
- the semiconductor light emitting devices include a magnetic layer, and in the assembling step, an assembly device including a magnetic material is positioned on the rear surface of the substrate where the assembly grooves are not located, and occurs according to the movement of the assembly device. And contacting the semiconductor light emitting devices with the assembly grooves of the substrate by means of a magnetic field.
- the movement of the assembly device includes a rotational motion
- the contacting step includes rotating the semiconductor light emitting devices in the assembly groove of the substrate according to the rotational motion of the assembly device.
- it includes transferring the semiconductor light emitting devices assembled on the assembly substrate to a transfer substrate, and transferring the semiconductor light emitting devices transferred to the transfer substrate to a wiring board.
- transferring to an existing wiring board includes forming a wiring electrode and a conductive adhesive layer on the wiring board, and attaching the semiconductor light emitting device of the transfer substrate to the conductive adhesive layer of the wiring board.
- the semiconductor light emitting devices are characterized in that they are LEDs (Micro-LEDs) having a size of a micrometer unit.
- a display device and a manufacturing method using a semiconductor light emitting device can be provided.
- the semiconductor light emitting devices are quickly and accurately placed on the substrate without fear of color mixing. Can be assembled.
- FIG. 1 is a conceptual diagram showing an embodiment of a display device using a semiconductor light emitting device of the present invention.
- FIG. 2 is a partially enlarged view of part A of FIG. 1.
- 3A and 3B are cross-sectional views taken along lines B-B and C-C of FIG. 2.
- FIG. 4 is a conceptual diagram illustrating the flip chip type semiconductor light emitting device of FIG. 3.
- 5A to 5C are conceptual diagrams illustrating various forms of implementing colors in relation to a flip chip type semiconductor light emitting device.
- FIG. 6 is a cross-sectional view showing a method of manufacturing a display device using the semiconductor light emitting device of the present invention.
- FIG. 7 is a perspective view showing another embodiment of a display device using the semiconductor light emitting device of the present invention.
- FIG. 8 is a cross-sectional view taken along line D-D of FIG. 7.
- FIG. 9 is a conceptual diagram illustrating the vertical semiconductor light emitting device of FIG. 8.
- FIG. 10 is a diagram illustrating an embodiment of a method of assembling a semiconductor light emitting device to a substrate by a self-assembly process.
- FIG. 11 is an enlarged view of portion E of FIG. 10.
- FIG. 12 is a diagram schematically illustrating a method of manufacturing a display device using a semiconductor light emitting device.
- FIG. 13 is a diagram illustrating a general substrate structure and shapes of semiconductor light emitting devices for simultaneously assembling semiconductor light emitting devices having a plurality of shapes on a substrate.
- FIG. 14 is a view showing a substrate structure and shapes of semiconductor light emitting devices according to the present invention for simultaneously assembling semiconductor light emitting devices having a plurality of shapes on a substrate.
- 15 is a diagram specifically showing a substrate structure and a shape of a semiconductor light emitting device according to the present invention.
- FIG. 16 is a view showing a method of manufacturing the substrate structure of FIG. 15 and a state in which the semiconductor light emitting device of the present invention is assembled to the substrate.
- 17 is a view showing the effect of the assembly speed of the present invention compared to the prior art.
- an element such as a layer, region or substrate is referred to as being “on” another component, it will be understood that it may exist directly on the other element or there may be intermediate elements between them. There will be.
- the display device described herein is a concept including all display devices that display information as a unit pixel or a set of unit pixels. Therefore, it can be applied to parts, not limited to finished products.
- a panel corresponding to a part of a digital TV is also independently a display device in the present specification.
- Finished products include mobile phones, smart phones, laptop computers, digital broadcasting terminals, personal digital assistants (PDAs), portable multimedia players (PMPs), navigation, Slate PC, Tablet PC, and Ultra. This could include books, digital TVs, and desktop computers.
- the semiconductor light emitting device mentioned in this specification is a concept including LEDs, micro LEDs, and the like, and may be used interchangeably.
- FIG. 1 is a conceptual diagram showing an embodiment of a display device using a semiconductor light emitting device of the present invention.
- information processed by a controller (not shown) of the display apparatus 100 may be displayed using a flexible display.
- Flexible displays include displays that can be bent, or bendable, or twistable, or foldable, or rollable by external force, for example.
- the flexible display may be a display manufactured on a thin and flexible substrate that can be bent, bent, or foldable or rolled like paper while maintaining the display characteristics of a conventional flat panel display.
- the display area of the flexible display becomes a flat surface.
- the display area may be a curved surface.
- the information displayed in the second state may be visual information output on a curved surface. This visual information is implemented by independently controlling light emission of sub-pixels arranged in a matrix form.
- the unit pixel means, for example, a minimum unit for implementing one color.
- the unit pixel of the flexible display may be implemented by a semiconductor light emitting device.
- a light emitting diode LED
- the light emitting diode is formed in a small size, and through this, it can serve as a unit pixel even in the second state.
- FIG. 2 is a partially enlarged view of part A of FIG. 1.
- 3A and 3B are cross-sectional views taken along lines B-B and C-C of FIG. 2.
- FIG. 4 is a conceptual diagram illustrating the flip chip type semiconductor light emitting device of FIG. 3.
- 5A to 5C are conceptual diagrams illustrating various forms of implementing colors in relation to a flip chip type semiconductor light emitting device.
- a display device 100 using a passive matrix (PM) type semiconductor light emitting device is illustrated as a display device 100 using a semiconductor light emitting device.
- PM passive matrix
- AM active matrix
- the display device 100 shown in FIG. 1 includes a substrate 110, a first electrode 120, a conductive adhesive layer 130, a second electrode 140, and at least one semiconductor light emitting device as shown in FIG. Includes 150.
- the substrate 110 may be a flexible substrate.
- the substrate 110 may include glass or polyimide (PI).
- PI polyimide
- any material such as polyethylene naphthalate (PEN) and polyethylene terephthalate (PET) may be used as long as it has insulation and is flexible.
- the substrate 110 may be a transparent material or an opaque material.
- the substrate 110 may be a wiring board on which the first electrode 120 is disposed, and thus the first electrode 120 may be positioned on the substrate 110.
- the insulating layer 160 may be disposed on the substrate 110 on which the first electrode 120 is located, and the auxiliary electrode 170 may be disposed on the insulating layer 160.
- a state in which the insulating layer 160 is stacked on the substrate 110 may be a single wiring board.
- the insulating layer 160 is made of an insulating and flexible material such as polyimide (PI), PET, and PEN, and may be formed integrally with the substrate 110 to form a single substrate.
- the auxiliary electrode 170 is an electrode that electrically connects the first electrode 120 and the semiconductor light emitting device 150, and is positioned on the insulating layer 160 and is disposed corresponding to the position of the first electrode 120.
- the auxiliary electrode 170 has a dot shape and may be electrically connected to the first electrode 120 through an electrode hole 171 penetrating through the insulating layer 160.
- the electrode hole 171 may be formed by filling a via hole with a conductive material.
- a conductive adhesive layer 130 is formed on one surface of the insulating layer 160, but the present invention is not limited thereto.
- a layer performing a specific function is formed between the insulating layer 160 and the conductive adhesive layer 130, or a structure in which the conductive adhesive layer 130 is disposed on the substrate 110 without the insulating layer 160 It is also possible.
- the conductive adhesive layer 130 may serve as an insulating layer.
- the conductive adhesive layer 130 may be a layer having adhesiveness and conductivity, and for this purpose, a material having conductivity and a material having adhesiveness may be mixed in the conductive adhesive layer 130.
- the conductive adhesive layer 130 has ductility, thereby enabling a flexible function in the display device.
- the conductive adhesive layer 130 may be an anisotropic conductive film (ACF), an anisotropic conductive paste, a solution containing conductive particles, or the like.
- ACF anisotropic conductive film
- the conductive adhesive layer 130 allows electrical interconnection in the Z direction passing through the thickness, but may be configured as a layer having electrical insulation in the horizontal X-Y direction. Therefore, the conductive adhesive layer 130 may be referred to as a Z-axis conductive layer (however, hereinafter referred to as a'conductive adhesive layer').
- the anisotropic conductive film is a film in which an anisotropic conductive medium is mixed with an insulating base member, and when heat and pressure are applied, only a specific portion becomes conductive by the anisotropic conductive medium.
- heat and pressure are applied to the anisotropic conductive film, but other methods may be applied in order for the anisotropic conductive film to partially have conductivity.
- Other methods described above may be, for example, that only one of the above heat and pressure is applied or UV cured or the like.
- the anisotropic conductive medium may be, for example, conductive balls or conductive particles.
- the anisotropic conductive film is a film in which conductive balls are mixed with an insulating base member, and when heat and pressure are applied, only a specific portion becomes conductive by the conductive balls.
- a core of a conductive material may contain a plurality of particles covered by an insulating film made of a polymer material, and in this case, a portion to which heat and pressure is applied is destroyed by the insulating film and becomes conductive by the core. .
- the shape of the core may be deformed to form a layer in contact with each other in the thickness direction of the film.
- heat and pressure are applied to the anisotropic conductive film as a whole, and an electrical connection in the Z-axis direction is partially formed due to a height difference of a counterpart adhered by the anisotropic conductive film.
- the anisotropic conductive film may contain a plurality of particles coated with a conductive material in an insulating core.
- the part to which heat and pressure are applied is deformed (pressed together) to have conductivity in the thickness direction of the film.
- a conductive material may pass through the insulating base member in the Z-axis direction to have conductivity in the thickness direction of the film. In this case, the conductive material may have a pointed end.
- the anisotropic conductive film may be a fixed array anisotropic conductive film (ACF) in which conductive balls are inserted into one surface of an insulating base member. More specifically, the insulating base member is formed of an adhesive material, and the conductive ball is intensively disposed on the bottom of the insulating base member, and when heat and pressure are applied from the base member, it is deformed together with the conductive ball. Accordingly, it has conductivity in the vertical direction.
- ACF fixed array anisotropic conductive film
- the present invention is not necessarily limited thereto, and the anisotropic conductive film has a form in which conductive balls are randomly mixed in an insulating base member, or consists of a plurality of layers, and a form in which conductive balls are disposed on one layer (double- ACF) etc. are all possible.
- the anisotropic conductive paste is a combination of a paste and a conductive ball, and may be a paste in which conductive balls are mixed with an insulating and adhesive base material.
- the solution containing conductive particles may be a solution containing conductive particles or nanoparticles.
- the second electrode 140 is positioned on the insulating layer 160 to be spaced apart from the auxiliary electrode 170. That is, the conductive adhesive layer 130 is disposed on the insulating layer 160 on which the auxiliary electrode 170 and the second electrode 140 are located.
- the semiconductor light emitting device 150 After forming the conductive adhesive layer 130 with the auxiliary electrode 170 and the second electrode 140 positioned on the insulating layer 160, the semiconductor light emitting device 150 is connected in a flip chip form by applying heat and pressure. Then, the semiconductor light emitting device 150 is electrically connected to the first electrode 120 and the second electrode 140.
- the semiconductor light emitting device may be a flip chip type light emitting device.
- the semiconductor light emitting device includes a p-type electrode 156, a p-type semiconductor layer 155 on which the p-type electrode 156 is formed, an active layer 154 formed on the p-type semiconductor layer 155, and an active layer ( And an n-type semiconductor layer 153 formed on 154) and an n-type electrode 152 disposed horizontally apart from the p-type electrode 156 on the n-type semiconductor layer 153.
- the p-type electrode 156 may be electrically connected by the auxiliary electrode 170 and the conductive adhesive layer 130 shown in FIG. 3, and the n-type electrode 152 is electrically connected to the second electrode 140. Can be connected to.
- the auxiliary electrode 170 is formed to be elongated in one direction, so that one auxiliary electrode may be electrically connected to the plurality of semiconductor light emitting devices 150.
- one auxiliary electrode may be electrically connected to the plurality of semiconductor light emitting devices 150.
- p-type electrodes of the left and right semiconductor light emitting devices with the auxiliary electrode as the center may be electrically connected to one auxiliary electrode.
- the semiconductor light emitting device 150 is pressed into the conductive adhesive layer 130 by heat and pressure, through which the portion between the p-type electrode 156 and the auxiliary electrode 170 of the semiconductor light emitting device 150 And, only a portion between the n-type electrode 152 and the second electrode 140 of the semiconductor light emitting device 150 has conductivity, and the remaining portion does not have conductivity because there is no press-fitting of the semiconductor light emitting device.
- the conductive adhesive layer 130 not only mutually couples the semiconductor light emitting device 150 and the auxiliary electrode 170 and between the semiconductor light emitting device 150 and the second electrode 140, but also forms an electrical connection.
- the plurality of semiconductor light emitting devices 150 constitute a light emitting device array, and a phosphor layer 180 is formed in the light emitting device array.
- the light emitting device array may include a plurality of semiconductor light emitting devices having different luminance values.
- Each semiconductor light emitting device 150 constitutes a unit pixel, and is electrically connected to the first electrode 120.
- the first electrode 120 may be plural, the semiconductor light emitting elements are arranged in rows, for example, and the semiconductor light emitting elements of each row may be electrically connected to any one of the plurality of first electrodes.
- semiconductor light emitting devices are connected in a flip chip form, semiconductor light emitting devices grown on a transparent dielectric substrate can be used. Further, the semiconductor light emitting devices may be, for example, nitride semiconductor light emitting devices. Since the semiconductor light emitting device 150 has excellent luminance, individual unit pixels can be configured with a small size.
- a partition wall 190 may be formed between the semiconductor light emitting devices 150.
- the partition wall 190 may serve to separate individual unit pixels from each other, and may be integrally formed with the conductive adhesive layer 130.
- the base member of the anisotropic conductive film may form the partition wall.
- the partition wall 190 may have reflective properties and a contrast ratio may be increased even without a separate black insulator.
- a reflective partition wall may be separately provided as the partition wall 190.
- the partition wall 190 may include a black or white insulator depending on the purpose of the display device. When a partition wall of a white insulator is used, it is possible to increase reflectivity, and when a partition wall of a black insulator is used, it is possible to increase the contrast while having reflective characteristics.
- the phosphor layer 180 may be located on the outer surface of the semiconductor light emitting device 150.
- the semiconductor light emitting device 150 is a blue semiconductor light emitting device emitting blue (B) light
- the phosphor layer 180 performs a function of converting the blue (B) light into a color of a unit pixel.
- the phosphor layer 180 may be a red phosphor 181 or a green phosphor 182 constituting individual pixels.
- a red phosphor 181 capable of converting blue light into red (R) light may be stacked on a blue semiconductor light emitting device, and at a position forming a green unit pixel, blue A green phosphor 182 capable of converting blue light into green (G) light may be stacked on the semiconductor light emitting device.
- a blue semiconductor light emitting device may be used alone in a portion of the blue unit pixel.
- unit pixels of red (R), green (G), and blue (B) may form one pixel.
- a phosphor of one color may be stacked along each line of the first electrode 120. Accordingly, one line in the first electrode 120 may be an electrode that controls one color. That is, along the second electrode 140, red (R), green (G), and blue (B) may be sequentially disposed, and a unit pixel may be implemented through this.
- unit pixels of red (R), green (G), and blue (B) can be implemented by combining the semiconductor light emitting device 150 and the quantum dot (QD) instead of the phosphor. have.
- a black matrix 191 may be disposed between each of the phosphor layers in order to improve contrast. That is, the black matrix 191 may improve contrast of the contrast.
- the present invention is not necessarily limited thereto, and other structures for implementing blue, red, and green colors may be applied.
- each of the semiconductor light emitting devices 150 is made of gallium nitride (GaN) as a main material, and indium (In) and/or aluminum (Al) are added together to emit various light including blue. It can be implemented as a light emitting device.
- GaN gallium nitride
- Al aluminum
- the semiconductor light emitting device 150 may be a red, green, and blue semiconductor light emitting device to form a sub-pixel, respectively.
- red, green, and blue semiconductor light emitting devices R, G, B
- R, G, B red, green, and blue semiconductor light emitting devices
- unit pixels of red, green, and blue by red, green, and blue semiconductor light emitting devices They form one pixel, through which a full color display can be implemented.
- the semiconductor light emitting device 150a may include a white light emitting device W in which a yellow phosphor layer is provided for each individual device.
- a red phosphor layer 181, a green phosphor layer 182, and a blue phosphor layer 183 may be provided on the white light emitting device W.
- a unit pixel may be formed by using a color filter in which red, green, and blue are repeated on the white light emitting device W.
- a structure in which a red phosphor layer 184, a green phosphor layer 185, and a blue phosphor layer 186 are provided on the ultraviolet light emitting device 150b is also possible.
- the semiconductor light emitting device can be used not only for visible light but also for ultraviolet (UV) light, and the ultraviolet (UV) can be extended in the form of a semiconductor light emitting device that can be used as an excitation source of the upper phosphor. .
- the semiconductor light emitting device is positioned on the conductive adhesive layer to constitute a unit pixel in the display device. Since the semiconductor light emitting device has excellent luminance, individual unit pixels can be configured even with a small size.
- the individual semiconductor light emitting device 150 may have, for example, a side length of 80 ⁇ m or less, and may be a rectangular or square device. In the case of a rectangle, the size may be 20 X 80 ⁇ m or less.
- the distance between the semiconductor light emitting devices is relatively large enough.
- the display device using the semiconductor light emitting device described above can be manufactured by a new type of manufacturing method. Hereinafter, the manufacturing method will be described with reference to FIG. 6.
- FIG. 6 is a cross-sectional view showing a method of manufacturing a display device using the semiconductor light emitting device of the present invention.
- a conductive adhesive layer 130 is formed on the insulating layer 160 on which the auxiliary electrode 170 and the second electrode 140 are positioned.
- An insulating layer 160 is stacked on the wiring board 110, and a first electrode 120, an auxiliary electrode 170, and a second electrode 140 are disposed on the wiring board 110.
- the first electrode 120 and the second electrode 140 may be disposed in a mutually orthogonal direction.
- the wiring board 110 and the insulating layer 160 may each include glass or polyimide (PI).
- the conductive adhesive layer 130 may be implemented by, for example, an anisotropic conductive film, and for this purpose, an anisotropic conductive film may be applied to a substrate on which the insulating layer 160 is positioned.
- a temporary substrate 112 corresponding to the positions of the auxiliary electrodes 170 and the second electrodes 140 and on which a plurality of semiconductor light emitting elements 150 constituting individual pixels are positioned is provided, and the semiconductor light emitting element 150 ) Is disposed to face the auxiliary electrode 170 and the second electrode 140.
- the temporary substrate 112 is a growth substrate on which the semiconductor light emitting device 150 is grown, and may be a spire substrate or a silicon substrate.
- the semiconductor light emitting device When the semiconductor light emitting device is formed in units of a wafer, it can be effectively used in a display device by having a gap and a size capable of forming a display device.
- the wiring board and the temporary board 112 are thermally compressed.
- the wiring board and the temporary board 112 may be thermally compressed by applying an ACF press head.
- the wiring board and the temporary board 112 are bonded by the thermal compression. Due to the property of the anisotropic conductive film having conductivity by thermal compression, only the portion between the semiconductor light emitting device 150 and the auxiliary electrode 170 and the second electrode 140 has conductivity, through which electrodes and semiconductor light emission The device 150 may be electrically connected. In this case, the semiconductor light emitting device 150 is inserted into the anisotropic conductive film, and a partition wall may be formed between the semiconductor light emitting devices 150 through this.
