WO2023008604A1 - 디스플레이 장치 - Google Patents

디스플레이 장치 Download PDF

Info

Publication number
WO2023008604A1
WO2023008604A1 PCT/KR2021/009792 KR2021009792W WO2023008604A1 WO 2023008604 A1 WO2023008604 A1 WO 2023008604A1 KR 2021009792 W KR2021009792 W KR 2021009792W WO 2023008604 A1 WO2023008604 A1 WO 2023008604A1
Authority
WO
WIPO (PCT)
Prior art keywords
light emitting
conductor
emitting device
semiconductor light
assembly
Prior art date
Application number
PCT/KR2021/009792
Other languages
English (en)
French (fr)
Inventor
문성현
김명수
김윤철
김정섭
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to KR1020247003484A priority Critical patent/KR20240032890A/ko
Priority to US18/578,185 priority patent/US20240332473A1/en
Priority to PCT/KR2021/009792 priority patent/WO2023008604A1/ko
Publication of WO2023008604A1 publication Critical patent/WO2023008604A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/15Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission
    • H01L27/153Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission in a repetitive configuration, e.g. LED bars
    • H01L27/156Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission in a repetitive configuration, e.g. LED bars two-dimensional arrays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/62Arrangements for conducting electric current to or from the semiconductor body, e.g. lead-frames, wire-bonds or solder balls
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/075Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/075Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00
    • H01L25/0753Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00 the devices being arranged next to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/16Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different main groups of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. forming hybrid circuits
    • H01L25/167Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different main groups of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. forming hybrid circuits comprising optoelectronic devices, e.g. LED, photodiodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/15Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/44Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the coatings, e.g. passivation layer or anti-reflective coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages

Definitions

  • the embodiment relates to a display device.
  • a display device uses a self-light emitting element such as a light emitting diode as a light source of a pixel to display a high-quality image.
  • a self-light emitting element such as a light emitting diode
  • Light emitting diodes exhibit excellent durability even under harsh environmental conditions, and are in the limelight as a light source for next-generation display devices because of their long lifespan and high luminance.
  • Such display devices are expanding into various forms such as flexible displays, foldable displays, stretchable displays, and rollable displays beyond flat panel displays.
  • a display panel typically includes several million to tens of millions of pixels. Therefore, since it is very difficult to align at least one or more light emitting elements in each of tens of millions of small-sized pixels, various researches on arranging light emitting elements in a display panel have recently been actively conducted.
  • Transfer technologies that have recently been developed include a pick and place process, a laser lift-off method, or a self-assembly method.
  • a self-assembly method in which a light emitting device is transferred onto a substrate using a magnetic material (or magnet) has recently been in the spotlight.
  • a number of light emitting elements are dropped into the tank containing the fluid, and the light emitting elements dropped into the fluid are moved to each pixel of the substrate according to the movement of the magnetic material, and the light emitting elements are arranged in each pixel.
  • the light emitting elements arranged in each pixel are electrically connected to generate color light.
  • a bonding layer such as solder or a metal bump is provided below the light emitting device.
  • a bonding layer is provided below the vertical light emitting device, and electrically connected to the substrate using the bonding layer.
  • a metal bump is provided on the lower side of the flip chip type light emitting device, and is electrically connected to a substrate using the metal bump.
  • Solder is formed of tin (Sn) or indium (In). Due to the characteristics of the solder material, it is difficult to form uniform solder on the lower side of the light emitting device. Since the solder is not uniformly formed, uniform bonding between the light emitting device and the substrate is difficult, and electrical characteristics deteriorate.
  • the light emitting device and the substrate are electrically connected using an anisotropic conductive film/anisotropic conductive paste (ACF/ACP). That is, after the ACF/ACP is formed on the substrate and the light emitting element is disposed on the ACF/ACP, heat and pressure are applied to melt the ACF/ACP, and the light emitting element and the substrate are electrically connected using a conductive ball.
  • ACF/ACP anisotropic conductive film/anisotropic conductive paste
  • the ACF/ACP since the manufacturing cost increases when the ACF/ACP is disposed on the entire area of the substrate, the ACF/ACF must be individually formed on the substrate to fit the size of the light emitting element area, but it is very difficult to realize this.
  • an assembly hole for assembling a light emitting device is provided, and the size of this assembly hole has a microscopic value, and it is difficult to form an ACF/ACP in such a very small assembly hole.
  • ACF/ACP has a low permittivity, whereas dielectrophoretic force increases as the permittivity increases. Even if ACF/ACP is formed in the assembly hole, the dielectric constant of ACF/ACP is low and the dielectrophoretic force is small. Due to such a small dielectrophoretic force, it is difficult for the light emitting device to be assembled in the assembly hole, and light emitting assembled in the assembly hole It is also difficult to keep the element fixed, and it is dislodged out of the assembly hole.
  • Embodiments are aimed at solving the foregoing and other problems.
  • Another object of the embodiments is to provide a display device that does not use a bonding layer or a metal bump.
  • Another object of the embodiments is to provide a display device that does not use ACF/ACP.
  • Another object of the embodiments is to provide a display device capable of improving yield.
  • Another object of the embodiments is to provide a display device capable of reducing the thickness.
  • Another object of the embodiments is to provide a display device capable of enhancing bonding force.
  • Another object of the embodiments is to provide a display device capable of improving luminance.
  • the display device includes a substrate; a barrier rib disposed on the substrate and having an assembly hole; a conductor in the assembly hole; and a semiconductor light emitting element disposed on the conductor within the assembly hole.
  • the conductor may include a first conductor between the substrate and the semiconductor light emitting element; and a second conductor between an inside of the assembly hole and an outside of the semiconductor light emitting device.
  • the conductor may include a plurality of conductive particles; and a polymer surrounding each of the plurality of conductive particles. Polymers between conductive particles adjacent to each other in each of the first conductor and the second conductor may be merged with each other.
  • the second-first conductive particle may be disposed under the upper surface of the merged polymer.
  • the 2-2 conductive particles may be disposed on the upper surface of the merged polymer.
  • a semiconductor light emitting device may be assembled into a substrate and a conductor may be collected.
  • the semiconductor light emitting device may be electrically connected to the substrate using a conductor.
  • the semiconductor light emitting device can be easily manufactured, reduce manufacturing cost, and simplify the manufacturing process.
  • the semiconductor light emitting device does not need to have a bonding layer or a metal bump, the thickness and weight of the display device can be reduced by reducing the thickness of the semiconductor light emitting device.
  • a conductor is disposed not only between the semiconductor light emitting element and the substrate, but also between the inside of the assembly hole and the outside of the semiconductor light emitting element, and the semiconductor light emitting element is firmly fixed to the second assembly line, the first insulating layer, and the barrier rib by the conductor. Therefore, the semiconductor light emitting device can be easily bonded to the substrate. Accordingly, bonding force between the semiconductor light emitting device and the substrate may be strengthened, and yield may be remarkably improved.
  • the first electrode wiring is electrically connected to the semiconductor light emitting device using a plurality of second conductors disposed between the inside of the assembly hole and the outside of the semiconductor light emitting device, electrical connection between the semiconductor light emitting device and the outside can be easily achieved.
  • the embodiment forms at least one groove on the second assembly line so that more conductors are collected on the second assembly line, so that current flows more smoothly in the semiconductor light emitting device, thereby improving luminance through improvement of light efficiency.
  • a negative (-) voltage is supplied to the lower surface and the side surface of the first conductivity-type semiconductor layer of the semiconductor light emitting device through the first electrode wiring as well as the second assembled wiring, thereby improving light efficiency and improving luminance.
  • FIG. 1 illustrates a living room of a house in which a display device according to an exemplary embodiment is disposed.
  • FIG. 2 is a schematic block diagram of a display device according to an exemplary embodiment.
  • FIG. 3 is a circuit diagram showing an example of a pixel of FIG. 2 .
  • FIG. 4 is a plan view showing the display panel of FIG. 2 in detail.
  • FIG. 5 is an enlarged view of a first panel area in the display device of FIG. 1 .
  • FIG. 6 is an enlarged view of area A2 of FIG. 5 .
  • FIG. 7 is a view showing an example in which a light emitting device according to an embodiment is assembled to a substrate by a self-assembly method.
  • FIG. 8 is a schematic cross-sectional view of the display panel of FIG. 2 .
  • FIG. 9 is a cross-sectional view of the display device according to the first embodiment.
  • 10 to 14 are diagrams for explaining a display manufacturing method according to the first embodiment.
  • 16 is a cross-sectional view of a display device according to a second embodiment.
  • 17 is a cross-sectional view of a display device according to a third embodiment.
  • FIG. 19 is a cross-sectional view of a display device according to a fourth embodiment.
  • the display devices described in this specification include mobile phones, smart phones, laptop computers, digital broadcasting terminals, personal digital assistants (PDAs), portable multimedia players (PMPs), navigation devices, slate PCs, Tablet PCs, ultra-books, digital TVs, desktop computers, and the like may be included.
  • PDAs personal digital assistants
  • PMPs portable multimedia players
  • navigation devices slate PCs, Tablet PCs, ultra-books, digital TVs, desktop computers, and the like may be included.
  • slate PCs slate PCs
  • Tablet PCs ultra-books
  • digital TVs desktop computers, and the like
  • the configuration according to the embodiment described in this specification can be applied to a device capable of displaying even a new product type to be developed in the future.
  • FIG. 1 illustrates a living room of a house in which a display device according to an exemplary embodiment is disposed.
  • the display device 100 of the embodiment may display the status of various electronic products such as a washing machine 101, a robot cleaner 102, and an air purifier 103, and may display the status of each electronic product and an IOT based and can control each electronic product based on the user's setting data.
  • various electronic products such as a washing machine 101, a robot cleaner 102, and an air purifier 103
  • the display device 100 may include a flexible display fabricated on a thin and flexible substrate.
  • a flexible display can be bent or rolled like paper while maintaining characteristics of a conventional flat panel display.
  • a unit pixel means a minimum unit for implementing one color.
  • a unit pixel of the flexible display may be implemented by a light emitting device.
  • the light emitting device may be a Micro-LED or a Nano-LED, but is not limited thereto.
  • FIG. 2 is a block diagram schematically illustrating a display device according to an exemplary embodiment
  • FIG. 3 is a circuit diagram illustrating an example of a pixel of FIG. 2 .
  • a display device may include a display panel 10 , a driving circuit 20 , a scan driving unit 30 and a power supply circuit 50 .
  • the display device 100 may drive a light emitting element in an active matrix (AM) method or a passive matrix (PM) method.
  • AM active matrix
  • PM passive matrix
  • the driving circuit 20 may include a data driver 21 and a timing controller 22 .
  • the display panel 10 may be formed in a rectangular shape, but is not limited thereto. That is, the display panel 10 may be formed in a circular or elliptical shape. At least one side of the display panel 10 may be formed to be bent with a predetermined curvature.
  • the display panel 10 may be divided into a display area DA and a non-display area NDA disposed around the display area DA.
  • the display area DA is an area where the pixels PX are formed to display an image.
  • the display panel 10 includes data lines (D1 to Dm, where m is an integer greater than or equal to 2), scan lines (S1 to Sn, where n is an integer greater than or equal to 2) crossing the data lines (D1 to Dm), and a high potential voltage. It may include pixels PXs connected to a high-potential voltage line supplied thereto, a low-potential voltage line supplied with a low-potential voltage, data lines D1 to Dm, and scan lines S1 to Sn.
  • Each of the pixels PX may include a first sub-pixel PX1 , a second sub-pixel PX2 , and a third sub-pixel PX3 .
  • the first sub-pixel PX1 emits light of a first color of a first main wavelength
  • the second sub-pixel PX2 emits light of a second color of a second main wavelength
  • the third sub-pixel PX3 emits light of a second color.
  • a third color light having a third main wavelength may be emitted.
  • the first color light may be red light
  • the second color light may be green light
  • the third color light may be blue light, but are not limited thereto.
  • FIG. 2 it is illustrated that each of the pixels PX includes three sub-pixels, but is not limited thereto. That is, each of the pixels PX may include four or more sub-pixels.
  • Each of the first sub-pixel PX1 , the second sub-pixel PX2 , and the third sub-pixel PX3 includes at least one of the data lines D1 to Dm, at least one of the scan lines S1 to Sn, and a high voltage signal. It can be connected to the above voltage line.
  • the first sub-pixel PX1 may include light emitting elements LD, a plurality of transistors for supplying current to the light emitting elements LD, and at least one capacitor Cst.
  • each of the first sub-pixel PX1 , the second sub-pixel PX2 , and the third sub-pixel PX3 may include only one light emitting element LD and at least one capacitor Cst. may be
  • Each of the light emitting elements LD may be a semiconductor light emitting diode including a first electrode, a plurality of conductive semiconductor layers, and a second electrode.
  • the first electrode may be an anode electrode and the second electrode may be a cathode electrode, but is not limited thereto.
  • the plurality of transistors may include a driving transistor DT supplying current to the light emitting elements LD and a scan transistor ST supplying a data voltage to a gate electrode of the driving transistor DT, as shown in FIG. 3 .
  • the driving transistor DT has a gate electrode connected to the source electrode of the scan transistor ST, a source electrode connected to a high potential voltage line to which a high potential voltage is applied, and a drain connected to the first electrodes of the light emitting elements LD. electrodes may be included.
  • the scan transistor ST has a gate electrode connected to the scan line (Sk, k is an integer satisfying 1 ⁇ k ⁇ n), a source electrode connected to the gate electrode of the driving transistor DT, and data lines Dj, j an integer that satisfies 1 ⁇ j ⁇ m).
  • the capacitor Cst is formed between the gate electrode and the source electrode of the driving transistor DT.
  • the storage capacitor Cst charges a difference between the gate voltage and the source voltage of the driving transistor DT.
  • the driving transistor DT and the scan transistor ST may be formed of thin film transistors.
  • the driving transistor DT and the scan transistor ST have been mainly described as being formed of P-type MOSFETs (Metal Oxide Semiconductor Field Effect Transistors), but the present invention is not limited thereto.
  • the driving transistor DT and the scan transistor ST may be formed of N-type MOSFETs. In this case, positions of the source and drain electrodes of the driving transistor DT and the scan transistor ST may be changed.
  • each of the first sub-pixel PX1 , the second sub-pixel PX2 , and the third sub-pixel PX3 includes one driving transistor DT, one scan transistor ST, and one capacitor ( 2T1C (2 Transistor - 1 capacitor) having Cst) is illustrated, but the present invention is not limited thereto.
  • Each of the first sub-pixel PX1 , the second sub-pixel PX2 , and the third sub-pixel PX3 may include a plurality of scan transistors ST and a plurality of capacitors Cst.
  • the second sub-pixel PX2 and the third sub-pixel PX3 may be expressed with substantially the same circuit diagram as the first sub-pixel PX1 , a detailed description thereof will be omitted.
  • the driving circuit 20 outputs signals and voltages for driving the display panel 10 .
  • the driving circuit 20 may include a data driver 21 and a timing controller 22 .
  • the data driver 21 receives digital video data DATA and a source control signal DCS from the timing controller 22 .
  • the data driver 21 converts the digital video data DATA into analog data voltages according to the source control signal DCS and supplies them to the data lines D1 to Dm of the display panel 10 .
  • the timing controller 22 receives digital video data DATA and timing signals from the host system.
  • the timing signals may include a vertical sync signal, a horizontal sync signal, a data enable signal, and a dot clock.
  • the host system may be an application processor of a smart phone or tablet PC, a monitor, a system on chip of a TV, and the like.
  • the timing controller 22 generates control signals for controlling operation timings of the data driver 21 and the scan driver 30 .
  • the control signals may include a source control signal DCS for controlling the operation timing of the data driver 21 and a scan control signal SCS for controlling the operation timing of the scan driver 30 .
  • the driving circuit 20 may be disposed in the non-display area NDA provided on one side of the display panel 10 .
  • the driving circuit 20 may be formed of an integrated circuit (IC) and mounted on the display panel 10 using a chip on glass (COG) method, a chip on plastic (COP) method, or an ultrasonic bonding method.
  • COG chip on glass
  • COP chip on plastic
  • ultrasonic bonding method The present invention is not limited to this.
  • the driving circuit 20 may be mounted on a circuit board (not shown) instead of the display panel 10 .
  • the data driver 21 may be mounted on the display panel 10 using a chip on glass (COG) method, a chip on plastic (COP) method, or an ultrasonic bonding method, and the timing controller 22 may be mounted on a circuit board. there is.
  • COG chip on glass
  • COP chip on plastic
  • the scan driver 30 receives the scan control signal SCS from the timing controller 22 .
  • the scan driver 30 generates scan signals according to the scan control signal SCS and supplies them to the scan lines S1 to Sn of the display panel 10 .
  • the scan driver 30 may include a plurality of transistors and be formed in the non-display area NDA of the display panel 10 .
  • the scan driver 30 may be formed as an integrated circuit, and in this case, it may be mounted on a gate flexible film attached to the other side of the display panel 10 .
  • the circuit board may be attached to pads provided on one edge of the display panel 10 using an anisotropic conductive film. Due to this, the lead lines of the circuit board may be electrically connected to the pads.
  • the circuit board may be a flexible printed circuit board, a printed circuit board, or a flexible film such as a chip on film. The circuit board may be bent under the display panel 10 . Accordingly, one side of the circuit board may be attached to one edge of the display panel 10 and the other side may be disposed under the display panel 10 and connected to a system board on which a host system is mounted.
  • the power supply circuit 50 may generate voltages necessary for driving the display panel 10 from the main power supplied from the system board and supply the voltages to the display panel 10 .
  • the power supply circuit 50 generates a high potential voltage (VDD) and a low potential voltage (VSS) for driving the light emitting elements (LD) of the display panel 10 from the main power supply to generate the display panel 10. of high-potential voltage lines and low-potential voltage lines.
  • the power supply circuit 50 may generate and supply driving voltages for driving the driving circuit 20 and the scan driving unit 30 from the main power.
  • FIG. 4 is a plan view showing the display panel of FIG. 2 in detail.
  • data pads DP1 to DPp, where p is an integer greater than or equal to 2
  • floating pads FP1 and FP2 floating pads FP1 and FP2
  • power pads PP1 and PP2 floating lines FL1 and FL2
  • low potential voltage line VSSL low potential voltage line VSSL
  • data lines D1 to Dm first pad electrodes 210 and second pad electrodes 220 are shown.
  • data lines D1 to Dm, first pad electrodes 210, second pad electrodes 220, and pixels PX are provided in the display area DA of the display panel 10. can be placed.
  • the data lines D1 to Dm may extend long in the second direction (Y-axis direction). One sides of the data lines D1 to Dm may be connected to the driving circuit ( 20 in FIG. 2 ). For this reason, the data voltages of the driving circuit 20 may be applied to the data lines D1 to Dm.
  • the first pad electrodes 210 may be spaced apart from each other at predetermined intervals in the first direction (X-axis direction). For this reason, the first pad electrodes 210 may not overlap the data lines D1 to Dm.
  • the first pad electrodes 210 disposed on the right edge of the display area DA may be connected to the first floating line FL1 in the non-display area NDA.
  • the first pad electrodes 210 disposed on the left edge of the display area DA may be connected to the second floating line FL2 in the non-display area NDA.
  • Each of the second pad electrodes 220 may extend long in the first direction (X-axis direction). For this reason, the second pad electrodes 220 may overlap the data lines D1 to Dm. Also, the second pad electrodes 220 may be connected to the low potential voltage line VSSL in the non-display area NDA. For this reason, the low potential voltage of the low potential voltage line VSSL may be applied to the second pad electrodes 220 .
  • a pad part PA, a driving circuit 20, a first floating line FL1, a second floating line FL2, and a low potential voltage line VSSL are disposed in the non-display area NDA of the display panel 10. It can be.
  • the cap head part PA may include data pads DP1 to DPp, floating pads FP1 and FP2, and power pads PP1 and PP2.
  • the pad part PA may be disposed on one edge of the display panel 10, for example, on the lower edge.
  • the data pads DP1 to DPp, the floating pads FP1 and FP2, and the power pads PP1 and PP2 may be disposed side by side in the first direction (X-axis direction) of the pad part PA.
  • a circuit board may be attached to the data pads DP1 to DPp, the floating pads FP1 and FP2, and the power pads PP1 and PP2 using an anisotropic conductive film. Accordingly, the circuit board, the data pads DP1 to DPp, the floating pads FP1 and FP2, and the power pads PP1 and PP2 may be electrically connected.
  • the driving circuit 20 may be connected to the data pads DP1 to DPp through link lines.
  • the driving circuit 20 may receive digital video data DATA and timing signals through the data pads DP1 to DPp.
  • the driving circuit 20 may convert the digital video data DATA into analog data voltages and supply them to the data lines D1 to Dm of the display panel 10 .
  • the low potential voltage line VSSL may be connected to the first power pad PP1 and the second power pad PP2 of the pad part PA.
  • the low potential voltage line VSSL may extend long in the second direction (Y-axis direction) in the non-display area NDA outside the left and right sides of the display area DA.
  • the low potential voltage line VSSL may be connected to the second pad electrode 220 . Due to this, the low potential voltage of the power supply circuit 50 is applied to the second pad electrode 220 through the circuit board, the first power pad PP1 , the second power pad PP2 and the low potential voltage line VSSL. may be authorized.
  • the first floating line FL1 may be connected to the first floating pad FP1 of the pad part PA.
  • the first floating line FL1 may extend long in the second direction (Y-axis direction) in the non-display area NDA outside the left and right outside of the display area DA.
  • the first floating pad FP1 and the first floating line FL1 may be dummy pads and dummy lines to which no voltage is applied.
  • the second floating line FL2 may be connected to the second floating pad FP2 of the pad part PA.
  • the first floating line FL1 may extend long in the second direction (Y-axis direction) in the non-display area NDA outside the left and right outside of the display area DA.
  • the second floating pad FP2 and the second floating line FL2 may be dummy pads and dummy lines to which no voltage is applied.
  • the light emitting elements since the light emitting elements (LDs in FIG. 3 ) have a very small size, they are mounted on the first sub-pixel PX1 , the second sub-pixel PX2 , and the third sub-pixel PX3 of each of the pixels PX. is very difficult.
  • the first sub-pixel PX1 , the second sub-pixel PX2 , and the third sub-pixel of each of the pixels PX are aligned to align the light emitting elements ( 150 in FIG. 5 ).
  • An electric field can be formed at (PX3).
  • dielectrophoretic force is applied to the light emitting elements ( 150 in FIG. 5 ) using a dielectrophoretic method so that the first sub-pixel PX1 , the second sub-pixel PX2 , and the third sub-pixel PX3 are applied.
  • the first pad electrodes 210 are spaced apart at predetermined intervals in the first direction (X-axis direction), but during the manufacturing process, the first pad electrodes 210 are separated in the first direction (X-axis direction). direction), and can be extended and arranged long.
  • the first pad electrodes 210 may be connected to the first floating line FL1 and the second floating line FL2 during the manufacturing process. Therefore, the first pad electrodes 210 may receive a ground voltage through the first floating line FL1 and the second floating line FL2. Therefore, after aligning the light emitting elements ( 150 in FIG. 5 ) using a dielectrophoretic method during the manufacturing process, the first pad electrodes 210 are disconnected in the first direction (X-axis direction) by disconnecting the first pad electrodes 210 . ) and may be spaced apart at predetermined intervals.
  • first floating line FL1 and the second floating line FL2 are lines for applying a ground voltage during a manufacturing process, and no voltage may be applied in a completed display device.
  • ground voltage may be applied to the first and second floating lines FL1 and FL2 to prevent static electricity or to drive the light emitting element ( 150 in FIG. 5 ) in the completed display device.
  • FIG. 5 is an enlarged view of a first panel area in the display device of FIG. 3;
  • the display device 100 of the embodiment may be manufactured by mechanically and electrically connecting a plurality of panel areas such as the first panel area A1 by tiling.
  • the first panel area A1 may include a plurality of light emitting elements 150 arranged for each unit pixel (PX in FIG. 2 ).
  • the unit pixel PX may include a first sub-pixel PX1 , a second sub-pixel PX2 , and a third sub-pixel PX3 .
  • a plurality of red light emitting elements 150R are disposed in the first sub-pixel PX1
  • a plurality of green light emitting elements 150G are disposed in the second sub-pixel PX2
  • a plurality of blue light emitting elements 150B may be disposed in the third sub-pixel PX3.
  • the unit pixel PX may further include a fourth sub-pixel in which no light emitting element is disposed, but is not limited thereto.
  • FIG. 6 is an enlarged view of area A2 of FIG. 5 .
  • a display device 100 may include a substrate 200 , assembled wires 201 and 202 , an insulating layer 206 , and a plurality of light emitting elements 150 . More components than this may be included.
  • the assembly wiring may include a first assembly wiring 201 and a second assembly wiring 202 spaced apart from each other.
  • the first assembling wire 201 and the second assembling wire 202 may be provided to generate dielectrophoretic force for assembling the light emitting device 150 .
  • the light emitting element 150 may include, but is not limited to, a red light emitting element 150, a green light emitting element 150G, and a blue light emitting element 150B0 to form a sub-pixel, respectively. It is also possible to implement red and green colors by providing a green phosphor or the like.
  • the substrate 200 may be a rigid substrate or a flexible substrate.
  • the substrate 200 may be formed of glass or polyimide.
  • the substrate 200 may include a flexible material such as polyethylene naphthalate (PEN) or polyethylene terephthalate (PET).
  • PEN polyethylene naphthalate
  • PET polyethylene terephthalate
  • the substrate 200 may be a transparent material, but is not limited thereto.
  • the insulating layer 206 may include an insulating and flexible material such as polyimide, PEN, PET, or the like, and may be integrally formed with the substrate 200 to form a single substrate.
  • the insulating layer 206 may be a conductive adhesive layer having adhesiveness and conductivity, and the conductive adhesive layer may have flexibility and thus enable a flexible function of the display device.
  • the insulating layer 206 may include an assembly hole 203 into which the light emitting device 150 is inserted. Therefore, during self-assembly, the light emitting element 150 can be easily inserted into the assembly hole 203 of the insulating layer 206 .
  • the assembly hole 203 may be called an insertion hole, a fixing hole, an alignment hole, or the like.
  • FIG. 7 is a view showing an example in which a light emitting device according to an embodiment is assembled to a substrate by a self-assembly method.
  • the substrate 200 may be a panel substrate of a display device.
  • the substrate 200 will be described as a panel substrate of a display device, but the embodiment is not limited thereto.
  • the substrate 200 may be formed of glass or polyimide.
  • the substrate 200 may include a flexible material such as polyethylene naphthalate (PEN) or polyethylene terephthalate (PET).
  • PEN polyethylene naphthalate
  • PET polyethylene terephthalate
  • the substrate 200 may be a transparent material, but is not limited thereto.
  • a light emitting device 150 may be put into a chamber 1300 filled with a fluid 1200 .
  • the fluid 1200 may be water such as ultrapure water, but is not limited thereto.
