WO2017007215A1 - 반도체 발광 소자를 이용한 디스플레이 장치 및 이의 제조방법 - Google Patents

반도체 발광 소자를 이용한 디스플레이 장치 및 이의 제조방법 Download PDF

Info

Publication number
WO2017007215A1
WO2017007215A1 PCT/KR2016/007251 KR2016007251W WO2017007215A1 WO 2017007215 A1 WO2017007215 A1 WO 2017007215A1 KR 2016007251 W KR2016007251 W KR 2016007251W WO 2017007215 A1 WO2017007215 A1 WO 2017007215A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive
semiconductor layer
light emitting
electrode
semiconductor light
Prior art date
Application number
PCT/KR2016/007251
Other languages
English (en)
French (fr)
Inventor
김선옥
여환국
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to US15/740,179 priority Critical patent/US10368417B2/en
Publication of WO2017007215A1 publication Critical patent/WO2017007215A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/20Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular shape, e.g. curved or truncated substrate
    • H01L33/24Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular shape, e.g. curved or truncated substrate of the light emitting region, e.g. non-planar junction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21KNON-ELECTRIC LIGHT SOURCES USING LUMINESCENCE; LIGHT SOURCES USING ELECTROCHEMILUMINESCENCE; LIGHT SOURCES USING CHARGES OF COMBUSTIBLE MATERIAL; LIGHT SOURCES USING SEMICONDUCTOR DEVICES AS LIGHT-GENERATING ELEMENTS; LIGHT SOURCES NOT OTHERWISE PROVIDED FOR
    • F21K9/00Light sources using semiconductor devices as light-generating elements, e.g. using light-emitting diodes [LED] or lasers
    • F21K9/90Methods of manufacture
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21KNON-ELECTRIC LIGHT SOURCES USING LUMINESCENCE; LIGHT SOURCES USING ELECTROCHEMILUMINESCENCE; LIGHT SOURCES USING CHARGES OF COMBUSTIBLE MATERIAL; LIGHT SOURCES USING SEMICONDUCTOR DEVICES AS LIGHT-GENERATING ELEMENTS; LIGHT SOURCES NOT OTHERWISE PROVIDED FOR
    • F21K99/00Subject matter not provided for in other groups of this subclass
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/38Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes with a particular shape
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/10Apparatus or processes specially adapted to the manufacture of electroluminescent light sources
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/14Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the electroluminescent material, or by the simultaneous addition of the electroluminescent material in or onto the light source
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/26Light sources with substantially two-dimensional radiating surfaces characterised by the composition or arrangement of the conductive material used as an electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/075Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00
    • H01L25/0753Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00 the devices being arranged next to each other

