WO2018135704A1 - 반도체 발광소자를 이용한 디스플레이 장치 - Google Patents

반도체 발광소자를 이용한 디스플레이 장치 Download PDF

Info

Publication number
WO2018135704A1
WO2018135704A1 PCT/KR2017/004386 KR2017004386W WO2018135704A1 WO 2018135704 A1 WO2018135704 A1 WO 2018135704A1 KR 2017004386 W KR2017004386 W KR 2017004386W WO 2018135704 A1 WO2018135704 A1 WO 2018135704A1
Authority
WO
WIPO (PCT)
Prior art keywords
light emitting
layer
semiconductor light
emitting device
electrode
Prior art date
Application number
PCT/KR2017/004386
Other languages
English (en)
French (fr)
Inventor
김선후
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to EP17893453.5A priority Critical patent/EP3573431B1/en
Priority to US16/479,483 priority patent/US10978435B2/en
Priority to CN201780083762.4A priority patent/CN110178446B/zh
Publication of WO2018135704A1 publication Critical patent/WO2018135704A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/16Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different main groups of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. forming hybrid circuits
    • H01L25/167Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different main groups of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. forming hybrid circuits comprising optoelectronic devices, e.g. LED, photodiodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/075Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00
    • H01L25/0753Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00 the devices being arranged next to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/15Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission
    • H01L27/153Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission in a repetitive configuration, e.g. LED bars
    • H01L27/156Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission in a repetitive configuration, e.g. LED bars two-dimensional arrays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/20Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular shape, e.g. curved or truncated substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table
    • H01L33/32Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table containing nitrogen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/52Encapsulations
    • H01L33/54Encapsulations having a particular shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/52Encapsulations
    • H01L33/56Materials, e.g. epoxy or silicone resin
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/62Arrangements for conducting electric current to or from the semiconductor body, e.g. lead-frames, wire-bonds or solder balls