  • a chamber may also be called a water bath, container, vessel, or the like.
  • the substrate 200 may be disposed on the chamber 1300 .
  • the substrate 200 may be introduced into the chamber 1300 .
  • a pair of assembly wires 201 and 202 corresponding to each of the light emitting devices 150 to be assembled may be disposed on the substrate 200 .
  • the assembled wires 201 and 202 may be formed of transparent electrodes (ITO) or may include a metal material having excellent electrical conductivity.
  • the assembled wires 201 and 202 may be titanium (Ti), chromium (Cr), nickel (Ni), aluminum (Al), platinum (Pt), gold (Au), tungsten (W), molybdenum (Mo) ) It may be formed of at least one or an alloy thereof.
  • An electric field is formed between the assembled wirings 201 and 202 by an externally supplied voltage, and a dielectrophoretic force may be formed between the assembled wirings 201 and 202 by the electric field.
  • the light emitting element 150 can be fixed to the assembly hole 203 on the substrate 200 by this dielectrophoretic force.
  • the distance between the assembly wires 201 and 202 is smaller than the width of the light emitting element 150 and the width of the assembly hole 203, so that the assembly position of the light emitting element 150 using an electric field can be more accurately fixed.
  • An insulating layer 206 is formed on the assembled wires 201 and 202 to protect the assembled wires 201 and 202 from the fluid 1200 and prevent current flowing through the assembled wires 201 and 202 from leaking.
  • the insulating layer 206 may be formed of a single layer or multiple layers of an inorganic insulator such as silica or alumina or an organic insulator.
  • the insulating layer 206 may include an insulating and flexible material such as polyimide, PEN, PET, or the like, and may be integrally formed with the substrate 200 to form a single substrate.
  • the insulating layer 206 may be an adhesive insulating layer or a conductive adhesive layer having conductivity. Since the insulating layer 206 is flexible, it can enable a flexible function of the display device.
  • the insulating layer 206 has a barrier rib, and an assembly hole 203 may be formed by the barrier rib. For example, when the substrate 200 is formed, a portion of the insulating layer 206 is removed, so that each of the light emitting devices 150 may be assembled into the assembly hole 203 of the insulating layer 206 .
  • An assembly hole 203 to which the light emitting devices 150 are coupled is formed in the substrate 200 , and a surface on which the assembly hole 203 is formed may contact the fluid 1200 .
  • the assembly hole 203 may guide an accurate assembly position of the light emitting device 150 .
  • the assembly hole 203 may have a shape and size corresponding to the shape of the light emitting element 150 to be assembled at the corresponding position. Accordingly, it is possible to prevent assembling another light emitting device or assembling a plurality of light emitting devices into the assembly hole 203 .
  • the assembly device 1100 including a magnetic material may move along the substrate 200 .
  • a magnetic material for example, a magnet or an electromagnet may be used.
  • the assembly device 1100 may move while in contact with the substrate 200 in order to maximize the area of the magnetic field into the fluid 1200 .
  • the assembly device 1100 may include a plurality of magnetic bodies or may include a magnetic body having a size corresponding to that of the substrate 200 . In this case, the moving distance of the assembling device 1100 may be limited within a predetermined range.
  • the light emitting device 150 in the chamber 1300 may move toward the assembly device 1100 .
  • the light emitting element 150 may enter the assembly hole 203 and come into contact with the substrate 200 .
  • the electric field applied by the assembly lines 201 and 202 formed on the board 200 prevents the light emitting element 150 contacting the board 200 from being separated by the movement of the assembly device 1100.
  • a predetermined solder layer (not shown) may be further formed between the light emitting element 150 assembled on the assembly hole 203 of the substrate 200 and the substrate 200 to improve the bonding strength of the light emitting element 150. .
  • electrode wires may be connected to the light emitting element 150 to apply power.
  • At least one insulating layer may be formed by a post process.
  • At least one insulating layer may be a transparent resin or a resin containing a reflective material or a scattering material.
  • an image may be displayed using a light emitting element.
  • the light-emitting device of the embodiment is a self-emitting device that emits light by itself when electricity is applied, and may be a semiconductor light-emitting device. Since the light emitting element of the embodiment is made of an inorganic semiconductor material, it is resistant to deterioration and has a semi-permanent lifespan, so it can contribute to realizing high-quality and high-definition images in a display device by providing stable light.
  • a display device may use a light emitting element as a light source, include a color generator on the light emitting element, and display an image by the color generator (FIG. 8).
  • the display device may display projections through a display panel in which each of a plurality of light emitting elements generating light of different colors is arranged in a pixel.
  • FIG. 8 is a schematic cross-sectional view of the display panel of FIG. 2 .
  • the display panel 10 of the embodiment may include a first substrate 40 , a light emitting unit 41 , a color generating unit 42 and a second substrate 46 .
  • the display panel 10 of the embodiment may include more components than these, but is not limited thereto.
  • the first substrate 40 may be the substrate 200 shown in FIG. 6 .
  • One or more insulating layers may be disposed, but is not limited thereto.
  • the first substrate 40 may support the light emitting unit 41 , the color generating unit 42 , and the second substrate 46 .
  • the first substrate 40 includes various elements as described above, for example, as shown in FIG. 2 , data lines (D1 to Dm, where m is an integer greater than or equal to 2), scan lines S1 to Sn, and high potential voltage line and low potential voltage line, as shown in FIG. 3, a plurality of transistors ST and DT and at least one capacitor Cst, and as shown in FIG. 4, a first pad electrode 210 and a second pad An electrode 220 may be provided.
  • the first substrate 40 may be formed of glass or a flexible material, but is not limited thereto.
  • the light emitting unit 41 may provide light to the color generating unit 42 .
  • the light emitting unit 41 may include a plurality of light sources that emit light themselves by applying electricity.
  • the light source may include a light emitting device ( 150 in FIG. 5 ).
  • the plurality of light emitting devices 150 are separately disposed for each sub-pixel of a pixel and independently emit light by controlling each sub-pixel.
  • the plurality of light emitting elements 150 may be disposed regardless of pixel division and simultaneously emit light from all sub-pixels.
  • the light emitting device 150 of the embodiment may emit blue light, but is not limited thereto.
  • the light emitting device 150 of the embodiment may emit white light or purple light.
  • the light emitting device 150 may emit red light, green light, and blue light for each sub-pixel.
  • a red light emitting element emitting red light is disposed in a first sub-pixel, that is, a red sub-pixel
  • a green light emitting element emitting green light is disposed in a second sub-pixel, that is, a green sub-pixel.
  • a blue light emitting device emitting blue light may be disposed in the three sub-pixels, that is, the blue sub-pixel.
  • each of the red light emitting device, the green light emitting device, and the blue light emitting device may include a group II-IV compound or a group III-V compound, but is not limited thereto.
  • the group III-V compound may be a binary element compound selected from the group consisting of GaN, GaP, GaAs, GaSb, AlN, AlP, AlAs, AlSb, InN, InP, InAs, InSb, and mixtures thereof;
  • it may be selected from the group consisting of quaternary compounds selected from the group consisting of AlGaInP, GaAlNAs, GaAlNSb, GaAlPAs, GaAlPS
  • the color generating unit 42 may generate light of a different color from the light provided by the light emitting unit 41 .
  • the color generator 42 may include a first color generator 43 , a second color generator 44 , and a third color generator 45 .
  • the first color generating unit 43 corresponds to the first sub-pixel PX1 of the pixel
  • the second color generating unit 44 corresponds to the second sub-pixel PX2 of the pixel
  • the third color generating unit ( 45) may correspond to the third sub-pixel PX3 of the pixel.
  • the first color generating unit 43 generates first color light based on the light provided from the light emitting unit 41
  • the second color generating unit 44 generates second color light based on the light provided from the light emitting unit 41.
  • Color light is generated
  • the third color generator 45 may generate third color light based on light provided from the light emitting unit 41 .
  • the first color generating unit 43 outputs blue light from the light emitting unit 41 as red light
  • the second color generating unit 44 outputs blue light from the light emitting unit 41 as green light.
  • the third color generating unit 45 may output blue light from the light emitting unit 41 as it is.
  • the first color generator 43 includes a first color filter
  • the second color generator 44 includes a second color filter
  • the third color generator 45 includes a third color filter.
  • the first color filter, the second color filter, and the third color filter may be formed of a transparent material through which light can pass.
  • At least one of the first color filter, the second color filter, and the third color filter may include a quantum dot.
  • the quantum dot of the embodiment may be selected from a group II-IV compound, a group III-V compound, a group IV-VI compound, a group IV element, a group IV compound, and a combination thereof.
  • the II-VI compound is a binary element compound selected from the group consisting of CdSe, CdTe, ZnS, ZnSe, ZnTe, ZnO, HgS, HgSe, HgTe, MgSe, MgS, and mixtures thereof;
  • Group III-V compound is a binary element compound selected from the group consisting of GaN, GaP, GaAs, GaSb, AlN, AlP, AlAs, AlSb, InN, InP, InAs, InSb and mixtures thereof;
  • it may be selected from the group consisting of quaternary compounds selected from the group consisting of AlGaInP, GaAlNAs, GaAlNSb, GaAlPAs, GaAlPSb, GaInNP, GaInNAs, GaInNSb, GaInPAs, GaInPSb, InAlNP, InAlNAs, InAlNSb, InAlPAs, InAlPSb
  • Group IV-VI compounds are SnS, SnSe, SnTe, PbS, PbSe, PbTe, and a binary element compound selected from the group consisting of mixtures thereof; a ternary compound selected from the group consisting of SnSeS, SnSeTe, SnSTe, PbSeS, PbSeTe, PbSTe, SnPbS, SnPbSe, SnPbTe, and mixtures thereof; And it may be selected from the group consisting of quaternary compounds selected from the group consisting of SnPbSSe, SnPbSeTe, SnPbSTe, and mixtures thereof.
  • Group IV elements may be selected from the group consisting of Si, Ge, and mixtures thereof.
  • the group IV compound may be a binary element compound selected from the group consisting of SiC, SiGe, and mixtures thereof.
  • quantum dots may have a full width of half maximum (FWHM) of an emission wavelength spectrum of about 45 nm or less, and light emitted through the quantum dots may be emitted in all directions. Accordingly, the viewing angle of the light emitting display device may be improved.
  • FWHM full width of half maximum
  • quantum dots may have a shape such as spherical, pyramidal, multi-arm, or cubic nanoparticles, nanotubes, nanowires, nanofibers, nanoplatelet particles, etc., but are not limited thereto. does not
  • the first color filter may include red quantum dots
  • the second color filter may include green quantum dots.
  • the third color filter may not include quantum dots, but is not limited thereto.
  • blue light from the light emitting device 150 is absorbed by the first color filter, and the absorbed blue light is wavelength-shifted by red quantum dots to output red light.
  • blue light from the light emitting device 150 is absorbed by the second color filter, and the wavelength of the absorbed blue light is shifted by green quantum dots to output green light.
  • blue light from a foot and an element may be absorbed by the third color filter, and the absorbed blue light may be emitted as it is.
  • the light emitting device 150 when the light emitting device 150 emits white light, not only the first color filter and the second color filter, but also the third color filter may include quantum dots. That is, the wavelength of white light of the light emitting device 150 may be shifted to blue light by the quantum dots included in the third color filter.
  • At least one of the first color filter, the second color filter, and the third color filter may include a phosphor.
  • some of the first color filters, the second color filters, and the third color filters may include quantum dots, and others may include phosphors.
  • each of the first color filter and the second color filter may include a phosphor and a quantum dot.
  • at least one of the first color filter, the second color filter, and the third color filter may include scattering particles. Since the blue light incident on each of the first color filter, the second color filter, and the third color filter is scattered by the scattering particles and the color of the scattered blue light is shifted by the corresponding quantum dots, light output efficiency may be improved.
  • the first color generator 43 may include a first color conversion layer and a first color filter.
  • the second color generator 44 may include a second color converter and a second color filter.
  • the third color generator 45 may include a third color conversion layer and a third color filter.
  • Each of the first color conversion layer, the second color conversion layer, and the third color conversion layer may be disposed adjacent to the light emitting unit 41 .
  • the first color filter, the second color filter and the third color filter may be disposed adjacent to the second substrate 46 .
  • the first color filter may be disposed between the first color conversion layer and the second substrate 46 .
  • the second color filter may be disposed between the second color conversion layer and the second substrate 46 .
  • the third color filter may be disposed between the third color conversion layer and the second substrate 46 .
  • the first color filter may contact the upper surface of the first color conversion layer and have the same size as the first color conversion layer, but is not limited thereto.
  • the second color filter may contact the upper surface of the second color conversion layer and have the same size as the second color conversion layer, but is not limited thereto.
  • the third color filter may contact the upper surface of the third color conversion layer and have the same size as the third color conversion layer, but is not limited thereto.
  • the first color conversion layer may include red quantum dots
  • the second color conversion layer may include green quantum dots.
  • the third color conversion layer may not include quantum dots.
  • the first color filter includes a red-based material that selectively transmits the red light converted in the first color conversion layer
  • the second color filter includes green light that selectively transmits the green light converted in the second color conversion layer.
  • a blue-based material may be included
  • the third color filter may include a blue-based material that selectively transmits blue light transmitted as it is through the third color conversion layer.
  • the third color conversion layer as well as the first color conversion layer and the second color conversion layer may also include quantum dots. That is, the wavelength of white light of the light emitting device 150 may be shifted to blue light by the quantum dots included in the third color filter.
  • the second substrate 46 may be disposed on the color generator 42 to protect the color generator 42 .
  • the second substrate 46 may be formed of glass, but is not limited thereto.
  • the second substrate 46 may be called a cover window, cover glass, or the like.
  • the second substrate 46 may be formed of glass or a flexible material, but is not limited thereto.
  • the embodiment electrically connects the semiconductor light emitting device to the substrate after the semiconductor light emitting device is assembled in an assembly hole on the substrate by a self-assembly method, and a bonding layer such as solder or a metal bump is provided on the lower side of the semiconductor light emitting device.
  • a bonding layer such as solder or a metal bump is provided on the lower side of the semiconductor light emitting device.
  • the conductors dispersed in the fluid are collected in the assembly hole by dielectrophoretic force, and the semiconductor light emitting device is formed using the collected conductors. It can be electrically connected to the board.
  • the bonding layer or the metal bump is not provided on the semiconductor light emitting device, the weight and thickness of the display device can be reduced.
  • the conductor is collected within a range that does not impair electrical characteristics, the thickness of the conductor between the semiconductor light emitting device and the substrate can be minimized to reduce the weight and thickness of the display device.
  • the second assembly wiring used for assembling the semiconductor light emitting device is exposed in the assembly hole of the substrate, and the conductor is collected on the exposed second assembly wiring, and the semiconductor is passed through the conductor.
  • the light emitting element and the second assembly line may be electrically connected.
  • the second assembling wiring can be used not only to assemble the semiconductor light emitting element into the assembly hole, but also to emit light from the semiconductor light emitting element. Therefore, since a separate first electrode wire for emitting light of the semiconductor light emitting element does not have to be provided and only a second electrode wire for electrically connecting to the upper side of the semiconductor light emitting element needs to be designed, design freedom is increased to prevent wiring design defects. can do.
  • a first assembly wire and a second assembly wire are required to assemble the semiconductor light emitting device into the assembly hole, and a first electrode wire is required to electrically connect the lower side of the semiconductor light emitting device.
  • design freedom is restricted and an electrical short may occur between these wires.
  • the degree of freedom in design is increased and electrical short circuits can be prevented by making the second assembled wiring also serve as the first electrode wiring.
  • FIG. 9 is a cross-sectional view of the display device according to the first embodiment.
  • the display device 300 may include a substrate 310 , a barrier rib 340 , a conductor 350 and a semiconductor light emitting device 150 .
  • each of the substrate 310 and the barrier rib 340 is the same as the substrate 200 and the insulating layer 206 shown in FIG. 6, a detailed description thereof will be omitted.
  • the barrier rib 340 may be disposed on the substrate 310 .
  • the barrier rib 340 may be referred to as an insulating layer.
  • the barrier rib 340 may have a plurality of assembly holes 345 .
  • the assembly hole 345 may be provided in the sub-pixels PX1 , PX2 , and PX3 of the pixel (PX in FIG. 2 ), but is not limited thereto.
  • the assembly hole 345 guides and fixes the assembly of the semiconductor light emitting device 150, and during self-assembly, the semiconductor light emitting device 150 moved by a magnetic material moves from the vicinity of the assembly hole 345 into the assembly hole 345. It can be fixed to the assembly hole 345.
  • assembly hole 345 is shown as having an inclined inner side in the drawings, it may have an inner side perpendicular to the upper surface of the substrate 310 .
  • Semiconductor feet and elements can be easily inserted into the assembly hole 345 by the assembly hole 345 having an inclined inner side.
  • the semiconductor light emitting device 150 may be disposed in each of the plurality of assembly holes 345 provided on the substrate 310 .
  • the semiconductor light emitting device 150 may be formed of a semiconductor material, for example, a group IV compound or a group III-V compound.
  • the semiconductor light emitting device 150 is a member that generates light according to an electrical signal.
  • the semiconductor light emitting device 150 disposed in each assembly hole 345 may generate single color light.
  • the semiconductor light emitting device 150 may generate ultraviolet light, violet light, blue light, and the like.
  • the semiconductor light emitting device 150 disposed in each assembly hole 345 is a light source, and an image may be displayed by generating various color lights using the light source.
  • a color conversion layer and a color filter may be provided to generate light of various colors.
  • the semiconductor light emitting device 150 disposed in each assembly hole 345 may be one of a blue semiconductor light emitting device, a green semiconductor light emitting device, and a red semiconductor light emitting device.
  • the semiconductor light emitting device 150 disposed in the first assembling hole 345 is a blue semiconductor light emitting device and the semiconductor light emitting device disposed in the second assembling hole 345
  • the device 150 is a green semiconductor light emitting device
  • the semiconductor light emitting device 150 disposed in the third assembly hole 345 may be a red semiconductor light emitting device.
  • the semiconductor light emitting device 150 of the embodiment includes a first conductivity type semiconductor layer 151, an active layer 152, a second conductivity type semiconductor layer 153, a first electrode 154, a second electrode 155, and a protective layer. (157).
  • the protective layer 157 may be called an insulating layer, a passivation layer, or the like.
  • the first conductivity type semiconductor layer 151 , the active layer 152 and the second conductivity type semiconductor layer 153 may be referred to as a light emitting unit.
  • the first conductivity type semiconductor layer 151 , the active layer 152 , and the second conductivity type semiconductor layer 153 may be sequentially grown on a wafer ( 411 in FIG. 16 ) using deposition equipment such as MOCVD. Thereafter, the second conductivity type semiconductor layer 153 , the active layer 152 , and the first conductivity type semiconductor layer 151 may be etched in a vertical direction using an etching process.
  • the semiconductor light emitting device 150 may be manufactured by forming the protective layer 157 along the periphery of the side surface.
  • the first conductivity type semiconductor layer 151 may include a first conductivity type dopant
  • the second conductivity type semiconductor layer 153 may include a second conductivity type dopant.
  • the first conductivity type dopant may be an n-type dopant such as silicon (Si)
  • the second conductivity type dopant may be a p-type dopant such as boron (B).
  • the first conductivity type semiconductor layer 151 may generate electrons, and the second conductivity type semiconductor layer 153 may form holes.
  • the active layer 152 generates light and may be referred to as a light emitting layer.
  • the diameter may gradually increase from the upper side of the semiconductor light emitting device 150 to the lower side.
  • the first electrode 154 may be disposed below the first conductivity type semiconductor layer 151 .
  • the first electrode 154 may be formed of a metal having excellent electrical conductivity.
  • the first electrode 154 may include at least one or more layers.
  • the first electrode 154 may include a magnetic layer (not shown) and an electrode layer (not shown).
  • a magnetic layer and an electrode layer may be sequentially formed under the first conductivity-type semiconductor layer 151 or vice versa.
  • the semiconductor light emitting device 150 When the magnetic layer is self-assembled, the semiconductor light emitting device 150 is magnetized by the magnetic material, so that the semiconductor light emitting device 150 can be easily moved along with the movement of the magnetic material. When the semiconductor light emitting device 150 itself is easily moved along the movement of the magnetic material, the magnetic layer may be omitted.
  • the electrode layer can smoothly supply an external voltage to the first conductivity type semiconductor layer 151 .
  • the magnetic layer may include nickel (Ni), cobalt (Co), iron (Fe), or the like.
  • the magnetic layer may include SmCo, Gd-based, La-based, and Mn-based metals.
  • the electrode layer may be made of a metal having excellent electrical conductivity.
  • the first electrode 154 of the embodiment does not include a bonding layer such as tin (Sn) or indium (In).
  • a bonding layer such as tin (Sn) or indium (In).
  • the semiconductor light emitting device 150 and the substrate 310 can be easily electrically connected and adhesive strength can be enhanced without a bonding layer.
  • the second electrode 155 may be disposed on the second conductivity type semiconductor layer 153 .
  • the second electrode 155 may be made of a transparent conductive material, such as ITO.
  • the second electrode 155 obtains a current spreading effect that allows the current by the positive (+) voltage supplied from the second electrode wiring 372 to spread evenly over the entire area of the first conductivity type semiconductor layer 151. can That is, since the current is evenly spread over the entire area of the first conductivity type semiconductor layer 151 by the second electrode 155 and holes are generated in the entire area of the first conductivity type semiconductor layer 151, the number of holes generated is increased.
  • Light efficiency may be increased by increasing the amount of light generated by recombination of holes and electrons in the active layer 152 . An increase in light efficiency can lead to an improvement in luminance.
  • the second electrode 155 may include one or more layers.
  • the second electrode 155 may include a transparent conductive layer such as ITO, at least one metal layer, a magnetic layer, and the like.
  • a magnetic layer may be disposed between the transparent conductive layer and the second second conductive semiconductor layer 153, but is not limited thereto.
  • the magnetic layer may be formed with a very thin thickness of a nanometer (nm) level in consideration of light transmittance.
  • the magnetic layer may be included in the first electrode 154 and/or the second electrode 155 . Accordingly, during magnetic assembly, the semiconductor light emitting device 150 is moved more quickly and rapidly according to the movement of the magnetic material, thereby shortening the process time and improving the assembly yield.
  • a transparent conductive layer is disposed on the light emitting units 151 to 153, and luminance can be improved by increasing light efficiency by a current spreading effect.
  • the protective layer 157 may protect the light emitting units 151 to 153 .
  • the protective layer 157 prevents the semiconductor light emitting device 150 from turning over during self-assembly, and the lower side of the semiconductor light emitting device 150, that is, the lower surface of the first conductive semiconductor layer 151 is the upper surface of the first insulating layer 330. can be made to face. That is, during self-assembly, the protective layer 157 of the semiconductor light emitting device 150 may be positioned away from the first assembly line 321 and the second assembly line 322 .
  • the lower side of the semiconductor light emitting device 150 may be positioned so as to be close to the first assembly line 321 and the second assembly line 322. there is. Therefore, during self-assembly, the lower side of the semiconductor light emitting device 150 is positioned facing the first insulating layer 330 and the upper side of the semiconductor light emitting device 150 is positioned toward the upper direction, so that the semiconductor light emitting device 150 is Misalignment caused by overturning and assembly can be prevented.
  • the conductor 350 may be disposed within the assembly hole 345 .
  • the semiconductor light emitting device 150 and the second assembled wiring 322 may be electrically connected via the conductor 350 .
  • the second assembly wiring 322 may be used as the first electrode wiring.
  • the first electrode wiring may be electrically connected to the lower side of the semiconductor light emitting device 150, that is, to the first electrode 154 through the conductor 350.
  • a conductor 350 may be disposed on the bottom and inside of the assembly hole 345 . That is, the conductor 350 may include a first conductor 351 , a second conductor 352 , and a third conductor 353 .
  • the first conductor 351 may be a conductor positioned on the second assembly wire 322 in the assembly hole 345 .
  • the second conductor 352 may be a conductor located inside the assembly hole 345 .
  • the third conductor 353 may be a conductor positioned on the first insulating layer 330 corresponding to the first assembly line 321 in the assembly hole 345 .
  • the semiconductor light emitting device 150 may be disposed on the conductor 350 within the assembly hole 345 .
  • the first conductor 351 may be disposed between the first region of the first electrode 154 of the semiconductor light emitting device 150 and the second assembly line 322 within the assembly hole 345 .
  • the second conductor 352 may be disposed between the inside of the assembly hole 345 and the outside of the semiconductor light emitting device 150 .
  • the third conductor 353 is formed between the second region of the first electrode 154 of the semiconductor light emitting device 150 and the first insulating layer 330 corresponding to the first assembly line 321 within the assembly hole 345. can be placed in
  • the conductor 350 may include a plurality of conductive particles 3510 and a polymer 3520.
  • the polymer 3520 may surround each of the conductive particles 3510 .
  • the conductor 350 may have a size of 0.05 ⁇ m to 10 ⁇ m.
  • the conductive particle 3510 may include Au, Au/Ge, Ni, Ti, Cu, or the like.
  • the polymer 3520 may include EVA, PVA, PMMA, PS, EA, PEG, and the like.
  • the conductor 350 may include a conductive polymer composite material such as PS/polyaniline, polypyrrole, polyanilien, carbon nanotue of polyethylene oxide, metal (Ag, Au.,), copolymer, composite, and the like.
  • Polymers 3520 between conductive particles 3510 adjacent to each other in the first conductor 351 , the second conductor 352 , and the third conductor 353 may merge with each other.
  • a plurality of conductors 350 including conductive particles 3510 and polymers 3520 surrounding the conductive particles 3510 are collected in assembly holes 345 . It can be. At this time, polymers 3520 between adjacent conductive particles 3510 in the collected plurality of conductors 350 contact each other but are not merged. However, as shown in FIG. 13, when heat is applied to the collected plurality of conductors 350, the polymer 3520 surrounding the conductive particles 3510 of each of the plurality of conductors 350 melts and the conductive particles 3510 ) The polymers 3520 between them may be merged with each other and integrated. Accordingly, a plurality of conductive particles 3510 may be disposed on the integrated polymer 3520. The melted polymer 3520 may be naturally cured or cured by a curing process.
  • the conductive particles 3510 in the first conductor 351 and the third conductor 353 may be embedded in the polymer 3520 .
  • the second-first conductive particle 352_1 may be disposed below the upper surface of the merged polymer 3520.
  • the 2-2 conductive particles 35_2 may be disposed on the upper surface of the merged polymer 3520 .
  • the polymer 3520 of the conductor 350 is melted by heat and moved downward by gravity. That is, while the conductive particles 3510 are hard solids, the polymer 3520 is melted by heat, and the melted polymer 3520 moves downward by gravity to fill the space between the conductive particles 3510 . In this case, as the polymer 3520 moves downward in the second conductor 352, the conductive particles 3510 may also move downward. Accordingly, the conductive particles 3510 may contact each other in the second conductor 352 . In addition to heat, pressure may be applied to the polymer 3520 of the conductor 350.
