WO2021025201A1 - 디스플레이 장치의 제조 방법 및 디스플레이 장치 제조를 위한 전사 기판 - Google Patents
디스플레이 장치의 제조 방법 및 디스플레이 장치 제조를 위한 전사 기판 Download PDFInfo
- Publication number
- WO2021025201A1 WO2021025201A1 PCT/KR2019/009861 KR2019009861W WO2021025201A1 WO 2021025201 A1 WO2021025201 A1 WO 2021025201A1 KR 2019009861 W KR2019009861 W KR 2019009861W WO 2021025201 A1 WO2021025201 A1 WO 2021025201A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- light emitting
- semiconductor light
- emitting device
- mixed solution
- protrusion
- Prior art date
Links
- 239000000758 substrate Substances 0.000 title claims abstract description 197
- 238000012546 transfer Methods 0.000 title claims abstract description 125
- 238000000034 method Methods 0.000 title claims abstract description 63
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 48
- 239000004065 semiconductor Substances 0.000 claims abstract description 211
- 239000011256 inorganic filler Substances 0.000 claims abstract description 116
- 229910003475 inorganic filler Inorganic materials 0.000 claims abstract description 116
- 239000011368 organic material Substances 0.000 claims abstract description 57
- 239000011259 mixed solution Substances 0.000 claims description 75
- 239000000243 solution Substances 0.000 claims description 25
- 239000004205 dimethyl polysiloxane Substances 0.000 claims description 16
- 229920000435 poly(dimethylsiloxane) Polymers 0.000 claims description 16
- 239000003795 chemical substances by application Substances 0.000 claims description 15
- 238000009826 distribution Methods 0.000 claims description 13
- 229920000139 polyethylene terephthalate Polymers 0.000 claims description 13
- 239000005020 polyethylene terephthalate Substances 0.000 claims description 13
- -1 polyethylene terephthalate Polymers 0.000 claims description 11
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 claims description 10
- 238000002156 mixing Methods 0.000 claims description 9
- 239000011521 glass Substances 0.000 claims description 8
- 230000005484 gravity Effects 0.000 claims description 5
- 229920005646 polycarboxylate Polymers 0.000 claims description 5
- 229910004298 SiO 2 Inorganic materials 0.000 claims 1
- 239000010410 layer Substances 0.000 description 182
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 50
- 239000000377 silicon dioxide Substances 0.000 description 25
- 239000012790 adhesive layer Substances 0.000 description 23
- 239000000463 material Substances 0.000 description 22
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 19
- 239000002105 nanoparticle Substances 0.000 description 15
- 238000004088 simulation Methods 0.000 description 13
- 239000000853 adhesive Substances 0.000 description 10
- 230000001070 adhesive effect Effects 0.000 description 10
- 238000001556 precipitation Methods 0.000 description 10
- 238000005192 partition Methods 0.000 description 9
- 238000010586 diagram Methods 0.000 description 8
- 238000006073 displacement reaction Methods 0.000 description 8
- 239000002245 particle Substances 0.000 description 7
- 239000002904 solvent Substances 0.000 description 6
- 239000004020 conductor Substances 0.000 description 5
- 230000007423 decrease Effects 0.000 description 5
- 239000011159 matrix material Substances 0.000 description 5
- 239000004642 Polyimide Substances 0.000 description 4
- 229910052681 coesite Inorganic materials 0.000 description 4
- 229910052906 cristobalite Inorganic materials 0.000 description 4
- 230000003247 decreasing effect Effects 0.000 description 4
- 239000012212 insulator Substances 0.000 description 4
- 229920001721 polyimide Polymers 0.000 description 4
- 235000012239 silicon dioxide Nutrition 0.000 description 4
- 229910052682 stishovite Inorganic materials 0.000 description 4
- 229910052905 tridymite Inorganic materials 0.000 description 4
- 239000003086 colorant Substances 0.000 description 3
- 239000000945 filler Substances 0.000 description 3
- 238000003825 pressing Methods 0.000 description 3
- 238000001338 self-assembly Methods 0.000 description 3
- JMASRVWKEDWRBT-UHFFFAOYSA-N Gallium nitride Chemical compound [Ga]#N JMASRVWKEDWRBT-UHFFFAOYSA-N 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000005530 etching Methods 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 2
- 229920002120 photoresistant polymer Polymers 0.000 description 2
- 239000011112 polyethylene naphthalate Substances 0.000 description 2
- 239000002096 quantum dot Substances 0.000 description 2
- 229910052594 sapphire Inorganic materials 0.000 description 2
- 239000010980 sapphire Substances 0.000 description 2
- 230000000007 visual effect Effects 0.000 description 2
- 229910002601 GaN Inorganic materials 0.000 description 1
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 1
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 238000012217 deletion Methods 0.000 description 1
- 230000037430 deletion Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000013013 elastic material Substances 0.000 description 1
- 238000010292 electrical insulation Methods 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- QZQVBEXLDFYHSR-UHFFFAOYSA-N gallium(III) oxide Inorganic materials O=[Ga]O[Ga]=O QZQVBEXLDFYHSR-UHFFFAOYSA-N 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 229920003207 poly(ethylene-2,6-naphthalate) Polymers 0.000 description 1
- 239000004848 polyfunctional curative Substances 0.000 description 1
- 239000002861 polymer material Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 239000011241 protective layer Substances 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 238000002310 reflectometry Methods 0.000 description 1
- 230000003252 repetitive effect Effects 0.000 description 1
- 239000011343 solid material Substances 0.000 description 1
- 238000004528 spin coating Methods 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 239000012780 transparent material Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/683—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
- H01L21/6835—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/0002—Lithographic processes using patterning methods other than those involving the exposure to radiation, e.g. by stamping
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/16—Coating processes; Apparatus therefor
- G03F7/168—Finishing the coated layer, e.g. drying, baking, soaking
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/26—Processing photosensitive materials; Apparatus therefor
- G03F7/38—Treatment before imagewise removal, e.g. prebaking
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02107—Forming insulating materials on a substrate
- H01L21/02225—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
- H01L21/0226—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
- H01L21/02282—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process liquid deposition, e.g. spin-coating, sol-gel techniques, spray coating
- H01L21/02288—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process liquid deposition, e.g. spin-coating, sol-gel techniques, spray coating printing, e.g. ink-jet printing
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02107—Forming insulating materials on a substrate
- H01L21/02296—Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
- H01L21/02299—Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer pre-treatment
- H01L21/02307—Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer pre-treatment treatment by exposure to a liquid
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/71—Manufacture of specific parts of devices defined in group H01L21/70
- H01L21/768—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
- H01L21/76801—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
- H01L21/76802—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing by forming openings in dielectrics
- H01L21/76817—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing by forming openings in dielectrics using printing or stamping techniques
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L25/00—Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
- H01L25/03—Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
- H01L25/04—Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
- H01L25/075—Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00
- H01L25/0753—Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00 the devices being arranged next to each other
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L27/00—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
- H01L27/15—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission
- H01L27/153—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission in a repetitive configuration, e.g. LED bars
- H01L27/156—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission in a repetitive configuration, e.g. LED bars two-dimensional arrays
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/02—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/67005—Apparatus not specifically provided for elsewhere
- H01L21/67011—Apparatus for manufacture or treatment
- H01L21/67144—Apparatus for mounting on conductive members, e.g. leadframes or conductors on insulating substrates
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2221/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
- H01L2221/67—Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere
- H01L2221/683—Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping
- H01L2221/68304—Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
- H01L2221/68354—Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support used to support diced chips prior to mounting
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L25/00—Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
- H01L25/16—Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different main groups of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. forming hybrid circuits
- H01L25/167—Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different main groups of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. forming hybrid circuits comprising optoelectronic devices, e.g. LED, photodiodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/005—Processes
- H01L33/0095—Post-treatment of devices, e.g. annealing, recrystallisation or short-circuit elimination
Definitions
- the present invention is applicable to the technical field related to a display device, and relates to, for example, a method of manufacturing a display device using a micro LED (Light Emitting Diode) and a transfer substrate used for manufacturing the display device.
- a micro LED Light Emitting Diode
- LCD Liquid Crystal Display
- OLED Organic Light Emitting Diodes
- LED Light Emitting Diode
- GaAsP compound semiconductor in 1962 has been used as a light source for display images in electronic devices including information communication devices. Accordingly, a method for solving the above-described problems by implementing a display using the semiconductor light emitting device may be proposed.
- the semiconductor light emitting device has various advantages, such as a long lifespan, low power consumption, excellent initial driving characteristics, and high vibration resistance, compared to a filament-based light emitting device.
- a method of manufacturing a display device in which a semiconductor light emitting device is transferred to a wiring board with a minimum alignment error, and a transfer substrate used for manufacturing the display device are provided.
- An object of an embodiment of the present invention is to provide a new manufacturing method with high reliability in manufacturing a display device using a semiconductor light emitting device.
- Another object of an embodiment of the present invention is to provide a transfer substrate capable of minimizing an alignment error during a transfer process and a method of manufacturing the same in transferring a semiconductor light emitting device to manufacture a large area display device.
- Another object of an embodiment of the present invention is to solve various problems not mentioned herein. Those skilled in the art can understand through the entire purpose of the specification and drawings.
- a method of manufacturing a transfer substrate for transferring a semiconductor light emitting device to achieve the above object includes: preparing a mold having an intaglio shape corresponding to a stamp layer including a protrusion; Injecting a mixed solution of a curing agent, an organic solution, and a plurality of inorganic fillers into the mold; Fixing the upper surface of the mold injected with the mixed solution in contact with the base substrate; Inverting the mold and the base substrate so that the inorganic filler of the mixed solution is precipitated by gravity in the direction of the base substrate; Curing the mixed solution; And removing the mold.
- the preparing of the mold may include forming a first intaglio portion corresponding to the stamp layer on a flat surface of a mold substrate; And forming a second intaglio portion corresponding to the protrusion on the first intaglio portion.
- the step of transferring to the second temporary substrate includes contacting the second conductive type semiconductor layer of the semiconductor light emitting device with the protective layer of the second temporary substrate.
- the curing of the mixed solution includes controlling the concentration distribution of the inorganic filler so that the concentration of the plurality of inorganic fillers varies depending on the location of the mixed solution in the mold.
- the controlling of the concentration distribution of the inorganic filler is characterized in that, in the mixed solution in the mold, the concentration of the inorganic filler increases as the position moves from the protrusion toward the base substrate.
- the step of curing the mixed solution is characterized in that it is performed in a temperature range between 70 degrees and 120 degrees.
- the controlling of the concentration distribution of the inorganic filler includes a change in temperature or UV (Ultra Violet) irradiation with respect to the mixed solution injected into the mold, and the viscosity of the organic solution in the mixed solution (Viscosity ).
- the step of injecting the mixed solution includes mixing and dispersing the plurality of inorganic fillers in the organic solution, and adding the curing agent to the organic solution in which the plurality of inorganic fillers are dispersed. .
- a transfer substrate used in manufacturing a display device using a semiconductor light emitting device includes a base layer; And an organic stamp layer disposed on the base layer and having a protrusion, wherein the organic stamp layer has an inorganic filler dispersed inside the organic stamp layer, and has a concentration gradient of the inorganic filler according to a position, and the The concentration gradient of the inorganic filler is characterized in that it gradually increases from the protrusion of the organic stamp layer toward the base layer.
- the organic stamp layer includes a first region having a concentration gradient of the inorganic filler and a second region in which the inorganic filler does not exist, and the second region is located outside the first region, and the Includes the end of the protrusion.
- the first stiffness of the base layer is greater than the second stiffness of the first region of the organic stamp layer, and the second stiffness is greater than the third stiffness of the second region of the organic stamp layer. It is characterized.
- the height of the protrusion is determined based on the thickness of the semiconductor light emitting device in contact with the protrusion.
- the height of the protrusion is greater than the thickness of the semiconductor light emitting device.
- a width of the protrusion is wider than a width of a semiconductor light emitting device in contact with the protrusion.
- the base layer includes at least one of polyethylene terephthalate (PET), polycarboxylate ether (PCE), and glass.
- PET polyethylene terephthalate
- PCE polycarboxylate ether
- the main component of the inorganic filler is characterized in that SiO2 within several tens of nm to several ⁇ m.
- the main component of the organic material stamp layer is characterized in that PDMS (polydimethylsiloxane).
- the semiconductor light emitting device is characterized in that it is an LED (Micro-LED) having a size of a micrometer unit.
- a new manufacturing method having high reliability in manufacturing a display device using a semiconductor light emitting device, a new manufacturing method having high reliability can be provided.
- an organic stamp layer including a protrusion As a transfer substrate for transferring the semiconductor light emitting device, an organic stamp layer including a protrusion is used, the organic stamp layer contains a plurality of inorganic fillers, and the concentration of the inorganic filler increases as the distance from the protrusion increases. To form. Therefore, the protrusion of the organic material stamp layer has a low concentration of the inorganic filler to maintain sufficient adhesion to transfer the semiconductor light emitting device, and the organic material stamp layer itself has a significantly stronger stiffness than the stamp layer using a single organic material.
- FIG. 1 is a conceptual diagram showing an embodiment of a display device using a semiconductor light emitting device of the present invention.
- FIG. 2 is a partially enlarged view of part A of FIG. 1.
- 3A and 3B are cross-sectional views taken along lines B-B and C-C of FIG. 2.
- FIG. 4 is a conceptual diagram illustrating the flip chip type semiconductor light emitting device of FIG. 3.
- 5A to 5C are conceptual diagrams illustrating various forms of implementing colors in relation to a flip chip type semiconductor light emitting device.
- FIG. 6 is a cross-sectional view showing a method of manufacturing a display device using a transfer substrate according to the present invention.
- FIG. 7 is a flowchart illustrating a method of manufacturing a display device including a semiconductor light emitting device emitting red (R), green (G), and blue (B) light.
- FIG. 8 is a diagram illustrating an arrangement error of semiconductor light emitting devices that may occur when transferring to a conventional transfer substrate.
- FIG. 10 is a cross-sectional view of a transfer substrate according to the present invention.
- FIG. 11 is an image of an area E of the transfer substrate of FIG. 10 enlarged with an optical microscope.
- FIG. 12 is a flow chart showing a method of manufacturing a transfer substrate of the present invention.
- FIG. 13 are cross-sectional views illustrating a manufacturing method according to the flowchart of FIG. 12.
- FIG. 14 is a flowchart illustrating a method of manufacturing a transfer substrate according to another embodiment of the present invention.
- FIG. 15 is a cross-sectional view of a transfer substrate manufactured according to the flowchart of FIG. 14.
- 16 is a graph showing the surface hardness according to the content of the inorganic filler.
- 17 is a simulation model for observing the rigidity according to the content of the inorganic filler.
- 19 is a simulation model for observing an arrangement error according to the content of the inorganic filler.
- an element such as a layer, region or substrate is referred to as being “on” another component, it will be understood that it may exist directly on the other element or there may be intermediate elements between them. There will be.
- the display device described herein is a concept including all display devices that display information as a unit pixel or a set of unit pixels. Therefore, it can be applied to parts, not limited to finished products.
- a panel corresponding to a part of a digital TV is also independently a display device in the present specification.
- Finished products include mobile phones, smart phones, laptop computers, digital broadcasting terminals, personal digital assistants (PDAs), portable multimedia players (PMPs), navigation, Slate PC, Tablet PC, and Ultra. This could include books, digital TVs, and desktop computers.
- the semiconductor light emitting device mentioned in this specification is a concept including LEDs, micro LEDs, etc., and may be used interchangeably.
- FIG. 1 is a conceptual diagram showing an embodiment of a display device using a semiconductor light emitting device of the present invention.
- information processed by a controller (not shown) of the display apparatus 100 may be displayed using a flexible display.
- Flexible displays include displays that can be bent, or bendable, or twistable, or foldable, or rollable by external force, for example.
- the flexible display may be a display manufactured on a thin and flexible substrate that can be bent, bent, or foldable or rolled like paper while maintaining the display characteristics of a conventional flat panel display.
- the display area of the flexible display becomes a flat surface.
- the display area may be a curved surface.
- the information displayed in the second state may be visual information output on a curved surface. This visual information is implemented by independently controlling light emission of sub-pixels arranged in a matrix form.
- the unit pixel means, for example, a minimum unit for implementing one color.
- the unit pixel of the flexible display may be implemented by a semiconductor light emitting device.
- a light emitting diode LED
- the light emitting diode is formed in a small size, and through this, it can serve as a unit pixel even in the second state.
- FIG. 2 is a partially enlarged view of part A of FIG. 1.
- 3A and 3B are cross-sectional views taken along lines B-B and C-C of FIG. 2.
- FIG. 4 is a conceptual diagram illustrating the flip chip type semiconductor light emitting device of FIG. 3.
- 5A to 5C are conceptual diagrams illustrating various forms of implementing colors in relation to a flip chip type semiconductor light emitting device.
- a display device 100 using a passive matrix (PM) type semiconductor light emitting device is illustrated as a display device 100 using a semiconductor light emitting device.
- PM passive matrix
- AM active matrix
- the display device 100 shown in FIG. 1 includes a substrate 110, a first electrode 120, a conductive adhesive layer 130, a second electrode 140, and at least one semiconductor light emitting device as shown in FIG. Includes 150.
- the substrate 110 may be a flexible substrate.
- the substrate 110 may include glass or polyimide (PI).
- PI polyimide
- any material such as polyethylene naphthalate (PEN) and polyethylene terephthalate (PET) may be used as long as it has insulation and is flexible.
- the substrate 110 may be a transparent material or an opaque material.
- the substrate 110 may be a wiring board on which the first electrode 120 is disposed, and thus the first electrode 120 may be positioned on the substrate 110.
- the insulating layer 160 may be disposed on the substrate 110 on which the first electrode 120 is located, and the auxiliary electrode 170 may be disposed on the insulating layer 160.
- a state in which the insulating layer 160 is stacked on the substrate 110 may be a single wiring board.
- the insulating layer 160 is made of an insulating and flexible material such as polyimide (PI), PET, and PEN, and may be formed integrally with the substrate 110 to form a single substrate.
- the auxiliary electrode 170 is an electrode that electrically connects the first electrode 120 and the semiconductor light emitting device 150, and is positioned on the insulating layer 160 and is disposed corresponding to the position of the first electrode 120.
- the auxiliary electrode 170 has a dot shape and may be electrically connected to the first electrode 120 through an electrode hole 171 penetrating through the insulating layer 160.
- the electrode hole 171 may be formed by filling a via hole with a conductive material.
- a conductive adhesive layer 130 is formed on one surface of the insulating layer 160, but the present invention is not limited thereto.
- a layer performing a specific function is formed between the insulating layer 160 and the conductive adhesive layer 130, or a structure in which the conductive adhesive layer 130 is disposed on the substrate 110 without the insulating layer 160 It is also possible.
- the conductive adhesive layer 130 may serve as an insulating layer.
- the conductive adhesive layer 130 may be a layer having adhesiveness and conductivity, and for this purpose, a material having conductivity and a material having adhesiveness may be mixed in the conductive adhesive layer 130.
- the conductive adhesive layer 130 has ductility, thereby enabling a flexible function in the display device.
- the conductive adhesive layer 130 may be an anisotropic conductive film (ACF), an anisotropic conductive paste, a solution containing conductive particles, or the like.
- ACF anisotropic conductive film
- the conductive adhesive layer 130 allows electrical interconnection in the Z direction passing through the thickness, but may be configured as a layer having electrical insulation in the horizontal X-Y direction. Therefore, the conductive adhesive layer 130 may be referred to as a Z-axis conductive layer (however, hereinafter referred to as a'conductive adhesive layer').