Definitions

  • the present invention relates to a display device and a method of manufacturing the same, and more particularly, to a flexible display device using a semiconductor light emitting device.
  • LCD Liguid Crystal Display
  • AMOLED Active Matrix Organic Light Emitting Diodes
  • LED Light Emitting Diode
  • LED is a well-known semiconductor light emitting device that converts current into light.
  • red LEDs using GaAsP compound semiconductors were commercialized. It has been used as a light source for display images of electronic devices including communication devices. Therefore, a method of solving the above problems by implementing a flexible display using the semiconductor light emitting device can be presented.
  • the present invention proposes a mechanism in which the process is simpler and the electrode wiring is possible.
  • One object of the present invention is to provide a semiconductor light emitting device which is simpler in process and capable of n contact and p contact, a display device having the same, and a manufacturing method.
  • Another object of the present invention is to implement a display device and a manufacturing method capable of arranging semiconductor light emitting elements with high definition.
  • a display device includes a semiconductor light emitting device, wherein the semiconductor light emitting device includes a first conductive semiconductor layer and a side surface, and a second conductive semiconductor layer overlapping the first conductive semiconductor layer. And a first conductive electrode electrically connected to the first conductive semiconductor layer, and a second conductive electrode electrically connected to the second conductive semiconductor layer, wherein the second conductive semiconductor layer includes: An inclined portion inclined with respect to the side surface, and the second conductive electrode is formed to cover the inclined portion.
  • the inclined portion may extend to the first conductive semiconductor layer.
  • the second conductive electrode may extend from the inclined portion to the side surface and protrude in a direction away from the second conductive semiconductor layer.
  • the present invention comprises the steps of growing the second conductive semiconductor layer and the first conductive semiconductor layer in order on the substrate so that the second conductive semiconductor layer is disposed below the first conductive semiconductor layer, Stacking a mask on the first conductive semiconductor layer, etching the first conductive semiconductor layer and the second conductive semiconductor layer to form a plurality of semiconductor light emitting devices, and removing the mask; And depositing a first conductive electrode and a second conductive electrode on the first conductive semiconductor layer and the second conductive semiconductor layer, respectively.
  • the second conductive semiconductor layer has an inclined portion inclined with respect to side surfaces of the semiconductor light emitting devices, and the second conductive electrode is formed to cover the inclined portion.
  • the semiconductor light emitting device may include a phosphor layer disposed to cover the plurality of semiconductor light emitting devices, and the second wiring line may surround an exit surface of the semiconductor light emitting device, so that light reflected from the phosphor layer is directed toward the front surface. Reflect.
  • An anti-reflection layer may be formed below the phosphor layer.
  • the display device As the post for n contact is formed in the semiconductor light emitting device, a semiconductor light emitting device capable of vertically forming electrode wirings without increasing a process is realized. In addition, even though this is a simpler process, a high-definition arrangement of semiconductor light emitting devices is possible in a display device.
  • the Mesa process for the emission region and the p-contact region and the isolation process for the n-contact region may be replaced by a single etching process.
  • FIG. 1 is a conceptual diagram illustrating an embodiment of a display device using the semiconductor light emitting device of the present invention.
  • FIG. 2 is an enlarged view of a portion A of FIG. 1, and FIGS. 3A and 3B are cross-sectional views taken along the lines B-B and C-C of FIG. 2.
  • FIG. 4 is a conceptual diagram illustrating the flip chip type semiconductor light emitting device of FIG. 3.
  • 5A through 5C are conceptual views illustrating various forms of implementing colors in connection with a flip chip type semiconductor light emitting device.
  • FIG. 6 is a cross-sectional view illustrating a method of manufacturing a display device using the semiconductor light emitting device of the present invention.
  • FIG. 7 is a perspective view showing another embodiment of a display device using the semiconductor light emitting device of the invention.
  • FIG. 8 is a cross-sectional view taken along the line D-D of FIG. 7.
  • FIG. 9 is a conceptual diagram illustrating the vertical semiconductor light emitting device of FIG. 8.
  • FIG. 10 is an enlarged view of portion A of FIG. 1 for explaining another embodiment of the present invention to which a semiconductor light emitting device having a new structure is applied.
  • FIG. 11A is a cross-sectional view taken along the line E-E of FIG. 10.
  • FIG. 11B is a cross-sectional view taken along the line F-F of FIG. 11.
  • FIG. 12 is a conceptual diagram illustrating the flip chip type semiconductor light emitting device of FIG. 11A.
  • FIG. 13 is an enlarged view of a portion A of FIG. 1 for explaining still another embodiment of the present invention.
  • FIG. 14 is a cross-sectional view taken along the line G-G of FIG. 13
  • FIG. 15 is a cross-sectional view taken along the line H-H of FIG. 13
  • FIG. 16 is a cross-sectional view taken along the line I-I of FIG. 13.
  • FIG. 17 is a conceptual diagram illustrating the semiconductor light emitting device of FIG. 13.
  • 18A, 18B, 18C, 18D, 18E, 18F, and 18G are cross-sectional views illustrating a method of manufacturing a display device using the semiconductor light emitting device of the present invention.
  • 19 is a conceptual diagram illustrating another embodiment of the mask.
  • 20 and 21 are cross-sectional views illustrating a cross section taken along a line G-G when the semiconductor light emitting device according to another embodiment is applied to the display device of FIG. 13.
  • the display device described herein includes a mobile phone, a smart phone, a laptop computer, a digital broadcasting terminal, a personal digital assistant (PDA), a portable multimedia player (PMP), navigation, and a slate PC. , Tablet PC, Ultra Book, digital TV, desktop computer.
  • PDA personal digital assistant
  • PMP portable multimedia player
  • slate PC slate PC
  • Tablet PC Ultra Book
  • digital TV desktop computer
  • FIG. 1 is a conceptual diagram illustrating an embodiment of a display device using the semiconductor light emitting device of the present invention.
  • the information processed by the controller of the display apparatus 100 may be displayed using a flexible display.
  • the flexible display includes a display that can be bent, bent, twisted, foldable, or rollable by external force.
  • a flexible display can be a display fabricated on a thin, flexible substrate that can be bent, bent, folded, or rolled like a paper while maintaining the display characteristics of a conventional flat panel display.
  • the display area of the flexible display becomes flat.
  • the display area may be a curved surface in a state in which the first state is bent by an external force (for example, a state having a finite radius of curvature, hereinafter referred to as a second state).
  • the information displayed in the second state may be visual information output on a curved surface.
  • Such visual information is implemented by independently controlling light emission of a sub-pixel disposed in a matrix form.
  • the unit pixel refers to a minimum unit for implementing one color.
  • the unit pixel of the flexible display may be implemented by a semiconductor light emitting device.
  • a light emitting diode LED
  • the light emitting diode is formed to have a small size, thereby enabling it to serve as a unit pixel even in the second state.
  • FIG. 2 is a partially enlarged view of portion A of FIG. 1
  • FIGS. 3A and 3B are cross-sectional views taken along lines BB and CC of FIG. 2
  • FIG. 4 is a conceptual diagram illustrating a flip chip type semiconductor light emitting device of FIG. 3A.
  • 5A through 5C are conceptual views illustrating various forms of implementing colors in connection with a flip chip type semiconductor light emitting device.
  • a display device 100 using a passive matrix (PM) type semiconductor light emitting device is illustrated as a display device 100 using a semiconductor light emitting device.
  • PM passive matrix
  • AM active matrix
  • the display apparatus 100 includes a substrate 110, a first electrode 120, a conductive adhesive layer 130, a second electrode 140, and a plurality of semiconductor light emitting devices 150.
  • the substrate 110 may be a flexible substrate.
  • the substrate 110 may include glass or polyimide (PI).
  • PI polyimide
  • any material such as polyethylene naphthalate (PEN) or polyethylene terephthalate (PET) may be used as long as it is an insulating and flexible material.
  • the substrate 110 may be either a transparent material or an opaque material.
  • the substrate 110 may be a wiring board on which the first electrode 120 is disposed, and thus the first electrode 120 may be positioned on the substrate 110.
  • the insulating layer 160 may be disposed on the substrate 110 on which the first electrode 120 is disposed, and the auxiliary electrode 170 may be positioned on the insulating layer 160.
  • a state in which the insulating layer 160 is stacked on the substrate 110 may be one wiring board.
  • the insulating layer 160 is made of an insulating and flexible material such as polyimide (PI, Polyimide), PET, and PEN, and can be formed integrally with the substrate 110 to form one substrate.
  • the auxiliary electrode 170 is an electrode that electrically connects the first electrode 120 and the semiconductor light emitting device 150.
  • the auxiliary electrode 170 is disposed on the insulating layer 160 and disposed to correspond to the position of the first electrode 120.
  • the auxiliary electrode 170 may have a dot shape and may be electrically connected to the first electrode 120 by an electrode hole 171 passing through the insulating layer 160.
  • the electrode hole 171 may be formed by filling a via material with a conductive material.
  • the conductive adhesive layer 130 is formed on one surface of the insulating layer 160, but the present invention is not necessarily limited thereto.
  • a layer is formed between the insulating layer 160 and the conductive adhesive layer 130 or a structure in which the conductive adhesive layer 130 is disposed on the substrate 110 without the insulating layer 160. It is also possible.
  • the conductive adhesive layer 130 may serve as an insulating layer.
  • the conductive adhesive layer 130 may be a layer having adhesiveness and conductivity.
  • the conductive adhesive layer 130 may be mixed with a conductive material and an adhesive material.
  • the conductive adhesive layer 130 is flexible, thereby enabling a flexible function in the display device.
  • the conductive adhesive layer 130 may be an anisotropic conductive film (ACF), an anisotropic conductive paste, a solution containing conductive particles, or the like.
  • ACF anisotropic conductive film
  • the conductive adhesive layer 130 allows electrical interconnection in the Z direction through the thickness, but may be configured as a layer having electrical insulation in the horizontal X-Y direction. Therefore, the conductive adhesive layer 130 may be referred to as a Z-axis conductive layer (however, hereinafter referred to as a 'conductive adhesive layer').
  • the anisotropic conductive film is a film in which an anisotropic conductive medium is mixed with an insulating base member. When the heat and pressure are applied, only the specific portion is conductive by the anisotropic conductive medium.
  • the heat and pressure is applied to the anisotropic conductive film, other methods are possible in order for the anisotropic conductive film to be partially conductive. Such a method can be, for example, only one of the heat and pressure applied or UV curing or the like.
  • the anisotropic conductive medium may be, for example, conductive balls or conductive particles.
  • the anisotropic conductive film in this example is a film in which the conductive ball is mixed with the insulating base member, and only a specific portion of the conductive ball is conductive when heat and pressure are applied.
  • the anisotropic conductive film may be in a state in which a core of a conductive material contains a plurality of particles coated by an insulating film made of a polymer material, and in this case, a portion to which heat and pressure are applied becomes conductive by the core as the insulating film is destroyed. .
  • the shape of the core may be deformed to form a layer in contact with each other in the thickness direction of the film.
  • heat and pressure are applied to the anisotropic conductive film as a whole, and the electrical connection in the Z-axis direction is partially formed by the height difference of the counterpart bonded by the anisotropic conductive film.
  • the anisotropic conductive film may be in a state containing a plurality of particles coated with a conductive material on the insulating core.
  • the portion to which the heat and pressure are applied is deformed (pressed) to have conductivity in the thickness direction of the film.
  • the conductive material may penetrate the insulating base member in the Z-axis direction and have conductivity in the thickness direction of the film. In this case, the conductive material may have a pointed end.
  • the anisotropic conductive film may be a fixed array anisotropic conductive film (fixed array ACF) consisting of a conductive ball inserted into one surface of the insulating base member.
  • the insulating base member is formed of an adhesive material, and the conductive ball is concentrated on the bottom portion of the insulating base member, and deforms with the conductive ball when heat and pressure are applied to the base member. Therefore, it has conductivity in the vertical direction.
  • the present invention is not necessarily limited thereto, and the anisotropic conductive film has a form in which conductive balls are randomly mixed in an insulating base member or a plurality of layers, in which a conductive ball is disposed in one layer (double- ACF) etc. are all possible.
  • the anisotropic conductive paste is a combination of a paste and a conductive ball, and may be a paste in which conductive balls are mixed with an insulating and adhesive base material.
  • solutions containing conductive particles can be solutions in the form of conductive particles or nanoparticles.
  • the second electrode 140 is positioned on the insulating layer 160 spaced apart from the auxiliary electrode 170. That is, the conductive adhesive layer 130 is disposed on the insulating layer 160 on which the auxiliary electrode 170 and the second electrode 140 are located.
  • the semiconductor light emitting device 150 is connected in a flip chip form by applying heat and pressure. In this case, the semiconductor light emitting device 150 is electrically connected to the first electrode 120 and the second electrode 140.
  • the semiconductor light emitting device may be a flip chip type light emitting device.
  • the semiconductor light emitting device may include a p-type electrode 156, a p-type semiconductor layer 155 on which the p-type electrode 156 is formed, an active layer 154 formed on the p-type semiconductor layer 155, and an active layer ( The n-type semiconductor layer 153 formed on the 154 and the n-type electrode 152 disposed horizontally spaced apart from the p-type electrode 156 on the n-type semiconductor layer 153.
  • the p-type electrode 156 may be electrically connected to the auxiliary electrode 170 by the conductive adhesive layer 130, and the n-type electrode 152 may be electrically connected to the second electrode 140.
  • the auxiliary electrode 170 is formed to be long in one direction, and one auxiliary electrode may be electrically connected to the plurality of semiconductor light emitting devices 150.
  • the p-type electrodes of the left and right semiconductor light emitting devices around the auxiliary electrode may be electrically connected to one auxiliary electrode.
  • the semiconductor light emitting device 150 is press-fitted into the conductive adhesive layer 130 by heat and pressure, and thus, between the p-type electrode 156 and the auxiliary electrode 170 of the semiconductor light emitting device 150. Only the portion and the portion between the n-type electrode 152 and the second electrode 140 of the semiconductor light emitting device 150 have conductivity, and the rest of the semiconductor light emitting device does not have a press-fitted conductivity. As such, the conductive adhesive layer 130 not only couples the semiconductor light emitting device 150 and the auxiliary electrode 170 and between the semiconductor light emitting device 150 and the second electrode 140 but also forms an electrical connection.
  • the plurality of semiconductor light emitting devices 150 constitute an array of light emitting devices, and a phosphor layer 180 is formed on the light emitting device array.
  • the light emitting device array may include a plurality of semiconductor light emitting devices having different luminance values.
  • Each semiconductor light emitting device 150 constitutes a unit pixel and is electrically connected to the first electrode 120.
  • a plurality of first electrodes 120 may be provided, the semiconductor light emitting devices may be arranged in several rows, and the semiconductor light emitting devices may be electrically connected to any one of the plurality of first electrodes.
  • semiconductor light emitting devices are connected in a flip chip form, semiconductor light emitting devices grown on a transparent dielectric substrate may be used.
  • the semiconductor light emitting devices may be, for example, nitride semiconductor light emitting devices. Since the semiconductor light emitting device 150 has excellent brightness, individual unit pixels may be configured with a small size.
  • the partition wall 190 may be formed between the semiconductor light emitting devices 150.
  • the partition wall 190 may serve to separate the individual unit pixels from each other, and may be integrally formed with the conductive adhesive layer 130.
  • the base member of the anisotropic conductive film may form the partition wall.
  • the partition 190 may have reflective properties and contrast may be increased.
  • a reflective partition may be separately provided as the partition 190.
  • the partition 190 may include a black or white insulator according to the purpose of the display device.
  • the partition wall of the white insulator is used, the reflectivity may be improved, and when the partition wall of the black insulator is used, the contrast may be increased at the same time.
  • the phosphor layer 180 may be located on the outer surface of the semiconductor light emitting device 150.
  • the semiconductor light emitting device 150 is a blue semiconductor light emitting device that emits blue (B) light, and the phosphor layer 180 performs a function of converting the blue (B) light into the color of a unit pixel.
  • the phosphor layer 180 may be a red phosphor 181 or a green phosphor 182 constituting individual pixels.
  • a red phosphor 181 capable of converting blue light into red (R) light may be stacked on the blue semiconductor light emitting element 151 at a position forming a red unit pixel, and a position forming a green unit pixel.
  • a green phosphor 182 capable of converting blue light into green (G) light may be stacked on the blue semiconductor light emitting device 151.
  • only the blue semiconductor light emitting device 151 may be used alone in a portion of the blue unit pixel.
  • the unit pixels of red (R), green (G), and blue (B) may form one pixel. More specifically, phosphors of one color may be stacked along each line of the first electrode 120. Therefore, one line in the first electrode 120 may be an electrode for controlling one color. That is, red (R), green (G), and blue (B) may be sequentially disposed along the second electrode 140, and thus, a unit pixel may be implemented.
  • the present invention is not limited thereto, and instead of the phosphor, the semiconductor light emitting device 150 and the quantum dot QD may be combined to implement unit pixels of red (R), green (G), and blue (B). have.
  • a black matrix 191 may be disposed between the respective phosphor layers in order to improve contrast. That is, the black matrix 191 may improve contrast of the contrast.
  • the present invention is not necessarily limited thereto, and other structures for implementing blue, red, and green may be applied.
  • each semiconductor light emitting device 150 is mainly made of gallium nitride (GaN), and indium (In) and / or aluminum (Al) is added together to emit light of various colors including blue. It can be implemented as an element.
  • the semiconductor light emitting devices 150 may be red, green, and blue semiconductor light emitting devices, respectively, to form a sub-pixel.
  • the red, green, and blue semiconductor light emitting devices R, G, and B are alternately disposed, and the red, green, and blue unit pixels are arranged by the red, green, and blue semiconductor light emitting devices. These pixels constitute one pixel, and thus, a full color display may be implemented.
  • the semiconductor light emitting device may include a white light emitting device W having a yellow phosphor layer for each individual device.
  • a red phosphor layer 181, a green phosphor layer 182, and a blue phosphor layer 183 may be provided on the white light emitting device W.
  • a unit pixel may be formed by using a color filter in which red, green, and blue are repeated on the white light emitting device W.
  • the red phosphor layer 181, the green phosphor layer 182, and the blue phosphor layer 183 may be provided on the ultraviolet light emitting device UV.
  • the semiconductor light emitting device can be used not only for visible light but also for ultraviolet light (UV) in all areas, and can be extended in the form of a semiconductor light emitting device in which ultraviolet light (UV) can be used as an excitation source of the upper phosphor. .
  • the semiconductor light emitting device 150 is positioned on the conductive adhesive layer 130 to constitute a unit pixel in the display device. Since the semiconductor light emitting device 150 has excellent brightness, individual unit pixels may be configured with a small size.
  • the size of the individual semiconductor light emitting device 150 may be 80 ⁇ m or less in length of one side, and may be a rectangular or square device. In the case of a rectangle, the size may be 20 ⁇ 80 ⁇ m or less.
  • a square semiconductor light emitting element 150 having a side length of 10 ⁇ m is used as a unit pixel, sufficient brightness for forming a display device appears. Therefore, for example, when the size of the unit pixel is a rectangular pixel in which one side is 600 ⁇ m and the other side is 300 ⁇ m, the distance between the semiconductor light emitting elements is relatively large. Therefore, in this case, it is possible to implement a flexible display device having an HD image quality.
  • the display device using the semiconductor light emitting device described above may be manufactured by a new type of manufacturing method. Hereinafter, the manufacturing method will be described with reference to FIG. 6.
  • FIG. 6 is a cross-sectional view illustrating a method of manufacturing a display device using the semiconductor light emitting device of the present invention.
  • the conductive adhesive layer 130 is formed on the insulating layer 160 on which the auxiliary electrode 170 and the second electrode 140 are located.
  • the insulating layer 160 is stacked on the first substrate 110 to form a single substrate (or a wiring substrate), and the first electrode 120, the auxiliary electrode 170, and the second electrode 140 are formed on the wiring substrate. Is placed.
  • the first electrode 120 and the second electrode 140 may be disposed in a direction perpendicular to each other.
  • the first substrate 110 and the insulating layer 160 may each include glass or polyimide (PI).
  • the conductive adhesive layer 130 may be implemented by, for example, an anisotropic conductive film.
  • an anisotropic conductive film may be applied to a substrate on which the insulating layer 160 is located.
  • the semiconductor light emitting device 150 may include a second substrate 112 corresponding to the positions of the auxiliary electrodes 170 and the second electrodes 140 and on which the plurality of semiconductor light emitting devices 150 constituting individual pixels are located. ) Is disposed to face the auxiliary electrode 170 and the second electrode 140.
  • the second substrate 112 may be a growth substrate for growing the semiconductor light emitting device 150, and may be a sapphire substrate or a silicon substrate.
  • the semiconductor light emitting device When the semiconductor light emitting device is formed in a wafer unit, the semiconductor light emitting device may be effectively used in the display device by having a gap and a size capable of forming the display device.
  • the wiring board and the second board 112 are thermocompressed.
  • the wiring board and the second substrate 112 may be thermocompressed by applying an ACF press head.
  • the thermocompression bonding the wiring substrate and the second substrate 112 are bonded. Only a portion between the semiconductor light emitting device 150, the auxiliary electrode 170, and the second electrode 140 has conductivity due to the property of the conductive anisotropic conductive film by thermocompression bonding.
  • the device 150 may be electrically connected.
  • the semiconductor light emitting device 150 is inserted into the anisotropic conductive film, through which a partition wall may be formed between the semiconductor light emitting device 150.
  • the second substrate 112 is removed.
  • the second substrate 112 may be removed using a laser lift-off (LLO) or chemical lift-off (CLO).
  • LLO laser lift-off
  • CLO chemical lift-off
  • a transparent insulating layer (not shown) may be formed by coating silicon oxide (SiOx) on the wiring board to which the semiconductor light emitting device 150 is coupled.
  • the method may further include forming a phosphor layer on one surface of the semiconductor light emitting device 150.
  • the semiconductor light emitting device 150 is a blue semiconductor light emitting device that emits blue (B) light, and a red phosphor or a green phosphor for converting the blue (B) light into a color of a unit pixel emits the blue semiconductor light.
  • a layer may be formed on one surface of the device.
  • the manufacturing method or structure of the display device using the semiconductor light emitting device described above may be modified in various forms.
  • a vertical semiconductor light emitting device may also be applied to the display device described above.
  • a vertical structure will be described with reference to FIGS. 5 and 6.
  • FIG. 7 is a perspective view showing another embodiment of a display device using the semiconductor light emitting device of the invention
  • FIG. 8 is a cross-sectional view taken along the line DD of FIG. to be.
  • the display device may be a display device using a passive semiconductor light emitting device of a passive matrix (PM) type.
  • PM passive matrix
  • the display device includes a substrate 210, a first electrode 220, a conductive adhesive layer 230, a second electrode 240, and a plurality of semiconductor light emitting devices 250.
  • the substrate 210 is a wiring substrate on which the first electrode 220 is disposed, and may include polyimide (PI) in order to implement a flexible display device.
  • PI polyimide
  • any material that is insulating and flexible may be used.
  • the first electrode 220 is positioned on the substrate 210 and may be formed as an electrode having a bar shape that is long in one direction.
  • the first electrode 220 may be formed to serve as a data electrode.
  • the conductive adhesive layer 230 is formed on the substrate 210 on which the first electrode 220 is located. Like a display device to which a flip chip type light emitting device is applied, the conductive adhesive layer 230 is a solution containing an anisotropic conductive film (ACF), anisotropic conductive paste, and conductive particles. ), Etc. However, this embodiment also illustrates a case where the conductive adhesive layer 230 is implemented by the anisotropic conductive film.
  • ACF anisotropic conductive film
  • Etc Etc
  • the semiconductor light emitting device 250 After placing the anisotropic conductive film in a state where the first electrode 220 is positioned on the substrate 210, the semiconductor light emitting device 250 is connected to the semiconductor light emitting device 250 by applying heat and pressure. It is electrically connected to the electrode 220. In this case, the semiconductor light emitting device 250 may be disposed on the first electrode 220.
  • the electrical connection is created because, as described above, in the anisotropic conductive film is partially conductive in the thickness direction when heat and pressure are applied. Therefore, in the anisotropic conductive film is divided into a portion 231 having conductivity and a portion 232 having no conductivity in the thickness direction.
  • the conductive adhesive layer 230 implements not only electrical connection but also mechanical coupling between the semiconductor light emitting device 250 and the first electrode 220.
  • the semiconductor light emitting device 250 is positioned on the conductive adhesive layer 230, thereby forming individual pixels in the display device. Since the semiconductor light emitting device 250 has excellent brightness, individual unit pixels may be configured with a small size.
  • the size of the individual semiconductor light emitting device 250 may be 80 ⁇ m or less in length of one side, and may be a rectangular or square device. In the case of a rectangle, the size may be 20 ⁇ 80 ⁇ m or less.
  • the semiconductor light emitting device 250 may have a vertical structure.
  • a plurality of second electrodes 240 disposed in a direction crossing the length direction of the first electrode 220 and electrically connected to the vertical semiconductor light emitting device 250 are positioned.
  • the vertical semiconductor light emitting device includes a p-type electrode 256, a p-type semiconductor layer 255 formed on the p-type electrode 256, and an active layer 254 formed on the p-type semiconductor layer 255. ), An n-type semiconductor layer 253 formed on the active layer 254, and an n-type electrode 252 formed on the n-type semiconductor layer 253.
  • the lower p-type electrode 256 may be electrically connected by the first electrode 220 and the conductive adhesive layer 230, and the upper n-type electrode 252 may be the second electrode 240 described later.
  • a phosphor layer 280 may be formed on one surface of the semiconductor light emitting device 250.
  • the semiconductor light emitting device 250 is a blue semiconductor light emitting device 251 that emits blue (B) light
  • the phosphor layer 280 is provided to convert the blue (B) light into the color of a unit pixel.
  • the phosphor layer 280 may be a red phosphor 281 and a green phosphor 282 constituting individual pixels.
  • a red phosphor 281 capable of converting the blue light into the red (R) light may be stacked on the blue semiconductor light emitting element 251, and the position forming the green unit pixel.
  • a green phosphor 282 capable of converting blue light into green (G) light may be stacked on the blue semiconductor light emitting device 251.
  • only the blue semiconductor light emitting device 251 may be used alone in a portion of the blue unit pixel. In this case, the unit pixels of red (R), green (G), and blue (B) may form one pixel.
  • the present invention is not necessarily limited thereto, and as described above in the display device to which the flip chip type light emitting device is applied, other structures for implementing blue, red, and green may be applied.
  • the second electrode 240 is positioned between the semiconductor light emitting devices 250 and is electrically connected to the semiconductor light emitting devices 250.
  • the semiconductor light emitting devices 250 may be arranged in a plurality of columns, and the second electrode 240 may be positioned between the columns of the semiconductor light emitting devices 250.
  • the second electrode 240 may be positioned between the semiconductor light emitting devices 250.
  • the second electrode 240 may be formed as an electrode having a bar shape that is long in one direction, and may be disposed in a direction perpendicular to the first electrode.
  • the second electrode 240 and the semiconductor light emitting device 250 may be electrically connected by a connection electrode protruding from the second electrode 240.
  • the connection electrode may be an n-type electrode of the semiconductor light emitting device 250.
  • the n-type electrode is formed of an ohmic electrode for ohmic contact, and the second electrode covers at least a portion of the ohmic electrode by printing or deposition.
  • the second electrode 240 and the n-type electrode of the semiconductor light emitting device 250 may be electrically connected to each other.
  • the second electrode 240 may be positioned on the conductive adhesive layer 230.
  • a transparent insulating layer (not shown) including silicon oxide (SiOx) may be formed on the substrate 210 on which the semiconductor light emitting device 250 is formed.
  • SiOx silicon oxide
  • the second electrode 240 is positioned after the transparent insulating layer is formed, the second electrode 240 is positioned on the transparent insulating layer.
  • the second electrode 240 may be formed to be spaced apart from the conductive adhesive layer 230 or the transparent insulating layer.
  • the present invention has the advantage of not having to use a transparent electrode such as ITO by placing the second electrode 240 between the semiconductor light emitting devices 250. Therefore, the light extraction efficiency can be improved by using a conductive material having good adhesion with the n-type semiconductor layer as a horizontal electrode without being limited to the selection of a transparent material.
  • a transparent electrode such as indium tin oxide (ITO)