Definitions

  • the present invention relates to a display device, and more particularly, to a display device using a semiconductor light emitting device.
  • LCD Liguid Crystal Display
  • AMOLED Active Matrix Organic Light Emitting Diodes
  • LEDs Light Emitting Diodes
  • red LEDs using GaAsP compound semiconductors were commercialized, along with GaP: N series green LEDs. It has been used as a light source for display images of electronic devices including communication devices. Accordingly, a method of solving the above problems by implementing a display using the semiconductor light emitting device may be proposed.
  • the present invention proposes a display device having a new structure based on a semiconductor light emitting device having a size of several to several tens of micrometers and improving optical performance. Furthermore, the present invention proposes a panel structure in which a wiring process can be improved in a display device having a new structure.
  • One object of the present invention is to provide a structure in which a time required for a process for connecting a light emitting element to a circuit in a display device using a semiconductor light emitting element can be shortened.
  • Another object of the present invention is to provide a display device having a structure which ensures manufacturing reliability and reduces manufacturing costs.
  • a wiring process is applied by applying a structure for adjusting the height of the semiconductor light emitting element. To make it easier.
  • the display device may be formed to cover a substrate including a driving thin film transistor, a semiconductor light emitting device including a first conductive electrode and a second conductive electrode, and the driving thin film transistor. And a planarization layer having a receiving hole in which the device is accommodated, wherein the planarization layer is disposed between the substrate and the planarization layer so as to match the height of one surface of the planarization layer with one of the first conductive electrode and the second conductive electrode.
  • the height adjustment layer is formed.
  • the semiconductor light emitting device may have a height higher than that of the planarization layer.
  • the height adjustment layer is formed on the substrate to adjust the distance from the substrate to the upper surface of the planarization layer.
  • the height adjustment layer may serve to reflect light.
  • the height adjustment layer may be provided with a resin, and reflective particles mixed in the resin.
  • an insulating film may be formed on the substrate to cover the driving thin film transistor, and the planarization layer may include photoacryl coated to cover the insulating film.
  • the accommodation hole may penetrate the planarization layer, the insulating layer, and the height adjustment layer, respectively, so that an upper surface of the substrate may form a bottom of the accommodation hole.
  • the planarization layer may be formed of a plurality of layers of the same material.
  • the first conductive semiconductor layer of the semiconductor light emitting device may have a thickness smaller than that of the second conductive semiconductor layer.
  • the thickness of the second conductive semiconductor layer may be greater than the thickness of the planarization layer.
  • the semiconductor light emitting device As the semiconductor light emitting device is disposed in the accommodation hole of the planarization layer, the pixels are separated into partitions. As the semiconductor light emitting device is electrically connected to the wiring in the accommodation hole as described above, the semiconductor light emitting device can be easily aligned, and the display device can be manufactured with high precision.
  • the electrode connection process can be facilitated and the panel yield can be improved.
  • FIG. 1 is a conceptual diagram illustrating an embodiment of a display device using the semiconductor light emitting device of the present invention.
  • FIG. 2 is an enlarged view of a portion A of FIG. 1, and FIGS. 3A and 3B are cross-sectional views taken along the lines B-B and C-C of FIG. 2.
  • FIG. 4 is a conceptual diagram illustrating a flip chip type semiconductor light emitting device of FIG. 3.
  • 5A to 5C are conceptual views illustrating various forms of implementing colors in connection with a flip chip type semiconductor light emitting device.
  • FIG. 6 is a cross-sectional view illustrating a method of manufacturing a display device using the semiconductor light emitting device of the present invention.
  • FIG. 7 is a perspective view showing another embodiment of a display device using the semiconductor light emitting device of the present invention.
  • FIG. 8 is a cross-sectional view taken along the line D-D of FIG. 7.
  • FIG. 9 is a conceptual diagram illustrating the vertical semiconductor light emitting device of FIG. 8.
  • FIG. 10 is a partial perspective view for explaining another embodiment of the present invention.
  • FIG. 11 is a cross-sectional view taken along the line E-E of FIG. 10.
  • FIG. 12 is a circuit diagram for describing a configuration of the pixel illustrated in FIG. 10.
  • the display device described herein includes a mobile phone, a smart phone, a laptop computer, a digital broadcasting terminal, a personal digital assistant (PDA), a portable multimedia player (PMP), navigation, and a slate PC. , Tablet PC, Ultra Book, digital TV, desktop computer.
  • PDA personal digital assistant
  • PMP portable multimedia player
  • slate PC slate PC
  • Tablet PC Ultra Book
  • digital TV desktop computer
  • FIG. 1 is a conceptual diagram illustrating an embodiment of a display device using the semiconductor light emitting device of the present invention.
  • the information processed by the controller of the display apparatus 100 may be displayed using a flexible display.
  • the flexible display includes a display that can be bent, bent, twisted, foldable, or rollable by external force.
  • a flexible display can be a display fabricated on a thin, flexible substrate that can be bent, bent, folded, or rolled like a paper while maintaining the display characteristics of a conventional flat panel display.
  • the display area of the flexible display becomes flat.
  • the display area may be a curved surface in a state in which the first state is bent by an external force (for example, a state having a finite radius of curvature, hereinafter referred to as a second state).
  • the information displayed in the second state may be visual information output on a curved surface.
  • Such visual information is implemented by independently controlling light emission of a sub-pixel disposed in a matrix form.
  • the unit pixel refers to a minimum unit for implementing one color.
  • the unit pixel of the flexible display may be implemented by a semiconductor light emitting device.
  • the present invention exemplifies a light emitting diode (LED) as one type of semiconductor light emitting device for converting current into light.
  • the light emitting diode is formed to have a small size, thereby enabling it to serve as a unit pixel even in the second state.
  • FIG. 2 is a partially enlarged view of a portion A of FIG. 1
  • FIGS. 3A and 3B are cross-sectional views taken along the lines BB and CC of FIG. 2
  • FIG. 4 is a conceptual diagram illustrating a flip chip type semiconductor light emitting device of FIG. 3A.
  • 5A to 5C are conceptual views illustrating various forms of implementing colors in connection with a flip chip type semiconductor light emitting device.
  • a display device 100 using a passive matrix (PM) type semiconductor light emitting device is illustrated as a display device 100 using a semiconductor light emitting device.
  • PM passive matrix
  • AM active matrix
  • the display apparatus 100 includes a substrate 110, a first electrode 120, a conductive adhesive layer 130, a second electrode 140, and a plurality of semiconductor light emitting devices 150.
  • the substrate 110 may be a flexible substrate.
  • the substrate 110 may include glass or polyimide (PI).
  • PI polyimide
  • any material such as polyethylene naphthalate (PEN) or polyethylene terephthalate (PET) may be used as long as it is an insulating and flexible material.
  • the substrate 110 may be either a transparent material or an opaque material.
  • the substrate 110 may be a wiring board on which the first electrode 120 is disposed, and thus the first electrode 120 may be positioned on the substrate 110.
  • the insulating layer 160 may be disposed on the substrate 110 on which the first electrode 120 is disposed, and the auxiliary electrode 170 may be positioned on the insulating layer 160.
  • a state in which the insulating layer 160 is stacked on the substrate 110 may be one wiring board.
  • the insulating layer 160 is made of an insulating and flexible material such as polyimide (PI, Polyimide), PET, and PEN, and can be formed integrally with the substrate 110 to form one substrate.
  • the auxiliary electrode 170 is an electrode that electrically connects the first electrode 120 and the semiconductor light emitting device 150.
  • the auxiliary electrode 170 is disposed on the insulating layer 160 and disposed to correspond to the position of the first electrode 120.
  • the auxiliary electrode 170 may have a dot shape and may be electrically connected to the first electrode 120 by an electrode hole 171 passing through the insulating layer 160.
  • the electrode hole 171 may be formed by filling a via material with a conductive material.
  • the conductive adhesive layer 130 is formed on one surface of the insulating layer 160, but the present invention is not necessarily limited thereto.
  • a layer is formed between the insulating layer 160 and the conductive adhesive layer 130 or a structure in which the conductive adhesive layer 130 is disposed on the substrate 110 without the insulating layer 160. It is also possible.
  • the conductive adhesive layer 130 may serve as an insulating layer.
  • the conductive adhesive layer 130 may be a layer having adhesiveness and conductivity.
  • the conductive adhesive layer 130 may be mixed with a conductive material and an adhesive material.
  • the conductive adhesive layer 130 is flexible, thereby enabling a flexible function in the display device.
  • the conductive adhesive layer 130 may be an anisotropic conductive film (ACF), an anisotropic conductive paste, a solution containing conductive particles, or the like.
  • ACF anisotropic conductive film
  • the conductive adhesive layer 130 allows electrical interconnection in the Z direction through the thickness, but may be configured as a layer having electrical insulation in the horizontal X-Y direction. Therefore, the conductive adhesive layer 130 may be referred to as a Z-axis conductive layer (however, hereinafter referred to as a 'conductive adhesive layer').
  • the anisotropic conductive film is a film in which an anisotropic conductive medium is mixed with an insulating base member. When the heat and pressure are applied, only the specific portion is conductive by the anisotropic conductive medium.
  • the heat and pressure is applied to the anisotropic conductive film, other methods are possible in order for the anisotropic conductive film to be partially conductive. Such a method can be, for example, only one of the heat and pressure applied or UV curing or the like.
  • the anisotropic conductive medium may be, for example, conductive balls or conductive particles.
  • the anisotropic conductive film in this example is a film in which the conductive ball is mixed with the insulating base member, and only a specific portion of the conductive ball is conductive when heat and pressure are applied.
  • the anisotropic conductive film may be in a state in which a core of a conductive material contains a plurality of particles coated by an insulating film made of a polymer material, and in this case, a portion to which heat and pressure are applied becomes conductive by the core as the insulating film is destroyed. .
  • the shape of the core may be deformed to form a layer in contact with each other in the thickness direction of the film.
  • heat and pressure are applied to the anisotropic conductive film as a whole, and the electrical connection in the Z-axis direction is partially formed by the height difference of the counterpart bonded by the anisotropic conductive film.
  • the anisotropic conductive film may be in a state containing a plurality of particles coated with a conductive material on the insulating core.
  • the portion to which the heat and pressure are applied is deformed (pressed) to have conductivity in the thickness direction of the film.
  • the conductive material may penetrate the insulating base member in the Z-axis direction and have conductivity in the thickness direction of the film. In this case, the conductive material may have a pointed end.
  • the anisotropic conductive film may be a fixed array anisotropic conductive film (fixed array ACF) consisting of a conductive ball inserted into one surface of the insulating base member.
  • the insulating base member is formed of an adhesive material, and the conductive ball is concentrated on the bottom portion of the insulating base member, and deforms with the conductive ball when heat and pressure are applied to the base member. Therefore, it has conductivity in the vertical direction.
  • the present invention is not necessarily limited thereto, and the anisotropic conductive film has a form in which conductive balls are randomly mixed in an insulating base member or a plurality of layers, in which a conductive ball is disposed in one layer (double- ACF) etc. are all possible.
  • the anisotropic conductive paste is a combination of a paste and a conductive ball, and may be a paste in which conductive balls are mixed with an insulating and adhesive base material.
  • solutions containing conductive particles can be solutions in the form of conductive particles or nanoparticles.
  • the second electrode 140 is positioned on the insulating layer 160 spaced apart from the auxiliary electrode 170. That is, the conductive adhesive layer 130 is disposed on the insulating layer 160 on which the auxiliary electrode 170 and the second electrode 140 are located.
  • the semiconductor light emitting device 150 is connected in a flip chip form by applying heat and pressure. In this case, the semiconductor light emitting device 150 is electrically connected to the first electrode 120 and the second electrode 140.
  • the semiconductor light emitting device may be a flip chip type light emitting device.
  • the semiconductor light emitting device may include a p-type electrode 156, a p-type semiconductor layer 155 on which the p-type electrode 156 is formed, an active layer 154 formed on the p-type semiconductor layer 155, and an active layer ( The n-type semiconductor layer 153 formed on the 154 and the n-type electrode 152 disposed horizontally spaced apart from the p-type electrode 156 on the n-type semiconductor layer 153.
  • the p-type electrode 156 may be electrically connected to the auxiliary electrode 170 by the conductive adhesive layer 130, and the n-type electrode 152 may be electrically connected to the second electrode 140.
  • the auxiliary electrode 170 may be formed to be long in one direction, and one auxiliary electrode may be electrically connected to the plurality of semiconductor light emitting devices 150.
  • the p-type electrodes of the left and right semiconductor light emitting devices around the auxiliary electrode may be electrically connected to one auxiliary electrode.
  • the semiconductor light emitting device 150 is press-fitted into the conductive adhesive layer 130 by heat and pressure, through which the p-type electrode 156 and the auxiliary electrode 170 of the semiconductor light emitting device 150 are pressed. Only the portion and the portion between the n-type electrode 152 and the second electrode 140 of the semiconductor light emitting device 150 have conductivity, and the rest of the semiconductor light emitting device does not have a conductivity because there is no indentation. As such, the conductive adhesive layer 130 not only couples the semiconductor light emitting device 150 and the auxiliary electrode 170 and between the semiconductor light emitting device 150 and the second electrode 140 but also forms an electrical connection.
  • the plurality of semiconductor light emitting devices 150 constitute an array of light emitting devices, and a phosphor layer 180 is formed on the light emitting device array.
  • the light emitting device array may include a plurality of semiconductor light emitting devices having different luminance values.
  • Each semiconductor light emitting device 150 constitutes a unit pixel and is electrically connected to the first electrode 120.
  • a plurality of first electrodes 120 may be provided, the semiconductor light emitting devices may be arranged in a few rows, and the semiconductor light emitting devices may be electrically connected to any one of the plurality of first electrodes.
  • semiconductor light emitting devices are connected in a flip chip form, semiconductor light emitting devices grown on a transparent dielectric substrate may be used.
  • the semiconductor light emitting devices may be, for example, nitride semiconductor light emitting devices. Since the semiconductor light emitting device 150 has excellent brightness, individual unit pixels may be configured with a small size.
  • the partition wall 190 may be formed between the semiconductor light emitting devices 150.
  • the partition wall 190 may serve to separate the individual unit pixels from each other, and may be integrally formed with the conductive adhesive layer 130.
  • the base member of the anisotropic conductive film may form the partition wall.
  • the partition 190 may have reflective properties and contrast may be increased.
  • a reflective partition may be separately provided as the partition 190.
  • the partition 190 may include a black or white insulator according to the purpose of the display device.
  • the partition wall of the white insulator is used, the reflectivity may be improved, and when the partition wall of the black insulator is used, the contrast may be increased at the same time.
  • the phosphor layer 180 may be located on the outer surface of the semiconductor light emitting device 150.
  • the semiconductor light emitting device 150 is a blue semiconductor light emitting device that emits blue (B) light, and the phosphor layer 180 performs a function of converting the blue (B) light into the color of a unit pixel.
  • the phosphor layer 180 may be a red phosphor 181 or a green phosphor 182 constituting individual pixels.
  • a red phosphor 181 capable of converting blue light into red (R) light may be stacked on the blue semiconductor light emitting device 151 at a position forming a red unit pixel, and a position forming a green unit pixel.
  • a green phosphor 182 capable of converting blue light into green (G) light may be stacked on the blue semiconductor light emitting device 151.
  • only the blue semiconductor light emitting device 151 may be used alone in a portion of the blue unit pixel.
  • the unit pixels of red (R), green (G), and blue (B) may form one pixel. More specifically, phosphors of one color may be stacked along each line of the first electrode 120. Therefore, one line in the first electrode 120 may be an electrode for controlling one color. That is, red (R), green (G), and blue (B) may be sequentially disposed along the second electrode 140, and thus, a unit pixel may be implemented.
  • the present invention is not limited thereto, and instead of the phosphor, the semiconductor light emitting device 150 and the quantum dot QD may be combined to implement unit pixels of red (R), green (G), and blue (B). have.
  • a black matrix 191 may be disposed between the respective phosphor layers in order to improve contrast. That is, the black matrix 191 may improve contrast of the contrast.
  • the present invention is not necessarily limited thereto, and other structures for implementing blue, red, and green may be applied.
  • each semiconductor light emitting device 150 is mainly made of gallium nitride (GaN), and indium (In) and / or aluminum (Al) is added together to emit high light including blue. It can be implemented as an element.
  • the semiconductor light emitting devices 150 may be red, green, and blue semiconductor light emitting devices, respectively, to form a sub-pixel.
  • red, green, and blue semiconductor light emitting devices R, G, and B are alternately disposed, and red, green, and blue unit pixels are formed by red, green, and blue semiconductor light emitting devices. These pixels constitute one pixel, and thus, a full color display may be implemented.
  • the semiconductor light emitting device may include a white light emitting device W having a yellow phosphor layer for each individual device.
  • a red phosphor layer 181, a green phosphor layer 182, and a blue phosphor layer 183 may be provided on the white light emitting device W.
  • a unit pixel may be formed by using a color filter in which red, green, and blue are repeated on the white light emitting device W.
  • the red phosphor layer 181, the green phosphor layer 182, and the blue phosphor layer 183 may be provided on the ultraviolet light emitting device UV.
  • the semiconductor light emitting device can be used not only for visible light but also for ultraviolet light (UV) in all areas, and can be extended in the form of a semiconductor light emitting device in which ultraviolet light (UV) can be used as an excitation source of the upper phosphor. .
  • the semiconductor light emitting device 150 is positioned on the conductive adhesive layer 130 to constitute a unit pixel in the display device. Since the semiconductor light emitting device 150 has excellent brightness, individual unit pixels may be configured with a small size.
  • the size of the individual semiconductor light emitting device 150 may be 80 ⁇ m or less in length of one side, and may be a rectangular or square device. In the case of a rectangle, the size may be 20 ⁇ 80 ⁇ m or less.
  • a square semiconductor light emitting device 150 having a side length of 10 ⁇ m is used as a unit pixel, sufficient brightness for forming a display device appears. Therefore, for example, when the size of the unit pixel is a rectangular pixel in which one side is 600 ⁇ m and the other side is 300 ⁇ m, the distance of the semiconductor light emitting device is relatively large. Therefore, in this case, it is possible to implement a flexible display device having an HD image quality.
  • the display device using the semiconductor light emitting device described above may be manufactured by a new type of manufacturing method. Hereinafter, the manufacturing method will be described with reference to FIG. 6.
  • FIG. 6 is a cross-sectional view illustrating a method of manufacturing a display device using the semiconductor light emitting device of the present invention.
  • the conductive adhesive layer 130 is formed on the insulating layer 160 on which the auxiliary electrode 170 and the second electrode 140 are located.
  • the insulating layer 160 is stacked on the first substrate 110 to form a single substrate (or a wiring substrate), and the first electrode 120, the auxiliary electrode 170, and the second electrode 140 are formed on the wiring substrate. Is placed.
  • the first electrode 120 and the second electrode 140 may be disposed in a direction perpendicular to each other.
  • the first substrate 110 and the insulating layer 160 may each include glass or polyimide (PI).
  • the conductive adhesive layer 130 may be implemented by, for example, an anisotropic conductive film.
  • an anisotropic conductive film may be applied to a substrate on which the insulating layer 160 is located.
  • the semiconductor light emitting device 150 may include a second substrate 112 corresponding to the positions of the auxiliary electrodes 170 and the second electrodes 140 and on which the plurality of semiconductor light emitting devices 150 constituting individual pixels are located. ) Is disposed to face the auxiliary electrode 170 and the second electrode 140.
  • the second substrate 112 may be a growth substrate for growing the semiconductor light emitting device 150, and may be a sapphire substrate or a silicon substrate.
  • the semiconductor light emitting device When the semiconductor light emitting device is formed in a wafer unit, the semiconductor light emitting device may be effectively used in the display device by having a gap and a size capable of forming the display device.
  • the wiring board and the second board 112 are thermocompressed.
  • the wiring board and the second substrate 112 may be thermocompressed by applying an ACF press head.
  • the thermocompression bonding the wiring substrate and the second substrate 112 are bonded. Only the portion between the semiconductor light emitting device 150, the auxiliary electrode 170, and the second electrode 140 has conductivity due to the property of the conductive anisotropic conductive film by thermocompression bonding.
  • the device 150 may be electrically connected.
  • the semiconductor light emitting device 150 is inserted into the anisotropic conductive film, through which a partition wall may be formed between the semiconductor light emitting device 150.
  • the second substrate 112 is removed.
  • the second substrate 112 may be removed using a laser lift-off (LLO) or chemical lift-off (CLO).
  • LLO laser lift-off
  • CLO chemical lift-off
  • a transparent insulating layer (not shown) may be formed by coating silicon oxide (SiOx) on the wiring board to which the semiconductor light emitting device 150 is coupled.
  • the method may further include forming a phosphor layer on one surface of the semiconductor light emitting device 150.
  • the semiconductor light emitting device 150 is a blue semiconductor light emitting device that emits blue (B) light, and a red phosphor or a green phosphor for converting the blue (B) light into the color of a unit pixel emits the blue semiconductor light.
  • a layer may be formed on one surface of the device.
  • the manufacturing method or structure of the display device using the semiconductor light emitting device described above may be modified in various forms.
  • a vertical semiconductor light emitting device may also be applied to the display device described above.
  • a vertical structure will be described with reference to FIGS. 5 and 6.
  • FIG. 7 is a perspective view illustrating another embodiment of a display device using the semiconductor light emitting device of the present invention
  • FIG. 8 is a cross-sectional view taken along the line DD of FIG. 7
  • FIG. 9 is a conceptual view illustrating the vertical semiconductor light emitting device of FIG. 8. to be.
  • the display device may be a display device using a passive semiconductor light emitting device of a passive matrix (PM) type.
  • PM passive matrix
  • the display device includes a substrate 210, a first electrode 220, a conductive adhesive layer 230, a second electrode 240, and a plurality of semiconductor light emitting devices 250.
  • the substrate 210 is a wiring substrate on which the first electrode 220 is disposed, and may include polyimide (PI) in order to implement a flexible display device.
  • PI polyimide
  • any material that is insulating and flexible may be used.
  • the first electrode 220 is positioned on the substrate 210 and may be formed as an electrode having a bar shape that is long in one direction.
  • the first electrode 220 may be formed to serve as a data electrode.
  • the conductive adhesive layer 230 is formed on the substrate 210 on which the first electrode 220 is located. Like a display device to which a flip chip type light emitting device is applied, the conductive adhesive layer 230 is a solution containing an anisotropic conductive film (ACF), anisotropic conductive paste, and conductive particles. ), Etc. However, this embodiment also illustrates a case where the conductive adhesive layer 230 is implemented by the anisotropic conductive film.
  • ACF anisotropic conductive film
  • Etc Etc
  • the semiconductor light emitting device 250 After placing the anisotropic conductive film in a state where the first electrode 220 is positioned on the substrate 210, the semiconductor light emitting device 250 is connected to the semiconductor light emitting device 250 by applying heat and pressure. It is electrically connected to the electrode 220. In this case, the semiconductor light emitting device 250 may be disposed on the first electrode 220.
  • the electrical connection is created because, as described above, in the anisotropic conductive film is partially conductive in the thickness direction when heat and pressure are applied. Therefore, in the anisotropic conductive film is divided into a portion 231 having conductivity and a portion 232 having no conductivity in the thickness direction.
  • the conductive adhesive layer 230 implements not only electrical connection but also mechanical coupling between the semiconductor light emitting device 250 and the first electrode 220.
  • the semiconductor light emitting device 250 is positioned on the conductive adhesive layer 230, thereby forming individual pixels in the display device. Since the semiconductor light emitting device 250 has excellent brightness, individual unit pixels may be configured with a small size.
  • the size of the individual semiconductor light emitting device 250 may be 80 ⁇ m or less in length of one side, and may be a rectangular or square element. In the case of a rectangle, the size may be 20 ⁇ 80 ⁇ m or less.
  • the semiconductor light emitting device 250 may have a vertical structure.
  • a plurality of second electrodes 240 disposed in a direction crossing the length direction of the first electrode 220 and electrically connected to the vertical semiconductor light emitting device 250 are positioned.
  • the vertical semiconductor light emitting device includes a p-type electrode 256, a p-type semiconductor layer 255 formed on the p-type electrode 256, and an active layer 254 formed on the p-type semiconductor layer 255. ), An n-type semiconductor layer 253 formed on the active layer 254, and an n-type electrode 252 formed on the n-type semiconductor layer 253.
  • the lower p-type electrode 256 may be electrically connected by the first electrode 220 and the conductive adhesive layer 230, and the upper n-type electrode 252 may be the second electrode 240 described later.
  • a phosphor layer 280 may be formed on one surface of the semiconductor light emitting device 250.