- the anisotropic conductive film is a film in which an anisotropic conductive medium is mixed with an insulating base member, and when heat and pressure are applied, only a specific portion becomes conductive by the anisotropic conductive medium.
- heat and pressure are applied to the anisotropic conductive film, but other methods may be applied in order for the anisotropic conductive film to partially have conductivity.
- Other methods described above may be, for example, that only one of the above heat and pressure is applied or UV cured or the like.
- the anisotropic conductive medium may be, for example, conductive balls or conductive particles.
- the anisotropic conductive film is a film in which conductive balls are mixed with an insulating base member, and when heat and pressure are applied, only a specific portion becomes conductive by the conductive balls.
- a core of a conductive material may contain a plurality of particles covered by an insulating film made of a polymer material, and in this case, a portion to which heat and pressure is applied is destroyed by the insulating film and becomes conductive by the core. .
- the shape of the core may be deformed to form a layer in contact with each other in the thickness direction of the film.
- heat and pressure are applied to the anisotropic conductive film as a whole, and an electrical connection in the Z-axis direction is partially formed due to a height difference of a counterpart adhered by the anisotropic conductive film.
- the anisotropic conductive film may contain a plurality of particles coated with a conductive material in an insulating core.
- the part to which heat and pressure are applied is deformed (pressed together) to have conductivity in the thickness direction of the film.
- a form in which the conductive material penetrates the insulating base member in the Z-axis direction and has conductivity in the thickness direction of the film is also possible.
- the conductive material may have a pointed end.
- the anisotropic conductive film may be a fixed array anisotropic conductive film (ACF) in which conductive balls are inserted into one surface of an insulating base member. More specifically, the insulating base member is formed of an adhesive material, and the conductive ball is intensively disposed on the bottom of the insulating base member, and when heat and pressure are applied from the base member, it is deformed together with the conductive ball. Accordingly, it has conductivity in the vertical direction.
- ACF fixed array anisotropic conductive film
- the present invention is not necessarily limited thereto, and the anisotropic conductive film has a form in which conductive balls are randomly mixed in an insulating base member, or consists of a plurality of layers, and a form in which conductive balls are disposed on one layer (double- ACF) etc. are all possible.
- the anisotropic conductive paste is a combination of a paste and a conductive ball, and may be a paste in which conductive balls are mixed with an insulating and adhesive base material.
- the solution containing conductive particles may be a solution containing conductive particles or nanoparticles.
- the second electrode 140 is positioned on the insulating layer 160 to be spaced apart from the auxiliary electrode 170. That is, the conductive adhesive layer 130 is disposed on the insulating layer 160 on which the auxiliary electrode 170 and the second electrode 140 are located.
- the semiconductor light emitting device 150 After forming the conductive adhesive layer 130 with the auxiliary electrode 170 and the second electrode 140 positioned on the insulating layer 160, the semiconductor light emitting device 150 is connected in a flip chip form by applying heat and pressure. Then, the semiconductor light emitting device 150 is electrically connected to the first electrode 120 and the second electrode 140.
- the semiconductor light emitting device may be a flip chip type light emitting device.
- the semiconductor light emitting device includes a p-type electrode 156, a p-type semiconductor layer 155 on which the p-type electrode 156 is formed, an active layer 154 formed on the p-type semiconductor layer 155, and an active layer ( And an n-type semiconductor layer 153 formed on 154) and an n-type electrode 152 disposed horizontally apart from the p-type electrode 156 on the n-type semiconductor layer 153.
- the p-type electrode 156 may be electrically connected by the auxiliary electrode 170 and the conductive adhesive layer 130 shown in FIG. 3, and the n-type electrode 152 is electrically connected to the second electrode 140. Can be connected to.
- the auxiliary electrode 170 is formed to be elongated in one direction, so that one auxiliary electrode may be electrically connected to the plurality of semiconductor light emitting devices 150.
- one auxiliary electrode may be electrically connected to the plurality of semiconductor light emitting devices 150.
- p-type electrodes of the left and right semiconductor light emitting devices with the auxiliary electrode as the center may be electrically connected to one auxiliary electrode.
- the semiconductor light emitting device 150 is pressed into the conductive adhesive layer 130 by heat and pressure, through which the portion between the p-type electrode 156 and the auxiliary electrode 170 of the semiconductor light emitting device 150 And, only a portion between the n-type electrode 152 and the second electrode 140 of the semiconductor light emitting device 150 has conductivity, and the remaining portion does not have conductivity because there is no press-fitting of the semiconductor light emitting device.
- the conductive adhesive layer 130 not only mutually couples the semiconductor light emitting device 150 and the auxiliary electrode 170 and between the semiconductor light emitting device 150 and the second electrode 140, but also forms an electrical connection.
- the plurality of semiconductor light emitting devices 150 constitute a light emitting device array, and a phosphor layer 180 is formed in the light emitting device array.
- the light emitting device array may include a plurality of semiconductor light emitting devices having different luminance values.
- Each semiconductor light emitting device 150 constitutes a unit pixel, and is electrically connected to the first electrode 120.
- the first electrode 120 may be plural, the semiconductor light emitting elements are arranged in rows, for example, and the semiconductor light emitting elements of each row may be electrically connected to any one of the plurality of first electrodes.
- semiconductor light emitting devices are connected in a flip chip form, semiconductor light emitting devices grown on a transparent dielectric substrate can be used. Further, the semiconductor light emitting devices may be, for example, nitride semiconductor light emitting devices. Since the semiconductor light emitting device 150 has excellent luminance, individual unit pixels can be configured with a small size.
- a partition wall 190 may be formed between the semiconductor light emitting devices 150.
- the partition wall 190 may serve to separate individual unit pixels from each other, and may be integrally formed with the conductive adhesive layer 130.
- the base member of the anisotropic conductive film may form the partition wall.
- the partition wall 190 may have reflective properties and a contrast ratio may be increased even without a separate black insulator.
- a reflective partition wall may be separately provided as the partition wall 190.
- the partition wall 190 may include a black or white insulator depending on the purpose of the display device. When a partition wall of a white insulator is used, it is possible to increase reflectivity, and when a partition wall of a black insulator is used, it is possible to increase the contrast while having reflective properties.
- the phosphor layer 180 may be located on the outer surface of the semiconductor light emitting device 150.
- the semiconductor light emitting device 150 is a blue semiconductor light emitting device emitting blue (B) light
- the phosphor layer 180 performs a function of converting the blue (B) light into a color of a unit pixel.
- the phosphor layer 180 may be a red phosphor 181 or a green phosphor 182 constituting individual pixels.
- a red phosphor 181 capable of converting blue light into red (R) light may be stacked on a blue semiconductor light emitting device, and at a position forming a green unit pixel, blue A green phosphor 182 capable of converting blue light into green (G) light may be stacked on the semiconductor light emitting device.
- a blue semiconductor light emitting device may be used alone in a portion of the blue unit pixel.
- unit pixels of red (R), green (G), and blue (B) may form one pixel.
- a phosphor of one color may be stacked along each line of the first electrode 120. Accordingly, one line of the first electrode 120 may be an electrode that controls one color. That is, along the second electrode 140, red (R), green (G), and blue (B) may be sequentially disposed, and a unit pixel may be implemented through this.
- unit pixels of red (R), green (G), and blue (B) can be implemented by combining the semiconductor light emitting device 150 and the quantum dot (QD) instead of the phosphor. have.
- a black matrix 191 may be disposed between each of the phosphor layers in order to improve contrast. That is, the black matrix 191 may improve contrast of the contrast.
- the present invention is not necessarily limited thereto, and other structures for implementing blue, red, and green colors may be applied.
- each of the semiconductor light emitting devices 150 is made of gallium nitride (GaN) as a main material, and indium (In) and/or aluminum (Al) are added together to emit various light including blue. It can be implemented as a light emitting device.
- GaN gallium nitride
- Al aluminum
- the semiconductor light emitting device 150 may be a red, green, and blue semiconductor light emitting device to form a sub-pixel, respectively.
- red, green, and blue semiconductor light emitting devices R, G, B
- R, G, B red, green, and blue semiconductor light emitting devices
- unit pixels of red, green, and blue by red, green, and blue semiconductor light emitting devices They form one pixel, through which a full color display can be implemented.
- the semiconductor light emitting device 150a may include a white light emitting device W in which a yellow phosphor layer is provided for each individual device.
- a red phosphor layer 181, a green phosphor layer 182, and a blue phosphor layer 183 may be provided on the white light emitting device W.
- a unit pixel may be formed by using a color filter in which red, green, and blue are repeated on the white light emitting device W.
- a structure in which a red phosphor layer 184, a green phosphor layer 185, and a blue phosphor layer 186 are provided on the ultraviolet light emitting device 150b is also possible.
- the semiconductor light emitting device can be used not only for visible light but also for ultraviolet (UV) light, and the ultraviolet (UV) can be extended in the form of a semiconductor light emitting device that can be used as an excitation source of the upper phosphor. .
- the semiconductor light emitting device is positioned on the conductive adhesive layer to constitute a unit pixel in the display device. Since the semiconductor light emitting device has excellent luminance, individual unit pixels can be configured even with a small size.
- the individual semiconductor light emitting device 150 may have, for example, a side length of 80 ⁇ m or less, and may be a rectangular or square device. In the case of a rectangle, the size may be 20 X 80 ⁇ m or less.
- FIGS. 6 are cross-sectional views illustrating a method of manufacturing a display device using a transfer substrate according to the present invention.
- the semiconductor light emitting device formed on a growth substrate must be assembled or transferred to a new substrate.
- the growth substrate may be, for example, an 8-inch wafer, and thus a plurality of transfers may be repeated.
- FIG. 6(a) shows that the semiconductor light emitting device 150 formed on the growth substrate 111 and the transfer substrate 210 including the base layer 211 and the organic stamp layer 212 are aligned up and down. Shows a cross-sectional view.
- the semiconductor light emitting device 150 formed on the growth substrate 111 may include a first conductive type semiconductor layer, a second conductive type semiconductor layer, an active layer, and a conductive type electrode deposited on each conductive type semiconductor layer.
- the semiconductor light emitting device 150 may be a vertical semiconductor light emitting device in which the conductive electrode is formed to face each other, or a horizontal semiconductor light emitting device in which the conductive electrode is formed in the same direction.
- a process may be performed to form a conductive type electrode in one direction on a growth substrate and then form a conductive type electrode in another direction after transfer.
- all of the conductive electrodes can be formed on the growth substrate.
- a horizontal type semiconductor light emitting device when transferred to a final wiring board, it may be transferred in a flip chip structure.
- the growth substrate 111 may be formed of a material having a light-transmitting property, for example, any one of sapphire (Al2O3), GaN, ZnO, and AlO.
- the growth substrate 111 may be formed of a material suitable for growth of semiconductor materials or a carrier wafer.
- the growth substrate 111 may be formed of a material having excellent thermal conductivity, including a conductive substrate or an insulating substrate, for example, a SiC substrate having a higher thermal conductivity than a sapphire (Al2O3) substrate, or Si, GaAs, GaP, InP And Ga2O3 may be used, but is not limited thereto.
- the organic material stamp layer 212 of the transfer substrate 210 has sufficient adhesive force to transfer the semiconductor light emitting device 150.
- the organic material stamp layer 212 includes protrusions having a predetermined interval to correspond to the interval at which the semiconductor light emitting devices of the growth substrate 111 are disposed.
- an alignment process may be performed to accurately transfer the protrusion and the semiconductor light emitting device.
- the alignment process is performed by horizontally moving any one of the growth substrate 111 or the transfer substrate 210 with respect to the other, and then vertically moving the other one. Thereafter, the semiconductor light emitting device 150 of the growth substrate 111 and the position of the protrusion of the transfer substrate 210 corresponding to the semiconductor light emitting device 150 are inspected to be overlapped by a camera sensor. The semiconductor light emitting device 150 is transferred.
- the semiconductor light emitting device 150 is stably transferred to a protrusion in the organic stamp layer 212 of the transfer substrate 210.
- the organic stamp layer 212 may be a flexible film material such as polydimethylsiloxane (PDMS), and the base layer 211 of the transfer substrate 210 is at least one of polyethylene terephthalate (PET), polycarboxylate ether (PCE), and glass. It may include more than one. Therefore, the base layer 211 may stably support the organic material stamp layer 212 during a transfer process.
- PDMS polydimethylsiloxane
- PET polyethylene terephthalate
- PCE polycarboxylate ether
- a laser lift off (LLO) process to selectively separate the semiconductor light emitting device 150 This can be done. That is, when a laser is irradiated on a specific area of the growth substrate 111 where the semiconductor light emitting device 150 to be separated is located, the interface of the specific area changes, and thus the semiconductor light emitting device 150 is removed from the growth substrate 111. Can be selectively separated.
- LLO laser lift off
- 6(c) is a cross-sectional view after the semiconductor light emitting device 150 is transferred from the organic material stamp layer 212 of the transfer substrate 210 to the wiring board 110.
- the base layer 211 of the transfer substrate 210 serves to stably support the organic stamp layer 212 of the transfer substrate 210 during a substrate-to-substrate compression process during transfer.
- an electrode portion for electrically connecting the semiconductor light emitting device 150 and the wiring board 110 may be previously formed.
- an adhesive layer for stably fixing the semiconductor light emitting device 150 to the wiring board 110 may be previously formed on the wiring board 110.
- the adhesive layer may be, for example, an anisotropically conductive adhesive layer, and a wiring process may be performed simultaneously with the transfer of the semiconductor light emitting device 150.
- the transfer process is illustrated twice, but the present invention is not limited to the number of transfers.
- an additional transfer process may be performed to form a conductive electrode for a vertical semiconductor light emitting device or to form a light extraction structure of the semiconductor light emitting device.
- FIG. 6 illustrates a process of transferring the semiconductor light emitting device from the growth substrate to the transfer substrate
- the semiconductor light emitting devices of the growth substrate may be individually separated and assembled on an assembly substrate by a self-assembly method in a fluid.
- the semiconductor light emitting device assembled on the assembly substrate may be transferred to a transfer substrate having an organic stamp layer in a later process.
- FIG. 7 is a flowchart illustrating a method of manufacturing a display device including a semiconductor light emitting device emitting red (R), green (G), and blue (B) light.
- FIG. 6 simply shows a process of transferring a single color semiconductor light emitting device to a wiring board
- FIG. 7 specifically shows a process of manufacturing a display device having one unit pixel by transferring each sub-pixel of RGB.
- TEMPLATE shown in FIG. 7 refers to an assembled substrate.
- a display device including a RED chip, a GREEN chip, and a BLUE chip
- three types of assembly substrates and three types of transfer substrates are required.
- the assembly substrate may include a RED assembly substrate for assembling a RED semiconductor light emitting device, a green assembly substrate for assembling a GREEN semiconductor light emitting device, and a BLUE assembly substrate for assembling a BLUE semiconductor light emitting device.
- the semiconductor light emitting devices assembled on each of the assembly substrates may be transferred to the wiring substrate by different transfer substrates.
- the RED transfer substrate stamp (R)
- the RED transfer substrate is pressed onto the RED assembly substrate, so that the RED semiconductor light emitting device is attached to the RED assembly substrate.
- the GREEN semiconductor light emitting device is transferred from the GREEN assembly substrate to a GREEN transfer substrate (stamp ( Transferring to G)), transferring the BLUE semiconductor light emitting device from the BLUE assembly substrate to the BLUE transfer substrate (stamp (B)) by compressing the BLUE transfer substrate (stamp (B)) to the BLUE assembly substrate It may include.
- a process of transferring the RED semiconductor light emitting device, the GREEN semiconductor light emitting device, and the BLUE semiconductor light emitting device to the wiring board is performed by pressing each of the transfer substrates to the wiring board.
- semiconductor light emitting devices corresponding to each of RED, GREEN, and BLUE may be transferred to a wiring board using three types of assembly boards and one and the same transfer board.
- the step of transferring the semiconductor light emitting elements assembled on three types of assembly boards to a wiring board includes transferring the semiconductor light emitting elements assembled on each assembly substrate to one transfer substrate (RGB integrated stamp), and then the transfer The substrate may be pressed with the wiring substrate so that all three types of semiconductor light emitting devices can be transferred to the wiring substrate.
- a semiconductor light emitting device corresponding to each of RED, GREEN, and BLUE may be transferred to the wiring board using one type of assembly board and transfer board.
- all semiconductor light emitting devices corresponding to each of RED, GREEN, and BLUE are assembled on one assembly substrate, and then a process of collectively transferring to the transfer substrate and the wiring substrate is performed.
- a myriad of RED, GREEN, and BLUE semiconductor light emitting devices perform a plurality of transfer processes.
- the transfer process is not performed individually for each semiconductor light emitting device, but is performed collectively through a transfer substrate for a certain number of semiconductor light emitting devices. Accordingly, the transfer substrate has a contact portion for transferring a plurality of semiconductor light emitting devices, and includes, for example, a plurality of protrusions.
- the protrusion must have an adhesive force of a certain level or higher so that the protrusion contacts the semiconductor light emitting device and transfers the semiconductor light emitting device to the transfer substrate.
- FIG. 8 is a diagram illustrating an arrangement error of semiconductor light emitting devices that may occur when transferring to a conventional transfer substrate.
- a conventional transfer substrate it is manufactured using an organic material such as PDMS, and includes a plurality of protrusions for transferring individual semiconductor light emitting devices.
- FIG 8 is a cross-sectional view in which the semiconductor light emitting device 150 formed on the growth substrate 111 is transferred to the transfer substrate 310. As described above, the semiconductor light emitting device 150 is transferred from the assembly substrate to the transfer substrate 310. It can also be transferred.
- the transfer substrate includes an organic stamp layer 312 and a base layer 311 including protrusions.
- the difference from the present invention to be described later is that, for example, even if the organic material stamp layer 312 is composed of a single organic material or a mixture, there is no difference in stiffness according to the position in the organic material stamp layer.
- the organic material stamp layer 312 may have a shape change.
- the pressing process involves heat and pressure, and as the transfer process is repeated, the degree of change of the organic material stamp layer 312 may increase.
- an arrangement error corresponding to D may occur.
- the D is generated while the protrusion of the organic stamp layer 312 is bent at a certain inclination, and accordingly, the semiconductor light emitting device can be transferred with an arrangement error corresponding to D.
- the alignment error is on the order of several hundred nm, it is not a big problem in terms of defects, but if the alignment error is several ⁇ m, the alignment error is It causes defects in the subsequent process of.
- the alignment error should be managed to the level of ⁇ 3 ⁇ m, which is It is the most important key factor in process yield.
- Young's modulus is inversely proportional to adhesion.
- the tacky force shown in FIG. 9 refers to adhesive force, and in the case of an organic material, the sticky properties of the surface differ according to the degree of hardening.
- FIG. 10 is a cross-sectional view of a transfer substrate according to the present invention.
- the transfer substrate 210 of FIG. 10 is a transfer substrate having an adhesive force capable of transferring a semiconductor light emitting device well while minimizing the deformation of the organic stamp layer 212 during the transfer process.
- the transfer substrate 210 includes a base layer 211 and an organic stamp layer 212 having a protrusion positioned on the base layer 211.
- the organic material stamp layer 212 contains a plurality of inorganic fillers 213, and the concentration of the inorganic filler 213 is formed differently depending on the position within the stamp layer 212.
- the concentration gradient of the inorganic filler 213 gradually increases from the protrusion of the organic material stamp layer 212 toward the base layer 211.