- the temporary substrate 112 is removed.
- the temporary substrate 112 may be removed using a laser lift-off method (LLO) or a chemical lift-off method (CLO).
- LLO laser lift-off method
- CLO chemical lift-off method
- a transparent insulating layer (not shown) may be formed by coating silicon oxide (SiOx) or the like on the wiring board to which the semiconductor light emitting device 150 is bonded.
- the semiconductor light-emitting device 150 is a blue semiconductor light-emitting device that emits blue (B) light, and a red or green phosphor for converting the blue (B) light into the color of a unit pixel emits the blue semiconductor light.
- a layer can be formed on one side of the device.
- the manufacturing method or structure of a display device using the semiconductor light emitting device described above may be modified in various forms.
- a vertical semiconductor light emitting device may also be applied to the display device described above.
- FIG. 7 is a perspective view illustrating another embodiment of a display device using the semiconductor light emitting device of the present invention
- FIG. 8 is a cross-sectional view taken along line DD of FIG. 7
- FIG. 9 is a vertical semiconductor light emitting device of FIG. It is a conceptual diagram.
- the display device may be a display device using a passive matrix (PM) type vertical semiconductor light emitting device.
- PM passive matrix
- the display device includes a substrate 210, a first electrode 220, a conductive adhesive layer 230, a second electrode 240, and at least one semiconductor light emitting device 250.
- the substrate 210 is a wiring substrate on which the first electrode 220 is disposed, and may include polyimide (PI) to implement a flexible display device.
- PI polyimide
- any material that has insulation and is flexible may be used.
- the first electrode 220 is positioned on the substrate 210 and may be formed as an electrode having a long bar shape in one direction.
- the first electrode 220 may be formed to serve as a data electrode.
- the conductive adhesive layer 230 is formed on the substrate 210 on which the first electrode 220 is located.
- the conductive adhesive layer 230 is a solution containing anisotropy conductive film (ACF), anisotropic conductive paste, and conductive particles. ), etc.
- ACF anisotropy conductive film
- anisotropic conductive paste anisotropic conductive paste
- conductive particles conductive particles.
- the semiconductor light emitting element 250 is connected by applying heat and pressure to the semiconductor light emitting element 250. It is electrically connected to the electrode 220.
- the semiconductor light emitting device 250 is preferably disposed to be positioned on the first electrode 220.
- the electrical connection is created because the anisotropic conductive film partially has conductivity in the thickness direction when heat and pressure are applied. Accordingly, in the anisotropic conductive film, it is divided into a part having conductivity and a part not having conductivity in the thickness direction.
- the conductive adhesive layer 230 implements electrical connection as well as mechanical coupling between the semiconductor light emitting device 250 and the first electrode 220.
- the semiconductor light emitting device 250 is positioned on the conductive adhesive layer 230, thereby configuring individual pixels in the display device. Since the semiconductor light emitting device 250 has excellent luminance, individual unit pixels can be configured with a small size.
- the individual semiconductor light emitting device 250 may have, for example, a side length of 80 ⁇ m or less, and may be a rectangular or square device. In the case of a rectangle, for example, it may have a size of 20 X 80 ⁇ m or less.
- the semiconductor light emitting device 250 may have a vertical structure.
- a plurality of second electrodes 240 are disposed between the vertical semiconductor light emitting devices in a direction crossing the length direction of the first electrode 220 and electrically connected to the vertical semiconductor light emitting device 250.
- the vertical semiconductor light emitting device 250 is formed on the p-type electrode 256, the p-type semiconductor layer 255 formed on the p-type electrode 256, and the p-type semiconductor layer 255. And an active layer 254, an n-type semiconductor layer 253 formed on the active layer 254, and an n-type electrode 252 formed on the n-type semiconductor layer 253.
- the p-type electrode 256 located at the bottom may be electrically connected by the first electrode 220 and the conductive adhesive layer 230, and the n-type electrode 252 located at the top is a second electrode 240 to be described later. ) And can be electrically connected.
- the vertical semiconductor light emitting device 250 has a great advantage of reducing a chip size since electrodes can be arranged up and down.
- a phosphor layer 280 may be formed on one surface of the semiconductor light emitting device 250.
- the semiconductor light emitting device 250 is a blue semiconductor light emitting device 251 that emits blue (B) light, and a phosphor layer 280 for converting the blue (B) light into a color of a unit pixel is provided.
- the phosphor layer 280 may be a red phosphor 281 and a green phosphor 282 constituting individual pixels.
- a red phosphor 281 capable of converting blue light into red (R) light may be stacked on a blue semiconductor light emitting device at a position constituting a red unit pixel, and a blue phosphor 281 may be stacked at a position constituting the green unit pixel.
- a green phosphor 282 capable of converting blue light into green (G) light may be stacked on the semiconductor light emitting device.
- only a blue semiconductor light emitting device may be used alone in a portion of the blue unit pixel. In this case, unit pixels of red (R), green (G), and blue (B) may form one pixel.
- the present invention is not necessarily limited thereto, and other structures for implementing blue, red, and green colors may be applied as described above in a display device to which a flip chip type light emitting device is applied.
- the second electrode 240 is positioned between the semiconductor light emitting devices 250 and is electrically connected to the semiconductor light emitting devices 250.
- the semiconductor light emitting devices 250 may be arranged in a plurality of rows, and the second electrode 240 may be located between the rows of the semiconductor light emitting devices 250.
- the second electrode 240 may be positioned between the semiconductor light emitting devices 250.
- the second electrode 240 may be formed as a long bar-shaped electrode in one direction, and may be disposed in a direction perpendicular to the first electrode.
- the second electrode 240 and the semiconductor light emitting device 250 may be electrically connected by a connection electrode protruding from the second electrode 240.
- the connection electrode may be an n-type electrode of the semiconductor light emitting device 250.
- the n-type electrode is formed as an ohmic electrode for ohmic contact, and the second electrode covers at least a portion of the ohmic electrode by printing or vapor deposition. Through this, the second electrode 240 and the n-type electrode of the semiconductor light emitting device 250 may be electrically connected.
- the second electrode 240 may be positioned on the conductive adhesive layer 230.
- a transparent insulating layer (not shown) including silicon oxide (SiOx) or the like may be formed on the substrate 210 on which the semiconductor light emitting device 250 is formed.
- SiOx silicon oxide
- the second electrode 240 is positioned after the transparent insulating layer is formed, the second electrode 240 is positioned on the transparent insulating layer.
- the second electrode 240 may be formed to be spaced apart from the conductive adhesive layer 230 or the transparent insulating layer.
- a transparent electrode such as ITO Indium Tin Oxide
- the ITO material has poor adhesion to the n-type semiconductor layer. have. Accordingly, according to the present invention, by placing the second electrode 240 between the semiconductor light emitting devices 250, there is an advantage in that a transparent electrode such as ITO is not required. Accordingly, the light extraction efficiency can be improved by using the n-type semiconductor layer and a conductive material having good adhesion as a horizontal electrode without being restricted by the selection of a transparent material.
- a partition wall 290 may be positioned between the semiconductor light emitting devices 250. That is, a partition wall 290 may be disposed between the vertical semiconductor light emitting devices 250 to isolate the semiconductor light emitting devices 250 constituting individual pixels. In this case, the partition wall 290 may serve to separate individual unit pixels from each other, and may be integrally formed with the conductive adhesive layer 230. For example, by inserting the semiconductor light emitting device 250 into the anisotropic conductive film, the base member of the anisotropic conductive film may form the partition wall.
- the partition wall 290 may have reflective properties and a contrast ratio may be increased even without a separate black insulator.
- a reflective partition wall may be separately provided.
- the partition wall 290 may include a black or white insulator depending on the purpose of the display device.
- the partition wall 290 is between the vertical semiconductor light emitting element 250 and the second electrode 240. It can be located between. Accordingly, individual unit pixels can be configured with a small size using the semiconductor light emitting device 250, and the distance between the semiconductor light emitting device 250 is relatively large enough, so that the second electrode 240 is connected to the semiconductor light emitting device 250. ), there is an effect of implementing a flexible display device having HD image quality.
- a black matrix 291 may be disposed between each phosphor to improve contrast. That is, the black matrix 291 can improve contrast of light and dark.
- FIG. 10 is a diagram illustrating an embodiment of a method of assembling a semiconductor light emitting device to a substrate by a self-assembly process.
- FIG. 11 is an enlarged view of part E of FIG. 10.
- the semiconductor light emitting device 1050 may be introduced into the chamber 1030 filled with the fluid 1020.
- the assembly substrate 1010 may be disposed on the chamber 1030.
- the assembly substrate 1010 may be introduced into the chamber 1030.
- the direction in which the assembly substrate 1010 is inserted is a direction in which the assembly groove 1011 of the assembly substrate 1010 faces the fluid 1020.
- a pair of electrodes 1012 and 1013 corresponding to each of the semiconductor light emitting devices 1050 to be assembled may be formed on the assembly substrate 1010.
- the electrodes 1012 and 1013 may be implemented as a transparent electrode (ITO), or may be implemented using other general materials.
- the electrodes 1012 and 1013 correspond to assembly electrodes for stably fixing the semiconductor light emitting device 1050 in contact with the assembly grooves 1012 and 1013 by generating an electric field as a voltage is applied.
- an AC voltage may be applied to the electrodes 1012 and 1013, and the semiconductor light emitting device 1050 floating around the electrodes 1012 and 1013 may have a polarity due to dielectric polarization.
- the semiconductor light emitting device 1050 floating around the electrodes 1012 and 1013 may have a polarity due to dielectric polarization.
- it may be moved or fixed in a specific direction by a non-uniform electric field formed around the electrodes 1012 and 1013. This is called dielectrophoresis, and in the self-assembly process of the present invention, the semiconductor light emitting device 1050 can be stably fixed to the assembly groove 1011 by using the dielectrophoresis.
- the distance between the assembly electrodes 1012 and 1013 is, for example, formed smaller than the width of the semiconductor light emitting element 1050 and the diameter of the assembly groove 1011, so that the assembly position of the semiconductor light emitting element 1050 using an electric field Can be fixed more precisely.
- an insulating layer 1014 is formed on the assembly electrodes 1012 and 1013 to protect the electrodes 1012 and 1013 from the fluid 1020 and prevent leakage of current flowing through the assembly electrodes 1012 and 1013 can do.
- the insulating layer 1014 may be formed of a single layer or multiple layers of inorganic or organic insulators such as silica and alumina.
- the insulating layer 1014 may have a minimum thickness for preventing damage to the assembly electrodes 1012 and 1013 when assembling the semiconductor light emitting device 1050, and for stably assembling the semiconductor light emitting device 1050 It can have a maximum thickness.
- a partition wall 1015 may be formed on the insulating layer 1014.
- a partial region of the partition wall 1015 may be positioned above the assembly electrodes 1012 and 1013, and the remaining region may be positioned above the assembly substrate 1010.
- an assembly groove 1011 to which the semiconductor light emitting device 1050 is coupled is formed in the assembly substrate 1010, and a surface on which the assembly groove 1011 is formed is in contact with the fluid 1020. I can.
- the assembly groove 1011 may guide an accurate assembly position of the semiconductor light emitting device 1050.
- the assembly groove 1011 may have a shape and size corresponding to the shape of the semiconductor light emitting device 1050 to be assembled. Accordingly, it is possible to prevent other semiconductor light emitting devices from being assembled in the assembly groove 1011 or from assembling a plurality of semiconductor light emitting devices.
- the depth of the assembly groove 1011 may be formed to be smaller than the vertical height of the semiconductor light emitting device 1050.
- the semiconductor light emitting device 1050 may have a structure protruding between the partition walls 1015, and may easily contact the protrusions of the transfer substrate during a transfer process that may occur after assembly.
- an assembly device 1040 including a magnetic material may move along the assembly substrate 1010.
- the assembly device 1040 may move in contact with the assembly substrate 1010 in order to maximize an area of the magnetic field into the fluid 1020.
- the assembly device 1040 may include a plurality of magnetic materials, or may include a magnetic material having a size corresponding to that of the assembly substrate 1010. In this case, the moving distance of the assembly device 1040 may be limited within a predetermined range.
- the semiconductor light emitting element 1050 in the chamber 1030 can move toward the assembling device 1040 by the magnetic field generated by the assembling device 1040.
- the semiconductor light emitting element 1050 may enter the assembly groove 1011 and contact the assembly substrate 1010 as shown in FIG. 11.
- the semiconductor light emitting device 1050 may include a magnetic layer inside the semiconductor light emitting device so that a self-assembly process can be performed.
- the semiconductor light emitting device 1050 in contact with the assembly substrate 1010 is separated by the movement of the assembly device 1040 Can be prevented.
- FIG. 12 is a diagram schematically illustrating a method of manufacturing a display device using a semiconductor light emitting device.
- semiconductor light emitting devices are formed on a growth substrate (S1210).
- the semiconductor light emitting devices may include a first conductive type semiconductor layer, an active layer, and a second conductive type semiconductor layer.
- a first conductive type electrode formed on the first conductive type semiconductor layer and a second conductive type electrode formed on the second conductive type semiconductor layer may be further included.
- the semiconductor light emitting devices may be either a horizontal type semiconductor light emitting device or a vertical type semiconductor light emitting device, but in the case of a vertical type semiconductor light emitting device, since the first conductive type electrode and the second conductive type electrode face each other, the growth substrate Separating the semiconductor light emitting device in a step of forming a set of conductive electrodes in a subsequent step is added.
- a magnetic layer must be included in the semiconductor light emitting device for the self-assembly process.
- the semiconductor light emitting devices In order to use the semiconductor light emitting devices in a display device, three types of semiconductor light emitting devices that emit red, green, and blue colors are generally required. Since semiconductor light emitting devices emitting one color are formed on one growth substrate, a separate substrate is required for a display device implementing individual unit pixels using the three types of semiconductor light emitting devices. Accordingly, individual semiconductor light emitting devices must be separated from the growth substrate and assembled or transferred to the final substrate.
- the final substrate is a substrate on which a process of forming a wiring electrode for applying a voltage to the semiconductor light emitting device to emit light is performed.
- the semiconductor light emitting devices emitting each color may be transferred to the transfer substrate or the assembly substrate (S1220) and then transferred back to the final substrate.
- the transfer substrate or the assembly substrate serves as a final substrate.
- the method of arranging the semiconductor light emitting device on the transfer substrate or the assembly substrate (S1220) can be roughly divided into three types.
- a method of moving a semiconductor light emitting device from a growth substrate to a transfer substrate by a stamp process refers to a process of separating the semiconductor light emitting device from the growth substrate through the protrusion using a substrate made of a flexible material having protrusions having adhesive force.
- the semiconductor light emitting device of the growth substrate can be selectively separated by adjusting the spacing and arrangement of the protrusions.
- this is a method of assembling a semiconductor light emitting device to an assembly substrate using a self-assembly process (S1222).
- the semiconductor light emitting devices For the self-assembly process, the semiconductor light emitting devices must be separated from the growth substrate and exist individually. Thus, the semiconductor light emitting devices are separated from the growth substrate through a laser lift-off (LLO) process or the like as many as the number of semiconductor light emitting devices required. Thereafter, the semiconductor light emitting devices are dispersed in a fluid and assembled on an assembly substrate using an electromagnetic field.
- LLO laser lift-off
- the self-assembly process may simultaneously assemble each of the semiconductor light emitting devices implementing R, G, and B colors on one assembly substrate, or assemble individual colored semiconductor light emitting devices through individual assembly substrates.
- the semiconductor light emitting devices are placed on an assembly substrate through a self-assembly process, and then the semiconductor light emitting devices are moved to the final substrate through a stamping process.
- the semiconductor light emitting devices are moved to the final substrate through a stamping process.
- it is difficult to implement a large area due to the location of the assembly substrate disposed during the self-assembly process, contact with fluid, and the influence of an electromagnetic field, so after assembling the semiconductor light emitting devices using an assembly substrate of an appropriate area
- a process of transferring multiple times to a final substrate having a large area may be performed by a stamping process.
- a large number of semiconductor light emitting devices are required for a large-area display device, and a self-assembly process is preferable. Furthermore, in order to improve the assembly speed, it may be preferred that semiconductor light emitting devices of each color are simultaneously assembled on one assembly substrate during the self-assembly process. In addition, it may be required to have mutually exclusive structures in order for semiconductor light emitting devices of each color to be assembled at a predetermined specific position on the assembly substrate.
- FIG. 13 is a diagram illustrating a general substrate structure and shapes of semiconductor light emitting devices for simultaneously assembling semiconductor light emitting devices having a plurality of shapes on a substrate.
- FIG. 13(a) shows assembly grooves 1311, 1312, and 1313 corresponding to semiconductor light emitting devices having a plurality of shapes.
- the assembly grooves 1311, 1312 and 1313 are defined by being surrounded by a partition wall 1315.
- 13(b) shows semiconductor light emitting devices 1351, 1352, and 1353 corresponding to the assembly grooves 1311, 1312, and 1313 of FIG. 13(a).
- the circular semiconductor light emitting element 1351 is assembled only in the circular assembly groove 1311, and the square semiconductor light emitting element 1351 is assembled only in the square assembly groove 1313.
- the circular semiconductor light-emitting device 1351 has a continuous symmetry point even if it rotates in the left-right direction with respect to the center point of the circle.
- the circular semiconductor light-emitting device 1351 is located above the circular assembly groove 1311. As long as) is positioned, it can be assembled into the circular assembly groove (1311).
- An equilateral triangle has three vertices, and each vertex has an axis of symmetry in a direction continuous with the center point of the equilateral triangle, so there are three axes of symmetry. That is, the same shape is realized only when the center point of the equilateral triangle is rotated by 120 degrees or 240 degrees.
- the position of the vertex of the semiconductor light emitting device 1351 is equal to the position of the vertex of the equilateral triangle assembly groove 1313 If it is different, it is not assembled immediately and requires a separate location change.
- the semiconductor light emitting device 1352 having a square structure, it has four vertices and an axis of symmetry, and the position of the vertices of the semiconductor light emitting device 1352 is similar to that of the vertex of the square assembly groove 1312. If it is different, it is not assembled immediately and requires a separate location change.
- the semiconductor light emitting devices 1352 and 1353 are simple squares or triangles that are not squares or equilateral triangles, the axis of symmetry may not exist, so the position change for accurately assembling in the assembly groove and the assembly time accordingly may be added. .
- FIG. 14 is a view showing a substrate structure and shapes of semiconductor light emitting devices according to the present invention for simultaneously assembling semiconductor light emitting devices having a plurality of shapes on a substrate.
- Each of the semiconductor light emitting devices emit light of different colors according to their respective shapes.
- FIG. 14(a) shows assembly grooves 1411, 1412, and 1413 corresponding to semiconductor light emitting devices having a plurality of shapes.
- the assembly grooves 1411, 1412, and 1413 are defined by being surrounded by a partition wall 1415.
- FIG. 14(b) shows semiconductor light emitting devices 1451, 1452, and 1453 corresponding to the assembly grooves 1411, 1412, and 1413 of FIG. 14(a).