  • the semiconductor light emitting device 250 is a blue semiconductor light emitting device 251 that emits blue (B) light
  • the phosphor layer 280 is provided to convert the blue (B) light into the color of a unit pixel.
  • the phosphor layer 280 may be a red phosphor 281 and a green phosphor 282 constituting individual pixels.
  • a red phosphor 281 capable of converting the blue light into the red (R) light may be stacked on the blue semiconductor light emitting element 251, and the position forming the green unit pixel.
  • a green phosphor 282 capable of converting blue light into green (G) light may be stacked on the blue semiconductor light emitting device 251.
  • only the blue semiconductor light emitting device 251 may be used alone in a portion of the blue unit pixel. In this case, the unit pixels of red (R), green (G), and blue (B) may form one pixel.
  • the present invention is not necessarily limited thereto, and as described above in the display device to which the flip chip type light emitting device is applied, other structures for implementing blue, red, and green may be applied.
  • the second electrode 240 is positioned between the semiconductor light emitting devices 250 and is electrically connected to the semiconductor light emitting devices 250.
  • the semiconductor light emitting devices 250 may be arranged in a plurality of rows, and the second electrode 240 may be positioned between the columns of the semiconductor light emitting devices 250.
  • the second electrode 240 may be positioned between the semiconductor light emitting devices 250.
  • the second electrode 240 may be formed as an electrode having a bar shape that is long in one direction, and may be disposed in a direction perpendicular to the first electrode.
  • the second electrode 240 and the semiconductor light emitting device 250 may be electrically connected by a connection electrode protruding from the second electrode 240.
  • the connection electrode may be an n-type electrode of the semiconductor light emitting device 250.
  • the n-type electrode is formed of an ohmic electrode for ohmic contact, and the second electrode covers at least a portion of the ohmic electrode by printing or deposition.
  • the second electrode 240 and the n-type electrode of the semiconductor light emitting device 250 may be electrically connected to each other.
  • the second electrode 240 may be positioned on the conductive adhesive layer 230.
  • a transparent insulating layer (not shown) including silicon oxide (SiOx) may be formed on the substrate 210 on which the semiconductor light emitting device 250 is formed.
  • SiOx silicon oxide
  • the second electrode 240 is positioned after the transparent insulating layer is formed, the second electrode 240 is positioned on the transparent insulating layer.
  • the second electrode 240 may be formed to be spaced apart from the conductive adhesive layer 230 or the transparent insulating layer.
  • the present invention has the advantage of not having to use a transparent electrode such as ITO by placing the second electrode 240 between the semiconductor light emitting devices 250. Therefore, the light extraction efficiency can be improved by using a conductive material having good adhesion with the n-type semiconductor layer as a horizontal electrode without being limited to the selection of a transparent material.
  • a transparent electrode such as indium tin oxide (ITO)
  • the partition wall 290 may be located between the semiconductor light emitting devices 250. That is, the partition wall 290 may be disposed between the vertical semiconductor light emitting devices 250 to isolate the semiconductor light emitting devices 250 forming individual pixels. In this case, the partition wall 290 may serve to separate individual unit pixels from each other, and may be integrally formed with the conductive adhesive layer 230. For example, as the semiconductor light emitting device 250 is inserted into the anisotropic conductive film, the base member of the anisotropic conductive film may form the partition wall.
  • the partition wall 290 may have reflective properties and contrast may be increased.
  • a reflective partition may be separately provided.
  • the partition 290 may include a black or white insulator according to the purpose of the display device.
  • the partition wall 290 is disposed between the vertical semiconductor light emitting device 250 and the second electrode 240. It can be located in between. Accordingly, the individual unit pixels may be configured even with a small size by using the semiconductor light emitting device 250, and the distance between the semiconductor light emitting devices 250 is relatively large enough so that the second electrode 240 is connected to the semiconductor light emitting device 250. ), And a flexible display device having HD image quality can be implemented.
  • a black matrix 291 may be disposed between the respective phosphors in order to improve contrast. That is, this black matrix 291 can improve contrast of the contrast.
  • the semiconductor light emitting device 250 is positioned on the conductive adhesive layer 230, thereby forming individual pixels in the display device. Since the semiconductor light emitting device 250 has excellent brightness, individual unit pixels may be configured with a small size. Accordingly, a full color display in which the unit pixels of red (R), green (G), and blue (B) form one pixel may be implemented by the semiconductor light emitting device.
  • the semiconductor light emitting device grown on the growth substrate is transferred to the wiring board using an anisotropic conductive film (ACF).
  • ACF anisotropic conductive film
  • a pixel structure for a display based on a small blue light emitting diode based on a new size of several to several tens of micrometers is proposed. Suggest.
  • a display device is provided in which the process is simplified.
  • FIG. 10 is a partial perspective view illustrating another embodiment of the present invention
  • FIG. 11 is a cross-sectional view taken along the line E-E of FIG. 10
  • FIG. 12 is a circuit diagram for explaining the configuration of the pixel illustrated in FIG. 10.
  • a display device 1000 using a semiconductor light emitting device of an active matrix (AM) type is illustrated as a display device 1000 using a semiconductor light emitting device.
  • AM active matrix
  • PM passive matrix
  • the display apparatus 1000 using the semiconductor light emitting element of the active matrix is illustrated as the display apparatus 1000 using the semiconductor light emitting element.
  • the display apparatus 1000 includes a substrate 1010 and a plurality of semiconductor light emitting devices 1050.
  • the substrate 1010 is a thin film transistor array substrate and may be made of glass or plastic material.
  • the substrate may include a display area and a non-display area.
  • the display area may be defined as an area in which the pixel array for displaying an image is disposed as the remaining part except for the edge of the substrate 1010.
  • the non-display area is provided in the remaining portion of the substrate 1010 except for the display area, and may be defined as an edge portion of the substrate 1010 surrounding the display area.
  • the substrate 1010 includes a plurality of gate lines GL, a plurality of data lines DL, a plurality of driving power lines PL, a plurality of common power lines CL, and a plurality of pixels SP. can do.
  • Each of the plurality of gate lines GL is provided on the substrate 1010, extends in one direction of the substrate 1010, and is spaced at regular intervals along the other direction crossing the one direction.
  • the plurality of data lines DL are provided on the substrate 1010 to intersect the plurality of gate lines GL.
  • the plurality of data lines DL extend in the other direction and are spaced at regular intervals in the one direction.
  • the plurality of driving power lines PL may be disposed in parallel with each of the plurality of data lines DL and may be formed together with each of the plurality of data lines DL. Each of the plurality of driving power lines PL supplies the pixel driving power supplied from the outside to the adjacent pixel SP.
  • the plurality of common power lines CL is provided on the substrate 1010 to be parallel to each of the plurality of gate lines GL, and may be formed together with each of the plurality of gate lines GL.
  • Each of the plurality of common power lines CL supplies common power supplied from the outside to the adjacent pixel SP.
  • Each of the plurality of pixels SP is provided in a pixel area defined by the gate line GL and the data line DL.
  • Each of the plurality of pixels SP may be defined as a sub pixel as an area of a minimum unit where actual light is emitted.
  • the sub-pixel includes one semiconductor light emitting device as a region of a minimum unit where actual light is emitted.
  • At least three adjacent pixels may constitute one unit pixel for color display.
  • one unit pixel includes adjacent red pixels, green pixels, and blue pixels, and may further include white pixels for improving luminance.
  • the plurality of semiconductor light emitting devices 1050 may have a structure described above with reference to FIG. 4, and mainly include gallium nitride (GaN), and indium (In) and / or aluminum (Al) may be added together to form a blue color. It can be implemented as a high power light emitting device for emitting light.
  • the plurality of semiconductor light emitting devices 1050 may be gallium nitride thin films formed in various layers such as n-Gan, p-Gan, AlGaN, and InGan.
  • the present invention is not necessarily limited thereto, and the plurality of semiconductor light emitting devices may be implemented as light emitting devices emitting green light.
  • the semiconductor light emitting device may be a micro light emitting diode chip.
  • the micro LED chip may have a cross-sectional area smaller than the size of the light emitting area in the sub pixel, and as an example, may have a scale of 1 to 100 micrometers.
  • the semiconductor light emitting device is disposed on the first conductive semiconductor layer 1155 and the first conductive semiconductor layer 1155 on which the first conductive electrode 1156 and the first conductive electrode 1156 are formed.
  • the second conductive electrode is disposed on one surface of the second conductive semiconductor layer 1153, and an undoped semiconductor layer 1153a is disposed on the other surface of the second conductive semiconductor layer 1153. ) May be formed.
  • first conductive electrode 1156 and the first conductive semiconductor layer 1155 may be p-type electrodes and p-type semiconductor layers, respectively, and the second conductive electrode 1152 and the second conductive type may be used.
  • the semiconductor layer 1153 may be an n-type electrode and an n-type semiconductor layer, respectively.
  • the present invention is not necessarily limited thereto, and an example in which the first conductive type is n-type and the second conductive type is p-type is also possible.
  • Example According to, intrinsic or Doped Injecting impurities into the semiconductor substrate, the first conductive type and the second conductive type Semiconductor layer Can be formed.
  • the region where the p-n junction is formed by the impurity implantation may play the same role as the active layer.
  • First conductivity type described below Semiconductor layer , 2nd Challenge Semiconductor layer And The enumeration for the active layer The present invention is illustrative only and is not limited thereto.
  • a planarization layer 1060 may be formed on one surface of the substrate 1010 to cover the substrate and include a receiving hole 1061 in which the semiconductor light emitting element is accommodated.
  • the planarization layer 1060 functions as a protective film for covering the substrate and to cover a wiring electrode to form a plane, and is made of an insulating material.
  • the planarization layer 1060 may include a photoresist, an optical polymer material, other industrial plastic materials, and the like.
  • the accommodation hole 1061 may be provided in each of the plurality of pixels.
  • the accommodation hole 1061 is provided in the emission area defined in the sub-pixel to accommodate the semiconductor light emitting device 1050.
  • Each of the plurality of semiconductor light emitting devices 1050 is connected to the pixel circuit PC of the corresponding pixel SP to be proportional to the current flowing from the pixel circuit PC, that is, the driving thin film transistor T2 to the common power line CL. It emits light with brightness.
  • the planarization layer 1060 may be formed to cover the driving thin film transistor T2, and the accommodation hole 1061 may be concave from the planarization layer 1060.
  • the accommodation hole 1061 is recessed toward the substrate from an upper surface of the planarization layer 1060.
  • the accommodation hole 1061 may have a cup shape having a size wider than that of the semiconductor light emitting device 1050.
  • the accommodation hole 1061 may be concave in the planarization layer 1060 to have a depth larger than the thickness (or overall height) of the semiconductor light emitting device 1050.
  • the first conductive electrodes of the plurality of semiconductor light emitting devices 1050 are connected to the source electrode of the driving thin film transistor T2 through the first contact hole CH1, and the second conductive electrode is connected to the second contact. It is connected to the common power line CL through the hole CH2.
  • the semiconductor light emitting device 1050 is accommodated in the receiving hole 1061 recessed in the light emitting region of the pixel, and the electrodes of the semiconductor light emitting device 1050 are connected to the pixel circuit through the contact holes CH1 and CH2.
  • the connection process of the semiconductor light emitting device 1050 may be simplified by being connected to the driving thin film transistor.
  • the driving thin film transistor T2 includes a gate electrode GE, a semiconductor layer SCL, an ohmic contact layer OCL, a source electrode SE, and a drain electrode DE.
  • the gate electrode GE is formed on the substrate 2010 together with the gate line GL.
  • the gate electrode GE is covered by the gate insulating layer 1112.
  • the gate insulating layer 1112 may be formed of a single layer or a plurality of layers made of an inorganic material, and may be formed of silicon oxide (SiOx), silicon nitride (SiNx), or the like.
  • the semiconductor layer SCL is provided in a pattern (or island) form on the gate insulating layer 2112 so as to overlap with the gate electrode GE.
  • the semiconductor layer SCL may be formed of a semiconductor material including any one of amorphous silicon, polycrystalline silicon, oxide, and organic material, but is not limited thereto.
  • the ohmic contact layer OCL is provided in a pattern (or island) form in advance on the semiconductor layer SCL.
  • the ohmic contact layer PCL is for ohmic contact between the semiconductor layer SCL and the source / drain electrodes SE and DE and may be omitted.
  • the source electrode SE is formed on the other side of the ohmic contact layer OCL to overlap one side of the semiconductor layer SCL.
  • the source electrode SE is formed together with a data line (not shown), and branches or protrudes from an adjacent data line.
  • the drain electrode DE is formed on the other side of the ohmic contact layer OCL to be spaced apart from the source electrode SE while overlapping the other side of the semiconductor layer SCL.
  • the drain electrode DE is formed together with the data line and the source electrode SE.
  • the interlayer insulating layer 1114 is formed on the top surface of the substrate 1010 to cover the pixel circuit including the driving thin film transistor T2.
  • the interlayer insulating layer 1114 may be made of an inorganic material such as silicon oxide (SiOx), silicon nitride (SiNx), or an organic material such as benzocyclobutene or photo acryl.
  • the planarization layer 1060 is formed on the top surface of the substrate 1010 to cover the interlayer insulating layer 1114.
  • the planarization layer 1060 provides a flat surface on the interlayer insulating layer 1114 while protecting the pixel circuit including the driving thin film transistor T2.
  • the planarization layer 1060 according to an embodiment may be made of an organic material such as benzocyclobutene or photo acryl.
  • the thickness of the second conductive semiconductor layer 1153 is about 3 micrometers in one coating and the height of the semiconductor light emitting device is about 5 to 10 micrometers. It may be formed larger than the thickness of the layer 1060. In this case, the first conductive semiconductor layer 1155 of the semiconductor light emitting device may have a smaller thickness than the second conductive semiconductor layer 1153.
  • the bottom surface of the accommodation hole 1061 may be located in the planarization layer 1060, the interlayer insulating layer 1114, or the gate insulating layer 1112 according to the thickness of the semiconductor light emitting device 1050. Further, the accommodation hole 2061 may be formed by removing all of the gate insulating layer 1112, the interlayer insulating layer 1114, and the planarization layer 1060 overlapping the light emitting regions of the sub-pixels.
  • the receiving hole 1061 may have a cup shape having a size larger than that of the semiconductor light emitting device 1050.
  • the first conductive electrode 1156 and the second conductive electrode 1152 of the semiconductor light emitting device 1050 are spaced apart from the bottom of the accommodation hole 1061.
  • the first conductive electrode 1156 is connected to the source electrode SE of the driving thin film transistor T2
  • the second conductive electrode 1152 is connected to the common power line CL.
  • the semiconductor light emitting device is formed to have a height higher than that of the planarization layer 1060.
  • the first conductive electrode 1156 and the second conductive electrode 1152 may have a height difference with respect to the second conductive semiconductor layer 1153.
  • the height adjustment layer 1070 is formed.
  • the height adjustment layer 1070 may be formed of a polymer and oxide or nitrogen oxide.
  • the conductive electrode at a relatively lower position among the first conductive electrode 1156 and the second conductive electrode 1152 may be positioned on the same horizontal line as the top surface of the planarization layer 1060.
  • the height adjustment layer 1070 is formed on the substrate to adjust the distance from the substrate to the top surface of the planarization layer 1060.
  • the step is removed between the transferred semiconductor light emitting device and the planarization layer through the height adjustment layer, thereby facilitating an electrode connection process.
  • the accommodating hole 1061 penetrates the height adjusting layer 1070 in addition to the planarization layer 1060 and the insulating layer 1112 so that the upper surface of the substrate forms the bottom of the accommodating hole 1061. . Therefore, the accommodation hole 1061 may be a blocked hole.
  • the semiconductor light emitting device is attached to an upper surface of the substrate 1010 in the accommodation hole 1061.
  • each of the plurality of sub pixels may include a pixel electrode pattern AE and a common electrode pattern CE.
  • the pixel electrode pattern AE electrically connects the source electrode SE of the driving thin film transistor T2 and the first conductive electrode 1156 of the semiconductor light emitting device 1050.
  • the pixel electrode pattern AE according to an example extends to the driving thin film transistor T2 through the first contact hole CH1 provided in the planarization layer 1060, and is connected to the source electrode SE and thus the semiconductor light emitting device 1050. Is connected to the first conductive electrode 1156 of FIG.
  • the common electrode pattern CE electrically connects the common power line CL and the second conductive electrode 1152 of the semiconductor light emitting device 1050.
  • the pixel electrode pattern AE according to an example extends to the thin film transistor T2 through the second contact hole CH2 provided in the planarization layer 1060 and is connected to the common power line CL to form the semiconductor light emitting device 1050. Is connected to the second conductive electrode 1152 of.
  • Each of the pixel electrode pattern AE and the common electrode pattern CE may be made of a transparent conductive material.
  • the transparent conductive material may be made of a material such as indium tin oxide (ITO) or indium zinc oxide (IZO), but is not limited thereto.
  • the substrate 1010 further includes an adhesive layer 1120 to fix the semiconductor light emitting device 2050 to the accommodation hole 1061.
  • the adhesive layer 1120 is interposed between the semiconductor light emitting device 1050 and the bottom surface of the accommodation hole 1061 to attach the semiconductor light emitting device 1050 to the bottom surface of the accommodation hole 1061.
  • the adhesive layer 1120 may be formed of a material having light transmittance and adhesiveness. Since the adhesive layer is light transmissive, light emitted from the semiconductor light emitting element it can be emitted to the bottom of the semiconductor light emitting device.
  • the substrate 1010 may further include a filler 1117 filled around the semiconductor light emitting device 1050 disposed in the accommodation hole 1061.
  • the filler 1117 is filled in the peripheral space of the accommodating hole 1061 to which the semiconductor light emitting device 1050 is attached.
  • the filler 1117 may be made of a thermosetting resin or a photocurable resin.
  • the filler 1117 is filled in the peripheral space of the accommodating hole 1061 and then cured to flatten the upper surface of the peripheral space of the accommodating hole 1061 while removing the air gap in the accommodating hole 1061.
  • the filler 1117 may support passivation of the semiconductor light emitting device while supporting each of the pixel electrode pattern AE and the common electrode pattern CE.
  • an encapsulation layer 1080 covering the top surface of the substrate 1010 may be provided.
  • the encapsulation layer 1080 is coated on an upper surface of the substrate 1010 to cover the pixel SP and the light emitting device 1050, thereby protecting the pixel SP and the light emitting device 1050 provided on the substrate 1010. .
  • the encapsulation layer 1080 may be made of heat and / or photocurable resin and coated on the upper surface of the substrate 1010 in a liquid state, and then may be cured by a curing process using heat and / or light.
  • the encapsulation layer 1080 may be replaced with a phosphor layer.
  • the phosphor layer may include a first phosphor portion disposed at a position forming a red pixel and a second phosphor portion disposed at a position forming a green pixel.
  • each of the first phosphor portion and the second phosphor portion may be provided with a red phosphor and a green phosphor capable of converting blue light of a blue semiconductor light emitting element into red light or green light.
  • a light transmissive material that does not convert colors may be disposed at a position forming a blue pixel.
  • the light transmissive material is a material having high transmittance in the visible light region, and for example, an epoxy-based PR (photoresist), PDMS (polydimethylsiloxane), resin, or the like may be used.
  • the first phosphor portion and the second phosphor portion may be provided with a yellow phosphor capable of converting blue light of the blue semiconductor light emitting device into yellow light or white light.
  • yellow light or white light can be converted into red, green and blue while passing through the color filter.
  • the black matrix BM and the color filter layer CF may be disposed on the encapsulation layer 1080 or the phosphor layer.
  • the black matrix BM defines an opening area overlapping the light emitting area of each pixel SP provided in the substrate 1010. That is, the black matrix BM is provided in the remaining areas except the opening area overlapping the light emitting area of each pixel SP to prevent color mixing between adjacent opening areas.
  • the color filter layer CF may be disposed in the opening region.
  • red or green may be implemented in the color filter layer CF. have.
  • the color filter layer CF may have a structure in which portions filtering the red wavelength, the green wavelength, and the blue wavelength are sequentially disposed in each sub-pixel.
  • the color filter layer CF may be disposed in the opening area irrespective of the color of the emitted light to improve the color purity of the output light.
  • the color filter layer CF may be replaced by a light extraction layer.
  • the light extraction layer is made of a transparent material and serves to extract light emitted from the light emitting device 1050 to the outside.
  • the opposing surface of the light extraction layer facing the light emitting device 1050 may have a lens shape for increasing the straightness of the light emitted from the light emitting device 1050.
  • the display device According to the display device according to the present invention exemplified above, alignment of the semiconductor light emitting device is facilitated by electrically connecting the semiconductor light emitting device to the wiring in the accommodation hole, and through the height adjusting layer, By eliminating or reducing the height difference between the planarization layers, the electrode connection can be made simple.
  • the height adjustment layer may include a plurality of layers 2071 and 2072 of different materials.
  • any one of the layers 2071 and 2072 may be implemented as a mirror layer that reflects light.
  • the height adjustment layer may include a first layer 2071 stacked on the substrate and a second layer 2072 stacked on the first layer 2071.
  • the first layer 2071 and the second layer 2082 may be formed of different materials.
  • the first layer 2071 is a layer disposed on the substrate 2010 and has an adhesive force to which the substrate 2010 is attached.
  • the first layer 2071 may include a resin 2071a and reflective particles 2071b mixed into the resin 2071a.
  • the first layer 2071 includes the reflective particles 2071b to reflect the light emitted from the semiconductor light emitting devices 2050.
  • the reflective particles 2071b may include at least one of titanium oxide, alumina, magnesium oxide, antimony oxide, zirconium oxide, and silica as white pigments.
  • the resin 2071a may be formed of a material having good adhesion or adhesiveness and fluidity.
  • the second layer may be a layer stacked on the first layer 2071, and may be a layer in which the reflective particles are not disposed.
  • the second function of the second layer 2072 is to improve the filling or adhesion due to the unevenness of the electrode in the wiring board rather than the reflective effect, so that the reflective particles are not added.
  • the present invention is not necessarily limited thereto, and a small amount of white pigment may be added to the second layer 2072.
  • the weight ratio of the white pigment added to the second layer 2082 may be less than that of the first layer 2071.
  • the planarization layer 3060 is formed on the upper surface of the substrate 3010 to cover the interlayer insulating layer 3114.
  • the planarization layer 3060 provides a flat surface on the interlayer insulating layer 3114 while protecting the pixel circuit including the driving thin film transistor T2.
  • the planarization layer 1060 according to an embodiment may be made of an organic material such as benzocyclobutene or photo acryl.
  • the thickness of the semiconductor light emitting device may be about 3 micrometers in one coating, and the height may be about 5 to 10 micrometers.
  • the photoacrylic may be coated a plurality of times, so that the planarization layer may have the same material to form a plurality of layers 3061 and 3062.
  • a first layer 3031 may be stacked on the substrate, and a second layer 3022 may be stacked on the first layer 3041, and they may be formed of the same material.
  • the planarization layer 3060 is formed of a plurality of layers of the same material
  • the planarization layer may include one of the first conductive electrode 3156 and the second conductive electrode 3152 of the planarization layer. It may have a height disposed on the same plane as the upper surface of the 3060. In this case, the above-described height adjustment layer can be omitted.
  • the planarization layer 3060 may be formed of a plurality of layers of different materials.
  • benzocyclobutene may be stacked on the substrate to form a first layer
  • photo acryl may be stacked on the first layer to form a second layer.
  • the height adjusting unit may be omitted, as in the example described with reference to FIG. 14, and the upper surface of the planarization layer is formed by adjusting the height of the epitaxial layer of the semiconductor light emitting device.
  • Any conductive type electrode of the type electrodes 4252 is disposed on the same plane.
  • the semiconductor light emitting device may be formed on the first conductive semiconductor layer 4155 and the first conductive semiconductor layer 4155 on which the first conductive electrode 4156 and the first conductive electrode 4156 are formed.
  • the undoped semiconductor layer may be removed by etching after protecting the semiconductor light emitting device in a laser lift-off (LLO) process of separating the light emitting devices.
  • LLO laser lift-off
  • a height adjusting unit 4070 having a lower height than the height adjusting unit of the example described above with reference to FIGS. 10 to 12 may be formed.
  • the height of the height adjusting portion 4070 may be lowered by reducing the thickness of the second conductive semiconductor layer 4415 and increasing the efficiency of the semiconductor light emitting device. Furthermore, a structure without the height adjustment part is possible.
  • the display device using the semiconductor light emitting device described above is not limited to the configuration and method of the embodiments described above, but the embodiments may be configured by selectively combining all or part of the embodiments so that various modifications can be made. It may be.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Led Device Packages (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