- the height of the protrusion of the organic stamp layer 212 may be determined based on the thickness of the semiconductor light emitting device contacting the protrusion. For example, the height of the protrusion is greater than the thickness of the semiconductor light emitting device. This is because when the height of the protrusion is too small compared to the thickness of the semiconductor light emitting device, the semiconductor light emitting device adheres to the protrusion and is difficult to stably transfer.
- the semiconductor light emitting device may be a horizontal type semiconductor light emitting device or a vertical type semiconductor light emitting device, as described above, and the thickness of the semiconductor light emitting device is proportional to the thickness at which the semiconductor layer is stacked when the semiconductor light emitting device is formed on a growth substrate. do.
- the width of the protrusion is formed to be wider than the width of the semiconductor light emitting device contacting the protrusion.
- the horizontal type semiconductor light emitting device has a width of about 50 ⁇ m or less, and the width of the protrusion is formed to be 50 ⁇ m or more so that the semiconductor light emitting device and the protrusion can stably contact the semiconductor light emitting device.
- the thickness of the base layer 211 may be larger than the thickness of the organic material stamp layer 212.
- the thickness of the base layer 211 should be thicker than the thickness of the organic material stamp layer 212.
- the base layer 211 may include at least one of polyethylene terephthalate (PET), polycarboxylate ether (PCE), and glass, and the main component of the organic material stamp layer 212 may be polydimethylsiloxane (PDMS). Additionally, the main component of the inorganic filler 213 may be SiO2 within several tens of nm to several ⁇ m.
- the main materials of the base layer 211, the organic stamp layer 212, and the inorganic filler 213 are exemplary, and the present invention is not limited thereto, and various materials can be selected at a level recognized by those skilled in the art. .
- FIG. 11 is an image in which region E of the transfer substrate of FIG. 10 is enlarged with an optical microscope.
- FIG. 11 is a cross-sectional image of a protrusion of an actually fabricated organic stamp layer, and as shown in FIG. 11, the protrusion is a first region 214 in which a plurality of inorganic fillers are dispersed and a second region in which inorganic fillers are hardly present. It consists of a region 215.
- the diagonal shape additionally shown in FIG. 11 is an artifact created by cutting the organic material stamp layer.
- the stiffness of the first region 214 in which a large amount of the inorganic filler is distributed may be greater than that of the second region 215. More specifically, the first stiffness of the base layer of the transfer substrate may be greater than the second stiffness of the first region 214, and the second stiffness may be greater than the third stiffness of the second region 215 of the organic stamp layer. have.
- FIG. 12 is a flow chart showing a method of manufacturing a transfer substrate of the present invention.
- a mold having an intaglio shape corresponding to the stamp layer including the protrusion is prepared (S1210).
- the main material of the mold may be one of metal, Si, glass, or sapphire.
- a plurality of intaglio portions corresponding to the protrusions may be formed.
- Preparing the mold (S1210) includes a photo process and an etching process. For example, a first intaglio portion corresponding to the stamp layer is etched on a flat surface of a mold substrate, and then a second intaglio portion corresponding to the protrusion is formed on the first intaglio portion. In order to selectively form only the second intaglio portion on the first intaglio portion, the remaining area except for the area in which the second intaglio portion is formed may be protected by a photoresist.
- a mixed solution obtained by mixing a curing agent, an organic solution, and a plurality of inorganic fillers is injected into the mold (S1220).
- Injecting the mixed solution (S1220) further comprises mixing and dispersing the plurality of inorganic fillers in the organic solution, and adding the curing agent to the organic solution in which the plurality of inorganic fillers are dispersed. I can.
- a process of evenly mixing until the solvent evaporates at a low temperature of 50 degrees or less may be added. If the amount of solvent is too large, the precipitation rate of the inorganic filler is high, so it is preferable to use a solvent that volatilizes at a low temperature. This is because, as will be described later, the precipitation direction of the inorganic filler is preferably toward the base substrate fixed on the mold rather than the protrusion of the concave portion.
- the step of adding the curing agent includes removing air bubbles generated by the addition of the curing agent.
- the upper surface of the mold into which the mixed solution is injected is in contact with the base substrate and fixed (S1230).
- the mixed solution is injected into the concave portion of the mold, and the outermost rim of the mold comes into contact with the base substrate.
- the mixed solution does not leak out of the base substrate and the mold.
- the mold and the base substrate are turned over so that the inorganic filler of the mixed solution is precipitated by gravity in the direction of the base substrate (S1240).
- the mixed solution injected into the intaglio portion formed in the mold is cured, and finally changes into an organic stamp layer. Therefore, through the precipitation step (S1240), the concentration of the inorganic filler is relatively small in the protrusion of the organic stamp layer, and the concentration of the inorganic filler is relatively large in the adjacent organic stamp layer in contact with the base substrate. Accordingly, the organic stamp layer may have a large stiffness overall by the inorganic filler, and the inorganic filler is hardly present in the protrusion, so that the stiffness is weak and may have excellent adhesion.
- the step of curing the mixed solution (S1250) includes controlling the concentration distribution of the inorganic filler so that the concentration of the plurality of inorganic fillers varies according to positions in the mixed solution in the mold.
- the controlling of the concentration distribution of the inorganic filler is characterized in that the concentration of the inorganic filler increases as the position moves from the protrusion toward the base substrate in the mixed solution in the mold.
- the step of curing the mixed solution may be performed in a temperature range between 70 degrees and 120 degrees. In some cases, the temperature may be heated below a temperature at which the mixed solution starts to cure, thereby increasing the fluidity of the organic solution, thereby increasing the precipitation rate of the inorganic filler in the mixed solution.
- controlling the concentration distribution of the inorganic filler includes controlling the precipitation rate of the inorganic filler.
- the mixed solution injected into the mold may include controlling the viscosity of the organic solution in the mixed solution through a temperature change or UV (Ultra Violet) irradiation, during a curing process. I can.
- FIG. 13 are cross-sectional views illustrating a manufacturing method according to the flowchart of FIG. 12.
- a mixed solution 230 in which an organic solution, a hardener, and an inorganic filler are mixed is injected into the mold 220 in which the intaglio portion is formed.
- the mixed solution 230 filled in the intaglio portion of the mold 220 is then enclosed by the base substrate 211 in contact with the upper surface of the mold.
- the mixed solution 230 is cured.
- a transfer substrate having an organic stamp layer 212 including a protrusion formed on the base substrate 211 is formed.
- the inorganic filler 213 is dispersed inside the organic stamp layer 212, and the concentration of the inorganic filler 213 increases from the protrusion to the base substrate 211.
- FIG. 14 is a flowchart illustrating a method of manufacturing a transfer substrate according to another embodiment of the present invention.
- a mold having an intaglio shape corresponding to the stamp layer including the protrusion is prepared (S1410).
- the main material of the mold may be one of metal, Si, glass, or sapphire.
- a plurality of intaglio portions corresponding to the protrusions may be formed.
- Preparing the mold (S1410) includes a photo process and an etching process. For example, a first intaglio portion corresponding to the stamp layer is etched on a flat surface of a mold substrate, and then a second intaglio portion corresponding to the protrusion is formed on the first intaglio portion. In order to selectively form only the second intaglio portion on the first intaglio portion, the remaining area except for the area in which the second intaglio portion is formed may be protected by a photoresist.
- a first mixed solution including a first curing agent and a first organic solution is applied to the mold (S1420).
- the thickness of the applied first mixed solution may be adjusted through spray coating or spin coating.
- the first mixed solution is first cured (S1430). Therefore, the first cured first mixed solution is composed of a simple organic material without an inorganic filler.
- the organic material may be PDMS.
- a second mixed solution including a second curing agent, a second organic solution, and an inorganic filler is injected onto the first cured first mixed solution (S1440).
- Injecting the second mixed solution (S1440) includes mixing and dispersing the plurality of inorganic fillers in the second organic solution, and the second curing agent in the second organic solution in which the plurality of inorganic fillers are dispersed. It may further include the step of adding.
- a process of evenly mixing until the solvent evaporates at a low temperature of 50 degrees or less may be added. If the amount of solvent is too large, the precipitation rate of the inorganic filler is high, so it is preferable to use a solvent that volatilizes at a low temperature. This is because, as will be described later, the precipitation direction of the inorganic filler is preferably toward the base substrate fixed on the mold rather than the protrusion of the concave portion.
- the step of adding the second curing agent includes removing air bubbles generated by the addition of the second curing agent.
- the upper side of the mold into which the second mixed solution is injected is in contact with the base substrate and fixed (S1450).
- the first mixed solution and the second mixed solution are present in the concave portion of the mold, and the outermost rim of the mold contacts the base substrate.
- the mixed solutions do not leak out of the base substrate and the mold.
- the mold and the base substrate are turned over so that the inorganic filler of the second mixed solution is precipitated by gravity in the direction of the base substrate (S1460).
- the mixed solutions injected into the intaglio portion formed in the mold are cured and finally changed into an organic stamp layer. Therefore, through the precipitation step (S1460), a region in which an inorganic filler does not exist and a region in which the concentration of the inorganic filler is relatively small is formed in the protrusion of the organic stamp layer, and a nearby organic stamp in contact with the base substrate
- the layer has a relatively large concentration of the inorganic filler. Accordingly, the organic stamp layer may have a large stiffness overall by the inorganic filler, and the inorganic filler does not exist at the end of the protrusion, so that the stiffness may be weak and have excellent adhesion.
- the secondary curing of the mixed solutions (S1470) includes controlling the concentration distribution of the inorganic filler so that the concentration of the plurality of inorganic fillers varies depending on the location in the second mixed solution in the mold. .
- the controlling of the concentration distribution of the inorganic filler is characterized in that the concentration of the inorganic filler increases as the position moves from the protrusion toward the base substrate in the second mixed solution in the mold.
- the step of curing the second mixed solution may be performed in a temperature range between 70°C and 120°C. In some cases, the temperature may be heated below the temperature at which the second mixed solution starts to cure, thereby increasing the fluidity of the second organic solution, thereby increasing the precipitation rate of the inorganic filler in the second mixed solution. .
- controlling the concentration distribution of the inorganic filler includes controlling the precipitation rate of the inorganic filler.
- the mixed solution injected into the mold may include controlling the viscosity of the organic solution in the mixed solution through a temperature change or UV (Ultra Violet) irradiation, during a curing process. I can.
- the manufacturing method of FIG. 14 selectively pre-forms a region in which an inorganic filler does not exist in the protrusion of the organic stamp layer, thereby controlling the concentration of the inorganic filler.
- the detailed steps may be omitted or partially selected.
- FIG. 15 is a cross-sectional view of a transfer substrate manufactured according to the flowchart of FIG. 14.
- the transfer substrate 410 includes a base layer 411 and organic stamp layers 412 and 413 including protrusions positioned on the base layer 411.
- the organic material stamp layer includes a first organic material stamp layer 412 containing a plurality of inorganic fillers 414 and a second organic material stamp layer 413 without inorganic fillers.
- the concentration gradient of the inorganic filler 414 inside the first organic stamp layer 412 may gradually increase from a direction of the protrusion of the organic stamp layer 412 toward the base layer 411.
- the concentration of the inorganic filler 414 inside the first organic stamp layer 412 may be formed to be constant. However, if the concentration difference of the inorganic filler 414 at the interface between the first organic stamp layer 412 and the second organic stamp layer 413 is extreme, the interface may be peeled off. It is important to control the concentration of the inorganic filler 414.
- the height of the protrusion of the organic stamp layer may be determined based on the thickness of the semiconductor light emitting device in contact with the protrusion. For example, the height of the protrusion is greater than the thickness of the semiconductor light emitting device. This is because when the height of the protrusion is too small compared to the thickness of the semiconductor light emitting device, the semiconductor light emitting device adheres to the protrusion and is difficult to stably transfer.
- the semiconductor light emitting device may be a horizontal type semiconductor light emitting device or a vertical type semiconductor light emitting device, as described above, and the thickness of the semiconductor light emitting device is proportional to the thickness at which the semiconductor layer is stacked when the semiconductor light emitting device is formed on a growth substrate. do.
- the width of the protrusion is formed to be wider than the width of the semiconductor light emitting device in contact with the protrusion.
- the horizontal type semiconductor light emitting device has a width of about 50 ⁇ m or less, and the width of the protrusion is formed to be 50 ⁇ m or more so that the semiconductor light emitting device and the protrusion can stably contact the semiconductor light emitting device.
- the base layer 411 may include at least one of polyethylene terephthalate (PET), polycarboxylate ether (PCE), and glass, and the main components of the organic stamp layers 412 and 413 may be polydimethylsiloxane (PDMS). Additionally, the main component of the inorganic filler 414 may be SiO2 within several tens of nm to several ⁇ m.
- the main materials of the base layer 411, the organic stamp layers 412 and 413, and the inorganic filler 414 are exemplary, and the present invention is not limited thereto, and various materials can be selected at a level that can be recognized by those skilled in the art. .
- 16 is a graph showing the surface hardness according to the content of the inorganic filler.
- the surface hardness of PDMS prepared by dispersing SiO2 (Silica) having a particle size of 1 to 2 ⁇ m was measured.
- An increase in surface hardness can be determined as an increase in tensile strength or stiffness. Therefore, by dispersing the inorganic filler in the organic stamp layer for the transfer substrate, it is possible to improve the rigidity of the organic stamp layer. When the stiffness of the stamp layer is improved, it is difficult to deform the stamp layer even in a repetitive transfer process, so it is possible to minimize an arrangement error of the semiconductor light emitting device that may occur during transfer.
- 17 is a simulation model for observing the rigidity according to the content of the inorganic filler.
- the degree of deformation of the protrusion is determined by the degree of deformation of X1, which is the width of the protrusion before and after a certain pressure.
- the height of the protrusion is 5 ⁇ m
- the height of the organic material stamp layer 512 excluding the protrusion is 10 ⁇ m.
- the organic material stamp layer 512 is made of PDMS as a main material, and the inorganic filler contained in the organic material stamp layer 512 is set to be silica having a diameter of 300 nm.
- 18(a) is a graph showing a shear displacement according to pressure in an organic stamp layer having a content of silica nanoparticles in the range of 0 to 20 wt%.
- the content of the silica nanoparticles was adjusted at 5wt% intervals.
- the graph in which the content of silica nanoparticles is 10 wt% and the graph in which the content of silica nanoparticles is 15 wt% have similar results, and are overlapped in FIG. 18(a).
- Fig. 18(a) it can be seen that as the weight ratio of silica contained in the organic material stamp layer increases, the shear displacement value decreases compared to the same force.
- the shear displacement value can be seen as a change amount of X1 in FIG. 17.
- the organic material stamp layer without silica nanoparticles has a displacement of about 12 ⁇ m, and the silica nanoparticles contain 20 wt%.
- a displacement of about 6 ⁇ m occurs. That is, as the content of the silica nanoparticles increased, the degree of deformation decreased by about 50% when the same pressure was applied.
- 19 is a simulation model for observing an arrangement error according to the content of the inorganic filler.
- the cause of the alignment error occurring in the transfer process of the actual semiconductor light emitting device is due to the deformation of the organic stamp layer in contact with the semiconductor light emitting device.
- the deformation of the organic stamp layer is affected by a change in width rather than a change in height of the protrusion based on the protrusion. In other words, even if the shape of the protrusion changes before and after the pressure, if the center position of the protrusion does not change, an arrangement error of the semiconductor light emitting device does not occur.
- the organic material stamp layer 612 when pressure is applied to the organic material stamp layer 612 from the upper substrate 611 to the lower substrate 613, the organic material stamp layer 612 has a width of the protrusion.
- a change of ⁇ X2 may occur in the direction. That is, it means that the central axis of the protrusion moves by ⁇ X2, and this deformation indicates that an arrangement error as much as ⁇ X2 may occur during the transfer process of the semiconductor light emitting device 650 in contact with the organic stamp layer 612. it means.
- the height of the protrusion is 10 ⁇ m
- the height of the organic stamp layer 612 excluding the protrusion is 400 ⁇ m.
- the organic material stamp layer 612 is made of PDMS as a main material, and the inorganic filler contained in the organic material stamp layer 612 is set to be silica having a diameter of 300 nm.
- the semiconductor light emitting device 650 in contact with the protrusion of the organic stamp layer 612 was set to have a height of 6 ⁇ m and a width of 50 ⁇ m.
- the amount of change in the height direction of the protrusion decreased.
- the amount of positional change in the width direction decreased with respect to the central axis of the protrusion.
- the organic material stamp layer containing no silica nanoparticles has a displacement of 12 ⁇ m in the height direction of the protrusion and a movement of the central axis of 6.8 ⁇ m in the width direction
- the organic material stamp layer containing 20 wt% silica nanoparticles In the case of, a displacement of 5.9 ⁇ m in the height direction of the protrusion and a displacement of 3.4 ⁇ m in the width direction occurred. That is, in the simulation model, by containing 20wt% of silica nanoparticles in the organic material stamp layer, it is possible to reduce an alignment error of 3.4 ⁇ m compared to the organic material stamp layer not containing silica nanoparticles.
- the inorganic filler inside the organic stamp layer, the overall rigidity of the organic stamp layer is improved.
- the concentration of the inorganic filler is extremely low or the inorganic filler does not exist at the end of the protrusion of the organic stamp layer, so that the protrusion maintains sufficient adhesive force to transfer the semiconductor light emitting device.
- the transfer substrate including the organic material stamp layer when used, the deformation of the stamp layer occurring in the transfer process is minimized, and the alignment error of the semiconductor light emitting device accordingly is reduced, thereby improving the transfer accuracy.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Power Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Computer Hardware Design (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Manufacturing & Machinery (AREA)
- Electroluminescent Light Sources (AREA)
- Led Device Packages (AREA)
Abstract
본 명세서에서는 높은 신뢰성을 가지고 반도체 발광 소자를 전사하는 전사 기판 및 이를 이용한 디스플레이 장치의 제조 방법을 개시한다. 구체적으로, 상기 전사 기판은 돌기부를 구비한 유기물 스탬프층을 포함하되, 상기 유기물 스탬프층은 다수의 무기물 필러를 함유하고, 상기 무기물 필러의 농도는 상기 돌기부에서 멀어질수록 증가하도록 형성한다. 따라서 상기 유기물 스탬프층의 상기 돌기부는 무기물 필러의 농도가 낮아 반도체 발광 소자를 전사하기에 충분한 접착력을 유지하고, 상기 유기물 스탬프층 자체의 강성은 단일 유기물을 이용한 스탬프층에 비해 월등히 강하게 형성한다. 이를 통해, 전사 과정에서 발생하게 되는 스탬프층의 변형에 따른, 반도체 발광 소자의 배열 오차를 최소화시켜 전사의 정밀도를 향상시킬 수 있다.
Description
본 발명은 디스플레이 장치 관련 기술 분야에 적용 가능하며, 예를 들어 마이크로 LED(Light Emitting Diode)를 이용한 디스플레이 장치의 제조 방법 및 디스플레이 장치 제조에 사용되는 전사 기판에 관한 것이다.
최근에는 디스플레이 기술 분야에서 박형, 플렉서블 등의 우수한 특성을 가지는 디스플레이 장치가 개발되고 있다. 이에 반해, 현재 상용화된 주요 디스플레이는 LCD(Liquid Crystal Display)와 OLED(Organic Light Emitting Diodes)로 대표되고 있다.
그러나, LCD의 경우에 빠르지 않은 반응 시간과, 플렉서블의 구현이 어렵다는 문제점이 있고, OLED의 경우에 수명이 짧고, 양산 수율이 좋지 않다는 문제점이 있다.