  • the conductive particle 3510 included in the first conductor 351 is a connection electrode, and may electrically connect the first electrode 154 of the semiconductor light emitting device 150 to the second assembly wire 322 .
  • the polymer 3520 included in the first conductor 351 and positioned between the conductive particles 3510 may firmly fix the semiconductor light emitting device 150 to the second assembled wiring 322 .
  • the conductive particles 3510 included in the second conductor 352 may contact each other.
  • the polymer 3520 melted by heat may fill an empty space formed between the conductors 350 .
  • the upper surface of the polymer 3520 in the second conductor 352 may be lower than some of the conductive particles 3510 located on the uppermost side. Accordingly, in the second conductor 352, most of the 2-1 conductor particles are disposed under the upper surface of the polymer 3520, but the 2-2 conductor particles may be disposed on the upper surface of the polymer 3520. In the second embodiment described later (FIG.
  • the conductor 350 may be formed in a shape other than a spherical shape, such as a rod or an elliptical shape, but is not limited thereto.
  • the display device 300 includes a first assembly wire 321, a second assembly wire 322, a first insulating layer 330, a second insulating layer 360, and a second electrode wire. (372). More components may be included.
  • the first assembly wire 321 may be disposed on the first region of the substrate 310 and the second assembly wire 322 may be disposed on the second region of the substrate 310 .
  • the first assembly line 321 and the second assembly line 322 may be disposed on different layers.
  • a first insulating layer 330 may be disposed between the first assembly line 321 and the second assembly line 322 .
  • the first assembly line 321 and the second assembly line 322 may not overlap each other.
  • dielectrophoretic force may be formed between the first assembly line 321 and the second assembly line 322 by the AC voltage applied to the first assembly line 321 and the second assembly line 322.
  • the AC voltage may have a voltage of 3 V to 15 V at a frequency of 50 kHz to 500 kHz, but is not limited thereto.
  • dielectrophoretic force may be used not only to assemble the semiconductor light emitting device 150 but also to collect the conductor 350 in the assembly hole 345 .
  • a first dielectrophoretic force is formed by a first AC voltage applied to the first assembly line 321 and the second assembly line 322, and the conductor 350 is formed through the assembly hole ( 345) can be collected in
  • a second dielectrophoretic force is formed by the second AC voltage applied to the first assembly line 321 and the second assembly line 322.
  • the semiconductor light emitting device 150 may be assembled into the assembly hole 345 by the second dielectrophoretic force. Before the semiconductor light emitting device 150 is assembled into the assembly hole 345 , the semiconductor light emitting device 150 may be moved near the assembly hole 345 by a magnetic material.
  • the first dielectrophoretic force and the second dielectrophoretic force may be different.
  • the dielectrophoretic force may be proportional to the cube of the radius of the particle. Accordingly, since the size of the conductor 350 is much smaller than the size of the semiconductor light emitting device 150, the first AC voltage may be greater than the second AC voltage in order for the conductor 350 to be collected.
  • the semiconductor light emitting device 150 may be disposed on the conductor 350 first collected in the assembly hole 345 . Subsequently, heat is applied to the collected conductor 350 to melt the polymer 3520 of the conductor 350, and the melted polymer 3520 forms an adhesive to form the semiconductor light emitting device 150 at the bottom of the assembly hole 345. And it can be adhered to the inside.
  • the conductor 350 may electrically connect the first electrode 154 of the semiconductor light emitting device 150 to the second assembling wire 322 as a connection electrode.
  • the second assembly wiring 322 may be used as the first electrode wiring.
  • the second assembly line 322 may be disposed on a layer different from that of the first assembly line 321 . That is, the first assembly wiring 321 may be disposed under the first insulating layer 330 , and the second assembly wiring 322 may be disposed on the first insulating layer 330 .
  • the second assembly line 322 may be exposed to the outside within the assembly hole 345 . That is, the top surface of the second assembly line 322 may be the bottom surface of the assembly hole 345 . That is, the bottom surface of the assembly hole 345 may be the top surface of the first insulator and the top surface of the second assembly line 322 in the assembly hole 345 .
  • the conductor 350 is collected on the second assembled wiring 322, and the polymer 3520 of the collected conductor 350 is melted, so that the conductive particles 3510 of the conductor 350 are connected.
  • the first electrode 154 of the semiconductor light emitting device 150 may be electrically connected to the second assembly line 322 . Accordingly, a predetermined voltage may be supplied to the first electrode 154 of the semiconductor light emitting device 150 through the second assembly line 322 .
  • the second insulating layer 360 may be disposed on the barrier rib 340 .
  • the second insulating layer 360 may be disposed not only on the barrier rib 340 but also within the assembly hole 345 and on the semiconductor light emitting device 150 .
  • the second insulating layer 360 may protect the semiconductor light emitting device 150 . That is, the second insulating layer 360 may protect the semiconductor light emitting device 150 from external moisture or foreign substances. The second insulating layer 360 may protect the first connector 350 from moisture or conductive foreign substances.
  • the second insulating layer 360 may be formed to be thick and may be a planarization film that flattens an upper surface thereof. Accordingly, a layer disposed on the upper surface of the second insulating layer 360, for example, the first electrode wiring 371 and the second electrode wiring 372 or another insulating layer can be easily formed.
  • the second insulating layer 360 may be formed of an organic material or an inorganic material.
  • the second insulating layer 360 may be formed of a resin material such as epoxy or silicon.
  • the second insulation may be made of a material having excellent light transmittance so that the light from the semiconductor light emitting device 150 is well transmitted.
  • the second insulating layer 360 may include scattering particles so that light from the semiconductor light emitting device 150 is well scattered.
  • scattering particles may be included in the second insulating layer 360 corresponding to the semiconductor light emitting device 150 in each pixel (PX in FIG. 2 ), but this is not limited thereto.
  • the second insulating layer 360 may be formed on the entire area of the substrate 310 regardless of the sub-pixels (PX1, PX2, and PX3 in FIG. 2).
  • the second electrode wire 372 may be electrically connected to the second electrode 155 of the semiconductor light emitting device 150 .
  • it may be electrically connected to the second electrode 155 of the semiconductor light emitting device 150 through the second insulating layer 360 .
  • a contact hole may be formed through which the second insulating layer 360 passes.
  • the protective layer 157 of the semiconductor light emitting device 150 corresponding to the contact hole of the barrier rib 340 is also etched so that the semiconductor foot and the second electrode 155 of the device may be exposed to the outside.
  • the contact hole may be formed in the barrier rib 340 corresponding to the semiconductor light emitting device 150 .
  • the second electrode wire 372 may be electrically connected to the second electrode 155 of the semiconductor light emitting device 150 through a contact hole.
  • the second assembly wire 322 may be electrically connected to the first electrode 154 of the semiconductor light emitting device 150 through the conductor 350 .
  • the semiconductor light emitting device ( Light having luminance corresponding to the current flowing by the positive (-) voltage applied to the second conductivity type semiconductor layer 153 of 150) may be generated from the semiconductor light emitting device 150 .
  • the contrast ratio may be controlled by controlling the luminance of each pixel by adjusting the intensity of the current flowing through the semiconductor light emitting device 150 .
  • the color light of the semiconductor light emitting device 150 may be determined by a wavelength corresponding to an energy band gap of the active layer 152 of the semiconductor light emitting device 150 . That is, when the material of the active layer 152 has a large energy band gap, light of a short wavelength is generated, and when the material of the active layer 152 has a small energy band gap, light of a long wavelength may be generated.
  • the semiconductor light emitting device having the bonding layer or the metal bump is assembled in the assembly hole of the substrate by self-assembly, and then heat-bonded.
  • the semiconductor light emitting device and the substrate were electrically connected using a bonding layer or a metal bump.
  • a bonding layer or a metal bump may flow out of the semiconductor light emitting device between the semiconductor light emitting device and the substrate during thermal compression bonding.
  • the bonding layer or the metal bump protruding to the outside of the semiconductor light emitting device is corroded by a post-process, or the barrier rib is not easily formed due to poor bonding strength with the barrier rib during formation of the barrier rib.
  • ACF/ACP has been widely used for electrical connection between a semiconductor light emitting device and the outside.
  • these ACF/ACP are difficult to use in a self-assembly method. That is, the ACF/ACP must be attached on the substrate in advance. Since the substrate is in contact with the fluid in the water bath, the ACF/ACP is easily separated from the substrate, and it is difficult to attach the ACF/ACP to the assembly hole of a very small size on the substrate. It's very difficult.
  • ACF/ACP Even if ACF/ACP is formed in the assembly hole, since the permittivity of ACF/ACP is low, the dielectrophoretic force during self-assembly becomes small due to the dielectrophoretic force. It is not only difficult, but it is also difficult to maintain the fixation of the light emitting device assembled in the assembly hole, and it is separated out of the assembly hole. Therefore, it is impossible to adopt the ACF/ACP in a self-assembly method of assembling a semiconductor light emitting device on a substrate as in the embodiment.
  • the semiconductor light emitting device 150 does not need to be provided with a bonding layer or a metal bump. That is, in the first embodiment, during self-assembly, the conductor 350 is collected in the assembly hole 345 in advance by the dielectrophoretic force formed between the first assembly wire 321 and the second assembly wire 322, and then the After assembling the semiconductor light emitting device 150 on the collected conductor 350 by means of a magnetic material and dielectrophoretic force, heat is applied to melt the polymer 3520 of the conductor 350 to form conductive particles 3510 of the conductor 350. As a connection electrode, the first electrode 154 of the semiconductor light emitting device 150 and the second assembled wiring 322 may be electrically connected.
  • the semiconductor light emitting device 150 can be easily manufactured, reduce manufacturing cost, and simplify the manufacturing process.
  • the semiconductor light emitting device 150 does not need to have a bonding layer or a metal bump, the thickness and weight of the display device 300 can be reduced by reducing the thickness of the semiconductor light emitting device 150 .
  • the semiconductor light emitting device 150 within the assembly hole 345, that is, between the semiconductor light emitting device 150 and the substrate 310 as well as inside the assembly hole 345 and the semiconductor light emitting device 150.
  • a conductor 350 is also disposed between the outer sides of ), and the semiconductor light emitting element 150 is firmly attached to the second assembled wiring 322, the first insulating layer 330, and the barrier rib 340 by the conductor 350. Since it is fixed, bonding force between the semiconductor light emitting device 150 and the substrate 310 is not only strengthened, but also yield can be dramatically improved.
  • 10 to 14 are diagrams for explaining a display manufacturing method according to the first embodiment.
  • a fluid 2000 may be filled in the chamber 1300 .
  • the plurality of conductors 350 may be dispersed in the fluid 2000 .
  • the conductor 350 may also move according to the flow of the fluid 2000 .
  • the conductor 350 may have a size of 0.05 ⁇ m to 10 ⁇ m.
  • the conductivity is very small and can be uniformly distributed in the fluid 2000 by the surface charge of the polymer 3520 constituting the conductive surface.
  • one or more surfactants may be added.
  • the surfactant may be sodium dodecyl sulfate, potassium persulfate, or the like, but is not limited thereto.
  • the first assembling wires 321 and the second assembling wires 322 are given predetermined When an AC voltage is applied, a dielectrophoretic force may be formed between the first assembly line 321 and the second assembly line 322 . Due to this dielectrophoretic force, among the conductors 350 dispersed in the fluid 2000, the conductor 350 located near the assembly hole 345 can be collected into the assembly hole 345. For example, the conductor 350 may be randomly collected in the assembly hole 345 . For example, the conductor 350 may be uniformly collected in the assembly hole 345 by controlling the dielectrophoretic force.
  • the collection position of the conductor 350 collected in the assembly hole 345 may also be affected by the flow of the fluid 2000.
  • a collection position of the conductor 350 collected in the assembly hole 345 may be influenced by a structure inside the assembly hole 345 . Due to the flow of the fluid 2000 and the internal structure of the assembly hole 345, the conductor 350 may be relatively collected in the corner region where the bottom and the inside of the assembly hole 345 meet, but this is not limited thereto. .
  • the magnetic material 2100 is positioned on one side of the substrate 310 to cover the surface of the substrate 310. can be moved along. Although the drawing shows that the magnetic material 2100 is located under the substrate 310, it may be located above the substrate 310, that is, above the fluid 2000.
  • a predetermined AC voltage may be supplied to the first and second assembly wires 321 and 322 of the substrate 310 before/after or simultaneously with the movement of the magnetic material 2100 to form dielectrophoretic force.
  • the plurality of semiconductor light emitting elements 150 dispersed in the fluid 2000 are also moved by the movement of the magnetic material 2100, and the semiconductor light emitting elements 150 passing near the corresponding assembly hole 345 are moved through the assembly hole by the dielectrophoretic force. (345). Within the assembly hole 345 , semiconductor feet and elements may be placed on the collected conductor 350 .
  • the conductor 350 may be continuously collected into the assembly hole 345 . Accordingly, the conductor 350 may be positioned not only under the semiconductor light emitting device 150 but also between the inside of the assembly hole 345 and the outside of the semiconductor light emitting device 150 .
  • a drying process may be performed to remove the fluid 2000 on the substrate 310.
  • a plurality of conductors 350 may be collected on the bottom and side surfaces of the assembly hole 345 .
  • the conductor 350 collected in the assembly hole 345 may be melted by applying heat. That is, the polymer 3520 surrounding the conductive particle 3510 in the conductor 350 may melt. As the polymer 3520 of the conductor 350 melts, it can be merged and integrated with the polymer 3520 of the adjacent conductor 350. When the polymer 3520 is melted, for example, in the case of the spherical conductors 350, empty spaces between the spherical conductors 350 may be filled.
  • heat can be generated using a laser. That is, the laser may be irradiated toward the substrate 310 from below the substrate 310 . A laser may be focused through the substrate 310 onto the conductor 350 . Accordingly, the temperature of the conductor 350 may rise due to laser irradiation and may be melted. For example, heat having a temperature of, for example, less than 300° C. is generated by laser irradiation, and the conductor 350 may be melted by this heat.
  • the conductor 350 may be melted through thermal decomposition in a nitrogen atmosphere.
  • the conductive particles 3510 are solid and do not change in size, but the polymer 3520 melts and flows down due to gravity. Therefore, in the second conductor 352 between the inside of the assembly hole 345 and the outside of the semiconductor light emitting device 150, some conductive particles 352_1 are disposed below the upper surface of the polymer 3520, whereas other conductive particles ( 352_2) may be disposed on the upper surface of the polymer 3520. That is, the other conductive particles, that is, the 2-2nd conductive particles 35_2 are positioned higher than the upper surface of the polymer 3520 and may protrude upward from the upper surface of the polymer 3520 .
  • the polymer 3520 may be melted and the polymers 3520 of the plurality of conductors 350 may merge with each other.
  • the lower side of the semiconductor light emitting device 150 is attached to the second assembled wiring 322 and the first insulating layer 330 by the polymer 3520 merged and integrated with each other, and the outer side of the semiconductor light emitting device 150 is assembled. Since it is attached to the inside of the hole 345, the semiconductor foot and the device can be more firmly fixed, so that yield can be dramatically improved and reliability can be increased.
  • first electrode 154 and the second electrode 154 of the semiconductor light emitting device 150 are connected by the conductive particles 3510 of the first conductor 351 positioned between the semiconductor light emitting device 150 and the second assembled wiring 322.
  • the assembly wires 322 are electrically connected, so that the second assembly wires 322 may be used as a first electrode wire for supplying a voltage.
  • a second insulating layer 360 is formed on the barrier rib 340 , and the second electrode wiring 372 passes through the second insulating layer 360 to the semiconductor light emitting element 150 . It may be electrically connected to the second electrode 155 of ).
  • the conductor 350 is first collected and then the semiconductor light emitting device 150 is assembled.
  • a plurality of conductors 350 and a plurality of semiconductor light emitting devices 150 may be dispersed in the fluid 2000 of the chamber 1300 .
  • a dielectrophoretic force is formed by an AC voltage applied between the first assembling wire 321 and the second assembling wire 322, and the conductor 350 near the assembling hole 345 is assembled by the dielectrophoretic force. may be collected into hole 345 .
  • the magnetic body 2100 may be moved to move the plurality of semiconductor feet and elements.
  • the conductor 350 Since the conductor 350 is near the assembly hole 345, the conductor 350 near the assembly hole 345 is directly trapped into the assembly hole 345 by the dielectrophoretic force, whereas the semiconductor feet and the element 150 Since it must be moved to the corresponding assembly hole 345 by the magnetic material 2100, it may take some time. Therefore, even if the magnetic material 2100 is moved while applying the AC voltage to the first assembly line 321 and the second assembly line 322, the conductor 350 is first collected in the assembly hole 345 and then semiconductor light is emitted. Device 150 may be assembled.
  • 16 is a cross-sectional view of a display device according to a second embodiment.
  • the second embodiment uses a conductor 350 disposed between the inner side of the assembly hole 345 and the outer side of the semiconductor light emitting device 150, and the first electrode wiring (disposed on the same layer as the second electrode wiring 372) 371) and the same as the first embodiment except for electrical connection.
  • the first electrode wiring disposed on the same layer as the second electrode wiring 372) 371
  • the second embodiment components having the same structure, shape, and/or function as those in the first embodiment are assigned the same reference numerals and detailed descriptions are omitted.
  • the display device 300A according to the second embodiment includes a substrate 310, a barrier rib 340, a conductor 350, a semiconductor light emitting device 150, a second insulating layer 360, a first An electrode wire 371 and a second electrode wire 372 may be included.
  • the display device 300A according to the second embodiment may include a first assembly line 321 , a second assembly line 322 , and a first insulating layer 330 .
  • the conductor 350 may include a first conductor 351 , a second conductor 352 and a third conductor 353 .
  • the first conductor 351 may be a conductor positioned on the second assembly wire 322 in the assembly hole 345 .
  • the second conductor 352 may be a conductor located inside the assembly hole 345 .
  • the third conductor 353 may be a conductor positioned on the first insulating layer 330 corresponding to the first assembly line 321 in the assembly hole 345 .
  • the semiconductor light emitting device 150 may be disposed on the conductor 350 within the assembly hole 345 .
  • the first conductor 351 may be disposed between the first region of the first electrode 154 of the semiconductor light emitting device 150 and the second assembly line 322 within the assembly hole 345 .
  • the second conductor 352 may be disposed between the inside of the assembly hole 345 and the outside of the semiconductor light emitting device 150 .
  • the third conductor 353 is formed between the second region of the first electrode 154 of the semiconductor light emitting device 150 and the first insulating layer 330 corresponding to the first assembly line 321 within the assembly hole 345. can be placed in
  • Heat may be applied to melt the first conductor 351 , the second conductor 352 , and the third conductor 353 . That is, the polymer 3520 of each of the first conductor 351 , the second conductor 352 , and the third conductor 353 may be melted. Accordingly, polymers 3520 between adjacent conductive particles 3510 in each of the first conductor 351 , the second conductor 352 , and the third conductor 353 may merge with each other to be integrated. The melted polymer 3520 may be cured naturally or transformed into a solid by a curing process.
  • a plurality of second conductors 352 may be stacked in a plurality of layers between the inside of the assembly hole 345 and the outside of the semiconductor light emitting device 150 .
  • the polymers 3520 of each of the plurality of conductors 350 may melt and flow downward by gravity.
  • An empty space between the plurality of conductors 350 may be filled by the polymer 3520 flowing down as described above, and the polymers 3520 between adjacent conductive particles 3510 may merge with each other to be integrated.
  • the conductive particles 3510 are solid and do not change in size by heat. Accordingly, the lower conductive particles, that is, the 2-1 conductive particles 352_1, are buried by the melted polymer 3520, while the upper conductive particles, that is, the 2-2 conductive particles 35_2, are filled with the melted polymer 3520. Since it flows downward, it may not be surrounded by the polymer 3520. In other words, the 2-2 conductive particles 35_2 may be disposed on the top surface of the polymer 3520. That is, the 2-2 conductive particles 35_2 may protrude upward from the upper surface of the polymer 3520 . In addition, the 2-2nd conductive particles 35_2 in the second conductor 352 may contact each other and contact the side of the semiconductor light emitting device 150 .
  • an extension electrode 160 extending from the first electrode 154 may be disposed on a side of the semiconductor light emitting device 150 .
  • the first electrode 154 is disposed on the lower surface of the first conductivity type semiconductor layer 151, extends from the first electrode 154, and is on a part of the side surface of the first conductivity type semiconductor layer 151.
  • An extension electrode 160 may be disposed.
  • the extension electrode 160 may be provided to expand a contact area between the second conductor 352 and the second-second conductive particle 35_2.
  • the extension electrode 160 may be spaced apart from the active layer 152 to prevent electrical shorting with the active layer 152 .
  • the polymer 3520 of each of the plurality of second conductors 352 is melted by heat, and the polymer 3520 may flow downward.
  • the 2-2nd conductive particles 35_2 since the 2-2nd conductive particles 35_2 are solid, they may be moved downward by gravity and then stop moving when the 2-2nd conductive particles 35_2 come into contact with each other. Accordingly, the 2-1st conductive particles 352_1 and the 2-2nd conductive particles 35_2 may contact each other and contact the outside of the extension electrode 160 .
  • the extension electrode 160 may be disposed along the circumference of the side surface of the first conductivity type semiconductor layer 151 .
  • the 2-1st conductive particle 352_1 may contact the side surface of the first conductivity type semiconductor layer 151 along the circumference of the side surface of the first conductivity type semiconductor layer 151 . Accordingly, the contact area between the 2-1st conductive particle 352_1 and the extension electrode 160 may be expanded.
  • the first electrode 154 disposed on the lower surface of the first conductive semiconductor layer 151 is referred to as a 1-1 electrode
  • the extension electrode disposed on the side surface of the first conductive semiconductor layer 151 160 is referred to as a 1-2 electrode
  • the 1-1 electrode and the 1-2 electrode may be collectively referred to as the first electrode 154 .
  • the second insulating layer 360 may be disposed on the barrier rib 340 and the semiconductor light emitting device 150 .
  • the second insulating layer 360 may be disposed within the assembly hole 345 . That is, the lower surface of the second insulating layer 360 may come into contact with the 2-2 conductive particles 35_2 of the second conductor 352 within the assembly hole 345 .
  • a first contact hole and a second contact hole may be formed to penetrate the second insulating layer 360 disposed on the assembly hole 345 .
  • the second contact hole may be formed through the second insulating layer 360 and the protective layer 157 of the semiconductor light emitting device 150 .
  • the 2-2 conductive particles 35_2 of the second conductor 352 may be exposed to the outside through the first contact hole.
  • the second electrode 155 of the semiconductor light emitting device 150 may be exposed to the outside through the second contact hole.
  • the first electrode wire 371 may contact the 2-2 conductive particles 35_2 of the second conductor 352 through the first contact hole. Accordingly, the first electrode wire 371 may be electrically connected to the semiconductor foot and the extension electrode 160 of the element through the 2-2 conductive particles 35_2.
  • the second electrode wire 372 may contact the second electrode 155 of the semiconductor light emitting device 150 through the second contact hole. Accordingly, the second electrode wire 372 may be electrically connected to the second electrode 155 of the semiconductor light emitting device 150 . Accordingly, a predetermined voltage may be applied to the first electrode wiring 371 and the second electrode wiring 372 to generate light in the semiconductor light emitting device 150 .
  • the 2-2 conductive particles 35_2 are disposed on the upper surface of the polymer 3520 and are naturally exposed to the outside. Therefore, a separate additional process is not required to bring the first electrode wire 371 into contact with the 2-2 conductive particles 35_2, so the process time can be shortened and the process can be simplified.
  • the first electrode wiring 371 may not vertically overlap the second assembly wiring 322, but is not limited thereto.
  • the semiconductor light emitting element 150 is formed within a range that does not interfere with the layout design with the second electrode wire 372.
  • the first assembly line 321 and the second assembly line 322 may be disposed on the same plane. That is, the first assembly line 321 and the second assembly line 322 may be disposed on the substrate 310 . That is, the first assembly line 321 and the second assembly line 322 may be disposed evenly with each other.
  • the gap between the first assembly wires 321 and the second assembly wires 322 is uniform during self-assembly. An electric field may be generated so that the semiconductor light emitting device 150 may be assembled into the assembly hole 345 in a proper position.
  • the first assembly wires 321 and the second assembly wires 322 are disposed parallel to each other, the thickness of the display device 300A can be reduced.
  • a conductor 350 is also disposed between the outer sides of ), and the semiconductor light emitting element 150 is firmly attached to the second assembled wiring 322, the first insulating layer 330, and the barrier rib 340 by the conductor 350. Since it is fixed, bonding force between the semiconductor light emitting device 150 and the substrate 310 is not only strengthened, but also yield can be dramatically improved.
  • the first electrode wiring 371 is formed by using a plurality of second conductors 352 disposed between the inner side of the assembly hole 345 and the outer side of the semiconductor light emitting device 150 ( 150), it is possible to easily electrically connect the semiconductor light emitting device 150 with the outside.
  • 17 is a cross-sectional view of a display device according to a third embodiment.
  • the third embodiment is the same as the first embodiment except that the groove 325 is formed on the second assembly wire 322 . Therefore, in the third embodiment, the same reference numerals are assigned to components having the same structure, shape, and/or function as those in the first embodiment, and detailed descriptions are omitted.
  • a display device 300B includes a substrate 310, a barrier rib 340, a conductor 350, a semiconductor light emitting device 150, a second insulating layer 360, a second An electrode wire 372 may be included.
  • the display device 300B according to the third embodiment may include a first assembly line 321 , a second assembly line 322 , and a first insulating layer 330 .
  • the conductor 350 may include a first conductor 351 , a second conductor 352 and a third conductor 353 .
  • the first conductor 351 may be a conductor positioned on the second assembly wire 322 in the assembly hole 345 .
  • the second conductor 352 may be a conductor located inside the assembly hole 345 .
  • the third conductor 353 may be a conductor positioned on the first insulating layer 330 corresponding to the first assembly line 321 in the assembly hole 345 .
  • the semiconductor light emitting device 150 may be disposed on the conductor 350 within the assembly hole 345 .
  • the first conductor 351 may be disposed between the first region of the first electrode 154 of the semiconductor light emitting device 150 and the second assembly line 322 within the assembly hole 345 .
  • the second conductor 352 may be disposed between the inside of the assembly hole 345 and the outside of the semiconductor light emitting device 150 .
  • the third conductor 353 is formed between the second region of the first electrode 154 of the semiconductor light emitting device 150 and the first insulating layer 330 corresponding to the first assembly line 321 within the assembly hole 345. can be placed in
  • Heat may be applied to melt the first conductor 351 , the second conductor 352 , and the third conductor 353 . That is, the polymer 3520 of each of the first conductor 351 , the second conductor 352 , and the third conductor 353 may be melted. Accordingly, polymers 3520 between adjacent conductive particles 3510 in each of the first conductor 351 , the second conductor 352 , and the third conductor 353 may merge with each other to be integrated. The melted polymer 3520 may be cured naturally or transformed into a solid by a curing process.