  • the partition wall 290 may be located between the semiconductor light emitting devices 250. That is, the partition wall 290 may be disposed between the vertical semiconductor light emitting devices 250 to isolate the semiconductor light emitting devices 250 forming individual pixels. In this case, the partition wall 290 may serve to separate individual unit pixels from each other, and may be integrally formed with the conductive adhesive layer 230. For example, when the semiconductor light emitting device 250 is inserted into the anisotropic conductive film, the base member of the anisotropic conductive film may form the partition wall.
  • the partition wall 290 may have reflective properties and contrast may be increased.
  • a reflective partition may be separately provided.
  • the partition 290 may include a black or white insulator according to the purpose of the display device.
  • the partition wall 290 is disposed between the vertical semiconductor light emitting device 250 and the second electrode 240. It can be located in between. Accordingly, the individual unit pixels may be configured even with a small size by using the semiconductor light emitting device 250, and the distance between the semiconductor light emitting devices 250 is relatively large enough so that the second electrode 240 is connected to the semiconductor light emitting device 250. ), And a flexible display device having HD image quality can be implemented.
  • a black matrix 291 may be disposed between the respective phosphors in order to improve contrast. That is, this black matrix 291 can improve contrast of the contrast.
  • the semiconductor light emitting device 250 is positioned on the conductive adhesive layer 230, thereby forming individual pixels in the display device. Since the semiconductor light emitting device 250 has excellent brightness, individual unit pixels may be configured with a small size. Therefore, a full color display in which the unit pixels of red (R), green (G), and blue (B) form one pixel may be implemented by the semiconductor light emitting device.
  • FIG. 10 is an enlarged view of portion A of FIG. 1 for explaining another embodiment of the present invention to which a semiconductor light emitting device having a new structure is applied.
  • 11A is a cross-sectional view taken along the line E-E of FIG. 10
  • FIG. 11B is a cross-sectional view taken along the line F-F of FIG. 11
  • FIG. 12 is a conceptual diagram illustrating the flip chip type semiconductor light emitting device of FIG. 11A.
  • a display device 1000 using a passive matrix (PM) type semiconductor light emitting device is illustrated as a display device 1000 using a semiconductor light emitting device.
  • PM passive matrix
  • AM active matrix
  • the display apparatus 1000 includes a substrate 1010, a first electrode 1020, a conductive adhesive layer 1030, a second electrode 1040, and a plurality of semiconductor light emitting devices 1050.
  • the first electrode 1020 and the second electrode 1040 may each include a plurality of electrode lines.
  • the substrate 1010 is a wiring board on which the first electrode 1020 is disposed, and may include polyimide (PI) to implement a flexible display device.
  • PI polyimide
  • any material that is insulating and flexible may be used.
  • the first electrode 1020 is positioned on the substrate 1010 and may be formed as an electrode having a bar shape that is long in one direction.
  • the first electrode 1020 may be configured to serve as a data electrode.
  • the conductive adhesive layer 1030 is formed on the substrate 1010 on which the first electrode 1020 is located.
  • the conductive adhesive layer 1030 is a solution containing an anisotropic conductive film (ACF), anisotropic conductive paste, and conductive particles. solution, etc.
  • ACF anisotropic conductive film
  • the conductive adhesive layer 1030 may be replaced with an adhesive layer.
  • the adhesive layer may not need conductivity.
  • a plurality of second electrodes 1040 are disposed between the semiconductor light emitting devices in a direction crossing the length direction of the first electrode 1020 and electrically connected to the semiconductor light emitting devices 1050.
  • the second electrode 1040 may be located on the conductive adhesive layer 1030. That is, the conductive adhesive layer 1030 is disposed between the wiring board and the second electrode 1040. The second electrode 1040 may be electrically connected to the semiconductor light emitting device 1050 by contact.
  • the plurality of semiconductor light emitting devices 1050 are coupled to the conductive adhesive layer 1030 and electrically connected to the first electrode 1020 and the second electrode 1040.
  • a transparent insulating layer (not shown) including silicon oxide (SiOx) may be formed on the substrate 1010 on which the semiconductor light emitting device 1050 is formed.
  • SiOx silicon oxide
  • the second electrode 1040 is positioned after the transparent insulating layer is formed, the second electrode 1040 is positioned on the transparent insulating layer.
  • the second electrode 1040 may be formed to be spaced apart from the conductive adhesive layer 1030 or the transparent insulating layer.
  • the plurality of semiconductor light emitting devices 1050 may form a plurality of columns in a direction parallel to the plurality of electrode lines provided in the first electrode 1020.
  • the present invention is not necessarily limited thereto.
  • the plurality of semiconductor light emitting devices 1050 may form a plurality of columns along the second electrode 1040.
  • the display apparatus 1000 may further include a phosphor layer 1080 formed on one surface of the plurality of semiconductor light emitting devices 1050.
  • the semiconductor light emitting device 1050 is a blue semiconductor light emitting device that emits blue (B) light
  • the phosphor layer 1080 performs a function of converting the blue (B) light into the color of a unit pixel.
  • the phosphor layer 1080 may be a red phosphor 1081 or a green phosphor 1082 constituting individual pixels. That is, at the position forming the red unit pixel, a red phosphor 1081 capable of converting the blue light into the red (R) light may be stacked on the blue semiconductor light emitting device 1051a, and the position forming the green unit pixel.
  • a green phosphor 1082 capable of converting blue light into green (G) light may be stacked on the blue semiconductor light emitting device 1051b.
  • the blue semiconductor light emitting device 1051c may be used alone in a portion of the blue unit pixel.
  • the unit pixels of red (R), green (G), and blue (B) may form one pixel.
  • phosphors of one color may be stacked along each line of the first electrode 1020. Accordingly, one line in the first electrode 1020 may be an electrode for controlling one color. That is, red (R), green (G), and blue (B) may be sequentially disposed along the second electrode 1040, and thus a unit pixel may be implemented.
  • the present invention is not necessarily limited thereto, and instead of the phosphor, a unit pixel that emits red (R), green (G), and blue (B) by combining a quantum dot (QD) with a semiconductor light emitting element 1050 may be used. Can be implemented.
  • the display apparatus may further include a black matrix 1091 disposed between the respective phosphors.
  • the black matrix 1091 may form a gap between phosphor dots, and a black material may be formed to fill the gap.
  • the black matrix 1091 may absorb the external light reflection and improve contrast of the contrast.
  • the black matrix 1091 is positioned between the phosphor layers along the first electrode 1020 in the direction in which the phosphor layers 1080 are stacked. In this case, the phosphor layer is not formed at a position corresponding to the blue semiconductor light emitting element 1051, but the black matrix 1091 has a space without the phosphor layer therebetween (or between the blue semiconductor light emitting element 1051c). On each side) can be formed.
  • the semiconductor light emitting device 1050 of the present example since the semiconductor light emitting device 1050 may be disposed up and down in this example, the semiconductor light emitting device 1050 has a great advantage of reducing the chip size.
  • the electrodes are disposed up and down, the semiconductor light emitting device of the present invention may be a flip chip type light emitting device.
  • the semiconductor light emitting device 1050 may include a first conductive semiconductor layer 1155 on which a first conductive electrode 1156, a first conductive electrode 1156 are formed, and An active layer 1154 formed on the first conductive semiconductor layer 1155, and a second formed on the second conductive semiconductor layer 1153 and the second conductive semiconductor layer 1153 formed on the active layer 1154.
  • a conductive electrode 1152 may be included in the semiconductor light emitting device 1050.
  • first conductive electrode 1156 and the first conductive semiconductor layer 1155 may be a p-type electrode and a p-type semiconductor layer, respectively, and the second conductive electrode 1152 and the second conductive layer may be formed.
  • the conductive semiconductor layer 1153 may be an n-type electrode and an n-type semiconductor layer, respectively.
  • the present invention is not necessarily limited thereto, and an example in which the first conductive type is n-type and the second conductive type is p-type is also possible.
  • the first conductive electrode 1156 is formed on one surface of the first conductive semiconductor layer 1155, and the active layer 1154 is formed on the other surface of the first conductive semiconductor layer 1155.
  • the second conductive semiconductor layer 1153 is formed between one surface of the second conductive semiconductor layer 1153, and the second conductive electrode 1152 is formed on one surface of the second conductive semiconductor layer 1153.
  • the second conductive electrode is disposed on one surface of the second conductive semiconductor layer 1153, and an undoped semiconductor layer 1153a is disposed on the other surface of the second conductive semiconductor layer 1153. ) May be formed.
  • one surface of the second conductive semiconductor layer may be the surface closest to the wiring board, and the other surface of the second conductive semiconductor layer may be closest to the wiring substrate. It can be far away.
  • first conductive electrode 1156 and the second conductive electrode 1152 have a height difference from each other in the width direction and the vertical direction (or thickness direction) at positions spaced apart along the width direction of the semiconductor light emitting device. It is made to have.
  • the second conductive electrode 1152 is formed on the second conductive semiconductor layer 1153 using the height difference, but is disposed adjacent to the second electrode 1040 positioned above the semiconductor light emitting device.
  • the second conductive electrode 1152 may have at least a portion of the second conductive electrode 1152 in the width direction from the side surface of the second conductive semiconductor layer 1153 (or the side surface of the undoped semiconductor layer 1153a). It protrudes along. As such, since the second conductive electrode 1152 protrudes from the side surface, the second conductive electrode 1152 may be exposed to the upper side of the semiconductor light emitting device. Through this, the second conductive electrode 1152 is disposed at a position overlapping with the second electrode 1040 disposed above the conductive adhesive layer 1030.
  • the semiconductor light emitting device includes a protrusion 1152a extending from the second conductive electrode 1152 and protruding from the side surfaces of the plurality of semiconductor light emitting devices.
  • the first conductive electrode 1156 and the second conductive electrode 1152 are disposed at positions spaced apart along the protrusion direction of the protrusion 1152a. It may be represented to have a height difference from each other in the direction perpendicular to the protruding direction.
  • the protrusion 1152a extends from one surface of the second conductive semiconductor layer 1153 to the side surface, and more specifically to an upper surface of the second conductive semiconductor layer 1153, an undoped semiconductor layer. Extends to 1153a.
  • the protrusion 1152a protrudes along the width direction from the side of the undoped semiconductor layer 1153a. Accordingly, the protrusion 1152a may be electrically connected to the second electrode 1040 on the opposite side of the first conductive electrode based on the second conductive semiconductor layer.
  • the structure having the protrusion 1152a may be a structure that can utilize the advantages of the above-described horizontal semiconductor light emitting device and vertical semiconductor light emitting device. Meanwhile, fine grooves may be formed on the upper surface furthest from the first conductive electrode 1156 in the undoped semiconductor layer 1153a by roughing.
  • the light output from the semiconductor light emitting devices is excited using a phosphor to implement red (R) and green (G).
  • the semiconductor light emitting element includes a p-type semiconductor layer, an active layer formed on the p-type semiconductor layer, and an n-type semiconductor layer formed on the active layer.
  • the p-type semiconductor layer, the active layer and the n-type semiconductor layer is grown epitaxially on the substrate, Mesa etching the p-type semiconductor layer and the active layer until the n-type semiconductor layer is revealed
  • An etching process and an isolation process of etching the n-type semiconductor layer to form a plurality of semiconductor light emitting devices are performed. That is, the light emitting region and the p contact region are formed by Mesa etching, and the n contact region is formed by the isolation process.
  • a passivation layer is formed using an insulator material such as SiO 2 and SiN, and metal films for P and N electrodes are deposited for current injection.
  • an insulator material such as SiO 2 and SiN
  • metal films for P and N electrodes are deposited for current injection.
  • the present invention proposes a semiconductor light emitting device having a novel structure that can solve this problem.
  • a display device to which a semiconductor light emitting device having a new structure is applied and a manufacturing method thereof will be described.
  • FIG. 13 is an enlarged view of portion A of FIG. 1 for explaining another embodiment of the present invention
  • FIG. 14 is a cross-sectional view taken along the GG of FIG. 13
  • FIG. 15 is a cross-sectional view taken along the HH of FIG. 13.
  • 16 is a cross-sectional view taken along line II of FIG. 13
  • FIG. 17 is a conceptual diagram illustrating the semiconductor light emitting device of FIG. 13.
  • a semiconductor light emitting device having a new structure is Illustrate the case where it is applied.
  • the display apparatus 2000 may include a substrate 2010, a first electrode 2020, a second electrode 2040, a conductive adhesive layer 2030, a phosphor layer 2080, and a plurality of semiconductor light emitting devices 2050. The description thereof will be replaced with the description with reference to FIGS. 10 to 12.
  • the semiconductor light emitting device includes a first conductive semiconductor layer 2155 and a second conductive semiconductor layer 2153 overlapping the first conductive semiconductor layer 2155.
  • the second conductive semiconductor layer 2153 has an upper surface, a lower surface, and a side surface, and is disposed above the first conductive semiconductor layer so that the lower surface faces the first conductive semiconductor layer.
  • the semiconductor light emitting device may include an active layer 2154 formed between the second conductive semiconductor layer 2153 and the first conductive semiconductor layer 2153.
  • the semiconductor light emitting device includes a first conductive electrode 2156 electrically connected to the first conductive semiconductor layer 2155, and a second conductive electrically connected to the second conductive semiconductor layer 2153.
  • a type electrode 2152 is provided.
  • first conductive electrode 2156 and the first conductive semiconductor layer 2155 may be p-type electrodes and p-type semiconductor layers, respectively, and the second conductive electrode 2152 and the second conductive type may be used.
  • the semiconductor layer 2153 may be an n-type electrode and an n-type semiconductor layer, respectively.
  • the present invention is not necessarily limited thereto, and an example in which the first conductive type is n-type and the second conductive type is p-type is also possible.
  • the second conductive semiconductor layer 2153 has an inclined portion inclined with respect to the side surface of the second conductive semiconductor layer 2153, and the second conductive electrode 2152 covers the inclined portion. Is made.
  • the inclined portion extends to the first conductive semiconductor layer 2155.
  • the portion corresponding to the first conductive semiconductor layer 2155 is the first inclined portion 2155a
  • the portion corresponding to the second conductive semiconductor layer 2153 is the second inclined portion 2153a.
  • a semiconductor light emitting element is formed without the inclined portion.
  • the current manufacturing method is a process in which the first conductive semiconductor layer is etched in the Mesa etching process and the second conductive semiconductor layer is etched in the subsequent Isolation process.
  • the first conductive semiconductor layer and the second conductive semiconductor layer are etched by a single etching process using the inclined portion, which may be defined as an integrated structure of Mesa and isolation.
  • a third inclined portion 2154a may be formed in the active layer 2154 and subsequent to the second inclined portion 2153a.
  • the first inclined portion 2155a and the second inclined portion 2153a are formed at the corner of the semiconductor light emitting device together with the third inclined portion 2154a.
  • the first inclined portion 2155a and the second inclined portion 2153a together with the third inclined portion 2154a form a triangle at one corner.
  • one corner of the quadrangle is changed to an oblique side, so that only one side is formed. Both ends may form obtuse angles with other sides, and the remaining sides may form a pentagon that is perpendicular to each other.
  • the triangle may be disposed on the one side.
  • the remaining four sides of the first conductive semiconductor layer 2155 and the four sides of the second conductive semiconductor layer 2153 corresponding thereto may be disposed at positions overlapping each other.
  • the sides of the P-type semiconductor layer can be positioned on the same line as the sides of the N-type semiconductor layer, and the size of the P-type semiconductor layer can be increased.
  • the active layer can also form the pentagon, thus making the light emitting area wider.
  • the second conductive electrode 2152 is deposited on the second conductive semiconductor layer 2153 in the second inclined portion 2153a.
  • the second conductive electrode 2152 may extend from the second inclined portion 2153a to the side surface and protrude in a direction away from the second conductive semiconductor layer 2153.
  • an undoped semiconductor layer (not shown) may be formed on the bottom surface of the second conductive semiconductor layer 2153.
  • the lower surface of the second conductive semiconductor layer may be the surface closest to the wiring board, and the upper surface of the second conductive semiconductor layer may be the surface furthest from the wiring substrate.
  • first conductive electrode 2156 and the second conductive electrode 2152 may have a height difference from each other in the width direction and the vertical direction (or thickness direction) at positions spaced apart along the width direction of the semiconductor light emitting device. It is made to have.
  • the second conductive electrode 2152 is formed on the second conductive semiconductor layer 2153 using the height difference, but is disposed adjacent to the second electrode 2040 positioned above the semiconductor light emitting device. . As such, since the connection between the semiconductor light emitting element and the wiring line is formed up and down, a high definition arrangement is possible, and thus a high pixel display device may be realized.
  • the second conductive electrode 2152 protrudes along the width direction from a side surface of the second conductive semiconductor layer 2153 (or a side surface of an undoped semiconductor layer). do. As described above, since the second conductive electrode 2152 protrudes from the side surface, the second conductive electrode 2152 may be exposed to the upper side of the semiconductor light emitting device. Through this, the second conductive electrode 2152 is disposed at a position overlapping with the second electrode 2040 disposed above the conductive adhesive layer 2030.
  • the second conductive electrode 2152 extends from the inclined portion to side surfaces of the plurality of semiconductor light emitting devices (side surfaces of a second semiconductor layer or side surfaces of an undoped semiconductor layer),
  • the semiconductor light emitting device has a protrusion 2152a that protrudes from the side surface.
  • the first conductive electrode 2156 and the second conductive electrode 2152 are disposed at positions spaced apart along the protruding direction of the protrusion 2152a based on the protrusion 2152a. It may be represented to have a height difference from each other in the direction perpendicular to the protruding direction.
  • the second conductive electrode extending laterally from the inclined portion of the second conductive semiconductor layer 1153 may be formed on the top surface of the second conductive semiconductor layer 1153 (or the top surface of the undoped semiconductor layer). Extends.
  • the protruding portion 2152a protrudes along the width direction after extending to the upper surface. Accordingly, the protrusion 2152a may be electrically connected to the second electrode 2040 on the opposite side of the first conductive electrode 2156 based on the second conductive semiconductor layer.
  • the semiconductor light emitting device may include a passivation layer 2157.
  • the first inclined portion 2155a may be covered by the passivation layer 2157, and the passivation layer 2157 may extend to the first conductive semiconductor layer 2155.
  • the passivation layer 2157 may be formed to cover the side surface of the second conductive semiconductor layer 2153 together with the first inclined portion 2155a.
  • the etching process of Mesa and Isolation can be simplified to a single etching process, the light emitting area can be wider, and high definition can be achieved.
  • FIG. 18A, 18B, 18C, 18D, 18E, 18F, and 18G are cross-sectional views illustrating a method of manufacturing a display device using the semiconductor light emitting device of the present invention
  • FIG. 19 illustrates another embodiment of a mask.
  • a second conductive semiconductor layer 2153, an active layer 2154, and a first conductive semiconductor layer 2155 are grown on a growth substrate.
  • the substrate 2012 may be a growth substrate for growing the semiconductor light emitting device 2050, and may be a sapphire substrate or a silicon substrate.
  • the substrate may also be formed of a carrier wafer, a material suitable for semiconductor material growth.
  • At least one of Si, GaAs, GaP, InP, and Ga2O3 may be formed of a material having excellent thermal conductivity, including a conductive substrate or an insulating substrate, for example, a SiC substrate having a higher thermal conductivity than a sapphire (Al2O3) substrate. Can be used.
  • first conductive semiconductor layer 2155 may be a p-type semiconductor layer
  • second conductive semiconductor layer 2153 may be an n-type semiconductor layer.
  • the p-type semiconductor layer, the active layer and the n-type semiconductor layer grow epitaxially on the substrate.
  • a mask is stacked on the first conductive semiconductor layer 2155, and the first conductive semiconductor layer 2155 and the second conductive semiconductor layer 2153 are etched as shown in FIG. 18C.
  • the semiconductor light emitting devices are formed, and the mask is removed as shown in FIG. 18D.
  • the second conductive semiconductor layer 2153 includes an inclined portion 2153a that is inclined with respect to the side surfaces of the semiconductor light emitting devices.
  • the mask includes a plurality of pattern portions 2159 disposed at specific intervals.
  • a protruding pattern 2159a protruding in a triangular shape may be formed on at least some of the pattern portions so that the inclined portion is formed by the etching.
  • the mask may form a pentagon with only one side forming an obtuse angle with other sides at both ends, and the remaining sides perpendicular to each other.
  • the protrusion pattern 2159a may be disposed on the one side.
  • the protruding pattern 2159a is disposed at one corner of the pattern portions, and the protruding pattern 2159a is gradually removed by the etching. This may be implemented because the first conductive semiconductor layer disposed under the protruding pattern 2159a is laterally etched. That is, lateral etching of the first conductive semiconductor layer occurs at the sharp vertex portion of the protruding pattern 2159a, and the mask that was present on the etched portion is removed.
  • the etching may continue from the first conductive semiconductor layer 2155 to the active layer 2154 and the second conductive semiconductor layer 2153 and may continue until the bottom surface of the growth substrate is exposed.
  • the etching may be dry etching using BCl 3 / Cl 2 / Ar Gas as a PR mask.
  • the first conductive semiconductor layer 2155 and the second conductive semiconductor layer 2153 are continuously etched so that the semiconductor light emitting devices are formed on the substrate by a single etching process.
  • the etching for separating the p-type semiconductor and the n-type semiconductor, and the etching for isolating a plurality of semiconductor light emitting devices on the substrate are implemented by a single etching process, the above-described inclination The addition is formed.
  • the mask may be applied in another form when the size of the semiconductor light emitting device is reduced.
  • the mask has a plurality of pentagonal pattern portions 2159, and forms a rectangle except for the protrusion pattern 2159b, and the protrusion pattern 2159b is a triangle disposed on one side of the rectangle. This can be At this time, one side of the semiconductor light emitting device is inclined as a whole by etching, and thus the inclined portion is entirely located at one side of the second conductive semiconductor layer.
  • a passivation layer is formed on the flip chip type light emitting device having the new structure, and the first conductive electrode and the second conductive semiconductor layer are formed on the first conductive semiconductor layer and the second conductive semiconductor layer, respectively.
  • the deposition of the conductive electrode proceeds (FIG. 18E).
  • the second conductive electrode 2152 covers the inclined portion 2153a.
  • the inclined portions 2155a and 2154a of the first conductive semiconductor layer or the active layer may be covered by the passivation layer 2157.
  • the second conductive electrode 2152 protrudes from the side of the second conductive semiconductor layer (or the side of the undoped semiconductor layer).
  • the flip chip type light emitting device having the new structure may be transferred to the wiring board by a method similar to the manufacturing method described above with reference to FIG. 6.
  • the flip chip type light emitting device having the new structure is coupled to the wiring board using the conductive adhesive layer 2030 (FIG. 18F), and the growth substrate is removed (FIG. 18G).
  • the wiring board is in a state where a first electrode 2020 is formed, and the first electrode 2020 is a lower wiring and is electrically connected to the first conductive electrode 2156 by a conductive ball in the conductive adhesive layer 2030. do. Thereafter, a wiring line connecting the protruding second conductive electrode 3152 is formed.
  • the wiring line is an upper wiring and may be a wiring line directly connected to the second conductive electrode 2152.
  • a display device having a semiconductor light emitting device having the above-described new structure can be implemented.
  • the advantages of the horizontal semiconductor light emitting device without the process of etching the undoped conductive semiconductor layer (unGan) for the n contact, and n contact and p contact even if the size is small it is possible to accommodate all the advantages of the vertical semiconductor semiconductor light emitting device in which wiring is connected in different directions.
  • the display device including the semiconductor light emitting device having the new structure described above may be modified in various forms.
  • other embodiments of the display apparatus will be described with reference to FIGS. 20 and 21.
  • 20 and 21 are cross-sectional views illustrating a cross section taken along a line G-G when the semiconductor light emitting device according to another embodiment is applied to the display device of FIG. 13.
  • the semiconductor light emitting device 3050 may be electrically connected to the first conductive electrode 3156 and the second conductive semiconductor layer 3315 electrically connected to the first conductive semiconductor layer 3155. And a second conductive electrode 3152 connected to each other.
  • the second conductive semiconductor layer 3153 has an inclined portion that is inclined with respect to the side surface of the second conductive semiconductor layer 3153, and the second conductive semiconductor layer 3315 is inclined.
  • the conductive electrode 3152 is formed to cover the inclined portion.
  • the inclined portion extends to the first conductive semiconductor layer 3155 and is formed at one corner of the semiconductor light emitting device. Therefore, in the present example, the first conductive semiconductor layer and the second conductive semiconductor layer may be etched by a single etching process using the inclined portion.
  • the second conductive electrode 3152 extends from the inclined portion 3153a of the second conductive semiconductor layer to the side surface and away from the second conductive semiconductor layer 3315 at the side surface. Can protrude.
  • the first conductive electrode 3156 is formed on one surface of the first conductive semiconductor layer 3155, extends to the side of the semiconductor light emitting device, and moves away from the semiconductor light emitting device from the side. It may protrude. Through this structure, the first conductive electrode and the second conductive electrode are connected to the wiring electrode on the same plane.
  • the transparent electrode 3158 may be disposed between the first conductive semiconductor layer 3155 and the first conductive electrode 3156.
  • the transparent electrode 3158 is covered by a passivation layer 3157, and a through hole for connecting the transparent electrode and the first conductive electrode 3156 may be formed in the passivation layer 3157.
  • the substrate 3010 having the same structure as that of the exemplary substrate with reference to FIGS. 2, 3A, and 3B may be applied to the wiring substrate of this example. have.
  • a portion protruding from the first conductive electrode 3156 is electrically connected to the auxiliary electrode 3070, the auxiliary electrode is connected to the first electrode 3020, and the second conductive electrode 3152 is provided.
  • the protruding portion may be electrically connected to the second electrode 3040.
  • the semiconductor light emitting device 4050 may include a first conductive electrode 4156 and a second conductive semiconductor layer 4415 electrically connected to the first conductive semiconductor layer 4155.
  • a second conductive electrode 4252 is electrically connected.
  • the second conductive semiconductor layer 4415 has an inclined portion 4153a inclined with respect to the side surface of the second conductive semiconductor layer 4415.
  • the second conductive electrode 4152 is formed to cover the inclined portion 4153a.
  • the inclined portion extends to the first conductive semiconductor layer 4155 and is formed at one corner of the semiconductor light emitting device. Therefore, in the present example, the first conductive semiconductor layer and the second conductive semiconductor layer may be etched by a single etching process using the inclined portion.
  • the second conductive electrode 4252 extends from the inclined portion 4153a of the second conductive semiconductor layer to the side surface and away from the second conductive semiconductor layer 4415 at the side surface. Can protrude. Meanwhile, a second electrode 3040 is formed on the substrate 4010, and a protruding portion of the second conductive electrode 4152 is electrically connected to the second electrode.
  • the first conductive electrode 3156 may be formed on one surface of the first conductive semiconductor layer 3155 to protrude in a direction away from the semiconductor light emitting device.
  • the protruding portion of the first conductive electrode 4156 is disposed opposite to the protruding portion of the second conductive electrode. That is, the first conductive electrode and the second conductive electrode are respectively disposed above and below the semiconductor light emitting device to have a height difference from each other.
  • the first conductive electrode is electrically connected to a first electrode forming an upper wiring of the semiconductor light emitting device.
  • the transparent electrode 3158 may be disposed between the first conductive semiconductor layer 3155 and the first conductive electrode 3156.
  • the transparent electrode 3158 is covered by a passivation layer 3157, and a through hole for connecting the transparent electrode and the first conductive electrode 3156 may be formed in the passivation layer 3157.
  • connection between the semiconductor light emitting element and the wiring line is formed up and down, a high-definition arrangement is possible, whereby a high pixel display device may be realized.
  • the display device using the semiconductor light emitting device described above is not limited to the configuration and method of the embodiments described above, but the embodiments may be configured by selectively combining all or part of the embodiments so that various modifications may be made. It may be.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Led Device Packages (AREA)
  • Electroluminescent Light Sources (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