한편, 발광 다이오드(Light Emitting Diode: LED)는 전류를 빛으로 변환시키는 것으로 잘 알려진 반도체 발광 소자로서, 1962년 GaAsP 화합물 반도체를 이용한 적색 LED가 상품화된 것을 시작으로 GaP:N 계열의 녹색 LED와 함께 정보 통신기기를 비롯한 전자장치의 표시 화상용 광원으로 이용되어 왔다. 따라서, 상기 반도체 발광 소자를 이용하여 디스플레이를 구현하여, 전술한 문제점을 해결하는 방안이 제시될 수 있다. 상기 반도체 발광 소자는 필라멘트 기반의 발광 소자에 비해 긴 수명, 낮은 전력 소모, 우수한 초기 구동 특성, 및 높은 진동 저항 등의 다양한 장점을 갖는다.
하지만 반도체 발광 소자를 이용하여 대면적 고화소 디스플레이 장치를 구현하기 위해서는 매우 많은 수의 반도체 발광 소자들이 상기 디스플레이 장치의 배선 기판에 정확히 조립 또는 전사되어야 한다.
이에, 본 발명에서는 최소한의 배열 오차를 가지고 반도체 발광 소자가 배선 기판으로 전사되는 디스플레이 장치의 제조 방법 및 상기 디스플레이 장치 제조에 사용되는 전사 기판을 제시한다.
본 발명의 일 실시예의 목적은, 반도체 발광 소자를 이용한 디스플레이 장치의 제조에 있어서, 높은 신뢰성을 가지는 새로운 제조 방법을 제공하는 것이다.
본 발명의 일 실시예의 다른 목적은, 대면적 디스플레이 장치를 제조하기 위해 반도체 발광 소자를 전사함에 있어서, 전사 과정 중 배열 오차를 최소화할 수 있는 전사 기판 및 이의 제조 방법을 제공하는 것이다.
나아가, 본 발명의 일 실시예의 또 다른 목적은, 여기에서 언급하지 않은 다양한 문제점들도 해결하고자 한다. 당업자는 명세서 및 도면의 전 취지를 통해 이해할 수 있다.
상기 목적을 달성하기 위한 반도체 발광 소자의 전사를 위한 전사 기판의 제조 방법은, 돌기부를 포함하는 스탬프층에 대응하는 음각 형상의 몰드를 준비하는 단계; 상기 몰드에 경화제, 유기 용액 및 다수의 무기물 필러를 혼합한 혼합 용액을 주입하는 단계; 상기 혼합 용액이 주입된 상기 몰드의 상측면을 베이스 기판과 접촉하여 고정하는 단계; 상기 몰드 및 상기 베이스 기판을 뒤집어서 상기 혼합 용액의 상기 무기물 필러가 상기 베이스 기판 방향으로 중력에 의해 침전되는 단계; 상기 혼합 용액을 경화하는 단계; 및 상기 몰드를 제거하는 단계를 포함한다.
실시예로서, 상기 몰드를 준비하는 단계는 몰드용 기판의 평탄면에 상기 스탬프층에 대응하는 제 1음각부를 형성하는 단계; 상기 제 1음각부 상에 상기 돌기부에 대응하는 제 2음각부를 형성하는 단계를 포함한다.
실시예로서, 상기 제 2임시 기판으로 전사하는 단계는, 상기 반도체 발광 소자의 상기 제 2도전형 반도체층이 상기 제 2임시 기판의 상기 보호층과 접촉하는 단계를 포함한다.
실시예로서, 상기 혼합 용액을 경화하는 단계는 상기 몰드 내 상기 혼합 용액에서, 상기 다수의 무기물 필러가 위치에 따라 농도가 달라지도록, 상기 무기물 필러의 농도 분포를 제어하는 단계를 포함한다.
실시예로서, 상기 무기물 필러의 농도 분포를 제어하는 단계는 상기 몰드 내 상기 혼합 용액에서, 상기 돌기부에서 상기 베이스 기판 방향으로 위치가 이동할수록 상기 무기물 필러의 농도가 증가하도록 제어하는 것을 특징으로 한다.
실시예로서, 상기 혼합 용액을 경화하는 단계는 70도 내지 120도 사이의 온도 범위에서 수행하는 것을 특징으로 한다.
실시예로서, 상기 무기물 필러의 농도 분포를 제어하는 단계는 상기 몰드에 주입된 상기 혼합 용액에 대해, 온도의 변화 또는 UV(Ultra Violet) 조사를 통하여, 상기 혼합 용액 내 상기 유기 용액의 점도(Viscosity)를 제어하는 단계를 포함한다.
실시예로서, 상기 혼합 용액을 주입하는 단계는 상기 유기 용액에 상기 다수의 무기물 필러를 혼합하여 분산하는 단계 및, 상기 다수의 무기물 필러가 분산된 상기 유기 용액에 상기 경화제를 첨가하는 단계를 포함한다.
본 발명의 다른 실시예에 따른 반도체 발광 소자를 이용하는 디스플레이 장치의 제조에 사용되는 전사 기판은 베이스층; 및 상기 베이스층 상에 위치하는, 돌기부를 구비하는 유기물 스탬프층을 포함하고, 상기 유기물 스탬프층은 무기물 필러가 상기 유기물 스탬프층 내부에서 분산되어, 위치에 따른 상기 무기물 필러의 농도 구배를 가지며, 상기 무기물 필러의 농도 구배는, 상기 유기물 스탬프층의 상기 돌기부에서 상기 베이스층 방향으로 갈수록 점차적으로 증가하는 것을 특징으로 한다.
실시예로서, 상기 유기물 스탬프층은 상기 무기물 필러의 농도 구배를 가지는 제 1영역 및 상기 무기물 필러가 존재하지 않는 제 2영역을 포함하고, 상기 제 2영역은 상기 제 1영역의 외측에 위치하고, 상기 돌기부의 단부를 포함한다.
실시예로서, 상기 베이스층의 제 1강성(stiffness)은 상기 유기물 스탬프층의 제 1영역의 제 2강성보다 크고, 상기 제 2강성은 상기 유기물 스탬프층의 제 2영역의 제 3강성보다 큰 것을 특징으로 한다.
실시예로서, 상기 돌기부의 높이는 상기 돌기부에 접촉하는 반도체 발광 소자의 두께에 기초하여 결정되는 것을 특징으로 한다.
실시예로서, 상기 돌기부의 높이는 상기 반도체 발광 소자의 두께보다 큰 것을 특징으로 한다.
실시예로서, 상기 돌기부의 너비는 상기 돌기부에 접촉하는 반도체 발광 소자의 너비보다 넓은 것을 특징으로 한다.
실시예로서, 상기 베이스층은 PET(Polyethylene terephthalate), PCE(Polycarboxylate Ether) 및 유리 중 적어도 하나 이상을 포함한다.
실시예로서, 상기 무기물 필러의 주성분은 수십nm 내지 수 μm 이내의 SiO2인 것을 특징으로 한다.
실시예로서, 상기 유기물 스탬프층의 주성분은 PDMS(polydimethylsiloxane)인 것을 특징으로 한다.
실시예로서, 상기 반도체 발광 소자는 마이크로미터 단위의 크기를 가진 LED(Micro-LED)인 것을 특징으로 한다.
본 발명의 일 실시예에 따르면, 반도체 발광 소자를 이용한 디스플레이 장치의 제조에 있어서, 높은 신뢰성을 가지는 새로운 제조 방법을 제공할 수 있다.
구체적으로, 반도체 발광 소자를 전사하기 위한 전사 기판으로, 돌기부를 포함한 유기물 스탬프층을 사용하되, 상기 유기물 스탬프층은 다수의 무기물 필러를 함유하고, 상기 무기물 필러의 농도는 상기 돌기부에서 멀어질수록 증가하도록 형성한다. 따라서 상기 유기물 스탬프층의 상기 돌기부는 무기물 필러의 농도가 낮아 반도체 발광 소자를 전사하기에 충분한 접착력을 유지하고, 상기 유기물 스탬프층 자체의 강성은 단일 유기물을 이용한 스탬프층에 비해 월등히 강하게 형성한다.
이를 통해, 전사 과정에서 발생하게 되는 스탬프층의 변형에 따른, 반도체 발광 소자의 배열 오차를 최소화시켜 전사의 정밀도를 향상시킬 수 있다.
나아가, 본 발명의 또 다른 실시예에 따르면, 여기에서 언급하지 않은 추가적인 기술적 효과들도 있다. 당업자는 명세서 및 도면의 전 취지를 통해 이해할 수 있다.
도 1은 본 발명의 반도체 발광 소자를 이용한 디스플레이 장치의 일 실시예를 나타내는 개념도이다.
도 2는 도 1의 A부분의 부분 확대도 이다.
도 3a 및 도 3b는 도 2의 라인 B-B 및 C-C를 따라 절단된 단면도들이다.
도 4는 도 3의 플립 칩 타입 반도체 발광 소자를 나타내는 개념도이다.
도 5a 내지 도 5c는 플립 칩 타입 반도체 발광 소자와 관련하여 컬러를 구현하는 여러 가지 형태를 나타내는 개념도들이다.
도 6은 본 발명의 전사 기판을 이용한 디스플레이 장치의 제조방법을 나타낸 단면도들이다.
도 7은 적색(R), 녹색(G), 청색(B)을 발광하는 반도체 발광소자를 포함하는 디스플레이 장치의 제조 방법을 나타내는 순서도이다.
도 8은 종래의 전사 기판으로 전사하였을 때 발생할 수 있는 반도체 발광 소자의 배열 오차에 대해 도시한 도면이다.
도 9는 일반적인 유기물 재료에서, 영률과 접착력의 관계를 나타내는 그래프이다.
도 10은 본 발명에 따른 전사 기판의 단면도이다.
도 11은 도 10의 전사 기판의 E 영역을 광학 현미경으로 확대한 이미지이다.
도 12는 본 발명의 전사 기판을 제조하는 방법을 나타내는 순서도이다.
도 13은 도 12의 순서도에 따른 제조 방법을 나타내는 단면도들이다.
도 14는 본 발명의 다른 실시예에 따른 전사 기판을 제조하는 방법을 나타내는 순서도이다.
도 15는 도 14의 순서도에 따라 제작된 전사 기판의 단면도이다.
도 16은 무기물 필러의 함유량에 따른 표면 경도를 나타내는 그래프이다.
도 17은 무기물 필러의 함유량에 따른 강성을 관찰하기 위한 시뮬레이션 모형이다.
도 18은 도 17의 모형에 따라 측정된, 무기물 필러의 함유량에 따른 강성에 대한 시뮬레이션 결과들이다.
도 19는 무기물 필러의 함유량에 따른 배열 오차를 관찰하기 위한 시뮬레이션 모형이다.
도 20은 도 19의 모형에 따라 측정된, 무기물 필러의 함유량에 따른 배열 오차에 관한 시뮬레이션 결과이다.
이하, 첨부된 도면을 참조하여 본 명세서에 개시된 실시 예를 상세히 설명하되, 도면 부호에 관계없이 동일하거나 유사한 구성요소는 동일한 참조 번호를 부여하고 이에 대한 중복되는 설명은 생략하기로 한다. 이하의 설명에서 사용되는 구성요소에 대한 접미사 "모듈" 및 "부"는 명세서 작성의 용이함만이 고려되어 부여되거나 혼용되는 것으로서, 그 자체로 서로 구별되는 의미 또는 역할을 갖는 것은 아니다. 또한, 본 명세서에 개시된 실시예를 설명함에 있어서 관련된 공지기술에 대한 구체적인 설명이 본 명세서에 개시된 실시 예의 요지를 흐릴 수 있다고 판단되는 경우 그 상세한 설명을 생략한다. 또한, 첨부된 도면은 본 명세서에 개시된 실시 예를 쉽게 이해할 수 있도록 하기 위한 것일 뿐, 첨부된 도면에 의해 본 명세서에 개시된 기술적 사상이 제한되는 것으로 해석되어서는 아니 됨을 유의해야 한다.
나아가, 설명의 편의를 위해 각각의 도면에 대해 설명하고 있으나, 당업자가 적어도 2개 이상의 도면을 결합하여 다른 실시예를 구현하는 것도 본 발명의 권리범위에 속한다.
또한, 층, 영역 또는 기판과 같은 요소가 다른 구성요소 "상(on)"에 존재하는 것으로 언급될 때, 이것은 직접적으로 다른 요소 상에 존재하거나 또는 그 사이에 중간 요소가 존재할 수도 있다는 것을 이해할 수 있을 것이다.
본 명세서에서 설명되는 디스플레이 장치는 단위 화소 또는 단위 화소의 집합으로 정보를 표시하는 모든 디스플레이 장치를 포함하는 개념이다. 따라서 완성품에 한정하지 않고 부품에도 적용될 수 있다. 예를 들어 디지털 TV의 일 부품에 해당하는 패널도 독자적으로 본 명세서 상의 디스플레이 장치에 해당한다. 완성품으로는 휴대폰, 스마트 폰(smart phone), 노트북 컴퓨터(laptop computer), 디지털방송용 단말기, PDA(personal digital assistants), PMP(portable multimedia player), 네비게이션, 슬레이트 피씨(Slate PC), Tablet PC, Ultra Book, 디지털 TV, 데스크 탑 컴퓨터 등이 포함될 수 있다.
그러나, 본 명세서에 기재된 실시예에 따른 구성은 추후 개발되는 새로운 제품 형태라도, 디스플레이가 가능한 장치에는 적용될 수도 있음을 본 기술 분야의 당업자라면 쉽게 알 수 있을 것이다.
또한, 당해 명세서에서 언급된 반도체 발광 소자는 LED, 마이크로 LED 등을 포함하는 개념이며, 혼용되어 사용될 수 있다.
도 1은 본 발명의 반도체 발광 소자를 이용한 디스플레이 장치의 일실시예를 나타내는 개념도이다.
도 1에 도시된 바와 같이, 디스플레이 장치(100)의 제어부(미도시)에서 처리되는 정보는 플렉서블 디스플레이(flexible display)를 이용하여 표시될 수 있다.
플렉서블 디스플레이는, 예를 들어 외력에 의하여 휘어질 수 있는, 또는 구부러질 수 있는, 또는 비틀어질 수 있는, 또는 접힐 수 있는, 또는 말려질 수 있는 디스플레이를 포함한다.
나아가, 플렉서블 디스플레이는, 예를 들어 기존의 평판 디스플레이의 디스플레이 특성을 유지하면서, 종이와 같이 휘어지거나, 또는 구부리거나, 또는 접을 수 있거나 또는 말 수 있는 얇고 유연한 기판 위에 제작되는 디스플레이가 될 수 있다.
상기 플렉서블 디스플레이가 휘어지지 않는 상태(예를 들어, 무한대의 곡률반경을 가지는 상태, 이하 제1상태라 한다)에서는 상기 플렉서블 디스플레이의 디스플레이 영역이 평면이 된다. 상기 제1상태에서 외력에 의하여 휘어진 상태(예를 들어, 유한의 곡률 반경을 가지는 상태, 이하, 제2상태라 한다)에서는 상기 디스플레이 영역이 곡면이 될 수 있다. 도 1에 도시된 바와 같이, 상기 제2상태에서 표시되는 정보는 곡면상에 출력되는 시각 정보가 될 수 있다. 이러한 시각 정보는 매트릭스 형태로 배치되는 단위 화소(sub-pixel)의 발광이 독자적으로 제어됨에 의하여 구현된다. 상기 단위 화소는, 예를 들어 하나의 색을 구현하기 위한 최소 단위를 의미한다.
상기 플렉서블 디스플레이의 단위 화소는 반도체 발광 소자에 의하여 구현될 수 있다. 본 발명에서는 전류를 빛으로 변환시키는 반도체 발광 소자의 일 종류로서 발광 다이오드(Light Emitting Diode: LED)를 예시한다. 상기 발광 다이오드는 작은 크기로 형성되며, 이를 통하여 상기 제2상태에서도 단위 화소의 역할을 할 수 있게 된다.
상기 발광 다이오드를 이용하여 구현된 플렉서블 디스플레이에 대하여, 이하 도면들을 참조하여 보다 상세히 설명한다.
도 2는 도 1의 A부분의 부분 확대도 이다.
도 3a 및 도 3b는 도 2의 라인 B-B 및 C-C를 따라 절단된 단면도들이다.
도 4는 도 3의 플립 칩 타입 반도체 발광 소자를 나타내는 개념도이다.
도 5a 내지 도 5c는 플립 칩 타입 반도체 발광 소자와 관련하여 컬러를 구현하는 여러 가지 형태를 나타내는 개념도들이다.
도 2, 도 3a 및 도 3b에 도시된 바와 같이, 반도체 발광 소자를 이용한 디스플레이 장치(100)로서 패시브 매트릭스(Passive Matrix, PM) 방식의 반도체 발광 소자를 이용한 디스플레이 장치(100)를 예시한다. 다만, 이하 설명되는 예시는 액티브 매트릭스(Active Matrix, AM) 방식의 반도체 발광 소자에도 적용 가능하다.
도 1에 도시된 디스플레이 장치(100)는, 도 2에 도시된 바와 같이 기판(110), 제1전극(120), 전도성 접착층(130), 제2전극(140) 및 적어도 하나의 반도체 발광 소자(150)를 포함한다.
기판(110)은 플렉서블 기판일 수 있다. 예를 들어, 플렉서블(flexible) 디스플레이 장치를 구현하기 위하여 기판(110)은 유리나 폴리이미드(PI, Polyimide)를 포함할 수 있다. 이외에도 절연성이 있고, 유연성 있는 재질이면, 예를 들어 PEN(Polyethylene Naphthalate), PET(Polyethylene Terephthalate) 등 어느 것이라도 사용될 수 있다. 또한, 상기 기판(110)은 투명한 재질 또는 불투명한 재질 어느 것이나 될 수 있다.
상기 기판(110)은 제1전극(120)이 배치되는 배선기판이 될 수 있으며, 따라서 상기 제1전극(120)은 기판(110) 상에 위치할 수 있다.
도 3a에 도시된 바와 같이 절연층(160)은 제1전극(120)이 위치한 기판(110) 상에 배치될 수 있으며, 상기 절연층(160)에는 보조전극(170)이 위치할 수 있다. 이 경우에, 상기 기판(110)에 절연층(160)이 적층된 상태가 하나의 배선기판이 될 수 있다. 보다 구체적으로, 절연층(160)은 폴리이미드(PI, Polyimide), PET, PEN 등과 같이 절연성이 있고, 유연성 있는 재질로, 상기 기판(110)과 일체로 이루어져 하나의 기판을 형성할 수 있다.
보조전극(170)은 제1전극(120)과 반도체 발광 소자(150)를 전기적으로 연결하는 전극으로서, 절연층(160) 상에 위치하고, 제1전극(120)의 위치에 대응하여 배치된다. 예를 들어, 보조전극(170)은 닷(dot) 형태이며, 절연층(160)을 관통하는 전극홀(171)에 의하여 제1전극(120)과 전기적으로 연결될 수 있다. 상기 전극홀(171)은 비아홀에 도전물질이 채워짐에 의하여 형성될 수 있다.
도 2 또는 도 3a에 도시된 바와 같이, 절연층(160)의 일면에는 전도성 접착층(130)이 형성되나, 본 발명은 반드시 이에 한정되는 것은 아니다. 예를 들어, 절연층(160)과 전도성 접착층(130)의 사이에 특정 기능을 수행하는 레이어가 형성되거나, 절연층(160)이 없이 전도성 접착층(130)이 기판(110)상에 배치되는 구조도 가능하다. 전도성 접착층(130)이 기판(110)상에 배치되는 구조에서는 전도성 접착층(130)이 절연층의 역할을 할 수 있다.