- the circular semiconductor light emitting device 1451 even if it rotates in the left and right direction with respect to the center point of the circle, it has a continuous symmetry point, and the semiconductor light emitting device 1451 is located at the center point of the circular assembly groove 1411. It is assembled immediately once it is positioned. Therefore, in terms of assembly speed, it is much faster than other types of semiconductor light emitting devices.
- the shape of the semiconductor light emitting device of one color is used as a circle, it is difficult to use the shape of the semiconductor light emitting device of another color to be circular again. This is because even if the size of the circle is different and the assembly grooves corresponding thereto are provided, when self-assembly is simultaneously performed, the semiconductor light emitting device of a small circle can be assembled in the assembly groove of a large circle. In this case, it is difficult to implement RGB as a unit pixel due to the occurrence of mixed colors, and eventually, it is impossible to display a desired color, resulting in a defect.
- the structure of the semiconductor light emitting device is not a circular structure and has a very large number of symmetry axes, for example, even if the structure of the octagonal semiconductor light emitting device, if the structure of the assembly groove in which the semiconductor light emitting devices of different colors are assembled is circular It may be assembled in an assembly groove, or the circular semiconductor light emitting device may be assembled in an octagonal assembly groove.
- the assembly groove 1412 of Fig. 14(a) and the semiconductor light emitting element 1452 of Fig. 14(b) have a structure exclusive to the circular semiconductor light emitting element while maintaining the assembly speed of the circular semiconductor light emitting element as much as possible. Shows.
- the assembly groove 1412 of the present invention is defined by being surrounded by a partition wall 1415, and has a circular shape as a whole, but a part of the partition wall 1415 is the assembly groove 1412 ) Has a protrusion protruding in the inner direction.
- the semiconductor light emitting device 1452 assembled in the assembly groove 1412 of the present invention has a circular shape as a whole, and the side surface of the assembly surface of the semiconductor light emitting device 1452 It has a bump (bump) protruding in the direction.
- the diameter of the circular semiconductor light emitting device 1451 is formed larger than the shortest width of the assembly groove 1412 of the present invention.
- the semiconductor light emitting device 1451 may be formed to be difficult to assemble in the assembly groove 1412 of the present invention.
- the shortest width of the assembly groove 1412 of the present invention means a linear distance from the end of the protrusion protruding in the inner direction of the assembly groove 1412 to the opposite side of the assembly groove 1412.
- the maximum diameter of the semiconductor light emitting device 1452 including the bump portion is formed larger than the diameter of the circular assembly groove 1411, so that the semiconductor light emitting element 1452 is assembled in the circular assembly groove 1411. It can be difficult to form. Accordingly, the two light emitting devices 1451 and 1452 may be assembled only into individual assembly grooves 1411 and 1412 while having mutually exclusive structures.
- the semiconductor light emitting device 1453 having an equilateral triangle structure and the assembly groove 1413 corresponding thereto shown in FIGS. 14A and 14B are merely examples for representing semiconductor light emitting devices having various shapes. Accordingly, the substrate structure and the shape of the semiconductor light emitting device of the present invention are not limited thereto. For example, in order to assemble a semiconductor light emitting device of three shapes corresponding to the three primary RGB colors on one substrate, a circular semiconductor light emitting device, a first circular semiconductor light emitting device having a bump portion on the side, and a second circular semiconductor light emitting device having a bump portion on the side surface. A circular semiconductor light emitting device may be required.
- the semiconductor light emitting devices including the bumps and assembly grooves corresponding thereto may be exclusively assembled by adjusting the longest width and the shortest width of each.
- the reason why circular semiconductor light emitting devices having bump portions are used is that they can be mutually exclusively assembled without having a significant difference from the conventional circular semiconductor light emitting devices in terms of assembly speed. More specific effects for this will be described later in FIG. 17.
- 15 is a diagram specifically showing a substrate structure and a shape of a semiconductor light emitting device according to the present invention.
- an assembly groove 1511 in which a semiconductor light emitting device is assembled is defined by a partition wall 1515.
- the partition wall 1515 includes a protrusion 1516 protruding in the inner direction of the assembly groove 1511.
- the shape of the assembly groove 1511 excluding the protrusion 1516 is circular. Accordingly, the shortest width X1 or the shortest width of the assembly groove 1511 corresponds to a distance between a straight line extending vertically from the protrusion 1516 crosses the opposite surface of the assembly groove 1511.
- the longest width X2 or the longest width of the assembly groove 1511 corresponds to the diameter of the circular shape.
- the semiconductor light emitting device 1550 assembled in the assembly groove 1511 includes a bump portion 1511 protruding in the lateral direction.
- the shape of the semiconductor light emitting device 1550 excluding the bump portion 1551 is circular. Therefore, the shortest width Y1 of the semiconductor light emitting device 1550 corresponds to the diameter of the circular shape of the semiconductor light emitting device 1550, and the longest width Y2 of the semiconductor light emitting device 1550 is perpendicular to the bump portion.
- the extending straight line corresponds to the distance to cross the opposite surface of the semiconductor light emitting device groove 1550.
- the shortest width X1 of the assembly groove 1511 should be equal to or greater than the shortest width Y1 of the semiconductor light emitting device 1550.
- the longest width X2 of the assembly groove 1511 should be equal to or greater than the longest width Y2 of the semiconductor light emitting device 1550.
- the longest width Y2 of the semiconductor light emitting device 1550 should be greater than the shortest width X1 of the assembly groove 1511. For example, if Y2 is less than X1, even if the semiconductor light emitting device 1550 in the assembly groove 1511 is assembled, there is a lot of free space in the assembly groove 1511, and there is a large room for the semiconductor light emitting devices to move in the free space. I can. Accordingly, since the assembly position of the semiconductor light emitting device in the assembly groove is not clearly limited, it is difficult to form the wiring electrode at the correct position during the subsequent wiring process.
- the semiconductor light emitting device 1550 excluding the bump portion 1551 in the assembly groove 1511 is between the shortest width X1 of the assembly groove 1511 Will be located in Therefore, since the assembly position is clearly specified, a subsequent wiring process can be facilitated.
- the semiconductor light emitting device 1550 is assembled in the assembly groove 1511, and rotational motion is possible within the shortest width X1 of the assembly groove 1511.
- the reason why the rotational motion is necessary occurs in the process of assembling the semiconductor light emitting device 1510 into the assembly groove 1511 through self-assembly.
- the semiconductor light emitting device 1550 is assembled with only a slight position change due to rotation of the bump part 1551 It is possible to stably contact the bottom surface of the groove 1511.
- FIG. 15 is a limitation on structural characteristics when viewed from the top when the semiconductor light emitting device 1550 is assembled in the assembly groove 1511, and when viewed in cross section, the bump portion 1551 and the protrusion ( The shape and height of 1516) are not limited by FIG. 15.
- FIG. 16 is a view showing a method of manufacturing the substrate structure of FIG. 15 and a state in which the semiconductor light emitting device of the present invention is assembled to the substrate.
- assembly electrodes 1512 and 1513 are formed on the substrate 1510.
- the substrate 1510 may be a flexible substrate.
- the substrate may include glass or polyimide (PI).
- the assembled electrodes 1512 and 1513 may be implemented as, for example, a transparent electrode (ITO), a single layer of molybdenum or a multilayer structure of molybdenum and aluminum.
- ITO transparent electrode
- assembly electrodes 1512 and 1513 are configured as a pair, causing a voltage difference between the assembly electrodes 1512 and 1513.
- the goal of forming the assembly electrodes 1512 and 1513 is to induce a dielectrophoresis (DEP) phenomenon due to an electric field during self-assembly to fix the semiconductor light emitting device in the assembly groove.
- DEP dielectrophoresis
- an insulating layer 1514 is deposited on the assembly electrodes 1512 and 1513 as shown in FIG. 16(b). As described above, the insulating layer 1514 protects the assembly electrodes 1512 and 1513 from fluid during self-assembly and prevents leakage current in the process of applying voltage to the assembly electrodes 1512 and 1513.
- an assembly groove 1511 is formed on the insulating layer.
- the assembly groove 1511 is defined by being surrounded by a partition wall 1515, and a part of the partition wall 1515 includes a protrusion 1516 protruding in the inner direction of the assembly groove 1511.
- the partition wall 1515 and the assembly groove 1511 may be formed by a photolithography method by coating a photosensitive material.
- a photosensitive material For example, glass, SOG (Spin On Glass), and a polymer material are first coated on the substrate, and then a photosensitive material is coated to form a pattern by a photolithography method.
- the photosensitive material may be selectively removed through dry etching or wet etching to form the protrusion 1516 and the assembly groove 1511 of the partition wall 1515.
- a metal reflective layer may be formed under the assembly groove 1511.
- the metal reflective layer may include a plurality of layers having different refractive indices to reflect light emitted below the semiconductor light emitting device.
- a material having a relatively high refractive index and a material having a low refractive index may be repeatedly stacked.
- an adhesive layer for stably fixing the semiconductor light emitting device may be included under the assembly groove 1511.
- the adhesive layer may be, for example, an organic material such as polydimethylsiloxane (PDMS), polyethylene terephthalate (PET), or polyurethane film.
- a metal film for shielding an electric field may be formed under the assembly groove 1511 or in the partition wall 1515 surrounding the assembly groove 1511.
- the metal layer allows the electric field to be concentrated only inside the assembly groove 1511, thereby improving self-assembly efficiency of the semiconductor light emitting device.
- the bump portion 1551 does not overlap with the protrusion 1516 of the partition wall 1515 and stably within the assembly groove.
- a semiconductor light emitting device 1550 having a is assembled.
- the bump portion 1551 may be formed in various ways during the growth process of the semiconductor light emitting device. For example, a specific conductive type semiconductor layer of the semiconductor light emitting device 1550 may be partially etched, and a conductive type electrode for electrical connection on the conductive type semiconductor layer may be used as a bump portion. In addition, the passivation layer for protecting the internal semiconductor layer of the semiconductor light emitting device 1550 may be partially modified and used as a bump portion. Therefore, in addition to the above-listed formation methods, various formation methods within a range that can be easily derived by a person skilled in the art may be included in the scope of the present invention.
- the semiconductor light emitting device 1550 since the semiconductor light emitting device 1550 has a magnetic layer, the position of the semiconductor light emitting device 1550 can be changed even if the semiconductor light emitting device 1550 contacts the assembly groove by using an assembly device including a magnetic material on the rear surface of the assembly substrate. .
- the assembly apparatus including the magnetic material may perform linear motion and rotational motion for front, rear, left and right at the rear surface of the substrate. Accordingly, the semiconductor light emitting devices can move in a linear direction with respect to the front, rear, left and right, and rotate by the magnetic field generated in the assembly device.
- FIG. 16 illustrates a process of assembling a semiconductor light emitting device having a new structure on an assembly substrate
- the present invention is not limited thereto.
- semiconductor light emitting devices emitting different colors may be assembled on the assembly substrate, and accordingly, semiconductor light emitting devices having different shapes and corresponding assembly grooves may be additionally formed and assembled.
- a wiring electrode may be formed to be electrically connected to the substrate.
- the semiconductor light emitting device 1550 assembled on the first substrate may be transferred to the second substrate.
- the second substrate may be a donor substrate or a transfer substrate for transfer to another substrate, and may be a wiring substrate or a final substrate on which wiring electrodes are already formed.
- a transistor for driving an active matrix may be provided on the final substrate.
- the transfer process includes forming a wiring electrode and a conductive adhesive layer on the second substrate, and attaching the first substrate to the conductive adhesive layer so that the semiconductor light emitting device of the first substrate is aligned with the wiring electrode. It may include an alignment step to attach.
- the alignment is performed by horizontally moving any one of the donor substrate and the wiring board with respect to the other, and then vertically moving the other one. Thereafter, the semiconductor light emitting element of the donor substrate and the position of the assembly groove of the wiring board corresponding to the semiconductor light emitting element are inspected to be overlapped by a camera sensor or the like.
- 17 is a view showing the effect of the assembly speed of the present invention compared to the prior art.
- FIG. 17A shows a semiconductor light emitting device 1750 having a shape of an equilateral triangle and an assembly groove 1711 corresponding thereto. Further, the assembly groove 1711 is defined by a partition wall 1715.
- the semiconductor light emitting device 1750 may be assembled in the assembly groove 1711 by rotating the semiconductor light emitting device 1750 using an assembly device having a magnetic material outside the substrate.
- the range of the moving angle of the semiconductor light emitting device 1750 required for assembly is wide.
- the semiconductor light emitting device 1750 must be rotated at an angle of 60 degrees to be assembled into the assembly groove 1711.
- the semiconductor light emitting device 1850 is assembled by overlapping the bump part 1852 of the semiconductor light emitting device 1850 and the protrusion 1816 of the partition wall 1815. It is not complete. However, the semiconductor light emitting device 1850 may be stably assembled on the bottom surface of the assembly groove 1811 even with a small rotation such that the bump portion 1816 does not overlap the protrusion 1816. When converted into an angle, it can be expressed in correspondence with the ratio of the circumference of the circular semiconductor light emitting device excluding the bump portion and the length at which the bump portion contacts the circular semiconductor light emitting device. Therefore, a very small rotation angle may be required compared to the rotation of 60 degrees in FIG. 17(a), and accordingly, the assembly speed is improved.
- the semiconductor light emitting device of the present invention of FIGS. 14 to 17 discloses an assembly groove formed by a partition wall having one bump portion and one projection portion corresponding thereto.
- the number of bumps and protrusions may be variously modified.
- FIG. 18(a) shows a shape in which a semiconductor light emitting device having one bump part is assembled
- 18(b) is a view in which a semiconductor light emitting device having two bump parts is assembled
- 18(c) Represents a shape in which a semiconductor light emitting device having three bump portions is assembled.
- the number of the bumps and the protrusions may be different, it is advantageous from an assembly point of view to form the same number.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Computer Hardware Design (AREA)
- Manufacturing & Machinery (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Led Device Packages (AREA)
- Devices For Indicating Variable Information By Combining Individual Elements (AREA)
- Electroluminescent Light Sources (AREA)
Abstract
본 명세서에서는 다양한 색상을 가지는 반도체 발광 소자들을 동시에 기판 상에 조립하기 위한 배타적인 디자인을 가지는 기판 구조 및 새로운 형태의 반도체 발광 소자를 제공함으로써, 혼색 우려없이, 신속 정확하게 상기 반도체 발광 소자들을 기판 상에 조립할 수 있다. 여기서 본 발명의 일 실시예에 따른 복수의 반도체 발광 소자들 중 적어도 하나는 조립되는 면의 측면 방향으로 위치하는 범프부를 포함하고, 상기 범프부를 포함하는 반도체 발광 소자가 조립되는 조립 홈은 상기 조립 홈의 내부 방향으로 향하는 돌기부를 구비하는 것을 특징으로 한다.
Description
본 발명은 디스플레이 장치 관련 기술 분야에 적용 가능하며, 예를 들어 마이크로 LED(Light Emitting Diode)를 이용한 디스플레이 장치 및 이의 제조 방법에 관한 것이다.
최근에는 디스플레이 기술 분야에서 박형, 플렉서블 등의 우수한 특성을 가지는 디스플레이 장치가 개발되고 있다. 이에 반해, 현재 상용화된 주요 디스플레이는 LCD(Liquid Crystal Display)와 OLED(Organic Light Emitting Diodes)로 대표되고 있다.
그러나, LCD의 경우에 빠르지 않은 반응 시간과, 플렉서블의 구현이 어렵다는 문제점이 있고, OLED의 경우에 수명이 짧고, 양산 수율이 좋지 않다는 문제점이 있다.
한편, 발광 다이오드(Light Emitting Diode: LED)는 전류를 빛으로 변환시키는 것으로 잘 알려진 반도체 발광 소자로서, 1962년 GaAsP 화합물 반도체를 이용한 적색 LED가 상품화된 것을 시작으로 GaP:N 계열의 녹색 LED와 함께 정보 통신기기를 비롯한 전자장치의 표시 화상용 광원으로 이용되어 왔다. 따라서, 상기 반도체 발광 소자를 이용하여 디스플레이를 구현하여, 전술한 문제점을 해결하는 방안이 제시될 수 있다. 상기 반도체 발광 소자는 필라멘트 기반의 발광 소자에 비해 긴 수명, 낮은 전력 소모, 우수한 초기 구동 특성, 및 높은 진동 저항 등의 다양한 장점을 갖는다.
하지만 반도체 발광 소자를 이용하여 대면적 고화소 디스플레이 장치를 구현하기 위해서는 매우 많은 수의 반도체 발광 소자들이 상기 디스플레이 장치의 배선 기판에 빠르고 정확하게 조립 또는 전사되어야 한다.
이에, 본 발명에서는 다양한 색상을 발광하는 반도체 발광 소자들이 기판 내에서 신속 정확하게 조립될 수 있는 새로운 형태의 반도체 발광 소자 및 기판 구조를 제시한다.
본 발명의 일 실시예의 목적은, 반도체 발광 소자를 이용한 디스플레이 장치 및 제조 방법을 제공하는 것이다.
본 발명의 일 실시예의 다른 목적은, 다양한 색상의 반도체 발광 소자들을 기판에 조립할 때, 조립 속도를 향상시킬 수 있는 디스플레이 장치 및 이의 제조 방법을 제공하는 것이다.
나아가, 본 발명의 일 실시예의 또 다른 목적은, 여기에서 언급하지 않은 다양한 문제점들도 해결하고자 한다. 당업자는 명세서 및 도면의 전 취지를 통해 이해할 수 있다.
상기 목적을 달성하기 위한 반도체 발광 소자를 이용한 디스플레이 장치는, 기판; 상기 기판 상에 위치하는 조립 전극; 상기 조립 전극 상에 위치하는 절연층; 상기 절연층 상에 위치하는 격벽; 상기 격벽에 의해 정의되는 제 1조립 홈; 및 상기 제 1조립 홈에 조립되고, 조립 면의 측면 방향으로 범프(bump)부를 구비하는 제 1반도체 발광 소자를 포함하고, 상기 제 1조립 홈을 둘러싸는 상기 격벽은 상기 제 1조립 홈의 내부 방향으로 향하는 돌기부를 구비하는 것을 특징으로 한다.
실시예로서, 상기 제 1조립 홈의 최단 폭 X1은 상기 제 1반도체 발광 소자의 최단 폭 Y1과 같거나 크고, 상기 제 1조립 홈의 최장 폭 X2은 상기 제 1반도체 발광 소자의 최장 폭 Y2와 같거나 크고, 상기 Y2는 상기 X1보다 큰 것을 특징으로 한다.
실시예로서, 상기 범프부를 제외한 상기 제 1반도체 발광 소자의 조립 면은 원형인 것을 특징으로 한다.
실시예로서, 상기 돌기부를 제외한 상기 격벽에 의해 정의되는 상기 제 1조립 홈의 형상은 원형인 것을 특징으로 한다.
실시예로서, 상기 제 1반도체 발광 소자의 상기 범프부의 개수는 상기 격벽의 상기 돌기부의 개수와 동일한 것을 특징으로 한다.
실시예로서, 제 2반도체 발광 소자 및 상기 제 2반도체 발광 소자가 조립되는 제 2조립 홈을 더 포함하는 것을 특징으로 한다.