  • the second assembly wiring 322 may be used as the first electrode wiring 371 .
  • the second assembly line 322 forms a dielectrophoretic force together with the first assembly line 321 so that the plurality of conductors 350 are collected in the assembly hole 345, and the semiconductor light emitting device 150 may be assembled into the assembly hole 345.
  • the second assembly wiring 322 supplies a predetermined voltage to the semiconductor light emitting device 150 together with the second electrode wiring 372, so that the semiconductor light emitting device 150 light can be generated. Different color light may be generated by each of the plurality of semiconductor light emitting devices 150 provided in the display device 300B, and thus a color image may be displayed.
  • At least one groove may be formed on the second assembly wire 322 .
  • the groove 325 may be referred to as a recess, dent, groove, hole, scratch, or the like.
  • the groove 325 may have a circular or stripe shape, but is not limited thereto.
  • the conductor 350 dispersed in the fluid 2000 is more A lot can be collected into the groove 325 on the second assembly line 322 . That is, since the conductor 350 collected into the groove 325 is fixed to the groove 325 and is difficult to escape to the outside, the first insulating layer corresponding to the first assembly line 321 within the assembly hole 345 More conductor 350 may be collected on second assembly line 322 than on 330 .
  • the semiconductor light emitting device 150 does not need to be provided with a bonding layer or a metal bump. That is, in the first embodiment, during self-assembly, the conductor 350 is collected in the assembly hole 345 in advance by the dielectrophoretic force formed between the first assembly wire 321 and the second assembly wire 322, and then the After assembling the semiconductor light emitting device 150 on the collected conductor 350 by means of a magnetic material and dielectrophoretic force, heat is applied to melt the polymer 3520 of the conductor 350 to form conductive particles 3510 of the conductor 350. As a connection electrode, the first electrode 154 of the semiconductor light emitting device 150 and the second assembled wiring 322 may be electrically connected.
  • the semiconductor light emitting device 150 can be easily manufactured, reduce manufacturing cost, and simplify the manufacturing process.
  • the semiconductor light emitting device 150 does not need to have a bonding layer or a metal bump, the thickness and weight of the display device 300B can be reduced by reducing the thickness of the semiconductor light emitting device 150 .
  • the semiconductor light emitting device 150 within the assembly hole 345, that is, between the semiconductor light emitting device 150 and the substrate 310 as well as inside the assembly hole 345 and the semiconductor light emitting device 150
  • a conductor 350 is also disposed between the outer sides of ), and the semiconductor light emitting element 150 is firmly attached to the second assembled wiring 322, the first insulating layer 330, and the barrier rib 340 by the conductor 350. Since it is fixed, bonding force between the semiconductor light emitting device 150 and the substrate 310 is not only strengthened, but also yield can be dramatically improved.
  • At least one groove 325 is formed on the second assembly line 322 so that more conductors 350 are collected on the second assembly line 322, so that the semiconductor light emitting device ( 150), it is possible to improve luminance through improvement of light efficiency by allowing current to flow more smoothly.
  • FIG. 19 is a cross-sectional view of a display device according to a fourth embodiment.
  • the fourth embodiment may be a merger of the first embodiment and the second embodiment. Therefore, in the fourth embodiment, the same reference numerals are given to components having the same structure, shape and/or function as those in the first and/or second embodiments, and detailed descriptions are omitted.
  • a display device 300C includes a substrate 310, a barrier rib 340, a conductor 350, a semiconductor light emitting device 150, a second insulating layer 360, a first An electrode wire 371 and a second electrode wire 372 may be included.
  • the display device 300C according to the second embodiment may include a first assembly line 321 , a second assembly line 322 , and a first insulating layer 330 .
  • the conductor 350 may include a first conductor 351 , a second conductor 352 , and a second conductor 352 .
  • the second assembled wiring 322 may be electrically connected to the first electrode 154 of the semiconductor light emitting device 150 through the conductive particles 3510 of the first conductor 351 .
  • the second assembly wiring 322 may be used as the first electrode wiring 371 .
  • the first electrode wiring 371 is connected to the semiconductor light emitting device 150 through the conductive particles 3510 of the second conductor 352, the 2-1 conductive particles 352_1, and the 2-2 conductive particles 35_2. It may be electrically connected to the extension electrode 160 of the.
  • the extension electrode 160 may extend from the first electrode 154 .
  • the first electrode wire 371 and the second assembly wire 322 may be electrically connected.
  • the extension electrode 160 may be disposed along the circumference of the side surface of the first conductivity type semiconductor layer 151 . Accordingly, the 2-1st conductive particle 352_1 may contact the side surface of the first conductivity type semiconductor layer 151 along the circumference of the side surface of the first conductivity type semiconductor layer 151 . Accordingly, the contact area between the 2-1st conductive particle 352_1 and the extension electrode 160 may be expanded.
  • the second electrode wire 372 may be electrically connected to the second electrode 155 of the semiconductor light emitting device 150 through the barrier rib 340 .
  • a negative (-) voltage is supplied to the first conductivity type semiconductor layer 151 of the semiconductor light emitting device 150 through the second assembly wiring 322 and the first electrode wiring 371, and a positive (+) voltage A voltage of may be supplied to the second conductive semiconductor layer 153 of the semiconductor light emitting device 150 through the second electrode wiring 372 .
  • the negative (-) voltage is supplied to the side as well as the lower surface of the second conductivity type semiconductor layer 153 of the semiconductor light emitting device 150, the first conductivity type semiconductor layer 151 is more spread over a wider area. Since more carriers, that is, electrons, are generated and injected into the active layer 152 , the amount of light generated in the active layer 152 is increased, thereby improving light efficiency. Luminance may be increased due to improvement in light efficiency.
  • the semiconductor light emitting device 150 does not need to be provided with a bonding layer or a metal bump. That is, in the first embodiment, during self-assembly, the conductor 350 is collected in the assembly hole 345 in advance by the dielectrophoretic force formed between the first assembly wire 321 and the second assembly wire 322, and then the After assembling the semiconductor light emitting device 150 on the collected conductor 350 by means of a magnetic material and dielectrophoretic force, heat is applied to melt the polymer 3520 of the conductor 350 to form conductive particles 3510 of the conductor 350. As a connection electrode, the first electrode 154 of the semiconductor light emitting device 150 and the second assembled wiring 322 may be electrically connected.
  • the semiconductor light emitting device 150 can be easily manufactured, reduce manufacturing cost, and simplify the manufacturing process.
  • the semiconductor light emitting device 150 does not need to have a bonding layer or a metal bump, the thickness and weight of the display device 300C can be reduced by reducing the thickness of the semiconductor light emitting device 150 .
  • a conductor 350 is also disposed between the outer sides of ), and the semiconductor light emitting element 150 is firmly attached to the second assembled wiring 322, the first insulating layer 330, and the barrier rib 340 by the conductor 350. Since it is fixed, bonding force between the semiconductor light emitting device 150 and the substrate 310 is not only strengthened, but also yield can be dramatically improved.
  • a negative (-) voltage is applied to the first electrode wiring 371 as well as the second assembly wiring 322 on the lower surface of the first conductive semiconductor layer 151 of the semiconductor light emitting device 150 and By being supplied to the side, the light efficiency is improved and the luminance can be improved.
  • the embodiment may be adopted in the display field for displaying images or information.
  • the embodiment can be adopted in the field of display displaying images or information using a semiconductor light emitting device.
  • the semiconductor light-emitting device may be a micro-level semiconductor light-emitting device or a nano-level semiconductor light-emitting device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

디스플레이 장치는, 기판 상에 배치되고, 조립 홀을 갖는 격벽과, 조립 홀에 전도체와, 조립 홀 내에서 전도체 상에 배치되는 반도체 발광 소자를 포함한다. 전도체는 기판과 반도체 발광 소자 사이에 제1 전도체와, 조립 홀의 내측과 반도체 발광 소자의 외측 사이에 제2 전도체를 포함한다.

Description

디스플레이 장치
실시예는 디스플레이 장치에 관한 것이다.
디스플레이 장치는 발광 다이오드(Light Emitting Diode)와 같은 자발광 소자를 화소의 광원으로 이용하여 고화질의 영상을 표시한다. 발광 다이오드는 열악한 환경 조건에서도 우수한 내구성을 나타내며, 장수명 및 고휘도가 가능하여 차세대 디스플레이 장치의 광원으로 각광받고 있다.
최근, 신뢰성이 높은 무기 결정 구조의 재료를 이용하여 초소형의 발광 다이오드를 제조하고, 이를 디스플레이 장치의 패널(이하, "디스플레이 패널"이라 함)에 배치하여 차세대 화소 광원으로 이용하기 위한 연구가 진행되고 있다.
이러한 디스플레이 장치는 평판 디스플레이를 넘어, 플렉서블 디스플레이, 폴더블(folderable) 디스플레이, 스트레처블(strechable) 디스플레이, 롤러블(rollable) 디스플레이 등과 같이 다양한 형태로 확대되고 있다.
고해상도를 구현하기 위해서 점차 화소의 사이즈가 작아지고 있고, 이와 같이 작아진 사이즈의 화소에 수많은 발광 소자가 정렬되어야 하므로, 마이크로 또는 나노 스케일 정도로 작은 초소형의 발광 다이오드의 제조에 대한 연구가 활발하게 이루어지고 있다.
통상 디스플레이 패널은 수 백만 개 내지 수 천만 개의 화소를 포함한다. 따라서, 사이즈가 작은 수 천만 개의 화소 각각에 적어도 하나 이상의 발광 소자들을 정렬하는 것이 매우 어렵기 때문에, 최근 디스플레이 패널에 발광 소자들을 정렬하는 방안에 대한 다양한 연구가 활발하게 진행되고 있다.
발광 소자의 사이즈가 작아짐에 따라, 이들 발광 소자를 기판 상에 전사하는 것이 매우 중요한 해결 과제로 대두되고 있다. 최근 개발되고 있는 전사기술에는 픽앤-플레이스 공법(pick and place process), 레이저 리프트 오프법(Laser Lift-off method) 또는 자가 조립 방식(self-assembly method) 등이 있다. 특히, 자성체(또는 자석)를 이용하여 발광 소자를 기판 상에 전사하는 자가 조립 방식이 최근 각광받고 있다.
자가 조립 방식에서는 유체가 수용된 소조 내에 수많은 발광 소자가 투하되고 자성체의 이동에 따라 유체 속에 투하된 발광 소자를 기판의 각 화소로 이동시켜, 발광 소자가 각 화소에 정렬되고 있다. 각 화소에 정렬된 발광 소자는 전기적으로 연결되어, 컬러 광을 생성한다.
종래에는 발광 소자의 하측에 솔더와 같은 본딩층이나 금속 범프가 구비된다. 예컨대, 수직형 발광 소자의 하측에는 본딩층이 구비되어, 이 본딩층을 이용하여 기판에 전기적으로 연결된다. 예컨대, 플립칩형 발광 소자의 하측에는 금속 범프가 구비되어, 이 금속 범프를 이용하여 기판에 전기적으로 연결된다.
하지만, 종래에 본딩층이나 금속 범프가 구비된 발광 소자가 자가 조립 방식을 위해 유체 속에 투입된 경우, 유체에 의해 본딩층이나 금속 범프의 표면에서 산화/환원 반응이 일어난다. 본딩층이나 금속 범프의 표면에서의 산화/환원 반응으로 그 표면이 변질되어 전기적 특성이 저하되는 문제가 있었다.
솔더는 주석(Sn)이나 인듐(In)으로 형성된다. 이러한 솔더 재질의 특성으로 인해 발광 소자의 하측에 균일한 솔더가 형성되기 어려웠다. 솔더가 균일하게 형성되지 않기 때문에, 발광 소자와 기판 간에 균일한 본딩이 어려워 전기적 특성이 저하되는 문제가 있었다.
아울러, 본딩층이나 금속 범프는 고 전류 밀도로 구동되는 경우, 일렉트로-마이그레이션(electro-migration) 현상으로 인해 신뢰성이 떨어지는 문제가 있었다.
아울러, 본딩층이나 금속 범프를 녹이기 위해 발광 소자에 300℃ 이상의 고열과 높은 압력이 가해져야 하고, 이러한 고열과 높은 압력으로 인해 발광 소자의 전기적/광학적 특성이 저하되는 문제가 있었다. 또한, 고열과 높은 압력에 의해 기판이 파손되는 문제가 있었다.
한편, 종래에 픽앤-플레이스 공법(pick and place process)을 이용하는 경우, 이방성 전도성 필름/이방성 전도성 페이스트(ACF/ACP)를 이용하여 발광 소자와 기판 간에 전기적으로 연결된다. 즉, 기판 상에 ACF/ACP가 형성되고 발광 소자가 ACF/ACP 상에 배치된 후, 열과 압력이 가해져 ACF/ACP를 녹여 도전볼을 이용하여 발광 소자와 기판 간에 전기적으로 연결된다.
하지만, ACF/ACP가 기판의 전 영역에 배치되는 경우 제조 비용이 증가되므로, ACF/ACF를 발광 소자 영역 사이즈에 맞도록 개별적으로 기판 상에 형성하여야 하는데, 이를 실현하기 매우 어렵다.
특히, 종래에 ACF/ACP를 자가 조립 방식에 채택하려는 시도가 없었다. 이는 다음과 같은 문제에 기인한다.
첫번째로, 자가조립 방식에서는 발광 소자가 조립되기 위한 조립 홀이 구비되는데, 이 조립 홀의 사이즈가 마이크로 수치를 갖는데, 이와 같이 매우 작은 조립 홀에 ACF/ACP를 형성하기가 어렵다.
두번째로, 자가조립 방식에서는 교류 전압에 의해 형성된 유전영동힘에 의해 발광 소자가 조립 홀에 정렬된다. ACF/ACP는 낮은 유전율을 가지고 있는데 반해, 유전영동힘은 유전율이 클수록 커진다. 설사 ACF/ACP가 조립홀에 형성되더라도, ACF/ACP의 유전율이 낮아 유전영동힘이 작아지며, 이와 같이 작은 유전영동힘에 의해 발광 소자가 조립 홀에 조립되기 어려울 뿐만 아니라 조립 홀에 조립된 발광 소자도 고정이 유지되기 어려워 조립 홀 밖으로 이탈된다.
실시예는 전술한 문제 및 다른 문제를 해결하는 것을 목적으로 한다.
실시예의 다른 목적은 본딩층이나 금속 범프를 사용하지 않는 디스플레이 장치를 제공하는 것이다.
또한 실시예의 또 다른 목적은 ACF/ACP를 사용하지 않는 디스플레이 장치를 제공하는 것이다.
또한 실시예의 또 다른 목적은 수율을 향상시킬 수 있는 디스플레이 장치를 제공하는 것이다.
또한 실시예의 또 다른 목적은 두께를 줄일 수 있는 디스플레이 장치를 제공하는 것이다.
또한 실시예의 또 다른 목적은 본딩력을 강화할 수 있는 디스플레이 장치를 제공하는 것이다.
또한 실시예의 또 다른 목적은 휘도를 향상시킬 수 있는 디스플레이 장치를 제공하는 것이다.
실시예의 기술적 과제는 본 항목에 기재된 것에 한정되지 않으며, 발명의 설명을 통해 파악될 수 있는 것을 포함한다.
상기 또는 다른 목적을 달성하기 위해 실시예의 일 측면에 따르면, 디스플레이 장치는, 기판; 상기 기판 상에 배치되고, 조립 홀을 갖는 격벽; 상기 조립 홀에 전도체; 및 상기 조립 홀 내에서 상기 전도체 상에 배치되는 반도체 발광 소자를 포함한다. 상기 전도체는, 상기 기판과 상기 반도체 발광 소자 사이에 제1 전도체; 및 상기 조립 홀의 내측과 상기 반도체 발광 소자의 외측 사이에 제2 전도체를 포함한다.
상기 전도체는, 복수의 전도성 입자; 및 상기 복수의 전도성 입자 각각을 둘러싸는 폴리머를 포함할 수 있다. 상기 제1 전도체 및 상기 제2 전도체 각각에서 서로 인접한 전도성 입자 사이의 폴리머는 서로 병합될 수 있다.
상기 제2 전도체의 상기 복수의 전도성 입자 중 제2-1 전도성 입자는 상기 병합된 폴리머의 상면 아래에 배치될 수 있다.
상기 제2 전도체에서 상기 복수의 전도성 입자 중 제2-2 전도성 입자는 상기 병합된 폴리머의 상면 상에 배치될 수 있다.
실시예는 자가조립 시 반도체 발광 소자를 기판으로 조립할 수 있을 뿐만 아니라 전도체를 포집할 수 있다. 전도체를 이용하여 반도체 발광 소자가 기판에 전기적으로 연결될 수 있다.
따라서, 반도체 발광 소자에 본딩층이나 금속 범프가 구비될 필요가 없어 반도체 발광 소자의 제조가 용이하고 제조 비용을 줄이고 제조 공정이 단순해질 수 있다. 또한, 반도체 발광 소자에 본딩층이나 금속 범프가 구비될 필요가 없어, 반도체 발광 소자의 두께가 줄어 디스플레이 장치의 두께 및 무게를 줄일 수 있다.
실시예는 반도체 발광 소자와 기판 사이뿐만 아니라 조립 홀의 내측과 반도체 발광 소자의 외측 사이에도 전도체가 배치되어, 이 전도체에 의해 반도체 발광 소자가 제2 조립 배선, 제1 절연층 및 격벽에 단단하게 고정되므로, 반도체 발광 소자를 기판에 용이하게 본딩할 수 있다. 이에 따라, 반도체 발광 소자와 기판 간의 본딩력이 강화될 뿐만 아니라 수율이 획기적으로 향상될 수 있다.
실시예는 조립 홀의 내측과 반도체 발광 소자의 외측 사이에 배치된 복수의 제2 전도체를 이용하여 제1 전극 배선이 반도체 발광 소자와 전기적으로 연결되므로, 반도체 발광 소자와 외부와의 전기적 연결이 용이할 수 있다.
실시예는 제2 조립 배선 상에 적어도 하나 이상의 그루브를 형성하여 보다 많은 전도체가 제2 조립 배선 상에 포집되도록 하여, 반도체 발광 소자에 전류가 보다 원활하게 흐르도록 하여 광 효율의 향상을 통해 휘도를 향상시킬 수 있다.
실시예는 제2 조립 배선뿐만 아니라 제1 전극 배선으로 음(-)의 전압이 반도체 발광 소자의 제1 도전형 반도체층의 하면 및 측면으로 공급됨으로써, 광 효율이 향상되어 휘도 향상이 가능하다.
실시예의 적용 가능성의 추가적인 범위는 이하의 상세한 설명으로부터 명백해질 것이다. 그러나 실시예의 사상 및 범위 내에서 다양한 변경 및 수정은 당업자에게 명확하게 이해될 수 있으므로, 상세한 설명 및 바람직한 실시예와 같은 특정 실시예는 단지 예시로 주어진 것으로 이해되어야 한다.
도 1은 실시예에 따른 디스플레이 장치가 배치된 주택의 거실을 도시한다.
도 2는 실시예에 따른 디스플레이 장치를 개략적으로 보여주는 블록도이다.
도 3은 도 2의 화소의 일 예를 보여주는 회로도이다.
도 4는 도 2의 디스플레이 패널을 상세히 보여주는 평면도이다.
도 5는 도 1의 디스플레이 장치에서 제1 패널영역의 확대도이다.
도 6은 도 5의 A2 영역의 확대도이다.
도 7은 실시예에 따른 발광 소자가 자가 조립 방식에 의해 기판에 조립되는 예를 나타내는 도면이다.
도 8은 도 2의 디스플레이 패널을 개략적으로 보여주는 단면도이다.
도 9는 제1 실시예에 따른 디스플레이 장치를 도시한 단면도이다.
도 10 내지 도 14는 제1 실시예에 따른 디스플레이 제조 방법을 설명하는 도면이다.
도 15는 조립 홀에 포집된 전도체를 보여준다.
도 16은 제2 실시예에 따른 디스플레이 장치를 도시한 단면도이다.
도 17은 제3 실시예에 따른 디스플레이 장치를 도시한 단면도이다.
도 18은 제3 실시예에 따른 디스플레이 장치에서 도전체를 포집하는 모습을 보여준다.
도 19는 제4 실시예에 따른 디스플레이 장치를 도시한 단면도이다.
도면들에 도시된 구성 요소들의 크기, 형상, 수치 등은 실제와 상이할 수 있다. 또한, 동일한 구성 요소들에 대해서 도면들 간에 서로 상이한 크기, 형상, 수치 등으로 도시되더라도, 이는 도면 상의 하나의 예시일 뿐이며, 동일한 구성 요소들에 대해서는 도면들 간에 서로 동일한 크기, 형상, 수치 등을 가질 수 있다.
이하, 첨부된 도면을 참조하여 본 명세서에 개시된 실시예를 상세히 설명하되, 도면 부호에 관계없이 동일하거나 유사한 구성요소는 동일한 참조 번호를 부여하고 이에 대한 중복되는 설명은 생략하기로 한다. 이하의 설명에서 사용되는 구성요소에 대한 접미사 '모듈' 및 '부'는 명세서 작성의 용이함이 고려되어 부여되거나 혼용되는 것으로서, 그 자체로 서로 구별되는 의미 또는 역할을 갖는 것은 아니다. 또한, 첨부된 도면은 본 명세서에 개시된 실시예를 쉽게 이해할 수 있도록 하기 위한 것이며, 첨부된 도면에 의해 본 명세서에 개시된 기술적 사상이 제한되는 것은 아니다. 또한, 층, 영역 또는 기판과 같은 요소가 다른 구성요소 '상(on)'에 존재하는 것으로 언급될 때, 이것은 직접적으로 다른 요소 상에 존재하거나 또는 그 사이에 다른 중간 요소가 존재할 수도 있는 것을 포함한다.
본 명세서에서 설명되는 디스플레이 장치에는 휴대폰, 스마트 폰(smart phone), 노트북 컴퓨터(laptop computer), 디지털방송용 단말기, PDA(personal digital assistants), PMP(portable multimedia player), 네비게이션, 슬레이트(Slate) PC, 태블릿(Tablet) PC, 울트라 북(Ultra-Book), 디지털 TV, 데스크탑 컴퓨터 등이 포함될 수 있다. 그러나, 본 명세서에 기재된 실시예에 따른 구성은 추후 개발되는 새로운 제품형태이라도, 디스플레이가 가능한 장치에도 적용될 수 있다.
이하 실시예에 따른 발광 소자 및 이를 포함하는 디스플레이 장치에 대해 설명한다.
도 1은 실시예에 따른 디스플레이 장치가 배치된 주택의 거실을 도시한다.
도 1을 참조하면, 실시예의 디스플레이 장치(100)는 세탁기(101), 로봇 청소기(102), 공기 청정기(103) 등의 각종 전자 제품의 상태를 표시할 수 있고, 각 전자 제품들과 IOT 기반으로 통신할 수 있으며 사용자의 설정 데이터에 기초하여 각 전자 제품들을 제어할 수도 있다.
실시예에 따른 디스플레이 장치(100)는 얇고 유연한 기판 위에 제작되는 플렉서블 디스플레이(flexible display)를 포함할 수 있다. 플렉서블 디스플레이는 기존의 평판 디스플레이의 특성을 유지하면서, 종이와 같이 휘어지거나 말릴 수 있다.
플렉서블 디스플레이에서 시각정보는 매트릭스 형태로 배치되는 단위 화소(unit pixel)의 발광이 독자적으로 제어됨에 의하여 구현될 수 있다. 단위 화소는 하나의 색을 구현하기 위한 최소 단위를 의미한다. 플렉서블 디스플레이의 단위 화소는 발광 소자에 의하여 구현될 수 있다. 실시예에서 발광 소자는 Micro-LED나 Nano-LED일 수 있으나 이에 한정되는 것은 아니다.
도 2는 실시예에 따른 디스플레이 장치를 개략적으로 보여주는 블록도이고, 도 3은 도 2의 화소의 일 예를 보여주는 회로도이다.
도 2 및 도 3을 참조하면, 실시예에 따른 디스플레이 장치는 디스플레이 패널(10), 구동 회로(20), 스캔 구동부(30) 및 전원 공급 회로(50)를 포함할 수 있다.
실시예의 디스플레이 장치(100)는 액티브 매트릭스(AM, Active Matrix)방식 또는 패시브 매트릭스(PM, Passive Matrix) 방식으로 발광 소자를 구동할 수 있다.
구동 회로(20)는 데이터 구동부(21)와 타이밍 제어부(22)를 포함할 수 있다.
디스플레이 패널(10)은 직사각형으로 이루어질 수 있지만, 이에 대해서는 한정하지 않는다. 즉, 디스플레이 패널(10)은 원형 또는 타원형으로 형성될 수 있다. 디스플레이 패널(10)의 적어도 일 측은 소정의 곡률로 구부러지도록 형성될 수 있다.
디스플레이 패널(10)은 표시 영역(DA)과 표시 영역(DA)의 주변에 배치된 비표시 영역(NDA)으로 구분될 수 있다. 표시 영역(DA)은 화소(PX)들이 형성되어 영상을 디스플레이하는 영역이다. 디스플레이 패널(10)은 데이터 라인들(D1~Dm, m은 2 이상의 정수), 데이터 라인들(D1~Dm)과 교차되는 스캔 라인들(S1~Sn, n은 2 이상의 정수), 고전위 전압이 공급되는 고전위 전압 라인, 저전위 전압이 공급되는 저전위 전압 라인 및 데이터 라인들(D1~Dm)과 스캔 라인들(S1~Sn)에 접속된 화소(PX)들을 포함할 수 있다.
화소(PX)들 각각은 제1 서브 화소(PX1), 제2 서브 화소(PX2) 및 제3 서브 화소(PX3)를 포함할 수 있다. 제1 서브 화소(PX1)는 제1 주 파장의 제1 컬러 광을 발광하고, 제2 서브 화소(PX2)는 제2 주 파장의 제2 컬러 광을 발광하며, 제3 서브 화소(PX3)는 제3 주 파장의 제3 컬러 광을 발광할 수 있다. 제1 컬러 광은 적색 광, 제2 컬러 광은 녹색 광, 제3 컬러 광은 청색 광일 수 있으나, 이에 한정되지 않는다. 또한, 도 2에서는 화소(PX)들 각각이 3 개의 서브 화소들을 포함하는 것을 예시하였으나, 이에 한정되지 않는다. 즉, 화소(PX)들 각각은 4 개 이상의 서브 화소들을 포함할 수 있다.
제1 서브 화소(PX1), 제2 서브 화소(PX2) 및 제3 서브 화소(PX3) 각각은 데이터 라인들(D1~Dm) 중 적어도 하나, 스캔 라인들(S1~Sn) 중 적어도 하나 및 고전위 전압 라인에 접속될 수 있다. 제1 서브 화소(PX1)는 도 3과 같이 발광 소자(LD)들과 발광 소자(LD)들에 전류를 공급하기 위한 복수의 트랜지스터들과 적어도 하나의 커패시터(Cst)를 포함할 수 있다.