상기 전도성 접착층(130)은 접착성과 전도성을 가지는 층이 될 수 있으며, 이를 위하여 상기 전도성 접착층(130)에서는 전도성을 가지는 물질과 접착성을 가지는 물질이 혼합될 수 있다. 또한 전도성 접착층(130)은 연성을 가지며, 이를 통하여 디스플레이 장치에서 플렉서블 기능을 가능하게 한다.
이러한 예로서, 전도성 접착층(130)은 이방성 전도성 필름(anistropy conductive film, ACF), 이방성 전도 페이스트(paste), 전도성 입자를 함유한 솔루션(solution) 등이 될 수 있다. 상기 전도성 접착층(130)은 두께를 관통하는 Z 방향으로는 전기적 상호 연결을 허용하나, 수평적인 X-Y 방향으로는 전기 절연성을 가지는 레이어로서 구성될 수 있다. 따라서 상기 전도성 접착층(130)은 Z축 전도층으로 명명될 수 있다(다만, 이하 '전도성 접착층'이라 한다).
상기 이방성 전도성 필름은 이방성 전도매질(anisotropic conductive medium)이 절연성 베이스부재에 혼합된 형태의 필름으로서, 열 및 압력이 가해지면 특정 부분만 이방성 전도매질에 의하여 전도성을 가지게 된다. 이하, 상기 이방성 전도성 필름에는 열 및 압력이 가해지는 것으로 설명하나, 상기 이방성 전도성 필름이 부분적으로 전도성을 가지기 위하여 다른 방법이 적용될 수도 있다. 전술한 다른 방법은, 예를 들어 상기 열 및 압력 중 어느 하나만이 가해지거나 UV 경화 등이 될 수 있다.
또한, 상기 이방성 전도매질은 예를 들어, 도전볼이나 전도성 입자가 될 수 있다. 예를 들어, 상기 이방성 전도성 필름은 도전볼이 절연성 베이스 부재에 혼합된 형태의 필름으로서, 열 및 압력이 가해지면 특정 부분만 도전볼에 의하여 전도성을 가지게 된다. 이방성 전도성 필름은 전도성 물질의 코어가 폴리머 재질의 절연막에 의하여 피복된 복수의 입자가 함유된 상태가 될 수 있으며, 이 경우에 열 및 압력이 가해진 부분이 절연막이 파괴되면서 코어에 의하여 도전성을 가지게 된다. 이때, 코어의 형태는 변형되어 필름의 두께방향으로 서로 접촉하는 층을 이룰 수 있다. 보다 구체적인 예로서, 열 및 압력은 이방성 전도성 필름에 전체적으로 가해지며, 이방성 전도성 필름에 의하여 접착되는 상대물의 높이 차에 의하여 Z축 방향의 전기적 연결이 부분적으로 형성된다.
다른 예로서, 이방성 전도성 필름은 절연 코어에 전도성 물질이 피복된 복수의 입자가 함유된 상태가 될 수 있다. 이 경우에는 열 및 압력이 가해진 부분이 전도성 물질이 변형되어(눌러 붙어서) 필름의 두께방향으로 전도성을 가지게 된다. 또 다른 예로서, 전도성 물질이 Z축 방향으로 절연성 베이스 부재를 관통하여 필름의 두께방향으로 전도성을 가지는 형태도 가능하다. 이 경우에, 전도성 물질은 뽀족한 단부를 가질 수 있다.
상기 이방성 전도성 필름은 도전볼이 절연성 베이스 부재의 일면에 삽입된 형태로 구성되는 고정배열 이방성 전도성 필름(fixed array ACF)이 될 수 있다. 보다 구체적으로, 절연성 베이스 부재는 접착성을 가지는 물질로 형성되며, 도전볼은 상기 절연성 베이스 부재의 바닥 부분에 집중적으로 배치되며, 상기 베이스 부재에서 열 및 압력이 가해지면 상기 도전볼과 함께 변형됨에 따라 수직 방향으로 전도성을 가지게 된다.
다만, 본 발명은 반드시 이에 한정되는 것은 아니며, 상기 이방성 전도성 필름은 절연성 베이스 부재에 도전볼이 랜덤하게 혼입된 형태나, 복수의 층으로 구성되며 어느 한 층에 도전볼이 배치되는 형태(double-ACF) 등이 모두 가능하다.
이방성 전도 페이스트는 페이스트와 도전볼의 결합 형태로서, 절연성 및 접착성의 베이스 물질에 도전볼이 혼합된 페이스트가 될 수 있다. 또한, 전도성 입자를 함유한 솔루션은 전도성 파티클 혹은 나노 입자를 함유한 형태의 솔루션이 될 수 있다.
다시 도3a를 참조하면, 제2전극(140)은 보조전극(170)과 이격하여 절연층(160)에 위치한다. 즉, 상기 전도성 접착층(130)은 보조전극(170) 및 제2전극(140)이 위치하는 절연층(160) 상에 배치된다.
절연층(160)에 보조전극(170)과 제2전극(140)이 위치된 상태에서 전도성 접착층(130)을 형성한 후에, 반도체 발광 소자(150)를 열 및 압력을 가하여 플립 칩 형태로 접속시키면, 상기 반도체 발광 소자(150)는 제1전극(120) 및 제2전극(140)과 전기적으로 연결된다.
도 4를 참조하면, 상기 반도체 발광 소자는 플립 칩 타입(flip chiptype)의 발광 소자가 될 수 있다.
예를 들어, 상기 반도체 발광 소자는 p형 전극(156), p형 전극(156)이 형성되는 p형 반도체층(155), p형 반도체층(155) 상에 형성된 활성층(154), 활성층(154) 상에 형성된 n형 반도체층(153) 및 n형 반도체층(153) 상에서 p형 전극(156)과 수평방향으로 이격 배치되는 n형 전극(152)을 포함한다. 이 경우, p형 전극(156)은 도3에 도시된, 보조전극(170)과 전도성 접착층(130)에 의하여 전기적으로 연결될 수 있고, n형 전극(152)은 제2전극(140)과 전기적으로 연결될 수 있다.
다시 도 2, 도 3a 및 도 3b를 참조하면, 보조전극(170)은 일방향으로 길게 형성되어, 하나의 보조전극이 복수의 반도체 발광 소자(150)에 전기적으로 연결될 수 있다. 예를 들어, 보조전극을 중심으로 좌우의 반도체 발광 소자들의 p 형 전극들이 하나의 보조전극에 전기적으로 연결될 수 있다.
보다 구체적으로, 열 및 압력에 의하여 전도성 접착층(130)의 내부로 반도체 발광 소자(150)가 압입되며 이를 통하여 반도체 발광 소자(150)의 p형 전극(156)과 보조전극(170) 사이의 부분과, 반도체 발광 소자(150)의 n형 전극(152)과 제2전극(140) 사이의 부분에서만 전도성을 가지게 되고, 나머지 부분에서는 반도체 발광 소자의 압입이 없어 전도성을 가지지 않게 된다. 이와 같이, 전도성 접착층(130)은 반도체 발광 소자(150)와 보조전극(170) 사이 및 반도체 발광 소자(150)와 제2전극(140) 사이를 상호 결합시켜줄 뿐만 아니라 전기적 연결까지 형성시킨다.
또한, 복수의 반도체 발광 소자(150)는 발광 소자 어레이(array)를 구성하며, 발광 소자 어레이에는 형광체층(180)이 형성된다.
발광 소자 어레이는 자체 휘도 값이 상이한 복수의 반도체 발광 소자들을 포함할 수 있다. 각각의 반도체 발광 소자(150)는 단위 화소를 구성하며, 제1전극(120)에 전기적으로 연결된다. 예를 들어, 제1전극(120)은 복수 개일 수 있고, 반도체 발광 소자들은 예컨대 수 열로 배치되며, 각 열의 반도체 발광 소자들은 상기 복수 개의 제1전극 중 어느 하나에 전기적으로 연결될 수 있다.
또한, 반도체 발광 소자들이 플립 칩 형태로 접속되므로, 투명 유전체 기판에 성장시킨 반도체 발광 소자들을 이용할 수 있다. 또한, 상기 반도체 발광 소자들은 예컨대 질화물 반도체 발광 소자일 수 있다. 반도체 발광 소자(150)는 휘도가 우수하므로, 작은 크기로도 개별 단위 화소를 구성할 수 있다.
도3에 도시된 바와 같이, 반도체 발광 소자(150)의 사이에 격벽(190)이 형성될 수 있다. 이 경우, 격벽(190)은 개별 단위 화소를 서로 분리하는 역할을 할 수 있으며, 전도성 접착층(130)과 일체로 형성될 수 있다. 예를 들어, 이방성 전도성 필름에 반도체 발광 소자(150)가 삽입됨에 의하여 이방성 전도성 필름의 베이스 부재가 상기 격벽을 형성할 수 있다.
또한, 상기 이방성 전도성 필름의 베이스 부재가 블랙이면, 별도의 블랙 절연체가 없어도 상기 격벽(190)이 반사 특성을 가지는 동시에 대비비(contrast)가 증가될 수 있다.
다른 예로서, 상기 격벽(190)으로 반사성 격벽이 별도로 구비될 수 있다. 이 경우에, 상기 격벽(190)은 디스플레이 장치의 목적에 따라 블랙(Black) 또는 화이트(White) 절연체를 포함할 수 있다. 화이트 절연체의 격벽을 이용할 경우 반사성을 높이는 효과가 있을 수 있고, 블랙 절연체의 격벽을 이용할 경우, 반사 특성을 가지는 동시에 대비비(contrast)를 증가시킬 수 있다.
형광체층(180)은 반도체 발광 소자(150)의 외면에 위치할 수 있다. 예를 들어, 반도체 발광 소자(150)는 청색(B) 광을 발광하는 청색 반도체 발광 소자고, 형광체층(180)은 상기 청색(B) 광을 단위 화소의 색상으로 변환시키는 기능을 수행한다. 상기 형광체층(180)은 개별 화소를 구성하는 적색 형광체(181) 또는 녹색 형광체(182)가 될 수 있다.
즉, 적색의 단위 화소를 이루는 위치에서, 청색 반도체 발광 소자 상에는 청색 광을 적색(R) 광으로 변환시킬 수 있는 적색 형광체(181)가 적층될 수 있고, 녹색의 단위 화소를 이루는 위치에서는, 청색 반도체 발광 소자 상에 청색광을 녹색(G) 광으로 변환시킬 수 있는 녹색 형광체(182)가 적층될 수 있다. 또한, 청색의 단위 화소를 이루는 부분에는 청색 반도체 발광 소자만 단독으로 이용될 수 있다. 이 경우, 적색(R), 녹색(G), 및 청색(B)의 단위 화소들이 하나의 화소를 이룰 수 있다. 보다 구체적으로, 제1전극(120)의 각 라인을 따라 하나의 색상의 형광체가 적층될 수 있다. 따라서, 제1전극(120)에서 하나의 라인은 하나의 색상을 제어하는 전극이 될 수 있다. 즉, 제2전극(140)을 따라서, 적색(R), 녹색(G) 및 청색(B)이 차례로 배치될 수 있으며, 이를 통하여 단위 화소가 구현될 수 있다.
다만, 본 발명은 반드시 이에 한정되는 것은 아니며, 형광체 대신에 반도체 발광 소자(150)와 퀀텀닷(QD)이 조합되어 적색(R), 녹색(G) 및 청색(B)의 단위 화소들을 구현할 수 있다.
또한, 대비비(contrast) 향상을 위하여 각각의 형광체층들의 사이에는 블랙 매트릭스(191)가 배치될 수 있다. 즉, 이러한 블랙 매트릭스(191)는 명암의 대조를 향상시킬 수 있다.
다만, 본 발명은 반드시 이에 한정되는 것은 아니며, 청색, 적색, 녹색을 구현하기 위한 다른 구조가 적용될 수 있다.
도 5a를 참조하면, 각각의 반도체 발광 소자(150)는 질화 갈륨(GaN)을 주재료로 하여, 인듐(In) 및/또는 알루미늄(Al)이 함께 첨가되어 청색을 비롯한 다양한 빛을 발광하는 고출력의 발광 소자로 구현될 수 있다.
이 경우, 반도체 발광 소자(150)는 각각 단위 화소(sub-pixel)를 이루기 위하여 적색, 녹색 및 청색 반도체 발광 소자일 수 있다. 예컨대, 적색, 녹색 및 청색 반도체 발광 소자(R, G, B)가 교대로 배치되고, 적색, 녹색 및 청색 반도체 발광 소자에 의하여 적색(Red), 녹색(Green) 및 청색(Blue)의 단위 화소들이 하나의 화소(pixel)를 이루며, 이를 통하여 풀 칼라 디스플레이가 구현될 수 있다.
도 5b를 참조하면, 반도체 발광 소자(150a)는 황색 형광체층이 개별 소자 마다 구비된 백색 발광 소자(W)를 구비할 수 있다. 이 경우에는, 단위 화소를 이루기 위하여, 백색 발광 소자(W) 상에 적색 형광체층(181), 녹색 형광체층(182), 및 청색 형광체층(183)이 구비될 수 있다. 또한, 이러한 백색 발광 소자(W) 상에 적색, 녹색, 및 청색이 반복되는 컬러 필터를 이용하여 단위 화소를 이룰 수 있다.
도 5c를 참조하면, 자외선 발광 소자(150b) 상에 적색 형광체층(184), 녹색 형광체층(185), 및 청색 형광체층(186)이 구비되는 구조도 가능하다. 이와 같이, 반도체 발광 소자는 가시광선뿐만 아니라 자외선(UV)까지 전 영역에 사용 가능하며, 자외선(UV)이 상부 형광체의 여기원(excitation source)으로 사용 가능한 반도체 발광 소자의 형태로 확장될 수 있다.
본 예시를 다시 살펴보면, 반도체 발광 소자는 전도성 접착층 상에 위치되어, 디스플레이 장치에서 단위 화소를 구성한다. 반도체 발광 소자는 휘도가 우수하므로, 작은 크기로도 개별 단위 화소를 구성할 수 있다.
이와 같은 개별 반도체 발광 소자(150)의 크기는 예를 들어, 한 변의 길이가 80㎛ 이하일 수 있고, 직사각형 또는 정사각형 소자일 수 있다. 직사각형인 경우에는 20 X 80㎛ 이하의 크기가 될 수 있다.
또한, 한 변의 길이가 10㎛인 정사각형의 반도체 발광 소자(150)를 단위 화소로 이용하여도 디스플레이 장치를 이루기 위한 충분한 밝기가 나타난다.
도 6은 본 발명의 전사 기판을 이용한 디스플레이 장치의 제조 방법을 나타내는 단면도들이다.
반도체 발광 소자를 이용한 대화면 고화소 디스플레이 장치의 경우, 성장 기판에서 형성된 상기 반도체 발광 소자는 새로운 기판으로 조립되거나 전사되어야 한다. 상기 성장 기판은 예를 들어, 8인치 웨이퍼일 수 있으며, 이에 따라서 복수 번의 전사가 반복될 수 있다.
도 6(a)는, 성장 기판(111)에서 형성된 반도체 발광 소자(150) 및 베이스층(211) 및 유기물 스탬프층(212)을 포함한 전사 기판(210)이 위 아래로 얼라인(Align) 되어 있는 단면도를 도시한다.
성장 기판(111)상에 형성된 반도체 발광 소자(150)는 제 1도전형 반도체층, 제 2도전형 반도체층, 활성층 및 각 도전형 반도체층에 증착되는 도전형 전극을 포함할 수 있다. 상기 반도체 발광 소자(150)는 상기 도전형 전극이, 서로 마주보도록 형성되는 수직형 반도체 발광 소자 또는 상기 도전형 전극이 동일 방향에 형성되는 수평형 반도체 발광 소자일 수 있다.
수직형 반도체 발광 소자의 경우, 성장 기판에서 일방향의 도전형 전극을 형성하고, 전사 이후 다른 방향의 도전형 전극을 형성하도록 공정할 수 있다. 반면 수평형 반도체 발광 소자의 경우, 성장 기판에서 각 도전형 전극 모두를 형성할 수 있다.
또한, 수평형 반도체 발광 소자의 경우, 최종 배선 기판에 전사되는 경우, 플립 칩 구조로 전사될 수 있다.
또한, 상기 성장 기판(111)은 광 투과적 성질을 가지는 재질, 예를 들어 사파이어(Al2O3), GaN, ZnO, AlO 중 어느 하나를 포함하여 형성될 수 있다. 또한, 성장 기판(111)은 반도체 물질 성장에 적합한 물질, 캐리어 웨이퍼로 형성될 수 있다. 성장 기판(111)은 열 전도성이 뛰어난 물질로 형성될 수 있으며, 전도성 기판 또는 절연성 기판을 포함하여 예를 들어, 사파이어(Al2O3) 기판에 비해 열전도성이 큰 SiC 기판 또는 Si, GaAs, GaP, InP, Ga2O3 중 적어도 하나를 사용할 수 있으나, 이에 한정하지 않는다.
또한, 상기 전사 기판(210)의 유기물 스탬프층(212)은 상기 반도체 발광 소자(150)을 전사하기에 충분한 접착력을 지닌다.
상기 유기물 스탬프층(212)은 성장 기판(111)의 반도체 발광 소자가 배치되는 간격에 대응하도록 일정한 간격을 지닌 돌기부를 구비한다. 또한 상기 돌기부와 상기 반도체 발광 소자의 정확한 전사를 위해 얼라인먼트(Alignment) 과정이 수행될 수 있다.
상기 얼라인먼트 과정은, 예를 들어 상기 성장 기판(111) 또는 상기 전사 기판(210) 중 어느 하나를 다른 하나에 대해 수평 이동시킨 후, 상기 다른 하나에 대해 수직 이동 시킴으로써 수행된다. 이후, 카메라 센서 등에 의해 성장 기판(111)의 반도체 발광 소자(150)와 상기 반도체 발광 소자(150)에 대응하는 전사 기판(210)의 돌기부의 위치가 중첩되는지 검사하고, 중첩된다면 상기 돌기부에 맞게 상기 반도체 발광 소자(150)을 전사한다.
도 6(b)에 도시된 바에 따르면, 상기 반도체 발광 소자(150)는 상기 전사 기판(210)의 유기물 스탬프층(212) 내 돌기부에 안정적으로 전사된다.
상기 유기물 스탬프층(212)은 PDMS(polydimethylsiloxane)와 같은 유연한 필름 소재일 수 있으며, 상기 전사 기판(210)의 베이스층(211)은 PET(Polyethylene terephthalate), PCE(Polycarboxylate Ether) 및 유리 중 적어도 하나 이상을 포함할 수 있다. 따라서 상기 베이스층(211)은 전사 과정에서 상기 유기물 스탬프층(212)을 안정적으로 지지할 수 있다.
또한, 성장 기판(111)에서 전사 기판(210)으로 반도체 발광 소자(150)를 전사하는 과정에서, 상기 반도체 발광 소자(150)를 선택적으로 분리하기 위해 레이저 리프트 오프(laser lift off; LLO) 공정이 수행될 수 있다. 즉, 분리하고자 하는 반도체 발광 소자(150)가 위치하는 성장 기판(111)의 특정 영역에 레이저를 조사하면, 상기 특정 영역의 계면이 변화하여, 성장 기판(111)으로부터 반도체 발광 소자(150)를 선택적으로 분리할 수 있다.