실시예로서, 상기 제 2반도체 발광 소자는 상기 제 1반도체 발광 소자와 다른 형상을 가지며, 상기 제 2조립 홈은 상기 제 2반도체 발광 소자의 형상에 대응하는 것을 특징으로 한다.
실시예로서, 상기 제 1반도체 발광 소자는 제 1색상을 발광하고, 상기 제 2반도체 발광 소자는 상기 제 1색상과 다른 제 2색상을 발광하는 것을 특징으로 한다.
실시예로서, 상기 제 1반도체 발광 소자 및 상기 제 2반도체 발광 소자는 자성층을 포함하는 것을 특징으로 한다.
본 발명의 다른 실시예에 따른 복수의 반도체 발광 소자들을 이용한 디스플레이 장치의 제조 방법은, 개별 성장 기판에서 서로 다른 형상을 갖는 복수의 반도체 발광 소자들을 형성하는 단계; 상기 반도체 발광 소자들이 조립되기 위한 조립 홈들을 구비하는 조립 기판을 준비하는 단계; 상기 성장 기판의 반도체 발광 소자들을 분리하여, 유체가 채워진 챔버에 투입하는 단계; 및 상기 챔버의 상면에 상기 조립 기판을 위치시키고, 자기장 및 전기장을 이용하여 상기 반도체 발광 소자를 상기 기판의 조립 홈에 조립하는 단계를 포함하고, 상기 반도체 발광 소자들 중 적어도 하나의 반도체 발광 소자는 조립되는 면의 측면 방향으로 하나 이상의 범프(bump)부를 구비하는 것을 특징으로 한다.
실시예로서, 상기 범프부를 구비하는 반도체 발광 소자가 조립되는 제 1조립 홈은 상기 제 1조립 홈을 둘러싸는 격벽에 의해 정의되고, 상기 격벽은 상기 제 1조립 홈의 내부 방향으로 돌출되어 위치하는 적어도 하나의 돌기부를 포함하는 것을 특징으로 한다.
실시예로서, 상기 반도체 발광 소자들은 자성층을 포함하고, 상기 조립하는 단계는, 상기 조립 홈들이 위치하지 않는 상기 기판의 후면부에 자성체를 구비한 조립 장치를 위치시키고, 상기 조립 장치의 움직임에 따라 발생하는 자기장에 의해, 상기 반도체 발광 소자들이 상기 기판의 상기 조립 홈들에 접촉하는 단계를 포함한다.
실시예로서, 상기 조립 장치의 움직임은 회전운동을 포함하고, 상기 접촉하는 단계는, 상기 조립 장치의 회전운동에 따라 상기 반도체 발광 소자들이 상기 기판의 상기 조립 홈 내에서 회전하는 단계를 포함한다.
실시예로서, 상기 조립 기판 상에 조립된 상기 반도체 발광 소자들을 전사 기판으로 전사하는 단계 및 전사 기판으로 전사된 반도체 발광 소자들을 배선 기판으로 전사하는 단계를 포함한다.
실시예로서, 기 배선 기판으로 전사하는 단계는, 상기 배선 기판에 배선 전극 및 전도성 접착층을 형성하는 단계 및 상기 전사 기판의 상기 반도체 발광 소자를 상기 배선 기판의 상기 전도성 접착층에 부착하는 단계를 포함한다.
실시예로서, 상기 반도체 발광 소자들은 마이크로미터 단위의 크기를 가진 LED(Micro-LED)인 것을 특징으로 한다.
본 발명의 일 실시예에 따르면, 반도체 발광 소자를 이용한 디스플레이 장치 및 제조 방법을 제공할 수 있다.
구체적으로, 다양한 색상을 가지는 반도체 발광 소자들을 동시에 기판 상에 조립하기 위한 배타적인 디자인을 가지는 기판 구조 및 새로운 형태의 반도체 발광 소자를 제공함으로써, 혼색 우려없이, 신속 정확하게 상기 반도체 발광 소자들을 기판 상에 조립할 수 있다.
나아가, 본 발명의 또 다른 실시예에 따르면, 여기에서 언급하지 않은 추가적인 기술적 효과들도 있다. 당업자는 명세서 및 도면의 전 취지를 통해 이해할 수 있다.
도 1은 본 발명의 반도체 발광 소자를 이용한 디스플레이 장치의 일 실시예를 나타내는 개념도이다.
도 2는 도 1의 A부분의 부분 확대도 이다.
도 3a 및 도 3b는 도 2의 라인 B-B 및 C-C를 따라 절단된 단면도들이다.
도 4는 도 3의 플립 칩 타입 반도체 발광 소자를 나타내는 개념도이다.
도 5a 내지 도 5c는 플립 칩 타입 반도체 발광 소자와 관련하여 컬러를 구현하는 여러 가지 형태를 나타내는 개념도들이다.
도 6은 본 발명의 반도체 발광 소자를 이용한 디스플레이 장치의 제조방법을 나타낸 단면도들이다.
도 7은 발명의 반도체 발광 소자를 이용한 디스플레이 장치의 다른 일 실시예를 나타내는 사시도이다.
도 8은 도 7의 라인 D-D를 따라 절단된 단면도이다.
도 9는 도 8의 수직형 반도체 발광 소자를 나타내는 개념도이다.
도 10은 반도체 발광 소자가 자가 조립 공정에 의해 기판에 조립되는 방법의 일 실시예를 나타내는 도면이다.
도 11은 도 10의 E부분을 확대한 도면이다.
도 12는 반도체 발광 소자를 이용한 디스플레이 장치의 제조 방법에 대해 개략적으로 나타내는 도면이다.
도 13은 복수 개의 형상을 가지는 반도체 발광 소자들을 동시에 기판에 조립하기 위한 일반적인 기판 구조 및 반도체 발광 소자들의 형상을 나타내는 도면이다.
도 14는 복수 개의 형상을 가지는 반도체 발광 소자들을 동시에 기판에 조립하기 위한 본 발명의 기판 구조 및 반도체 발광 소자들의 형상을 나타내는 도면이다.
도 15는 본 발명에 따른 기판 구조 및 반도체 발광 소자의 형상을 구체적으로 나타내는 도면이다.
도 16은 도 15의 기판 구조의 제조 방법 및 상기 기판에 본 발명의 반도체 발광 소자가 조립된 모습을 나타내는 도면이다.
도 17은 본 발명이 종래 기술 대비 가지는 조립 속도의 효과를 표현하는 도면이다.
도 18은 본 발명의 다양한 실시예를 나타내는 도면들이다.
이하, 첨부된 도면을 참조하여 본 명세서에 개시된 실시 예를 상세히 설명하되, 도면 부호에 관계없이 동일하거나 유사한 구성요소는 동일한 참조 번호를 부여하고 이에 대한 중복되는 설명은 생략하기로 한다. 이하의 설명에서 사용되는 구성요소에 대한 접미사 "모듈" 및 "부"는 명세서 작성의 용이함만이 고려되어 부여되거나 혼용되는 것으로서, 그 자체로 서로 구별되는 의미 또는 역할을 갖는 것은 아니다. 또한, 본 명세서에 개시된 실시예를 설명함에 있어서 관련된 공지기술에 대한 구체적인 설명이 본 명세서에 개시된 실시 예의 요지를 흐릴 수 있다고 판단되는 경우 그 상세한 설명을 생략한다. 또한, 첨부된 도면은 본 명세서에 개시된 실시 예를 쉽게 이해할 수 있도록 하기 위한 것일 뿐, 첨부된 도면에 의해 본 명세서에 개시된 기술적 사상이 제한되는 것으로 해석되어서는 아니 됨을 유의해야 한다.
나아가, 설명의 편의를 위해 각각의 도면에 대해 설명하고 있으나, 당업자가 적어도 2개 이상의 도면을 결합하여 다른 실시예를 구현하는 것도 본 발명의 권리범위에 속한다.
또한, 층, 영역 또는 기판과 같은 요소가 다른 구성요소 "상(on)"에 존재하는 것으로 언급될 때, 이것은 직접적으로 다른 요소 상에 존재하거나 또는 그 사이에 중간 요소가 존재할 수도 있다는 것을 이해할 수 있을 것이다.
본 명세서에서 설명되는 디스플레이 장치는 단위 화소 또는 단위 화소의 집합으로 정보를 표시하는 모든 디스플레이 장치를 포함하는 개념이다. 따라서 완성품에 한정하지 않고 부품에도 적용될 수 있다. 예를 들어 디지털 TV의 일 부품에 해당하는 패널도 독자적으로 본 명세서 상의 디스플레이 장치에 해당한다. 완성품으로는 휴대폰, 스마트 폰(smart phone), 노트북 컴퓨터(laptop computer), 디지털방송용 단말기, PDA(personal digital assistants), PMP(portable multimedia player), 네비게이션, 슬레이트 피씨(Slate PC), Tablet PC, Ultra Book, 디지털 TV, 데스크 탑 컴퓨터 등이 포함될 수 있다.
그러나, 본 명세서에 기재된 실시예에 따른 구성은 추후 개발되는 새로운 제품 형태라도, 디스플레이가 가능한 장치에는 적용될 수도 있음을 본 기술 분야의 당업자라면 쉽게 알 수 있을 것이다.
또한, 당해 명세서에서 언급된 반도체 발광 소자는 LED, 마이크로 LED 등을 포함하는 개념이며, 혼용되어 사용될 수 있다.
도 1은 본 발명의 반도체 발광 소자를 이용한 디스플레이 장치의 일실시예를 나타내는 개념도이다.
도 1에 도시된 바와 같이, 디스플레이 장치(100)의 제어부(미도시)에서 처리되는 정보는 플렉서블 디스플레이(flexible display)를 이용하여 표시될 수 있다.
플렉서블 디스플레이는, 예를 들어 외력에 의하여 휘어질 수 있는, 또는 구부러질 수 있는, 또는 비틀어질 수 있는, 또는 접힐 수 있는, 또는 말려질 수 있는 디스플레이를 포함한다.
나아가, 플렉서블 디스플레이는, 예를 들어 기존의 평판 디스플레이의 디스플레이 특성을 유지하면서, 종이와 같이 휘어지거나, 또는 구부리거나, 또는 접을 수 있거나 또는 말 수 있는 얇고 유연한 기판 위에 제작되는 디스플레이가 될 수 있다.
상기 플렉서블 디스플레이가 휘어지지 않는 상태(예를 들어, 무한대의 곡률반경을 가지는 상태, 이하 제1상태라 한다)에서는 상기 플렉서블 디스플레이의 디스플레이 영역이 평면이 된다. 상기 제1상태에서 외력에 의하여 휘어진 상태(예를 들어, 유한의 곡률 반경을 가지는 상태, 이하, 제2상태라 한다)에서는 상기 디스플레이 영역이 곡면이 될 수 있다. 도 1에 도시된 바와 같이, 상기 제2상태에서 표시되는 정보는 곡면상에 출력되는 시각 정보가 될 수 있다. 이러한 시각 정보는 매트릭스 형태로 배치되는 단위 화소(sub-pixel)의 발광이 독자적으로 제어됨에 의하여 구현된다. 상기 단위 화소는, 예를 들어 하나의 색을 구현하기 위한 최소 단위를 의미한다.
상기 플렉서블 디스플레이의 단위 화소는 반도체 발광 소자에 의하여 구현될 수 있다. 본 발명에서는 전류를 빛으로 변환시키는 반도체 발광 소자의 일 종류로서 발광 다이오드(Light Emitting Diode: LED)를 예시한다. 상기 발광 다이오드는 작은 크기로 형성되며, 이를 통하여 상기 제2상태에서도 단위 화소의 역할을 할 수 있게 된다.
상기 발광 다이오드를 이용하여 구현된 플렉서블 디스플레이에 대하여, 이하 도면들을 참조하여 보다 상세히 설명한다.
도 2는 도 1의 A부분의 부분 확대도 이다.
도 3a 및 도 3b는 도 2의 라인 B-B 및 C-C를 따라 절단된 단면도들이다.
도 4는 도 3의 플립 칩 타입 반도체 발광 소자를 나타내는 개념도이다.
도 5a 내지 도 5c는 플립 칩 타입 반도체 발광 소자와 관련하여 컬러를 구현하는 여러 가지 형태를 나타내는 개념도들이다.
도 2, 도 3a 및 도 3b에 도시된 바와 같이, 반도체 발광 소자를 이용한 디스플레이 장치(100)로서 패시브 매트릭스(Passive Matrix, PM) 방식의 반도체 발광 소자를 이용한 디스플레이 장치(100)를 예시한다. 다만, 이하 설명되는 예시는 액티브 매트릭스(Active Matrix, AM) 방식의 반도체 발광 소자에도 적용 가능하다.
도 1에 도시된 디스플레이 장치(100)는, 도 2에 도시된 바와 같이 기판(110), 제1전극(120), 전도성 접착층(130), 제2전극(140) 및 적어도 하나의 반도체 발광 소자(150)를 포함한다.
기판(110)은 플렉서블 기판일 수 있다. 예를 들어, 플렉서블(flexible) 디스플레이 장치를 구현하기 위하여 기판(110)은 유리나 폴리이미드(PI, Polyimide)를 포함할 수 있다. 이외에도 절연성이 있고, 유연성 있는 재질이면, 예를 들어 PEN(Polyethylene Naphthalate), PET(Polyethylene Terephthalate) 등 어느 것이라도 사용될 수 있다. 또한, 상기 기판(110)은 투명한 재질 또는 불투명한 재질 어느 것이나 될 수 있다.
상기 기판(110)은 제1전극(120)이 배치되는 배선기판이 될 수 있으며, 따라서 상기 제1전극(120)은 기판(110) 상에 위치할 수 있다.
도 3a에 도시된 바와 같이 절연층(160)은 제1전극(120)이 위치한 기판(110) 상에 배치될 수 있으며, 상기 절연층(160)에는 보조전극(170)이 위치할 수 있다. 이 경우에, 상기 기판(110)에 절연층(160)이 적층된 상태가 하나의 배선기판이 될 수 있다. 보다 구체적으로, 절연층(160)은 폴리이미드(PI, Polyimide), PET, PEN 등과 같이 절연성이 있고, 유연성 있는 재질로, 상기 기판(110)과 일체로 이루어져 하나의 기판을 형성할 수 있다.
보조전극(170)은 제1전극(120)과 반도체 발광 소자(150)를 전기적으로 연결하는 전극으로서, 절연층(160) 상에 위치하고, 제1전극(120)의 위치에 대응하여 배치된다. 예를 들어, 보조전극(170)은 닷(dot) 형태이며, 절연층(160)을 관통하는 전극홀(171)에 의하여 제1전극(120)과 전기적으로 연결될 수 있다. 상기 전극홀(171)은 비아홀에 도전물질이 채워짐에 의하여 형성될 수 있다.
도 2 또는 도 3a에 도시된 바와 같이, 절연층(160)의 일면에는 전도성 접착층(130)이 형성되나, 본 발명은 반드시 이에 한정되는 것은 아니다. 예를 들어, 절연층(160)과 전도성 접착층(130)의 사이에 특정 기능을 수행하는 레이어가 형성되거나, 절연층(160)이 없이 전도성 접착층(130)이 기판(110)상에 배치되는 구조도 가능하다. 전도성 접착층(130)이 기판(110)상에 배치되는 구조에서는 전도성 접착층(130)이 절연층의 역할을 할 수 있다.
상기 전도성 접착층(130)은 접착성과 전도성을 가지는 층이 될 수 있으며, 이를 위하여 상기 전도성 접착층(130)에서는 전도성을 가지는 물질과 접착성을 가지는 물질이 혼합될 수 있다. 또한 전도성 접착층(130)은 연성을 가지며, 이를 통하여 디스플레이 장치에서 플렉서블 기능을 가능하게 한다.
이러한 예로서, 전도성 접착층(130)은 이방성 전도성 필름(anistropy conductive film, ACF), 이방성 전도 페이스트(paste), 전도성 입자를 함유한 솔루션(solution) 등이 될 수 있다. 상기 전도성 접착층(130)은 두께를 관통하는 Z 방향으로는 전기적 상호 연결을 허용하나, 수평적인 X-Y 방향으로는 전기 절연성을 가지는 레이어로서 구성될 수 있다. 따라서 상기 전도성 접착층(130)은 Z축 전도층으로 명명될 수 있다(다만, 이하 '전도성 접착층'이라 한다).
상기 이방성 전도성 필름은 이방성 전도매질(anisotropic conductive medium)이 절연성 베이스부재에 혼합된 형태의 필름으로서, 열 및 압력이 가해지면 특정 부분만 이방성 전도매질에 의하여 전도성을 가지게 된다. 이하, 상기 이방성 전도성 필름에는 열 및 압력이 가해지는 것으로 설명하나, 상기 이방성 전도성 필름이 부분적으로 전도성을 가지기 위하여 다른 방법이 적용될 수도 있다. 전술한 다른 방법은, 예를 들어 상기 열 및 압력 중 어느 하나만이 가해지거나 UV 경화 등이 될 수 있다.
또한, 상기 이방성 전도매질은 예를 들어, 도전볼이나 전도성 입자가 될 수 있다. 예를 들어, 상기 이방성 전도성 필름은 도전볼이 절연성 베이스 부재에 혼합된 형태의 필름으로서, 열 및 압력이 가해지면 특정 부분만 도전볼에 의하여 전도성을 가지게 된다. 이방성 전도성 필름은 전도성 물질의 코어가 폴리머 재질의 절연막에 의하여 피복된 복수의 입자가 함유된 상태가 될 수 있으며, 이 경우에 열 및 압력이 가해진 부분이 절연막이 파괴되면서 코어에 의하여 도전성을 가지게 된다. 이때, 코어의 형태는 변형되어 필름의 두께방향으로 서로 접촉하는 층을 이룰 수 있다. 보다 구체적인 예로서, 열 및 압력은 이방성 전도성 필름에 전체적으로 가해지며, 이방성 전도성 필름에 의하여 접착되는 상대물의 높이 차에 의하여 Z축 방향의 전기적 연결이 부분적으로 형성된다.
다른 예로서, 이방성 전도성 필름은 절연 코어에 전도성 물질이 피복된 복수의 입자가 함유된 상태가 될 수 있다. 이 경우에는 열 및 압력이 가해진 부분이 전도성 물질이 변형되어(눌러 붙어서) 필름의 두께방향으로 전도성을 가지게 된다. 또 다른 예로서, 전도성 물질이 Z축 방향으로 절연성 베이스 부재를 관통하여 필름의 두께방향으로 전도성을 가지는 형태도 가능하다. 이 경우에, 전도성 물질은 뽀족한 단부를 가질 수 있다.
상기 이방성 전도성 필름은 도전볼이 절연성 베이스 부재의 일면에 삽입된 형태로 구성되는 고정배열 이방성 전도성 필름(fixed array ACF)이 될 수 있다. 보다 구체적으로, 절연성 베이스 부재는 접착성을 가지는 물질로 형성되며, 도전볼은 상기 절연성 베이스 부재의 바닥 부분에 집중적으로 배치되며, 상기 베이스 부재에서 열 및 압력이 가해지면 상기 도전볼과 함께 변형됨에 따라 수직 방향으로 전도성을 가지게 된다.
다만, 본 발명은 반드시 이에 한정되는 것은 아니며, 상기 이방성 전도성 필름은 절연성 베이스 부재에 도전볼이 랜덤하게 혼입된 형태나, 복수의 층으로 구성되며 어느 한 층에 도전볼이 배치되는 형태(double-ACF) 등이 모두 가능하다.