본 발명은 디스플레이 장치에 관한 것으로 특히, 반도체 발광 소자를 이용한 디스플레이 장치에 관한 것이다. 본 발명에 따른 디스플레이 장치는, 반도체 발광소자를 구비하며, 상기 반도체 발광소자는, 제1도전형 반도체층과, 측면을 구비하며, 상기 제1도전형 반도체층과 오버랩되는 제2도전형 반도체층과, 상기 제1도전형 반도체층과 전기적으로 연결되는 제1도전형 전극, 및 상기 제2도전형 반도체층과 전기적으로 연결되는 제2도전형 전극을 구비하고, 상기 제2도전형 반도체층은 상기 측면에 대하여 경사진 경사부를 구비하며, 상기 제2도전형 전극은 상기 경사부를 덮도록 이루어지는 것을 특징으로 한다.

Description

반도체 발광 소자를 이용한 디스플레이 장치 및 이의 제조방법
본 발명은 디스플레이 장치 및 이의 제조방법에 관한 것으로 특히, 반도체 발광 소자를 이용한 플렉서블 디스플레이 장치에 관한 것이다.
최근에는 디스플레이 기술분야에서 박형, 플렉서블 등의 우수한 특성을 가지는 디스플레이 장치가 개발되고 있다. 이에 반해, 현재 상용화된 주요 디스플레이는 LCD(Liguid Crystal Display)와 AMOLED(Active Matrix Organic Light Emitting Diodes)로 대표되고 있다.
그러나, LCD의 경우에 빠르지 않은 반응 시간과, 플렉서블의 구현이 어렵다는 문제점이 존재하고, AMOLED의 경우에 수명이 짧고, 양산 수율이 좋지 않을 뿐 아니라 플렉서블의 정도가 약하다는 취약점이 존재한다.
한편, 발광 다이오드(Light Emitting Diode: LED)는 전류를 빛으로 변환시키는 잘 알려진 반도체 발광 소자로서, 1962년 GaAsP 화합물 반도체를 이용한 적색 LED가 상품화된 것을 시작으로 GaP:N 계열의 녹색 LED와 함께 정보 통신기기를 비롯한 전자장치의 표시 화상용 광원으로 이용되어 왔다. 따라서, 상기 반도체 발광 소자를 이용하여 플렉서블 디스플레이를 구현하여, 상기의 문제점을 해결하는 방안이 제시될 수 있다.
하지만, 제조공정상에서, n contact 및 p contact 공정이 위, 아래로 있는 경우, 상기 반도체 발광소자를 기판에 전사 이후 추가 공정 또는 추가 전사 공정 필요하게 된다. 또한, 한쪽 방향 전극 배선의 경우, Mesa와 Isolation 의 공정이 있어야만, n contact 및 p contact이 가능하게 된다. 따라서, 본 발명에서는 공정이 보다 간단하면서도 전극배선이 가능한 메커니즘에 대하여 제시한다.
본 발명의 일 목적은 공정이 보다 간단하면서도 n contact 및 p contact이 가능한 반도체 발광소자, 이를 구비하는 디스플레이 장치 및 제조방법을 제공하기 위한 것이다.
본 발명의 다른 일 목적은, 반도체 발광소자를 고정세로 배열할 수 있는 디스플레이 장치 및 제조방법을 구현하기 위한 것이다.
본 발명에 따른 디스플레이 장치는, 반도체 발광소자를 구비하며, 상기 반도체 발광소자는, 제1도전형 반도체층과, 측면을 구비하며, 상기 제1도전형 반도체층과 오버랩되는 제2도전형 반도체층과, 상기 제1도전형 반도체층과 전기적으로 연결되는 제1도전형 전극, 및 상기 제2도전형 반도체층과 전기적으로 연결되는 제2도전형 전극을 구비하며, 상기 제2도전형 반도체층은 상기 측면에 대하여 경사진 경사부를 구비하며, 상기 제2도전형 전극은 상기 경사부를 덮도록 이루어진다.
실시 예에 있어서, 상기 경사부는 상기 제1도전형 반도체층으로 연장될 수 있다. 상기 제2도전형 전극은 상기 경사부에서 상기 측면으로 연장되어, 상기 측면에서 상기 제2도전형 반도체층과 멀어지는 방향으로 돌출될 수 있다.
또한, 본 발명은, 제1도전형 반도체층의 하부에 제2도전형 반도체층이 배치되도록, 기판상에 상기 제2도전형 반도체층과 상기 제1도전형 반도체층을 차례로 성장시키는 단계와, 상기 제1도전형 반도체층에 마스크를 적층하는 단계와, 상기 제1도전형 반도체층 및 제2도전형 반도체층을 식각하여 복수의 반도체 발광소자들을 형성하고, 상기 마스크를 제거하는 단계, 및 상기 제1도전형 반도체층과 상기 제2도전형 반도체층에 각각 제1도전형 전극과 제2도전형 전극을 증착하는 단계를 포함한다. 상기 제2도전형 반도체층은 상기 반도체 발광소자들의 측면에 대하여 경사진 경사부를 구비하며, 상기 제2도전형 전극은 상기 경사부를 덮도록 이루어진다.
실시 예에 있어서, 상기 복수의 반도체 발광소자를 덮도록 배치되는 형광체층을 포함하며, 상기 제2배선라인은 상기 반도체 발광소자의 출사면을 감싸서, 상기 형광체층에서 반사된 빛을 상기 전면을 향하여 반사한다. 상기 형광체층의 하부에는 반사 방지층이 형성될 수 있다.
본 발명에 따른 디스플레이 장치에서는, 반도체 발광소자에서 n contact 을 위한 post를 형성함에 따라, 공정을 증가시키지 않고도 전극배선이 상하로 가능한 반도체 발광소자를 구현한다. 또한, 이를 통하여 보다 간단한 공정임에도 불구하고, 디스플레이 장치에서 반도체 발광소자의 고정세 배열이 가능하게 된다.
또한, 마스크의 형상을 이용하여 경사부를 형성함에 따라, 발광영역 및 p-contact 영역을 위한 Mesa 공정과 n-contact 영역을 위한 Isolation 공정이 단일 식각 공정으로 대체될 수 있다.
또한, N, P contact이 이미 이루어졌으므로, 유연 기판으로 반도체 발광소자의 전사 이후에, 추가공정이 배제될 수 있다.
도 1은 본 발명의 반도체 발광 소자를 이용한 디스플레이 장치의 일 실시예를 나타내는 개념도이다.
도 2는 도 1의 A부분의 부분 확대도이고, 도 3a 및 도 3b는 도 2의 라인 B-B 및 C-C를 따라 취한 단면도들이다.
도 4는 도 3의 플립 칩 타입 반도체 발광 소자를 나타내는 개념도이다.
도 5a 내지 도 5c는 플립 칩 타입 반도체 발광 소자와 관련하여 컬러를 구현하는 여러가지 형태를 나타내는 개념도들이다.
도 6은 본 발명의 반도체 발광 소자를 이용한 디스플레이 장치의 제조방법을 나타낸 단면도들이다.
도 7은 발명의 반도체 발광 소자를 이용한 디스플레이 장치의 다른 일 실시예를 나타내는 사시도이다.
도 8은 도 7의 라인 D-D를 따라 취한 단면도이다.
도 9는 도 8의 수직형 반도체 발광소자를 나타내는 개념도이다.
도 10은 새로운 구조의 반도체 발광소자가 적용된 본 발명의 다른 실시 예를 설명하기 위한, 도 1의 A부분의 확대도이다.
도 11a는 도 10의 라인 E-E를 따라 취한 단면도이다.
도 11b는 도 11의 라인 F-F를 따라 취한 단면도이다.
도 12는 도 11a의 플립 칩 타입 반도체 발광 소자를 나타내는 개념도이다.
도 13은 본 발명의 또 다른 실시 예를 설명하기 위한, 도 1의 A부분의 확대도이다.
도 14는 도 13의 G-G를 따라 취한 단면도이며, 도 15는 도 13의 H-H를 따라 취한 단면도이고, 도 16은 도 13의 I-I를 따라 취한 단면도이다.
도 17은 도 13의 반도체 발광 소자를 나타내는 개념도이다.
도 18a, 도 18b, 도 18c, 18d, 도 18e, 도 18f, 및 도 18g는 본 발명의 반도체 발광 소자를 이용한 디스플레이 장치의 제조방법을 나타낸 단면도들이다.
도 19는 마스크의 다른 일 실시예를 나타내는 개념도이다.
도 20 및 도 21은 각각 다른 실시예의 반도체 발광소자가 도 13의 디스플레이 장치에 적용된 경우에, 라인 G-G를 따라 취한 단면을 가정하여 도시한 단면도들이다.
이하, 첨부된 도면을 참조하여 본 명세서에 개시된 실시 예를 상세히 설명하되, 도면 부호에 관계없이 동일하거나 유사한 구성요소는 동일한 참조 번호를 부여하고 이에 대한 중복되는 설명은 생략하기로 한다. 이하의 설명에서 사용되는 구성요소에 대한 접미사 "모듈" 및 "부"는 명세서 작성의 용이함만이 고려되어 부여되거나 혼용되는 것으로서, 그 자체로 서로 구별되는 의미 또는 역할을 갖는 것은 아니다. 또한, 본 명세서에 개시된 실시 예를 설명함에 있어서 관련된 공지 기술에 대한 구체적인 설명이 본 명세서에 개시된 실시 예의 요지를 흐릴 수 있다고 판단되는 경우 그 상세한 설명을 생략한다. 또한, 첨부된 도면은 본 명세서에 개시된 실시 예를 쉽게 이해할 수 있도록 하기 위한 것일 뿐, 첨부된 도면에 의해 본 명세서에 개시된 기술적 사상이 제한되는 것으로 해석되어서는 아니 됨을 유의해야 한다.
또한, 층, 영역 또는 기판과 같은 요소가 다른 구성요소 "상(on)"에 존재하는 것으로 언급될 때, 이것은 직접적으로 다른 요소 상에 존재하거나 또는 그 사이에 중간 요소가 존재할 수도 있다는 것을 이해할 수 있을 것이다.
본 명세서에서 설명되는 디스플레이 장치에는 휴대폰, 스마트 폰(smart phone), 노트북 컴퓨터(laptop computer), 디지털방송용 단말기, PDA(personal digital assistants), PMP(portable multimedia player), 네비게이션, 슬레이트 피씨(Slate PC), Tablet PC, Ultra Book, 디지털 TV, 데스크탑 컴퓨터 등이 포함될 수 있다. 그러나, 본 명세서에 기재된 실시 예에 따른 구성은 추후 개발되는 새로운 제품형태이라도, 디스플레이가 가능한 장치에는 적용될 수도 있음을 본 기술분야의 당업자라면 쉽게 알 수 있을 것이다.
도 1은 본 발명의 반도체 발광 소자를 이용한 디스플레이 장치의 일 실시예를 나타내는 개념도이다.
도시에 의하면, 디스플레이 장치(100)의 제어부에서 처리되는 정보는 플렉서블 디스플레이(flexible display)를 이용하여 표시될 수 있다.
플렉서블 디스플레이는 외력에 의하여 휘어질 수 있는, 구부러질 수 있는, 비틀어질 수 있는, 접힐 수 있는, 말려질 수 있는 디스플레이를 포함한다. 예를 들어, 플렉서블 디스플레이는 기존의 평판 디스플레이의 디스플레이 특성을 유지하면서, 종이와 같이 휘어지거나, 구부리거나, 접을 수 있거나 말 수 있는 얇고 유연한 기판 위에 제작되는 디스플레이가 될 수 있다.
상기 플렉서블 디스플레이가 휘어지지 않는 상태(예를 들어, 무한대의 곡률반경을 가지는 상태, 이하 제1상태라 한다)에서는 상기 플렉서블 디스플레이의 디스플레이 영역이 평면이 된다. 상기 제1상태에서 외력에 의하여 휘어진 상태(예를 들어, 유한의 곡률반경을 가지는 상태, 이하, 제2상태라 한다)에서는 상기 디스플레이 영역이 곡면이 될 수 있다. 도시와 같이, 상기 제2상태에서 표시되는 정보는 곡면상에 출력되는 시각 정보가 될 수 있다. 이러한 시각 정보는 매트릭스 형태로 배치되는 단위 화소(sub-pixel)의 발광이 독자적으로 제어됨에 의하여 구현된다. 상기 단위 화소는 하나의 색을 구현하기 위한 최소 단위를 의미한다.
상기 플렉서블 디스플레이의 단위 화소는 반도체 발광 소자에 의하여 구현될 수 있다. 본 발명에서는 전류를 빛으로 변환시키는 반도체 발광 소자의 일 종류로서 발광 다이오드(Light Emitting Diode: LED)를 예시한다. 상기 발광 다이오드는 작은 크기로 형성되며, 이를 통하여 상기 제2상태에서도 단위 화소의 역할을 할 수 있게 된다.
이하, 상기 발광 다이오드를 이용하여 구현된 플렉서블 디스플레이에 대하여 도면을 참조하여 보다 상세히 설명한다.
도 2는 도 1의 A부분의 부분 확대도이고, 도 3a 및 도 3b는 도 2의 라인 B-B 및 C-C를 따라 취한 단면도들이며, 도 4는 도 3a의 플립 칩 타입 반도체 발광 소자를 나타내는 개념도이고, 도 5a 내지 도 5c는 플립 칩 타입 반도체 발광 소자와 관련하여 컬러를 구현하는 여러가지 형태를 나타내는 개념도들이다.
도 2, 도 3a 및 도 3b의 도시에 의하면, 반도체 발광 소자를 이용한 디스플레이 장치(100)로서 패시브 매트릭스(Passive Matrix, PM) 방식의 반도체 발광 소자를 이용한 디스플레이 장치(100)를 예시한다. 다만, 이하 설명되는 예시는 액티브 매트릭스(Active Matrix, AM) 방식의 반도체 발광 소자에도 적용 가능하다.
상기 디스플레이 장치(100)는 기판(110), 제1전극(120), 전도성 접착층(130), 제2전극(140) 및 복수의 반도체 발광 소자(150)를 포함한다.
기판(110)은 플렉서블 기판일 수 있다. 예를 들어, 플렉서블(flexible) 디스플레이 장치를 구현하기 위하여 기판(110)은 유리나 폴리이미드(PI, Polyimide)를 포함할 수 있다. 이외에도 절연성이 있고, 유연성 있는 재질이면, 예를 들어 PEN(Polyethylene Naphthalate), PET(Polyethylene Terephthalate) 등 어느 것이라도 사용될 수 있다. 또한, 상기 기판(110)은 투명한 재질 또는 불투명한 재질 어느 것이나 될 수 있다.
상기 기판(110)은 제1전극(120)이 배치되는 배선기판이 될 수 있으며, 따라서 상기 제1전극(120)은 기판(110) 상에 위치할 수 있다.
도시에 의하면, 절연층(160)은 제1전극(120)이 위치한 기판(110) 상에 배치될 수 있으며, 상기 절연층(160)에는 보조전극(170)이 위치할 수 있다. 이 경우에, 상기 기판(110)에 절연층(160)이 적층된 상태가 하나의 배선기판이 될 수 있다. 보다 구체적으로, 절연층(160)은 폴리이미드(PI, Polyimide), PET, PEN 등과 같이 절연성이 있고, 유연성 있는 재질로, 상기 기판(110)과 일체로 이루어져 하나의 기판을 형성할 수 있다.
보조전극(170)은 제1전극(120)과 반도체 발광 소자(150)를 전기적으로 연결하는 전극으로서, 절연층(160) 상에 위치하고, 제1전극(120)의 위치에 대응하여 배치된다. 예를 들어, 보조전극(170)은 닷(dot) 형태이며, 절연층(160)을 관통하는 전극홀(171)에 의하여 제1전극(120)과 전기적으로 연결될 수 있다. 상기 전극홀(171)은 비아 홀에 도전물질이 채워짐에 의하여 형성될 수 있다.
본 도면들을 참조하면, 절연층(160)의 일면에는 전도성 접착층(130)이 형성되나, 본 발명은 반드시 이에 한정되는 것은 아니다. 예를 들어, 절연층(160)과 전도성 접착층(130)의 사이에 특정 기능을 수행하는 레이어가 형성되거나, 절연층(160)이 없이 전도성 접착층(130)이 기판(110)상에 배치되는 구조도 가능하다. 전도성 접착층(130)이 기판(110)상에 배치되는 구조에서는 전도성 접착층(130)이 절연층의 역할을 할 수 있다.
상기 전도성 접착층(130)은 접착성과 전도성을 가지는 층이 될 수 있으며, 이를 위하여 상기 전도성 접착층(130)에서는 전도성을 가지는 물질과 접착성을 가지는 물질이 혼합될 수 있다. 또한 전도성 접착층(130)은 연성을 가지며, 이를 통하여 디스플레이 장치에서 플렉서블 기능을 가능하게 한다.
이러한 예로서, 전도성 접착층(130)은 이방성 전도성 필름(anistropy conductive film, ACF), 이방성 전도 페이스트(paste), 전도성 입자를 함유한 솔루션(solution) 등이 될 수 있다. 상기 전도성 접착층(130)은 두께를 관통하는 Z 방향으로는 전기적 상호 연결을 허용하나, 수평적인 X-Y 방향으로는 전기절연성을 가지는 레이어로서 구성될 수 있다. 따라서 상기 전도성 접착층(130)은 Z축 전도층으로 명명될 수 있다(다만, 이하 '전도성 접착층'이라 한다).
상기 이방성 전도성 필름은 이방성 전도매질(anisotropic conductive medium)이 절연성 베이스부재에 혼합된 형태의 필름으로서, 열 및 압력이 가해지면 특정 부분만 이방성 전도매질에 의하여 전도성을 가지게 된다. 이하, 상기 이방성 전도성 필름에는 열 및 압력이 가해지는 것으로 설명하나, 상기 이방성 전도성 필름이 부분적으로 전도성을 가지기 위하여 다른 방법도 가능하다. 이러한 방법은, 예를 들어 상기 열 및 압력 중 어느 하나만이 가해지거나 UV 경화 등이 될 수 있다.
또한, 상기 이방성 전도매질은 예를 들어, 도전볼이나 전도성 입자가 될 수 있다. 도시에 의하면, 본 예시에서 상기 이방성 전도성 필름은 도전볼이 절연성 베이스 부재에 혼합된 형태의 필름으로서, 열 및 압력이 가해지면 특정부분만 도전볼에 의하여 전도성을 가지게 된다. 이방성 전도성 필름은 전도성 물질의 코어가 폴리머 재질의 절연막에 의하여 피복된 복수의 입자가 함유된 상태가 될 수 있으며, 이 경우에 열 및 압력이 가해진 부분이 절연막이 파괴되면서 코어에 의하여 도전성을 가지게 된다. 이때, 코어의 형태는 변형되어 필름의 두께방향으로 서로 접촉하는 층을 이룰 수 있다. 보다 구체적인 예로서, 열 및 압력은 이방성 전도성 필름에 전체적으로 가해지며, 이방성 전도성 필름에 의하여 접착되는 상대물의 높이차에 의하여 Z축 방향의 전기적 연결이 부분적으로 형성된다.
다른 예로서, 이방성 전도성 필름은 절연 코어에 전도성 물질이 피복된 복수의 입자가 함유된 상태가 될 수 있다. 이 경우에는 열 및 압력이 가해진 부분이 전도성 물질이 변형되어(눌러 붙어서) 필름의 두께방향으로 전도성을 가지게 된다. 또 다른 예로서, 전도성 물질이 Z축 방향으로 절연성 베이스 부재를 관통하여 필름의 두께방향으로 전도성을 가지는 형태도 가능하다. 이 경우에, 전도성 물질은 뽀족한 단부를 가질 수 있다.
도시에 의하면, 상기 이방성 전도성 필름은 도전볼이 절연성 베이스 부재의 일면에 삽입된 형태로 구성되는 고정배열 이방성 전도성 필름(fixed array ACF)가 될 수 있다. 보다 구체적으로, 절연성 베이스부재는 접착성을 가지는 물질로 형성되며, 도전볼은 상기 절연성 베이스부재의 바닥부분에 집중적으로 배치되며, 상기 베이스부재에서 열 및 압력이 가해지면 상기 도전볼과 함께 변형됨에 따라 수직방향으로 전도성을 가지게 된다.
다만, 본 발명은 반드시 이에 한정되는 것은 아니며, 상기 이방성 전도성 필름은 절연성 베이스부재에 도전볼이 랜덤하게 혼입된 형태나, 복수의 층으로 구성되며 어느 한 층에 도전볼이 배치되는 형태(double-ACF) 등이 모두 가능하다.
이방성 전도 페이스트는 페이스트와 도전볼의 결합형태로서, 절연성 및 접착성의 베이스 물질에 도전볼이 혼합된 페이스트가 될 수 있다. 또한, 전도성 입자를 함유한 솔루션은 전도성 particle 혹은 nano 입자를 함유한 형태의 솔루션이 될 수 있다.
다시 도면을 참조하면, 제2전극(140)은 보조전극(170)과 이격하여 절연층(160)에 위치한다. 즉, 상기 전도성 접착층(130)은 보조전극(170) 및 제2전극(140)이 위치하는 절연층(160) 상에 배치된다.
절연층(160)에 보조전극(170)과 제2전극(140)이 위치된 상태에서 전도성 접착층(130)을 형성한 후에, 반도체 발광 소자(150)를 열 및 압력을 가하여 플립 칩 형태로 접속시키면, 상기 반도체 발광 소자(150)는 제1전극(120) 및 제2전극(140)과 전기적으로 연결된다.