본 발명은 반도체 발광소자를 이용한 디스플레이 장치에 관한 것으로 특히, 반도체 발광소자를 이용한 디스플레이 장치에 관한 것이다. 본 발명에 따른 디스플레이 장치는, 구동 박막 트랜지스터를 구비하는 기판과, 제1도전형 전극 및 제2도전형 전극을 구비하는 반도체 발광소자, 및 상기 구동 박막 트랜지스터를 덮도록 형성되며, 상기 반도체 발광소자가 수용되는 수용홀을 구비하는 평탄화층를 포함하며, 상기 제1도전형 전극 및 제2도전형 전극 중 어느 하나와, 상기 평탄화층의 일면의 높이를 맞추도록 상기 기판과 상기 평탄화층의 사이에는 높이 조절층이 형성되는 것을 특징으로 한다.

Description

반도체 발광소자를 이용한 디스플레이 장치
본 발명은 디스플레이 장치에 관한 것으로 특히, 반도체 발광소자를 이용한 디스플레이 장치에 관한 것이다.
최근에는 디스플레이 기술분야에서 박막형, 플렉서블 등의 우수한 특성을 가지는 디스플레이 장치가 개발되고 있다. 이에 반해, 현재 상용화된 주요 디스플레이는 LCD(Liguid Crystal Display)와 AMOLED(Active Matrix Organic Light Emitting Diodes)로 대표되고 있다. 그러나, LCD의 경우에 빠르지 않은 반응 시간과, 플렉서블의 구현이 어렵다는 문제점이 존재하고, AMOLED의 경우에 수명이 짧고, 양산 수율이 좋지 않다는 취약점이 존재한다.
한편, 발광 다이오드(Light Emitting Diode: LED)는 전류를 빛으로 변환시키는 잘 알려진 반도체 발광소자로서, 1962년 GaAsP 화합물 반도체를 이용한 적색 LED가 상품화된 것을 시작으로 GaP:N 계열의 녹색 LED와 함께 정보 통신기기를 비롯한 전자장치의 표시 화상용 광원으로 이용되어 왔다. 따라서, 상기 반도체 발광소자를 이용하여 디스플레이를 구현하여, 상기의 문제점을 해결하는 방안이 제시될 수 있다.
따라서, 최근에는 마이크로 반도체 발광소자를 이용한 디스플레이 장치에 대한 연구 및 개발이 진행되고 있으며, 이러한 디스플레이 장치는 고화질과 고신뢰성을 갖기 때문에 차세대 디스플레이로서 각광받고 있다. 다만, 이러한 디스플레이 장치는 마이크로 발광 소자를 이용하기에, 형광체나 배선 등이 외부에 많이 드러나는 경우에, 발광 효율이나 콘트라스트가 저하되는 문제점이 있다.
이에 본 발명에서는 수 내지 수십 마이크로미터 크기로 구성되는 반도체 발광소자를 기반으로 하되, 광학 성능을 향상시킬 수 있는 새로운 구조의 디스플레이 장치를 제안한다. 나아가, 새로운 구조의 디스플레이 장치에서 배선공정이 개선될 수 있는 패널 구조를 제시한다.
본 발명의 일 목적은, 반도체 발광소자를 이용한 디스플레이 장치에서 발광 소자를 회로에 연결하기 위한 공정에 소요되는 시간이 단축될 수 있는 구조를 제공하기 위한 것이다.
본 발명의 다른 일 목적은 제조 신뢰성을 확보하고, 제조비가 저감하는 구조를 가지는 디스플레이 장치를 제공하기 위한 것이다.
본 발명에 따른 디스플레이 장치는, 컵(cup) 형태의 수용홀에 반도체 발광소자가 수용되는 칩 인 컵(CIC, Chip in Cup)에서, 반도체 발광소자의 높이를 조절하는 구조를 적용하여 배선 공정을 보다 용이하게 한다.
구체적인 예로서, 상기 디스플레이 장치는, 구동 박막 트랜지스터를 구비하는 기판과, 제1도전형 전극 및 제2도전형 전극을 구비하는 반도체 발광소자, 및 상기 구동 박막 트랜지스터를 덮도록 형성되며, 상기 반도체 발광소자가 수용되는 수용홀을 구비하는 평탄화층를 포함하며, 상기 제1도전형 전극 및 제2도전형 전극 중 어느 하나와, 상기 평탄화층의 일면의 높이를 맞추도록 상기 기판과 상기 평탄화층의 사이에는 높이 조절층이 형성된다.
실시 예에 있어서, 상기 반도체 발광소자는 상기 평탄화층보다 높이가 높도록 형성된다. 상기 높이 조절층은 상기 기판 상에 형성되어 상기 기판에서 상기 평탄화층의 상면까지 거리를 조절한다.
또한, 높이 조절층은 빛을 반사하는 역할을 할 수 있다. 이를 위하여, 상기 높이 조절층은 수지와, 상기 수지에 혼입되는 반사입자를 구비할 수 있다.
실시 예에 있어서, 상기 기판에는 상기 구동 박막 트랜지스터를 덮는 절연막이 형성되고, 상기 평탄화층은 상기 절연막을 덮도록 코팅되는 포토아크릴을 구비한다. 상기 수용홀은 상기 평탄화층, 절연막 및 높이 조절층을 각각 관통하여 상기 기판의 상면이 상기 수용홀의 바닥을 형성할 수 있다. 상기 포토아크릴이 복수회 코팅됨에 의하여, 상기 평탄화층은 동일 재질이 복수의 레이어를 형성할 수 있다.
실시 예에 있어서, 상기 반도체 발광소자의 제1도전형 반도체층은 제2도전형 반도체층보다 두께가 작도록 형성된다. 상기 제2도전형 반도체층의 두께는 상기 평탄화층의 두께보다 크도록 형성될 수 있다.
본 발명에 따른 디스플레이 장치에서는, 평탄화층의 수용홀에 반도체 발광소자를 배치함에 따라, 픽셀 간을 격벽으로 분리한다. 이와 같이 수용홀 내에서 반도체 발광소자를 배선에 전기적으로 연결함에 따라, 반도체 발광소자의 얼라인이 용이하게 되어, 높은 정밀도로 디스플레이 장치의 제조가 가능하게 된다.
또한, 본 발명에 의하면, 높이 조절층을 통하여, 전사된 반도체 발광소자와 평탄화층의 사이에 단차를 제거하여, 전극 연결 공정이 용이하게 되고 패널 수율이 향상될 수 있다.
도 1은 본 발명의 반도체 발광소자를 이용한 디스플레이 장치의 일 실시예를 나타내는 개념도이다.
도 2는 도 1의 A부분의 부분 확대도이고, 도 3a 및 도 3b는 도 2의 라인 B-B 및 C-C를 따라 취한 단면도들이다.
도 4는 도 3의 플립 칩 타입 반도체 발광소자를 나타내는 개념도이다.
도 5a 내지 도 5c는 플립 칩 타입 반도체 발광소자와 관련하여 컬러를 구현하는 여러가지 형태를 나타내는 개념도들이다.
도 6은 본 발명의 반도체 발광소자를 이용한 디스플레이 장치의 제조방법을 나타낸 단면도들이다.
도 7은 발명의 반도체 발광소자를 이용한 디스플레이 장치의 다른 일 실시예를 나타내는 사시도이다.
도 8은 도 7의 라인 D-D를 따라 취한 단면도이다.
도 9는 도 8의 수직형 반도체 발광소자를 나타내는 개념도이다.
도 10은 본 발명의 다른 실시 예를 설명하기 위한 부분 사시도이다.
도 11은 도 10의 라인 E-E를 따라 취한 단면도이다.
도 12는 도 10에 도시된 화소의 구성을 설명하기 위한 회로도이다.
도 13, 도 14 및 도 15는 본 발명의 또 다른 실시예들을 나타내는 단면도이다.
이하, 첨부된 도면을 참조하여 본 명세서에 개시된 실시 예를 상세히 설명하되, 도면 부호에 관계없이 동일하거나 유사한 구성요소는 동일한 참조 번호를 부여하고 이에 대한 중복되는 설명은 생략하기로 한다. 이하의 설명에서 사용되는 구성요소에 대한 접미사 "모듈" 및 "부"는 명세서 작성의 용이함만이 고려되어 부여되거나 혼용되는 것으로서, 그 자체로 서로 구별되는 의미 또는 역할을 갖는 것은 아니다. 또한, 본 명세서에 개시된 실시 예를 설명함에 있어서 관련된 공지 기술에 대한 구체적인 설명이 본 명세서에 개시된 실시 예의 요지를 흐릴 수 있다고 판단되는 경우 그 상세한 설명을 생략한다. 또한, 첨부된 도면은 본 명세서에 개시된 실시 예를 쉽게 이해할 수 있도록 하기 위한 것일 뿐, 첨부된 도면에 의해 본 명세서에 개시된 기술적 사상이 제한되는 것으로 해석되어서는 아니 됨을 유의해야 한다.
또한, 층, 영역 또는 기판과 같은 요소가 다른 구성요소 "상(on)"에 존재하는 것으로 언급될 때, 이것은 직접적으로 다른 요소 상에 존재하거나 또는 그 사이에 중간 요소가 존재할 수도 있다는 것을 이해할 수 있을 것이다.
본 명세서에서 설명되는 디스플레이 장치에는 휴대폰, 스마트 폰(smart phone), 노트북 컴퓨터(laptop computer), 디지털방송용 단말기, PDA(personal digital assistants), PMP(portable multimedia player), 네비게이션, 슬레이트 피씨(Slate PC), Tablet PC, Ultra Book, 디지털 TV, 데스크탑 컴퓨터 등이 포함될 수 있다. 그러나, 본 명세서에 기재된 실시 예에 따른 구성은 추후 개발되는 새로운 제품형태이라도, 디스플레이가 가능한 장치에는 적용될 수도 있음을 본 기술분야의 당업자라면 쉽게 알 수 있을 것이다.
도 1은 본 발명의 반도체 발광소자를 이용한 디스플레이 장치의 일 실시예를 나타내는 개념도이다.
도시에 의하면, 디스플레이 장치(100)의 제어부에서 처리되는 정보는 플렉서블 디스플레이(flexible display)를 이용하여 표시될 수 있다.
플렉서블 디스플레이는 외력에 의하여 휘어질 수 있는, 구부러질 수 있는, 비틀어질 수 있는, 접힐 수 있는, 말려질 수 있는 디스플레이를 포함한다. 예를 들어, 플렉서블 디스플레이는 기존의 평판 디스플레이의 디스플레이 특성을 유지하면서, 종이와 같이 휘어지거나, 구부리거나, 접을 수 있거나 말 수 있는 얇고 유연한 기판 위에 제작되는 디스플레이가 될 수 있다.
상기 플렉서블 디스플레이가 휘어지지 않는 상태(예를 들어, 무한대의 곡률반경을 가지는 상태, 이하 제1상태라 한다)에서는 상기 플렉서블 디스플레이의 디스플레이 영역이 평면이 된다. 상기 제1상태에서 외력에 의하여 휘어진 상태(예를 들어, 유한의 곡률반경을 가지는 상태, 이하, 제2상태라 한다)에서는 상기 디스플레이 영역이 곡면이 될 수 있다. 도시와 같이, 상기 제2상태에서 표시되는 정보는 곡면상에 출력되는 시각 정보가 될 수 있다. 이러한 시각 정보는 매트릭스 형태로 배치되는 단위 화소(sub-pixel)의 발광이 독자적으로 제어됨에 의하여 구현된다. 상기 단위 화소는 하나의 색을 구현하기 위한 최소 단위를 의미한다.
상기 플렉서블 디스플레이의 단위 화소는 반도체 발광소자에 의하여 구현될 수 있다. 본 발명에서는 전류를 빛으로 변환시키는 반도체 발광소자의 일 종류로서 발광 다이오드(Light Emitting Diode: LED)를 예시한다. 상기 발광 다이오드는 작은 크기로 형성되며, 이를 통하여 상기 제2상태에서도 단위 화소의 역할을 할 수 있게 된다.
이하, 상기 발광 다이오드를 이용하여 구현된 플렉서블 디스플레이에 대하여 도면을 참조하여 보다 상세히 설명한다.
도 2는 도 1의 A부분의 부분 확대도이고, 도 3a 및 도 3b는 도 2의 라인 B-B 및 C-C를 따라 취한 단면도들이며, 도 4는 도 3a의 플립 칩 타입 반도체 발광소자를 나타내는 개념도이고, 도 5a 내지 도 5c는 플립 칩 타입 반도체 발광소자와 관련하여 컬러를 구현하는 여러가지 형태를 나타내는 개념도들이다.
도 2, 도 3a 및 도 3b의 도시에 의하면, 반도체 발광소자를 이용한 디스플레이 장치(100)로서 패시브 매트릭스(Passive Matrix, PM) 방식의 반도체 발광소자를 이용한 디스플레이 장치(100)를 예시한다. 다만, 이하 설명되는 예시는 액티브 매트릭스(Active Matrix, AM) 방식의 반도체 발광소자에도 적용 가능하다.
상기 디스플레이 장치(100)는 기판(110), 제1전극(120), 전도성 접착층(130), 제2전극(140) 및 복수의 반도체 발광소자(150)를 포함한다.
기판(110)은 플렉서블 기판일 수 있다. 예를 들어, 플렉서블(flexible) 디스플레이 장치를 구현하기 위하여 기판(110)은 유리나 폴리이미드(PI, Polyimide)를 포함할 수 있다. 이외에도 절연성이 있고, 유연성 있는 재질이면, 예를 들어 PEN(Polyethylene Naphthalate), PET(Polyethylene Terephthalate) 등 어느 것이라도 사용될 수 있다. 또한, 상기 기판(110)은 투명한 재질 또는 불투명한 재질 어느 것이나 될 수 있다.
상기 기판(110)은 제1전극(120)이 배치되는 배선기판이 될 수 있으며, 따라서 상기 제1전극(120)은 기판(110) 상에 위치할 수 있다.
도시에 의하면, 절연층(160)은 제1전극(120)이 위치한 기판(110) 상에 배치될 수 있으며, 상기 절연층(160)에는 보조전극(170)이 위치할 수 있다. 이 경우에, 상기 기판(110)에 절연층(160)이 적층된 상태가 하나의 배선기판이 될 수 있다. 보다 구체적으로, 절연층(160)은 폴리이미드(PI, Polyimide), PET, PEN 등과 같이 절연성이 있고, 유연성 있는 재질로, 상기 기판(110)과 일체로 이루어져 하나의 기판을 형성할 수 있다.
보조전극(170)은 제1전극(120)과 반도체 발광소자(150)를 전기적으로 연결하는 전극으로서, 절연층(160) 상에 위치하고, 제1전극(120)의 위치에 대응하여 배치된다. 예를 들어, 보조전극(170)은 닷(dot) 형태이며, 절연층(160)을 관통하는 전극홀(171)에 의하여 제1전극(120)과 전기적으로 연결될 수 있다. 상기 전극홀(171)은 비아 홀에 도전물질이 채워짐에 의하여 형성될 수 있다.
본 도면들을 참조하면, 절연층(160)의 일면에는 전도성 접착층(130)이 형성되나, 본 발명은 반드시 이에 한정되는 것은 아니다. 예를 들어, 절연층(160)과 전도성 접착층(130)의 사이에 특정 기능을 수행하는 레이어가 형성되거나, 절연층(160)이 없이 전도성 접착층(130)이 기판(110)상에 배치되는 구조도 가능하다. 전도성 접착층(130)이 기판(110)상에 배치되는 구조에서는 전도성 접착층(130)이 절연층의 역할을 할 수 있다.
상기 전도성 접착층(130)은 접착성과 전도성을 가지는 층이 될 수 있으며, 이를 위하여 상기 전도성 접착층(130)에서는 전도성을 가지는 물질과 접착성을 가지는 물질이 혼합될 수 있다. 또한 전도성 접착층(130)은 연성을 가지며, 이를 통하여 디스플레이 장치에서 플렉서블 기능을 가능하게 한다.
이러한 예로서, 전도성 접착층(130)은 이방성 전도성 필름(anistropy conductive film, ACF), 이방성 전도 페이스트(paste), 전도성 입자를 함유한 솔루션(solution) 등이 될 수 있다. 상기 전도성 접착층(130)은 두께를 관통하는 Z 방향으로는 전기적 상호 연결을 허용하나, 수평적인 X-Y 방향으로는 전기절연성을 가지는 레이어로서 구성될 수 있다. 따라서 상기 전도성 접착층(130)은 Z축 전도층으로 명명될 수 있다(다만, 이하 '전도성 접착층'이라 한다).
상기 이방성 전도성 필름은 이방성 전도매질(anisotropic conductive medium)이 절연성 베이스부재에 혼합된 형태의 필름으로서, 열 및 압력이 가해지면 특정 부분만 이방성 전도매질에 의하여 전도성을 가지게 된다. 이하, 상기 이방성 전도성 필름에는 열 및 압력이 가해지는 것으로 설명하나, 상기 이방성 전도성 필름이 부분적으로 전도성을 가지기 위하여 다른 방법도 가능하다. 이러한 방법은, 예를 들어 상기 열 및 압력 중 어느 하나만이 가해지거나 UV 경화 등이 될 수 있다.
또한, 상기 이방성 전도매질은 예를 들어, 도전볼이나 전도성 입자가 될 수 있다. 도시에 의하면, 본 예시에서 상기 이방성 전도성 필름은 도전볼이 절연성 베이스 부재에 혼합된 형태의 필름으로서, 열 및 압력이 가해지면 특정부분만 도전볼에 의하여 전도성을 가지게 된다. 이방성 전도성 필름은 전도성 물질의 코어가 폴리머 재질의 절연막에 의하여 피복된 복수의 입자가 함유된 상태가 될 수 있으며, 이 경우에 열 및 압력이 가해진 부분이 절연막이 파괴되면서 코어에 의하여 도전성을 가지게 된다. 이때, 코어의 형태는 변형되어 필름의 두께방향으로 서로 접촉하는 층을 이룰 수 있다. 보다 구체적인 예로서, 열 및 압력은 이방성 전도성 필름에 전체적으로 가해지며, 이방성 전도성 필름에 의하여 접착되는 상대물의 높이차에 의하여 Z축 방향의 전기적 연결이 부분적으로 형성된다.
다른 예로서, 이방성 전도성 필름은 절연 코어에 전도성 물질이 피복된 복수의 입자가 함유된 상태가 될 수 있다. 이 경우에는 열 및 압력이 가해진 부분이 전도성 물질이 변형되어(눌러 붙어서) 필름의 두께방향으로 전도성을 가지게 된다. 또 다른 예로서, 전도성 물질이 Z축 방향으로 절연성 베이스 부재를 관통하여 필름의 두께방향으로 전도성을 가지는 형태도 가능하다. 이 경우에, 전도성 물질은 뽀족한 단부를 가질 수 있다.
도시에 의하면, 상기 이방성 전도성 필름은 도전볼이 절연성 베이스 부재의 일면에 삽입된 형태로 구성되는 고정배열 이방성 전도성 필름(fixed array ACF)가 될 수 있다. 보다 구체적으로, 절연성 베이스부재는 접착성을 가지는 물질로 형성되며, 도전볼은 상기 절연성 베이스부재의 바닥부분에 집중적으로 배치되며, 상기 베이스부재에서 열 및 압력이 가해지면 상기 도전볼과 함께 변형됨에 따라 수직방향으로 전도성을 가지게 된다.
다만, 본 발명은 반드시 이에 한정되는 것은 아니며, 상기 이방성 전도성 필름은 절연성 베이스부재에 도전볼이 랜덤하게 혼입된 형태나, 복수의 층으로 구성되며 어느 한 층에 도전볼이 배치되는 형태(double-ACF) 등이 모두 가능하다.