이방성 전도 페이스트는 페이스트와 도전볼의 결합 형태로서, 절연성 및 접착성의 베이스 물질에 도전볼이 혼합된 페이스트가 될 수 있다. 또한, 전도성 입자를 함유한 솔루션은 전도성 파티클 혹은 나노 입자를 함유한 형태의 솔루션이 될 수 있다.
다시 도3a를 참조하면, 제2전극(140)은 보조전극(170)과 이격하여 절연층(160)에 위치한다. 즉, 상기 전도성 접착층(130)은 보조전극(170) 및 제2전극(140)이 위치하는 절연층(160) 상에 배치된다.
절연층(160)에 보조전극(170)과 제2전극(140)이 위치된 상태에서 전도성 접착층(130)을 형성한 후에, 반도체 발광 소자(150)를 열 및 압력을 가하여 플립 칩 형태로 접속시키면, 상기 반도체 발광 소자(150)는 제1전극(120) 및 제2전극(140)과 전기적으로 연결된다.
도 4를 참조하면, 상기 반도체 발광 소자는 플립 칩 타입(flip chiptype)의 발광 소자가 될 수 있다.
예를 들어, 상기 반도체 발광 소자는 p형 전극(156), p형 전극(156)이 형성되는 p형 반도체층(155), p형 반도체층(155) 상에 형성된 활성층(154), 활성층(154) 상에 형성된 n형 반도체층(153) 및 n형 반도체층(153) 상에서 p형 전극(156)과 수평방향으로 이격 배치되는 n형 전극(152)을 포함한다. 이 경우, p형 전극(156)은 도3에 도시된, 보조전극(170)과 전도성 접착층(130)에 의하여 전기적으로 연결될 수 있고, n형 전극(152)은 제2전극(140)과 전기적으로 연결될 수 있다.
다시 도 2, 도 3a 및 도 3b를 참조하면, 보조전극(170)은 일방향으로 길게 형성되어, 하나의 보조전극이 복수의 반도체 발광 소자(150)에 전기적으로 연결될 수 있다. 예를 들어, 보조전극을 중심으로 좌우의 반도체 발광 소자들의 p 형 전극들이 하나의 보조전극에 전기적으로 연결될 수 있다.
보다 구체적으로, 열 및 압력에 의하여 전도성 접착층(130)의 내부로 반도체 발광 소자(150)가 압입되며 이를 통하여 반도체 발광 소자(150)의 p형 전극(156)과 보조전극(170) 사이의 부분과, 반도체 발광 소자(150)의 n형 전극(152)과 제2전극(140) 사이의 부분에서만 전도성을 가지게 되고, 나머지 부분에서는 반도체 발광 소자의 압입이 없어 전도성을 가지지 않게 된다. 이와 같이, 전도성 접착층(130)은 반도체 발광 소자(150)와 보조전극(170) 사이 및 반도체 발광 소자(150)와 제2전극(140) 사이를 상호 결합시켜줄 뿐만 아니라 전기적 연결까지 형성시킨다.
또한, 복수의 반도체 발광 소자(150)는 발광 소자 어레이(array)를 구성하며, 발광 소자 어레이에는 형광체층(180)이 형성된다.
발광 소자 어레이는 자체 휘도 값이 상이한 복수의 반도체 발광 소자들을 포함할 수 있다. 각각의 반도체 발광 소자(150)는 단위 화소를 구성하며, 제1전극(120)에 전기적으로 연결된다. 예를 들어, 제1전극(120)은 복수 개일 수 있고, 반도체 발광 소자들은 예컨대 수 열로 배치되며, 각 열의 반도체 발광 소자들은 상기 복수 개의 제1전극 중 어느 하나에 전기적으로 연결될 수 있다.
또한, 반도체 발광 소자들이 플립 칩 형태로 접속되므로, 투명 유전체 기판에 성장시킨 반도체 발광 소자들을 이용할 수 있다. 또한, 상기 반도체 발광 소자들은 예컨대 질화물 반도체 발광 소자일 수 있다. 반도체 발광 소자(150)는 휘도가 우수하므로, 작은 크기로도 개별 단위 화소를 구성할 수 있다.
도3에 도시된 바와 같이, 반도체 발광 소자(150)의 사이에 격벽(190)이 형성될 수 있다. 이 경우, 격벽(190)은 개별 단위 화소를 서로 분리하는 역할을 할 수 있으며, 전도성 접착층(130)과 일체로 형성될 수 있다. 예를 들어, 이방성 전도성 필름에 반도체 발광 소자(150)가 삽입됨에 의하여 이방성 전도성 필름의 베이스 부재가 상기 격벽을 형성할 수 있다.
또한, 상기 이방성 전도성 필름의 베이스 부재가 블랙이면, 별도의 블랙 절연체가 없어도 상기 격벽(190)이 반사 특성을 가지는 동시에 대비비(contrast)가 증가될 수 있다.
다른 예로서, 상기 격벽(190)으로 반사성 격벽이 별도로 구비될 수 있다. 이 경우에, 상기 격벽(190)은 디스플레이 장치의 목적에 따라 블랙(Black) 또는 화이트(White) 절연체를 포함할 수 있다. 화이트 절연체의 격벽을 이용할 경우 반사성을 높이는 효과가 있을 수 있고, 블랙 절연체의 격벽을 이용할 경우, 반사 특성을 가지는 동시에 대비비(contrast)를 증가시킬 수 있다.
형광체층(180)은 반도체 발광 소자(150)의 외면에 위치할 수 있다. 예를 들어, 반도체 발광 소자(150)는 청색(B) 광을 발광하는 청색 반도체 발광 소자고, 형광체층(180)은 상기 청색(B) 광을 단위 화소의 색상으로 변환시키는 기능을 수행한다. 상기 형광체층(180)은 개별 화소를 구성하는 적색 형광체(181) 또는 녹색 형광체(182)가 될 수 있다.
즉, 적색의 단위 화소를 이루는 위치에서, 청색 반도체 발광 소자 상에는 청색 광을 적색(R) 광으로 변환시킬 수 있는 적색 형광체(181)가 적층될 수 있고, 녹색의 단위 화소를 이루는 위치에서는, 청색 반도체 발광 소자 상에 청색광을 녹색(G) 광으로 변환시킬 수 있는 녹색 형광체(182)가 적층될 수 있다. 또한, 청색의 단위 화소를 이루는 부분에는 청색 반도체 발광 소자만 단독으로 이용될 수 있다. 이 경우, 적색(R), 녹색(G), 및 청색(B)의 단위 화소들이 하나의 화소를 이룰 수 있다. 보다 구체적으로, 제1전극(120)의 각 라인을 따라 하나의 색상의 형광체가 적층될 수 있다. 따라서, 제1전극(120)에서 하나의 라인은 하나의 색상을 제어하는 전극이 될 수 있다. 즉, 제2전극(140)을 따라서, 적색(R), 녹색(G) 및 청색(B)이 차례로 배치될 수 있으며, 이를 통하여 단위 화소가 구현될 수 있다.
다만, 본 발명은 반드시 이에 한정되는 것은 아니며, 형광체 대신에 반도체 발광 소자(150)와 퀀텀닷(QD)이 조합되어 적색(R), 녹색(G) 및 청색(B)의 단위 화소들을 구현할 수 있다.
또한, 대비비(contrast) 향상을 위하여 각각의 형광체층들의 사이에는 블랙 매트릭스(191)가 배치될 수 있다. 즉, 이러한 블랙 매트릭스(191)는 명암의 대조를 향상시킬 수 있다.
다만, 본 발명은 반드시 이에 한정되는 것은 아니며, 청색, 적색, 녹색을 구현하기 위한 다른 구조가 적용될 수 있다.
도 5a를 참조하면, 각각의 반도체 발광 소자(150)는 질화 갈륨(GaN)을 주재료로 하여, 인듐(In) 및/또는 알루미늄(Al)이 함께 첨가되어 청색을 비롯한 다양한 빛을 발광하는 고출력의 발광 소자로 구현될 수 있다.
이 경우, 반도체 발광 소자(150)는 각각 단위 화소(sub-pixel)를 이루기 위하여 적색, 녹색 및 청색 반도체 발광 소자일 수 있다. 예컨대, 적색, 녹색 및 청색 반도체 발광 소자(R, G, B)가 교대로 배치되고, 적색, 녹색 및 청색 반도체 발광 소자에 의하여 적색(Red), 녹색(Green) 및 청색(Blue)의 단위 화소들이 하나의 화소(pixel)를 이루며, 이를 통하여 풀 칼라 디스플레이가 구현될 수 있다.
도 5b를 참조하면, 반도체 발광 소자(150a)는 황색 형광체층이 개별 소자 마다 구비된 백색 발광 소자(W)를 구비할 수 있다. 이 경우에는, 단위 화소를 이루기 위하여, 백색 발광 소자(W) 상에 적색 형광체층(181), 녹색 형광체층(182), 및 청색 형광체층(183)이 구비될 수 있다. 또한, 이러한 백색 발광 소자(W) 상에 적색, 녹색, 및 청색이 반복되는 컬러 필터를 이용하여 단위 화소를 이룰 수 있다.
도 5c를 참조하면, 자외선 발광 소자(150b) 상에 적색 형광체층(184), 녹색 형광체층(185), 및 청색 형광체층(186)이 구비되는 구조도 가능하다. 이와 같이, 반도체 발광 소자는 가시광선뿐만 아니라 자외선(UV)까지 전 영역에 사용 가능하며, 자외선(UV)이 상부 형광체의 여기원(excitation source)으로 사용 가능한 반도체 발광 소자의 형태로 확장될 수 있다.
본 예시를 다시 살펴보면, 반도체 발광 소자는 전도성 접착층 상에 위치되어, 디스플레이 장치에서 단위 화소를 구성한다. 반도체 발광 소자는 휘도가 우수하므로, 작은 크기로도 개별 단위 화소를 구성할 수 있다.
이와 같은 개별 반도체 발광 소자(150)의 크기는 예를 들어, 한 변의 길이가 80㎛ 이하일 수 있고, 직사각형 또는 정사각형 소자일 수 있다. 직사각형인 경우에는 20 X 80㎛ 이하의 크기가 될 수 있다.
또한, 한 변의 길이가 10㎛인 정사각형의 반도체 발광 소자(150)를 단위 화소로 이용하여도 디스플레이 장치를 이루기 위한 충분한 밝기가 나타난다.
따라서, 단위 화소의 크기가 한 변이 600㎛, 나머지 한 변이 300㎛인 직사각형 화소인 경우를 예로 들면, 반도체 발광 소자의 거리가 상대적으로 충분히 크게 된다.
따라서, 이러한 경우, HD화질 이상의 고화질을 가지는 플렉서블 디스플레이 장치를 구현할 수 있게 된다.
상기에서 설명된 반도체 발광 소자를 이용한 디스플레이 장치는 새로운 형태의 제조방법에 의하여 제조될 수 있다. 이하, 도 6을 참조하여 상기 제조 방법에 대하여 설명한다.
도 6은 본 발명의 반도체 발광 소자를 이용한 디스플레이 장치의 제조 방법을 나타낸 단면도들이다.
도 6에 도시된 바와 같이, 먼저, 보조전극(170) 및 제2전극(140)이 위치된 절연층(160) 상에 전도성 접착층(130)을 형성한다. 배선기판(110)에 절연층(160)이 적층되며, 상기 배선기판(110)에는 제1전극(120), 보조전극(170) 및 제2전극(140)이 배치된다. 이 경우에, 제1전극(120)과 제2전극(140)은 상호 직교 방향으로 배치될 수 있다. 또한, 플렉서블(flexible) 디스플레이 장치를 구현하기 위하여 배선기판(110) 및 절연층(160)은 각각 유리 또는 폴리이미드(PI)를 포함할 수 있다.
상기 전도성 접착층(130)은 예를 들어, 이방성 전도성 필름에 의하여 구현될 수 있으며, 이를 위하여 절연층(160)이 위치된 기판에 이방성 전도성 필름이 도포될 수 있다.
다음에, 보조전극(170) 및 제2전극(140)들의 위치에 대응하고, 개별 화소를 구성하는 복수의 반도체 발광 소자(150)가 위치된 임시기판(112)을, 상기 반도체 발광 소자(150)가 보조전극(170) 및 제2전극(140)와 마주하도록 배치한다.
이 경우에, 임시기판(112)은 반도체 발광 소자(150)를 성장시키는 성장 기판으로서, 사파이어(spire) 기판 또는 실리콘(silicon) 기판이 될 수 있다.
상기 반도체 발광 소자는 웨이퍼(wafer) 단위로 형성될 때, 디스플레이 장치를 이룰 수 있는 간격 및 크기를 가지도록 함으로써, 디스플레이 장치에 효과적으로 이용될 수 있다.
그 다음에, 배선기판과 임시기판(112)을 열 압착한다. 예를 들어, 배선기판과 임시기판(112)은 ACF 프레스 헤드를 적용하여 열 압착할 수 있다. 상기 열 압착에 의하여 배선기판과 임시기판(112)은 본딩(bonding)된다. 열 압착에 의하여 전도성을 갖는 이방성 전도성 필름의 특성에 의해 반도체 발광 소자(150)와 보조전극(170) 및 제2전극(140)의 사이의 부분만 전도성을 가지게 되며, 이를 통하여 전극들과 반도체 발광 소자(150)는 전기적으로 연결될 수 있다. 이 때에, 반도체 발광 소자(150)가 상기 이방성 전도성 필름의 내부로 삽입되며, 이를 통하여 반도체 발광 소자(150) 사이에 격벽이 형성될 수 있다.
그 다음에, 상기 임시기판(112)을 제거한다. 예를 들어, 임시기판(112)은 레이저 리프트 오프법(Laser Lift-off, LLO) 또는 화학적 리프트 오프법(Chemical Lift-off, CLO)을 이용하여 제거할 수 있다.
마지막으로, 상기 임시기판(112)을 제거하여 반도체 발광 소자들(150)을 외부로 노출시킨다. 필요에 따라, 반도체 발광 소자(150)가 결합된 배선기판 상을 실리콘 옥사이드(SiOx) 등을 코팅하여 투명 절연층(미도시)을 형성할 수 있다.
또한, 상기 반도체 발광 소자(150)의 일 면에 형광체층을 형성하는 단계를 더 포함할 수 있다. 예를 들어, 반도체 발광 소자(150)는 청색(B) 광을 발광하는 청색 반도체 발광 소자고, 이러한 청색(B) 광을 단위 화소의 색상으로 변환시키기 위한 적색 형광체 또는 녹색 형광체가 상기 청색 반도체 발광 소자의 일면에 레이어를 형성할 수 있다.
이상에서 설명된 반도체 발광 소자를 이용한 디스플레이 장치의 제조 방법이나 구조는 여러 가지 형태로 변형될 수 있다. 그 예로서, 상기에서 설명된 디스플레이 장치에는 수직형 반도체 발광 소자도 적용될 수 있다.
또한, 이하 설명되는 변형예 또는 실시예에서는 앞선 예와 동일 또는 유사한 구성에 대해서는 동일, 유사한 참조번호가 부여되고, 그 설명은 처음 설명으로 갈음된다.
도 7은 본 발명의 반도체 발광 소자를 이용한 디스플레이 장치의 다른 일 실시예를 나타내는 사시도이고, 도 8은 도 7의 라인 D-D를 따라 취한 단면도이며, 도 9은 도 8의 수직형 반도체 발광 소자를 나타내는 개념도이다.
본 도면들을 참조하면, 디스플레이 장치는 패시브 매트릭스(Passive Matrix, PM) 방식의 수직형 반도체 발광 소자를 이용한 디스플레이 장치가 될 수 있다.
상기 디스플레이 장치는 기판(210), 제1전극(220), 전도성 접착층(230), 제2전극(240) 및 적어도 하나의 반도체 발광 소자(250)를 포함한다.
기판(210)은 제1전극(220)이 배치되는 배선기판으로서, 플렉서블(flexible) 디스플레이 장치를 구현하기 위하여 폴리이미드(PI)를 포함할 수 있다. 이외에도 절연성이 있고, 유연성 있는 재질이면 어느 것이라도 사용 가능할 것이다.
제1전극(220)은 기판(210) 상에 위치하며, 일 방향으로 긴 바(bar) 형태의 전극으로 형성될 수 있다. 상기 제1 전극(220)은 데이터 전극의 역할을 하도록 이루어질 수 있다.
전도성 접착층(230)은 제1전극(220)이 위치하는 기판(210)상에 형성된다. 플립 칩 타입(flip chip type)의 발광 소자가 적용된 디스플레이 장치와 같이, 전도성 접착층(230)은 이방성 전도성 필름(Anisotropy Conductive Film, ACF), 이방성 전도 페이스트(paste), 전도성 입자를 함유한 솔루션(solution) 등이 될 수 있다. 다만, 본 실시 예에서도 이방성 전도성 필름에 의하여 전도성 접착층(230)이 구현되는 경우를 예시한다.
기판(210) 상에 제1전극(220)이 위치하는 상태에서 이방성 전도성 필름을 위치시킨 후에, 반도체 발광 소자(250)를 열 및 압력을 가하여 접속시키면, 상기 반도체 발광 소자(250)가 제1전극(220)과 전기적으로 연결된다. 이 때, 상기 반도체 발광 소자(250)는 제1전극(220) 상에 위치되도록 배치되는 것이 바람직하다.
상기 전기적 연결은 전술한 바와 같이, 이방성 전도성 필름에서 열 및 압력이 가해지면 부분적으로 두께방향으로 전도성을 가지기 때문에 생성된다. 따라서, 이방성 전도성 필름에서는 두께 방향으로 전도성을 가지는 부분과 전도성을 가지지 않는 부분으로 구획된다.
또한, 이방성 전도성 필름은 접착 성분을 함유하기 때문에, 전도성 접착층(230)은 반도체 발광 소자(250)와 제1전극(220) 사이에서 전기적 연결뿐만 아니라 기계적 결합까지 구현한다.
이와 같이, 반도체 발광 소자(250)는 전도성 접착층(230) 상에 위치되며, 이를 통하여 디스플레이 장치에서 개별 화소를 구성한다. 반도체 발광 소자(250)는 휘도가 우수하므로, 작은 크기로도 개별 단위 픽셀을 구성할 수 있다. 이와 같은 개별 반도체 발광 소자(250)의 크기는 예를 들어, 한 변의 길이가 80㎛ 이하일 수 있고, 직사각형 또는 정사각형 소자일 수 있다. 직사각형인 경우에는 예를 들어, 20 X 80㎛ 이하의 크기가 될 수 있다.
상기 반도체 발광 소자(250)는 수직형 구조가 될 수 있다.
수직형 반도체 발광 소자들의 사이에는, 제1전극(220)의 길이 방향과 교차하는 방향으로 배치되고, 수직형 반도체 발광 소자(250)와 전기적으로 연결된 복수의 제2전극(240)이 위치한다.