도 4를 참조하면, 상기 반도체 발광 소자는 플립 칩 타입(flip chip type)의 발광 소자가 될 수 있다.
예를 들어, 상기 반도체 발광 소자는 p형 전극(156), p형 전극(156)이 형성되는 p형 반도체층(155), p형 반도체층(155) 상에 형성된 활성층(154), 활성층(154) 상에 형성된 n형 반도체층(153) 및 n형 반도체층(153) 상에서 p형 전극(156)과 수평방향으로 이격 배치되는 n형 전극(152)을 포함한다. 이 경우, p형 전극(156)은 보조전극(170)과 전도성 접착층(130)에 의하여 전기적으로 연결될 수 있고, n형 전극(152)은 제2전극(140)과 전기적으로 연결될 수 있다.
다시 도 2, 도 3a 및 도 3b를 참조하면, 보조전극(170)은 일방향으로 길게 형성되어, 하나의 보조전극이 복수의 반도체 발광 소자(150)에 전기적으로 연결될 수 있다. 예를 들어, 보조전극을 중심으로 좌우의 반도체 발광 소자들의 p형 전극들이 하나의 보조전극에 전기적으로 연결될 수 있다.
보다 구체적으로, 열 및 압력에 의하여 전도성 접착층(130)의 내부로 반도체 발광 소자(150)가 압입되며, 이를 통하여 반도체 발광 소자(150)의 p형 전극(156)과 보조전극(170) 사이의 부분과, 반도체 발광 소자(150)의 n형 전극(152)과 제2전극(140) 사이의 부분에서만 전도성을 가지게 되고, 나머지 부분에서는 반도체 발광 소자의 압입이 없어 전도성을 가지지 않게 된다. 이와 같이, 전도성 접착층(130)은 반도체 발광 소자(150)와 보조전극(170) 사이 및 반도체 발광 소자(150)와 제2전극(140) 사이를 상호 결합시켜줄 뿐만 아니라 전기적 연결까지 형성시킨다.
또한, 복수의 반도체 발광 소자(150)는 발광 소자 어레이(array)를 구성하며, 발광 소자 어레이에는 형광체층(180)이 형성된다.
발광 소자 어레이는 자체 휘도값이 상이한 복수의 반도체 발광 소자들을 포함할 수 있다. 각각의 반도체 발광 소자(150)는 단위 화소를 구성하며, 제1전극(120)에 전기적으로 연결된다. 예를 들어, 제1전극(120)은 복수 개일 수 있고, 반도체 발광 소자들은 예컨대 수 열로 배치되며, 각 열의 반도체 발광 소자들은 상기 복수 개의 제1전극 중 어느 하나에 전기적으로 연결될 수 있다.
또한, 반도체 발광 소자들이 플립 칩 형태로 접속되므로, 투명 유전체 기판에 성장시킨 반도체 발광 소자들을 이용할 수 있다. 또한, 상기 반도체 발광 소자들은 예컨대 질화물 반도체 발광 소자일 수 있다. 반도체 발광 소자(150)는 휘도가 우수하므로, 작은 크기로도 개별 단위 픽셀을 구성할 수 있다.
도시에 의하면, 반도체 발광 소자(150)의 사이에 격벽(190)이 형성될 수 있다. 이 경우, 격벽(190)은 개별 단위 화소를 서로 분리하는 역할을 할 수 있으며, 전도성 접착층(130)과 일체로 형성될 수 있다. 예를 들어, 이방성 전도성 필름에 반도체 발광 소자(150)가 삽입됨에 의하여 이방성 전도성 필름의 베이스부재가 상기 격벽을 형성할 수 있다.
또한, 상기 이방성 전도성 필름의 베이스부재가 블랙이면, 별도의 블랙 절연체가 없어도 상기 격벽(190)이 반사 특성을 가지는 동시에 대비비(contrast)가 증가될 수 있다.
다른 예로서, 상기 격벽(190)으로 반사성 격벽이 별도로 구비될 수 있다. 이 경우에, 상기 격벽(190)은 디스플레이 장치의 목적에 따라 블랙(Black) 또는 화이트(White) 절연체를 포함할 수 있다. 화이트 절연체의 격벽을 이용할 경우 반사성을 높이는 효과가 있을 수 있고, 블랙 절연체의 격벽을 이용할 경우, 반사 특성을 가지는 동시에 대비비(contrast)를 증가시킬 수 있다.
형광체층(180)은 반도체 발광 소자(150)의 외면에 위치할 수 있다. 예를 들어, 반도체 발광 소자(150)는 청색(B) 광을 발광하는 청색 반도체 발광 소자이고, 형광체층(180)은 상기 청색(B) 광을 단위 화소의 색상으로 변환시키는 기능을 수행한다. 상기 형광체층(180)은 개별 화소를 구성하는 적색 형광체(181) 또는 녹색 형광체(182)가 될 수 있다.
즉, 적색의 단위 화소를 이루는 위치에서, 청색 반도체 발광 소자(151) 상에는 청색 광을 적색(R) 광으로 변환시킬 수 있는 적색 형광체(181)가 적층될 수 있고, 녹색의 단위 화소를 이루는 위치에서는, 청색 반도체 발광 소자(151) 상에 청색 광을 녹색(G) 광으로 변환시킬 수 있는 녹색 형광체(182)가 적층될 수 있다. 또한, 청색의 단위 화소를 이루는 부분에는 청색 반도체 발광 소자(151)만 단독으로 이용될 수 있다. 이 경우, 적색(R), 녹색(G) 및 청색(B)의 단위 화소들이 하나의 화소를 이룰 수 있다. 보다 구체적으로, 제1전극(120)의 각 라인을 따라 하나의 색상의 형광체가 적층될 수 있다. 따라서, 제1전극(120)에서 하나의 라인은 하나의 색상을 제어하는 전극이 될 수 있다. 즉, 제2전극(140)을 따라서, 적색(R), 녹색(G) 및 청색(B)이 차례로 배치될 수 있으며, 이를 통하여 단위 화소가 구현될 수 있다.
다만, 본 발명은 반드시 이에 한정되는 것은 아니며, 형광체 대신에 반도체 발광 소자(150)와 퀀텀닷(QD)이 조합되어 적색(R), 녹색(G) 및 청색(B)의 단위 화소들을 구현할 수 있다.
또한, 대비비(contrast) 향상을 위하여 각각의 형광체층들의 사이에는 블랙 매트릭스(191)가 배치될 수 있다. 즉, 이러한 블랙 매트릭스(191)는 명암의 대조를 향상시킬 수 있다.
다만, 본 발명은 반드시 이에 한정되는 것은 아니며, 청색, 적색, 녹색을 구현하기 위한 다른 구조가 적용될 수 있다.
도 5a를 참조하면, 각각의 반도체 발광 소자(150)는 질화 갈륨(GaN)을 주로 하여, 인듐(In) 및/또는 알루미늄(Al)이 함께 첨가되어 청색을 비롯한 다양한 빛을 발광하는 고출력의 발광 소자로 구현될 수 있다.
이 경우, 반도체 발광 소자(150)는 각각 단위 화소(sub-pixel)를 이루기 위하여 적색, 녹색 및 청색 반도체 발광 소자일 수 있다. 예컨대, 적색, 녹색 및 청색 반도체 발광 소자(R, G, B)가 교대로 배치되고, 적색, 녹색 및 청색 반도체 발광 소자에 의하여 적색(Red), 녹색(Green) 및 청색(Blue)의 단위 화소들이 하나의 화소(pixel)를 이루며, 이를 통하여 풀 칼라 디스플레이가 구현될 수 있다.
도 5b를 참조하면, 반도체 발광 소자는 황색 형광체층이 개별 소자마다 구비된 백색 발광 소자(W)를 구비할 수 있다. 이 경우에는, 단위 화소를 이루기 위하여, 백색 발광 소자(W) 상에 적색 형광체층(181), 녹색 형광체층(182), 및 청색 형광체층(183)이 구비될 수 있다. 또한, 이러한 백색 발광 소자(W) 상에 적색, 녹색, 및 청색이 반복되는 컬러 필터를 이용하여 단위 화소를 이룰 수 있다.
도 5c를 참조하면, 자외선 발광 소자(UV) 상에 적색 형광체층(181), 녹색 형광체층(182), 및 청색 형광체층(183)이 구비되는 구조도 가능하다. 이와 같이, 반도체 발광 소자는 가시광선뿐만 아니라 자외선(UV)까지 전영역에 사용가능하며, 자외선(UV)이 상부 형광체의 여기원(excitation source)으로 사용가능한 반도체 발광 소자의 형태로 확장될 수 있다.
본 예시를 다시 살펴보면, 반도체 발광 소자(150)는 전도성 접착층(130) 상에 위치되어, 디스플레이 장치에서 단위 화소를 구성한다. 반도체 발광 소자(150)는 휘도가 우수하므로, 작은 크기로도 개별 단위 화소를 구성할 수 있다. 이와 같은 개별 반도체 발광 소자(150)의 크기는 한 변의 길이가 80㎛ 이하일 수 있고, 직사각형 또는 정사각형 소자일 수 있다. 직사각형인 경우에는 20X80㎛ 이하의 크기가 될 수 있다.
또한, 한 변의 길이가 10㎛인 정사각형의 반도체 발광 소자(150)를 단위 화소로 이용하여도 디스플레이 장치를 이루기 위한 충분한 밝기가 나타난다. 따라서, 단위 화소의 크기가 한 변이 600㎛, 나머지 한변이 300㎛인 직사각형 화소인 경우를 예로 들면, 반도체 발광 소자의 거리가 상대적으로 충분히 크게 된다. 따라서, 이러한 경우, HD화질을 가지는 플렉서블 디스플레이 장치를 구현할 수 있게 된다.
상기에서 설명된 반도체 발광 소자를 이용한 디스플레이 장치는 새로운 형태의 제조방법에 의하여 제조될 수 있다. 이하, 도 6을 참조하여 상기 제조방법에 대하여 설명한다.
도 6은 본 발명의 반도체 발광 소자를 이용한 디스플레이 장치의 제조방법을 나타낸 단면도들이다.
본 도면을 참조하면, 먼저, 보조전극(170) 및 제2전극(140)이 위치된 절연층(160) 상에 전도성 접착층(130)을 형성한다. 제1기판(110)에 절연층(160)이 적층되어 하나의 기판(또는 배선기판)을 형성하며, 상기 배선기판에는 제1전극(120), 보조전극(170) 및 제2전극(140)이 배치된다. 이 경우에, 제1전극(120)과 제2전극(140)은 상호 직교 방향으로 배치될 수 있다. 또한, 플렉서블(flexible) 디스플레이 장치를 구현하기 위하여 제1기판(110) 및 절연층(160)은 각각 유리 또는 폴리이미드(PI)를 포함할 수 있다.
상기 전도성 접착층(130)은 예를 들어, 이방성 전도성 필름에 의하여 구현될 수 있으며, 이를 위하여 절연층(160)이 위치된 기판에 이방성 전도성 필름이 도포될 수 있다.
다음에, 보조전극(170) 및 제2전극(140)들의 위치에 대응하고, 개별 화소를 구성하는 복수의 반도체 발광 소자(150)가 위치된 제2기판(112)을 상기 반도체 발광 소자(150)가 보조전극(170) 및 제2전극(140)와 대향하도록 배치한다.
이 경우에, 제2기판(112)은 반도체 발광 소자(150)를 성장시키는 성장 기판으로서, 사파이어(spire) 기판 또는 실리콘(silicon) 기판이 될 수 있다.
상기 반도체 발광 소자는 웨이퍼(wafer) 단위로 형성될 때, 디스플레이 장치를 이룰 수 있는 간격 및 크기를 가지도록 함으로써, 디스플레이 장치에 효과적으로 이용될 수 있다.
그 다음에, 배선기판과 제2기판(112)을 열압착한다. 예를 들어, 배선기판과 제2기판(112)은 ACF press head 를 적용하여 열압착될 수 있다. 상기 열압착에 의하여 배선기판과 제2기판(112)은 본딩(bonding)된다. 열압착에 의하여 전도성을 갖는 이방성 전도성 필름의 특성에 의해 반도체 발광 소자(150)와 보조전극(170) 및 제2전극(140)의 사이의 부분만 전도성을 가지게 되며, 이를 통하여 전극들과 반도체 발광소자(150)는 전기적으로 연결될 수 있다. 이 때에, 반도체 발광 소자(150)가 상기 이방성 전도성 필름의 내부로 삽입되며, 이를 통하여 반도체 발광 소자(150) 사이에 격벽이 형성될 수 있다.
그 다음에, 상기 제2기판(112)을 제거한다. 예를 들어, 제2기판(112)은 레이저 리프트 오프법(Laser Lift-off, LLO) 또는 화학적 리프트 오프법(Chemical Lift-off, CLO)을 이용하여 제거할 수 있다.
마지막으로, 상기 제2기판(112)을 제거하여 반도체 발광 소자들(150)을 외부로 노출시킨다. 필요에 따라, 반도체 발광 소자(150)가 결합된 배선기판 상을 실리콘 옥사이드(SiOx) 등을 코팅하여 투명 절연층(미도시)을 형성할 수 있다.
또한, 상기 반도체 발광 소자(150)의 일면에 형광체층을 형성하는 단계를 더 포함할 수 있다. 예를 들어, 반도체 발광 소자(150)는 청색(B) 광을 발광하는 청색 반도체 발광 소자이고, 이러한 청색(B) 광을 단위 화소의 색상으로 변환시키기 위한 적색 형광체 또는 녹색 형광체가 상기 청색 반도체 발광 소자의 일면에 레이어를 형성할 수 있다.
이상에서 설명된 반도체 발광 소자를 이용한 디스플레이 장치의 제조방법이나 구조는 여러가지 형태로 변형될 수 있다. 그 예로서, 상기에서 설명된 디스플레이 장치에는 수직형 반도체 발광 소자도 적용될 수 있다. 이하, 도 5 및 도 6을 참조하여 수직형 구조에 대하여 설명한다.
또한, 이하 설명되는 변형예 또는 실시예에서는 앞선 예와 동일 또는 유사한 구성에 대해서는 동일, 유사한 참조번호가 부여되고, 그 설명은 처음 설명으로 갈음된다.
도 7은 발명의 반도체 발광 소자를 이용한 디스플레이 장치의 다른 일 실시예를 나타내는 사시도이고, 도 8은 도 7의 라인 D-D를 따라 취한 단면도이며, 도 9은 도 8의 수직형 반도체 발광소자를 나타내는 개념도이다.
본 도면들을 참조하면, 디스플레이 장치는 패시브 매트릭스(Passive Matrix, PM) 방식의 수직형 반도체 발광 소자를 이용한 디스플레이 장치가 될 수 있다.
상기 디스플레이 장치는 기판(210), 제1전극(220), 전도성 접착층(230), 제2전극(240) 및 복수의 반도체 발광 소자(250)를 포함한다.
기판(210)은 제1전극(220)이 배치되는 배선기판으로서, 플렉서블(flexible) 디스플레이 장치를 구현하기 위하여 폴리이미드(PI)를 포함할 수 있다. 이외에도 절연성이 있고, 유연성 있는 재질이면 어느 것이라도 사용 가능할 것이다.
제1전극(220)은 기판(210) 상에 위치하며, 일 방향으로 긴 바(bar) 형태의 전극으로 형성될 수 있다. 상기 제1전극(220)은 데이터 전극의 역할을 하도록 이루어질 수 있다.
전도성 접착층(230)은 제1전극(220)이 위치하는 기판(210)상에 형성된다. 플립 칩 타입(flip chip type)의 발광 소자가 적용된 디스플레이 장치와 같이, 전도성 접착층(230)은 이방성 전도성 필름(anistropy conductive film, ACF), 이방성 전도 페이스트(paste), 전도성 입자를 함유한 솔루션(solution) 등이 될 수 있다. 다만, 본 실시예에서도 이방성 전도성 필름에 의하여 전도성 접착층(230)이 구현되는 경우를 예시한다.
기판(210) 상에 제1전극(220)이 위치하는 상태에서 이방성 전도성 필름을 위치시킨 후에, 반도체 발광 소자(250)를 열 및 압력을 가하여 접속시키면, 상기 반도체 발광 소자(250)가 제1전극(220)과 전기적으로 연결된다. 이 때, 상기 반도체 발광 소자(250)는 제1전극(220) 상에 위치되도록 배치되는 것이 바람직하다.
상기 전기적 연결은 전술한 바와 같이, 이방성 전도성 필름에서 열 및 압력이 가해지면 부분적으로 두께방향으로 전도성을 가지기 때문에 생성된다. 따라서, 이방성 전도성 필름에서는 두께방향으로 전도성을 가지는 부분(231)과 전도성을 가지지 않는 부분(232)으로 구획된다.
또한, 이방성 전도성 필름은 접착 성분을 함유하기 때문에, 전도성 접착층(230)은 반도체 발광 소자(250)와 제1전극(220) 사이에서 전기적 연결뿐만 아니라 기계적 결합까지 구현한다.
이와 같이, 반도체 발광 소자(250)는 전도성 접착층(230) 상에 위치되며, 이를 통하여 디스플레이 장치에서 개별 화소를 구성한다. 반도체 발광 소자(250)는 휘도가 우수하므로, 작은 크기로도 개별 단위 픽셀을 구성할 수 있다. 이와 같은 개별 반도체 발광 소자(250)의 크기는 한 변의 길이가 80㎛ 이하일 수 있고, 직사각형 또는 정사각형 소자일 수 있다. 직사각형인 경우에는 20X80㎛ 이하의 크기가 될 수 있다.
상기 반도체 발광 소자(250)는 수직형 구조가 될 수 있다.
수직형 반도체 발광 소자들의 사이에는, 제1전극(220)의 길이 방향과 교차하는 방향으로 배치되고, 수직형 반도체 발광 소자(250)와 전기적으로 연결된 복수의 제2전극(240)이 위치한다.
도 9를 참조하면, 이러한 수직형 반도체 발광 소자는 p형 전극(256), p형 전극(256) 상에 형성된 p형 반도체층(255), p형 반도체층(255) 상에 형성된 활성층(254), 활성층(254)상에 형성된 n형 반도체층(253) 및 n형 반도체층(253) 상에 형성된 n형 전극(252)을 포함한다. 이 경우, 하부에 위치한 p형 전극(256)은 제1전극(220)과 전도성 접착층(230)에 의하여 전기적으로 연결될 수 있고, 상부에 위치한 n형 전극(252)은 후술하는 제2전극(240)과 전기적으로 연결될 수 있다. 이러한 수직형 반도체 발광 소자(250)는 전극을 상/하로 배치할 수 있으므로, 칩 사이즈를 줄일 수 있다는 큰 강점을 가지고 있다.
다시 도 8을 참조하면, 상기 반도체 발광 소자(250)의 일면에는 형광체층(280)이 형성될 수 있다. 예를 들어, 반도체 발광 소자(250)는 청색(B) 광을 발광하는 청색 반도체 발광 소자(251)이고, 이러한 청색(B) 광을 단위 화소의 색상으로 변환시키기 위한 형광체층(280)이 구비될 수 있다. 이 경우에, 형광체층(280)은 개별 화소를 구성하는 적색 형광체(281) 및 녹색 형광체(282) 일 수 있다.
즉, 적색의 단위 화소를 이루는 위치에서, 청색 반도체 발광 소자(251) 상에는 청색 광을 적색(R) 광으로 변환시킬 수 있는 적색 형광체(281)가 적층될 수 있고, 녹색의 단위 화소를 이루는 위치에서는, 청색 반도체 발광 소자(251) 상에 청색 광을 녹색(G) 광으로 변환시킬 수 있는 녹색 형광체(282)가 적층될 수 있다. 또한, 청색의 단위 화소를 이루는 부분에는 청색 반도체 발광 소자(251)만 단독으로 이용될 수 있다. 이 경우, 적색(R), 녹색(G) 및 청색(B)의 단위 화소들이 하나의 화소를 이룰 수 있다.
다만, 본 발명은 반드시 이에 한정되는 것은 아니며, 플립 칩 타입(flip chip type)의 발광 소자가 적용된 디스플레이 장치에서 전술한 바와 같이, 청색, 적색, 녹색을 구현하기 위한 다른 구조가 적용될 수 있다.
다시 본 실시예를 살펴보면, 제2전극(240)은 반도체 발광 소자들(250) 사이에 위치하고, 반도체 발광 소자들(250)과 전기적으로 연결된다. 예를 들어, 반도체 발광 소자들(250)은 복수의 열로 배치되고, 제2전극(240)은 반도체 발광 소자들(250)의 열들 사이에 위치할 수 있다.
개별 화소를 이루는 반도체 발광 소자(250) 사이의 거리가 충분히 크기 때문에 제2전극(240)은 반도체 발광 소자들(250) 사이에 위치될 수 있다.
제2전극(240)은 일 방향으로 긴 바(bar) 형태의 전극으로 형성될 수 있으며, 제1전극과 상호 수직한 방향으로 배치될 수 있다.
또한, 제2전극(240)과 반도체 발광 소자(250)는 제2전극(240)에서 돌출된 연결 전극에 의해 전기적으로 연결될 수 있다. 보다 구체적으로, 상기 연결 전극이 반도체 발광 소자(250)의 n형 전극이 될 수 있다. 예를 들어, n형 전극은 오믹(ohmic) 접촉을 위한 오믹 전극으로 형성되며, 상기 제2전극은 인쇄 또는 증착에 의하여 오믹 전극의 적어도 일부를 덮게 된다. 이를 통하여 제2전극(240)과 반도체 발광 소자(250)의 n형 전극이 전기적으로 연결될 수 있다.