도면에 도시되지 않았지만, 제1 서브 화소(PX1), 제2 서브 화소(PX2) 및 제3 서브 화소(PX3) 각각은 단지 하나의 발광 소자(LD)와 적어도 하나의 커패시터(Cst)를 포함할 수도 있다.
발광 소자(LD)들 각각은 제1 전극, 복수의 도전형 반도체층 및 제2 전극을 포함하는 반도체 발광 다이오드일 수 있다. 여기서, 제1 전극은 애노드 전극, 제2 전극은 캐소드 전극일 수 있지만, 이에 대해서는 한정하지 않는다.
복수의 트랜지스터들은 도 3과 같이 발광 소자(LD)들에 전류를 공급하는 구동 트랜지스터(DT), 구동 트랜지스터(DT)의 게이트 전극에 데이터 전압을 공급하는 스캔 트랜지스터(ST)를 포함할 수 있다. 구동 트랜지스터(DT)는 스캔 트랜지스터(ST)의 소스 전극에 접속되는 게이트 전극, 고전위 전압이 인가되는 고전위 전압 라인에 접속되는 소스 전극 및 발광 소자(LD)들의 제1 전극들에 접속되는 드레인 전극을 포함할 수 있다. 스캔 트랜지스터(ST)는 스캔 라인(Sk, k는 1≤k≤n을 만족하는 정수)에 접속되는 게이트 전극, 구동 트랜지스터(DT)의 게이트 전극에 접속되는 소스 전극 및 데이터 라인(Dj, j는 1≤j≤m을 만족하는 정수)에 접속되는 드레인 전극을 포함할 수 있다.
커패시터(Cst)는 구동 트랜지스터(DT)의 게이트 전극과 소스 전극 사이에 형성된다. 스토리지 커패시터(Cst)는 구동 트랜지스터(DT)의 게이트 전압과 소스 전압의 차이값을 충전한다.
구동 트랜지스터(DT)와 스캔 트랜지스터(ST)는 박막 트랜지스터(thin film transistor)로 형성될 수 있다. 또한, 도 3에서는 구동 트랜지스터(DT)와 스캔 트랜지스터(ST)가 P 타입 MOSFET(Metal Oxide Semiconductor Field Effect Transistor)으로 형성된 것을 중심으로 설명하였으나, 본 발명은 이에 한정되지 않는다. 구동 트랜지스터(DT)와 스캔 트랜지스터(ST)는 N 타입 MOSFET으로 형성될 수도 있다. 이 경우, 구동 트랜지스터(DT)와 스캔 트랜지스터(ST)들 각각의 소스 전극과 드레인 전극의 위치는 변경될 수 있다.
또한, 도 3에서는 제1 서브 화소(PX1), 제2 서브 화소(PX2) 및 제3 서브 화소(PX3) 각각이 하나의 구동 트랜지스터(DT), 하나의 스캔 트랜지스터(ST) 및 하나의 커패시터(Cst)를 갖는 2T1C (2 Transistor - 1 capacitor)를 포함하는 것을 예시하였으나, 본 발명은 이에 한정되지 않는다. 제1 서브 화소(PX1), 제2 서브 화소(PX2) 및 제3 서브 화소(PX3) 각각은 복수의 스캔 트랜지스터(ST)들과 복수의 커패시터(Cst)들을 포함할 수 있다.
제2 서브 화소(PX2)와 제3 서브 화소(PX3)는 제1 서브 화소(PX1)와 실질적으로 동일한 회로도로 표현될 수 있으므로, 이들에 대한 자세한 설명은 생략한다.
구동 회로(20)는 디스플레이 패널(10)을 구동하기 위한 신호들과 전압들을 출력한다. 이를 위해, 구동 회로(20)는 데이터 구동부(21)와 타이밍 제어부(22)를 포함할 수 있다.
데이터 구동부(21)는 타이밍 제어부(22)로부터 디지털 비디오 데이터(DATA)와 소스 제어 신호(DCS)를 입력 받는다. 데이터 구동부(21)는 소스 제어 신호(DCS)에 따라 디지털 비디오 데이터(DATA)를 아날로그 데이터 전압들로 변환하여 디스플레이 패널(10)의 데이터 라인들(D1~Dm)에 공급한다.
타이밍 제어부(22)는 호스트 시스템으로부터 디지털 비디오 데이터(DATA)와 타이밍 신호들을 입력받는다. 타이밍 신호들은 수직동기신호(vertical sync signal), 수평동기신호(horizontal sync signal), 데이터 인에이블 신호(data enable signal) 및 도트 클럭(dot clock)을 포함할 수 있다. 호스트 시스템은 스마트폰 또는 태블릿 PC의 어플리케이션 프로세서, 모니터, TV의 시스템 온 칩 등일 수 있다.
타이밍 제어부(22)는 데이터 구동부(21)와 스캔 구동부(30)의 동작 타이밍을 제어하기 위한 제어신호들을 생성한다. 제어신호들은 데이터 구동부(21)의 동작 타이밍을 제어하기 위한 소스 제어 신호(DCS)와 스캔 구동부(30)의 동작 타이밍을 제어하기 위한 스캔 제어 신호(SCS)를 포함할 수 있다.
구동 회로(20)는 디스플레이 패널(10)의 일 측에 마련된 비표시 영역(NDA)에서 배치될 수 있다. 구동 회로(20)는 집적회로(integrated circuit, IC)로 형성되어 COG(chip on glass) 방식, COP(chip on plastic) 방식, 또는 초음파 접합 방식으로 디스플레이 패널(10) 상에 장착될 수 있으나, 본 발명은 이에 한정되지 않는다. 예를 들어, 구동 회로(20)는 디스플레이 패널(10)이 아닌 회로 보드(미도시) 상에 장착될 수 있다.
데이터 구동부(21)는 COG(chip on glass) 방식, COP(chip on plastic) 방식, 또는 초음파 접합 방식으로 디스플레이 패널(10) 상에 장착되고, 타이밍 제어부(22)는 회로 보드 상에 장착될 수 있다.
스캔 구동부(30)는 타이밍 제어부(22)로부터 스캔 제어 신호(SCS)를 입력 받는다. 스캔 구동부(30)는 스캔 제어 신호(SCS)에 따라 스캔 신호들을 생성하여 디스플레이 패널(10)의 스캔 라인들(S1~Sn)에 공급한다. 스캔 구동부(30)는 다수의 트랜지스터들을 포함하여 디스플레이 패널(10)의 비표시 영역(NDA)에 형성될 수 있다. 또는, 스캔 구동부(30)는 집적 회로로 형성될 수 있으며, 이 경우 디스플레이 패널(10)의 다른 일 측에 부착되는 게이트 연성 필름 상에 장착될 수 있다.
회로 보드는 이방성 도전 필름(anisotropic conductive film)을 이용하여 디스플레이 패널(10)의 일 측 가장자리에 마련된 패드들 상에 부착될 수 있다. 이로 인해, 회로 보드의 리드 라인들은 패드들에 전기적으로 연결될 수 있다. 회로 보드는 연성 인쇄 회로 보드(flexible printed circuit board), 인쇄 회로 보드(printed circuit board) 또는 칩온 필름(chip on film)과 같은 연성 필름(flexible film)일 수 있다. 회로 보드는 디스플레이 패널(10)의 하부로 벤딩(bending)될 수 있다. 이로 인해, 회로 보드의 일 측은 디스플레이 패널(10)의 일 측 가장자리에 부착되며, 타 측은 디스플레이 패널(10)의 하부에 배치되어 호스트 시스템이 장착되는 시스템 보드에 연결될 수 있다.
전원 공급 회로(50)는 시스템 보드로부터 인가되는 메인 전원으로부터 디스플레이 패널(10)의 구동에 필요한 전압들을 생성하여 디스플레이 패널(10)에 공급할 수 있다. 예를 들어, 전원 공급 회로(50)는 메인 전원으로부터 디스플레이 패널(10)의 발광 소자(LD)들을 구동하기 위한 고전위 전압(VDD)과 저전위 전압(VSS)을 생성하여 디스플레이 패널(10)의 고전위 전압 라인과 저전위 전압 라인에 공급할 수 있다. 또한, 전원 공급 회로(50)는 메인 전원으로부터 구동 회로(20)와 스캔 구동부(30)를 구동하기 위한 구동 전압들을 생성하여 공급할 수 있다.
도 4는 도 2의 디스플레이 패널을 상세히 보여주는 평면도이다. 도 4에서는 설명의 편의를 위해, 데이터 패드들(DP1~DPp, p는 2 이상의 정수), 플로팅 패드들(FP1, FP2), 전원 패드들(PP1, PP2), 플로팅 라인들(FL1, FL2), 저전위 전압 라인(VSSL), 데이터 라인들(D1~Dm), 제1 패드 전극(210)들 및 제2 패드 전극(220)들만을 도시하였다.
도 4를 참조하면, 디스플레이 패널(10)의 표시 영역(DA)에는 데이터 라인들(D1~Dm), 제1 패드 전극(210)들, 제2 패드 전극(220)들 및 화소(PX)들이 배치될 수 있다.
데이터 라인들(D1~Dm)은 제2 방향(Y축 방향)으로 길게 연장될 수 있다. 데이터 라인들(D1~Dm)의 일 측들은 구동 회로(도 2의 20)에 연결될 수 있다. 이로 인해, 데이터 라인들(D1~Dm)에는 구동 회로(20)의 데이터 전압들이 인가될 수 있다.
제1 패드 전극(210)들은 제1 방향(X축 방향)으로 소정의 간격으로 이격되어 배치될 수 있다. 이로 인해, 제1 패드 전극(210)들은 데이터 라인들(D1~Dm)과 중첩되지 않을 수 있다. 제1 패드 전극(210)들 중 표시 영역(DA)의 우측 가장자리에 배치된 제1 패드 전극(210)들은 비표시 영역(NDA)에서 제1 플로팅 라인(FL1)에 접속될 수 있다. 제1 패드 전극(210)들 중 표시 영역(DA)의 좌측 가장자리에 배치된 제1 패드 전극(210)들은 비표시 영역(NDA)에서 제2 플로팅 라인(FL2)에 접속될 수 있다.
제2 패드 전극(220)들 각각은 제1 방향(X축 방향)으로 길게 연장될 수 있다. 이로 인해, 제2 패드 전극(220)들은 데이터 라인들(D1~Dm)과 중첩될 수 있다. 또한, 제2 패드 전극(220)들은 비표시 영역(NDA)에서 저전위 전압 라인(VSSL)에 연결될 수 있다. 이로 인해, 제2 패드 전극(220)들에는 저전위 전압 라인(VSSL)의 저전위 전압이 인가될 수 있다.
디스플레이 패널(10)의 비표시 영역(NDA)에는 패드부(PA), 구동 회로(20), 제1 플로팅 라인(FL1), 제2 플로팅 라인(FL2) 및 저전위 전압 라인(VSSL)이 배치될 수 있다. 패두부(PA)는 데이터 패드들(DP1~DPp), 플로팅 패드들(FP1, FP2) 및 전원 패드들(PP1, PP2)을 포함할 수 있다.
패드부(PA)는 표시패널(10)의 일 측 가장자리, 예를 들어 하측 가장자리에 배치될 수 있다. 데이터 패드들(DP1~DPp), 플로팅 패드들(FP1, FP2) 및 전원 패드들(PP1, PP2)은 패드부(PA)에서 제1 방향(X축 방향)으로 나란하게 배치될 수 있다.
데이터 패드들(DP1~DPp), 플로팅 패드들(FP1, FP2) 및 전원 패드들(PP1, PP2) 상에는 회로 보드가 이방성 도전 필름(anisotropic conductive film)을 이용하여 부착될 수 있다. 이로 인해, 회로 보드와 데이터 패드들(DP1~DPp), 플로팅 패드들(FP1, FP2) 및 전원 패드들(PP1, PP2)은 전기적으로 연결될 수 있다.
구동 회로(20)는 링크 라인들을 통해 데이터 패드들(DP1~DPp)에 연결될 수 있다. 구동 회로(20)는 데이터 패드들(DP1~DPp)을 통해 디지털 비디오 데이터(DATA)와 타이밍 신호들을 입력 받을 수 있다. 구동 회로(20)는 디지털 비디오 데이터(DATA)를 아날로그 데이터 전압들로 변환하여 디스플레이 패널(10)의 데이터 라인들(D1~Dm)에 공급할 수 있다.
저전위 전압 라인(VSSL)은 패드부(PA)의 제1 전원 패드(PP1)와 제2 전원 패드(PP2)에 연결될 수 있다. 저전위 전압 라인(VSSL)은 표시 영역(DA)의 좌측 바깥쪽과 우측 바깥쪽의 비표시 영역(NDA)에서 제2 방향(Y축 방향)으로 길게 연장될 수 있다. 저전위 전압 라인(VSSL)은 제2 패드 전극(220)에 연결될 수 있다. 이로 인해, 전원 공급 회로(50)의 저전위 전압은 회로 보드, 제1 전원 패드(PP1), 제2 전원 패드(PP2) 및 저전위 전압 라인(VSSL)을 통해 제2 패드 전극(220)에 인가될 수 있다.
제1 플로팅 라인(FL1)은 패드부(PA)의 제1 플로팅 패드(FP1)에 연결될 수 있다. 제1 플로팅 라인(FL1)은 표시 영역(DA)의 좌측 바깥쪽과 우측 바깥쪽의 비표시 영역(NDA)에서 제2 방향(Y축 방향)으로 길게 연장될 수 있다. 제1 플로팅 패드(FP1)와 제1 플로팅 라인(FL1)은 어떠한 전압도 인가되지 않는 더미 패드와 더미 라인일 수 있다.
제2 플로팅 라인(FL2)은 패드부(PA)의 제2 플로팅 패드(FP2)에 연결될 수 있다. 제1 플로팅 라인(FL1)은 표시 영역(DA)의 좌측 바깥쪽과 우측 바깥쪽의 비표시 영역(NDA)에서 제2 방향(Y축 방향)으로 길게 연장될 수 있다. 제2 플로팅 패드(FP2)와 제2 플로팅 라인(FL2)은 어떠한 전압도 인가되지 않는 더미 패드와 더미 라인일 수 있다.
한편, 발광 소자(도 3의 LD)들은 매우 작은 사이즈를 가지므로 화소(PX)들 각각의 제1 서브 화소(PX1), 제2 서브 화소(PX2) 및 제3 서브 화소(PX3)에 장착하기가 매우 어렵다.
이러한 문제를 해소하기 위해, 유전영동(dielectrophoresis) 방식을 이용한 정렬 방법이 제안되었다.
즉, 디스플레이 패널(10)의 제조 공정 중에 발광 소자(도 5의 150)들을 정렬하기 위해 화소(PX)들 각각의 제1 서브 화소(PX1), 제2 서브 화소(PX2) 및 제3 서브 화소(PX3)에 전기장을 형성할 수 있다. 구체적으로, 제조 공정 중에 유전영동 방식을 이용하여 발광 소자(도 5의 150)들에 유전영동힘을 가함으로써 제1 서브 화소(PX1), 제2 서브 화소(PX2) 및 제3 서브 화소(PX3) 각각에 발광 소자(도 5의 150)들을 정렬시킬 수 있다.
그러나, 제조 공정 중에는 박막 트랜지스터들을 구동하여 제1 패드 전극(210)들에 그라운드 전압을 인가하기 어렵다.
따라서, 완성된 디스플레이 장치에서는 제1 패드 전극(210)들이 제1 방향(X축 방향)으로 소정의 간격으로 이격되어 배치되나, 제조 공정 중에 제1 패드 전극(210)들은 제1 방향(X축 방향)으로 단선되지 않고, 길게 연장 배치될 수 있다.
이로 인해, 제조 공정 중에는 제1 패드 전극(210)들이 제1 플로팅 라인(FL1) 및 제2 플로팅 라인(FL2)과 연결될 수 있다. 그러므로, 제1 패드 전극(210)들은 제1 플로팅 라인(FL1) 및 제2 플로팅 라인(FL2)을 통해 그라운드 전압을 인가받을 수 있다. 따라서, 제조 공정 중에 유전영동 방식을 이용하여 발광 소자(도 5의 150)들을 정렬시킨 후에, 제1 패드 전극(210)들을 단선함으로써, 제1 패드 전극(210)들이 제1 방향(X축 방향)으로 소정의 간격으로 이격되어 배치될 수 있다.
한편, 제1 플로팅 라인(FL1)과 제2 플로팅 라인(FL2)은 제조 공정 중에 그라운드 전압을 인가하기 위한 라인이며, 완성된 디스플레이 장치에서는 어떠한 전압도 인가되지 않을 수 있다. 또는, 완성된 디스플레이 장치에서 정전기 방지용으로 또는 발광 소자(도 5의 150) 구동용으로 제1 플로팅 라인(FL1)과 제2 플로팅 라인(FL2)에는 그라운드 전압이 인가될 수도 있다.
도 5는 도3의 디스플레이 장치에서 제1 패널영역의 확대도이다.
도 5를 참조하면, 실시예의 디스플레이 장치(100)는 제1 패널영역(A1)과 같은 복수의 패널영역들이 타일링에 의해 기구적, 전기적 연결되어 제조될 수 있다.
제1 패널영역(A1)은 단위 화소(도 2의 PX) 별로 배치된 복수의 발광 소자(150)를 포함할 수 있다.
예컨대, 단위 화소(PX)는 제1 서브 화소(PX1), 제2 서브 화소(PX2) 및 제3 서브 화소(PX3)를 포함할 수 있다. 예컨대, 복수의 적색 발광 소자(150R)가 제1 서브 화소(PX1)에 배치되고, 복수의 녹색 발광 소자(150G)가 제2 서브 화소(PX2)에 배치되며, 복수의 청색 발광 소자(150B)가 제3 서브 화소(PX3)에 배치될 수 있다. 단위 화소(PX)는 발광 소자가 배치되지 않는 제4 서브 화소를 더 포함할 수도 있지만, 이에 대해서는 한정하지 않는다.
도 6은 도 5의 A2 영역의 확대도이다.
도 6을 참조하면, 실시예의 디스플레이 장치(100)는 기판(200), 조립 배선(201, 202), 절연층(206) 및 복수의 발광 소자(150)를 포함할 수 있다. 이보다 더 많은 구성 요소들이 포함될 수 있다.
조립 배선은 서로 이격된 제1 조립 배선(201) 및 제2 조립 배선(202)을 포함할 수 있다. 제1 조립 배선(201) 및 제2 조립 배선(202)은 발광 소자(150)를 조립하기 위해 유전영동힘을 생성하기 위해 구비될 수 있다.
발광 소자(150)는 각각 단위 화소(sub-pixel)를 이루기 위하여 적색 발광 소자(150), 녹색 발광 소자(150G) 및 청색 발광 소자(150B0를 포함할 수 있으나 이에 한정되는 것은 아니며, 적색 형광체와 녹색 형광체 등을 구비하여 각각 적색과 녹색을 구현할 수도 있다.
기판(200)은 리지드(rigid) 기판이거나 플렉서블(flexible) 기판일 수 있다. 기판(200)은 유리나 폴리이미드(Polyimide)로 형성될 수 있다. 또한 기판(200)은 PEN(Polyethylene Naphthalate), PET(Polyethylene Terephthalate) 등의 유연성 있는 재질을 포함할 수 있다. 또한, 기판(200)은 투명한 재질일 수 있으나 이에 한정되는 것은 아니다.
절연층(206)은 폴리이미드, PEN, PET 등과 같이 절연성과 유연성 있는 재질을 포함할 수 있으며, 기판(200)과 일체로 이루어져 하나의 기판을 형성할 수도 있다.
절연층(206)은 접착성과 전도성을 가지는 전도성 접착층일 수 있고, 전도성 접착층은 연성을 가져서 디스플레이 장치의 플렉서블 기능을 가능하게 할 수 있다.
절연층(206)은 발광 소자(150)가 삽입되기 위한 조립 홀(203)을 포함할 수 있다. 따라서, 자가 조립시, 발광 소자(150)가 절연층(206)의 조립 홀(203)에 용이하게 삽입될 수 있다. 조립 홀(203)은 삽입 홀, 고정 홀, 정렬 홀 등으로 불릴 수 있다.
도 7은 실시예에 따른 발광 소자가 자가 조립 방식에 의해 기판에 조립되는 예를 나타내는 도면이다.
도 6 및 도 7을 참조하여 발광 소자의 자가 조립 방식을 설명한다.
기판(200)은 디스플레이 장치의 패널 기판일 수 있다. 이후 설명에서는 기판(200)은 디스플레이 장치의 패널 기판인 경우로 설명하나 실시예가 이에 한정되는 것은 아니다.
기판(200)은 유리나 폴리이미드(Polyimide)로 형성될 수 있다. 또한 기판(200)은 PEN(Polyethylene Naphthalate), PET(Polyethylene Terephthalate) 등의 유연성 있는 재질을 포함할 수 있다. 또한, 기판(200)은 투명한 재질일 수 있으나 이에 한정되는 것은 아니다.
도 7을 참조하면, 발광 소자(150)는 유체(1200)가 채워진 챔버(1300)에 투입될 수 있다. 유체(1200)는 초순수 등의 물일 수 있으나 이에 한정되는 것은 아니다. 챔버는 수조, 컨테이너, 용기 등으로 불릴 수 있다.
이 후, 기판(200)이 챔버(1300) 상에 배치될 수 있다. 실시예에 따라, 기판(200)은 챔버(1300) 내로 투입될 수도 있다.
도 6에 도시한 바와 같이, 기판(200)에는 조립될 발광 소자(150) 각각에 대응하는 한 쌍의 조립 배선(201, 202)이 배치될 수 있다.
조립 배선(201, 202)은 투명 전극(ITO)으로 형성되거나, 전기 전도성이 우수한 금속물질을 포함할 수 있다. 예를 들어, 조립 배선(201, 202)은 티탄(Ti), 크롬(Cr), 니켈(Ni), 알루미늄(Al), 백금(Pt), 금(Au), 텅스텐(W), 몰리브덴(Mo) 중 적어도 어느 하나 또는 이들의 합금으로 형성될 수 있다.
조립 배선(201, 202)은 외부에서 공급된 전압에 의해 전기장이 형성되고, 이 전기장에 의해 유전영동힘이 조립 배선(201, 202) 사이에 형성될 수 있다. 이 유전영동힘에 의해 기판(200) 상의 조립 홀(203)에 발광 소자(150)를 고정시킬 수 있다.
조립 배선(201, 202) 간의 간격은 발광 소자(150)의 폭 및 조립 홀(203)의 폭보다 작게 형성되어, 전기장을 이용한 발광 소자(150)의 조립 위치를 보다 정밀하게 고정할 수 있다.
조립 배선(201, 202) 상에는 절연층(206)이 형성되어, 조립 배선(201, 202)을 유체(1200)로부터 보호하고, 조립 배선(201, 202)에 흐르는 전류의 누출을 방지할 수 있다. 절연층(206)은 실리카, 알루미나 등의 무기물 절연체 또는 유기물 절연체가 단일층 또는 다층으로 형성될 수 있다.
또한 절연층(206)은 폴리이미드, PEN, PET 등과 같이 절연성과 유연성 있는 재질을 포함할 수 있으며, 기판(200)과 일체로 이루어져 하나의 기판을 형성할 수도 있다.
절연층(206)은 접착성이 있는 절연층일 수 있거나, 전도성을 가지는 전도성 접착층일 수 있다. 절연층(206)은 연성이 있어서 디스플레이 장치의 플렉서블 기능을 가능하게 할 수 있다.
절연층(206)은 격벽을 가지고, 이 격벽에 의해 조립 홀(203)이 형성될 수 있다. 예컨대, 기판(200)의 형성 시, 절연층(206)의 일부가 제거됨으로써, 발광 소자(150)들 각각이 절연층(206)의 조립 홀(203)에 조립될 수 있다.
기판(200)에는 발광 소자(150)들이 결합되는 조립 홀(203)이 형성되고, 조립 홀(203)이 형성된 면은 유체(1200)와 접촉할 수 있다. 조립 홀(203)은 발광 소자(150)의 정확한 조립 위치를 가이드할 수 있다.
한편, 조립 홀(203)은 대응하는 위치에 조립될 발광 소자(150)의 형상에 대응하는 형상 및 크기를 가질 수 있다. 이에 따라, 조립 홀(203)에 다른 발광 소자가 조립되거나 복수의 발광 소자들이 조립되는 것을 방지할 수 있다.
다시 도 7을 참조하면, 기판(200)이 배치된 후, 자성체를 포함하는 조립 장치(1100)가 기판(200)을 따라 이동할 수 있다. 자성체로 예컨대, 자석이나 전자석이 사용될 수 있다. 조립 장치(1100)는 자기장이 미치는 영역을 유체(1200) 내로 최대화하기 위해, 기판(200)과 접촉한 상태로 이동할 수 있다. 실시예에 따라서는, 조립 장치(1100)가 복수의 자성체를 포함하거나, 기판(200)과 대응하는 크기의 자성체를 포함할 수도 있다. 이 경우, 조립 장치(1100)의 이동 거리는 소정 범위 이내로 제한될 수도 있다.
조립 장치(1100)에 의해 발생하는 자기장에 의해, 챔버(1300) 내의 발광 소자(150)는 조립 장치(1100)를 향해 이동할 수 있다.
발광 소자(150)는 조립 장치(1100)를 향해 이동 중, 조립 홀(203)로 진입하여 기판(200)과 접촉될 수 있다.
이때, 기판(200)에 형성된 조립 배선(201, 202)에 의해 가해지는 전기장에 의해, 기판(200)에 접촉된 발광 소자(150)가 조립 장치(1100)의 이동에 의해 이탈되는 것이 방지될 수 있다.
즉, 상술한 전자기장을 이용한 자가 조립 방식에 의해, 발광 소자(150)들 각각이 기판(200)에 조립되는 데 소요되는 시간을 급격히 단축시킬 수 있으므로, 대면적 고화소 디스플레이를 보다 신속하고 경제적으로 구현할 수 있다.
기판(200)의 조립 홀(203) 상에 조립된 발광 소자(150)와 기판(200) 사이에는 소정의 솔더층(미도시)이 더 형성되어 발광 소자(150)의 결합력을 향상시킬 수 있다.
이후 발광 소자(150)에 전극 배선(미도시)이 연결되어 전원을 인가할 수 있다.
다음으로 도시되지 않았지만, 후공정에 의해 적어도 하나 이상의 절연층이 형성될 수 있다. 적어도 하나 이상의 절연층은 투명 레진이거나 또는 반사물질, 산란물질이 포함된 레진일 수 있다.