이방성 전도 페이스트는 페이스트와 도전볼의 결합형태로서, 절연성 및 접착성의 베이스 물질에 도전볼이 혼합된 페이스트가 될 수 있다. 또한, 전도성 입자를 함유한 솔루션은 전도성 particle 혹은 nano 입자를 함유한 형태의 솔루션이 될 수 있다.
다시 도면을 참조하면, 제2전극(140)은 보조전극(170)과 이격하여 절연층(160)에 위치한다. 즉, 상기 전도성 접착층(130)은 보조전극(170) 및 제2전극(140)이 위치하는 절연층(160) 상에 배치된다.
절연층(160)에 보조전극(170)과 제2전극(140)이 위치된 상태에서 전도성 접착층(130)을 형성한 후에, 반도체 발광소자(150)를 열 및 압력을 가하여 플립 칩 형태로 접속시키면, 상기 반도체 발광소자(150)는 제1전극(120) 및 제2전극(140)과 전기적으로 연결된다.
도 4를 참조하면, 상기 반도체 발광소자는 플립 칩 타입(flip chip type)의 발광 소자가 될 수 있다.
예를 들어, 상기 반도체 발광소자는 p형 전극(156), p형 전극(156)이 형성되는 p형 반도체층(155), p형 반도체층(155) 상에 형성된 활성층(154), 활성층(154) 상에 형성된 n형 반도체층(153) 및 n형 반도체층(153) 상에서 p형 전극(156)과 수평방향으로 이격 배치되는 n형 전극(152)을 포함한다. 이 경우, p형 전극(156)은 보조전극(170)과 전도성 접착층(130)에 의하여 전기적으로 연결될 수 있고, n형 전극(152)은 제2전극(140)과 전기적으로 연결될 수 있다.
다시 도 2, 도 3a 및 도 3b를 참조하면, 보조전극(170)은 일방향으로 길게 형성되어, 하나의 보조전극이 복수의 반도체 발광소자(150)에 전기적으로 연결될 수 있다. 예를 들어, 보조전극을 중심으로 좌우의 반도체 발광소자들의 p형 전극들이 하나의 보조전극에 전기적으로 연결될 수 있다.
보다 구체적으로, 열 및 압력에 의하여 전도성 접착층(130)의 내부로 반도체 발광소자(150)가 압입되며, 이를 통하여 반도체 발광소자(150)의 p형 전극(156)과 보조전극(170) 사이의 부분과, 반도체 발광소자(150)의 n형 전극(152)과 제2전극(140) 사이의 부분에서만 전도성을 가지게 되고, 나머지 부분에서는 반도체 발광소자의 압입이 없어 전도성을 가지지 않게 된다. 이와 같이, 전도성 접착층(130)은 반도체 발광소자(150)와 보조전극(170) 사이 및 반도체 발광소자(150)와 제2전극(140) 사이를 상호 결합시켜줄 뿐만 아니라 전기적 연결까지 형성시킨다.
또한, 복수의 반도체 발광소자(150)는 발광 소자 어레이(array)를 구성하며, 발광 소자 어레이에는 형광체층(180)이 형성된다.
발광 소자 어레이는 자체 휘도값이 상이한 복수의 반도체 발광소자들을 포함할 수 있다. 각각의 반도체 발광소자(150)는 단위 화소를 구성하며, 제1전극(120)에 전기적으로 연결된다. 예를 들어, 제1전극(120)은 복수 개일 수 있고, 반도체 발광소자들은 예컨대 수 열로 배치되며, 각 열의 반도체 발광소자들은 상기 복수 개의 제1전극 중 어느 하나에 전기적으로 연결될 수 있다.
또한, 반도체 발광소자들이 플립 칩 형태로 접속되므로, 투명 유전체 기판에 성장시킨 반도체 발광소자들을 이용할 수 있다. 또한, 상기 반도체 발광소자들은 예컨대 질화물 반도체 발광소자일 수 있다. 반도체 발광소자(150)는 휘도가 우수하므로, 작은 크기로도 개별 단위 픽셀을 구성할 수 있다.
도시에 의하면, 반도체 발광소자(150)의 사이에 격벽(190)이 형성될 수 있다. 이 경우, 격벽(190)은 개별 단위 화소를 서로 분리하는 역할을 할 수 있으며, 전도성 접착층(130)과 일체로 형성될 수 있다. 예를 들어, 이방성 전도성 필름에 반도체 발광소자(150)가 삽입됨에 의하여 이방성 전도성 필름의 베이스부재가 상기 격벽을 형성할 수 있다.
또한, 상기 이방성 전도성 필름의 베이스부재가 블랙이면, 별도의 블랙 절연체가 없어도 상기 격벽(190)이 반사 특성을 가지는 동시에 대비비(contrast)가 증가될 수 있다.
다른 예로서, 상기 격벽(190)으로 반사성 격벽이 별도로 구비될 수 있다. 이 경우에, 상기 격벽(190)은 디스플레이 장치의 목적에 따라 블랙(Black) 또는 화이트(White) 절연체를 포함할 수 있다. 화이트 절연체의 격벽을 이용할 경우 반사성을 높이는 효과가 있을 수 있고, 블랙 절연체의 격벽을 이용할 경우, 반사 특성을 가지는 동시에 대비비(contrast)를 증가시킬 수 있다.
형광체층(180)은 반도체 발광소자(150)의 외면에 위치할 수 있다. 예를 들어, 반도체 발광소자(150)는 청색(B) 광을 발광하는 청색 반도체 발광소자이고, 형광체층(180)은 상기 청색(B) 광을 단위 화소의 색상으로 변환시키는 기능을 수행한다. 상기 형광체층(180)은 개별 화소를 구성하는 적색 형광체(181) 또는 녹색 형광체(182)가 될 수 있다.
즉, 적색의 단위 화소를 이루는 위치에서, 청색 반도체 발광소자(151) 상에는 청색 광을 적색(R) 광으로 변환시킬 수 있는 적색 형광체(181)가 적층될 수 있고, 녹색의 단위 화소를 이루는 위치에서는, 청색 반도체 발광소자(151) 상에 청색 광을 녹색(G) 광으로 변환시킬 수 있는 녹색 형광체(182)가 적층될 수 있다. 또한, 청색의 단위 화소를 이루는 부분에는 청색 반도체 발광소자(151)만 단독으로 이용될 수 있다. 이 경우, 적색(R), 녹색(G) 및 청색(B)의 단위 화소들이 하나의 화소를 이룰 수 있다. 보다 구체적으로, 제1전극(120)의 각 라인을 따라 하나의 색상의 형광체가 적층될 수 있다. 따라서, 제1전극(120)에서 하나의 라인은 하나의 색상을 제어하는 전극이 될 수 있다. 즉, 제2전극(140)을 따라서, 적색(R), 녹색(G) 및 청색(B)이 차례로 배치될 수 있으며, 이를 통하여 단위 화소가 구현될 수 있다.
다만, 본 발명은 반드시 이에 한정되는 것은 아니며, 형광체 대신에 반도체 발광소자(150)와 퀀텀닷(QD)이 조합되어 적색(R), 녹색(G) 및 청색(B)의 단위 화소들을 구현할 수 있다.
또한, 대비비(contrast) 향상을 위하여 각각의 형광체층들의 사이에는 블랙 매트릭스(191)가 배치될 수 있다. 즉, 이러한 블랙 매트릭스(191)는 명암의 대조를 향상시킬 수 있다.
다만, 본 발명은 반드시 이에 한정되는 것은 아니며, 청색, 적색, 녹색을 구현하기 위한 다른 구조가 적용될 수 있다.
도 5a를 참조하면, 각각의 반도체 발광소자(150)는 질화 갈륨(GaN)을 주로 하여, 인듐(In) 및/또는 알루미늄(Al)이 함께 첨가되어 청색을 비롯한 다양한 빛을 발광하는 고출력의 발광 소자로 구현될 수 있다.
이 경우, 반도체 발광소자(150)는 각각 단위 화소(sub-pixel)를 이루기 위하여 적색, 녹색 및 청색 반도체 발광소자일 수 있다. 예컨대, 적색, 녹색 및 청색 반도체 발광소자(R, G, B)가 교대로 배치되고, 적색, 녹색 및 청색 반도체 발광소자에 의하여 적색(Red), 녹색(Green) 및 청색(Blue)의 단위 화소들이 하나의 화소(pixel)를 이루며, 이를 통하여 풀 칼라 디스플레이가 구현될 수 있다.
도 5b를 참조하면, 반도체 발광소자는 황색 형광체층이 개별 소자마다 구비된 백색 발광 소자(W)를 구비할 수 있다. 이 경우에는, 단위 화소를 이루기 위하여, 백색 발광 소자(W) 상에 적색 형광체층(181), 녹색 형광체층(182), 및 청색 형광체층(183)이 구비될 수 있다. 또한, 이러한 백색 발광 소자(W) 상에 적색, 녹색, 및 청색이 반복되는 컬러 필터를 이용하여 단위 화소를 이룰 수 있다.
도 5c를 참조하면, 자외선 발광 소자(UV) 상에 적색 형광체층(181), 녹색 형광체층(182), 및 청색 형광체층(183)이 구비되는 구조도 가능하다. 이와 같이, 반도체 발광소자는 가시광선뿐만 아니라 자외선(UV)까지 전영역에 사용가능하며, 자외선(UV)이 상부 형광체의 여기원(excitation source)으로 사용가능한 반도체 발광소자의 형태로 확장될 수 있다.
본 예시를 다시 살펴보면, 반도체 발광소자(150)는 전도성 접착층(130) 상에 위치되어, 디스플레이 장치에서 단위 화소를 구성한다. 반도체 발광소자(150)는 휘도가 우수하므로, 작은 크기로도 개별 단위 화소를 구성할 수 있다. 이와 같은 개별 반도체 발광소자(150)의 크기는 한 변의 길이가 80㎛ 이하일 수 있고, 직사각형 또는 정사각형 소자일 수 있다. 직사각형인 경우에는 20X80㎛ 이하의 크기가 될 수 있다.
또한, 한 변의 길이가 10㎛인 정사각형의 반도체 발광소자(150)를 단위 화소로 이용하여도 디스플레이 장치를 이루기 위한 충분한 밝기가 나타난다. 따라서, 단위 화소의 크기가 한 변이 600㎛, 나머지 한변이 300㎛인 직사각형 화소인 경우를 예로 들면, 반도체 발광소자의 거리가 상대적으로 충분히 크게 된다. 따라서, 이러한 경우, HD화질을 가지는 플렉서블 디스플레이 장치를 구현할 수 있게 된다.
상기에서 설명된 반도체 발광소자를 이용한 디스플레이 장치는 새로운 형태의 제조방법에 의하여 제조될 수 있다. 이하, 도 6을 참조하여 상기 제조방법에 대하여 설명한다.
도 6은 본 발명의 반도체 발광소자를 이용한 디스플레이 장치의 제조방법을 나타낸 단면도들이다.
본 도면을 참조하면, 먼저, 보조전극(170) 및 제2전극(140)이 위치된 절연층(160) 상에 전도성 접착층(130)을 형성한다. 제1기판(110)에 절연층(160)이 적층되어 하나의 기판(또는 배선기판)을 형성하며, 상기 배선기판에는 제1전극(120), 보조전극(170) 및 제2전극(140)이 배치된다. 이 경우에, 제1전극(120)과 제2전극(140)은 상호 직교 방향으로 배치될 수 있다. 또한, 플렉서블(flexible) 디스플레이 장치를 구현하기 위하여 제1기판(110) 및 절연층(160)은 각각 유리 또는 폴리이미드(PI)를 포함할 수 있다.
상기 전도성 접착층(130)은 예를 들어, 이방성 전도성 필름에 의하여 구현될 수 있으며, 이를 위하여 절연층(160)이 위치된 기판에 이방성 전도성 필름이 도포될 수 있다.
다음에, 보조전극(170) 및 제2전극(140)들의 위치에 대응하고, 개별 화소를 구성하는 복수의 반도체 발광소자(150)가 위치된 제2기판(112)을 상기 반도체 발광소자(150)가 보조전극(170) 및 제2전극(140)와 대향하도록 배치한다.
이 경우에, 제2기판(112)은 반도체 발광소자(150)를 성장시키는 성장 기판으로서, 사파이어(spire) 기판 또는 실리콘(silicon) 기판이 될 수 있다.
상기 반도체 발광소자는 웨이퍼(wafer) 단위로 형성될 때, 디스플레이 장치를 이룰 수 있는 간격 및 크기를 가지도록 함으로써, 디스플레이 장치에 효과적으로 이용될 수 있다.
그 다음에, 배선기판과 제2기판(112)을 열압착한다. 예를 들어, 배선기판과 제2기판(112)은 ACF press head 를 적용하여 열압착될 수 있다. 상기 열압착에 의하여 배선기판과 제2기판(112)은 본딩(bonding)된다. 열압착에 의하여 전도성을 갖는 이방성 전도성 필름의 특성에 의해 반도체 발광소자(150)와 보조전극(170) 및 제2전극(140)의 사이의 부분만 전도성을 가지게 되며, 이를 통하여 전극들과 반도체 발광소자(150)는 전기적으로 연결될 수 있다. 이 때에, 반도체 발광소자(150)가 상기 이방성 전도성 필름의 내부로 삽입되며, 이를 통하여 반도체 발광소자(150) 사이에 격벽이 형성될 수 있다.
그 다음에, 상기 제2기판(112)을 제거한다. 예를 들어, 제2기판(112)은 레이저 리프트 오프법(Laser Lift-off, LLO) 또는 화학적 리프트 오프법(Chemical Lift-off, CLO)을 이용하여 제거할 수 있다.
마지막으로, 상기 제2기판(112)을 제거하여 반도체 발광소자들(150)을 외부로 노출시킨다. 필요에 따라, 반도체 발광소자(150)가 결합된 배선기판 상을 실리콘 옥사이드(SiOx) 등을 코팅하여 투명 절연층(미도시)을 형성할 수 있다.
또한, 상기 반도체 발광소자(150)의 일면에 형광체층을 형성하는 단계를 더 포함할 수 있다. 예를 들어, 반도체 발광소자(150)는 청색(B) 광을 발광하는 청색 반도체 발광소자이고, 이러한 청색(B) 광을 단위 화소의 색상으로 변환시키기 위한 적색 형광체 또는 녹색 형광체가 상기 청색 반도체 발광소자의 일면에 레이어를 형성할 수 있다.
이상에서 설명된 반도체 발광소자를 이용한 디스플레이 장치의 제조방법이나 구조는 여러가지 형태로 변형될 수 있다. 그 예로서, 상기에서 설명된 디스플레이 장치에는 수직형 반도체 발광소자도 적용될 수 있다. 이하, 도 5 및 도 6을 참조하여 수직형 구조에 대하여 설명한다.
또한, 이하 설명되는 변형예 또는 실시예에서는 앞선 예와 동일 또는 유사한 구성에 대해서는 동일, 유사한 참조번호가 부여되고, 그 설명은 처음 설명으로 갈음된다.
도 7은 발명의 반도체 발광소자를 이용한 디스플레이 장치의 다른 일 실시예를 나타내는 사시도이고, 도 8은 도 7의 라인 D-D를 따라 취한 단면도이며, 도 9은 도 8의 수직형 반도체 발광소자를 나타내는 개념도이다.
본 도면들을 참조하면, 디스플레이 장치는 패시브 매트릭스(Passive Matrix, PM) 방식의 수직형 반도체 발광소자를 이용한 디스플레이 장치가 될 수 있다.
상기 디스플레이 장치는 기판(210), 제1전극(220), 전도성 접착층(230), 제2전극(240) 및 복수의 반도체 발광소자(250)를 포함한다.
기판(210)은 제1전극(220)이 배치되는 배선기판으로서, 플렉서블(flexible) 디스플레이 장치를 구현하기 위하여 폴리이미드(PI)를 포함할 수 있다. 이외에도 절연성이 있고, 유연성 있는 재질이면 어느 것이라도 사용 가능할 것이다.
제1전극(220)은 기판(210) 상에 위치하며, 일 방향으로 긴 바(bar) 형태의 전극으로 형성될 수 있다. 상기 제1전극(220)은 데이터 전극의 역할을 하도록 이루어질 수 있다.
전도성 접착층(230)은 제1전극(220)이 위치하는 기판(210)상에 형성된다. 플립 칩 타입(flip chip type)의 발광 소자가 적용된 디스플레이 장치와 같이, 전도성 접착층(230)은 이방성 전도성 필름(anistropy conductive film, ACF), 이방성 전도 페이스트(paste), 전도성 입자를 함유한 솔루션(solution) 등이 될 수 있다. 다만, 본 실시예에서도 이방성 전도성 필름에 의하여 전도성 접착층(230)이 구현되는 경우를 예시한다.
기판(210) 상에 제1전극(220)이 위치하는 상태에서 이방성 전도성 필름을 위치시킨 후에, 반도체 발광소자(250)를 열 및 압력을 가하여 접속시키면, 상기 반도체 발광소자(250)가 제1전극(220)과 전기적으로 연결된다. 이 때, 상기 반도체 발광소자(250)는 제1전극(220) 상에 위치되도록 배치되는 것이 바람직하다.
상기 전기적 연결은 전술한 바와 같이, 이방성 전도성 필름에서 열 및 압력이 가해지면 부분적으로 두께방향으로 전도성을 가지기 때문에 생성된다. 따라서, 이방성 전도성 필름에서는 두께방향으로 전도성을 가지는 부분(231)과 전도성을 가지지 않는 부분(232)으로 구획된다.
또한, 이방성 전도성 필름은 접착 성분을 함유하기 때문에, 전도성 접착층(230)은 반도체 발광소자(250)와 제1전극(220) 사이에서 전기적 연결뿐만 아니라 기계적 결합까지 구현한다.
이와 같이, 반도체 발광소자(250)는 전도성 접착층(230) 상에 위치되며, 이를 통하여 디스플레이 장치에서 개별 화소를 구성한다. 반도체 발광소자(250)는 휘도가 우수하므로, 작은 크기로도 개별 단위 픽셀을 구성할 수 있다. 이와 같은 개별 반도체 발광소자(250)의 크기는 한 변의 길이가 80㎛ 이하일 수 있고, 직사각형 또는 정사각형 소자일 수 있다. 직사각형인 경우에는 20X80㎛ 이하의 크기가 될 수 있다.
상기 반도체 발광소자(250)는 수직형 구조가 될 수 있다.
수직형 반도체 발광소자들의 사이에는, 제1전극(220)의 길이 방향과 교차하는 방향으로 배치되고, 수직형 반도체 발광소자(250)와 전기적으로 연결된 복수의 제2전극(240)이 위치한다.
도 9를 참조하면, 이러한 수직형 반도체 발광소자는 p형 전극(256), p형 전극(256) 상에 형성된 p형 반도체층(255), p형 반도체층(255) 상에 형성된 활성층(254), 활성층(254)상에 형성된 n형 반도체층(253) 및 n형 반도체층(253) 상에 형성된 n형 전극(252)을 포함한다. 이 경우, 하부에 위치한 p형 전극(256)은 제1전극(220)과 전도성 접착층(230)에 의하여 전기적으로 연결될 수 있고, 상부에 위치한 n형 전극(252)은 후술하는 제2전극(240)과 전기적으로 연결될 수 있다. 이러한 수직형 반도체 발광소자(250)는 전극을 상/하로 배치할 수 있으므로, 칩 사이즈를 줄일 수 있다는 큰 강점을 가지고 있다.