도시에 의하면, 상기 제2전극(240)은 전도성 접착층(230) 상에 위치될 수 있다. 경우에 따라, 반도체 발광 소자(250)가 형성된 기판(210) 상에 실리콘 옥사이드(SiOx) 등을 포함하는 투명 절연층(미도시)이 형성될 수 있다. 투명 절연층이 형성된 후에 제2전극(240)을 위치시킬 경우, 상기 제2전극(240)은 투명 절연층 상에 위치하게 된다. 또한, 제2전극(240)은 전도성 접착층(230) 또는 투명 절연층에 이격되어 형성될 수도 있다.
만약 반도체 발광 소자(250) 상에 제2전극(240)을 위치시키기 위하여는 ITO(Indium Tin Oxide)와 같은 투명 전극을 사용한다면, ITO 물질은 n형 반도체층과는 접착성이 좋지 않은 문제가 있다. 따라서, 본 발명은 반도체 발광 소자(250) 사이에 제2전극(240)을 위치시킴으로써, ITO와 같은 투명 전극을 사용하지 않아도 되는 이점이 있다. 따라서, 투명한 재료 선택에 구속되지 않고, n형 반도체층과 접착성이 좋은 전도성 물질을 수평 전극으로 사용하여 광추출 효율을 향상시킬 수 있다.
도시에 의하면, 반도체 발광 소자(250) 사이에는 격벽(290)이 위치할 수 있다. 즉, 개별 화소를 이루는 반도체 발광 소자(250)를 격리시키기 위하여 수직형 반도체 발광 소자(250) 사이에는 격벽(290)이 배치될 수 있다. 이 경우, 격벽(290)은 개별 단위 화소를 서로 분리하는 역할을 할 수 있으며, 상기 전도성 접착층(230)과 일체로 형성될 수 있다. 예를 들어, 이방성 전도성 필름에 반도체 발광 소자(250)가 삽입됨에 의하여 이방성 전도성 필름의 베이스부재가 상기 격벽을 형성할 수 있다.
또한, 상기 이방성 전도성 필름의 베이스 부재가 블랙이면, 별도의 블랙 절연체가 없어도 상기 격벽(290)이 반사 특성을 가지는 동시에 대비비(contrast)가 증가될 수 있다.
다른 예로서, 상기 격벽(190)으로서, 반사성 격벽이 별도로 구비될 수 있다. 격벽(290)은 디스플레이 장치의 목적에 따라 블랙(Black) 또는 화이트(White) 절연체를 포함할 수 있다.
만일 제2전극(240)이 반도체 발광 소자(250) 사이의 전도성 접착층(230) 상에 바로 위치된 경우, 격벽(290)은 수직형 반도체 발광 소자(250) 및 제2전극(240)의 사이사이에 위치될 수 있다. 따라서, 반도체 발광 소자(250)를 이용하여 작은 크기로도 개별 단위 픽셀을 구성할 수 있고, 반도체 발광 소자(250)의 거리가 상대적으로 충분히 크게 되어 제2전극(240)을 반도체 발광 소자(250) 사이에 위치시킬 수 있고, HD 화질을 가지는 플렉서블 디스플레이 장치를 구현할 수 있는 효과가 있게 된다.
또한, 도시에 의하면, 대비비(contrast) 향상을 위하여 각각의 형광체 사이에는 블랙 매트릭스(291)가 배치될 수 있다. 즉, 이러한 블랙 매트릭스(291)는 명암의 대조를 향상시킬 수 있다.
상기 설명과 같이, 반도체 발광 소자(250)는 전도성 접착층(230) 상에 위치되며, 이를 통하여 디스플레이 장치에서 개별 화소를 구성한다. 반도체 발광 소자(250)는 휘도가 우수하므로, 작은 크기로도 개별 단위 픽셀을 구성할 수 있다. 따라서, 반도체 발광 소자에 의하여 적색(R), 녹색(G) 및 청색(B)의 단위 화소들이 하나의 화소를 이루는 풀 칼라 디스플레이가 구현될 수 있다.
상기에서 설명된 본 발명의 반도체 발광 소자를 이용한 디스플레이 장치에는 플립 칩 타입이 적용된 경우에는 동일평면상에 제1 및 제2전극이 배치되므로 고정세(파인 피치)의 구현이 어려운 문제가 있다. 이하, 이러한 문제를 해결할 수 있는 본 발명의 다른 실시예에 따른 플립 칩 타입의 발광소자가 적용된 디스플레이 장치에 대하여 설명한다.
도 10은 새로운 구조의 반도체 발광소자가 적용된 본 발명의 다른 실시 예를 설명하기 위한, 도 1의 A부분의 확대도이다. 또한, 도 11a는 도 10의 라인 E-E를 따라 취한 단면도이고, 도 11b는 도 11의 라인 F-F를 따라 취한 단면도이며, 도 12는 도 11a의 플립 칩 타입 반도체 발광 소자를 나타내는 개념도이다.
도 10, 도 11a 및 도 11b의 도시에 의하면, 반도체 발광 소자를 이용한 디스플레이 장치(1000)로서 패시브 매트릭스(Passive Matrix, PM) 방식의 반도체 발광 소자를 이용한 디스플레이 장치(1000)를 예시한다. 다만, 이하 설명되는 예시는 액티브 매트릭스(Active Matrix, AM) 방식의 반도체 발광 소자에도 적용 가능하다.
디스플레이 장치(1000)는 기판(1010), 제1전극(1020), 전도성 접착층(1030), 제2전극(1040) 및 복수의 반도체 발광 소자(1050)를 포함한다. 여기에서, 제1 전극(1020) 및 제2 전극(1040)은 각각 복수의 전극 라인들을 포함할 수 있다.
기판(1010)은 제1전극(1020)이 배치되는 배선기판으로서, 플렉서블(flexible) 디스플레이 장치를 구현하기 위하여 폴리이미드(PI)를 포함할 수 있다. 이외에도 절연성이 있고, 유연성 있는 재질이면 어느 것이라도 사용 가능할 것이다.
제1전극(1020)은 기판(1010) 상에 위치하며, 일 방향으로 긴 바(bar) 형태의 전극으로 형성될 수 있다. 상기 제1전극(1020)은 데이터 전극의 역할을 하도록 이루어질 수 있다.
전도성 접착층(1030)은 제1전극(1020)이 위치하는 기판(1010)상에 형성된다. 전술한 플립 칩 타입(flip chip type)의 발광 소자가 적용된 디스플레이 장치와 같이, 전도성 접착층(1030)은 이방성 전도성 필름(anistropy conductive film, ACF), 이방성 전도 페이스트(paste), 전도성 입자를 함유한 솔루션(solution) 등이 될 수 있다. 다만, 본 실시예에서 상기 전도성 접착층(1030)은 접착층으로 대체될 수 있다. 예를 들어, 상기 제1전극(1020)이 기판(1010)상에 위치하지 않고, 반도체 발광소자의 도전형 전극과 일체로 형성된다면, 접착층은 전도성이 필요없게 될 수 있다.
상기 반도체 발광 소자들의 사이에는, 제1전극(1020)의 길이 방향과 교차하는 방향으로 배치되고, 상기 반도체 발광 소자(1050)와 전기적으로 연결된 복수의 제2전극(1040)이 위치한다.
도시에 의하면, 상기 제2전극(1040)은 전도성 접착층(1030) 상에 위치될 수 있다. 즉, 전도성 접착층(1030)은 배선기판과 제2전극(1040)의 사이에 배치된다. 상기 제2전극(1040)은 상기 반도체 발광 소자(1050)와 접촉에 의하여 전기적으로 연결될 수 있다.
상기에서 설명된 구조에 의하여, 복수의 반도체 발광 소자(1050)는 상기 전도성 접착층(1030)에 결합 되며, 제1전극(1020) 및 제2전극(1040)과 전기적으로 연결된다.
경우에 따라, 반도체 발광 소자(1050)가 형성된 기판(1010) 상에 실리콘 옥사이드(SiOx) 등을 포함하는 투명 절연층(미도시)이 형성될 수 있다. 투명 절연층이 형성된 후에 제2전극(1040)을 위치시킬 경우, 상기 제2전극(1040)은 투명 절연층 상에 위치하게 된다. 또한, 제2전극(1040)은 전도성 접착층(1030) 또는 투명 절연층에 이격 되어 형성될 수도 있다.
도시와 같이, 복수의 반도체 발광소자(1050)는 제1전극(1020)에 구비되는 복수의 전극 라인들과 나란한 방향으로 복수의 열들을 형성할 수 있다. 다만, 본 발명은 반드시 이에 한정되는 것은 아니다. 예를 들어, 복수의 반도체 발광소자(1050)는 제2전극(1040)을 따라 복수의 열들을 형성할 수 있다.
나아가, 디스플레이 장치(1000)는, 복수의 반도체 발광소자(1050)의 일면에 형성되는 형광체층(1080)을 더 구비할 수 있다. 예를 들어, 반도체 발광 소자(1050)는 청색(B) 광을 발광하는 청색 반도체 발광 소자이고, 형광체층(1080)은 상기 청색(B) 광을 단위 화소의 색상으로 변환시키는 기능을 수행한다. 상기 형광체층(1080)은 개별 화소를 구성하는 적색 형광체(1081) 또는 녹색 형광체(1082)가 될 수 있다. 즉, 적색의 단위 화소를 이루는 위치에서, 청색 반도체 발광 소자(1051a) 상에는 청색 광을 적색(R) 광으로 변환시킬 수 있는 적색 형광체(1081)가 적층 될 수 있고, 녹색의 단위 화소를 이루는 위치에서는, 청색 반도체 발광 소자(1051b) 상에 청색 광을 녹색(G) 광으로 변환시킬 수 있는 녹색 형광체(1082)가 적층될 수 있다. 또한, 청색의 단위 화소를 이루는 부분에는 청색 반도체 발광 소자(1051c)만 단독으로 이용될 수 있다. 이 경우, 적색(R), 녹색(G) 및 청색(B)의 단위 화소들이 하나의 화소를 이룰 수 있다. 보다 구체적으로, 제1전극(1020)의 각 라인을 따라 하나의 색상의 형광체가 적층 될 수 있다. 따라서, 제1전극(1020)에서 하나의 라인은 하나의 색상을 제어하는 전극이 될 수 있다. 즉, 제2전극(1040)을 따라서, 적색(R), 녹색(G) 및 청색(B)이 차례로 배치될 수 있으며, 이를 통하여 단위 화소가 구현될 수 있다. 다만, 본 발명은 반드시 이에 한정되는 것은 아니며, 형광체 대신에 반도체 발광 소자(1050)와 퀀텀닷(QD)이 조합되어 적색(R), 녹색(G) 및 청색(B)을 발광하는 단위 화소를 구현할 수 있다.
한편, 이러한 형광체층(1080)의 대비비(Contrast) 향상을 위하여 디스플레이 장치는 각각의 형광체들의 사이에 배치되는 블랙 매트릭스(1091)를 더 포함할 수 있다. 상기 블랙 매트릭스(1091)는 형광체 도트 사이에 갭을 만들고, 흑색 물질이 상기 갭을 채우는 형태로 형성될 수 있다. 이를 통하여 블랙 매트릭스(1091)는 외광반사를 흡수함과 동시에 명암의 대조를 향상시킬 수 있다. 이러한 블랙 매트릭스(1091)는, 형광체층(1080)이 적층된 방향인 제1전극(1020)을 따라 각각의 형광체층들의 사이에 위치한다. 이 경우에, 청색 반도체 발광 소자(1051)에 해당하는 위치에는 형광체층이 형성되지 않으나, 블랙 매트릭스(1091)는 상기 형광체층이 없는 공간을 사이에 두고(또는 청색 반도체 발광 소자(1051c)를 사이에 두고) 양측에 각각 형성될 수 있다.
다시, 본 예시의 반도체 발광소자(1050)를 살펴보면, 본 예시에서 반도체 발광 소자(1050)는 전극을 상/하로 배치할 수 있으므로, 칩 사이즈를 줄일 수 있다는 큰 강점을 가지고 있다. 다만, 전극이 상/하로 배치되나, 본 발명의 반도체 발광소자는 플립 칩 타입(flip chip type)의 발광 소자가 될 수 있다.
도 12를 참조하면, 예를 들어, 상기 반도체 발광 소자(1050)는 제1도전형 전극(1156)과, 제1도전형 전극(1156)이 형성되는 제1도전형 반도체층(1155)과, 제1도전형 반도체층(1155) 상에 형성된 활성층(1154)과, 상기 활성층(1154) 상에 형성된 제2도전형 반도체층(1153) 및 제2도전형 반도체층(1153)에 형성되는 제2도전형 전극(1152)을 포함한다.
보다 구체적으로, 상기 제1도전형 전극(1156) 및 제1도전형 반도체층(1155)은 각각 p형 전극 및 p형 반도체층이 될 수 있으며, 상기 제2도전형 전극(1152) 및 제2도전형 반도체층(1153)은 각각 n형 전극 및 n형 반도체층이 될 수 있다. 다만, 본 발명은 반드시 이에 한정되는 것은 아니며, 제1도전형이 n형이 되고 제2도전형이 p형이 되는 예시도 가능하다.
보다 구체적으로, 상기 제1도전형 전극(1156)은 상기 제1도전형 반도체층(1155)의 일면에 형성되며, 상기 활성층(1154)은 상기 제1도전형 반도체층(1155)의 타면과 상기 제2도전형 반도체층(1153)의 일면의 사이에 형성되고, 상기 제2도전형 전극(1152)은 상기 제2도전형 반도체층(1153)의 일면에 형성된다.
이 경우에, 상기 제2도전형 전극은 상기 제2도전형 반도체층(1153)의 일면에 배치되며, 상기 제2도전형 반도체층(1153)의 타면에는 언도프된(Undoped) 반도체층(1153a)이 형성될 수 있다.
도 12를 도 10 내지 도 11b와 함께 참조하면, 상기 제2도전형 반도체층의 일면은 상기 배선기판에 가장 가까운 면이 될 수 있고, 상기 제2도전형 반도체층의 타면은 상기 배선기판에 가장 먼 면이 될 수 있다.
또한, 상기 제1도전형 전극(1156) 및 제2도전형 전극(1152)은 반도체 발광소자의 폭방향을 따라 이격된 위치에서 각각 상기 폭방향과 수직방향(또는 두께방향)으로 서로 높이차를 가지도록 이루어진다.
상기 높이차를 이용하여 상기 제2도전형 전극(1152)은 상기 제2도전형 반도체층(1153)에 형성되나, 반도체 발광소자의 상측에 위치하는 상기 제2전극(1040)과 인접하게 배치된다. 예를 들어, 상기 제2도전형 전극(1152)은 적어도 일부가 상기 제2도전형 반도체층(1153)의 측면(또는, 언도프된(Undoped) 반도체층(1153a)의 측면)으로부터 상기 폭방향을 따라 돌출된다. 이와 같이, 제2도전형 전극(1152)이 상기 측면에서 돌출되기에, 상기 제2도전형 전극(1152)은 반도체 발광소자의 상측으로 노출될 수 있다. 이를 통하여, 상기 제2도전형 전극(1152)은 전도성 접착층(1030)의 상측에 배치되는 상기 제2전극(1040)과 오버랩되는 위치에 배치된다.
보다 구체적으로, 반도체 발광 소자는 상기 제2도전형 전극(1152)에서 연장되며, 상기 복수의 반도체 발광 소자의 측면에서 돌출되는 돌출부(1152a)를 구비한다. 이 경우에, 상기 돌출부(1152a)를 기준으로 보면, 상기 제1도전형 전극(1156) 및 제2도전형 전극(1152)은 상기 돌출부(1152a)의 돌출방향을 따라 이격된 위치에서 배치되며, 상기 돌출방향과 수직한 방향으로 서로 높이차를 가지도록 형성되는 것으로 표현될 수 있다.
상기 돌출부(1152a)는 상기 제2도전형 반도체층(1153)의 일면에서 측면으로 연장되며, 상기 제2도전형 반도체층(1153)의 상면으로, 보다 구체적으로는 언도프된(Undoped) 반도체층(1153a)으로 연장된다. 상기 돌출부(1152a)는 상기 언도프된(Undoped) 반도체층(1153a)의 측면에서 상기 폭방향을 따라 돌출된다. 따라서, 상기 돌출부(1152a)는 상기 제2도전형 반도체층을 기준으로 상기 제1도전형 전극의 반대측에서 상기 제2전극(1040)과 전기적으로 연결될 수 있다.
상기 돌출부(1152a)를 구비하는 구조는, 전술한 수평형 반도체 발광소자와 수직형 반도체 발광소자의 장점을 이용할 수 있는 구조가 될 수 있다. 한편, 상기 언도프된(Undoped) 반도체층(1153a)에서 상기 제1도전형 전극(1156)으로부터 가장 먼 상면에는 roughing 에 의하여 미세홈들이 형성될 수 있다.
상기에서 설명된 디스플레이 장치들(도 2 및 도 10)에 의하면, 반도체 발광소자들에서 출력된 빛은 형광체를 이용하여 여기시켜, 적색(R) 및 녹색(G)을 구현하게 된다. 이 경우에, 반도체 발광 소자는 p형 반도체층, p형 반도체층 상에 형성된 활성층, 활성층 상에 형성된 n형 반도체층을 구비한다. 이 경우에, 반도체 발광 소자의 제조과정을 살펴보면, p형 반도체층, 활성층 및 n형 반도체층은 epitaxial하게 기판상에서 성장되며, n형 반도체층이 드러날때까지 p형 반도체층과 활성층을 식각하는 Mesa 식각 과정과, n형 반도체층을 식각하여 복수의 반도체 발광소자들을 형성하는 Isolation 과정을 거치게 된다. 즉, Mesa 식각에 의하여 발광영역 및 p contact 영역이 형성되고, Isolation 과정에 의하여 n contact 영역이 형성된다.
이후에, p형 반도체와 n형 반도체를 절연시키기 위해 SiO2, SiN과 같은 절연체 물질을 이용하여 Passivation layer를 형성하고, 전류 주입을 위한 P, N 전극용 금속막을 증착하게 된다. 이 경우에, Mesa 식각 과정후에 Isolation 과정이 이어지므로, 제조공정이 복잡하게 된다.
본 발명에서는 이러한 문제를 해결할 수 있는 새로운 구조의 반도체 발광소자를 제시한다. 이하, 새로운 구조의 반도체 발광소자가 적용된 디스플레이 장치 및 이의 제조방법에 대하여 설명한다.
도 13은 본 발명의 또 다른 실시 예를 설명하기 위한, 도 1의 A부분의 확대도이고, 도 14는 도 13의 G-G를 따라 취한 단면도이며, 도 15는 도 13의 H-H를 따라 취한 단면도이고, 도 16은 도 13의 I-I를 따라 취한 단면도이고, 도 17은 도 13의 반도체 발광 소자를 나타내는 개념도이다.
도 13, 도 14, 도 15, 도 16 및 도 17의 도시에 의하면, 반도체 발광 소자를 이용한 디스플레이 장치(2000)로서 도 10 내지 도 12를 참조하여 설명한 디스플레이 장치에서, 새로운 구조의 반도체 발광소자가 적용된 경우를 예시한다.
이하 설명되는 본 예시에서는, 앞서 도 10 내지 도 12를 참조하여 설명한 예시의 각 구성과 동일 또는 유사한 구성에 대해서는 동일, 유사한 참조번호가 부여되고, 그 설명은 처음 설명으로 갈음된다. 예를 들어, 디스플레이 장치(2000)는 기판(2010), 제1전극(2020), 제2전극(2040), 전도성 접착층(2030), 형광체층(2080) 및 복수의 반도체 발광 소자(2050)를 포함하며, 이들에 대한 설명은 앞서 도 10 내지 도 12를 참조한 설명으로 갈음한다.
본 도면들을 참조하면, 반도체 발광소자는 제1도전형 반도체층(2155)과, 상기 제1도전형 반도체층(2155)과 중첩되는 제2도전형 반도체층(2153)을 구비한다. 이 경우에, 상기 제2도전형 반도체층(2153)은 상면, 하면 및 측면을 구비하며, 상기 하면이 상기 제1도전형 반도체층을 향하도록, 상기 제1도전형 반도체층의 상부에 배치된다. 또한, 상기 반도체 발광소자는 상기 제2도전형 반도체층(2153)과 상기 제1도전형 반도체층(2153)의 사이들에 형성되는 활성층(2154)을 포함한다.
또한, 상기 반도체 발광소자는 상기 제1도전형 반도체층(2155)과 전기적으로 연결되는 제1도전형 전극(2156)과, 상기 제2도전형 반도체층(2153)과 전기적으로 연결되는 제2도전형 전극(2152)을 구비한다.
한편, 상기 제1도전형 전극(2156) 및 제1도전형 반도체층(2155)은 각각 p형 전극 및 p형 반도체층이 될 수 있으며, 상기 제2도전형 전극(2152) 및 제2도전형 반도체층(2153)은 각각 n형 전극 및 n형 반도체층이 될 수 있다. 다만, 본 발명은 반드시 이에 한정되는 것은 아니며, 제1도전형이 n형이 되고 제2도전형이 p형이 되는 예시도 가능하다.
도시에 의하면, 상기 제2도전형 반도체층(2153)은 상기 제2도전형 반도체층(2153)의 측면에 대하여 경사진 경사부를 구비하며, 상기 제2도전형 전극(2152)은 상기 경사부를 덮도록 이루어진다. 또한, 상기 경사부는 상기 제1도전형 반도체층(2155)으로 연장된다. 이 경우에, 상기 제1도전형 반도체층(2155)에 해당하는 부분은 제1경사부(2155a)이고, 상기 제2도전형 반도체층(2153)에 해당하는 부분은 제2경사부(2153a)가 될 수 있다.