또한, 도 6(c)는, 반도체 발광 소자(150)가 전사 기판(210)의 유기물 스탬프층(212)로부터 배선 기판(110)으로 전사된 이후의 단면도이다.
전술하였듯이, 상기 전사 기판(210)의 베이스층(211)은 전사 도중 기판 대 기판의 압착 과정에서, 상기 전사 기판(210)의 유기물 스탬프층(212)를 안정적으로 지지하는 역할을 한다.
한편, 상기 배선 기판(110)은 반도체 발광 소자(150)와 상기 배선 기판(110)을 전기적으로 연결하기 위한 전극부가 기 형성될 수 있다. 또한 상기 배선 기판(110)에는 상기 반도체 발광 소자(150)를 상기 배선 기판(110)에 안정적으로 고정하기 위한 접착층이 기 형성될 수 있다. 또한, 상기 접착층은 예를 들어, 이방 전도성 접착층으로 상기 반도체 발광 소자(150)의 전사와 동시에 배선 공정이 수행될 수 있다.
한편, 도 6에 도시된 전사 기판(210)을 이용한 디스플레이 장치의 제조에 있어서, 전사 과정은 크게 2번 예시하였으나, 본 발명은 상기 전사 횟수에 한정되지 않는다. 예를 들어, 수직형 반도체 발광 소자를 위한 도전형 전극 형성 또는 반도체 발광 소자의 광 추출 구조 형성 등을 위해 추가적인 전사 공정이 수행될 수 있다. 또한 도 6에서는 성장 기판에서 전사 기판으로 반도체 발광 소자가 전사되는 과정을 표시하였으나, 상기 성장 기판의 반도체 발광 소자는 개별적으로 분리되어 유체 내에서 자가조립 방법에 의해 조립 기판에 조립될 수 있다. 이 경우, 상기 조립 기판에 조립된 반도체 발광 소자가 이후 공정에서, 유기물 스탬프층을 구비한 전사 기판에 전사될 수 있다.
도 7은 적색(R), 녹색(G), 청색(B)을 발광하는 반도체 발광 소자를 포함하는 디스플레이 장치의 제조 방법을 나타내는 순서도이다.
도 6이 단일 색상의 반도체 발광 소자를 배선 기판에 전사하는 과정을 간단히 나타내었다면, 도 7은 RGB각각의 서브 픽셀을 전사하여 하나의 단위 픽셀을 지닌 디스플레이 장치를 제조하는 과정을 구체적으로 나타낸다.
또한 도 7의 경우, 성장 기판에서 형성된 반도체 발광 소자가 자가조립 방법에 의해 조립 기판에 조립되는 단계를 더 수행한다. 도 7에 도시된 TEMPLATE는 조립 기판을 의미한다.
도 7에 따른 제조 방법에 따르면, RED 칩, GREEN 칩, BLUE 칩을 포함하는 디스플레이 장치를 제조하기 위해 세 종류의 조립 기판 및 세 종류의 전사 기판을 필요로 한다.
구체적으로, 상기 조립 기판은 RED 반도체 발광 소자를 조립하는 RED 조립 기판, GREEN 반도체 발광 소자를 조립하는 GREEN 조립 기판, 및 BLUE 반도체 발광 소자를 조립하는 BLUE 조립 기판을 포함할 수 있다.
상기 각각의 조립 기판에 조립된 반도체 발광 소자들은 서로 다른 전사 기판에 의해 배선 기판으로 전사될 수 있다.
예를 들어, 상기 조립 기판에 조립된 반도체 발광 소자들이 배선 기판으로 전사하는 과정은, 상기 RED 조립 기판에 RED 전사 기판(스탬프(R))을 압착시켜, 상기 RED반도체 발광 소자를 상기 RED 조립 기판에서 RED 전사 기판(스탬프(R))으로 전사시키는 단계, 상기 GREEN 조립 기판에 GREEN 전사 기판(스탬프(G))을 압착시켜, 상기 GREEN 반도체 발광 소자를 상기 GREEN 조립 기판에서 GREEN 전사 기판(스탬프(G))으로 전사시키는 단계, 상기 BLUE 조립 기판에 BLUE 전사 기판(스탬프(B))을 압착시켜, 상기 BLUE 반도체 발광 소자를 상기 BLUE 조립 기판에서 BLUE 전사 기판(스탬프(B))으로 전사시키는 단계를 포함할 수 있다.
이후, 상기 각각의 전사 기판들을 배선 기판에 압착시켜, 상기 RED 반도체 발광 소자, GREEN 반도체 발광 소자 및 BLUE 반도체 발광 소자가 상기 배선 기판으로 전사되는 과정이 진행된다.
이와 달리, 세 종류의 조립 기판 및 하나의 동일한 전사 기판을 사용하여 배선 기판에 RED, GREEN, BLUE 각각에 해당하는 반도체 발광 소자를 전사할 수도 있다.
예를 들어, 세 종류의 조립 기판에 조립된 반도체 발광 소자들을 배선 기판으로 전사하는 단계는, 각 조립 기판에 조립된 반도체 발광 소자들을 하나의 전사 기판(RGB 통합 스탬프)으로 전사하고, 이후 상기 전사 기판을 배선 기판과 압착하여 상기 세 종류의 반도체 발광 소자가 모두 배선 기판으로 전사될 수 있도록 수행할 수 있다.
또한, 한 종류의 조립 기판 및 전사 기판을 사용하여 배선 기판에 RED, GREEN, BLUE 각각에 해당하는 반도체 발광 소자를 전사할 수도 있다. 이 경우는 자가 조립 시, 하나의 조립 기판에 RED, GREEN, BLUE 각각에 해당하는 반도체 발광 소자가 모두 조립되고, 이후 일괄적으로 전사 기판 및 배선 기판에 전사되는 과정이 수행된다.
이와 같이, 반도체 발광 소자를 이용하여 디스플레이 장치를 구현하기 위해서는 무수히 많은 RED, GREEN, BLUE 반도체 발광 소자들이 복수 번의 전사 과정을 수행하게 된다.
상기 전사 과정은 각 반도체 발광 소자에 대해 개별적으로 진행되지 않고, 일정 수량의 반도체 발광 소자들에 대해 전사 기판을 통해 일괄적으로 수행된다. 따라서 상기 전사 기판은 복수 개의 반도체 발광 소자를 전사하기 위한 접촉부를 지니고, 예를 들어 복수 개의 돌기부를 구비하게 된다.
또한 상기 돌기부는 상기 반도체 발광 소자와 접촉하여, 상기 반도체 발광 소자가 전사 기판으로 전사되도록 일정 수준 이상의 접착력을 구비해야 한다.
도 8은 종래의 전사 기판으로 전사하였을 때 발생할 수 있는 반도체 발광 소자의 배열 오차에 대해 도시한 도면이다.
종래 전사 기판의 경우, PDMS와 같은 유기물 소재를 이용하여 제작되며, 개별 반도체 발광 소자를 전사하기 위한 복수 개의 돌기부를 구비한다.
도 8은, 성장 기판(111)에서 형성된 반도체 발광 소자(150)이 전사 기판(310)으로 전사되는 단면도이나, 전술하였듯이, 상기 반도체 발광 소자(150)은 조립 기판에서 상기 전사 기판(310)으로 전사될 수도 있다.
상기 전사 기판은 돌기부를 포함하는 유기물 스탬프층(312) 및 베이스층(311)을 구비한다. 다만 후술할 본 발명과의 차이점은 예를 들어, 상기 유기물 스탬프층(312)은 단일 유기물로 구성되어 있거나, 혼합물로 구성되더라도 상기 유기물 스탬프층 내 위치에 따른 강성의 차이가 없다.
따라서 도 8에 도시된 바와 같이, 성장 기판(111)과 상기 전사 기판(310)을 압착하는 경우, 상기 유기물 스탬프층(312)은 그 형상이 변화할 수 있다. 통상적으로 압착 과정은 열과 압력이 수반되는 바, 상기 전사 과정이 반복될수록 상기 유기물 스탬프층(312)의 변화 정도는 심해질 수 있다.
예를 들어, 도 8에 도시된 바와 같이, D에 해당하는 배열 오차가 발생할 수 있다. 상기 D는 유기물 스탬프층(312)의 돌기부가 일정한 기울기로 휘어지며 발생하게 되며, 이에 따라 반도체 발광 소자는 D에 해당하는 배열 오차를 가지고 전사될 수 있다.
디스플레이 장치에 사용되는 반도체 발광 소자의 크기를 수십 ㎛ 크기로 가정하였을 때, 상기 배열 오차가 수백 nm 수준이라면 불량 관점에서 큰 문제가 되지 않으나, 상기 배열 오차가 수 ㎛ 수준이라면 상기 배열 오차는 전사 이후의 후속 공정에서 불량을 유발한다.
예를 들어, 배선 기판에 전사되는 반도체 발광 소자의 가로 길이(기판과 평행하는 방향의 반도체 발광 소자의 길이)가 50㎛ 수준일 때, 상기 배열 오차는 ±3㎛ 수준까지 관리되어야 하며, 이는 패널 공정 수율에 있어서 가장 중요한 핵심 요소이다.
따라서, 전사 과정에서 유기물 스탬프층의 변형을 최소화하면서도 반도체 발광 소자를 잘 전사시킬 수 있는 전사 기판이 요구된다.
도 9는 일반적인 유기물 재료에서, 영률과 접착력의 관계를 나타내는 그래프이다.
도 9에 도시된 바와 같이, 일반적으로 영률은 접착력과 반비례한다.
상기 영률은 일정 압력 하에서 고체 재료의 강성(Stiffness)을 측정하는 역학적 특성이다. 구체적으로 상기 영률은 단축 변형 영역에서 선형 탄성 재료의 응력(Stress)과 변형률(Strain rate) 사이의 관계를 정의하는 탄성계수이며, 예를 들어, 영률을 E라고 할 때, F(응력) = E(영률) × S(변형률)로 표현할 수 있다.
따라서, 영률이 큰 재료의 경우 동일 압력 하에 변형률이 작다.
한편, 도 9에 표기된 Tacky force는 접착력을 의미하는 것으로 유기물 소재의 경우 경화도에 따라, 표면의 끈적끈적한 특성이 차이를 보인다.
도 9의 그래프를 살펴보면, 유기물 소재의 경우, 경화시간이 경과함에 따라, 영률은 증가하고, Tacky force는 감소하는 방향으로 변화한다. 즉, 유기물 소재가 경화됨에 따라 동일 압력하에 변형되는 정도는 줄어드는 반면, 접착력은 감소하게 된다.
따라서 상기 결과를 바탕으로 한 유기물 소재를 이용하여, 전사 기판의 유기물 스탬프층을 구성할 때, 반도체 발광 소자와 접촉하여 상기 반도체 발광 소자를 전사하기에 충분한 접착력을 지닌 스탬프층일수록 동일 압력에 따른 변형률은 증가할 수 있다. 즉, 접착력이 뛰어난 스탬프층은 전사과정에서 변형이 일어나기 쉬우며, 이에 따른 배열 오차가 발생할 수 있다.
반면, 변형률이 낮은 스탬프층의 경우, 전사하기에 충분한 접착력을 보장할 수 없어, 반도체 발광 소자의 전사 성공률이 감소할 수 있다.
도 10은 본 발명에 따른 전사 기판의 단면도이다.
도 10의 전사 기판(210)은 전사 과정에서 유기물 스탬프층(212)의 변형을 최소화하면서도 반도체 발광 소자를 잘 전사할 수 있는 접착력을 지닌 전사 기판이다.
도 10에 도시된 바와 같이, 상기 전사 기판(210)은 베이스층(211) 및 상기 베이스층(211) 상에 위치하는, 돌기부를 구비하는 유기물 스탬프층(212)을 포함한다.
또한 상기 유기물 스탬프층(212)은 다수의 무기물 필러(213)를 함유하며, 상기 스탬프층(212) 내 위치에 따라 상기 무기물 필러(213)의 농도가 다르게 형성된다.
구체적으로, 상기 무기물 필러(213)의 농도 구배는 상기 유기물 스탬프층(212)의 상기 돌기부에서 상기 베이스층(211) 방향으로 갈수록 점차적으로 증가하는 것을 특징으로 한다.
또한, 상기 유기물 스탬프층(212)의 돌기부의 높이는 상기 돌기부에 접촉하는 반도체 발광 소자의 두께에 기초하여 결정될 수 있다. 예를 들어, 상기 돌기부의 높이는 상기 반도체 발광 소자의 두께보다 크다. 상기 돌기부의 높이가 상기 반도체 발광 소자의 두께에 비해 너무 작으면, 상기 반도체 발광 소자가 상기 돌기부에 접착하여 안정적으로 전사하기 어렵기 때문이다. 또한 상기 반도체 발광 소자는 전술하였듯이, 수평형 반도체 발광 소자 또는 수직형 반도체 발광 소자일 수 있으며, 상기 반도체 발광 소자의 두께는 상기 반도체 발광 소자가 성장 기판에서 형성될 때 반도체층이 적층되는 두께에 비례한다.
또한, 상기 돌기부의 너비는 상기 돌기부에 접촉하는 반도체 발광 소자의 너비보다 넓도록 형성한다. 예를 들어, 수평형 반도체 발광 소자의 경우 약 50㎛ 이하의 너비를 가지는 바, 상기 돌기부의 너비는 50㎛ 이상으로 형성하여, 안정적으로 상기 반도체 발광 소자와 돌기부가 접촉할 수 있도록 한다.
또한 상기 베이스층(211)의 두께는 상기 유기물 스탬프층(212)의 두께보다 크게 형성할 수 있다. 예를 들어 베이스층(211)에 비해 유기물 스탬프층(212)의 강성이 작으면, 베이스층(211)의 두께가 유기물 스탬프층(212)의 두께보다 더 두꺼워야, 베이스층(211) 상부에서 가해지는 압력이 유기물 스탬프층(212)에 잘 전달되면서도 상기 유기물 스탬프층(212) 변형률이 작을 수 있다.
또한, 상기 베이스층(211)은 PET(Polyethylene terephthalate), PCE(Polycarboxylate Ether) 및 유리 중 적어도 하나 이상을 포함할 수 있으며, 상기 유기물 스탬프층(212)의 주성분은 PDMS(polydimethylsiloxane)일 수 있다. 추가적으로 상기 무기물 필러(213)의 주성분은 수십nm 내지 수 μm 이내의 SiO2일 수 있다. 다만, 상기 베이스층(211), 유기물 스탬프층(212) 및 무기물 필러(213)의 주재료는 예시적인 것이며, 본 발명은 이에 제한되지 않고, 당업자가 인식할 수 있는 수준에서 다양한 재료들을 선택할 수 있다.
도 11은 도 10의 전사 기판의 E 영역을 광학 현미경으로 확대한 이미지이다.
도 11은 실제 제작한 유기물 스탬프층의 돌기부의 단면 이미지이며, 도 11에 도시된 바와 같이 상기 돌기부는 다수의 무기물 필러가 분산되어 있는 제 1영역(214)와 무기물 필러가 거의 존재하지 않는 제 2영역(215)으로 구성된다. 도 11에 추가적으로 나타난 사선 모양의 형상은 상기 유기물 스탬프층을 절단하며 생긴 아티팩트(Artifact)이다.
상기 무기물 필러의 농도 분포에 의해, 상기 무기물 필러가 다량 분포하는 제 1영역(214)의 강성(Stiffness)은 상기 제 2영역(215)의 강성보다 클 수 있다. 좀더 구체적으로, 전사 기판의 베이스층의 제 1강성은 상기 제 1영역(214)의 제 2강성보다 크고, 상기 제 2강성은 유기물 스탬프층의 제 2영역(215)의 제 3강성보다 클 수 있다.
도 12는 본 발명의 전사 기판을 제조하는 방법을 나타내는 순서도이다.
먼저, 돌기부를 포함하는 스탬프층에 대응하는 음각 형상의 몰드를 준비한다(S1210). 상기 몰드의 주재료는 금속, Si, 유리 또는 사파이어 중 하나일 수 있다. 또한 상기 돌기부에 대응하는 음각부는 복수 개가 형성될 수 있다.
상기 몰드를 준비하는 단계(S1210)는 포토 공정 및 식각 공정을 포함한다. 예를 들어, 몰드용 기판의 평탄면에 상기 스탬프층에 대응하는 제 1음각부를 식각하고, 이후 상기 제 1음각부 상에 상기 돌기부에 대응하는 제 2음각부를 형성한다. 제 1음각부 상에 제 2음각부만 선택적으로 형성하기 위해 제 2음각부가 형성되는 영역을 제외한 나머지 영역은 포토레지스트에 의해 보호될 수 있다.
이후, 상기 몰드에 경화제, 유기 용액 및 다수의 무기물 필러를 혼합한 혼합 용액을 주입한다(S1220). 상기 혼합 용액을 주입하는 단계(S1220)는 상기 유기 용액에 상기 다수의 무기물 필러를 혼합하여 분산하는 단계 및, 상기 다수의 무기물 필러가 분산된 상기 유기 용액에 상기 경화제를 첨가하는 단계를 더 포함할 수 있다.
또한 상기 무기물 필러를 혼합하여 분산하는 단계는 50도 이하의 저온에서 용제(Solvent)가 증발될 때까지 고르게 혼합하는 과정이 추가될 수 있다. 용제(Solvent)의 양이 너무 많으면 상기 무기물 필러의 침전 속도가 빠르므로 저온에서 휘발되는 용제를 사용하는 것이 바람직하다. 그 이유는, 후술하겠지만, 상기 무기물 필러의 침전 방향은 상기 음각부의 돌기부가 아닌 상기 몰드 상에 고정되는 베이스 기판을 향하는 것이 바람직하기 때문이다.
또한 상기 경화제를 첨가하는 단계는 경화제 첨가에 따라 발생된 기포를 제거하는 단계를 포함한다.
이후, 상기 혼합 용액이 주입된 상기 몰드의 상측면을 베이스 기판과 접촉하여 고정한다(S1230). 상기 몰드의 음각부에는 상기 혼합 용액이 주입되며, 상기 몰드의 최외곽 테두리가 상기 베이스 기판과 접촉하게 된다. 상기 베이스 기판을 고정하는 단계(S1230)를 통해 상기 혼합 용액은 상기 베이스 기판 및 상기 몰드의 밖으로 새어 나오지 않게 된다.
이어서, 상기 몰드 및 상기 베이스 기판을 뒤집어서 상기 혼합 용액의 상기 무기물 필러가 상기 베이스 기판 방향으로 중력에 의해 침전되도록 한다(S1240). 상기 몰드 내 형성된 음각부에 주입된 혼합 용액은 경화되어, 최종적으로 유기물 스탬프층으로 변화하게 된다. 따라서 상기 침전 단계(S1240)을 통해, 상기 유기물 스탬프층의 돌기부에는 상대적으로 무기물 필러의 농도가 작게 되며, 베이스 기판과 접촉하는 인근의 유기물 스탬프층은 무기물 필러의 농도가 상대적으로 크게 된다. 이에 따라 유기물 스탬프층은 무기물 필러에 의해 전반적으로 큰 강성을 가지면서도, 상기 돌기부에는 무기물 필러가 거의 존재하지 않아 강성은 약한 반면 우수한 접착력을 가질 수 있다.
이후, 상기 몰드 내 혼합 용액을 경화한다(S1250). 상기 혼합 용액을 경화하는 단계(S1250)는 상기 몰드 내 상기 혼합 용액에서, 상기 다수의 무기물 필러가 위치에 따라 농도가 달라지도록, 상기 무기물 필러의 농도 분포를 제어하는 단계를 포함한다.