도 9를 참조하면, 이러한 수직형 반도체 발광 소자(250)는 p형 전극(256), p형 전극(256) 상에 형성된 p형 반도체층(255), p형 반도체층(255) 상에 형성된 활성층(254), 활성층(254)상에 형성된 n형 반도체층(253) 및 n형 반도체층(253) 상에 형성된 n형 전극(252)을 포함한다. 이 경우, 하부에 위치한 p형 전극(256)은 제1전극(220)과 전도성 접착층(230)에 의하여 전기적으로 연결될 수 있고, 상부에 위치한 n형 전극(252)은 후술하는 제2전극(240)과 전기적으로 연결될 수 있다. 이러한 수직형 반도체 발광 소자(250)는 전극을 상/하로 배치할 수 있으므로, 칩 사이즈를 줄일 수 있다는 큰 강점을 가지고 있다.
다시 도 8을 참조하면, 상기 반도체 발광 소자(250)의 일면에는 형광체층(280)이 형성될 수 있다. 예를 들어, 반도체 발광 소자(250)는 청색(B) 광을 발광하는 청색 반도체 발광 소자(251)이고, 이러한 청색(B) 광을 단위 화소의 색상으로 변환시키기 위한 형광체층(280)이 구비될 수 있다. 이 경우에, 형광체층(280)은 개별 화소를 구성하는 적색 형광체(281) 및 녹색 형광체(282) 일 수 있다.
즉, 적색의 단위 화소를 이루는 위치에서, 청색 반도체 발광 소자 상에는 청색 광을 적색(R) 광으로 변환시킬 수 있는 적색 형광체(281)가 적층될 수 있고, 녹색의 단위 화소를 이루는 위치에서는, 청색 반도체 발광 소자 상에 청색광을 녹색(G) 광으로 변환시킬 수 있는 녹색 형광체(282)가 적층될 수 있다. 또한, 청색의 단위 화소를 이루는 부분에는 청색 반도체 발광 소자만 단독으로 이용될 수 있다. 이 경우, 적색(R), 녹색(G), 및 청색(B)의 단위 화소들이 하나의 화소를 이룰 수 있다.
다만, 본 발명은 반드시 이에 한정되는 것은 아니며, 플립 칩 타입(flip chip type)의 발광 소자가 적용된 디스플레이 장치에서 전술한 바와 같이, 청색, 적색, 녹색을 구현하기 위한 다른 구조가 적용될 수 있다.
다시 본 실시예를 살펴보면, 제2전극(240)은 반도체 발광 소자들(250) 사이에 위치하고, 반도체 발광 소자들(250)과 전기적으로 연결된다. 예를 들어, 반도체 발광 소자들(250)은 복수의 열로 배치되고, 제2전극(240)은 반도체 발광 소자들(250)의 열들 사이에 위치할 수 있다.
개별 화소를 이루는 반도체 발광 소자(250) 사이의 거리가 충분히 크기 때문에 제2전극(240)은 반도체 발광 소자들(250) 사이에 위치될 수 있다.
제2전극(240)은 일 방향으로 긴 바(bar) 형태의 전극으로 형성될 수 있으며, 제1전극과 상호 수직한 방향으로 배치될 수 있다.
또한, 제2전극(240)과 반도체 발광 소자(250)는 제2전극(240)에서 돌출된 연결 전극에 의해 전기적으로 연결될 수 있다. 보다 구체적으로, 상기 연결 전극이 반도체 발광 소자(250)의 n형 전극이 될 수 있다. 예를 들어, n형 전극은 오믹(ohmic) 접촉을 위한 오믹 전극으로 형성되며, 상기 제2전극은 인쇄 또는 증착에 의하여 오믹 전극의 적어도 일부를 덮게 된다. 이를 통하여 제2전극(240)과 반도체 발광 소자(250)의 n형 전극이 전기적으로 연결될 수 있다.
다시 도 8을 참조하면, 상기 제2전극(240)은 전도성 접착층(230) 상에 위치될 수 있다. 경우에 따라, 반도체 발광 소자(250)가 형성된 기판(210) 상에 실리콘 옥사이드(SiOx) 등을 포함하는 투명 절연층(미도시)이 형성될 수 있다. 투명 절연층이 형성된 후에 제2전극(240)을 위치시킬 경우, 상기 제2전극(240)은 투명 절연층 상에 위치하게 된다. 또한, 제2전극(240)은 전도성 접착층(230) 또는 투명 절연층에 이격되어 형성될 수도 있다.
만약 반도체 발광 소자(250) 상에 제2전극(240)을 위치시키기 위하여는 ITO(Indium Tin Oxide)와 같은 투명 전극을 사용한다면, ITO 물질은 n형 반도체층과는 접착성이 좋지 않은 문제가 있다. 따라서, 본 발명은 반도체 발광 소자(250) 사이에 제2전극(240)을 위치시킴으로써, ITO와 같은 투명 전극을 사용하지 않아도 되는 이점이 있다. 따라서, 투명한 재료 선택에 구속되지 않고, n형 반도체층과 접착성이 좋은 전도성 물질을 수평 전극으로 사용하여 광추출 효율을 향상시킬 수 있다.
다시 도 8을 참조하면, 반도체 발광 소자(250) 사이에는 격벽(290)이 위치할 수 있다. 즉, 개별 화소를 이루는 반도체 발광 소자(250)를 격리시키기 위하여 수직형 반도체 발광 소자(250) 사이에는 격벽(290)이 배치될 수 있다. 이 경우, 격벽(290)은 개별 단위 화소를 서로 분리하는 역할을 할 수 있으며, 상기 전도성 접착층(230)과 일체로 형성될 수 있다. 예를 들어, 이방성 전도성 필름에 반도체 발광 소자(250)가 삽입됨에 의하여 이방성 전도성 필름의 베이스부재가 상기 격벽을 형성할 수 있다.
또한, 상기 이방성 전도성 필름의 베이스 부재가 블랙이면, 별도의 블랙 절연체가 없어도 상기 격벽(290)이 반사 특성을 가지는 동시에 대비비(contrast)가 증가될 수 있다.
다른 예로서, 상기 격벽(190)으로서, 반사성 격벽이 별도로 구비될 수 있다. 격벽(290)은 디스플레이 장치의 목적에 따라 블랙(Black) 또는 화이트(White) 절연체를 포함할 수 있다.
만일 제2전극(240)이 반도체 발광 소자(250) 사이의 전도성 접착층(230) 상에 바로 위치된 경우, 격벽(290)은 수직형 반도체 발광 소자(250) 및 제2전극(240)의 사이 사이에 위치될 수 있다. 따라서, 반도체 발광 소자(250)를 이용하여 작은 크기로도 개별 단위 픽셀을 구성할 수 있고, 반도체 발광 소자(250)의 거리가 상대적으로 충분히 크게 되어 제2전극(240)을 반도체 발광 소자(250) 사이에 위치시킬 수 있고, HD 화질을 가지는 플렉서블 디스플레이 장치를 구현할 수 있는 효과가 있게 된다.
또한, 도8에 도시된 바와 같이, 대비비(contrast) 향상을 위하여 각각의 형광체 사이에는 블랙 매트릭스(291)가 배치될 수 있다. 즉, 이러한 블랙 매트릭스(291)는 명암의 대조를 향상시킬 수 있다.
도 10은 반도체 발광 소자가 자가 조립 공정에 의해 기판에 조립되는 방법의 일 실시예를 나타내는 도면이다.
또한, 도 11은 도 10의 E부분을 확대한 도면이다.
도 10과 도 11를 참조하면, 반도체 발광 소자(1050)는 유체(1020)가 채워진 챔버(1030)에 투입될 수 있다.
이 후, 조립 기판(1010)이 챔버(1030) 상에 배치될 수 있다. 실시 예에 따라, 조립 기판(1010)은 챔버(1030) 내로 투입될 수도 있다. 이때 조립 기판(1010)이 투입되는 방향은 상기 조립 기판(1010)의 조립 홈(1011)이 유체(1020)를 마주보는 방향이다.
조립 기판(1010)에는 조립될 반도체 발광 소자(1050) 각각에 대응하는 한 쌍의 전극(1012,1013)이 형성될 수 있다. 상기 전극(1012,1013)은 투명 전극(ITO)으로 구현되거나, 기타 일반적인 재료를 이용해 구현될 수 있다. 상기 전극(1012,1013)은 전압이 인가됨에 따라 전기장을 생성함으로써, 조립 홈(1012,1013)에 접촉한 반도체 발광 소자(1050)를 안정적으로 고정시키는 조립 전극에 해당한다.
구체적으로 상기 전극(1012,1013)에는 교류 전압이 인가될 수 있으며, 상기 전극(1012,1013) 주변부에는 부유하는 반도체 발광 소자(1050)는 유전 분극에 의해 극성을 가질 수 있다. 또한, 유전 분극된 반도체 발광 소자의 경우, 상기 전극(1012,1013) 주변부에 형성되는 불균일한 전기장에 의해 특정 방향으로 이동되거나 고정될 수 있다. 이를 유전 영동이라 하며, 본 발명의 자가 조립 공정에서, 상기 유전 영동을 이용하여 조립 홈(1011)에 반도체 발광 소자(1050)를 안정적으로 고정할 수 있다.
또한, 상기 조립 전극(1012,1013)간의 간격은 예를 들어, 반도체 발광 소자(1050)의 너비 및 조립 홈(1011)의 직경보다 작게 형성되어, 전기장을 이용한 반도체 발광 소자(1050)의 조립 위치를 보다 정밀하게 고정할 수 있다.
또한, 상기 조립 전극(1012,1013) 상에는 절연층(1014)이 형성되어, 전극(1012,1013)을 유체(1020)로부터 보호하고, 상기 조립 전극(1012,1013)에 흐르는 전류의 누출을 방지할 수 있다. 예컨대, 절연층(1014)은 실리카, 알루미나 등의 무기물 절연체 또는 유기물 절연체가 단일층 또는 다층으로 형성될 수 있다. 또한, 절연층(1014)은 반도체 발광 소자(1050) 조립 시 상기 조립 전극(1012,1013)의 손상을 방지하기 위한 최소 두께를 가질 수 있고, 상기 반도체 발광 소자(1050)가 안정적으로 조립되기 위한 최대 두께를 가질 수 있다.
절연층(1014)의 상부에는 격벽(1015)이 형성될 수 있다. 상기 격벽(1015)의 일부 영역은 상기 조립 전극(1012,1013)의 상부에 위치하고, 나머지 영역은 상기 조립 기판(1010)의 상부에 위치할 수 있다.
예컨대, 조립 기판(1010)의 제조 시, 절연층(1014) 상부 전체에 형성된 격벽 중 일부가 제거됨으로써, 반도체 발광 소자(1050)들 각각이 상기 조립 기판(1010)에 결합되는 조립 홈(1011)이 형성될 수 있다.
도 11에 도시된 바와 같이, 상기 조립 기판(1010)에는 반도체 발광 소자(1050)가 결합되는 조립 홈(1011)이 형성되고, 상기 조립 홈(1011)이 형성된 면은 유체(1020)와 접촉할 수 있다. 상기 조립 홈(1011)은 반도체 발광 소자(1050)의 정확한 조립 위치를 가이드할 수 있다.
한편, 상기 조립 홈(1011)은 조립되는 반도체 발광 소자(1050)의 형상에 대응하는 형상 및 크기를 가질 수 있다. 이에 따라, 조립 홈(1011)에 다른 반도체 발광 소자가 조립되거나 복수의 반도체 발광 소자들이 조립되는 것을 방지할 수 있다.
또한 상기 조립 홈(1011)의 깊이는, 상기 반도체 발광 소자(1050)의 세로 높이보다 작게 형성할 수 있다. 이를 통해 상기 반도체 발광 소자(1050)는 격벽(1015)들 사이로 돌출되는 구조를 가질 수 있고, 조립 이후 발생할 수 있는 전사 과정에서 전사 기판의 돌기부와 쉽게 접촉할 수 있다.
또한, 도 10에 도시된 바와 같이, 조립 기판(1010)이 배치된 후, 자성체를 포함하는 조립 장치(1040)가 상기 조립 기판(1010)을 따라 이동할 수 있다. 상기 조립 장치(1040)는 자기장이 미치는 영역을 유체(1020) 내로 최대화하기 위해, 조립 기판(1010)과 접촉한 상태로 이동할 수 있다. 예를 들어, 조립 장치(1040)는 복수의 자성체를 포함하거나, 조립 기판(1010)과 대응하는 크기의 자성체를 포함할 수도 있다. 이 경우, 조립 장치(1040)의 이동 거리는 소정 범위 이내로 제한될 수도 있다.
조립 장치(1040)에 의해 발생하는 자기장에 의해, 챔버(1030) 내의 반도체 발광 소자(1050)는 조립 장치(1040)를 향해 이동할 수 있다.
반도체 발광 소자(1050)는 조립 장치(1040)를 향해 이동 중, 도 11에 도시된 바와 같이, 조립 홈(1011)으로 진입하여 조립 기판(1010)과 접촉될 수 있다.
또한 상기 반도체 발광 소자(1050)는 자가 조립 공정이 수행될 수 있도록, 상기 반도체 발광 소자 내부에 자성층을 포함할 수 있다.
한편, 조립 기판(1010)의 조립 전극(1012,1013)에 의해 생성된 전기장으로 인해, 조립 기판(1010)에 접촉된 반도체 발광 소자(1050)는 조립 장치(1040)의 이동에 의해 이탈되는 현상을 방지할 수 있다.
따라서, 도 10및 도 11에 도시한 전자기장을 이용한 자가 조립 방식에 의해, 복수 개의 반도체 발광 소자(1050)들은 동시 다발적으로 상기 조립 기판(1010)에 조립된다.
도 12는 반도체 발광 소자를 이용한 디스플레이 장치의 제조 방법에 대해 개략적으로 나타내는 도면이다.
먼저 성장 기판에서 반도체 발광 소자들을 형성한다(S1210). 상기 반도체 발광 소자들은 제 1도전형 반도체층, 활성층, 제 2도전형 반도체층을 포함할 수 있다. 또한 상기 제 1도전형 반도체층 상에 형성되는 제 1도전형 전극 및 제 2도전형 반도체층 상에 형성되는 제 2도전형 전극이 더 포함될 수 있다.
상기 반도체 발광 소자들은 수평형 반도체 발광 소자 또는 수직형 반도체 발광 소자 모두 가능하나, 수직형 반도체 발광 소자의 경우, 상기 제1도전형 전극과 상기 제 2도전형 전극은 마주보는 구조이기 때문에, 성장기판에서 반도체 발광 소자를 분리하고, 후속 공정에서 일단의 도전형 전극을 형성하는 공정을 추가한다. 또한 전술하였듯이 자가 조립 공정을 위해서는 반도체 발광 소자에 자성층이 포함되어야 한다.
상기 반도체 발광 소자들을 디스플레이 장치에 활용하기 위해서는 일반적으로 Red, Green, Blue에 해당하는 색상을 발광하는 3가지 종류의 반도체 발광 소자들이 필요하다. 하나의 성장 기판에는 하나의 색상을 발광하는 반도체 발광 소자들이 형성되므로, 상기 3가지 종류의 반도체 발광 소자들을 이용하여 개별 단위 화소를 구현하는 디스플레이 장치를 위해서는 별도의 기판이 요구된다. 따라서, 개별 반도체 발광 소자들은 성장 기판에서 분리되어 최종 기판에 조립 또는 전사되어야 한다. 상기 최종 기판은 반도체 발광 소자가 발광할 수 있도록 상기 반도체 발광 소자에 전압을 인가하는 배선 전극이 형성되는 공정이 수행되는 기판이다.
따라서 각 색상을 발광하는 반도체 발광 소자들은 일단 전사 기판 또는 조립 기판으로 이동한 후(S1220) 최종 기판으로 다시 전사될 수 있다. 경우에 따라 상기 전사 기판 또는 조립 기판에 배선 공정을 수행하는 경우, 상기 전사 기판 또는 조립 기판은 최종 기판으로서 역할을 수행한다.
전사 기판 또는 조립 기판에 반도체 발광 소자가 배치(S1220)되는 방법은 크게 3가지로 나뉠 수 있다.
첫째, 스탬프 공정에 의해 성장 기판에서 전사 기판으로 반도체 발광 소자를 이동하는 방법이다(S1221). 스탬프 공정이란 접착력이 있는 돌기부를 지닌 유연한 소재의 기판을 이용하여, 상기 돌기부를 통해 성장 기판에서 반도체 발광 소자를 분리하는 공정을 말한다. 돌기부의 간격 및 배치를 조절하여 성장 기판의 반도체 발광 소자를 선택적으로 분리할 수 있다.
두번째로, 전술하였듯이 자가 조립 공정을 이용하여 반도체 발광 소자를 조립 기판에 조립하는 방법이다(S1222). 자가 조립 공정을 위해서는 반도체 발광 소자가 성장 기판으로부터 분리되어 낱개로 존재해야 하는 바, 필요한 반도체 발광 소자의 수만큼 레이저 리프트 오프(LLO) 공정 등을 통해 상기 반도체 발광 소자들을 성장 기판으로부터 분리시킨다. 이후 상기 반도체 발광 소자들을 유체 내에 분산하고 전자기장을 이용하여 조립 기판에 조립한다.
상기 자가 조립 공정은 하나의 조립 기판에 R,G,B 색상을 구현하는 각각의 반도체 발광 소자들을 동시에 조립하거나, 개별 조립 기판을 통해 개별 색상의 반도체 발광 소자를 조립할 수 있다.
세번째로는, 상기 스탬프 공정과 자가 조립 공정을 혼용하는 방법이다(S1223). 먼저 자가 조립 공정을 통해 반도체 발광 소자들을 조립 기판에 위치시킨 후 다시 스탬프 공정을 통해 최종 기판으로 상기 반도체 발광 소자들을 이동시킨다. 조립 기판의 경우, 자가 조립 공정 시 배치되는 조립 기판의 위치 및 유체와의 접촉, 전자기장의 영향 등에 의해 대면적으로 구현하기 어렵기 때문에 적당한 면적의 조립 기판을 사용하여 반도체 발광 소자들을 조립한 후, 이후 스탬프 공정으로 대면적의 최종 기판에 여러 번 전사하는 과정이 수행될 수 있다.
최종 기판에 개별 단위 화소를 구성하는 복수 개의 반도체 발광 소자들이 배치되면, 상기 반도체 발광 소자들을 전기적으로 연결하는 배선 공정을 수행한다(S1230).
대면적의 디스플레이 장치를 위해서는 무수히 많은 반도체 발광 소자들이 필요한 바, 자가 조립 공정이 바람직하다. 나아가 조립 속도를 향상시키기 위해서는 상기 자가 조립 공정 중에서도 각 색상의 반도체 발광 소자들이 하나의 조립 기판에 동시에 조립되는 것이 선호될 수 있다. 또한 각 색상의 반도체 발광 소자들이 조립 기판의 정해진 특정 위치에 조립되기 위해서는 상호 배타적인 구조를 가지는 것이 요구될 수 있다.
도 13은 복수 개의 형상을 가지는 반도체 발광 소자들을 동시에 기판에 조립하기 위한 일반적인 기판 구조 및 반도체 발광 소자들의 형상을 나타내는 도면이다.
도 13(a)는 복수 개의 형상을 가지는 반도체 발광 소자들에 대응하는 조립 홈들(1311,1312,1313)을 도시한다. 상기 조립 홈들(1311,1312,1313)은 격벽(1315)에 의해 둘러 쌓여 정의된다.