한편, 실시예에 따른 디스플레이 장치에서는 발광 소자를 이용하여 영상을 디스플레이할 수 있다. 실시예의 발광 소자는 전기의 인가에 의해 스스로 광을 발산하는 자발광 소자로서, 반도체 발광 소자일 수 있다. 실시예의 발광 소자는 무기질 반도체 재질로 이루어지므로, 열화에 강하고 수명이 반영구적이어서 안정적인 광을 제공하여 디스플레이 장치가 고품질과 고화질의 영상을 구현하는데 기여할 수 있다.
예컨대, 디스플레이 장치는 발광 소자를 광원으로 이용하고, 발광 소자 상에 컬러 생성부를 구비하여 이 컬러 생성부에 의해 영상을 디스플레이할 수 있다(도 8).
도시되지 않았지만, 디스플레이 장치는 서로 상이한 컬러 광을 생성하는 복수의 발광 소자 각각을 화소에 배치한 디스플레이 패널을 통해 영사을 디스플레이할 수도 있다.
도 8은 도 2의 디스플레이 패널을 개략적으로 보여주는 단면도이다.
도 8을 참조하면, 실시예의 디스플레이 패널(10)은 제1 기판(40), 발광부(41), 컬러 생성부(42) 및 제2 기판(46)를 포함할 수 있다. 실시예의 디스플레이 패널(10)은 이보다 더 많은 구성을 포함할 수 있지만, 이에 대해서는 한정하지 않는다. 제1 기판(40)은 도 6에 도시한 기판(200)일 수 있다.
도시되지 않았지만, 제1 기판(40)과 발광부(41) 사이, 발광부(41)와 컬러 생성부(42) 사이 및/또는 컬러 생성부(42)와 제2 기판(46) 사이에 적어도 하나 이상의 절연층이 배치될 수 있지만, 이에 대해서는 한정하지 않는다.
제1 기판(40)은 발광부(41), 컬러 생성부(42) 및 제2 기판(46)을 지지할 수 있다. 제1 기판(40)은 상술한 바와 같은 다양한 소자들, 예컨대 도 2에 도시된 바와 같이 데이터 라인들(D1~Dm, m은 2 이상의 정수), 스캔 라인들(S1~Sn), 고전위 전압 라인 및 저전위 전압 라인, 도 3에 도시된 바와 같이 복수의 트랜지스터들(ST, DT)과 적어도 하나의 커패시터(Cst) 그리고 도 4에 도시된 바와 같이 제1 패드 전극(210) 및 제2 패드 전극(220)이 구비될 수 있다.
제1 기판(40)은 유리나 플렉서블 재질로 형성될 수 있지만, 이에 대해서는 한정하지 않는다.
발광부(41)는 광을 컬러 생성부(42)로 제공할 수 있다. 발광부(41)는 전기의 인가에 의해 스스로 빛을 발산하는 복수의 광원을 포함할 수 있다. 예컨대, 광원은 발광 소자(도 5의 150)를 포함할 수 있다.
일 예로, 복수의 발광 소자(150)는 화소의 각 서브 화소 별로 구분되어 배치되어 개별적인 각 서브 화소의 제어에 의해 독립적으로 발광할 수 있다.
다른 예로, 복수의 발광 소자(150)는 화소의 구분에 관계없이 배치되어 모든 서브 화소에서 동시에 발광할 수 있다.
실시예의 발광 소자(150)는 청색 광을 발광할 수 있지만, 이에 대해서는 한정하지 않는다. 예컨대, 실시예의 발광 소자(150)는 백색 광이나 자주색 광을 발광할 수도 있다.
한편, 발광 소자(150)는 각 서브 화소별로 적색 광, 녹색 광 및 청색 광을 발광할 수도 있다. 이를 위해, 예컨대, 제1 서브 화소, 즉 적색 서브 화소에 적색 광을 발광하는 적색 발광 소자가 배치되고, 제2 서브 화소, 즉 녹색 서브 화소에 녹색 광을 발광하는 녹색 발광 소자가 배치되며, 제3 서브 화소, 즉 청색 서브 화소에 청색 광을 발광하는 청색 발광 소자가 배치될 수 있다.
예컨대, 적색 발광 소자, 녹색 발광 소자 및 청색 발광 소자 각각은 Ⅱ-Ⅳ족 화합물 또는 III-V족 화합물을 포함할 수 있지만, 이에 대해서는 한정하지 않는다. 예컨대, III-V족 화합물은 GaN, GaP, GaAs, GaSb, AlN, AlP, AlAs, AlSb, InN, InP, InAs, InSb 및 이들의 혼합물로 이루어진 군에서 선택되는 이원소 화합물; GaNP, GaNAs, GaNSb, GaPAs, GaPSb, AlInP, AlNP, AlNAs, AlNSb, AlPAs, AlPSb, InNP, InNAs, InNSb, InPAs, InPSb, GaAlNP 및 이들의 혼합물로 이루어진 군에서 선택되는 삼원소 화합물; 및 AlGaInP, GaAlNAs, GaAlNSb, GaAlPAs, GaAlPSb, GaInNP, GaInNAs, GaInNSb, GaInPAs, GaInPSb, InAlNP, InAlNAs, InAlNSb, InAlPAs, InAlPSb 및 이들의 혼합물로 이루어진 군에서 선택되는 사원소 화합물로 이루어진 군에서 선택될 수 있다.
컬러 생성부(42)는 발광부(41)에서 제공된 광과 상이한 컬러 광을 생성할 수 있다.
예컨대, 컬러 생성부(42)는 제1 컬러 생성부(43), 제2 컬러 생성부(44) 및 제3 컬러 생성부(45)를 포함할 수 있다. 제1 컬러 생성부(43)는 화소의 제1 서브 화소(PX1)에 대응되고, 제2 컬러 생성부(44)는 화소의 제2 서브 화소(PX2)에 대응되며, 제3 컬러 생성부(45)는 화소의 제3 서브 화소(PX3)에 대응될 수 있다.
제1 컬러 생성부(43)는 발광부(41)에서 제공된 광에 기초하여 제1 컬러 광을 생성하고, 제2 컬러 생성부(44)는 발광부(41)에서 제공된 광에 기초하여 제2 컬러 광을 생성하며, 제3 컬러 생성부(45)는 발광부(41)에서 제공된 광에 기초하여 제3 컬러 광을 생성할 수 있다. 예컨대, 제1 컬러 생성부(43)는 발광부(41)의 청색 광을 적색 광으로 출력하고, 제2 컬러 생성부(44)는 발광부(41)의 청색 광을 녹색 광으로 출력하며, 제3 컬러 생성부(45)는 발광부(41)의 청색 광을 그대로 출력할 수 있다.
일 예로, 제1 컬러 생성부(43)는 제1 컬러 필터를 포함하고, 제2 컬러 생성부(44)는 제2 컬러 필터를 포함하며, 제3 컬러 생성부(45)는 제3 컬러 필터를 포함할 수 있다.
제1 컬러 필터, 제2 컬러 필터 및 제3 컬러 필터는 빛이 투과할 수 있는 투명한 재질로 형성될 수 있다.
예컨대, 제1 컬러 필터, 제2 컬러 필터 및 제3 컬러 필터 중 적어도 하나 이상은 양자점(quantum dot)을 포함할 수 있다.
실시예의 양자점은 Ⅱ-Ⅳ족 화합물, III-V족 화합물, IV-VI족 화합물, IV족 원소, IV족 화합물 및 이들의 조합에서 선택될 수 있다.
Ⅱ-VI족 화합물은 CdSe, CdTe, ZnS, ZnSe, ZnTe, ZnO, HgS, HgSe, HgTe, MgSe, MgS 및 이들의 혼합물로 이루어진 군에서 선택되는 이원소 화합물; CdSeS, CdSeTe, CdSTe, ZnSeS, ZnSeTe, ZnSTe, HgSeS, HgSeTe, HgSTe, CdZnS, CdZnSe, CdZnTe, CdHgS, CdHgSe, CdHgTe, HgZnS, HgZnSe, HgZnTe, MgZnSe, MgZnS 및 이들의 혼합물로 이루어진 군에서 선택되는 삼원소 화합물; 및 HgZnTeS, CdZnSeS, CdZnSeTe, CdZnSTe, CdHgSeS, CdHgSeTe, CdHgSTe, HgZnSeS, HgZnSeTe, HgZnSTe 및 이들의 혼합물로 이루어진 군에서 선택되는 사원소 화합물로 이루어진 군에서 선택될 수 있다.
III-V족 화합물은 GaN, GaP, GaAs, GaSb, AlN, AlP, AlAs, AlSb, InN, InP, InAs, InSb 및 이들의 혼합물로 이루어진 군에서 선택되는 이원소 화합물; GaNP, GaNAs, GaNSb, GaPAs, GaPSb, AlInP, AlNP, AlNAs, AlNSb, AlPAs, AlPSb, InNP, InNAs, InNSb, InPAs, InPSb, GaAlNP 및 이들의 혼합물로 이루어진 군에서 선택되는 삼원소 화합물; 및 AlGaInP, GaAlNAs, GaAlNSb, GaAlPAs, GaAlPSb, GaInNP, GaInNAs, GaInNSb, GaInPAs, GaInPSb, InAlNP, InAlNAs, InAlNSb, InAlPAs, InAlPSb 및 이들의 혼합물로 이루어진 군에서 선택되는 사원소 화합물로 이루어진 군에서 선택될 수 있다.
IV-VI족 화합물은 SnS, SnSe, SnTe, PbS, PbSe, PbTe 및 이들의 혼합물로 이루어진 군에서 선택되는 이원소 화합물; SnSeS, SnSeTe, SnSTe, PbSeS, PbSeTe, PbSTe, SnPbS, SnPbSe, SnPbTe 및 이들의 혼합물로 이루어진 군에서 선택되는 삼원소 화합물; 및 SnPbSSe, SnPbSeTe, SnPbSTe 및 이들의 혼합물로 이루어진 군에서 선택되는 사원소 화합물로 이루어진 군에서 선택될 수 있다.
IV족 원소로는 Si, Ge 및 이들의 혼합물로 이루어진 군에서 선택될 수 있다. IV족 화합물로는 SiC, SiGe 및 이들의 혼합물로 이루어진 군에서 선택되는 이원소 화합물일 수 있다.
이러한 양자점은 대략 45nm 이하의 발광 파장 스펙트럼의 반치폭(full width of half maximum, FWHM)을 가질 수 있으며, 양자점을 통해 발광되는 광은 전 방향으로 방출될 수 있다. 이에 따라, 발광 표시 장치의 시야각이 향상될 수 있다.
한편, 양자점은 구형, 피라미드형, 다중 가지형(multi-arm), 또는 입방체(cubic)의 나노 입자, 나노 튜브, 나노 와이어, 나노 섬유, 나노 판상 입자 등의 형태를 가질 수 있으나, 이에 한정되지는 않는다.
예컨대, 발광 소자(150)가 청색 광을 발광하는 경우, 제1 컬러 필터는 적색 양자점을 포함하고, 제2 컬러 필터는 녹색 양자점을 포함할 수 있다. 제3 컬러 필터는 양자점을 포함하지 않을 수 있지만, 이에 대해서는 한정하지 않는다. 예컨대, 발광 소자(150)의 청색 광이 제1 컬러 필터에 흡수되고, 이 흡수된 청색 광이 적색 양자점에 의해 파장 쉬트프되어 적색 광이 출력될 수 있다. 예컨대, 발광 소자(150)의 청색 광이 제2 컬러 필터에 흡수되고, 이 흡수된 청색 광이 녹색 양자점에 의해 파장 쉬프트되어 녹색 광이 출력될 수 있다. 예컨대, 발과 소자의 청색 광이 제3 컬러 필터에 흡수되고, 이 흡수된 청색 광이 그대로 출사될 수 있다.
한편, 발광 소자(150)가 백색 광인 경우, 제1 컬러 필터 및 제2 컬러 필터뿐만 아니라 제3 컬러 필터 또한 양자점을 포함할 수 있다. 즉, 제3 컬러 필터에 포함된 양자점에 의해 발광 소자(150)의 백색 광이 청색 광으로 파장 쉬프트될 수 있다.
예컨대, 제1 컬러 필터, 제2 컬러 필터 및 제3 컬러 필터 중 적어도 하나 이상은 형광체를 포함할 수 있다. 예컨대, 제1 컬러 필터, 제2 컬러 필터 및 제3 컬러 필터 중 일부 컬러 필터는 양자점을 포함하고, 다른 일부는 형광체를 포함할 수 있다. 예컨대, 제1 컬러 필터 및 제2 컬러 필터 각각은 형광체와 양자점을 포함할 수 있다. 예컨대, 제1 컬러 필터, 제2 컬러 필터 및 제3 컬러 필터 중 적어도 하나 이상은 산란 입자를 포함할 수 있다. 산란 입자에 의해 제1 컬러 필터, 제2 컬러 필터 및 제3 컬러 필터 각각으로 입사된 청색 광이 산란되고 산란된 청색 광이 해당 양자점에 의해 컬러 쉬프트되므로, 광 출력 효율이 향상될 수 있다.
다른 예로, 제1 컬러 생성부(43)는 제1 컬러 변환층 및 제1 컬러 필터를 포함할 수 있다. 제2 컬러 생성부(44)는 제2 컬러 변환부 및 제2 컬러 필터를 포함할 수 있다. 제3 컬러 생성부(45)는 제3 컬러 변환층 및 제3 컬러 필터를 포함할 수 있다. 제1 컬러 변환층, 제2 컬러 변환층 및 제3 컬러 변환층 각각은 발광부(41)에 인접하여 배치될 수 있다. 제1 컬러 필터, 제2 컬러 필터 및 제3 컬러 필터는 제2 기판(46)에 인접하여 배치될 수 있다.
예컨대, 제1 컬러 필터는 제1 컬러 변환층과 제2 기판(46) 사이에 배치될 수 있다. 예컨대, 제2 컬러 필터는 제2 컬러 변환층과 제2 기판(46) 사이에 배치될 수 있다. 예컨대, 제3 컬러 필터는 제3 컬러 변환층과 제2 기판(46) 사이에 배치될 수 있다.
예컨대, 제1 컬러 필터는 제1 컬러 변환층의 상면과 접하고 제1 컬러 변환층과 동일한 사이즈를 가질 수 있지만, 이에 대해서는 한정하지 않는다. 예컨대, 제2 컬러 필터는 제2 컬러 변환층의 상면과 접하고, 제2 컬러 변환층과 동일한 사이즈를 가질 수 있지만, 이에 대해서는 한정하지 않는다. 예컨대, 제3 컬러 필터는 제3 컬러 변환층의 상면과 접하고, 제3 컬러 변환층과 동일한 사이즈를 가질 수 있지만, 이에 대해서는 한정하지 않는다.
예컨대, 제1 컬러 변환층은 적색 양자점을 포함하고, 제2 컬러 변환층은 녹색 양자점을 포함할 수 있다. 제3 컬러 변환층은 양자점을 포함하지 않을 수 있다. 예대, 제1 컬러 필터는 제1 컬러 변환층에서 변환된 적색 광을 선택적으로 투과시키는 적색 계열 재질을 포함하고, 제2 컬러 필터는 제2 컬러 변환층에서 변환된 녹색 광을 선택적으로 투과시키는 녹색 계열 재질을 포함하며, 제3 컬러 필터는 제3 컬러 변환층에서 그대로 투과한 청색 광을 선택적으로 투과시키는 청색 계열 재질을 포함할 수 있다.
한편, 발광 소자(150)가 백색 광인 경우, 제1 컬러 변환층 및 제2 컬러 변환층뿐만 아니라 제3 컬러 변환층 또한 양자점을 포함할 수 있다. 즉, 제3 컬러 필터에 포함된 양자점에 의해 발광 소자(150)의 백색 광이 청색 광으로 파장 쉬프트될 수 있다.
다시 도 8을 참조하면, 제2 기판(46)은 컬러 생성부(42) 상에 배치되어, 컬러 생성부(42)를 보호할 수 있다. 제2 기판(46)은 유리로 형성될 수 있지만, 이에 대해서는 한정하지 않는다.
제2 기판(46)은 커버 윈도우, 커버 글라스 등으로 불릴 수 있다.
제2 기판(46)은 유리나 플렉서블 재질로 형성될 수 있지만, 이에 대해서는 한정하지 않는다.
한편, 실시예는 자가 조립 방식에 의해 반도체 발광 소자가 기판 상의 조립 홀에 조립된 후에 반도체 발광 소자를 기판에 전기적으로 연결하는데 있어서, 반도체 발광 소자의 하측에 솔더와 같은 본딩층이나 금속 범프가 구비될 필요가 없다. 즉, 반도체 발광 소자의 하측에 본딩층이나 금속 범프가 구비되지 않더라도, 자가 조립시, 유체에 분산된 전도체를 유전영동힘에 의해 조립 홀 내에 포집시켜, 이 포집된 전도체를 이용하여 반도체 발광 소자를 기판에 전기적으로 연결할 수 있다.
따라서, 반도체 발광 소자에 본딩층이나 금속 범프가 구비되지 않으므로, 디스플레이 장치의 무게를 줄이고 두께를 감소시킬 수 있다. 또한, 전기적 특성을 훼손하지 않는 범위에서 전도체가 포집되므로, 반도체 발광 소자와 기판 사이의 전도체의 두께를 최소화하여 디스플레이 장치의 무게를 줄이고 두께를 감소시킬 수 있다.
한편, 실시예는 기판의 조립 홀 내에서 반도체 발광 소자의 조립을 위해 사용된 제2 조립 배선이 조립 홀 내에 노출되도록 하고 그 노출된 제2 조립 배선 상에 전도체가 포집되어 이 전도체를 매개로 반도체 발광 소자와 제2 조립 배선이 전기적으로 연결될 수 있다. 다시 말해, 제2 조립 배선이 반도체 발광 소자를 조립 홀 내에 조립시키는데 사용될 뿐만 아니라 반도체 발광 소자를 발광시키는 데에도 사용될 수 있다. 따라서, 반도체 발광 소자를 발광시키기 위한 별도의 제1 전극 배선이 구비되지 않아도 되고 반도체 발광 소자의 상측에 전기적으로 연결하기 위한 제2 전극 배선만 설계하면 되므로, 설계 자유도가 증가되어 배선 설계 불량을 방지할 수 있다.
특히, 반도체 발광 소자를 조립 홀에 조립하기 위해서 제1 조립 배선과 제2 조립 배선이 필요하고, 반도체 발광 소자의 하측에 전기적으로 연결하기 위한 제1 전극 배선이 필요하다. 이러한 경우, 제1 조립 배선, 제2 조립 배선 및 제1 전극 배선 모두 조립 홀 내에 배치되어야 하므로, 설계 자유도가 제약되고 자칫 이들 배선 간에 전기적 쇼트가 발생될 수 있다. 하지만, 실시예에서는 같이 제2 조립 배선이 제1 전극 배선을 겸용하도록 함으로써, 설계 자유도가 증가되고 전기적 쇼트를 방지할 수 있다.
이 밖에도 다양한 실시예에 의해 다양한 효과가 도출될 수 있는데, 이하에서 상세히 설명한다.
이하에서 누락된 설명은 도 1 내지 도 8과 이에 관련된 상술된 설명으로부터 용이하게 이해될 수 있다.
[제1 실시예]
도 9는 제1 실시예에 따른 디스플레이 장치를 도시한 단면도이다.
도 9를 참조하면, 제1 실시예에 따른 디스플레이 장치(300)는 기판(310), 격벽(340), 전도체(350) 및 반도체 발광 소자(150)를 포함할 수 있다.
기판(310) 및 격벽(340) 각각은 도 6에 도시한 기판(200) 및 절연층(206)과 동일하므로, 상세한 설명은 생략한다.
격벽(340)은 기판(310) 상에 배치될 수 있다. 격벽(340)은 절연층으로 불릴 수 있다. 격벽(340)은 복수의 조립 홀(345)를 가질 수 있다. 조립 홀(345)은 화소(도 2의 PX)의 서브화소(PX1, PX2, PX3)에 구비될 수 있지만, 이에 대해서는 한정하지 않는다. 조립 홀(345)은 반도체 발광 소자(150)의 조립을 가이드 및 고정하는 것으로서, 자가조립시 자성체에 의해 이동되는 반도체 발광 소자(150)가 조립 홀(345) 근처에서 조립 홀(345) 내로 이동되어 조립 홀(345)에 고정될 수 있다.
도면에는 조립 홀(345)이 경사진 내측을 갖는 것으로 도시되고 있지만, 기판(310)의 상면에 대해 수직인 내측을 가질 수도 있다. 경사진 내측을 갖는 조립 홀(345)에 의해 반도체 발과 소자가 조립 홀(345) 내로 용이하게 삽입될 수 있다.
기판(310) 상에 구비된 복수의 조립 홀(345) 각각에 반도체 발광 소자(150)가 배치될 수 있다.
반도체 발광 소자(150)는 반도체 물질, 예컨대 Ⅳ족 화합물 또는 III-V족 화합물로 형성될 수 있다. 반도체 발광 소자(150)는 전기적 신호에 따라 광을 생성하는 부재이다.
일 예로서, 각 조립 홀(345)에 배치된 반도체 발광 소자(150)는 단일 컬러 광을 생성할 수 있다. 예컨대, 반도체 발광 소자(150)는 자외선 광, 보라색 광, 청색 광 등을 생성할 수 있다. 이러한 경우, 각 조립 홀(345)에 배치된 반도체 발광 소자(150)는 광원으로서, 이 광원을 이용하여 다양한 컬러 광을 생성하여 영상을 표시할 수 있다. 다양한 컬러 광을 생성하기 위해 컬러 컨버전층과 컬러 필터가 구비될 수 있다.
다른 예로서, 각 조립 홀(345)에 배치된 반도체 발광 소자(150)는 청색 반도체 발광 소자, 녹색 반도체 발광 소자 및 적색 반도체 발광 소자 중 하나일 수 있다. 예컨대, 3개의 조립 홀(345)이 나란하게 배치된 경우, 제1 조립 홀(345)에 배치된 반도체 발광 소자(150)는 청색 반도체 발광 소자이고 제2 조립 홀(345)에 배치된 반도체 발광 소자(150)는 녹색 반도체 발광 소자이며, 제3 조립 홀(345)에 배치된 반도체 발광 소자(150)는 적색 반도체 발광 소자일 수 있다.
실시예의 반도체 발광 소자(150)는 제1 도전형 반도체층(151), 활성층(152), 제2 도전형 반도체층(153), 제1 전극(154), 제2 전극(155) 및 보호층(157)을 포함할 수 있다. 보호층(157)은 절연층, 패시베이션층 등으로 불릴 수 있다. 제1 도전형 반도체층(151), 활성층(152) 및 제2 도전형 반도체층(153)은 발광부로 불릴 수 있다.
제1 도전형 반도체층(151), 활성층(152) 및 제2 도전형 반도체층(153)은 MOCVD와 같은 증착 장비를 이용하여 웨이퍼(도 16의 411) 상에서 순차적으로 성장될 수 있다. 이후, 식각 공정을 이용하여 제2 도전형 반도체층(153), 활성층(152) 및 제1 도전형 반도체층(151)의 순서로 수직 방향을 따라 식각될 수 있다. 이후, 제1 도전형 반도체층(151)의 측면 일부를 제외한 나머지 영역, 즉 제1 도전형 반도체층(151)의 측면의 다른 일부, 활성층(152)의 측면 및 제2 도전형 반도체층(153)의 측면 둘레를 따라 보호층(157)이 형성됨으로써, 반도체 발광 소자(150)가 제조될 수 있다.
제1 도전형 반도체층(151)은 제1 도전형 도펀트를 포함하고, 제2 도전형 반도체층(153)은 제2 도전형 도펀트를 포함할 수 있다. 예컨대, 제1 도전형 도펀트는 실리콘(Si)과 같은 n형 도펀트이고, 제2 도전형 도펀트는 보론(B)과 같은 p형 도펀트일 수 있다.
예컨대, 제1 도전형 반도체층(151)은 전자를 생성하고, 제2 도전형 반도체층(153)은 홀을 형성할 수 있다. 활성층(152)은 광을 생성하는 것으로서 발광층으로 불릴 수 있다.
실시예의 반도체 발광 소자(150)가 메사 식각으로 형성되는 경우, 반도체 발광 소자(150)의 상측에서 하측으로 갈수록 그 직경이 점점 더 커질 수 있다.
제1 전극(154)은 제1 도전형 반도체층(151)의 하측에 배치될 수 있다. 제1 전극(154)은 전기 전도도가 우수한 금속으로 형성될 수 있다.
제1 전극(154)은 적어도 하나 이상의 층을 포함할 수 있다. 예컨대, 제1 전극(154)은 자성층(미도시)과 전극층(미도시)을 포함할 수 있다. 제1 도전형 반도체층(151) 아래에 자성층과 전극층이 순차로 형성될 수 있고, 이와 반대로 형성될 수도 있다.
자성층은 자가조립시, 자성체에 의해 반도체 발광 소자(150)가 자화되어 자성체의 이동을 따라 반도체 발광 소자(150)가 용이하게 이동되도록 할 수 있다. 반도체 발광 소자(150) 자체가 자성체의 이동을 따라 용이하게 이동되는 경우, 자성층은 생략될 수 있다. 전극층은 외부의 전압이 제1 도전형 반도체층(151)으로 원활하게 공급되도록 할 수 있다. 자성층은 니켈(Ni), 코발트(Co), 철(Fe) 등을 포함할 수 있다. 자성층은 SmCo, Gd계, La계, Mn계 금속을 포함할 수 있다. 전극층은 전기 전도도가 우수한 금속으로 이루어질 수 있다.
실시예의 제1 전극(154)은 주석(Sn)이나 인듐(In)과 같은 본딩층을 포함하지 않는다. 후술하겠지만, 실시예는 본딩층 없이도 반도체 발광 소자(150)와 기판(310)이 용이하게 전기적으로 연결되고 접착력도 강화될 수 있다.
제2 전극(155)은 제2 도전형 반도체층(153) 상에 배치될 수 있다.
제2 전극(155)은 투명한 도전성 물질, 예컨대 ITO로 이루어질 수 있다. 제2 전극(155)은 제2 전극 배선(372)에서 공급된 양(+)의 전압에 의한 전류가 제1 도전형 반도체층(151)의 전 영역으로 고르게 퍼지도록 하는 전류 스프레딩 효과를 얻을 수 있다. 즉, 제2 전극(155)에 의해 제1 도전형 반도체층(151)의 전 영역에 고르게 전류가 퍼져, 제1 도전형 반도체층(151)의 전 영역에서 정공이 생성되므로, 정공 생성량을 늘려 활성층(152)에서 정공과 전자의 재결합에 의해 생성되는 광량을 증가시켜 광 효율을 높일 수 있다. 광 효율의 증가는 휘도의 향상으로 이어질 수 있다.
제2 전극(155)은 적어도 하나 이상의 층으로 이루어질 수 있다. 예컨대, 제2 전극(155)은 ITO와 같은 투명 도전층, 적어도 하나 이상의 금속층, 자성층 등을 포함할 수 있다. 예컨대, 투명 도전층과 제2 제2 도전형 반도체층(153) 사이에 자성층이 배치될 수 있지만, 이에 대해서는 한정하지 않는다. 이때, 자성층은 광 투과도를 고려하여 나노미터(nm) 급으로 매우 얇은 두께로 형성될 수 있다.