도 10 내지 도 12를 참조하여 설명한 디스플레이 장치에서는, 반도체 발광소자가 상기 경사부가 없이 형성된다. 이는 현재의 제조방법이, Mesa 식각 과정에서 제1도전형 반도체층이 식각되고, 그 후의 Isolation 과정에서 제2도전형 반도체층이 식각되는 과정으로 이루어지기 때문이다. 이에 반해, 본 예시에서는 상기 경사부를 이용하여 단일 식각 공정에 의하여, 제1도전형 반도체층과 제2도전형 반도체층이 식각되는 구조를 제시하며, 이는 Mesa와 Isolation 의 일체형 구조라 정의될 수 있다. 한편, 상기 활성층(2154)에는 상기 제2경사부(2153a)와 이어지는 제3경사부(2154a)가 형성될 수 있다.
또한, 상기 일체형 구조에서 상기 제1경사부(2155a) 및 제2경사부(2153a)는 상기 제3경사부(2154a)와 함께 반도체 발광소자의 일 모서리(corner)에 형성된다. 예를 들어, 상기 제1경사부(2155a) 및 제2경사부(2153a)는 상기 제3경사부(2154a)와 함께 상기 일 모서리에서 삼각형을 형성한다.
도 13에서, 상기 제1도전형 반도체층(2155)과 제2도전형 반도체층(2153)은, 상기 삼각형을 제외하면, 사각형의 일 모서리(corner)가 사선의 변으로 변경되어, 일변만이 양단에서 다른 변들과 둔각을 이루고, 나머지 변들은 서로 직각을 이루는 오각형을 형성할 수 있다. 상기 삼각형은 상기 일변에 배치될 수 있다. 이 경우에, 상기 제1도전형 반도체층(2155)의 나머지 4개의 변과, 이에 대응하는 제2도전형 반도체층(2153)의 4개의 변은 서로 오버랩되는 위치에 배치될 수 있다. 이러한 구조에 의하면, P형 반도체층의 변들은 N형 반도체층의 변들과 동일선상에 위치시킬 수 있으며, P형 반도체층의 크기가 증가될 수 있다. 마찬가지 이유로, 상기 활성층도 상기 오각형을 형성할 수 있으며, 따라서 발광영역이 보다 넓어지게 된다.
도시에 의하면, 상기 제2경사부(2153a)에서 상기 제2도전형 전극(2152)이 상기 제2도전형 반도체층(2153)에 증착된다. 또한, 상기 제2도전형 전극(2152)은 상기 제2경사부(2153a)에서 상기 측면으로 연장되어, 상기 측면에서 상기 제2도전형 반도체층(2153)과 멀어지는 방향으로 돌출될 수 있다.
이 경우에, 상기 제2도전형 반도체층(2153)의 하면에는 언도프된(Undoped) 반도체층(미도시)이 형성될 수 있다. 또한, 도시에 의하면, 상기 제2도전형 반도체층의 하면은 배선기판에 가장 가까운 면이 될 수 있고, 상기 제2도전형 반도체층의 상면은 상기 배선기판에 가장 먼 면이 될 수 있다.
또한, 상기 제1도전형 전극(2156) 및 제2도전형 전극(2152)은 반도체 발광소자의 폭방향을 따라 이격된 위치에서 각각 상기 폭방향과 수직방향(또는 두께방향)으로 서로 높이차를 가지도록 이루어진다.
상기 높이차를 이용하여 상기 제2도전형 전극(2152)은 상기 제2도전형 반도체층(2153)에 형성되나, 반도체 발광소자의 상측에 위치하는 상기 제2전극(2040)과 인접하게 배치된다. 이와 같이, 반도체 발광소자와 배선라인과의 연결이 상하로 형성되므로, 고정세의 배열이 가능하게 되며, 이를 통하여 고화소의 디스플레이 장치가 구현될 수 있다.
보다 구체적으로, 상기 제2도전형 전극(2152)은 적어도 일부가 상기 제2도전형 반도체층(2153)의 측면(또는, 언도프된(Undoped) 반도체층의 측면)으로부터 상기 폭방향을 따라 돌출된다. 이와 같이, 제2도전형 전극(2152)이 상기 측면에서 돌출되기에, 상기 제2도전형 전극(2152)은 반도체 발광소자의 상측으로 노출될 수 있다. 이를 통하여, 상기 제2도전형 전극(2152)은 전도성 접착층(2030)의 상측에 배치되는 상기 제2전극(2040)과 오버랩되는 위치에 배치된다.
보다 구체적으로, 상기 제2도전형 전극(2152)은 상기 경사부에서 상기 복수의 반도체 발광 소자의 측면(제2반도체층의 측면 또는 언도프된(Undoped) 반도체층의 측면)으로 연장되고, 상기 반도체 발광 소자는 상기 측면에서 돌출되는 돌출부(2152a)를 구비한다. 이 경우에, 상기 돌출부(2152a)를 기준으로 보면, 상기 제1도전형 전극(2156) 및 제2도전형 전극(2152)은 상기 돌출부(2152a)의 돌출방향을 따라 이격된 위치에서 배치되며, 상기 돌출방향과 수직한 방향으로 서로 높이차를 가지도록 형성되는 것으로 표현될 수 있다.
상기 제2도전형 반도체층(1153)의 경사부에서 측면으로 연장된 상기 제2 도전형 전극은 상기 제2도전형 반도체층(1153)의 상면(또는 언도프된(Undoped) 반도체층의 상면)까지 연장된다. 상기 돌출부(2152a)는 상기 상면까지 연장된 후에 상기 폭방향을 따라 돌출된다. 따라서, 상기 돌출부(2152a)는 상기 제2도전형 반도체층을 기준으로 상기 제1도전형 전극(2156)의 반대측에서 상기 제2전극(2040)과 전기적으로 연결될 수 있다.
한편, 상기 반도체 발광소자는 패시베이션층(2157)을 구비할 수 있다. 이 경우에, 상기 제1경사부(2155a)는 상기 패시베이션층(2157)에 의하여 덮이도록 이루어지며, 상기 패시베이션층(2157)은 상기 제1도전형 반도체층(2155)으로 연장될 수 있다. 또한, 상기 패시베이션층(2157)은 상기 제1경사부(2155a)와 함께 상기 제2도전형 반도체층(2153)의 측면을 덮도록 형성될 수 있다.
이상에서 살펴본 새로운 반도체 발광소자의 구조에 의하면, Mesa와 Isolation의 식각 공정이 단일 식각 공정으로 간소화되고, 발광영역이 보다 넓어질 수 있으며, 고정세가 가능하게 된다.
이하에서는, 위에서 살펴본 새로운 반도체 발광소자를 구비하는 디스플레이 장치를 형성하는 제조하는 방법에 대하여 첨부된 도면과 함께 보다 구체적으로 살펴본다. 도 18a, 도 18b, 도 18c, 18d, 도 18e, 도 18f, 및 도 18g는 본 발명의 반도체 발광 소자를 이용한 디스플레이 장치의 제조방법을 나타낸 단면도들이며, 도 19는 마스크의 다른 일 실시예를 나타내는 개념도이다.
먼저, 제조방법에 의하면, 제1도전형 반도체층의 하부에 제2도전형 반도체층이 배치되도록, 기판상에 상기 제2도전형 반도체층과 상기 제1도전형 반도체층을 차례로 성장시키는 단계가 진행된다.
도 18a을 참조하면, 성장기판에 제2도전형 반도체층(2153), 활성층(2154) 및 제1도전형 반도체층(2155)을 성장시킨다.
이 경우에, 기판(2012)은 반도체 발광 소자(2050)를 성장시키는 성장 기판으로서, 사파이어(spire) 기판 또는 실리콘(silicon) 기판이 될 수 있다. 또한, 기판은 반도체 물질 성장에 적합한 물질, 캐리어 웨이퍼로 형성될 수 있다. 열 전도성이 뛰어난 물질로 형성될 수 있으며, 전도성 기판 또는 절연성 기판을 포함하여 예를 들어, 사파이어(Al2O3) 기판에 비해 열전도성이 큰 SiC 기판 또는 Si, GaAs, GaP, InP, Ga2O3 중 적어도 하나를 사용할 수 있다.
또한, 상기 제1도전형 반도체층(2155)은 p형 반도체층이 되고, 제2도전형 반도체층(2153)은 n형 반도체층이 될 수 있다. p형 반도체층, 활성층 및 n형 반도체층은 epitaxial하게 기판상에서 성장한다.
다음은, p형 반도체와 n형 반도체를 분리하고, 복수의 반도체 발광소자를 서로 고립하는 단계가 진행된다.
보다 구체적으로, 도 18b와 같이 제1도전형 반도체층(2155)에 마스크를 적층하고, 도 18c와 같이 제1도전형 반도체층(2155) 및 제2도전형 반도체층(2153)을 식각하여 복수의 반도체 발광소자들을 형성하고, 도 18d와 같이 마스크를 제거한다.
이 경우에, 상기 제2도전형 반도체층(2153)은 상기 반도체 발광소자들의 측면에 대하여 경사진 경사부(2153a)를 구비하게 된다. 이를 위하여, 상기 마스크는 특정 간격으로 배치되는 복수의 패턴부들(2159)을 구비한다. 예를 들어, 상기 식각에 의하여 상기 경사부가 형성되도록, 상기 패턴부들의 적어도 일부에는 삼각형 형태로 돌출되는 돌출패턴(2159a)이 형성될 수 있다.
보다 구체적으로, 상기 마스크는 상기 돌출패턴(2159a)을 제외하면, 일변만이 양단에서 다른 변들과 둔각을 이루고, 나머지 변들은 서로 직각을 이루는 오각형을 형성할 수 있다. 이 경우에, 상기 돌출패턴(2159a)은 상기 일변에 배치될 수 있다.
도시에 의하면, 상기 돌출패턴(2159a)은 상기 패턴부들의 일 모서리(corner)에 배치되며, 상기 돌출패턴(2159a)은 상기 식각에 의하여 상기 점차적으로 제거된다. 이는 돌출패턴(2159a)의 하부에 배치된 제1도전형 반도체층이 측방향으로 식각되기에 구현될 수 있다. 즉, 돌출패턴(2159a)의 뽀족한 꼭지점 부분에서는 제1도전형 반도체층의 측방향 식각이 일어나며, 식각된 부분의 상부에 존재하였던 마스크는 이로 인하여 제거된다.
이 경우에, 상기 식각은 제1도전형 반도체층(2155)에서, 활성층(2154) 및 제2도전형 반도체층(2153)까지 이어지며, 상기 성장기판의 바닥면이 드러날때까지 계속될 수 있다. 상기 식각은 예를 들어, PR mask로 BCl3/Cl2/Ar Gas를 이용하여 건식 식각할 수 있다.
이와 같이, 본 예시에서는 단일 식각공정에 의하여 상기 기판상에서 상기 반도체 발광소자들이 형성되도록, 상기 제1도전형 반도체층(2155)와 상기 제2도전형 반도체층(2153)은 연속적으로 식각된다. 상기에서 설명된 공정에 의하면, p형 반도체와 n형 반도체를 분리하기 위한 식각과, 상기 기판상에서 복수의 반도체 발광소자를 서로 고립(isolation)시키는 식각이 단일 식각 공정에 의하여 구현되면서, 전술한 경사부가 형성된다.
한편, 상기 마스크는 반도체 발광소자의 사이즈가 작아지는 경우에 다른 형태로 적용될 수 있다. 도 19를 참조하면, 마스크는 오각형의 패턴부들(2159)이 복수로 형성되고, 상기 돌출패턴(2159b)을 제외하면 사각형을 이루며, 상기 돌출패턴(2159b)은 상기 사각형의 어느 일변에 배치되는 삼각형이 될 수 있다. 이 때에는, 식각에 의하여 반도체 발광소자의 일측면이 전체적으로 경사지게 되며, 따라서 경사부가 제2도전형 반도체층의 일변에 전체적으로 위치하게 된다.
다음으로, 상기 새로운 구조의 플립 칩 타입(flip chip type)의 발광 소자에 패시베이션층을 형성하고, 상기 제1도전형 반도체층과 상기 제2도전형 반도체층에 각각 제1도전형 전극과 제2도전형 전극을 증착하는 단계가 진행된다(도 18e).
도시에 의하면, 상기 제2도전형 전극(2152)은 상기 경사부(2153a)를 덮도록 이루어진다. 이 때에, 제1도전형 반도체층이나 활성층의 경사부들(2155a, 2154a)은 상기 패시베이션층(2157)에 의하여 덮이도록 이루어질 수 있다.
이 경우에, 전술한 바와 같이, 상기 제2도전형 전극(2152)은 적어도 일부가 상기 제2도전형 반도체층의 측면(또는, 언도프된(Undoped) 반도체층의 측면)으로부터 돌출된다.
상기 새로운 구조의 플립 칩 타입의 발광 소자는 도 6을 참조하여 전술한 제조방법과 유사한 방법으로 배선기판에 전사될 수 있다.
이를 위하여, 상기 새로운 구조의 플립 칩 타입(flip chip type)의 발광 소자를 전도성 접착층(2030)을 이용하여 배선기판에 결합하며(도 18f), 성장기판을 제거한다(도 18g).
상기 배선기판은 제1전극(2020)이 형성된 상태이며, 상기 제1전극(2020)은 하부 배선으로서 상기 전도성 접착층(2030)내에서 도전볼 등에 의해 제1도전형 전극(2156)과 전기적으로 연결된다. 이후에, 상기 돌출된 제2도전형 전극(3152)을 연결하는 배선라인을 형성한다. 상기 배선라인은 상부 배선으로서, 상기 제2도전형 전극(2152)과 직접 연결되는 배선라인이 될 수 있다.
이상에서 설명된 제조방법에 의하여, 전술한 새로운 구조의 반도체 발광소자를 구비한 디스플레이 장치가 구현될 수 있다. 이러한 제조방법 및 새로운 구조에 의하면, n contact을 위한 언도프된 도전형 반도체층(unGan)을 식각하는 공정이 없는 수평형 반도체 발광소자의 장점과, 사이즈가 작아지더라도 n contact 및 p contact이 가능하고, 각기 다른 방향으로 배선이 연결되는 수직형 반도체 반도체 발광소자의 장점을 모두 수용할 수 있게 된다.
한편, 전술한 새로운 구조의 반도체 발광소자를 구비한 디스플레이 장치는 여러가지 형태로 변형될 수 있다. 이하, 상기 디스플레이 장치의 다른 실시예들에 대하여 도 20 및 도 21을 참조하여 설명한다.
도 20 및 도 21은 각각 다른 실시예의 반도체 발광소자가 도 13의 디스플레이 장치에 적용된 경우에, 라인 G-G를 따라 취한 단면을 가정하여 도시한 단면도들이다.
이하 설명되는 본 예시에서는, 앞서 도 10 내지 도 12 또는 도 13 내지 도 19를 참조하여 설명한 예시의 각 구성과 동일 또는 유사한 구성에 대해서는 동일, 유사한 참조번호가 부여되고, 그 설명은 처음 설명으로 갈음된다. 예를 들어, 디스플레이 장치는 배선기판 및 복수의 반도체 발광 소자의 구조가 앞선 예시에서 달라지며, 따라서 이들을 제외한 다른 요소에 대한 설명은 앞서 도 10 내지 도 12 또는 도 13 내지 도 19를 참조한 설명으로 갈음한다.
먼저, 도 20을 참조하면, 반도체 발광소자(3050)는 제1도전형 반도체층(3155)과 전기적으로 연결되는 제1도전형 전극(3156)과, 제2도전형 반도체층(3153)과 전기적으로 연결되는 제2도전형 전극(3152)을 구비한다.
이 때에, 도 13 내지 도 19를 참조한 설명한 예시와 같이, 상기 제2도전형 반도체층(3153)은 상기 제2도전형 반도체층(3153)의 측면에 대하여 경사진 경사부를 구비하며, 상기 제2도전형 전극(3152)은 상기 경사부를 덮도록 이루어진다. 또한, 상기 경사부는 상기 제1도전형 반도체층(3155)으로 연장되며, 반도체 발광소자의 일 모서리(corner)에 형성된다. 따라서, 본 예시에서도 상기 경사부를 이용하여 단일 식각 공정에 의하여, 제1도전형 반도체층과 제2도전형 반도체층이 식각될 수 있다.
도시에 의하면, 상기 제2도전형 전극(3152)은 상기 제2도전형 반도체층의 경사부(3153a)에서 상기 측면으로 연장되어, 상기 측면에서 상기 제2도전형 반도체층(3153)과 멀어지는 방향으로 돌출될 수 있다.
이 경우에, 상기 제1도전형 전극(3156)은 상기 제1도전형 반도체층(3155)의 일면에 형성되어, 반도체 발광소자의 측면으로 연장되어, 상기 측면에서 상기 반도체 발광소자와 멀어지는 방향으로 돌출될 수 있다. 이러한 구조를 통하여, 상기 제1도전형 전극과 제2도전형 전극은 동일평면상에서 배선전극과 연결된다.
한편, 상기 제1도전형 반도체층(3155)의 일면으로부터 빛이 방출되므로, 상기 제1도전형 전극(3156)은 상기 일면을 덮는 사이즈가 작을수록 유리하게 된다. 따라서, 상기 제1도전형 반도체층(3155)과 상기 제1도전형 전극(3156)의 사이에는 투명전극(3158)이 배치될 수 있다. 상기 투명전극(3158)은 패시베이션층(3157)에 의하여 덮이며, 상기 패시베이션층(3157)에는 상기 투명전극과 제1도전형 전극(3156)을 연결하기 위한 관통홀이 형성될 수 있다.
상기 제1도전형 전극과 제2도전형 전극이 동일평면상에 배치되므로, 본 예시의 배선기판에는 도 2, 도 3a 및 도 3b를 참조한 예시의 기판과 동일한 구조의 기판(3010)이 적용될 수 있다. 이 때에, 상기 제1도전형 전극(3156)에서 돌출된 부분은 보조전극(3070)과 전기적으로 연결되고, 상기 보조전극이 제1전극(3020)과 연결되며, 상기 제2도전형 전극(3152)에서 돌출된 부분은 제2전극(3040)과 전기적으로 연결될 수 있다.
다음으로, 도 21을 참조하면, 반도체 발광소자(4050)는 제1도전형 반도체층(4155)과 전기적으로 연결되는 제1도전형 전극(4156)과, 제2도전형 반도체층(4153)과 전기적으로 연결되는 제2도전형 전극(4152)을 구비한다.
이 때에, 도 13 내지 도 19를 참조한 설명한 예시와 같이, 상기 제2도전형 반도체층(4153)은 상기 제2도전형 반도체층(4153)의 측면에 대하여 경사진 경사부(4153a)를 구비하며, 상기 제2도전형 전극(4152)은 상기 경사부(4153a)를 덮도록 이루어진다. 또한, 상기 경사부는 상기 제1도전형 반도체층(4155)으로 연장되며, 반도체 발광소자의 일 모서리(corner)에 형성된다. 따라서, 본 예시에서도 상기 경사부를 이용하여 단일 식각 공정에 의하여, 제1도전형 반도체층과 제2도전형 반도체층이 식각될 수 있다.
도시에 의하면, 상기 제2도전형 전극(4152)은 상기 제2도전형 반도체층의 경사부(4153a)에서 상기 측면으로 연장되어, 상기 측면에서 상기 제2도전형 반도체층(4153)과 멀어지는 방향으로 돌출될 수 있다. 한편, 상기 기판(4010)에는 제2전극(3040)이 형성되고, 상기 제2도전형 전극(4152)의 돌출되는 부분은 상기 제2전극과 전기적으로 연결된다.
이 경우에, 상기 제1도전형 전극(3156)은 상기 제1도전형 반도체층(3155)의 일면에 형성되어, 상기 일면으로부터 상기 반도체 발광소자와 멀어지는 방향으로 돌출될 수 있다. 상기 제1도전형 전극(4156)의 돌출되는 부분은 상기 제2도전형 전극의 돌출되는 부분의 반대측에 배치된다. 즉, 제1도전형 전극과 제2도전형 전극은 각각 상기 반도체 발광소자의 상하에 배치되어 서로 높이차를 가지게 된다.
도시에 의하면, 상기 제1도전형 전극은 상기 반도체 발광소자의 상부배선을 형성하는 제1전극과 전기적으로 연결된다.
한편, 상기 제1도전형 반도체층(3155)의 일면으로부터 빛이 방출되므로, 상기 제1도전형 전극(3156)은 상기 일면을 덮는 사이즈가 작을수록 유리하게 된다. 따라서, 상기 제1도전형 반도체층(3155)과 상기 제1도전형 전극(3156)의 사이에는 투명전극(3158)이 배치될 수 있다. 상기 투명전극(3158)은 패시베이션층(3157)에 의하여 덮이며, 상기 패시베이션층(3157)에는 상기 투명전극과 제1도전형 전극(3156)을 연결하기 위한 관통홀이 형성될 수 있다.
이와 같이, 본 예시에서는, 반도체 발광소자와 배선라인과의 연결이 상하로 형성되므로, 고정세의 배열이 가능하게 되며, 이를 통하여 고화소의 디스플레이 장치가 구현될 수 있다.
이상에서 설명한 반도체 발광 소자를 이용한 디스플레이 장치는 위에서 설명된 실시예들의 구성과 방법에 한정되는 것이 아니라, 상기 실시예들은 다양한 변형이 이루어질 수 있도록 각 실시예들의 전부 또는 일부가 선택적으로 조합되어 구성될 수도 있다.