도 13(b)는 도 13(a)의 조립 홈들(1311,1312,1313)에 대응하는 반도체 발광 소자들(1351,1352,1353)을 도시한다.
개별 반도체 발광 소자들은 동일한 형상의 조립 홈이 아니면, 조립이 완료되지 않는다. 예를 들어, 원형의 반도체 발광 소자(1351)는 원형의 조립 홈(1311)에만 조립되고, 정사각형의 반도체 발광 소자(1353)는 정사각형의 조립 홈(1313)에만 조립된다. 다만, 원형의 반도체 발광 소자(1351)의 경우, 원의 중심점을 기준으로 좌우방향으로 회전하더라도 연속적인 대칭점을 가지는 바, 상기 원형의 조립 홈(1311)의 상부에 상기 원형의 반도체 발광 소자(1351)가 위치하기만 하면 바로 원형의 조립 홈(1311)에 조립이 가능하다
하지만 예를 들어, 정삼각형의 조립홈(1313)의 상부에 정삼각형의 구조를 갖는 반도체 발광 소자(1353)가 위치한다면, 바로 조립될 가능성은 크지 않다. 정삼각형은 세 개의 꼭지점을 가지고, 각 꼭지점이 정삼각형의 중심점과 연속되는 방향으로 대칭축을 가지는 바, 세 방향의 대칭축이 존재한다. 즉, 정삼각형의 중심점을 기준으로 120도 또는 240도 회전해야 동일한 형상이 구현된다. 따라서 정삼각형의 조립홈(1313)의 상부에 정삼각형의 구조를 갖는 반도체 발광 소자(1353)가 위치하더라도, 상기 반도체 발광 소자(1353)의 꼭지점의 위치가 정삼각형의 조립홈(1313)의 꼭지점의 위치와 다르다면 바로 조립되지 않고 별도의 위치 변화가 필요하다.
이와 유사하게, 정사각형 구조의 반도체 발광 소자(1352)의 경우도, 네 개의 꼭지점 및 대칭축을 갖는 바, 상기 반도체 발광 소자(1352)의 꼭지점의 위치가 정사각형의 조립홈(1312)의 꼭지점의 위치와 다르다면 바로 조립되지 않고 별도의 위치 변화가 필요하다. 또한 상기 반도체 발광 소자들이(1352,1353)이 정사각형이나 정삼각형이 아닌 단순한 사각형 또는 삼각형이라면, 대칭축이 존재하지 않을 수 있어, 조립 홈에 정확히 조립되기 위한 위치 변화 및 이에 따른 조립 시간은 추가될 수 있다.
전술하였듯이, 대화면 디스플레이 장치의 구현을 위해서는 소수의 반도체 발광 소자가 아닌 무수히 많은 수의 반도체 발광 소자가 필요하다. 따라서 도 13에 도시된 바와 같은 일반적인 구조의 차이를 통해 반도체 발광 소자들을 디자인하고, 조립하는 것은 조립 효율 및 속도 면에서 개선할 필요가 있다.
도 14는 복수 개의 형상을 가지는 반도체 발광 소자들을 동시에 기판에 조립하기 위한 본 발명의 기판 구조 및 반도체 발광 소자들의 형상을 나타내는 도면이다.
상기 각각의 반도체 발광 소자는 각 형상에 따라 서로 다른 색상을 발광한다.
도 14(a)는 복수 개의 형상을 가지는 반도체 발광 소자들에 대응하는 조립 홈들(1411,1412,1413)을 도시한다. 상기 조립 홈들(1411,1412,1413)은 격벽(1415)에 의해 둘러 쌓여 정의된다.
도 14(b)는 도 14(a)의 조립 홈들(1411,1412,1413)에 대응하는 반도체 발광 소자들(1451,1452,1453)을 도시한다.
전술하였듯이, 원형의 반도체 발광 소자(1451)의 경우, 원의 중심점을 기준으로 좌우방향으로 회전하더라도 연속적인 대칭점을 가지는 바, 상기 원형의 조립 홈(1411)의 중심점에 상기 반도체 발광 소자(1451)가 위치하기만 하면 바로 조립된다. 따라서 조립 속도 관점에서는 다른 형태의 반도체 발광 소자에 비해 월등히 빠르다.
다만, 하나의 색상의 반도체 발광 소자의 형상을 원형을 사용하면, 다른 색상의 반도체 발광 소자의 형상을 다시 원형으로 사용하는 것은 어렵다. 원의 크기를 달리하고 이와 대응하는 조립 홈들을 구비하더라도, 자가 조립이 동시에 수행되는 경우, 작은 원의 반도체 발광 소자가 큰 원의 조립 홈에 조립될 수 있기 때문이다. 이러한 경우, 혼색이 발생하여 단위 픽셀로 RGB를 구현하기 어렵고, 결국 원하는 색상의 디스플레이를 할 수 없는 바 불량을 유발하게 된다. 또한 원형의 구조가 아니고, 매우 많은 대칭축을 갖는 반도체 발광 소자라도, 예를 들어 팔각형의 반도체 발광 소자의 구조라고 하더라도, 다른 색상의 반도체 발광 소자가 조립되는 조립 홈의 구조가 원형이라면, 상기 원형의 조립 홈에 조립되거나, 상기 원형의 반도체 발광 소자가 팔각형의 조립 홈에 조립될 수 있다.
따라서 조립 홈의 중심점을 기준으로 다양한 대칭축이 존재하는 형상 이외의 새로운 형상의 고안이 필요하다.
도 14(a)의 조립 홈(1412) 및 도 14(b)의 반도체 발광 소자(1452)는 원형의 반도체 발광 소자가 가지는 조립 속도를 최대한 유지하면서도 원형의 반도체 발광 소자와 배타적인 구조를 가지는 형상을 도시한다.
도 14(a)에 도시된 바와 같이, 본 발명의 조립 홈(1412)은 격벽(1415)에 의해 둘러 쌓여 정의되며, 전체적으로 원형의 형상을 가지나, 격벽(1415)의 일부가 상기 조립 홈(1412)의 내부 방향으로 돌출되는 돌출부를 구비한다.
또한 도 14(b)에 도시된 바와 같이, 본 발명의 조립 홈(1412)에 조립되는 반도체 발광 소자(1452)는 전체적으로 원형의 형상을 가지면서, 상기 반도체 발광 소자(1452)의 조립 면의 측면 방향으로 돌출되는 범프(bump)부를 구비한다.
상기 반도체 발광 소자(1452)와 원형의 반도체 발광 소자(1451)를 비교하면, 원형의 반도체 발광 소자(1451)의 직경은 상기 본 발명의 조립 홈(1412)의 최단 폭보다 크게 형성하여 상기 원형의 반도체 발광 소자(1451)는 상기 본 발명의 조립 홈(1412)에 조립되기 어렵게 형성할 수 있다. 여기서 상기 본 발명의 조립 홈(1412)의 최단 폭은 상기 조립 홈(1412)의 내부 방향으로 돌출되는 돌기부의 끝단에서 조립 홈(1412)의 반대편까지의 직선 거리를 의미한다.
또한 범프부를 포함하는 본 발명의 반도체 발광 소자(1452)의 최대 직경은 원형의 조립 홈(1411)의 직경보다 크게 형성하여, 상기 반도체 발광 소자(1452)는 원형의 조립 홈(1411)에 조립되기 어렵게 형성할 수 있다. 따라서 상기 두 개의 발광 소자들은(1451, 1452)는 서로 배타적인 구조를 가지면서 개별 조립 홈들(1411,1412)에만 조립될 수 있다.
한편, 도 14(a) 및 도 14(b)에서 도시하는 정삼각형 구조의 반도체 발광 소자(1453) 및 이에 대응하는 조립 홈(1413)은 다양한 형상의 반도체 발광 소자를 표현하기 위한 예시에 불과하다. 따라서 본 발명의 기판 구조 및 반도체 발광 소자의 형상은 이에 한정하지 않는다. 예를 들어, 하나의 기판에 RGB 삼원색에 해당하는 세가지 형상의 반도체 발광 소자를 조립하기 위해, 원형 반도체 발광 소자, 측면에 범프부를 구비한 제 1원형 반도체 발광 소자 및 측면에 범프부를 구비한 제 2원형 반도체 발광 소자가 요구될 수 있다. 상기 범프부를 구비한 반도체 발광 소자들 및 이에 대응하는 조립 홈들은 각각의 최장 폭과 최단 폭을 조절하여 배타적으로 조립될 수 있다. 범프부를 구비한 원형의 반도체 발광 소자들이 사용되는 이유는 조립 속도 관점에서 종래 원형 반도체 발광 소자와 큰 차이가 없으면서 상호 배타적으로 조립될 수 있기 때문이다. 이에 대한 보다 구체적인 효과는 도 17에서 후술한다.
도 15는 본 발명에 따른 기판 구조 및 반도체 발광 소자의 형상을 구체적으로 나타내는 도면이다.
도 15(a)에 도시된 바와 같이, 격벽(1515)에 의해 반도체 발광 소자가 조립되는 조립 홈(1511)이 정의된다. 또한 상기 격벽(1515)은 상기 조립 홈(1511)의 내부 방향으로 돌출되는 돌기부(1516)을 포함한다. 또한, 상기 돌기부(1516)을 제외한 조립 홈(1511)의 형상은 원형이다. 따라서 상기 조립 홈(1511)의 최단 폭(X1) 또는 최단 너비는 상기 돌기부(1516)에서 수직하여 연장되는 직선이 조립 홈(1511)의 반대 면과 교차하기까지의 거리에 해당한다. 또한 상기 조립 홈(1511)의 최장 폭(X2) 또는 최장 너비는 상기 원형의 직경에 해당한다.
나아가, 도 15(b)에 도시된 바와 같이 상기 조립 홈(1511)에 조립되는 반도체 발광 소자(1550)는 측면 방향으로 돌출되는 범프부(1511)를 포함한다. 또한, 상기 범프부(1551)을 제외한 반도체 발광 소자(1550)의 형상은 원형이다. 따라서 상기 반도체 발광 소자(1550)의 최단 폭(Y1)은 상기 반도체 발광 소자(1550)의 원형 형상의 직경에 해당하고, 상기 반도체 발광 소자(1550)의 최장 폭(Y2)은 상기 범프부 수직하여 연장되는 직선이 반도체 발광 소자 홈(1550)의 반대 면과 교차하기까지의 거리에 해당한다.
또한 상기 반도체 발광 소자(1550)가 상기 조립 홈(1511)에 조립되기 위해서는 다음과 같은 길이 제한이 요구될 수 있다. 예를 들어, 먼저 조립 홈(1511)의 최단 폭(X1)은 반도체 발광 소자(1550)의 최단 폭 Y1과 같거나 커야 한다. 또한 조립 홈(1511)의 최장 폭(X2)은 반도체 발광 소자(1550)의 최장 폭(Y2)과 같거나 커야 한다.
마지막으로 반도체 발광 소자(1550)의 최장 폭(Y2)는 조립 홈(1511)의 최단 폭(X1) 보다 커야 한다. 예를 들어, Y2가 X1보다 작으면 조립 홈(1511) 내 반도체 발광 소자(1550)이 조립되더라도 조립 홈(1511) 내 많은 여유 공간 생기게 되고, 상기 여유 공간에서 상기 반도체 발광 소자들이 움직일 여지가 클 수 있다. 이에 따라 조립 홈 내 반도체 발광 소자의 조립 위치가 명확하게 한정되지 않아, 후속 배선 공정 시 정확한 위치에 배선 전극을 형성하는 데 어려움이 발생한다. 하지만 Y2가 X1보다 크고, X1과 Y1이 유사한 길이를 가진다면, 조립 홈(1511) 내 범프부(1551)을 제외한 반도체 발광 소자(1550)는 상기 조립 홈(1511)의 최단 폭(X1) 사이에 위치하게 된다. 따라서 조립 위치가 명확히 특정되는 바 후속 배선 공정이 용이할 수 있다.
또한 상기 길이 제한을 통해 반도체 발광 소자(1550)는 조립 홈(1511) 내에서 조립되며, 상기 조립 홈(1511)의 최단 폭(X1) 내에서 회전 운동이 가능하다. 상기 회전 운동이 필요한 이유는 자가 조립을 통해 반도체 발광 소자(1510)가 조립 홈(1511)에 조립되는 과정에서 발생한다. 예를 들어, 상기 격벽(1515)의 돌기부(1516)와 상기 범프부(1551)가 오버랩될 때, 상기 범프부(1551)의 회전에 의한 약간의 위치 변화만으로도 상기 반도체 발광 소자(1550)는 조립 홈(1511)의 바닥 면과 안정적으로 접촉할 수 있다.
한편, 도 15는 반도체 발광 소자(1550)가 조립 홈(1511)에 조립되는 경우, 상부에서 관찰할 때의 구조적 특징에 대한 제한이며, 단면으로 관찰할 때, 상기 범프부(1551)와 돌기부(1516)의 형상 및 높이는 도 15에 의해 제한되지 않는다.
도 16은 도 15의 기판 구조의 제조 방법 및 상기 기판에 본 발명의 반도체 발광 소자가 조립된 모습을 나타내는 도면이다.
도 16(a)에 도시된 바와 같이, 기판(1510)에 조립 전극(1512,1513)을 형성한다. 상기 기판(1510)은 플렉서블 기판일 수 있다. 예를 들어, 플렉서블(flexible) 디스플레이 장치를 구현하기 위하여 기판은 유리나 폴리이미드(PI, Polyimide)를 포함할 수 있다.
또한 상기 조립 전극(1512,1513)은 예를 들어, 투명 전극(ITO)으로 구현되거나, 몰리브덴 단일층 또는 몰리브덴과 알루미늄의 다층구조로 구현될 수 있다.
또한 상기 조립 전극(1512,1513)은 한 쌍으로 구성되어, 상기 조립 전극(1512,1513) 간에 전압 차이를 유발한다.
상기 조립 전극(1512,1513) 형성의 목표는 자가 조립 시 전기장에 의한 유전 영동(Dielectrophoresis; DEP) 현상을 유발하여 반도체 발광 소자를 조립 홈에 고정시키기 위함이다.
상기 기판에 조립 전극(1512,1513)이 형성되면, 도 16(b)에 도시된 바와 같이, 상기 조립 전극(1512,1513)의 상부에 절연층(1514)을 증착한다. 전술하였듯이, 절연층(1514)은 자가 조립 시 유체로부터 조립 전극(1512,1513)을 보호하고, 상기 조립 전극(1512,1513)에 전압을 인가하는 과정에서 누설 전류를 방지한다.
이후, 도 16(c)에 도시된 바와 같이, 상기 절연층의 상부에 조립 홈(1511)을 형성한다. 상기 조립 홈(1511)은 격벽(1515)에 의해 둘러싸여 정의되며, 상기 격벽(1515)의 일부가 상기 조립 홈(1511)의 내부 방향으로 돌출된 돌기부(1516)을 구비한다.
상기 격벽(1515) 및 조립 홈(1511)은 감광성 물질을 코팅하여 포토리소그라피 (Photolithography) 방법으로 형성할 수 있다. 예를 들어, 상기 기판에 유리, SOG(Spin On Glass), 고분자 소재를 먼저 코팅하고, 감광성 물질을 코팅하여 포토리소그라피 방법으로 패턴을 형성한다. 그리고 건식 식각(Dry etching)또는 습식 식각(Wet etching)을 통해 감광성 물질을 선택적으로 제거하여 상기 격벽(1515)의 돌기부(1516) 및 조립 홈(1511) 형성할 수 있다.
또한, 상기 조립 홈(1511)을 형성하는 과정에서, 상기 조립 홈(1511)의 하부에 금속 반사막을 형성할 수 있다. 상기 금속 반사막은 반도체 발광 소자의 하부로 방출되는 빛을 반사하도록, 서로 다른 굴절률을 가지는 복수의 레이어를 구비할 수 있다. 또한, 상기 복수의 레이어는 상대적으로 굴절률이 높은 물질과 낮은 물질이 반복하여 적층될 수 있다.
또한, 상기 조립 홈(1511)의 하부에는 반도체 발광 소자를 안정적으로 고정하기 위한 접착층이 포함될 수 있다. 상기 접착층은 예를 들어, PDMS(Polydimethylsiloxane)이나 PET(Polyethylene Terephthalate) 또는 폴리우레탄 필름과 같은 유기물 소재일 수 있다.
나아가, 상기 조립 홈(1511)의 하부 또는 조립 홈(1511)을 둘러싸는 격벽(1515)에는 전기장을 차폐하는 금속막이 형성될 수 있다. 상기 금속막은 조립 전극을 통한 전기장의 생성 과정에서, 조립 홈(1511) 내부로만 전기장이 집중되도록 하여, 반도체 발광 소자의 자가조립 효율을 향상시킬 수 있다.
이후, 전술하였듯이 유체 내에서 자가 조립 공정이 수행되면, 도 16(d)에 도시된 바와 같이, 격벽(1515)의 돌기부(1516)과 오버랩되지 않고, 조립 홈 내에 안정적으로, 범프부(1551)를 구비하는 반도체 발광 소자(1550)가 조립되게 된다.
상기 범프부(1551)는 반도체 발광 소자의 성장 과정에서 다양한 방법으로 형성할 수 있다. 예를 들어, 상기 반도체 발광 소자(1550)의 특정 도전형 반도체층을 일부 식각하여 형성할 수도 있으며, 도전형 반도체층 상에 전기적으로 연결을 위한 도전형 전극을 범프부로 활용할 수 있다. 또한 반도체 발광 소자(1550)의 내부 반도체층을 보호하기 위한 패시베이션층을 일부 변형하여 범프부로 활용할 수 있다. 따라서 상기 열거된 형성 방법 이외에도 통상의 기술자가 용이하게 도출할 수 있는 범위 내의 다양한 형성 방법들도 본 발명의 권리범위에 포함될 수 있다.
한편, 상기 반도체 발광 소자(1550)는 자성층을 구비하고 있어, 조립 기판의 후면부에 자성체를 구비한 조립 장치를 이용하여, 조립 홈에 상기 반도체 발광 소자(1550)이 접촉더라도 위치를 변화시킬 수 있다. 구체적으로 자성체를 구비한 조립 장치는 기판의 후면부에서 전후좌우에 대한 직선운동 및 회전운동을 수행할 수 있다. 따라서 반도체 발광 소자들은 상기 조립 장치에서 발생한 자기장에 의해 전후좌우에 대한 직선 방향으로 움직일 수 있으며, 회전할 수 있다.
또한, 도 16에서는 조립 기판에 새로운 구조를 가지는 반도체 발광 소자가 조립되는 과정을 도시하였지만, 본 발명이 이에 한정되지 않는다. 전술하였듯이, 상기 조립 기판에는 다른 색상들을 발광하는 반도체 발광 소자들이 조립될 수 있으며, 이에 따른 다른 형상의 반도체 발광 소자 및 대응하는 조립 홈들이 추가 형성되어 조립될 수 있다.
한편, 기판에 조립된 반도체 발광 소자(1550) 상에, 상기 기판과 전기적으로 연결되도록 배선 전극을 형성할 수 있다.