구체적으로, 상기 무기물 필러의 농도 분포를 제어하는 단계는 상기 몰드 내 상기 혼합 용액에서, 상기 돌기부로부터 상기 베이스 기판 방향으로 위치가 이동할수록 상기 무기물 필러의 농도가 증가하도록 제어하는 것을 특징으로 한다. 또한 상기 혼합 용액을 경화하는 단계는 70도 내지 120도 사이의 온도 범위에서 수행될 수 있다. 경우에 따라서 상기 온도는 상기 혼합 용액이 경화하기 시작하는 온도 이하에서 가열하여, 상기 유기 용액의 유동성을 증가시켜, 상기 혼합 용액 내 상기 무기물 필러의 침전 속도를 증가시킬 수 있다.
이처럼 상기 무기물 필러의 농도 분포를 제어하는 단계는 상기 무기물 필러의 침전 속도를 제어하는 단계를 포함한다. 구체적으로, 상기 몰드에 주입된 상기 혼합 용액에 대해, 온도의 변화 또는 UV(Ultra Violet) 조사를 통하여, 경화 과정에서, 상기 혼합 용액 내 상기 유기 용액의 점도(Viscosity)를 제어하는 단계를 포함할 수 있다.
마지막으로 상기 혼합 용액의 경화가 완료되면, 상기 몰드를 제거한다(S1260).
한편, 본 명세서의 전 취지에 비추어 보아, 당업자가 이해 가능한 수준에서, 도 12에 도시된 순서도의 일부 단계를 삭제, 변경하는 것도 본 발명의 다른 권리범위에 속한다.
도 13은 도 12의 순서도에 따른 제조 방법을 나타내는 단면도들이다.
도 13에 도시된 바와 같이, 유기용액, 경화제 및 무기물 필러가 혼합된 혼합 용액(230)을 음각부가 형성된 몰드(220)에 주입한다.
상기 몰드(220)의 음각부에 가득 채워진 혼합 용액(230)은 이후 상기 몰드의 상측면에 접촉하는 베이스 기판(211)에 의해 동봉된다.
상기 혼합 용액(230) 내 무기물 필러(213)가 베이스 기판(211) 방향을 향하도록 상기 몰드(220) 및 상기 베이스 기판(211)을 뒤집은 이후, 상기 혼합 용액(230)을 경화한다.
마지막으로 상기 몰드(230)를 제거하게 되면, 베이스 기판(211) 상에 형성된 돌기부를 포함하는 유기물 스탬프층(212)를 구비하는 전사 기판이 형성된다. 또한 상기 유기물 스탬프층(212) 내부에는 무기물 필러(213)가 분산되어 있으며, 상기 무기물 필러(213)의 농도는 상기 돌기부에서 베이스 기판(211)로 갈수록 증가하는 것을 특징으로 한다.
도 14는 본 발명의 다른 실시예에 따른 전사 기판을 제조하는 방법을 나타내는 순서도이다.
먼저 돌기부를 포함하는 스탬프층에 대응하는 음각 형상의 몰드를 준비한다(S1410). 상기 몰드의 주재료는 금속, Si, 유리 또는 사파이어 중 하나일 수 있다. 또한 상기 돌기부에 대응하는 음각부는 복수 개가 형성될 수 있다.
상기 몰드를 준비하는 단계(S1410)는 포토 공정 및 식각 공정을 포함한다. 예를 들어, 몰드용 기판의 평탄면에 상기 스탬프층에 대응하는 제 1음각부를 식각하고, 이후 상기 제 1음각부 상에 상기 돌기부에 대응하는 제 2음각부를 형성한다. 제 1음각부 상에 제 2음각부만 선택적으로 형성하기 위해 제 2음각부가 형성되는 영역을 제외한 나머지 영역은 포토레지스트에 의해 보호될 수 있다.
이후, 상기 몰드에 제 1경화제, 제 1유기 용액을 포함한 제 1혼합 용액을 도포한다(S1420). 상기 도포 과정은 스프레이 코팅이나 스핀 코팅 등을 통해, 상기 도포되는 상기 제 1혼합 용액의 두께를 조절할 수 있다.
이어서, 상기 제 1혼합 용액을 1차 경화시킨다(S1430). 따라서 상기 1차 경화된 제 1혼합 용액은 무기물 필러가 존재하지 않은 단순 유기물로 구성된다. 상기 유기물은 PDMS일 수 있다.
이후, 상기 1차 경화된 상기 제 1혼합 용액의 상부에 제 2경화제, 제 2유기 용액 및 무기물 필러를 포함한 제 2 혼합 용액을 주입한다(S1440). 상기 제 2혼합 용액을 주입하는 단계(S1440)은 상기 제 2유기 용액에 상기 다수의 무기물 필러를 혼합하여 분산하는 단계 및, 상기 다수의 무기물 필러가 분산된 상기 제 2유기 용액에 상기 제 2경화제를 첨가하는 단계를 더 포함할 수 있다.
또한 상기 무기물 필러를 혼합하여 분산하는 단계는 50도 이하의 저온에서 용제(Solvent)가 증발될 때까지 고르게 혼합하는 과정이 추가될 수 있다. 용제(Solvent)의 양이 너무 많으면 상기 무기물 필러의 침전 속도가 빠르므로 저온에서 휘발되는 용제를 사용하는 것이 바람직하다. 그 이유는, 후술하겠지만, 상기 무기물 필러의 침전 방향은 상기 음각부의 돌기부가 아닌 상기 몰드 상에 고정되는 베이스 기판을 향하는 것이 바람직하기 때문이다.
또한 상기 제 2경화제를 첨가하는 단계는 제 2경화제 첨가에 따라 발생된 기포를 제거하는 단계를 포함한다.
이후, 상기 제 2혼합 용액이 주입된 상기 몰드의 상측면을 베이스 기판과 접촉하여 고정한다(S1450). 상기 몰드의 음각부에는 상기 제 1혼합 용액 및 제 2혼합 용액이 존재하며, 상기 몰드의 최외곽 테두리가 상기 베이스 기판과 접촉하게 된다. 상기 베이스 기판을 고정하는 단계(S1450)를 통해 상기 혼합 용액들은 상기 베이스 기판 및 상기 몰드의 밖으로 새어 나오지 않게 된다.
이어서, 상기 몰드 및 상기 베이스 기판을 뒤집어서 상기 제 2혼합 용액의 상기 무기물 필러가 상기 베이스 기판 방향으로 중력에 의해 침전되도록 한다(S1460). 상기 몰드 내 형성된 음각부에 주입된 혼합 용액들은 경화되어, 최종적으로 유기물 스탬프층으로 변화하게 된다. 따라서 상기 침전 단계(S1460)을 통해, 상기 유기물 스탬프층의 돌기부에는 무기물 필러가 존재하지 않은 영역 및, 상대적으로 무기물 필러의 농도가 작게 존재하는 영역이 형성되며, 베이스 기판과 접촉하는 인근의 유기물 스탬프층은 무기물 필러의 농도가 상대적으로 크게 된다. 이에 따라 유기물 스탬프층은 무기물 필러에 의해 전반적으로 큰 강성을 가지면서도, 상기 돌기부의 단부에는 상기 무기물 필러가 존재하지 않아 강성은 약한 반면 우수한 접착력을 가질 수 있다.
이후, 상기 몰드 내 제 1혼합 용액 및 제 2혼합 용액을 2차 경화한다(S1470). 상기 혼합 용액들을 2차 경화하는 단계(S1470)는 상기 몰드 내 상기 제 2혼합 용액에서, 상기 다수의 무기물 필러가 위치에 따라 농도가 달라지도록, 상기 무기물 필러의 농도 분포를 제어하는 단계를 포함한다.
구체적으로, 상기 무기물 필러의 농도 분포를 제어하는 단계는 상기 몰드 내 상기 제 2혼합 용액에서, 상기 돌기부로부터 상기 베이스 기판 방향으로 위치가 이동할수록 상기 무기물 필러의 농도가 증가하도록 제어하는 것을 특징으로 한다. 또한 상기 제 2혼합 용액을 경화하는 단계는 70도 내지 120도 사이의 온도 범위에서 수행될 수 있다. 경우에 따라서 상기 온도는 상기 제 2혼합 용액이 경화하기 시작하는 온도 이하에서 가열하여, 상기 제 2유기 용액의 유동성을 증가시켜, 상기 제 2혼합 용액 내 상기 무기물 필러의 침전 속도를 증가시킬 수 있다.
이처럼 상기 무기물 필러의 농도 분포를 제어하는 단계는 상기 무기물 필러의 침전 속도를 제어하는 단계를 포함한다. 구체적으로, 상기 몰드에 주입된 상기 혼합 용액에 대해, 온도의 변화 또는 UV(Ultra Violet) 조사를 통하여, 경화 과정에서, 상기 혼합 용액 내 상기 유기 용액의 점도(Viscosity)를 제어하는 단계를 포함할 수 있다.
다만, 도 12에서 개시한 전사 기판의 제조 방법과 달리, 도 14의 제조 방법은 상기 유기물 스탬프층의 돌기부에 무기물 필러가 존재하지 않는 영역을 선택적으로 기 형성하는 바, 상기 무기물 필러의 농도를 제어하는 세부 단계는 도 12와 달리 생략되거나 일부 선택될 수 있다.
마지막으로 상기 혼합 용액의 경화가 완료되면, 상기 몰드를 제거한다(S1480).
도 15는 도 14의 순서도에 따라 제작된 전사 기판의 단면도이다.
도 14에 도시된 바와 같이, 상기 전사 기판(410)은 베이스층(411) 및 상기 베이스층(411) 상에 위치하는, 돌기부를 구비하는 유기물 스탬프층(412,413)을 포함한다.
또한 상기 유기물 스탬프층은 다수의 무기물 필러(414)를 함유하는 제 1유기물 스탬프층(412) 및 무기물 필러가 존재하지 않는 제 2유기물 스탬프층(413)을 포함한다
상기 제 1유기물 스탬프층(412) 내부의 상기 무기물 필러(414)의 농도 구배는 상기 유기물 스탬프층(412)의 상기 돌기부 방향에서 상기 베이스층(411) 방향으로 갈수록 점차적으로 증가할 수 있다. 또는, 상기 제 1유기물 스탬프층(412) 내부의 상기 무기물 필러(414)의 농도는 일정하게 형성될 수 있다. 다만, 상기 제 1유기물 스탬프층(412)과 상기 제 2유기물 스탬프층(413) 사이의 계면에서 상기 무기물 필러(414)의 농도 차이가 극심하면, 상기 계면은 박리될 수 있는 바, 적절한 수준의 무기물 필러(414)의 농도 조절이 중요하다.
또한, 상기 유기물 스탬프층의 돌기부의 높이는 상기 돌기부에 접촉하는 반도체 발광 소자의 두께에 기초하여 결정될 수 있다. 예를 들어, 상기 돌기부의 높이는 상기 반도체 발광 소자의 두께보다 크다. 상기 돌기부의 높이가 상기 반도체 발광 소자의 두께에 비해 너무 작으면, 상기 반도체 발광 소자가 상기 돌기부에 접착하여 안정적으로 전사하기 어렵기 때문이다. 또한 상기 반도체 발광 소자는 전술하였듯이, 수평형 반도체 발광 소자 또는 수직형 반도체 발광 소자일 수 있으며, 상기 반도체 발광 소자의 두께는 상기 반도체 발광 소자가 성장 기판에서 형성될 때 반도체층이 적층되는 두께에 비례한다.
또한, 상기 돌기부의 너비는 상기 돌기부에 접촉하는 반도체 발광 소자의 너비보다 넓도록 형성한다. 예를 들어, 수평형 반도체 발광 소자의 경우 약 50㎛ 이하의 너비를 가지는 바, 상기 돌기부의 너비는 50㎛ 이상으로 형성하여, 안정적으로 상기 반도체 발광 소자와 돌기부가 접촉할 수 있도록 한다.
또한, 상기 베이스층(411)은 PET(Polyethylene terephthalate), PCE(Polycarboxylate Ether) 및 유리 중 적어도 하나 이상을 포함할 수 있으며, 상기 유기물 스탬프층(412,413)의 주성분은 PDMS(polydimethylsiloxane)일 수 있다. 추가적으로 상기 무기물 필러(414)의 주성분은 수십nm 내지 수 μm 이내의 SiO2일 수 있다. 다만, 상기 베이스층(411), 유기물 스탬프층(412,413) 및 무기물 필러(414)의 주재료는 예시적인 것이며, 본 발명은 이에 제한되지 않고, 당업자가 인식할 수 있는 수준에서 다양한 재료들을 선택할 수 있다.
도 16은 무기물 필러의 함유량에 따른 표면 경도를 나타내는 그래프이다.
도 16에 도시된 바와 같이, PDMS에 실리카 무기물 필러의 함유량을 증가시킬수록 표면 경도는 증가한다. 도 16의 경우, 입도 1~2 μm 수준의 SiO2 (Silica)를 분산시켜 제작한 PDMS 의 표면 경도를 측정한 것이다.
표면 경도가 증가하는 것은 인장 강도 또는 강성(stiffness)이 증가하는 것으로 판단할 수 있다. 따라서 전사 기판을 위한 유기물 스탬프층에 무기물 필러를 분산시킴으로써, 상기 유기물 스탬프층의 강성을 개선시킬 수 있다. 스탬프층의 강성이 개선되면, 반복적인 전사 공정에도 상기 스탬프층의 변형이 일어나기 어려운 바, 전사 시 발생할 수 있는 반도체 발광 소자의 배열 오차를 최소화할 수 있다.
도 17은 무기물 필러의 함유량에 따른 강성을 관찰하기 위한 시뮬레이션 모형이다.
전술하였듯이, 표면 경도와 강성은 일반적으로 비례하는 개념이나, 보다 정확하게, 무기물 필러의 함유량에 따라 강성이 변화하는 정도를 살피기 위해 시뮬레이션을 수행하였다.
도 17에 도시된 바와 같이, 상기 시뮬레이션은 돌기부를 가진 스탬프층(512)의 상부의 기판(511)에서 하부의 기판(513) 방향으로 일정한 압력을 가하고, 상기 돌기부가 변형되는 정도를 판단하여 강성을 계산할 수 있다.
상기 돌기부가 변형되는 정도는 일정한 압력 전후의 돌기부의 너비 길이인 X1의 변형 정도로 판단한다.
도 17의 시뮬레이션 모형에서, 돌기부의 높이는 5 μm 이고, 돌기부를 제외한 유기물 스탬프층(512)의 높이는 10 μm이다. 또한 상기 유기물 스탬프층(512)은 PDMS를 주재료로 하며, 상기 유기물 스탬프층(512)에 함유되는 무기물 필러는 직경 300nm의 실리카인 것으로 설정하였다.
도 18은 도 17의 모형에 따라 측정된, 무기물 필러의 함유량에 따른 강성에 대한 시뮬레이션 결과들이다.
도 18(a)는 실리카 나노입자의 함유량이 0 내지 20wt% 범위의 유기물 스탬프층에서, 압력에 따른 전단 변위(Shear displacement)를 나타내는 그래프이다. 상기 실리카 나노입자의 함유량은 5wt% 간격으로 조절되었다. 한편, 실리카 나노입자의 함유량이 10wt%인 그래프와 실리카 나노입자의 함유량이 15wt%의 그래프는 그 결과값이 유사하여, 도 18(a)에서는 중첩되어 표시되었다.
한편, 도 18(a)에 도시된 바와 같이 유기물 스탬프층에 함유되는 실리카의 중량 비율이 높아질수록 동일 힘(Force) 대비 전단 변위(Shear displacement) 값이 감소하는 것을 확인할 수 있다. 상기 전단 변위 값은 도 17에서 X1의 변화량으로 볼 수 있다.
구체적으로 도 18(a)를 살피면, 유기물 스탬프층에100N의 압력을 가하는 경우, 실리카 나노입자가 함유되지 않은 유기물 스탬프층은 약 12 μm 의 변위가 발생하고, 실리카 나노입자가 20wt%로 함유된 유기물 스탬프층의 경우 약 6 μm의 변위가 발생한다. 즉, 실리카 나노입자의 함유량이 증가함에 따라, 동일 압력이 인가되었을 때, 변형되는 정도가 약 50%만큼 감소하였다.
이러한 변화는 도 18(b)에 도시된 강성 계수(Stiffness constant)에서도 확연히 드러난다. 강성 계수가 증가한다는 것은 동일 압력 하에 변형률이 작다는 것을 의미한다. 도 18(b)에 도시된 바와 같이, 실리카 나노입자가 함유되지 않은 유기물 스탬프층의 강성 계수가 8.96k라면, 실리카 나노입자가 20wt%로 함유된 유기물 스탬프층의 강성 계수는 15.3k이다. 즉, 실리카 나노입자의 함유량이 커질수록 강성 계수는 증가하며, 이에 따라 동일 압력 하에 변형률이 줄어든다는 것을 확인할 수 있다.
도 19는 무기물 필러의 함유량에 따른 배열 오차를 관찰하기 위한 시뮬레이션 모형이다.
실제 반도체 발광 소자의 전사과정에서 발생하는 배열 오차의 원인이, 상기 반도체 발광 소자와 접촉하는 유기물 스탬프층의 변형에 기인한다는 것은 전술하였다. 다만, 상기 유기물 스탬프층의 변형은 돌기부를 기준으로, 돌기부의 높이 변화보다는 너비 변화에 큰 영향을 받는다. 다른 말로 표현하면, 압력 전후로 돌기부의 형상이 변화하더라도, 돌기부의 중심 위치가 변화하지 않는다면, 반도체 발광 소자의 배열 오차는 발생하지 않는다.
하지만, 도 19에 도시된 바와 같이, 상단의 기판(611)에서 하단의 기판(613) 방향으로 상기 유기물 스탬프층(612)에 압력을 인가하는 경우, 상기 유기물 스탬프층(612)은 돌기부의 너비 방향으로 △X2만큼의 변화가 발생할 수 있다. 즉, 돌기부의 중심축이 △X2만큼 이동한다는 의미이며, 이러한 변형은 상기 유기물 스탬프층(612)과 접촉하는 반도체 발광 소자(650)도 전사 과정에서, △X2만큼의 배열 오차가 발생할 수 있다는 것을 의미한다.
도 19의 시뮬레이션 모형에서, 돌기부의 높이는 10 μm 이고, 돌기부를 제외한 유기물 스탬프층(612)의 높이는 400 μm이다. 또한 상기 유기물 스탬프층(612)은 PDMS를 주재료로 하며, 상기 유기물 스탬프층(612)에 함유되는 무기물 필러는 직경 300nm의 실리카인 것으로 설정하였다. 또한, 상기 유기물 스탬프층(612)의 돌기부와 접촉하는 반도체 발광 소자(650)는 높이가 6 μm이고 너비가 50 μm인 것으로 설정하였다.
도 20은 도 19의 모형에 따라 측정된, 무기물 필러의 함유량에 따른 배열 오차에 관한 시뮬레이션 결과이다.
도 20에 도시된 바와 같이, 실리카 무기물 필러의 함유량이 증가할수록 돌기부의 높이 방향 변화량이 감소하였다. 또한, 실리카 무기물 필러의 함유량이 증가할수록 돌기부의 중심 축을 기준으로, 너비 방향으로 위치 변화량이 감소하였다. 예를 들어, 실리카 나노입자가 함유되지 않은 유기물 스탬프층은 돌기부의 높이 방향으로 12 μm 의 변위 및 너비 방향으로 6.8 μm의 중심 축 이동이 발생한다면, 실리카 나노입자가 20wt%로 함유된 유기물 스탬프층의 경우, 돌기부의 높이 방향으로 5.9 μm 의 변위 및 너비 방향으로 3.4 μm의 변위가 발생하였다. 즉, 상기 시뮬레이션 모델에서는, 유기물 스탬프층에 실리카 나노입자를 20wt% 함유함으로써, 실리카 나노입자가 함유되지 않은 유기물 스탬프층 대비, 3.4 μm의 배열 오차를 감소시킬 수 있다.