다시 도 8을 참조하면, 상기 반도체 발광소자(250)의 일면에는 형광체층(280)이 형성될 수 있다. 예를 들어, 반도체 발광소자(250)는 청색(B) 광을 발광하는 청색 반도체 발광소자(251)이고, 이러한 청색(B) 광을 단위 화소의 색상으로 변환시키기 위한 형광체층(280)이 구비될 수 있다. 이 경우에, 형광체층(280)은 개별 화소를 구성하는 적색 형광체(281) 및 녹색 형광체(282) 일 수 있다.
즉, 적색의 단위 화소를 이루는 위치에서, 청색 반도체 발광소자(251) 상에는 청색 광을 적색(R) 광으로 변환시킬 수 있는 적색 형광체(281)가 적층될 수 있고, 녹색의 단위 화소를 이루는 위치에서는, 청색 반도체 발광소자(251) 상에 청색 광을 녹색(G) 광으로 변환시킬 수 있는 녹색 형광체(282)가 적층될 수 있다. 또한, 청색의 단위 화소를 이루는 부분에는 청색 반도체 발광소자(251)만 단독으로 이용될 수 있다. 이 경우, 적색(R), 녹색(G) 및 청색(B)의 단위 화소들이 하나의 화소를 이룰 수 있다.
다만, 본 발명은 반드시 이에 한정되는 것은 아니며, 플립 칩 타입(flip chip type)의 발광 소자가 적용된 디스플레이 장치에서 전술한 바와 같이, 청색, 적색, 녹색을 구현하기 위한 다른 구조가 적용될 수 있다.
다시 본 실시예를 살펴보면, 제2전극(240)은 반도체 발광소자들(250) 사이에 위치하고, 반도체 발광소자들(250)과 전기적으로 연결된다. 예를 들어, 반도체 발광소자들(250)은 복수의 열로 배치되고, 제2전극(240)은 반도체 발광소자들(250)의 열들 사이에 위치할 수 있다.
개별 화소를 이루는 반도체 발광소자(250) 사이의 거리가 충분히 크기 때문에 제2전극(240)은 반도체 발광소자들(250) 사이에 위치될 수 있다.
제2전극(240)은 일 방향으로 긴 바(bar) 형태의 전극으로 형성될 수 있으며, 제1전극과 상호 수직한 방향으로 배치될 수 있다.
또한, 제2전극(240)과 반도체 발광소자(250)는 제2전극(240)에서 돌출된 연결 전극에 의해 전기적으로 연결될 수 있다. 보다 구체적으로, 상기 연결 전극이 반도체 발광소자(250)의 n형 전극이 될 수 있다. 예를 들어, n형 전극은 오믹(ohmic) 접촉을 위한 오믹 전극으로 형성되며, 상기 제2전극은 인쇄 또는 증착에 의하여 오믹 전극의 적어도 일부를 덮게 된다. 이를 통하여 제2전극(240)과 반도체 발광소자(250)의 n형 전극이 전기적으로 연결될 수 있다.
도시에 의하면, 상기 제2전극(240)은 전도성 접착층(230) 상에 위치될 수 있다. 경우에 따라, 반도체 발광소자(250)가 형성된 기판(210) 상에 실리콘 옥사이드(SiOx) 등을 포함하는 투명 절연층(미도시)이 형성될 수 있다. 투명 절연층이 형성된 후에 제2전극(240)을 위치시킬 경우, 상기 제2전극(240)은 투명 절연층 상에 위치하게 된다. 또한, 제2전극(240)은 전도성 접착층(230) 또는 투명 절연층에 이격되어 형성될 수도 있다.
만약 반도체 발광소자(250) 상에 제2전극(240)을 위치시키기 위하여는 ITO(Indium Tin Oxide)와 같은 투명 전극을 사용한다면, ITO 물질은 n형 반도체층과는 접착성이 좋지 않은 문제가 있다. 따라서, 본 발명은 반도체 발광소자(250) 사이에 제2전극(240)을 위치시킴으로써, ITO와 같은 투명 전극을 사용하지 않아도 되는 이점이 있다. 따라서, 투명한 재료 선택에 구속되지 않고, n형 반도체층과 접착성이 좋은 전도성 물질을 수평 전극으로 사용하여 광추출 효율을 향상시킬 수 있다.
도시에 의하면, 반도체 발광소자(250) 사이에는 격벽(290)이 위치할 수 있다. 즉, 개별 화소를 이루는 반도체 발광소자(250)를 격리시키기 위하여 수직형 반도체 발광소자(250) 사이에는 격벽(290)이 배치될 수 있다. 이 경우, 격벽(290)은 개별 단위 화소를 서로 분리하는 역할을 할 수 있으며, 상기 전도성 접착층(230)과 일체로 형성될 수 있다. 예를 들어, 이방성 전도성 필름에 반도체 발광소자(250)가 삽입됨에 의하여 이방성 전도성 필름의 베이스부재가 상기 격벽을 형성할 수 있다.
또한, 상기 이방성 전도성 필름의 베이스 부재가 블랙이면, 별도의 블랙 절연체가 없어도 상기 격벽(290)이 반사 특성을 가지는 동시에 대비비(contrast)가 증가될 수 있다.
다른 예로서, 상기 격벽(190)으로서, 반사성 격벽이 별도로 구비될 수 있다. 격벽(290)은 디스플레이 장치의 목적에 따라 블랙(Black) 또는 화이트(White) 절연체를 포함할 수 있다.
만일 제2전극(240)이 반도체 발광소자(250) 사이의 전도성 접착층(230) 상에 바로 위치된 경우, 격벽(290)은 수직형 반도체 발광소자(250) 및 제2전극(240)의 사이사이에 위치될 수 있다. 따라서, 반도체 발광소자(250)를 이용하여 작은 크기로도 개별 단위 픽셀을 구성할 수 있고, 반도체 발광소자(250)의 거리가 상대적으로 충분히 크게 되어 제2전극(240)을 반도체 발광소자(250) 사이에 위치시킬 수 있고, HD 화질을 가지는 플렉서블 디스플레이 장치를 구현할 수 있는 효과가 있게 된다.
또한, 도시에 의하면, 대비비(contrast) 향상을 위하여 각각의 형광체 사이에는 블랙 매트릭스(291)가 배치될 수 있다. 즉, 이러한 블랙 매트릭스(291)는 명암의 대조를 향상시킬 수 있다.
상기 설명과 같이, 반도체 발광소자(250)는 전도성 접착층(230) 상에 위치되며, 이를 통하여 디스플레이 장치에서 개별 화소를 구성한다. 반도체 발광소자(250)는 휘도가 우수하므로, 작은 크기로도 개별 단위 픽셀을 구성할 수 있다. 따라서, 반도체 발광소자에 의하여 적색(R), 녹색(G) 및 청색(B)의 단위 화소들이 하나의 화소를 이루는 풀 칼라 디스플레이가 구현될 수 있다.
상기에서 설명된 본 발명의 반도체 발광소자를 이용한 디스플레이에서는 성장기판에서 성장한 반도체 발광소자를 이방성 전도성 필름(ACF, anisotropic conductive film)을 이용하여 배선기판에 전사한다. 하지만, 이러한 방법은 제조 신뢰성을 확보하기가 어렵고, 제조비가 높은 단점이 있다. 특히, 디지털 사이니지의 경우에 플렉서블의 성질이 요구되지 않으므로, 반도체 발광소자를 이용한 디스플레이에서는 다른 접근 방식이 필요하다.
이하, 본 발명에서는 전술한 기술적 난점을 극복하고 목표로 하는 초소형 마이크로 발광 다이오드 기반의 고해상도 디스플레이 구현을 위하여, 새로운 방식의, 수 내지 수십 마이크로미터 크기로 구성되는 초소형 청색 발광 다이오드 기반의 디스플레이용 픽셀 구조를 제안한다.
더욱 상세하게는, 평탄화층의 수용홀에 반도체 발광소자를 배치함에 따라, 반도체 발광소자의 얼라인이 용이하게 되어, 높은 정밀도로 디스플레이 장치의 제조가 가능하게 될 뿐만 아니라, 높이 조절층을 통하여 배선공정이 간단하게 되는 디스플레이 장치를 제시한다.
이하, 얼라인이 용이하고 배선공정이 간단한 본 발명의 다른 실시예에 따른 디스플레이 장치에 대하여 도면을 참조하여 보다 상세하게 설명한다.
도 10은 본 발명의 다른 실시 예를 설명하기 위한 부분 사시도이고, 도 11은 도 10의 라인 E-E를 따라 취한 단면도이며, 도 12는 도 10에 도시된 화소의 구성을 설명하기 위한 회로도이다.
도 10, 도 11 및 도 12의 도시에 의하면, 반도체 발광소자를 이용한 디스플레이 장치(1000)로서 액티브 매트릭스(Active Matrix, AM) 방식의 반도체 발광소자를 이용한 디스플레이 장치(1000)를 예시한다. 다만, 이하 설명되는 예시는 패시브 매트릭스(Passive Matrix, PM) 방식의 반도체 발광소자에도 적용 가능하다.
도시에 의하면, 반도체 발광소자를 이용한 디스플레이 장치(1000)로서 액티브 매트릭스의 반도체 발광소자를 이용한 디스플레이 장치(1000)를 예시한다.
디스플레이 장치(1000)는 기판(1010) 및 복수의 반도체 발광소자(1050)를 포함한다.
기판(1010)은 박막 트랜지스터 어레이 기판으로서, 유리 또는 플라스틱 재질로 이루어질 수 있다.
상기 기판은 표시 영역 및 비표시 영역을 포함할 수 있다. 이 경우에, 상기 표시 영역은 기판(1010)의 가장자리 부분을 제외한 나머지 부분으로서, 영상을 표시하는 화소 어레이가 배치되는 영역으로 정의될 수 있다. 상기 비표시 영역은 상기 기판(1010)에서 상기 표시 영역을 제외한 나머지 부분에 마련되는 것으로, 표시 영역을 둘러싸는 상기 기판(1010)의 가장자리 부분으로 정의될 수 있다.
또한, 상기 기판(1010)은 복수의 게이트 라인(GL), 복수의 데이터 라인(DL), 복수의 구동 전원 라인(PL), 복수의 공통 전원 라인(CL) 및 복수의 화소(SP)를 포함할 수 있다.
상기 복수의 게이트 라인(GL) 각각은 기판(1010) 상에 마련되는 것으로, 기판(1010)의 일 방향을 따라 길게 연장되고, 상기 일방향과 교차하는 타방향을 따라 일정한 간격으로 이격된다. 상기 복수의 데이터 라인(DL)은 복수의 게이트 라인(GL)과 교차하도록 상기 기판(1010) 상에 마련되는 것으로, 상기 타방향을 따라 길게 연장되고, 상기 일방향을 따라 일정한 간격으로 이격된다.
상기 복수의 구동 전원 라인(PL)은 복수의 데이터 라인(DL) 각각과 평행하게 배치되며, 복수의 데이터 라인(DL) 각각과 함께 형성될 수 있다. 상기 복수의 구동 전원 라인(PL) 각각은 외부로부터 제공되는 화소 구동 전원을 인접한 화소(SP)에 공급한다.
상기 복수의 공통 전원 라인(CL)은 복수의 게이트 라인(GL) 각각과 평행하도록 상기 기판(1010) 상에 마련되는 것으로, 복수의 게이트 라인(GL) 각각과 함께 형성될 수 있다. 상기 복수의 공통 전원 라인(CL) 각각은 외부로부터 제공되는 공통 전원을 인접한 화소(SP)에 공급한다.
상기 복수의 화소(SP) 각각은 게이트 라인(GL)과 데이터 라인(DL)에 의해 정의되는 화소 영역에 마련된다. 복수의 화소(SP) 각각은 실제 빛이 발광되는 최소 단위의 영역으로서, 서브 화소로 정의될 수 있다. 상기 서브 화소는 실제 빛이 발광되는 최소 단위의 영역으로서 하나의 반도체 발광소자를 구비한다. 인접한 적어도 3개의 화소는 컬러 표시를 위한 하나의 단위 화소를 구성할 수 있다. 예를 들어, 하나의 단위 화소는 인접한 적색의 화소, 녹색의 화소 및 청색의 화소를 포함하며, 휘도 향상을 위해 백색의 화소를 더 포함할 수도 있다.
상기 복수의 반도체 발광소자(1050)는, 도 4를 참조하여 전술한 구조를 가질 수 있으며, 질화 갈륨(GaN)을 주로 하여, 인듐(In) 및/또는 알루미늄(Al)이 함께 첨가되어 청색의 빛을 발광하는 고출력의 발광 소자로 구현될 수 있다. 이러한 예로서, 상기 복수의 반도체 발광소자(1050)는 n-Gan, p-Gan, AlGaN, InGan 등 다양한 계층으로 형성되는 질화갈륨 박막이 될 수 있다. 다만, 본 발명은 반드시 이에 한정되는 것은 아니며, 상기 복수의 반도체 발광소자는 녹색의 빛을 발광하는 발광소자로 구현될 수 있다. 또한, 상기 반도체 발광소자는 마이크로 발광 다이오드 칩이 될 수 있다. 여기서, 마이크로 발광 다이오드 칩은 서브 화소에서 발광 영역의 크기보다 작은 단면적을 가질 수 있으며, 이러한 예로서, 1 내지 100 마이크로 미터의 스케일을 가질 수 있다.
보다 구체적으로, 상기 반도체 발광소자는 제1도전형 전극(1156), 제1도전형 전극(1156)이 형성되는 제1도전형 반도체층(1155), 제1도전형 반도체층(1155) 상에 형성된 활성층(1154), 활성층(1154) 상에 형성된 제2도전형 반도체층(1153) 및 제2도전형 반도체층(1153) 상에서 제1도전형 전극(1156)과 수평방향으로 이격 배치되는 제2도전형 전극(1152)을 포함한다. 이 경우에, 상기 제2도전형 전극은 상기 제2도전형 반도체층(1153)의 일면에 배치되며, 상기 제2도전형 반도체층(1153)의 타면에는 언도프된(Undoped) 반도체층(1153a)이 형성될 수 있다.
또한, 상기 제1도전형 전극(1156) 및 제1도전형 반도체층(1155)은 각각 p형 전극 및 p형 반도체층이 될 수 있으며, 상기 제2도전형 전극(1152) 및 제2도전형 반도체층(1153)은 각각 n형 전극 및 n형 반도체층이 될 수 있다. 다만, 본 발명은 반드시 이에 한정되는 것은 아니며, 제1도전형이 n형이 되고 제2도전형이 p형이 되는 예시도 가능하다.
또한, 본 발명의 다른 실시예에 따르면, 진성 또는 도핑된 반도체기판에 불순물을 주입하여, 상기 제1도전형 및 제2도전형 반도체층을 형성할 수 있다. 또한, 상기 불순물 주입에 의하여 p-n 접합이 형성된 영역이 상기 활성층과 같은 역할을 할 수도 있다. 이하 설명하는, 제1도전형 반도체층 , 제2도전형 반도체층 활성층에 대한 열거 사항은 예시적일 뿐 본 발명이 이에 한정되는 것은 아니다.
본 도면들을 참조하면, 기판(1010)의 일면에는 상기 기판을 덮도록 형성되며, 상기 반도체 발광소자가 수용되는 수용홀(1061)을 구비하는 평탄화층(1060)이 형성될 수 있다.
예를 들어, 상기 평탄화층(1060)은 기판을 덮는 보호막의 역할과 배선전극을 덮어 평면을 형성하는 기능을 하게 되며, 절연재질로 이루어진다. 이러한 예로서, 또한, 상기 평탄화층(1060)은 포토레지스트, 광학 고분자 소재, 기타 공업용 플라스틱 소재 등을 구비할 수 있다.
도시에 의하면, 상기 수용홀(1061)은 복수의 화소 각각에 구비될 수 있다. 상기 수용홀(1061)은 서브 화소에 정의된 발광 영역에 마련되어 반도체 발광소자(1050)를 수납한다. 상기 복수의 반도체 발광소자(1050) 각각은 해당 화소(SP)의 화소 회로(PC)와 연결됨으로써 화소 회로(PC), 즉 구동 박막 트랜지스터(T2)로부터 공통 전원 라인(CL)으로 흐르는 전류에 비례하는 밝기로 발광한다.
이 경우에, 상기 평탄화층(1060)은 구동 박막 트랜지스터(T2)를 덮도록 형성되며, 상기 수용홀(1061)은 상기 평탄화층(1060)으로부터 오목하게 마련된다. 상기 수용홀(1061)은 상기 평탄화층(1060)의 상면으로부터 기판을 향하여 리세스된다. 예를 들어, 상기 수용홀(1061)은 반도체 발광소자(1050)보다 넓은 크기를 갖는 컵(cup) 형태를 가질 수 있다. 이때, 상기 수용홀(1061)은 상기 반도체 발광소자(1050)의 두께(또는 전체 높이)보다 크기가 큰 깊이를 가지도록 상기 평탄화층(1060)에 오목하게 형성될 수 있다.
도시에 의하면, 복수의 반도체 발광소자(1050)의 제1도전형 전극은 제1컨택홀(CH1)을 통해서 구동 박막 트랜지스터(T2)의 소스 전극에 연결되고, 제2도전형전극은 제2컨택홀(CH2)을 통해서 공통 전원 라인(CL)에 연결된다.
이와 같은, 본 예시에서는 화소의 발광 영역에 오목하게 마련된 수용홀(1061)에 반도체 발광소자(1050)가 수납되고, 반도체 발광소자(1050)의 전극들이 컨택홀(CH1, CH2)을 통해서 화소 회로의 구동 박막 트랜지스터에 연결됨으로써 반도체 발광소자(1050)의 연결 공정이 단순화될 수 있다.
도시에 의하면, 상기 구동 박막 트랜지스터(T2)는 게이트 전극(GE), 반도체층(SCL), 오믹 컨택층(OCL), 소스 전극(SE), 및 드레인 전극(DE)을 포함한다.
상기 게이트 전극(GE)은 기판(2010) 상에 게이트 라인(GL)과 함께 형성된다. 이러한, 게이트 전극(GE)은 게이트 절연층(1112)에 의해 덮인다.
상기 게이트 절연층(1112)은 무기 물질로 이루어진 단일층 또는 복수의 층으로 구성될 수 있으며, 실리콘 산화물(SiOx), 실리콘 질화물(SiNx) 등으로 이루어질 수 있다.
상기 반도체층(SCL)은 게이트 전극(GE)과 중첩(overlap)되도록 게이트 절연층(2112) 상에 미리 설정된 패턴(또는 섬) 형태로 마련된다. 이러한 반도체층(SCL)은 비정질 실리콘(amorphous silicon), 다결정 실리콘(polycrystalline silicon), 산화물(oxide) 및 유기물(organic material) 중 어느 하나로 이루어진 반도체 물질로 구성될 수 있지만, 이에 제한되지 않는다.
상기 오믹 컨택층(OCL)은 반도체층(SCL) 상에 미리 설정된 패턴(또는 섬) 형태로 마련된다. 여기서, 오믹 컨택층(PCL)은 반도체층(SCL)과 소스/드레인 전극(SE, DE) 간의 오믹 컨택을 위한 것으로, 생략 가능하다.