또한, 상기 기판을 제 1기판으로 하여, 상기 제 1기판 상에 조립된 상기 반도체 발광 소자(1550)를 제 2기판으로 전사할 수 있다. 이 경우, 제 2기판은 또 다른 기판으로 전사를 위한 도너 기판 또는 전사 기판일 수 있고, 배선전극이 이미 형성되어 있는 배선 기판 또는 최종 기판일 수 있다. 상기 최종 기판에는 액티브 매트릭스 (Active Matrix) 구동을 위한 트랜지스터가 구비될 수 있다.
또한 상기 전사 과정은, 상기 제 2기판에 배선 전극 및 전도성 접착층을 형성하는 단계 및 상기 제 1기판의 상기 반도체 발광 소자가 상기 배선 전극에 얼라인(Align)되도록 상기 제 1기판을 상기 전도성 접착층에 부착하는 얼라인먼트(Alignment) 단계를 포함할 수 있다.
상기 얼라인먼트(Alignment)하는 단계는, 예를 들어, 도너 기판 및 배선 기판 중 어느 하나를 다른 하나에 대해 수평 이동시킨 후, 상기 다른 하나에 대해 수직 이동 시킴으로써 수행된다. 이후, 카메라 센서 등에 의해 도너 기판의 반도체 발광 소자와 상기 반도체 발광 소자에 대응하는 배선 기판의 조립 홈의 위치가 중첩되는지 검사하고, 중첩된다면 조립 홈에 맞게 반도체 발광 소자를 조립하게 된다.
도 17은 본 발명이 종래 기술 대비 가지는 조립 속도의 효과를 표현하는 도면이다.
도 17(a)는 정삼각형의 모양을 가지는 반도체 발광 소자(1750) 및 이에 대응하는 조립 홈(1711)을 도시한다. 또한, 상기 조립 홈(1711)은 격벽(1715)에 의해 정의된다.
도 17(a)와 같이 상기 반도체 발광 소자(1750)가 상기 조립 홈(1711) 상부에 위치하더라도 조립 홈(1711)과 반도체 발광 소자(1750)의 꼭지점이 방향이 같지 않으면 조립이 완료되지 않는바, 기판 외부의 자성체를 가진 조립 장치를 활용하여 상기 반도체 발광 소자(1750)을 회전시켜 상기 반도체 발광 소자(1750)을 조립 홈(1711)에 조립시킬 수 있다. 다만 이때 조립에 필요한 반도체 발광 소자(1750)가 움직이는 각도의 범위는 넓다. 예를 들어 도17(a)와 같은 배치에는 반도체 발광 소자(1750)가 60도의 각도를 회전하여야 상기 조립 홈(1711)에 조립된다.
하나의 반도체 발광 소자에 회전 등의 움직임이 요구되는 경우, 조립에 소요되는 시간은 크지 않을 수 있으나, 무수히 많은 반도체 발광 소자가 조립되는 경우에는 조립을 위한 회전 등의 움직임이 작을수록 유리하다.
이러한 관점에서, 도 17(b)에 도시된 바와 같이 본 발명의 돌기부(1816)를 가지는 격벽(1815)에 의해 정의되는 조립 홈(1811) 및 범프부(1851)를 구비하는 반도체 발광 소자(1850)는 17(a)의 반도체 발광 소자(1750)에 비해 조립 속도를 개선할 수 있다.
예를 들어, 도 17(b)와 같은 배치에서 상기 반도체 발광 소자(1850)는 상기 반도체 발광 소자(1850)의 범프부(1851)와 상기 격벽(1815)의 돌기부(1816)가 오버랩되어 조립이 완료되지 않은 상태이다. 하지만, 상기 범프부(1816)가 상기 돌기부(1816)와 겹치지 않을 만큼의 작은 회전으로도 상기 반도체 발광 소자(1850)은 안정적으로 상기 조립 홈(1811)의 바닥 면에 조립될 수 있다. 각도로 환산하면, 범프부를 제외한 원형의 반도체 발광 소자의 둘레와 상기 범프부가 원형의 반도체 발광 소자와 접촉하는 길이의 비율에 대응하여 나타낼 수 있다. 따라서 도 17(a)의 60도의 회전에 비해서는 매우 작은 회전각이 요구될 수 있어, 이에 따라 조립 속도의 개선이 이루어진다.
도 18은 본 발명의 다양한 실시예를 나타내는 도면들이다.
도14 내지 도 17의 본 발명의 반도체 발광 소자는 하나의 범프부 및 이에 대응하는 하나의 돌기부를 가진 격벽에 의해 형성된 조립 홈을 개시하였다. 다만 도 18에 도시된 바와 같이, 상기 범프부와 상기 돌기부의 개수는 다양하게 변형될 수 있다. 예를 들어, 도 18(a)는 하나의 범프부를 지닌 반도체 발광 소자가 조립되는 형상을 도시하고 있으나, 18(b)는 두 개의 범프부를 지닌 반도체 발광 소자가 조립되는 도면이고, 18(c)는 세 개의 범프부를 지닌 반도체 발광 소자가 조립되는 형상을 나타낸다. 상기 범프부와 상기 돌기부의 개수는 달리 형성할 수도 있으나, 동일한 개수로 형성하는 것이 조립 관점에서 유리하다.
이상의 설명은 본 발명의 기술 사상을 예시적으로 설명한 것에 불과한 것으로서, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자라면 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 다양한 수정 및 변형이 가능할 것이다.
따라서, 본 발명에 개시된 실시 예들은 본 발명의 기술 사상을 한정하기 위한 것이 아니라 설명하기 위한 것이고, 이러한 실시 예에 의하여 본 발명의 기술 사상의 범위가 한정되는 것은 아니다.
본 발명의 보호 범위는 아래의 청구범위에 의하여 해석되어야 하며, 그와 동등한 범위 내에 있는 모든 기술 사상은 본 발명의 권리범위에 포함되는 것으로 해석되어야 할 것이다.
Claims (16)
- 반도체 발광 소자들을 이용하는 디스플레이 장치에 있어서,기판;상기 기판 상에 위치하는 조립 전극;상기 조립 전극 상에 위치하는 절연층;상기 절연층 상에 위치하는 격벽;상기 격벽에 의해 정의되는 제 1조립 홈; 및상기 제 1조립 홈에 조립되고, 조립 면의 측면 방향으로 위치하는 범프(bump)부를 구비하는 제 1반도체 발광 소자를 포함하고,상기 제 1조립 홈을 둘러싸는 상기 격벽은 상기 제 1조립 홈의 내부 방향으로 향하는 돌기부를 구비하는 것을 특징으로 하는 디스플레이 장치.
- 제 1항에 있어서,상기 제 1조립 홈의 최단 폭 X1은 상기 제 1반도체 발광 소자의 최단 폭 Y1과 같거나 크고,상기 제 1조립 홈의 최장 폭 X2은 상기 제 1반도체 발광 소자의 최장 폭 Y2와 같거나 크고,상기 Y2는 상기 X1보다 큰 것을 특징으로 하는 디스플레이 장치.
- 제 2항에 있어서,상기 범프부를 제외한 상기 제 1반도체 발광 소자의 조립 면은 원형인 것을 특징으로 하는 디스플레이 장치.
- 제 3항에 있어서,상기 돌기부를 제외한 상기 격벽에 의해 정의되는 상기 제 1조립 홈의 형상은 원형인 것을 특징으로 하는 디스플레이 장치.
- 제 4항에 있어서,상기 제 1반도체 발광 소자의 상기 범프부의 개수는 상기 격벽의 상기 돌기부의 개수와 동일한 것을 특징으로 하는 디스플레이 장치.
- 제 1항에 있어서,제 2반도체 발광 소자 및 상기 제 2반도체 발광 소자가 조립되는 제 2조립 홈을 더 포함하는 디스플레이 장치.
- 제 6항에 있어서,상기 제 2반도체 발광 소자는 상기 제 1반도체 발광 소자와 다른 형상을 가지며, 상기 제 2조립 홈은 상기 제 2반도체 발광 소자의 형상에 대응하는 것을 특징으로 하는 디스플레이 장치.
- 제 7항에 있어서,상기 제 1반도체 발광 소자는 제 1색상을 발광하고, 상기 제 2반도체 발광 소자는 상기 제 1색상과 다른 제 2색상을 발광하는 것을 특징으로 하는 디스플레이 장치.
- 제 8항에 있어서,상기 제 1반도체 발광 소자 및 상기 제 2반도체 발광 소자는 자성층을 포함하는 것을 특징으로 하는 디스플레이 장치.
- 개별 성장 기판에서 서로 다른 형상을 갖는 복수의 반도체 발광 소자들을 형성하는 단계;상기 반도체 발광 소자들이 조립되기 위한 조립 홈들을 구비하는 조립 기판을 준비하는 단계;상기 성장 기판의 반도체 발광 소자들을 분리하여, 유체가 채워진 챔버에 투입하는 단계; 및상기 챔버의 상면에 상기 조립 기판을 위치시키고, 자기장 및 전기장을 이용하여 상기 반도체 발광 소자를 상기 기판의 조립 홈에 조립하는 단계를 포함하고,상기 반도체 발광 소자들 중 적어도 하나의 반도체 발광 소자는 조립되는 면의 측면 방향으로 하나 이상의 범프(bump)부를 구비하는 것을 특징으로 하는 디스플레이 장치의 제조 방법.
- 제 10항에 있어서,상기 범프부를 구비하는 반도체 발광 소자가 조립되는 제 1조립 홈은 상기 제 1조립 홈을 둘러싸는 격벽에 의해 정의되고,상기 격벽은 상기 제 1조립 홈의 내부 방향으로 돌출되어 위치하는 적어도 하나의 돌기부를 포함하는 것을 특징으로 하는 디스플레이 장치의 제조 방법.
- 제 11항에 있어서,상기 반도체 발광 소자들은 자성층을 포함하고,상기 조립하는 단계는,상기 조립 홈들이 위치하지 않는 상기 기판의 후면부에 자성체를 구비한 조립 장치를 위치시키고, 상기 조립 장치의 움직임에 따라 발생하는 자기장에 의해, 상기 반도체 발광 소자들이 상기 기판의 상기 조립 홈들에 접촉하는 단계를 포함하는 디스플레이 장치의 제조 방법.
- 제 12항에 있어서,상기 조립 장치의 움직임은 회전운동을 포함하고,상기 접촉하는 단계는,상기 조립 장치의 회전운동에 따라 상기 반도체 발광 소자들이 상기 기판의 상기 조립 홈 내에서 회전하는 단계를 포함하는 디스플레이 장치의 제조 방법.
- 제 10항에 있어서,상기 조립 기판 상에 조립된 상기 반도체 발광 소자들을 전사 기판으로 전사하는 단계 및전사 기판으로 전사된 반도체 발광 소자들을 배선 기판으로 전사하는 단계를 포함하는 디스플레이 장치의 제조 방법.
- 제 14항에 있어서,상기 배선 기판으로 전사하는 단계는,상기 배선 기판에 배선 전극 및 전도성 접착층을 형성하는 단계 및 상기 전사 기판의 상기 반도체 발광 소자를 상기 배선 기판의 상기 전도성 접착층에 부착하는 단계를 포함하는 디스플레이 장치의 제조 방법.
- 제 10항에 있어서,상기 반도체 발광 소자들은 마이크로미터 단위의 크기를 가진 LED(Micro-LED)인 것을 특징으로 하는 디스플레이 장치의 제조 방법.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP19942395.5A EP4020568A4 (en) | 2019-08-20 | 2019-08-21 | DISPLAY DEVICE USING MICRO-LED AND METHOD FOR MANUFACTURING SAME |
US17/633,520 US20220293823A1 (en) | 2019-08-20 | 2019-08-21 | Display device using micro led and manufacturing method therefor |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2019-0101594 | 2019-08-20 | ||
KR1020190101594A KR20190104276A (ko) | 2019-08-20 | 2019-08-20 | 마이크로 led를 이용한 디스플레이 장치 및 이의 제조 방법 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021033801A1 true WO2021033801A1 (ko) | 2021-02-25 |
Family
ID=67951548
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2019/010638 WO2021033801A1 (ko) | 2019-08-20 | 2019-08-21 | 마이크로 led를 이용한 디스플레이 장치 및 이의 제조 방법 |
Country Status (4)
Country | Link |
---|---|
US (1) | US20220293823A1 (ko) |
EP (1) | EP4020568A4 (ko) |
KR (1) | KR20190104276A (ko) |
WO (1) | WO2021033801A1 (ko) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021054491A1 (ko) * | 2019-09-18 | 2021-03-25 | 엘지전자 주식회사 | 마이크로 led를 이용한 디스플레이 장치 및 이의 제조 방법 |
US20220399313A1 (en) * | 2019-10-07 | 2022-12-15 | Lg Electronics Inc. | Display device using micro led and method of manufacturing same |
KR20190143840A (ko) * | 2019-12-11 | 2019-12-31 | 엘지전자 주식회사 | 마이크로 led와 관련된 디스플레이 장치 및 이의 제조 방법 |
KR20240031335A (ko) * | 2021-07-30 | 2024-03-07 | 엘지전자 주식회사 | 반도체 발광소자를 포함하는 디스플레이 장치 |
WO2023013801A1 (ko) * | 2021-08-06 | 2023-02-09 | 엘지전자 주식회사 | 디스플레이 장치 |
WO2023096149A1 (ko) * | 2021-11-26 | 2023-06-01 | 엘지전자 주식회사 | 반도체 발광 소자를 포함하는 디스플레이 장치 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060220989A1 (en) * | 2005-04-04 | 2006-10-05 | Hillis W D | Method of assembling displays on substrates |
KR101620469B1 (ko) * | 2014-11-13 | 2016-05-23 | 엘지전자 주식회사 | 반도체 발광 소자를 이용한 디스플레이 장치의 제조방법 |
US20170104009A1 (en) * | 2015-10-09 | 2017-04-13 | Innolux Corporation | Array substrate apparatus applying the same and assembly method thereof |
KR20180030454A (ko) * | 2016-09-15 | 2018-03-23 | 일룩스 아이엔씨. | 발광 표시 장치의 유체 조립 시스템 및 방법 |
KR20190075869A (ko) * | 2019-06-11 | 2019-07-01 | 엘지전자 주식회사 | 마이크로 led를 이용한 디스플레이 장치 및 이의 제조 방법 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101649657B1 (ko) * | 2014-10-07 | 2016-08-30 | 엘지전자 주식회사 | 반도체 소자 및 이의 제조 방법 |
WO2019132050A1 (ko) * | 2017-12-26 | 2019-07-04 | 박일우 | Led 디스플레이 장치 및 그 제조 방법 |
CN109065677A (zh) * | 2018-08-17 | 2018-12-21 | 京东方科技集团股份有限公司 | Micro-LED巨量转移方法及Micro-LED基板 |
CN110416124B (zh) * | 2019-07-05 | 2020-10-13 | 深超光电(深圳)有限公司 | Led的转移方法及led显示面板的制备方法 |
-
2019
- 2019-08-20 KR KR1020190101594A patent/KR20190104276A/ko active IP Right Grant
- 2019-08-21 EP EP19942395.5A patent/EP4020568A4/en active Pending
- 2019-08-21 WO PCT/KR2019/010638 patent/WO2021033801A1/ko unknown
- 2019-08-21 US US17/633,520 patent/US20220293823A1/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060220989A1 (en) * | 2005-04-04 | 2006-10-05 | Hillis W D | Method of assembling displays on substrates |
KR101620469B1 (ko) * | 2014-11-13 | 2016-05-23 | 엘지전자 주식회사 | 반도체 발광 소자를 이용한 디스플레이 장치의 제조방법 |
US20170104009A1 (en) * | 2015-10-09 | 2017-04-13 | Innolux Corporation | Array substrate apparatus applying the same and assembly method thereof |
KR20180030454A (ko) * | 2016-09-15 | 2018-03-23 | 일룩스 아이엔씨. | 발광 표시 장치의 유체 조립 시스템 및 방법 |
KR20190075869A (ko) * | 2019-06-11 | 2019-07-01 | 엘지전자 주식회사 | 마이크로 led를 이용한 디스플레이 장치 및 이의 제조 방법 |
Also Published As
Publication number | Publication date |
---|---|
US20220293823A1 (en) | 2022-09-15 |
KR20190104276A (ko) | 2019-09-09 |
EP4020568A4 (en) | 2023-10-11 |
EP4020568A1 (en) | 2022-06-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2021002490A1 (ko) | 마이크로 led를 이용한 디스플레이 장치 및 이의 제조 방법 | |
WO2021025202A1 (ko) | 디스플레이 장치의 제조 방법 및 디스플레이 장치 제조를 위한 기판 | |
WO2021040066A1 (ko) | 마이크로 led를 이용한 디스플레이 장치 및 이의 제조 방법 | |
WO2021040102A1 (ko) | 마이크로 led를 이용한 디스플레이 장치 및 이의 제조 방법 | |
WO2021033801A1 (ko) | 마이크로 led를 이용한 디스플레이 장치 및 이의 제조 방법 | |
WO2021033802A1 (ko) | 마이크로 led를 이용한 디스플레이 장치 및 이의 제조 방법 | |
WO2021080028A1 (ko) | 마이크로 led를 이용한 디스플레이 장치 및 이의 제조 방법 | |
WO2021117979A1 (ko) | 마이크로 led와 관련된 디스플레이 장치 및 이의 제조 방법 | |
WO2021066221A1 (ko) | 마이크로 led를 이용한 디스플레이 장치 및 이의 제조 방법 | |
WO2021070977A1 (ko) | 마이크로 led를 이용한 디스플레이 장치 및 이의 제조 방법 | |
WO2021054491A1 (ko) | 마이크로 led를 이용한 디스플레이 장치 및 이의 제조 방법 | |
WO2019151550A1 (ko) | 반도체 발광소자를 이용한 디스플레이 장치 및 이의 제조방법 | |
WO2021060595A1 (ko) | 마이크로 led를 이용한 디스플레이 장치 및 이의 제조 방법 | |
WO2020251076A1 (ko) | 마이크로 led를 이용한 디스플레이 장치 및 이의 제조 방법 | |
WO2014163325A1 (en) | Display device using semiconductor light emitting device | |
WO2020166777A1 (ko) | 반도체 발광 소자를 이용한 디스플레이 장치 및 이의 제조 방법 | |
WO2021125421A1 (ko) | 발광 소자를 이용한 디스플레이 장치 및 그 제조 방법 | |
WO2015060506A1 (en) | Display device using semiconductor light emitting device | |
WO2021132789A1 (ko) | 발광 소자를 이용한 디스플레이의 제조 장치 및 그 제조 방법 | |
WO2021100955A1 (ko) | 발광 소자를 이용한 디스플레이 장치 | |
WO2021060577A1 (ko) | 마이크로 led를 이용한 디스플레이 장치 및 이의 제조 방법 | |
WO2020179989A1 (ko) | 반도체 발광 소자를 이용한 디스플레이 장치 | |
WO2021025201A1 (ko) | 디스플레이 장치의 제조 방법 및 디스플레이 장치 제조를 위한 전사 기판 | |
WO2020175756A1 (ko) | 반도체 발광 소자를 디스플레이 패널에 조립하는 조립 장치 | |
WO2021015350A1 (ko) | 반도체 발광 소자를 이용한 디스플레이 장치 및 그 제조 방법 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19942395 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2019942395 Country of ref document: EP Effective date: 20220321 |