Claims (18)

  1. 반도체 발광소자를 구비하는 디스플레이 장치에 있어서,
    상기 반도체 발광소자는,
    제1도전형 반도체층;
    측면을 구비하며, 상기 제1도전형 반도체층과 오버랩되는 제2도전형 반도체층;
    상기 제1도전형 반도체층과 전기적으로 연결되는 제1도전형 전극; 및
    상기 제2도전형 반도체층과 전기적으로 연결되는 제2도전형 전극을 구비하며,
    상기 제2도전형 반도체층은 상기 측면에 대하여 경사진 경사부를 구비하며, 상기 제2도전형 전극은 상기 경사부를 덮도록 이루어지는 것을 특징으로 하는 디스플레이 장치.
  2. 제1항에 있어서,
    상기 경사부는 상기 제1도전형 반도체층으로 연장되는 것을 특징으로 하는 디스플레이 장치.
  3. 제2항에 있어서,
    상기 경사부에서 상기 제1도전형 반도체층에 해당하는 부분은 제1경사부이고, 상기 제2도전형 반도체층에 해당하는 부분은 제2경사부이며,
    상기 제1 및 제2경사부는 반도체 발광소자의 일 모서리(corner)에 형성되는 것을 특징으로 하는 디스플레이 장치.
  4. 제3항에 있어서,
    상기 제1 및 제2경사부는 상기 일 모서리에서 삼각형을 형성하는 것을 특징으로 하는 디스플레이 장치.
  5. 제3항에 있어서,
    상기 제1도전형 반도체층과 상기 제1도전형 반도체층의 사이에는 활성층이 형성되고,
    상기 활성층에는 상기 제2경사부와 이어지는 제3경사부가 형성되는 것을 특징으로 하는 디스플레이 장치.
  6. 제3항에 있어서,
    상기 제1경사부는 패시베이션층에 의하여 덮이도록 이루어지는 것을 특징으로 하는 디스플레이 장치.
  7. 제6항에 있어서,
    상기 패시베이션층은 상기 제1도전형 반도체층을 덮도록 연장되는 것을 특징으로 하는 디스플레이 장치.
  8. 제6항에 있어서,
    상기 패시베이션층은 상기 제1경사부와 함께 상기 측면을 덮도록 이루어지는 것을 특징으로 하는 디스플레이 장치.
  9. 제1항에 있어서,
    상기 제2도전형 전극은 상기 경사부에서 상기 측면으로 연장되어, 상기 측면에서 상기 제2도전형 반도체층과 멀어지는 방향으로 돌출되는 것을 특징으로 하는 디스플레이 장치.
  10. 제1항에 있어서,
    상기 하면에는 언도프된(Undoped) 반도체층이 형성되며, 상기 제2도전형 전극은 상기 경사부에서 상기 언도프된(Undoped) 반도체층의 측면으로 연장되는 것을 특징으로 하는 디스플레이 장치.
  11. 제1도전형 반도체층;
    측면을 구비하며, 상기 제1도전형 반도체층과 오버랩되는 제2도전형 반도체층;
    상기 제1도전형 반도체층과 전기적으로 연결되는 제1도전형 전극; 및
    상기 제2도전형 반도체층과 전기적으로 연결되는 제2도전형 전극을 구비하며,
    상기 제2도전형 반도체층은 상기 측면에 대하여 경사진 경사부를 구비하며, 상기 제2도전형 전극은 상기 경사부를 덮도록 이루어지는 것을 특징으로 하는 반도체 발광소자.
  12. 제11항에 있어서,
    상기 경사부는 상기 제1도전형 반도체층으로 연장되는 것을 특징으로 하는 디스플레이 장치.
  13. 제11항에 있어서,
    상기 경사부는 반도체 발광소자의 일 모서리(corner)에 형성되는 것을 특징으로 하는 디스플레이 장치.
  14. 제1도전형 반도체층의 하부에 제2도전형 반도체층이 배치되도록, 기판상에 상기 제2도전형 반도체층과 상기 제1도전형 반도체층을 차례로 성장시키는 단계;
    상기 제1도전형 반도체층에 마스크를 적층하는 단계;
    상기 제1도전형 반도체층 및 제2도전형 반도체층을 식각하여 복수의 반도체 발광소자들을 형성하고, 상기 마스크를 제거하는 단계; 및
    상기 제1도전형 반도체층과 상기 제2도전형 반도체층에 각각 제1도전형 전극과 제2도전형 전극을 증착하는 단계를 포함하며,
    상기 제2도전형 반도체층은 상기 반도체 발광소자들의 측면에 대하여 경사진 경사부를 구비하며, 상기 제2도전형 전극은 상기 경사부를 덮도록 이루어지는 것을 특징으로 하는 디스플레이 장치의 제조방법.
  15. 제14항에 있어서,
    상기 마스크는 특정 간격으로 배치되는 복수의 패턴부들을 구비하고,
    상기 식각에 의하여 상기 경사부가 형성되도록, 상기 패턴부들의 적어도 일부에는 삼각형 형태로 돌출되는 돌출패턴이 형성되는 것을 특징으로 하는 디스플레이 장치의 제조방법.
  16. 제15항에 있어서,
    상기 돌출패턴은 상기 패턴부들의 일 모서리(corner)에 배치되는 것을 특징으로 하는 디스플레이 장치의 제조방법.
  17. 제15항에 있어서,
    상기 돌출패턴은 상기 식각에 의하여 상기 점차적으로 제거되는 것을 특징으로 하는 디스플레이 장치의 제조방법.
  18. 제15항에 있어서,
    단일 식각공정에 의하여 상기 기판상에서 상기 반도체 발광소자들이 형성되도록, 상기 제1도전형 반도체층와 상기 제2도전형 반도체층은 연속적으로 식각되는 것을 특징으로 하는 디스플레이 장치의 제조방법.
PCT/KR2016/007251 2015-07-06 2016-07-05 반도체 발광 소자를 이용한 디스플레이 장치 및 이의 제조방법 WO2017007215A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/740,179 US10368417B2 (en) 2015-07-06 2016-07-05 Display device having semiconductor light-emitting device with inclined portion

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020150095989A KR102316325B1 (ko) 2015-07-06 2015-07-06 반도체 발광 소자를 이용한 디스플레이 장치 및 이의 제조방법
KR10-2015-0095989 2015-07-06

Publications (1)

Publication Number Publication Date
WO2017007215A1 true WO2017007215A1 (ko) 2017-01-12

Family

ID=57685721

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/007251 WO2017007215A1 (ko) 2015-07-06 2016-07-05 반도체 발광 소자를 이용한 디스플레이 장치 및 이의 제조방법

Country Status (3)

Country Link
US (1) US10368417B2 (ko)
KR (1) KR102316325B1 (ko)
WO (1) WO2017007215A1 (ko)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170012026A1 (en) * 2015-07-06 2017-01-12 Lg Electronics Inc. Display device using semiconductor light emitting device and method for manufacturing the same
CN108428775A (zh) * 2017-02-14 2018-08-21 三星电子株式会社 发光二极管设备及其制造方法
CN110268804A (zh) * 2017-02-01 2019-09-20 Lg电子株式会社 使用半导体发光元件的显示装置及其制造方法

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180086003A (ko) * 2017-01-20 2018-07-30 엘지전자 주식회사 반도체 발광소자를 이용한 디스플레이 장치
KR102423202B1 (ko) * 2017-07-18 2022-07-20 엘지전자 주식회사 반도체 발광 소자를 이용한 디스플레이 장치
KR102369188B1 (ko) * 2017-07-26 2022-03-02 엘지전자 주식회사 반도체 발광소자를 이용한 디스플레이 장치
US11335835B2 (en) 2017-12-20 2022-05-17 Lumileds Llc Converter fill for LED array
US11355549B2 (en) * 2017-12-29 2022-06-07 Lumileds Llc High density interconnect for segmented LEDs
US11557705B2 (en) * 2018-01-29 2023-01-17 Lg Electronics Inc. Method for manufacturing display device using semiconductor light-emitting elements and display device
KR102095215B1 (ko) * 2018-02-08 2020-04-23 한국과학기술원 전사부재 및 선택적 전사 기술을 이용한 액티브 매트릭스 rgb 수직형 마이크로led 디스플레이
CN110767104B (zh) 2018-07-25 2021-09-28 深圳Tcl新技术有限公司 一种led显示屏及其制备方法
KR20200049394A (ko) 2018-10-31 2020-05-08 엘지디스플레이 주식회사 표시장치 및 그 제조 방법
US10910433B2 (en) * 2018-12-31 2021-02-02 Lumileds Llc Pixelated LED array with optical elements
US20240079387A1 (en) * 2021-10-26 2024-03-07 Lg Electronics Inc. Display device using semiconductor light-emitting element

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7015512B2 (en) * 2003-12-20 2006-03-21 Samsung Electro-Mechanics Co., Ltd. High power flip chip LED
KR20090053435A (ko) * 2007-11-23 2009-05-27 삼성전기주식회사 모놀리식 발광다이오드 어레이 및 그 제조방법
KR20140063560A (ko) * 2014-05-14 2014-05-27 서울바이오시스 주식회사 발광 다이오드 및 그 제조방법
KR20140127694A (ko) * 2013-04-25 2014-11-04 서울반도체 주식회사 발광 소자 패키지 및 그 제조방법
KR20150047365A (ko) * 2013-10-24 2015-05-04 엘지전자 주식회사 반도체 발광 소자를 이용한 디스플레이 장치

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19640003B4 (de) * 1996-09-27 2005-07-07 Siemens Ag Halbleitervorrichtung und Verfahren zu dessen Herstellung
US6841802B2 (en) * 2002-06-26 2005-01-11 Oriol, Inc. Thin film light emitting diode
KR100607520B1 (ko) * 2004-11-11 2006-08-02 엘지전자 주식회사 유기 전계발광표시소자 및 그 제조방법
JP2008544540A (ja) * 2005-06-22 2008-12-04 ソウル オプト デバイス カンパニー リミテッド 発光素子及びその製造方法
JP4454689B1 (ja) * 2009-09-10 2010-04-21 有限会社ナプラ 発光ダイオード、発光装置、照明装置、ディスプレイ及び信号灯
TW201143078A (en) * 2010-05-17 2011-12-01 Ubilux Optoelectronics Corp Light emitting diode module with bridging electrode and manufacturing method thereof
KR20130109319A (ko) * 2012-03-27 2013-10-08 삼성전자주식회사 반도체 발광장치, 발광모듈 및 조명장치
TWI478387B (zh) * 2013-10-23 2015-03-21 Lextar Electronics Corp 發光二極體結構
KR102282141B1 (ko) * 2014-09-02 2021-07-28 삼성전자주식회사 반도체 발광소자

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7015512B2 (en) * 2003-12-20 2006-03-21 Samsung Electro-Mechanics Co., Ltd. High power flip chip LED
KR20090053435A (ko) * 2007-11-23 2009-05-27 삼성전기주식회사 모놀리식 발광다이오드 어레이 및 그 제조방법
KR20140127694A (ko) * 2013-04-25 2014-11-04 서울반도체 주식회사 발광 소자 패키지 및 그 제조방법
KR20150047365A (ko) * 2013-10-24 2015-05-04 엘지전자 주식회사 반도체 발광 소자를 이용한 디스플레이 장치
KR20140063560A (ko) * 2014-05-14 2014-05-27 서울바이오시스 주식회사 발광 다이오드 및 그 제조방법

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170012026A1 (en) * 2015-07-06 2017-01-12 Lg Electronics Inc. Display device using semiconductor light emitting device and method for manufacturing the same
US9837389B2 (en) * 2015-07-06 2017-12-05 Lg Electronics Inc. Display device using semiconductor light emitting device and method for manufacturing the same
CN110268804A (zh) * 2017-02-01 2019-09-20 Lg电子株式会社 使用半导体发光元件的显示装置及其制造方法
CN110268804B (zh) * 2017-02-01 2021-08-20 Lg电子株式会社 使用半导体发光元件的显示装置及其制造方法
US11158610B2 (en) 2017-02-01 2021-10-26 Lg Electronics Inc. Display device using semiconductor light emitting element, and manufacturing method therefor
CN108428775A (zh) * 2017-02-14 2018-08-21 三星电子株式会社 发光二极管设备及其制造方法
CN108428775B (zh) * 2017-02-14 2023-02-28 三星电子株式会社 发光二极管设备及其制造方法

Also Published As

Publication number Publication date
US20180192495A1 (en) 2018-07-05
KR102316325B1 (ko) 2021-10-22
US10368417B2 (en) 2019-07-30
KR20170005643A (ko) 2017-01-16

Similar Documents

Publication Publication Date Title
WO2017007215A1 (ko) 반도체 발광 소자를 이용한 디스플레이 장치 및 이의 제조방법
WO2018101539A1 (ko) 반도체 발광소자를 이용한 디스플레이 장치
WO2017142315A1 (ko) 반도체 발광 소자를 이용한 디스플레이 장치
WO2017122891A1 (en) Display device using semiconductor light emitting device and method for manufacturing
WO2018097447A1 (en) Display device using semiconductor light emitting device and fabrication method thereof
WO2017209437A1 (en) Display device using semiconductor light emitting device and fabrication method thereof
WO2014163325A1 (en) Display device using semiconductor light emitting device
WO2015133709A1 (en) Display device using semiconductor light emitting device
WO2016068418A1 (en) Display device using semiconductor light emitting device and method of fabricating the same
WO2015093721A1 (en) Display device using semiconductor light emitting device and method of fabricating the same
WO2018048019A1 (ko) 반도체 발광소자를 이용한 디스플레이 장치
WO2017007118A1 (en) Display device using semiconductor light emitting device and method for manufacturing the same
WO2018143514A1 (ko) 반도체 발광 소자를 이용한 디스플레이 장치 및 이의 제조 방법
WO2019004508A1 (ko) 반도체 발광 소자를 이용한 디스플레이 장치
WO2019151550A1 (ko) 반도체 발광소자를 이용한 디스플레이 장치 및 이의 제조방법
WO2015026033A1 (en) Display device using semiconductor light emitting device
WO2018056477A1 (ko) 반도체 발광 소자를 이용한 디스플레이 장치 및 이의 제조방법
WO2015060506A1 (en) Display device using semiconductor light emitting device
WO2017073865A1 (en) Display device using semiconductor light emitting device and method for manufacturing the same
WO2018092977A1 (ko) 반도체 발광 소자를 이용한 디스플레이 장치 및 이의 제조방법
WO2021070977A1 (ko) 마이크로 led를 이용한 디스플레이 장치 및 이의 제조 방법
WO2018135704A1 (ko) 반도체 발광소자를 이용한 디스플레이 장치
WO2020166777A1 (ko) 반도체 발광 소자를 이용한 디스플레이 장치 및 이의 제조 방법
WO2018105810A1 (ko) 반도체 발광소자를 이용한 디스플레이 장치
WO2016122125A1 (en) Display device using semiconductor light emitting devices and method for manufacturing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16821621

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16821621

Country of ref document: EP

Kind code of ref document: A1