상기 소스 전극(SE)은 반도체층(SCL)의 일측과 중첩되도록 오믹 컨택층(OCL)의 타측 상에 형성된다. 상기 소스 전극(SE)은 데이터 라인(미도시)과 함께 형성되는 것으로, 인접한 데이터 라인으로부터 분기되거나 돌출된다.
상기 드레인 전극(DE)은 반도체층(SCL)의 타측과 중첩되면서 소스 전극(SE)과 이격되도록 오믹 컨택층(OCL)의 타측 상에 형성된다. 상기 드레인 전극(DE)은 데이터 라인 및 소스 전극(SE)과 함께 형성된다.
층간 절연층(1114)은 구동 박막 트랜지스터(T2)를 포함하는 화소 회로를 덮도록 기판(1010)의 상면에 형성된다. 상기 층간 절연층(1114)은 실리콘 산화물(SiOx), 실리콘 질화물(SiNx)과 같은 무기 물질로 이루어지거나 벤조사이클로부텐(benzocyclobutene) 또는 포토 아크릴(photo acryl)과 같은 유기 물질로 이루어질 수 있다.
상기 평탄화층(1060)은 층간 절연층(1114)을 덮도록 기판(1010)의 상면에 형성된다. 이러한 평탄화층(1060)은 구동 박막 트랜지스터(T2)를 포함하는 화소 회로를 보호하면서 층간 절연층(1114) 상에 평탄면을 제공한다. 일 예에 따른 평탄화층(1060)은 벤조사이클로부텐(benzocyclobutene) 또는 포토 아크릴(photo acryl)과 같은 유기 물질로 이루어질 수 있다.
상기 포토 아크릴의 경우에, 1회 코팅시에 두께가 약 3 마이크로미터 정도이고, 상기 반도체 발광소자의 높이는 약 5 내지 10 마이크로미터이므로, 상기 제2도전형 반도체층(1153)의 두께는 상기 평탄화층(1060)의 두께보다 크게 형성될 수 있다. 또한, 이 경우에 상기 반도체 발광소자의 제1도전형 반도체층(1155)은 제2도전형 반도체층(1153)보다 두께가 작을 수 있다.
여기서, 상기 수용홀(1061)의 바닥면은 반도체 발광소자(1050)의 두께에 따라서 평탄화층(1060), 층간 절연층(1114) 또는 게이트 절연막(1112) 내에 위치할 수 있다. 나아가, 수용홀(2061)은 서브 화소의 발광 영역과 중첩되는 게이트 절연막(1112), 층간 절연층(1114) 및 평탄화층(1060)이 모두 제거되어 형성될 수도 있다. 이러한, 수용홀(1061)은 반도체 발광소자(1050)보다 넓은 크기를 갖는 컵(cup) 형태를 가질 수 있다.
이때, 반도체 발광소자(1050)의 제1도전형 전극(1156) 및 제2도전형 전극(1152)은 상기 수용홀(1061)의 바닥으로부터 이격된다. 도시에 의하면, 제1도전형 전극(1156)은 구동 박막 트랜지스터(T2)의 소스 전극(SE)에 연결되고, 제2도전형 전극(1152)은 공통 전원 라인(CL)에 연결된다.
이 경우에, 상기 반도체 발광소자는 상기 평탄화층(1060)보다 높이가 높도록 형성된다. 또한, 제1도전형 전극(1156) 및 제2도전형 전극(1152)은 제2도전형 반도체층(1153)을 기준으로 서로 높이차를 가질 수 있다.
상기 제1도전형 전극(1156) 및 제2도전형 전극(1152) 중 어느 하나와, 상기 평탄화층(1060)의 일면의 높이를 맞추도록 상기 기판(1010)과 상기 평탄화층(1060)의 사이에는 높이 조절층(1070)이 형성된다. 상기 높이 조절층(1070)은 폴리머 및 옥사이드 또는 질소 산화물 등으로 형성될 수 있다.
보다 구체적으로, 상기 제1도전형 전극(1156) 및 제2도전형 전극(1152) 중 상대적으로 낮은 위치에 있는 도전형 전극은 평탄화층(1060)의 상면과 동일한 수평 선상에 위치될 수 있다. 이러한 예로서, 상기 높이 조절층(1070)은 상기 기판 상에 형성되어 상기 기판에서 상기 평탄화층(1060)의 상면까지 거리를 조절한다. 이와 같이, 본 발명에서는 상기 높이 조절층을 통하여, 전사된 반도체 발광소자와 평탄화층의 사이에 단차를 제거하여, 전극 연결 공정을 용이하게 한다.
도시에 의하면, 상기 수용홀(1061)은 상기 평탄화층(1060) 및 절연막(1112)에 더하여 높이 조절층(1070)을 관통하여 상기 기판의 상면이 상기 수용홀(1061)의 바닥을 형성하게 된다. 따라서, 상기 수용홀(1061)은 막힌 홀이 될 수 있다. 상기 반도체 발광소자는 상기 수용홀(1061)의 내에서 상기 기판(1010)의 상면에 부착된다.
도시에 의하면, 복수의 서브 화소 각각은 화소 전극 패턴(AE) 및 공통 전극 패턴(CE)을 포함할 수 있다.
상기 화소 전극 패턴(AE)은 구동 박막 트랜지스터(T2)의 소스 전극(SE)과 반도체 발광소자(1050)의 제1도전형 전극(1156)을 전기적으로 연결한다. 일 예에 따른 화소 전극 패턴(AE)은 평탄화층(1060)에 마련된 제1컨택홀(CH1)을 통해서 구동 박막 트랜지스터(T2)로 연장되어, 소스 전극(SE)과 연결되면서 반도체 발광소자(1050)의 제1도전형 전극(1156)과 연결된다.
상기 공통 전극 패턴(CE)은 공통 전원 라인(CL)과 반도체 발광소자(1050)의 제2도전형 전극(1152)을 전기적으로 연결한다. 일 예에 따른 화소 전극 패턴(AE)은 평탄화층(1060)에 마련된 제2컨택홀(CH2)을 통해서 박막 트랜지스터(T2)로 연장되어 공통 전원 라인(CL)과 연결되면서 반도체 발광소자(1050)의 제2도전형 전극(1152)과 연결된다.
상기 화소 전극 패턴(AE)과 공통 전극 패턴(CE) 각각은 투명 도전성 물질로 이루어질 수 있다. 투명 도전성 물질은 ITO(Indium Tin Oxide) 또는 IZO(Indium Zinc Oxide) 등의 물질로 이루어질 수 있지만, 이에 한정되지 않는다.
본 예시에서 기판(1010)은 반도체 발광소자(2050)를 수용홀(1061)에 고정시키는 접착층(1120)을 더 포함한다.
상기 접착층(1120)은 반도체 발광소자(1050)와 수용홀(1061)의 바닥면 사이에 개재되어 반도체 발광소자(1050)를 수용홀(1061)의 바닥면에 부착시킨다. 이 경우에, 상기 접착층(1120)은 광투과성과 접착성을 가지는 재질로 형성될 수 있다. 상기 접착층이 광투과성이므로 , 상기 반도체 발광소자에서 발광되는 빛은 반도체 발광소자의 하부로 방출될 수 있다.
기판(1010)은 수용홀(1061)에 배치된 반도체 발광소자(1050)의 주변에 충전된 충전제(1117)를 더 포함할 수 있다.
상기 충전제(1117)는 반도체 발광소자(1050)가 부착된 수용홀(1061)의 주변 공간에 충전된다. 상기 충전제(1117)는 열 경화성 수지 또는 광 경화성 수지로 이루어질 수 있다. 상기 충전제(1117)는 수용홀(1061)의 주변 공간에 충진된 후, 경화됨으로써 수용홀(1061) 내의 에어 갭을 제거하면서 수용홀(1061)의 주변 공간 상면을 평탄화시킨다. 또한, 상기 충전제(1117)는 화소 전극 패턴(AE)과 공통 전극 패턴(CE) 각각을 지지하면서 반도체 발광소자의 패시베이션 역할을 할 수 있다.
본 도면들을 참조하면, 본 예시에 따른 디스플레이 장치에서 상기 기판(1010)의 상면을 덮는 봉지층(1080)이 구비될 수 있다.
상기 봉지층(1080)은 화소(SP)와 발광 소자(1050)를 덮도록 상기 기판(1010)의 상면에 코팅됨으로써 상기 기판(1010)에 마련된 화소(SP) 및 발광 소자(1050)를 보호한다. 상기 봉지층(1080)은 열 및/또는 광 경화성 수지로 이루어져 액상 상태로 상기 기판(1010)의 상면에 코팅된 후, 열 및/또는 광을 이용한 경화 공정에 의해 경화될 수 있다.
한편, 상기 봉지층(1080)은 형광체층으로 대체될 수 있다. 상기 형광체층은 적색의 화소를 이루는 위치에 배치되는 제1형광체부와 녹색의 화소를 이루는 위치에 배치되는 제2형광체부를 포함할 수 있다. 이 경우에, 상기 제1형광체부과 제2형광체부의 각각에는 청색 반도체 발광 소자의 청색 광을 적색 광이나 녹색 광으로 변환시킬 수 있는 적색 형광체와 녹색 형광체가 구비될 수 있다. 이 때에, 청색의 화소를 이루는 위치에서는 색을 변환하지 않는 광투과성 물질이 배치될 수 있다. 상기 광투과성 물질은 가시광선 영역에서 투과율이 높은 물질로서, 예를 들어 에폭시 계열의 PR(포토 레지스트), PDMS(polydimethylsiloxane), 레진 등이 이용될 수 있다.
다른 예로서, 상기 제1형광체부과 제2형광체부에는 청색 반도체 발광 소자의 청색 광을 황색 광이나 백색 광으로 변환시킬 수 있는 황색 형광체가 구비될 수 있다. 이 경우에는, 황색 광이나 백색 광이 컬러필터를 투과하면서 적색, 녹색 및 청색으로 변환될 수 있다.
또한, 도시에 의하면, 상기 블랙 매트릭스(BM) 및 컬러필터층(CF)가 상기 봉지층(1080, 또는 형광체층) 상에 배치될 수 있다.
상기 블랙 매트릭스(BM)는 상기 기판(1010)에 마련된 각 화소(SP)의 발광 영역과 중첩되는 개구 영역을 정의한다. 즉, 블랙 매트릭스(BM)는 각 화소(SP)의 발광 영역과 중첩되는 개구 영역을 제외한 나머지 영역에 마련됨으로써 인접한 개구 영역 사이의 혼색을 방지한다.
상기 개구 영역에는 컬러필터층(CF)이 배치될 수 있다. 예를 들어, 각 화소(SP)에 배치된 발광 소자(1050)가 청색 광을 방출하고, 황색 형광체층에 의하여 백색 광으로 변환된 경우에 상기 컬러필터층(CF)에서 적색이나 녹색이 구현될 수 있다. 이 경우에 상기 컬러필터층(CF)은 적색 파장, 녹색 파장 및 청색 파장을 필터링하는 부분들을 각각의 서브 화소에 순차적으로 배치되는 구조를 가질 수 있다. 또한, 상기 컬러필터층(CF)은 출력되는 빛의 색순도를 향상시키기 위하여 방출되는 빛의 색상과 관계없이 상기 개구 영역에 배치될 수 있다.
다른 예시로서, 상기 컬러필터층(CF)은 광추출층에 의하여 대체될 수 있다. 상기 광추출층은 투명 물질로 이루어져 발광 소자(1050)로부터 방출되는 광을 외부로 추출하는 역할을 한다. 발광 소자(1050)와 마주하는 광추출층의 대향면은 발광 소자(1050)로부터 방출되는 광의 직진성을 증가시키기 위한 렌즈 형태를 가질 수 있다.
상기에서 예시된 본 발명에 따른 디스플레이 장치에 의하면, 수용홀 내에서 반도체 발광소자를 배선에 전기적으로 연결함에 따라, 반도체 발광소자의 얼라인이 용이하게 되며, 높이 조절층을 통하여, 반도체 발광소자와 평탄화층의 사이에 높이차를 없애거나 저감하여, 전극 연결이 간단하게 이루어질 수 있다.
한편, 상기에서 설명된 디스플레이 장치는, 여러가지 형태로 변형될 수 있다. 이하, 이러한 변형예들에 대하여 도면을 참조하여 보다 상세하게 설명한다.
도 13, 도 14 및 도 15는 본 발명의 또 다른 실시예들을 나타내는 단면도이다.
도 13의 예시에서는, 앞서 도 10 내지 도 12를 참조하여 설명한 예시의 각 구성과 동일한 구성에 대해서는 동일한 참조번호가 부여되고, 그 설명은 처음 설명으로 갈음된다. 구체적으로, 높이 조절부를 제외한 나머지 구성은 도 10 내지 도 12에서 설명한 예시의 구성과 동일하다.
본 도면을 참조하면, 상기 높이 조절층은 서로 다른 재질의 복수의 레이어들(2071, 2072)을 구비할 수 있다. 또한, 상기 레이어들(2071, 2072) 중 어느 하나는 빛을 반사하는 미러층으로 구현될 수 있다.
예를 들어, 상기 높이 조절층은 기판 상에 적층되는 제1레이어(2071)와 상기 제1레이어(2071)에 적층되는 제2레이어(2072)를 구비할 수 있다. 이 경우에, 상기 제1레이어(2071)와 제2레이어(2072)는 서로 다른 재질로 형성될 수 있다.
보다 구체적으로, 상기 제1레이어(2071)는 상기 기판(2010) 상에 배치되는 레이어로서, 상기 기판(2010)이 부착되는 접착력을 가지도록 이루어진다. 또한, 상기 제1레이어(2071)는 박막 트랜지스터(T2)에 직접 접촉하는 부분이 아니기 때문에 수지(2071a)와, 상기 수지(2071a)에 혼입되는 반사입자(2071b)를 구비할 수 있다. 이와 같이, 상기 제1레이어(2071)에는 상기 반사입자(2071b)가 포함되어, 상기 반도체 발광소자들(2050)에서 발광되는 빛을 반사한다.
이 경우에, 상기 반사입자(2071b)는 백색안료로서 산화티탄, 알루미나, 산화마그네슘, 산화안티몬, 산화지르코늄 및 실리카 중 적어도 하나를 구비할 수 있다. 또한, 상기 수지(2071a)는 점착성 또는 접착성과, 유동성이 좋은 재질로 형성될 수 있다.
한편, 상기 제2레이어는 상기 제1레이어(2071)에 적층되는 레이어로서, 상기 반사입자가 미배치되는 레이어가 될 수 있다. 상기 제2레이어(2072)의 가장 큰 기능은 반사효과보다는 배선기판에서 전극의 요철에 의한 충진성이나 접착성 등을 향상시키는 것이므로 반사입자가 첨가되지 않게 된다.
다만, 본 발명은 반드시 이에 한정되는 것은 아니며, 상기 제2레이어(2072)에 소량의 백색안료가 첨가되는 것도 가능하다. 이 경우에는 상기 제1레이어(2071)보다 상기 제2레이어(2072)에 첨가되는 백색안료의 중량비가 더 적게 될 수 있다.
도 14의 예시에서는, 앞서 도 10 내지 도 12를 참조하여 설명한 예시의 각 구성과 동일한 구성에 대해서는 동일한 참조번호가 부여되고, 그 설명은 처음 설명으로 갈음된다. 구체적으로, 평탄화층과 높이 조절층을 제외한 나머지 구성은 도 10 내지 도 12에서 설명한 예시의 구성과 동일하다.
본 도면을 참조하면, 평탄화층(3060)은 층간 절연층(3114)을 덮도록 기판(3010)의 상면에 형성된다. 이러한 평탄화층(3060)은 구동 박막 트랜지스터(T2)를 포함하는 화소 회로를 보호하면서 층간 절연층(3114) 상에 평탄면을 제공한다. 일 예에 따른 평탄화층(1060)은 벤조사이클로부텐(benzocyclobutene) 또는 포토 아크릴(photo acryl)과 같은 유기 물질로 이루어질 수 있다.
상기 포토 아크릴의 경우에, 1회 코팅시에 두께가 약 3 마이크로미터 정도이고, 상기 반도체 발광소자의 높이는 약 5 내지 10 마이크로미터가 될 수 있다. 본 예시에 의하면, 상기 포토 아크릴이 복수회 코팅됨에 의하여, 상기 평탄화층은 동일 재질이 복수의 레이어(3061, 3062)를 형성할 수 있다. 예를 들어, 제1레이어(3061)가 상기 기판에 적층되고, 제2레이어(3062)가 상기 제1레이어(3061)에 적층되며, 이들은 동일 재질로 형성될 수 있다.
상기 평탄화층(3060)이 동일 재질의 복수 레이어로 형성됨에 따라, 상기 평탄화층은 상기 제1도전형 전극(3156) 및 제2도전형 전극(3152) 중 어느 하나의 도전형 전극이 상기 평탄화층(3060)의 상면과 동일평면상에 배치되는 높이를 가질 수 있다. 이 경우에, 전술한 높이 조절층은 생략될 수 있다.
다른 예로서, 상기 평탄화층(3060)은 서로 다른 재질이 복수의 레이어를 형성할 수 있다. 예를 들어, 벤조사이클로부텐이 상기 기판에 적층되어 제1레이어를 형성하고, 포토 아크릴이 상기 제1레이어에 적층되어 제2레이어를 형성할 수 있다.
도 15의 예시에서는, 앞서 도 10 내지 도 12를 참조하여 설명한 예시의 각 구성과 동일한 구성에 대해서는 동일한 참조번호가 부여되고, 그 설명은 처음 설명으로 갈음된다. 구체적으로, 반도체 발광소자와 높이 조절부를 제외한 나머지 구성은 도 10 내지 도 12에서 설명한 예시의 구성과 동일하다.
본 예시에서도, 도 14를 참조하여 설명한 예시와 같이 높이 조절부는 생략될 수 있으며, 반도체 발광소자의 에피의 높이를 조절하여 상기 평탄화층의 상면이 상기 제1도전형 전극(4156) 및 제2도전형 전극(4152) 중 어느 하나의 도전형 전극이 동일평면상에 배치되도록 한다.
보다 구체적으로, 상기 반도체 발광소자는 제1도전형 전극(4156), 제1도전형 전극(4156)이 형성되는 제1도전형 반도체층(4155), 제1도전형 반도체층(4155) 상에 형성된 활성층(4154), 활성층(4154) 상에 형성된 제2도전형 반도체층(4153) 및 제2도전형 반도체층(4153) 상에서 제1도전형 전극(4156)과 수평방향으로 이격 배치되는 제2도전형 전극(4152)을 포함한다. 이 경우에, 상기 제2도전형 반도체층(4153)의 타면에는 언도프된(Undoped) 반도체층이 적층되지 않는다.
상기 언도프된(Undoped) 반도체층는 발광소자를 분리하는 레이저 리프트 오프(Laser Lift-off, LLO) 공정에서 반도체 발광소자를 보호한 후에, 식각 등에 의하여 제거될 수 있다. 또한, 본 예시에서는 도 10 내지 도 12를 참조하여 전술한 예시의 높이 조절부보다 낮은 높이의 높이 조절부(4070)가 형성될 수 있다.
이 경우에, 상기 제2도전형 반도체층(4153)의 두께를 줄이고, 반도체 발광소자의 효율을 높여서, 상기 높이 조절부(4070)의 높이는 보다 낮아질 수 있다. 나아가, 상기 높이 조절부가 없는 구조도 가능하다.
이상에서 설명한 반도체 발광소자를 이용한 디스플레이 장치는 위에서 설명된 실시예들의 구성과 방법에 한정되는 것이 아니라, 상기 실시예들은 다양한 변형이 이루어질 수 있도록 각 실시예들의 전부 또는 일부가 선택적으로 조합되어 구성될 수도 있다.