자성층은 제1 전극(154) 및/또는 제2 전극(155)에 포함될 수 있다. 이에 따라, 자성 조립시, 자성체의 이동에 따라 반도체 발광 소자(150)가 보다 빠르고 신속하게 이동되도록 하여, 공정 시간을 단축하고 조립 수율을 향상시킬 수 있다.
실시예에 따르면, 발광부(151 내지 153) 상에 투명한 도전층이 배치되어, 전류 스프레딩 효과에 의한 광 효율의 증가로 휘도를 향상시킬 수 있다.
보호층(157)은 발광부(151 내지 153)를 보호할 수 있다. 보호층(157)은 자가조립시 반도체 발광 소자(150)가 뒤집히지 않고 반도체 발광 소자(150)의 하측, 즉 제1 도전형 반도체층(151)의 하면이 제1 절연층(330)의 상면을 마주보도록 할 수 있다. 즉, 자가조립시 반도체 발광 소자(150)의 보호층(157)이 제1 조립 배선(321)과 제2 조립 배선(322)에서 멀어지도록 위치될 수 있다. 반도체 발광 소자(150)의 하측에는 보호층(157)이 배치되지 않고 있으므로, 반도체 발광 소자(150)의 하측은 제1 조립 배선(321)과 제2 조립 배선(322)으로 가까워지도록 위치될 수 있다. 따라서, 자가조립시, 반도체 발광 소자(150)의 하측은 제1 절연층(330)을 마주보고 위치되고 반도체 발광 소자(150)의 상측은 상부 방향을 향해 위치됨으로써, 반도체 발광 소자(150)가 뒤집혀 조립되는 오정렬을 방지할 수 있다.
한편, 전도체(350)가 조립 홀(345) 내에 배치될 수 있다. 실시예에 따르면, 전도체(350)를 매개로 하여 반도체 발광 소자(150)와 제2 조립 배선(322)이 전기적으로 연결될 수 있다. 이때, 제2 조립 배선(322)은 제1 전극 배선으로 사용될 수 있다. 이러한 경우, 제1 전극 배선은 전도체(350)를 통해 반도체 발광 소자(150)의 하측, 즉 제1 전극(154)에 전기적으로 연결될 수 있다.
전도체(350)가 조립 홀(345)의 바닥부 및 내측에 배치될 수 있다. 즉, 전도체(350)는 제1 전도체(351), 제2 전도체(352) 및 제3 전도체(353)를 포함할 수 있다.
제1 전도체(351)는 조립 홀(345) 내에서 제2 조립 배선(322) 상에 위치된 전도체일 수 있다. 제2 전도체(352)는 조립 홀(345)의 내측에 위치된 전도체일 수 있다. 제3 전도체(353)는 조립 홀(345) 내에서 제1 조립 배선(321)에 대응하는 제1 절연층(330) 상에 위치된 전도체일 수 있다.
반도체 발광 소자(150)는 조립 홀(345) 내에서 전도체(350) 상에 배치될 수 있다. 이러한 경우, 제1 전도체(351)는 조립 홀(345) 내에서 반도체 발광 소자(150)의 제1 전극(154)의 제1 영역과 제2 조립 배선(322) 사이에 배치될 수 있다. 제2 전도체(352)는 조립 홀(345)의 내측과 반도체 발광 소자(150)의 외측 사이에 배치될 수 있다. 제3 전도체(353)는 조립 홀(345) 내에서 반도체 발광 소자(150)의 제1 전극(154)의 제2 영역과 제1 조립 배선(321)에 대응하는 제1 절연층(330) 사이에 배치될 수 있다.
전도체(350)는 복수의 전도성 입자(3510)과 폴리머(3520)를 포함할 수 있다. 예컨대, 폴리머(3520)는 전도성 입자(3510) 각각을 둘러쌀 수 있다. 예컨대, 전도체(350)의 크기는 0.05㎛ 내지 10㎛일 수 있다.
전도성 입자(3510)는 Au, Au/Ge, Ni, Ti, Cu 등을 포함할 수 있다. 폴리머(3520)는 EVA, PVA, PMMA, PS, EA, PEG 등을 포함할 수 있다. 또는 전도체(350)는 전도성 고분자 복합물질, 예컨대 PS/polyaniline, polypyrrole, polyanilien, polyethylene oxide의 carbon nanotue, metal(Ag, Au.,) 등과 공중합체, composite 등을 포함할 수 있다.
제1 전도체(351), 제2 전도체(352) 및 제3 전도체(353)에서 서로 인접한 전도성 입자(3510) 사이의 폴리머(3520)는 서로 병합될 수 있다.
후술하겠지만, 도 10 내지 도 12에 도시한 바와 같이, 각각 전도성 입자(3510)와 전도성 입자(3510)를 둘러싸는 폴리머(3520)를 포함하는 복수의 전도체(350)가 조립 홀(345) 내에 포집될 수 있다. 이때, 상기 포집된 복수의 전도체(350)에서 인접하는 전도성 입자(3510) 사이의 폴리머(3520)는 서로 접촉은 되지만 병합되지는 않는다. 하지만, 도 13에 도시한 바와 같이, 상기 포집된 복수의 전도체(350)에 열이 가해져, 복수의 전도체(350) 각각의 전도성 입자(3510)를 둘러싸는 폴리머(3520)가 녹아 전도성 입자(3510) 사이의 폴리머(3520)가 서로 병합되어 일체화될 수 있다. 이에 따라, 상기 일체화된 폴리머(3520)에 복수의 전도성 입자(3510)가 배치될 수 있다. 이와 같이 녹은 폴리머(3520)는 자연적으로 경화되거나 경화 공정에 의해 경화될 수 있다.
예컨대, 제1 전도체(351) 및 제3 전도체(353)에서 전도성 입자(3510)는 폴리머(3520) 속에 매립될 수 있다. 예컨대, 제2 전도체(352)에서 복수의 전도성 입자(3510) 중 제2-1 전도성 입자(352_1)는 상기 병합된 폴리머(3520)의 상면 아래에 배치될 수 있다. 예컨대, 제2 전도체(352)에서 복수의 전도성 입자 중 제2-2 전도성 입자(35_2)는 상기 병합된 폴리머(3520)의 상면 상에 배치될 수 있다.
이는 전도체(350)의 폴리머(3520)가 열에 의해 녹아 중력에 의해 아래로 이동한 결과에 기인한다. 즉, 전도성 입자(3510)는 단단한 고체인데 반해, 폴리머(3520)는 열에 의해 녹고, 상기 녹은 폴리머(3520)가 중력에 의해 아래로 이동하여 전도성 입자(3510) 사이의 채우게 된다. 이때, 제2 전도체(352)에서 폴리머(3520)의 하부 방향 이동에 따라 전도성 입자(3510) 또한 하부 방향을 이동될 수 있다. 이에 따라, 제2 전도체(352)에서 전도성 입자(3510)는 서로 접촉될 수 있다. 전도체(350)의 폴리머(3520)에 열과 더불어 압력이 가해질 수도 있다.
제1 전도체(351)에 포함된 전도성 입자(3510)는 연결 전극으로서, 반도체 발광 소자(150)의 제1 전극(154)을 제2 조립 배선(322)에 전기적으로 연결시킬 수 있다. 아울러, 제1 전도체(351)에 포함되어 전도성 입자(3510) 사이에 위치된 폴리머(3520)가 반도체 발광 소자(150)를 제2 조립 배선(322)에 견고하게 고정시킬 수 있다.
제2 전도체(352)에 포함된 전도성 입자(3510)는 서로 접촉될 수 있다. 예컨대, 전도체(350)가 구형인 경우, 전도체(350) 사이에 형성된 빈 공간으로 열에 의해 녹은 폴리머(3520)가 채워질 수 있다. 폴리머(3520)가 전도체(350) 사이의 빈 공간을 채우는데 사용되므로, 제2 전도체(352)에서 폴리머(3520)의 상면은 최상측에 위치된 일부 전도성 입자(3510)보다 낮을 수 있다. 이에 따라, 제2 전도체(352)에서 제2-1 전도체 입자 대부분은 폴리머(3520)의 상면 아래에 배치되지만, 제2-2 전도체 입자는 폴리머(3520) 상면에 배치될 수 있다. 이는 후술하는 제2 실시예(도 16)에서 제1 전극 배선(371)이 전도체(350), 즉 제2 전도체(352)의 제2-2 전도성 입자(35_2)와 접하도록 하여 별도의 추가 공정 없이 제1 전극 배선(371)과 반도체 발광 소자(150) 간의 전기적 연결을 보다 용이하게 할 수 있는 매우 중요한 구조로 작용한다.
전도체(350)는 구형 이외에 다른 형상, 예컨대 로드(rod)나 타원형 등으로 형성될 수도 있지만, 이에 대해서는 한정하지 않는다.
한편, 제1 실시예에 따른 디스플레이 장치(300)는 제1 조립 배선(321), 제2 조립 배선(322), 제1 절연층(330), 제2 절연층(360) 및 제2 전극 배선(372)을 포함할 수 있다. 이보다 더 많은 구성 요소들이 포함될 수도 있다.
제1 조립 배선(321)은 기판(310)의 제1 영역 상에 배치되고, 제2 조립 배선(322)은 기판(310)의 제2 영역 상에 배치될 수 있다. 제1 조립 배선(321)과 제2 조립 배선(322)은 서로 상이한 층에 배치될 수 있다. 이를 위해, 제1 조립 배선(321)과 제2 조립 배선(322) 사이에 제1 절연층(330)이 배치될 수 있다. 예컨대, 제1 조립 배선(321)과 제2 조립 배선(322)은 서로 중첩되지 않을 수 있다.
자가 조립시 제1 조립 배선(321)과 제2 조립 배선(322)으로 인가된 교류 전압에 의해 유전영동힘이 제1 조립 배선(321)과 제2 조립 배선(322) 사이에 형성될 수 있다. 예컨대, 교류 전압은 50 kHz 내지 500kHz의 주파수에 3V 내지 15V의 전압을 가질 수 있지만, 이에 대해서는 한정하지 않는다.
실시예에서 유전영동힘은 반도체 발광 소자(150)를 조립하는데 사용될 뿐만 아니라 전도체(350)를 조립 홀(345) 내에 포집하는 데에도 사용될 수 있다. 예컨대, 제1 조립 배선(321)과 제2 조립 배선(322)에 인가된 제1 교류 전압에 의해 제1 유전영동힘이 형성되고, 제1 유전영동힘에 의해 전도체(350)가 조립 홀(345) 내에 포집될 수 있다. 이와 같이 조립 홀(345) 내에 전도체(350)가 포집된 상태에서, 제1 조립 배선(321)과 제2 조립 배선(322)에 인가된 제2 교류 전압에 의해 제2 유전영동힘이 형성되고, 제2 유전영동힘에 의해 반도체 발광 소자(150)가 조립 홀(345)에 조립될 수 있다. 반도체 발광 소자(150)가 조립 홀(345) 내에 조립되기 전에, 자성체에 의해 반도체 발광 소자(150)가 조립 홀(345) 근처로 이동될 수 있다.
제1 교류 전압과 제2 교류 전압은 상이하므로, 제1 유전영동힘과 제2 유전영동힘은 상이할 수 있다.
통상 유전영동힘은 입자의 반경의 세제곱에 비례할 수 있다. 따라서, 전도체(350) 사이즈는 반도체 발광 소자(150)의 사이즈보다 매우 작으므로, 전도체(350)가 포집되기 위해서는 제1 교류 전압이 제2 교류 전압보다 클 수 있다.
조립 홀(345) 내에 먼저 포집된 전도체(350) 상에 반도체 발광 소자(150)가 배치될 수 있다. 이어서, 상기 포집된 전도체(350)에 열을 가해 전도체(350)의 폴리머(3520)를 녹임으로써, 상기 녹은 폴리머(3520)가 접착제로서 반도체 발광 소자(150)를 조립 홀(345)의 바닥부 및 내측에 접착시킬 수 있다. 아울러, 전도체(350)가 연결 전극으로서 반도체 발광 소자(150)의 제1 전극(154)을 제2 조립 배선(322)에 전기적으로 연결시킬 수 있다.
반도체 발광 소자(150)가 발광하기 위해서는 외부에서 전압을 공급받아야 하고, 전압을 공급받기 위한 전극 배선이 요구된다.
실시예에 따르면, 제2 조립 배선(322)이 제1 전극 배선으로 사용될 수 있다. 제2 조립 배선(322)이 제1 조립 배선(321)과 상이한 층에 배치될 수 있다. 즉, 제1 조립 배선(321)은 제1 절연층(330) 아래에 배치되고, 제2 조립 배선(322)은 제1 절연층(330) 상에 배치될 수 있다. 제2 조립 배선(322)은 조립 홀(345) 내에서 외부에 노출될 수 있다. 즉, 제2 조립 배선(322)의 상면은 조립 홀(345)의 바닥면일 수 있다. 즉, 조립 홀(345)의 바닥면은 조립 홀(345) 내의 제1 절연츠의 상면과 제2 조립 배선(322)의 상면일 수 있다.
상술한 바와 같이, 제2 조립 배선(322) 상에 전도체(350)가 포집되고, 이 포집된 전도체(350)의 폴리머(3520)가 녹음으로써, 전도체(350)의 전도성 입자(3510)가 연결 전극으로서 반도체 발광 소자(150)의 제1 전극(154)을 제2 조립 배선(322)과 전기적으로 연결될 수 있다. 따라서, 제2 조립 배선(322)을 통해 소정의 전압이 반도체 발광 소자(150)의 제1 전극(154)으로 공급될 수 있다.
제2 절연층(360)은 격벽(340) 상에 배치될 수 있다. 예컨대, 제2 절연층(360)은 격벽(340) 뿐만 아니라 조립 홀(345) 내 그리고 반도체 발광 소자(150) 상에도 배치될 수 있다.
제2 절연층(360)은 반도체 발광 소자(150)를 보호할 수 있다. 즉, 제2 절연층(360)은 외부의 수분이나 이물질 등으로부터 반도체 발광 소자(150)를 보호할 수 있다. 제2 절연층(360)은 수분이나 전도성 이물질 등으로부터 제1 연결부(350)를 보호할 수 있다.
제2 절연층(360)은 두껍게 형성하여, 그 상면을 평평하게 하는 평탄화막일 수 있다. 이에 따라, 제2 절연층(360)의 상면 상에 배치되는 층, 예컨대 제1 전극 배선(371) 및 제2 전극 배선(372) 또는 또 다른 절연층이 쉽게 형성되도록 한다.
제2 절연층(360)은 유기 물질이나 무기 물질로 형성될 수 있다. 제2 절연층(360)은 에폭시나 실리콘과 같은 수지재로 형성될 수 있다. 제2 절연은 반도체 발광 소자(150)로부터의 광이 잘 하도록 광 투광성이 우수한 물질로 이루어질 수 있다.
제2 절연층(360)은 반도체 발광 소자(150)로부터의 광이 잘 산란되도록 산란 입자를 포함할 수 있다. 예컨대, 산란 입자가 각 화소(도 2의 PX)에서 반도체 발광 소자(150)에 대응하는 제2 절연층(360)에 포함될 수 있지만, 이에 대해서는 한정하지 한다. 제2 절연층(360)은 각 서브 화소(도 2의 PX1, PX2, PX3)의 구분에 관계없이, 기판(310)의 전 영역 상에 형성될 수 있다.
제2 전극 배선(372)은 반도체 발광 소자(150)의 제2 전극(155)과 전기적으로 연결될 수 있다. 예컨대, 제2 절연층(360)을 통해 반도체 발광 소자(150)의 제2 전극(155)에 전기적으로 연결될 수 있다. 이를 위해, 제2 절연층(360)이 관통하도록 컨택홀이 형성될 수 있다. 또한, 격벽(340)의 컨택홀에 대응하는 반도체 발광 소자(150)의 보호층(157)도 식각되어 반도체 발과 소자의 제2 전극(155)이 외부에 노출될 수 있다. 예컨대, 컨택홀은 반도체 발광 소자(150)에 대응하는 격벽(340)에 형성될 수 있다. 제2 전극 배선(372)은 컨택홀을 통해 반도체 발광 소자(150)의 제2 전극(155)에 전기적으로 연결될 수 있다.
상술한 바와 같이, 제2 조립 배선(322)이 전도체(350)를 통해 반도체 발광 소자(150)의 제1 전극(154)에 전기적으로 연결될 수 있다.
예컨대, 제2 조립 배선(322)을 통해 반도체 발광 소자(150)의 제1 도전형 반도체층(151)으로 인가된 음(-)의 전압과 제2 전극 배선(372)을 통해 반도체 발광 소자(150)의 제2 도전형 반도체층(153)으로 인가된 양(-)의 전압에 의해 흐르는 전류에 상응하는 휘도를 갖는 광이 반도체 발광 소자(150)로부터 생성될 수 있다.
이에 따라, 반도체 발광 소자(150)에 전류가 흐를 수 있다. 반도체 발광 소자(150)에 흐르는 전류의 세기를 조절함으로써, 각 화소의 휘도를 제어하여 컨트라스트비가 제어될 수 있다. 이때, 반도체 발광 소자(150)의 컬러 광은 반도체 발광 소자(150)의 활성층(152)의 에너지 밴드갭에 상응하는 파장에 의해 결정될 수 있다. 즉, 활성층(152)의 에너지 밴드갭이 큰 물질인 경우 단파장의 광이 생성되고, 활성층(152)의 에너지 밴드갭이 작은 물질인 경우 장파장의 광이 생성될 수 있다. 따라서, 각 화소에 청색 반도체 발광 소자, 녹색 반도체 발광 소자 및 적색 반도체 발광 소자에 의해 풀 컬러가 구현되고, 청색 반도체 발광 소자, 녹색 반도체 발광 소자 및 적색 반도체 발광 소자 각각의 전류 세기를 조절하여 휘도 제어가 가능하다.
한편, 자가 조립 방식으로 반도체 발광 소자를 기판(310) 상에 전사하는 경우, 반도체 발광 소자를 기판(310)과 전기적을 연결하는 공정이 필수이다.
종래에는 미리 반도체 발광 소자의 하측에 솔더와 같은 본딩층이나 금속 범프가 구비된 상태에서, 자가 조립에 의해 본딩층이나 금속 범프가 구비된 반도체 발광 소자가 기판의 조립 홀에 조립된 후, 열합착 공정을 수행하여 본딩층이나 금속 범프를 이용하여 반도체 발광 소자과 기판을 전기적으로 연결하였다. 하지만, 마이크로급 반도체 발광 소자나 나노급 반도체 발광 소자의 하측에 본딩층이나 금속 범프를 형성하기 매우 어려웠고, 설사 반도체 발광 소자의 하측에 본딩층이나 금속 범프를 형성하였다 하더라도 본딩층이나 금속 범프가 매우 두꺼워, 열압착시 반도체 발광 소자와 기판 사이에서 반도체 발광 소자의 외측으로 본딩층이나 금속 범프가 흘러나올 수 있다. 이와 같이 반도체 발광 소자의 외측으로 흘러나온 본딩층이나 금속 범프는 후공정에 의해 부식이 되거나 격벽 형성시 격벽과의 접합력이 좋지 않아 격벽이 용이하게 형성되지 않는 문제가 있었다. 아울러, 매우 두꺼운 본딩층이나 금속 범프가 디스플레이 장치의 전체 두께를 증가시키거나 무게를 늘어나는 문제가 있었다.
통상 반도체 발광 소자와 외부의 전기적 연결을 위해 ACF/ACP가 널리 사용되어 왔다. 하지만, 이들 ACF/ACP는 자가 조립 방식에 사용하기 어렵다. 즉, ACF/ACP는 기판 상에 미리 부착되어야 하는데, 기판이 수조의 유체에 접하므로 ACF/ACP가 기판으로부터 이탈되기 쉬울 뿐만 아니라 ACF/ACP를 기판 상에 매우 작은 사이즈인 조립 홀 내에 부착하기는 너무 어렵다.
설사 ACF/ACP가 조립홀에 형성되더라도, ACF/ACP의 유전율이 낮기 때문에 자가 조립시 ACF/ACP로 인해 유전영동힘이 작아지며, 이와 같이 작은 유전영동힘에 의해 발광 소자가 조립 홀에 조립되기 어려울 뿐만 아니라 조립 홀에 조립된 발광 소자도 고정이 유지되기 어려워 조립 홀 밖으로 이탈된다. 따라서, 실시예와 같이 반도체 발광 소자를 기판에 조립하는 자가 조립 방식에 ACF/ACP를 채택하는 것은 불가능하다.
제1 실시예에 따르면, 반도체 발광 소자(150)에 본딩층이나 금속 범프가 구비될 필요가 없다. 즉, 제1 실시예에서는 자가 조립시 제1 조립 배선(321) 및 제2 조립 배선(322) 사이에 형성된 유전영동힘에 의해 미리 조립 홀(345) 내에 전도체(350)를 포집시킨 후, 상기 포집된 전도체(350) 상에 자성체 및 유전영동힘에 의해 반도체 발광 소자(150)를 조립한 후, 열을 가해 전도체(350)의 폴리머(3520)를 녹여 전도체(350)의 전도성 입자(3510)를 연결 전극으로서 반도체 발광 소자(150)의 제1 전극(154)과 제2 조립 배선(322)을 전기적으로 연결할 수 있다. 따라서 반도체 발광 소자(150)에 본딩층이나 금속 범프가 구비될 필요가 없어, 반도체 발광 소자(150)의 제조가 용이하고 제조 비용을 줄이고 제조 공정이 단순해질 수 있다. 또한, 반도체 발광 소자(150)에 본딩층이나 금속 범프가 구비될 필요가 없어, 반도체 발광 소자(150)의 두께가 줄어 디스플레이 장치(300)의 두께 및 무게를 줄일 수 있다.
제1 실시예에 따르면, 조립 홀(345) 내에서 반도체 발광 소자(150) 주위, 즉 반도체 발광 소자(150)와 기판(310) 사이뿐만 아니라 조립 홀(345)의 내측과 반도체 발광 소자(150)의 외측 사이에도 전도체(350)가 배치되어, 이 전도체(350)에 의해 반도체 발광 소자(150)가 제2 조립 배선(322), 제1 절연층(330) 및 격벽(340)에 단단하게 고정되므로 반도체 발광 소자(150)와 기판(310) 간의 본딩력이 강화될 뿐만 아니라 수율이 획기적으로 향상될 수 있다.
도 10 내지 도 14는 제1 실시예에 따른 디스플레이 제조 방법을 설명하는 도면이다.
도 7 및 도 10에 도시한 바와 같이, 챔버(1300)에 유체(2000)가 채워질 수 있다. 또한, 복수의 전도체(350)가 유체(2000)에 분산될 수 있다. 유체(2000)의 흐름에 따라 전도체(350)도 이동될 수 있다. 예컨대, 전도체(350)의 크기는 0.05㎛ 내지 10㎛일 수 있다.
전도성의 크기가 매우 작고 전도성의 표면을 구성하는 폴리머(3520)의 대전(surface charge)에의해 유체(2000) 속에서 균일하게 분포될 수 있다. 좀 더 균일하게 분포되도록 하기 위해, 1종 이상의 계면 활성제가 추가될 수 있다. 계면 활성제는 도데실 황산나트륨(sodium dodecyl sulfate), 과황산칼륨(potassium persulfate) 등일 수 있지만, 이에 대해서는 한정하지 않는다.
도 7 및 도 11에 도시한 바와 같이, 기판(310)을 유체(2000)에 접하거나 유체(2000)에 침지한 후, 제1 조립 배선(321)과 제2 조립 배선(322)에 소정의 교류 전압을 인가한 경우, 제1 조립 배선(321)과 제2 조립 배선(322) 사이에 유전영동힘이 형성될 수 있다. 이 유전영동힘에 의해 유체(2000) 속에 분산된 전도체(350) 중에서 조립 홀(345) 근처에 위치된 전도체(350)가 조립 홀(345) 내로 포집될 수 있다. 예컨대, 조립 홀(345) 내에 전도체(350)는 랜덤하게 포집될 수 있다. 예컨대, 유전영동힘을 제어하여 조립 홀(345) 내에 균일하게 전도체(350)가 포집될 수도 있다.
조립 홀(345) 내부가 유체(2000)에 접하고 있어, 조립 홀(345) 내에 포집되는 전도체(350)의 포집 위치 또한 유체(2000)의 흐름에 영향을 받을 수 있다. 조립 홀(345) 내에 포집되는 전도체(350)의 포집 위치가 조립 홀(345) 내부의 구조에 영향을 받을 수 있다. 유체(2000)의 흐름과 조립 홀(345) 내부의 구조에 의해 전도체(350)가 조립 홀(345)의 바닥부와 내측이 만나는 모서리 영역에 상대적으로 많이 포집될 수 있지만, 이에 대해서는 한정하지 않는다.
한편, 유체(2000) 속에 추가된 계면 활성제에 의해 유체(2000)의 표면 장력이 약해져, 조립 홀(345) 내에 보다 더 많은 전도체(350)가 포집될 수 있다.
도 7 및 도 12에 도시한 바와 같이, 복수의 반도체 발광 소자(150)를 유체(2000) 속에 투입한 후, 자성체(2100)가 기판(310)의 일측에 위치되어 기판(310)의 표면을 따라 이동될 수 있다. 도면에는 자성체(2100)가 기판(310)의 아래에 위치되는 것으로 도시되고 있지만, 기판(310)의 위, 즉 유체(2000) 위에 위치될 수도 있다.
자성체(2100)의 이동 전/후 또는 동시에 소정의 교류 전압이 기판(310)의 제1 조립 배선(321)과 제2 조립 배선(322)으로 공급되어 유전영동힘이 형성될 수 있다.
자성체(2100)의 이동에 의해 유체(2000) 속에 분산된 복수의 반도체 발광 소자(150)도 이동되고, 해당 조립 홀(345) 근처를 지나가는 반도체 발광 소자(150)가 유전영동힘에 의해 조립 홀(345)에 조립될 수 있다. 조립 홀(345) 내에서 반도체 발과 소자는 상기 포집된 전도체(350) 상에 위치될 수 있다.
반도체 발광 소자(150)가 조립된 후에도 지속적으로 전도체(350)가 조립 홀(345) 내로 포집될 수 있다. 이에 따라, 전도체(350)는 반도체 발광 소자(150) 아래뿐만 아니라 조립 홀(345)의 내측과 반도체 발광 소자(150)의 외측 사이에도 위치될 수 있다.
도 7 및 도 13에 도시한 바와 같이, 챔버(1300)에서 기판(310)을 꺼낸 후, 건조 공정을 수행하여 기판(310) 상의 유체(2000)를 제거할 수 있다.