정리하면, 본 발명에서는 유기물 스탬프층 내부에 무기물 필러를 함유함으로써, 상기 유기물 스탬프층의 전체적인 강성을 향상시켰다. 한편, 상기 유기물 스탬프층의 돌기부 끝단에는 상기 무기물 필러의 농도가 극히 낮거나, 상기 무기물 필러가 존재하지 않도록 하여, 상기 돌기부가 반도체 발광 소자를 전사하기에 충분한 접착력을 유지할 수 있도록 하였다.
따라서, 상기 유기물 스탬프층을 포함한 전사 기판을 이용하면, 전사 과정에서 발생하게 되는 스탬프층의 변형을 최소화시키고, 이에 따른 반도체 발광 소자의 배열 오차를 감소시켜 전사의 정밀도를 향상시킬 수 있다.
이상의 설명은 본 발명의 기술 사상을 예시적으로 설명한 것에 불과한 것으로서, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자라면 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 다양한 수정 및 변형이 가능할 것이다.
따라서, 본 발명에 개시된 실시 예들은 본 발명의 기술 사상을 한정하기 위한 것이 아니라 설명하기 위한 것이고, 이러한 실시 예에 의하여 본 발명의 기술 사상의 범위가 한정되는 것은 아니다.
본 발명의 보호 범위는 아래의 청구범위에 의하여 해석되어야 하며, 그와 동등한 범위 내에 있는 모든 기술 사상은 본 발명의 권리범위에 포함되는 것으로 해석되어야 할 것이다.
Claims (18)
- 돌기부를 포함하는 스탬프층에 대응하는 음각 형상의 몰드를 준비하는 단계;상기 몰드에 경화제, 유기 용액 및 다수의 무기물 필러를 혼합한 혼합 용액을 주입하는 단계;상기 혼합 용액이 주입된 상기 몰드의 상측면을 베이스 기판과 접촉하여 고정하는 단계;상기 몰드 및 상기 베이스 기판을 뒤집어서 상기 혼합 용액의 상기 다수의 무기물 필러가 상기 베이스 기판 방향으로 중력에 의해 침전되는 단계;상기 혼합 용액을 경화하는 단계; 및상기 몰드를 제거하는 단계를 포함하는 반도체 발광 소자의 전사를 위한 전사 기판의 제조 방법.
- 돌기부를 포함하는 스탬프층에 대응하는 음각 형상의 몰드를 준비하는 단계;상기 몰드에 제 1경화제, 제 1유기 용액을 포함한 제 1혼합 용액을 도포하는 단계;상기 제 1혼합 용액을 1차 경화하는 단계;상기 1차 경화된 상기 제 1혼합 용액의 상부에 제 2경화제, 제 2유기 용액 및 다수의 무기물 필러를 포함한 제 2혼합 용액을 주입하는 단계;상기 제 2혼합 용액이 주입된 상기 몰드의 상측면을 베이스 기판과 접촉하여 고정하는 단계;상기 몰드 및 상기 베이스 기판을 뒤집어서 상기 제 2혼합 용액의 상기 다수의 무기물 필러가 상기 베이스 기판 방향으로 중력에 의해 침전되는 단계;상기 몰드 내 상기 제 1혼합 용액 및 상기 제 2혼합 용액을 2차 경화하는 단계; 및상기 몰드를 제거하는 단계를 포함하는 반도체 발광 소자의 전사를 위한 전사 기판의 제조 방법.
- 제 1항에 있어서,상기 몰드를 준비하는 단계는,몰드용 기판의 평탄면에 상기 스탬프층에 대응하는 제 1음각부를 형성하는 단계;상기 제 1음각부 상에 상기 돌기부에 대응하는 제 2음각부를 형성하는 단계를 포함하는 반도체 발광 소자의 전사를 위한 전사 기판의 제조 방법.
- 제 1항에 있어서,상기 혼합 용액을 경화하는 단계는,상기 몰드 내 상기 혼합 용액에서, 상기 다수의 무기물 필러가 위치에 따라 농도가 달라지도록, 상기 무기물 필러의 농도 분포를 제어하는 단계를 포함하는 것을 특징으로 하는 반도체 발광 소자의 전사를 위한 전사 기판의 제조 방법.
- 제 4항에 있어서,상기 무기물 필러의 농도 분포를 제어하는 단계는,상기 몰드 내 상기 혼합 용액에서, 상기 돌기부에서 상기 베이스 기판 방향으로 위치가 이동할수록 상기 무기물 필러의 농도가 증가하도록 제어하는 것을 특징으로 하는 반도체 발광 소자의 전사를 위한 전사 기판의 제조 방법.
- 제 1항에 있어서,상기 혼합 용액을 경화하는 단계는,70도 내지 120도 사이의 온도 범위에서 수행하는 것을 특징으로 하는 반도체 발광 소자의 전사를 위한 전사 기판의 제조 방법.
- 제 4항에 있어서,상기 무기물 필러의 농도 분포를 제어하는 단계는,상기 몰드에 주입된 상기 혼합 용액에 대해, 온도의 변화 또는 UV(Ultra Violet) 조사를 통하여, 상기 혼합 용액 내 상기 유기 용액의 점도(Viscosity)를 제어하는 단계를 포함하는 반도체 발광 소자의 전사를 위한 전사 기판의 제조 방법.
- 제 1항에 있어서,상기 혼합 용액을 주입하는 단계는,상기 유기 용액에 상기 다수의 무기물 필러를 혼합하여 분산하는 단계 및, 상기 다수의 무기물 필러가 분산된 상기 유기 용액에 상기 경화제를 첨가하는 단계를 포함하는 반도체 발광 소자의 전사를 위한 전사 기판의 제조 방법.
- 반도체 발광 소자를 이용하는 디스플레이 장치의 제조에 사용되는 전사 기판(transfer substrate)에 있어서,상기 전사 기판은,베이스층; 및상기 베이스층 상에 위치하는, 돌기부를 구비하는 유기물 스탬프층을 포함하고,상기 유기물 스탬프층은 무기물 필러가 상기 유기물 스탬프층 내부에서 분산되어, 위치에 따른 상기 무기물 필러의 농도 구배를 가지며,상기 무기물 필러의 농도 구배는, 상기 유기물 스탬프층의 상기 돌기부에서 상기 베이스층 방향으로 갈수록 점차적으로 증가하는 것을 특징으로 하는 디스플레이 장치의 제조에 사용되는 전사 기판.
- 제 9항에 있어서,상기 유기물 스탬프층은 상기 무기물 필러의 농도 구배를 가지는 제 1영역 및 상기 무기물 필러가 존재하지 않는 제 2영역을 포함하고,상기 제 2영역은 상기 제 1영역의 외측에 위치하고, 상기 돌기부의 단부를 포함하는 것을 특징으로 하는 디스플레이 장치의 제조에 사용되는 전사 기판.
- 제 10항에 있어서,상기 베이스층의 제 1강성(stiffness)은 상기 유기물 스탬프층의 제 1영역의 제 2강성보다 크고,상기 제 2강성은 상기 유기물 스탬프층의 제 2영역의 제 3강성보다 큰 것을 특징으로 하는 디스플레이 장치의 제조에 사용되는 전사 기판.
- 제 9항에 있어서,상기 돌기부의 높이는, 상기 돌기부에 접촉하는 반도체 발광 소자의 두께에 기초하여 결정되는 것을 특징으로 하는 디스플레이 장치의 제조에 사용되는 전사 기판.
- 제 12항에 있어서,상기 돌기부의 높이는 상기 반도체 발광 소자의 적층방향의 두께보다 큰 것을 특징으로 하는 디스플레이 장치의 제조에 사용되는 전사 기판.
- 제 9항에 있어서,상기 돌기부의 너비는 상기 돌기부에 접촉하는 반도체 발광 소자의 너비보다 넓은 것을 특징으로 하는 디스플레이 장치의 제조에 사용되는 전사 기판.
- 제 9항에 있어서,상기 베이스층은 PET(Polyethylene terephthalate), PCE(Polycarboxylate Ether) 및 유리 중 적어도 하나 이상을 포함하는 디스플레이 장치의 제조에 사용되는 전사 기판.
- 제 9항에 있어서,상기 무기물 필러의 주성분은 수십 nm 내지 수 μm 이내의 SiO2인 것을 특징으로 하는 디스플레이 장치의 제조에 사용되는 전사 기판.
- 제 9항에 있어서,상기 유기물 스탬프층의 주성분은 PDMS(polydimethylsiloxane)인 것을 특징으로 하는 디스플레이 장치의 제조에 사용되는 전사 기판.
- 제 12항에 있어서,상기 반도체 발광 소자는 마이크로미터 단위의 크기를 가진 LED(Micro-LED)인 것을 특징으로 하는 디스플레이 장치의 제조에 사용되는 전사 기판.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US17/630,288 US20220277983A1 (en) | 2019-08-06 | 2019-08-07 | Method for manufacturing display device, and transfer substrate for manufacturing display device |
EP19940187.8A EP4012497A4 (en) | 2019-08-06 | 2019-08-07 | METHOD FOR MAKING A DISPLAY DEVICE AND TRANSFER SUBSTRATE FOR MAKING A DISPLAY DEVICE |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2019-0095605 | 2019-08-06 | ||
KR1020190095605A KR20190099163A (ko) | 2019-08-06 | 2019-08-06 | 디스플레이 장치의 제조 방법 및 디스플레이 장치 제조를 위한 전사 기판 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021025201A1 true WO2021025201A1 (ko) | 2021-02-11 |
Family
ID=67806487
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2019/009861 WO2021025201A1 (ko) | 2019-08-06 | 2019-08-07 | 디스플레이 장치의 제조 방법 및 디스플레이 장치 제조를 위한 전사 기판 |
Country Status (4)
Country | Link |
---|---|
US (1) | US20220277983A1 (ko) |
EP (1) | EP4012497A4 (ko) |
KR (1) | KR20190099163A (ko) |
WO (1) | WO2021025201A1 (ko) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113629107A (zh) * | 2021-07-19 | 2021-11-09 | 深圳市华星光电半导体显示技术有限公司 | 显示面板的制作方法、显示面板和显示装置 |
CN114464566A (zh) * | 2022-01-25 | 2022-05-10 | Tcl华星光电技术有限公司 | 转移装置及制作方法 |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7200884B2 (ja) * | 2019-08-27 | 2023-01-10 | 信越化学工業株式会社 | 微小構造体の実装方法 |
BR112022020501A2 (pt) * | 2020-04-14 | 2022-12-06 | Hewlett Packard Development Co | Matriz de ejeção de fluido com camada nanocerâmica estampada |
KR102540569B1 (ko) * | 2021-03-22 | 2023-06-08 | 주식회사 엠시스 | 프리코팅된 COF(Chip on film) 제조방법 및 이 제조 방법에 의하여 제조된 COF |
CN114156222B (zh) * | 2021-11-29 | 2024-09-24 | 京东方科技集团股份有限公司 | 转移基板、发光基板及其制备方法、显示装置 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100843392B1 (ko) * | 2005-03-31 | 2008-07-03 | 삼성전기주식회사 | 우수한 내구성을 갖는 인쇄회로기판용 임프린트 몰드 및이를 이용한 인쇄회로기판의 제조방법 |
KR20110118616A (ko) * | 2008-11-19 | 2011-10-31 | 셈프리어스 아이엔씨. | 전단-보조 탄성 스탬프 전사에 의한 프린팅 반도체 소자 |
JP2012119572A (ja) * | 2010-12-02 | 2012-06-21 | Shimadzu Corp | 転写印刷用スタンプ製造方法および電子デバイス |
JP2013086294A (ja) * | 2011-10-14 | 2013-05-13 | Tohoku Univ | ナノインプリント用複製モールド |
KR20170063528A (ko) * | 2014-07-20 | 2017-06-08 | 엑스-셀레프린트 리미티드 | 마이크로-전사 인쇄를 위한 장치 및 방법들 |
WO2019013120A1 (ja) * | 2017-07-10 | 2019-01-17 | 株式会社ブイ・テクノロジー | 表示装置の製造方法、チップ部品の転写方法、および転写部材 |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102472992B (zh) * | 2009-08-04 | 2015-02-11 | 郡是株式会社 | 中间转印带 |
KR20120020012A (ko) * | 2010-08-27 | 2012-03-07 | 삼성전자주식회사 | 유기-무기 복합체 및 이로부터 제조된 나노임프린트용 스탬프 |
CN104210047B (zh) * | 2011-06-23 | 2016-09-28 | 旭化成株式会社 | 微细图案形成用积层体及微细图案形成用积层体的制造方法 |
TWI489522B (zh) * | 2012-03-12 | 2015-06-21 | Asahi Kasei E Materials Corp | Mold, resist layer and its manufacturing method and concave and convex structure |
FR2990384B1 (fr) * | 2012-05-14 | 2015-05-15 | Saint Gobain | Procede de texturation sur un substrat de grande surface |
KR101416625B1 (ko) * | 2012-06-11 | 2014-07-08 | 한국전기연구원 | 미세 패턴 형성용 고분자 몰드의 제조 방법, 이에 의해 제조되는 미세 패턴 형성용 고분자 몰드, 및 이를 이용한 미세 패턴 형성 방법 |
JP5466795B1 (ja) * | 2012-06-13 | 2014-04-09 | 旭化成イーマテリアルズ株式会社 | 機能転写体、機能層の転写方法、梱包物及び機能転写フィルムロール |
KR101620469B1 (ko) * | 2014-11-13 | 2016-05-23 | 엘지전자 주식회사 | 반도체 발광 소자를 이용한 디스플레이 장치의 제조방법 |
KR101827814B1 (ko) * | 2016-04-15 | 2018-02-12 | 한국기계연구원 | 나노임프린트 방식을 이용한 3차원 구조체의 제조방법 |
JP2020126877A (ja) * | 2019-02-01 | 2020-08-20 | キオクシア株式会社 | 原版、原版の製造方法および半導体装置の製造方法 |
-
2019
- 2019-08-06 KR KR1020190095605A patent/KR20190099163A/ko active Search and Examination
- 2019-08-07 EP EP19940187.8A patent/EP4012497A4/en active Pending
- 2019-08-07 WO PCT/KR2019/009861 patent/WO2021025201A1/ko unknown
- 2019-08-07 US US17/630,288 patent/US20220277983A1/en active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100843392B1 (ko) * | 2005-03-31 | 2008-07-03 | 삼성전기주식회사 | 우수한 내구성을 갖는 인쇄회로기판용 임프린트 몰드 및이를 이용한 인쇄회로기판의 제조방법 |
KR20110118616A (ko) * | 2008-11-19 | 2011-10-31 | 셈프리어스 아이엔씨. | 전단-보조 탄성 스탬프 전사에 의한 프린팅 반도체 소자 |
JP2012119572A (ja) * | 2010-12-02 | 2012-06-21 | Shimadzu Corp | 転写印刷用スタンプ製造方法および電子デバイス |
JP2013086294A (ja) * | 2011-10-14 | 2013-05-13 | Tohoku Univ | ナノインプリント用複製モールド |
KR20170063528A (ko) * | 2014-07-20 | 2017-06-08 | 엑스-셀레프린트 리미티드 | 마이크로-전사 인쇄를 위한 장치 및 방법들 |
WO2019013120A1 (ja) * | 2017-07-10 | 2019-01-17 | 株式会社ブイ・テクノロジー | 表示装置の製造方法、チップ部品の転写方法、および転写部材 |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113629107A (zh) * | 2021-07-19 | 2021-11-09 | 深圳市华星光电半导体显示技术有限公司 | 显示面板的制作方法、显示面板和显示装置 |
CN113629107B (zh) * | 2021-07-19 | 2023-08-22 | 深圳市华星光电半导体显示技术有限公司 | 显示面板的制作方法、显示面板和显示装置 |
CN114464566A (zh) * | 2022-01-25 | 2022-05-10 | Tcl华星光电技术有限公司 | 转移装置及制作方法 |
Also Published As
Publication number | Publication date |
---|---|
KR20190099163A (ko) | 2019-08-26 |
EP4012497A4 (en) | 2023-08-16 |
US20220277983A1 (en) | 2022-09-01 |
EP4012497A1 (en) | 2022-06-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2021025201A1 (ko) | 디스플레이 장치의 제조 방법 및 디스플레이 장치 제조를 위한 전사 기판 | |
WO2021025202A1 (ko) | 디스플레이 장치의 제조 방법 및 디스플레이 장치 제조를 위한 기판 | |
WO2021002490A1 (ko) | 마이크로 led를 이용한 디스플레이 장치 및 이의 제조 방법 | |
WO2021040102A1 (ko) | 마이크로 led를 이용한 디스플레이 장치 및 이의 제조 방법 | |
WO2021040066A1 (ko) | 마이크로 led를 이용한 디스플레이 장치 및 이의 제조 방법 | |
WO2020251076A1 (ko) | 마이크로 led를 이용한 디스플레이 장치 및 이의 제조 방법 | |
WO2017209437A1 (en) | Display device using semiconductor light emitting device and fabrication method thereof | |
WO2021054491A1 (ko) | 마이크로 led를 이용한 디스플레이 장치 및 이의 제조 방법 | |
WO2014163325A1 (en) | Display device using semiconductor light emitting device | |
WO2021033802A1 (ko) | 마이크로 led를 이용한 디스플레이 장치 및 이의 제조 방법 | |
WO2021070977A1 (ko) | 마이크로 led를 이용한 디스플레이 장치 및 이의 제조 방법 | |
WO2021080028A1 (ko) | 마이크로 led를 이용한 디스플레이 장치 및 이의 제조 방법 | |
WO2021117979A1 (ko) | 마이크로 led와 관련된 디스플레이 장치 및 이의 제조 방법 | |
WO2017122891A1 (en) | Display device using semiconductor light emitting device and method for manufacturing | |
WO2015133821A1 (en) | Display device using semiconductor light emitting device | |
WO2021060595A1 (ko) | 마이크로 led를 이용한 디스플레이 장치 및 이의 제조 방법 | |
WO2019151550A1 (ko) | 반도체 발광소자를 이용한 디스플레이 장치 및 이의 제조방법 | |
WO2015060506A1 (en) | Display device using semiconductor light emitting device | |
WO2020166777A1 (ko) | 반도체 발광 소자를 이용한 디스플레이 장치 및 이의 제조 방법 | |
WO2018048019A1 (ko) | 반도체 발광소자를 이용한 디스플레이 장치 | |
WO2018135704A1 (ko) | 반도체 발광소자를 이용한 디스플레이 장치 | |
WO2021125421A1 (ko) | 발광 소자를 이용한 디스플레이 장치 및 그 제조 방법 | |
WO2021033801A1 (ko) | 마이크로 led를 이용한 디스플레이 장치 및 이의 제조 방법 | |
EP3084748A1 (en) | Display device using semiconductor light emitting device and method of fabricating the same | |
WO2021060577A1 (ko) | 마이크로 led를 이용한 디스플레이 장치 및 이의 제조 방법 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19940187 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2019940187 Country of ref document: EP Effective date: 20220307 |