Claims (12)

  1. 구동 박막 트랜지스터를 구비하는 기판;
    제1도전형 전극 및 제2도전형 전극을 구비하는 반도체 발광소자; 및
    상기 구동 박막 트랜지스터를 덮도록 형성되며, 상기 반도체 발광소자가 수용되는 수용홀을 구비하는 평탄화층를 포함하며,
    상기 제1도전형 전극 및 제2도전형 전극 중 어느 하나와, 상기 평탄화층의 일면의 높이를 맞추도록 상기 기판과 상기 평탄화층의 사이에는 높이 조절층이 형성되는 것을 특징으로 하는 디스플레이 장치.
  2. 제1항에 있어서,
    상기 반도체 발광소자는 상기 평탄화층보다 높이가 높은 것을 특징으로 하는 디스플레이 장치.
  3. 제2항에 있어서,
    상기 높이 조절층은 상기 기판 상에 형성되어 상기 기판에서 상기 평탄화층의 상면까지 거리를 조절하는 것을 특징으로 하는 디스플레이 장치.
  4. 제2항에 있어서,
    상기 높이 조절층은 서로 다른 재질의 복수의 레이어를 구비하는 것을 특징으로 하는 디스플레이 장치.
  5. 제2항에 있어서,
    상기 높이 조절층은 수지와, 상기 수지에 혼입되는 반사입자를 구비하는 것을 특징으로 하는 디스플레이 장치.
  6. 제1항에 있어서,
    상기 기판에는 상기 구동 박막 트랜지스터를 덮는 절연막이 형성되고,
    상기 평탄화층은 상기 절연막을 덮도록 코팅되는 포토아크릴을 구비하는 것을 특징으로 하는 디스플레이 장치.
  7. 제6항에 있어서,
    상기 수용홀은 상기 평탄화층, 절연막 및 높이 조절층을 각각 관통하여 상기 기판의 상면이 상기 수용홀의 바닥을 형성하는 것을 특징으로 하는 디스플레이 장치.
  8. 제7항에 있어서,
    상기 반도체 발광소자는 상기 수용홀의 내에서 상기 기판의 상면에 부착되는 것을 특징으로 하는 디스플레이 장치.
  9. 제6항에 있어서,
    상기 포토아크릴이 복수회 코팅됨에 의하여, 상기 평탄화층은 동일 재질이 복수의 레이어를 형성하는 것을 특징으로 하는 디스플레이 장치.
  10. 제1항에 있어서,
    상기 반도체 발광소자의 제1도전형 반도체층은 제2도전형 반도체층보다 두께가 작은 것을 특징으로 하는 디스플레이 장치.
  11. 제10항에 있어서,
    상기 제2도전형 반도체층의 두께는 상기 평탄화층의 두께보다 큰 것을 특징으로 하는 디스플레이 장치.
  12. 제1항에 있어서,
    상기 제1도전형 전극과 연결되며 상기 평탄화층의 제1홀을 통하여 상기 구동 박막 트랜지스터로 연장되는 화소전극 패턴과,
    상기 제2도전형 전극과 연결되며 상기 평탄화층의 제2홀을 통하여 상기 구동 박막 트랜지스터로 연장되는 공통전극 패턴을 더 포함하는 디스플레이 장치.
PCT/KR2017/004386 2017-01-20 2017-04-25 반도체 발광소자를 이용한 디스플레이 장치 WO2018135704A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP17893453.5A EP3573431B1 (en) 2017-01-20 2017-04-25 Display device using semiconductor light-emitting element
US16/479,483 US10978435B2 (en) 2017-01-20 2017-04-25 Display device using semiconductor light-emitting element
CN201780083762.4A CN110178446B (zh) 2017-01-20 2017-04-25 使用半导体发光元件的显示装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2017-0009824 2017-01-20
KR1020170009824A KR20180086003A (ko) 2017-01-20 2017-01-20 반도체 발광소자를 이용한 디스플레이 장치

Publications (1)

Publication Number Publication Date
WO2018135704A1 true WO2018135704A1 (ko) 2018-07-26

Family

ID=62908858

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/004386 WO2018135704A1 (ko) 2017-01-20 2017-04-25 반도체 발광소자를 이용한 디스플레이 장치

Country Status (5)

Country Link
US (1) US10978435B2 (ko)
EP (1) EP3573431B1 (ko)
KR (1) KR20180086003A (ko)
CN (1) CN110178446B (ko)
WO (1) WO2018135704A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11316072B2 (en) * 2017-12-07 2022-04-26 Lg Display Co., Ltd. LED element with an inverted taper structure for minimizing a defect rate of electrode connections, and display device using the same
EP3926682A4 (en) * 2019-02-13 2022-11-02 LG Electronics Inc. DISPLAY DEVICE USING LIGHT-emitting semiconductor elements and method of manufacturing the same

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10998296B2 (en) * 2017-12-07 2021-05-04 Zkw Group Gmbh In-vehicle display device using semiconductor light-emitting device
CN108987426B (zh) * 2018-07-23 2020-09-29 上海天马微电子有限公司 一种柔性led显示面板及电子设备
KR102607727B1 (ko) * 2018-08-01 2023-11-29 삼성디스플레이 주식회사 표시 장치
CN109273479B (zh) * 2018-09-20 2021-07-23 上海天马微电子有限公司 一种显示面板及其制作方法
CN117423689A (zh) * 2019-05-24 2024-01-19 晶元光电股份有限公司 封装体与显示模块
US11901497B2 (en) * 2019-12-24 2024-02-13 Seoul Viosys Co., Ltd. Method of repairing light emitting device, apparatus for repairing light emitting device, and display panel having repaired light emitting device
JP7565305B2 (ja) * 2020-01-23 2024-10-10 京東方科技集團股▲ふん▼有限公司 表示基板、その製造方法及び表示装置
JP7445483B2 (ja) * 2020-03-25 2024-03-07 株式会社ジャパンディスプレイ 表示装置
CN113471235B (zh) * 2020-03-30 2024-05-10 京东方科技集团股份有限公司 一种显示基板及其制作方法、发光元件的转移方法
CN113948626A (zh) * 2020-07-17 2022-01-18 深圳市柔宇科技股份有限公司 显示装置、显示屏和显示装置的制作方法
CN113990765B (zh) * 2021-12-28 2023-04-18 深圳市思坦科技有限公司 柔性发光器件的制备方法、柔性发光器件及发光装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101058880B1 (ko) * 2010-05-07 2011-08-25 서울대학교산학협력단 액티브 소자를 구비한 led 디스플레이 장치 및 그 제조방법
KR20130092893A (ko) * 2012-02-13 2013-08-21 엘지전자 주식회사 Led 디스플레이 장치 및 그것의 제조 방법
KR20130137985A (ko) * 2012-06-08 2013-12-18 엘지전자 주식회사 반도체 발광 소자를 이용한 디스플레이 장치
KR20150119149A (ko) * 2013-03-15 2015-10-23 럭스뷰 테크놀로지 코포레이션 리던던시 스킴을 갖춘 발광 다이오드 디스플레이 및 통합 결함 검출 테스트를 갖는 발광 다이오드 디스플레이를 제작하는 방법
KR20160010537A (ko) * 2013-06-17 2016-01-27 럭스뷰 테크놀로지 코포레이션 반사 뱅크 구조체 및 발광 디바이스 통합 방법

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101422037B1 (ko) * 2012-09-04 2014-07-23 엘지전자 주식회사 반도체 발광 소자를 이용한 디스플레이 장치
TWI534993B (zh) * 2013-09-25 2016-05-21 友達光電股份有限公司 無機發光二極體之畫素結構
TWI467528B (zh) * 2013-10-30 2015-01-01 Au Optronics Corp 發光二極體顯示面板及其製作方法
KR102316325B1 (ko) * 2015-07-06 2021-10-22 엘지전자 주식회사 반도체 발광 소자를 이용한 디스플레이 장치 및 이의 제조방법
KR102631260B1 (ko) * 2016-04-08 2024-01-31 삼성디스플레이 주식회사 표시장치 및 표시장치 제조방법
KR102610028B1 (ko) * 2016-04-12 2023-12-06 삼성디스플레이 주식회사 디스플레이 장치
US10157572B2 (en) * 2016-11-01 2018-12-18 Innolux Corporation Pixel driver circuitry for a display device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101058880B1 (ko) * 2010-05-07 2011-08-25 서울대학교산학협력단 액티브 소자를 구비한 led 디스플레이 장치 및 그 제조방법
KR20130092893A (ko) * 2012-02-13 2013-08-21 엘지전자 주식회사 Led 디스플레이 장치 및 그것의 제조 방법
KR20130137985A (ko) * 2012-06-08 2013-12-18 엘지전자 주식회사 반도체 발광 소자를 이용한 디스플레이 장치
KR20150119149A (ko) * 2013-03-15 2015-10-23 럭스뷰 테크놀로지 코포레이션 리던던시 스킴을 갖춘 발광 다이오드 디스플레이 및 통합 결함 검출 테스트를 갖는 발광 다이오드 디스플레이를 제작하는 방법
KR20160010537A (ko) * 2013-06-17 2016-01-27 럭스뷰 테크놀로지 코포레이션 반사 뱅크 구조체 및 발광 디바이스 통합 방법

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3573431A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11316072B2 (en) * 2017-12-07 2022-04-26 Lg Display Co., Ltd. LED element with an inverted taper structure for minimizing a defect rate of electrode connections, and display device using the same
US11916173B2 (en) 2017-12-07 2024-02-27 Lg Display Co., Ltd. Light-emitting device and display device using the same
EP3926682A4 (en) * 2019-02-13 2022-11-02 LG Electronics Inc. DISPLAY DEVICE USING LIGHT-emitting semiconductor elements and method of manufacturing the same

Also Published As

Publication number Publication date
US10978435B2 (en) 2021-04-13
CN110178446B (zh) 2021-09-21
EP3573431B1 (en) 2024-04-10
KR20180086003A (ko) 2018-07-30
EP3573431A4 (en) 2020-11-04
EP3573431A1 (en) 2019-11-27
CN110178446A (zh) 2019-08-27
US20190385991A1 (en) 2019-12-19

Similar Documents

Publication Publication Date Title
WO2018135704A1 (ko) 반도체 발광소자를 이용한 디스플레이 장치
WO2017142315A1 (ko) 반도체 발광 소자를 이용한 디스플레이 장치
WO2018097447A1 (en) Display device using semiconductor light emitting device and fabrication method thereof
WO2018048019A1 (ko) 반도체 발광소자를 이용한 디스플레이 장치
WO2018101539A1 (ko) 반도체 발광소자를 이용한 디스플레이 장치
WO2017122891A1 (en) Display device using semiconductor light emitting device and method for manufacturing
WO2014163325A1 (en) Display device using semiconductor light emitting device
WO2019151550A1 (ko) 반도체 발광소자를 이용한 디스플레이 장치 및 이의 제조방법
WO2017007118A1 (en) Display device using semiconductor light emitting device and method for manufacturing the same
WO2015060506A1 (en) Display device using semiconductor light emitting device
WO2019004508A1 (ko) 반도체 발광 소자를 이용한 디스플레이 장치
WO2017007215A1 (ko) 반도체 발광 소자를 이용한 디스플레이 장치 및 이의 제조방법
WO2015060507A1 (en) Display device using semiconductor light emitting device
WO2015133709A1 (en) Display device using semiconductor light emitting device
WO2016068418A1 (en) Display device using semiconductor light emitting device and method of fabricating the same
WO2017073865A1 (en) Display device using semiconductor light emitting device and method for manufacturing the same
WO2018056477A1 (ko) 반도체 발광 소자를 이용한 디스플레이 장치 및 이의 제조방법
WO2020166777A1 (ko) 반도체 발광 소자를 이용한 디스플레이 장치 및 이의 제조 방법
WO2021060595A1 (ko) 마이크로 led를 이용한 디스플레이 장치 및 이의 제조 방법
WO2016122125A1 (en) Display device using semiconductor light emitting devices and method for manufacturing the same
WO2018105810A1 (ko) 반도체 발광소자를 이용한 디스플레이 장치
WO2020179989A1 (ko) 반도체 발광 소자를 이용한 디스플레이 장치
WO2019142965A1 (ko) 반도체 발광 소자를 이용한 디스플레이 장치
WO2019135441A1 (ko) 반도체 발광소자를 이용한 디스플레이 장치
WO2019146816A1 (ko) 반도체 발광 소자를 이용한 디스플레이 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17893453

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017893453

Country of ref document: EP

Effective date: 20190820