도 15에 도시한 바와 같이, 조립 홀(345)의 바닥부 및 측면에 복수의 전도체(350)가 포집될 수 있다.
이후, 열을 가해 조립 홀(345) 내에 포집된 전도체(350)를 녹일 수 있다. 즉, 전도체(350)에서 전도성 입자(3510)를 둘러싸는 폴리머(3520)가 녹을 수 있다. 전도체(350)의 폴리머(3520)가 녹음으로써, 인접한 전도체(350)의 폴리머(3520)와 병합되어 일체화될 수 있다. 폴리머(3520)가 녹아 예컨대, 구형 전도체(350)인 경우 구형 전도체(350)들 사이의 빈 공간으로 채워질 수 있다.
예컨대, 열은 레이저를 이용하여 생성될 수 있다. 즉, 기판(310)의 아래에서 레이저가 기판(310)을 향해 조사될 수 있다. 레이저는 기판(310)을 통해 전도체(350)에 포커스될 수 있다. 이에 따라, 전도체(350)가 레이저의 조사에 의해 온도가 상승하여 녹을 수 있다. 예컨대, 레이저 조사에 의해 예컨대, 300℃ 미만의 온도의 열이 발생되고, 이 열에 의해 전도체(350)가 녹을 수 있다.
레이저 조사 이외에 질소 분위기에 이한 열 분해를 통해 전도체(350)가 녹을 수도 있다.
전도성 입자(3510)는 고체로서 크기에 있어서 변형이 일어나지 않지만, 폴리머(3520)는 녹아 중력에 의해 아래로 흘러내릴 수 있다. 따라서, 조립 홀(345)의 내측과 반도체 발광 소자(150)의 외측 사이의 제2 전도체(352)에서 일부 전도성 입자(352_1)는 폴리머(3520)의 상면 아래에 배치되는데 반해, 다른 전도성 입자(352_2)는 폴리머(3520)의 상면 상에 배치될 수 있다. 즉, 다른 전도성 입자, 즉 제2-2 전도성 입자(35_2)는 폴리머(3520)의 상며보다 높게 위치되는 것으로서, 폴리머(3520)의 상면으로부터 상부 방향으로 돌출될 수 있다.
한편, 폴리머(3520)가 녹아 복수의 전도체(350)의 폴리머(3520)끼리 서로 병합될 수 있다.
따라서, 서로 병합되어 일체화된 폴리머(3520)에 의해 반도체 발광 소자(150)의 하측은 제2 조립 배선(322)과 제1 절연층(330)에 부착되고 반도체 발광 소자(150)의 외측은 조립 홀(345)의 내측에 부착되므로, 반도체 발과 소자가 보다 단단하게 고정될 수 있어, 수율이 획기적으로 향상되고 신뢰성이 높아질 수 있다.
아울러, 반도체 발광 소자(150)와 제2 조립 배선(322) 사이에 위치된 제1 전도체(351)의 전도성 입자(3510)에 의해 반도체 발광 소자(150)의 제1 전극(154)과 제2 조립 배선(322)이 전기적으로 연결되어, 제2 조립 배선(322)이 전압을 공급하기 위한 제1 전극 배선으로 사용될 수 있다.
도 7 및 도 14에 도시한 바와 같이, 격벽(340) 상에 제2 절연층(360)이 형성되고, 제2 절연층(360)을 통해 제2 전극 배선(372)이 반도체 발광 소자(150)의 제2 전극(155)에 전기적으로 연결될 수 있다.
이상의 제조 방법에서는 먼저 전도체(350)가 포집된 후 반도체 발광 소자(150)가 조립되는 것으로 설명되었지만, 동일한 유전영동힘에 의해 전도체(350)의 포집과 반도체 발광 소자(150)의 조립이 동시에 이루어질 수도 있다.
이를 위해, 챔버(1300)의 유체(2000)에 복수의 전도체(350)와 복수의 반도체 발광 소자(150)가 분산될 수 있다. 제1 조립 배선(321)과 제2 조립 배선(322) 사이에 인가된 교류 전압에 의해 유전영동힘이 형성되고, 이 유전영동힘에 의해 조립 홀(345) 근처에 있는 전도체(350)가 조립 홀(345) 내로 포집될 수 있다. 제1 조립 배선(321)과 제2 조립 배선(322)에 교류 전압을 인가한 직후 자성체(2100)를 이동하여 복수의 반도체 발과 소자를 이동시킬 수 있다.
전도체(350)는 조립 홀(345) 근처에 있으므로, 유전영동힘에 의해 조립 홀(345) 근처의 전도체(350)가 곧바로 조립 홀(345) 내로 포집되는데 반해, 반도체 발과 소자(150)는 자성체(2100)에 의해 해당 조립 홀(345)로 이동되어야 하므로 시간이 다소 걸릴 수 있다. 따라서, 제1 조립 배선(321)과 제2 조립 배선(322)에 교류 전압을 인가함과 동시에 자성체(2100)를 이동하더라도, 조립 홀(345) 내에 먼저 전도체(350)가 포집된 후 반도체 발광 소자(150)가 조립될 수 있다.
[제2 실시예]
도 16은 제2 실시예에 따른 디스플레이 장치를 도시한 단면도이다.
제2 실시예는 조립 홀(345)의 내측과 반도체 발광 소자(150)의 외측 사이에 배치된 전도체(350)를 이용하여 제2 전극 배선(372)과 동일 층에 배치된 제1 전극 배선(371)과 전기적으로 연결하는 것을 제외하고 제1 실시예와 동일하다. 제2 실시예에서 제1 실시예와 동일한 구조, 형상 및/또는 기능을 갖는 구성 요소에 대해서는 동일한 도면 부호를 부여하고 상세한 설명은 생략한다.
도 16을 참조하면, 제2 실시예에 따른 디스플레이 장치(300A)는 기판(310), 격벽(340), 전도체(350), 반도체 발광 소자(150), 제2 절연층(360), 제1 전극 배선(371) 및 제2 전극 배선(372)을 포함할 수 있다. 제2 실시예에 따른 디스플레이 장치(300A)는 제1 조립 배선(321), 제2 조립 배선(322) 및 제1 절연층(330)을 포함할 수 있다.
전도체(350)는 제1 전도체(351), 제2 전도체(352) 및 제3 전도체(353)를 포함할 수 있다.
제1 전도체(351)는 조립 홀(345) 내에서 제2 조립 배선(322) 상에 위치된 전도체일 수 있다. 제2 전도체(352)는 조립 홀(345)의 내측에 위치된 전도체일 수 있다. 제3 전도체(353)는 조립 홀(345) 내에서 제1 조립 배선(321)에 대응하는 제1 절연층(330) 상에 위치된 전도체일 수 있다.
반도체 발광 소자(150)는 조립 홀(345) 내에서 전도체(350) 상에 배치될 수 있다. 이러한 경우, 제1 전도체(351)는 조립 홀(345) 내에서 반도체 발광 소자(150)의 제1 전극(154)의 제1 영역과 제2 조립 배선(322) 사이에 배치될 수 있다. 제2 전도체(352)는 조립 홀(345)의 내측과 반도체 발광 소자(150)의 외측 사이에 배치될 수 있다. 제3 전도체(353)는 조립 홀(345) 내에서 반도체 발광 소자(150)의 제1 전극(154)의 제2 영역과 제1 조립 배선(321)에 대응하는 제1 절연층(330) 사이에 배치될 수 있다.
열을 가해 제1 전도체(351), 제2 전도체(352) 및 제3 전도체(353)가 녹을 수 있다. 즉, 제1 전도체(351), 제2 전도체(352) 및 제3 전도체(353) 각각의 폴리머(3520)가 녹을 수 있다. 이에 따라, 제1 전도체(351), 제2 전도체(352) 및 제3 전도체(353) 각각에서 인접하는 전도성 입자(3510) 사이의 폴리머(3520)가 서로 병합되어 일체화될 수 있다. 이와 같이 녹은 폴리머(3520)는 자연적으로 경화되거나 경화 공정에 의해 고체로 변형될 수 있다.
조립 홀(345)의 내측과 반도체 발광 소자(150)의 외측 사이에는 복수의 제2 전도체(352)가 복수의 층으로 쌓여 있을 수 있다. 복수의 전도체(350)에 열이 가해지는 경우, 복수의 전도체(350) 각각의 폴리머(3520)가 녹아 중력에 의해 하부 방향으로 흘러내릴 수 있다. 이와 같이 흘러내린 폴리머(3520)에 의해 복수의 전도체(350) 사이의 빈 공간이 채워지고, 인접하는 전도성 입자(3510) 사이의 폴리머(3520)가 서로 병합되어 일체화될 수 있다.
한편, 전도성 입자(3510)는 고체로서 열에 의해 크기의 변형이 없다. 따라서, 하측 전도성 입자, 즉 제2-1 전도성 입자(352_1)는 상기 녹은 폴리머(3520)에 의해 매립되는데 반해, 상측 전도성 입자, 즉 제2-2 전도성 입자(35_2)는 상기 녹은 폴리머(3520)가 하부 방향으로 흘러 내리므로 폴리머(3520)에 의해 둘러싸이지 않을 수 있다. 다시 말해, 제2-2 전도성 입자(35_2)는 폴리머(3520)의 상면 상에 배치될 수 있다. 즉, 제2-2 전도성 입자(35_2)는 폴리머(3520)의 상면으로부터 상부 방향으로 돌출될 수 있다. 아울러, 제2 전도체(352)에서 제2-2 전도성 입자(35_2)는 서로 접촉되고 반도체 발광 소자(150)의 측부와 접촉될 수 있다.
실시예의 반도체 발광 소자(150)에서 제1 전극(154)으로부터 연장된 연장 전극(160)이 반도체 발광 소자(150)의 측부 상에 배치될 수 있다. 예컨대, 제1 도전형 반도체층(151)의 하면 상에 제1 전극(154)이 배치되고, 제1 전극(154)으로터 연장되어 제1 도전형 반도체층(151)의 측면의 일부 상에 연장 전극(160)이 배치될 수 있다.
연장 전극(160)은 제2 전도체(352)의 제2-2 전도성 입자(35_2)와의 접촉 면적을 확장하기 위해 구비될 수 있다. 예컨대, 연장 전극(160)은 활성층(152)과의 전기적인 쇼트를 방지하기 위해 활성층(152)으로부터 이격될 수 있다.
상술한 바와 같이, 열에 의해 복수의 제2 전도체(352) 각각의 폴리머(3520)가 녹아 폴리머(3520)가 하부 방향으로 흘러내릴 수 있다. 이때, 제2-2 전도성 입자(35_2)는 고체이므로, 중력에 의해 하부 방향으로 이동되다가, 제2-2 전도성 입자(35_2)가 서로 접촉될 때 이동이 멈춰질 수 있다. 따라서, 제2-1 전도성 입자(352_1) 및 제2-2 전도성 입자(35_2)는 서로 접촉되고 연장 전극(160)의 외측에 접촉될 수 있다. 예컨대, 연장 전극(160)은 제1 도전형 반도체층(151)의 측면의 둘레를 따라 배치될 수 있다. 이에 따라, 제2-1 전도성 입자(352_1)는 제1 도전형 반도체층(151)의 측면의 둘레를 따라 제1 도전형 반도체층(151)의 측면에 접촉될 수 있다. 따라서, 제2-1 전도성 입자(352_1)와 연장 전극(160) 간의 접촉 면적이 확장될 수 있다.
한편, 제1 도전형 반도체층(151)의 하면 상에 배치된 제1 전극(154)을 제1-1 전극이라 명명하고, 제1 도전형 반도체층(151)의 측면 상에 배치된 연장 전극(160)을 제1-2 전극이라 명명하며, 이들 제1-1 전극과 제1-2 전극을 통칭하여 제1 전극(154)이라 명명할 수도 있다.
제2 절연층(360)은 격벽(340)과 반도체 발광 소자(150) 상에 배치될 수 있다. 또한, 제2 절연층(360)은 조립 홀(345) 내에 배치될 수 있다. 즉, 제2 절연층(360)의 하면은 조립 홀(345) 내에서 제2 전도체(352)의 제2-2 전도성 입자(35_2)와 접할 수 있다.
조립 홀(345) 상에 배치된 제2 절연층(360)이 관통되도록 제1 컨택홀 및 제2 컨택홀이 형성될 수 있다. 제2 컨택홀은 제2 절연층(360)과 반도체 발광 소자(150)의 보호층(157)을 통해 형성될 수 있다. 예컨대, 제1 컨택홀을 통해 제2 전도체(352)의 제2-2 전도성 입자(35_2)가 외부에 노출될 수 있다. 예컨대, 제2 컨택홀을 통해 반도체 발광 소자(150)의 제2 전극(155)이 외부에 노출될 수 있다.
제1 전극 배선(371)은 제1 컨택홀을 통해 제2 전도체(352)의 제2-2 전도성 입자(35_2)에 접촉할 수 있다. 이에 따라, 제1 전극 배선(371)은 제2-2 전도성 입자(35_2)를 통해 반도체 발과 소자의 연장 전극(160)에 전기적으로 연결될 수 있다. 제2 전극 배선(372)은 제2 컨택홀을 통해 반도체 발광 소자(150)의 제2 전극(155)에 접촉할 수 있다. 이에 따라, 제2 전극 배선(372)은 반도체 발광 소자(150)의 제2 전극(155)에 전기적으로 연결될 수 있다. 따라서, 제1 전극 배선(371)과 제2 전극 배선(372)으로 소정의 전압이 인가되어, 반도체 발광 소자(150)에서 광이 생성될 수 있다.
상술한 바와 같이, 열에 의해 복수의 제2 전도체(352) 각각의 폴리머(3520)가 녹음으로써, 제2-2 전도성 입자(35_2)가 폴리머(3520)의 상면 상에 배치되어 자연적으로 외부에 노출되어 제1 전극 배선(371)을 제2-2 전도성 입자(35_2)와 접촉하기 위해 별도의 추가 공정이 필요하지 않아 공정 시간을 단축하고 공정이 단순할 수 있다.
예컨대, 제1 전극 배선(371)은 제2 조립 배선(322)과 수직으로 중첩되지 않을 수 있지만, 이에 대해서는 한정하지 않는다. 예컨대, 제1 전극 배선(371)은 제2 전극 배선(372)과 동일 면 상에 배치되므로, 제2 전극 배선(372)과의 레이아웃 설계에 방해되지 않는 범위 내에서 반도체 발광 소자(150)의 둘레에서 조립 홀(345)의 내측과 반도체 발광 소자(150)의 외측 사이에 제1 컨택홀을 통해 수직으로 배치될 수 있다.
한편, 제1 실시예와 달리, 제2 실시예에서 제1 조립 배선(321) 및 제2 조립 배선(322)은 서로 동일 면 상에 배치될 수 있다. 즉, 제1 조립 배선(321) 및 제2 조립 배선(322)은 기판(310) 상에 배치될 수 있다. 즉, 제1 조립 배선(321)과 제2 조립 배선(322)은 서로 평하게 배치될 수 있다.
제2 실시예에 따르면, 제1 조립 배선(321)과 제2 조립 배선(322)이 서로 평행하게 배치되므로, 자가 조립 시 제1 조립 배선(321)과 제2 조립 배선(322) 사이에 균일한 전기장이 생성되어 반도체 발광 소자(150)가 조립 홀(345)에 정 위치로 조립될 수 있다. 또한, 제1 조립 배선(321)과 제2 조립 배선(322)이 서로 평행하게 배치되므로, 디스플레이 장치(300A)의 두께를 줄일 수 있다.
제2 실시예에 따르면, 조립 홀(345) 내에서 반도체 발광 소자(150) 주위, 즉 반도체 발광 소자(150)와 기판(310) 사이뿐만 아니라 조립 홀(345)의 내측과 반도체 발광 소자(150)의 외측 사이에도 전도체(350)가 배치되어, 이 전도체(350)에 의해 반도체 발광 소자(150)가 제2 조립 배선(322), 제1 절연층(330) 및 격벽(340)에 단단하게 고정되므로 반도체 발광 소자(150)와 기판(310) 간의 본딩력이 강화될 뿐만 아니라 수율이 획기적으로 향상될 수 있다.
제2 실시예에 따르면, 조립 홀(345)의 내측과 반도체 발광 소자(150)의 외측 사이에 배치된 복수의 제2 전도체(352)를 이용하여 제1 전극 배선(371)이 반도체 발광 소자(150)와 전기적으로 연결되므로, 반도체 발광 소자(150)와 외부와의 전기적 연결이 용이할 수 있다.
[제3 실시예]
도 17은 제3 실시예에 따른 디스플레이 장치를 도시한 단면도이다.
제3 실시예는 제2 조립 배선(322) 상에 그루브(325)를 형성하는 것을 제외하고 제1 실시예와 동일하다. 따라서, 제3 실시예에서 제1 실시예와 동일한 구조, 형상 및/또는 기능을 갖는 구성 요소에 대해서는 동일한 도면 부호를 부여하고 상세한 설명은 생략한다.
도 17을 참조하면, 제3 실시예에 따른 디스플레이 장치(300B)는 기판(310), 격벽(340), 전도체(350), 반도체 발광 소자(150), 제2 절연층(360), 제2 전극 배선(372)을 포함할 수 있다. 제3 실시예에 따른 디스플레이 장치(300B)는 제1 조립 배선(321), 제2 조립 배선(322) 및 제1 절연층(330)을 포함할 수 있다.
전도체(350)는 제1 전도체(351), 제2 전도체(352) 및 제3 전도체(353)를 포함할 수 있다.
제1 전도체(351)는 조립 홀(345) 내에서 제2 조립 배선(322) 상에 위치된 전도체일 수 있다. 제2 전도체(352)는 조립 홀(345)의 내측에 위치된 전도체일 수 있다. 제3 전도체(353)는 조립 홀(345) 내에서 제1 조립 배선(321)에 대응하는 제1 절연층(330) 상에 위치된 전도체일 수 있다.
반도체 발광 소자(150)는 조립 홀(345) 내에서 전도체(350) 상에 배치될 수 있다. 이러한 경우, 제1 전도체(351)는 조립 홀(345) 내에서 반도체 발광 소자(150)의 제1 전극(154)의 제1 영역과 제2 조립 배선(322) 사이에 배치될 수 있다. 제2 전도체(352)는 조립 홀(345)의 내측과 반도체 발광 소자(150)의 외측 사이에 배치될 수 있다. 제3 전도체(353)는 조립 홀(345) 내에서 반도체 발광 소자(150)의 제1 전극(154)의 제2 영역과 제1 조립 배선(321)에 대응하는 제1 절연층(330) 사이에 배치될 수 있다.
열을 가해 제1 전도체(351), 제2 전도체(352) 및 제3 전도체(353)가 녹을 수 있다. 즉, 제1 전도체(351), 제2 전도체(352) 및 제3 전도체(353) 각각의 폴리머(3520)가 녹을 수 있다. 이에 따라, 제1 전도체(351), 제2 전도체(352) 및 제3 전도체(353) 각각에서 인접하는 전도성 입자(3510) 사이의 폴리머(3520)가 서로 병합되어 일체화될 수 있다. 이와 같이 녹은 폴리머(3520)는 자연적으로 경화되거나 경화 공정에 의해 고체로 변형될 수 있다.
한편, 제2 조립 배선(322)은 제1 전극 배선(371)으로 사용될 수 있다. 자가 조립시 제2 조립 배선(322)은 제1 조립 배선(321)과 함께 유전영동힘을 형성하여, 조립 홀(345) 내에 복수의 전도체(350)가 포집되도록 하고, 반도체 발광 소자(150)가 조립 홀(345)에 조립되도록 할 수 있다. 디스플레이 장치(300B)의 제조가 완성되면, 제2 조립 배선(322)은 제2 전극 배선(372)과 함께 소정의 전압을 반도체 발광 소자(150)로 공급하여, 해당 반도체 발광 소자(150)에서 광이 생성될 수 있다. 디스플레이 장치(300B)에 구비된 복수의 반도체 발광 소자(150) 각각에 의해 서로 상이한 컬러 광이 생성되어, 컬러 영상이 디스플레이될 수 있다.
제2 실시예에 따르면, 제2 조립 배선(322) 상에 적어도 하나 이상의 그루브(groove)가 형성될 수 있다. 그루브(325)는 리세스, 덴트(dent), 홈, 홀(hole), 스크래치(scratch) 등으로 불릴 수 있다.
그루브(325)는 원형이거나 스트라이프(stripe) 형상을 가질 수 있지만, 이에 대해서는 한정하지 않는다.
이와 같이, 제2 조립 배선(322) 상에 형성된 그루브(325)로 인해, 도 18에 도시한 바와 같이, 자가 조립시 챔버(도 7의 1300)에 유체(2000)에 분산된 전도체(350)를 포집하는 공정이 수행될 때, 기판(310) 상의 제1 조립 배선(321)과 제2 조립 배선(322) 사이에 형성된 유전영동힘에 의해 유체(2000)에 분산된 전도체(350)가 보다 많이 제2 조립 배선(322) 상의 그루브(325)로 포집될 수 있다. 즉, 그루브(325) 속으로 포집된 전도체(350)는 그루브(325)에 고정되어 외부로 이탈되기 어려우므로, 조립 홀(345) 내에서 제1 조립 배선(321)에 대응하는 제1 절연층(330) 상보다 제2 조립 배선(322) 상에 더 많은 전도체(350)가 포집될 수 있다.
이와 같이 보다 많이 포집된 전도체(350)에 열이 가해져, 전도체(350)의 폴리머(3520)가 녹아 인접하는 전도성 입자(3510) 사이의 폴리머(3520)가 병합되어 일체화되고 전도성 입자(3510)가 서로 접촉될 수 있다. 이러한 경우, 반도체 발광 소자(150)와 제2 조립 배선(322) 사이에 보다 많은 전도성 입자(3510)가 배치되어, 전도성 입자(3510)와 제2 조립 배선(322) 및 반도체 발광 소자(150)의 제1 전극(154) 각각의 접촉 면적이 확장될 수 있다. 이에 따라, 제2 조립 배선(322)과 복수의 전도체(350) 각각의 전도성 입자(3510)를 통해 반도체 발광 소자(150)에 전류가 보다 원활하게 흘러 광 효율이 증가되어 휘도 향상이 가능하다.
제3 실시예에 따르면, 반도체 발광 소자(150)에 본딩층이나 금속 범프가 구비될 필요가 없다. 즉, 제1 실시예에서는 자가 조립시 제1 조립 배선(321) 및 제2 조립 배선(322) 사이에 형성된 유전영동힘에 의해 미리 조립 홀(345) 내에 전도체(350)를 포집시킨 후, 상기 포집된 전도체(350) 상에 자성체 및 유전영동힘에 의해 반도체 발광 소자(150)를 조립한 후, 열을 가해 전도체(350)의 폴리머(3520)를 녹여 전도체(350)의 전도성 입자(3510)를 연결 전극으로서 반도체 발광 소자(150)의 제1 전극(154)과 제2 조립 배선(322)을 전기적으로 연결할 수 있다. 따라서 반도체 발광 소자(150)에 본딩층이나 금속 범프가 구비될 필요가 없어, 반도체 발광 소자(150)의 제조가 용이하고 제조 비용을 줄이고 제조 공정이 단순해질 수 있다. 또한, 반도체 발광 소자(150)에 본딩층이나 금속 범프가 구비될 필요가 없어, 반도체 발광 소자(150)의 두께가 줄어 디스플레이 장치(300B)의 두께 및 무게를 줄일 수 있다.
제3 실시예에 따르면, 조립 홀(345) 내에서 반도체 발광 소자(150) 주위, 즉 반도체 발광 소자(150)와 기판(310) 사이뿐만 아니라 조립 홀(345)의 내측과 반도체 발광 소자(150)의 외측 사이에도 전도체(350)가 배치되어, 이 전도체(350)에 의해 반도체 발광 소자(150)가 제2 조립 배선(322), 제1 절연층(330) 및 격벽(340)에 단단하게 고정되므로 반도체 발광 소자(150)와 기판(310) 간의 본딩력이 강화될 뿐만 아니라 수율이 획기적으로 향상될 수 있다.
제3 실시예에 따르면, 제2 조립 배선(322) 상에 적어도 하나 이상의 그루브(325)를 형성하여 보다 많은 전도체(350)가 제2 조립 배선(322) 상에 포집되도록 하여, 반도체 발광 소자(150)에 전류가 보다 원활하게 흐르도록 하여 광 효율의 향상을 통해 휘도를 향상시킬 수 있다.
[제4 실시예]
도 19는 제4 실시예에 따른 디스플레이 장치를 도시한 단면도이다.
제4 실시예는 제1 실시예와 제2 실시예의 병합일 수 있다. 따라서, 제4 실시예에서 제1 실시예 및/또는 제2 실시예와 동일한 구조, 형상 및/또는 기능을 갖는 구성 요소에 대해서는 동일한 도면 부호를 부여하고 상세한 설명은 생략한다.
도 19를 참조하면, 제4 실시예에 따른 디스플레이 장치(300C)는 기판(310), 격벽(340), 전도체(350), 반도체 발광 소자(150), 제2 절연층(360), 제1 전극 배선(371) 및 제2 전극 배선(372)을 포함할 수 있다. 제2 실시예에 따른 디스플레이 장치(300C)는 제1 조립 배선(321), 제2 조립 배선(322) 및 제1 절연층(330)을 포함할 수 있다.
전도체(350)는 제1 전도체(351), 제2 전도체(352) 및 제2 전도체(352)를 포함할 수 있다.
예컨대, 제1 전도체(351)의 전도성 입자(3510)를 통해 제2 조립 배선(322)이 반도체 발광 소자(150)의 제1 전극(154)에 전기적으로 연결될 수 있다. 이때, 제2 조립 배선(322)은 제1 전극 배선(371)으로 사용될 수 있다.
예컨대, 제2 전도체(352)의 전도성 입자(3510), 제2-1 전도성 입자(352_1) 및 제2-2 전도성 입자(35_2)를 통해 제1 전극 배선(371)이 반도체 발광 소자(150)의 연장 전극(160)에 전기적으로 연결될 수 있다. 연장 전극(160)은 제1 전극(154)으로부터 연장 형성될 수 있다. 예컨대, 제1 전극 배선(371)과 제2 조립 배선(322)은 전기적으로 연결될 수 있다.
예컨대, 연장 전극(160)은 제1 도전형 반도체층(151)의 측면의 둘레를 따라 배치될 수 있다. 이에 따라, 제2-1 전도성 입자(352_1)는 제1 도전형 반도체층(151)의 측면의 둘레를 따라 제1 도전형 반도체층(151)의 측면에 접촉될 수 있다. 따라서, 제2-1 전도성 입자(352_1)와 연장 전극(160) 간의 접촉 면적이 확장될 수 있다.
예컨대, 격벽(340)을 통해 제2 전극 배선(372)이 반도체 발광 소자(150)의 제2 전극(155)에 전기적으로 연결될 수 있다.
예컨대, 음(-)의 전압이 제2 조립 배선(322) 및 제1 전극 배선(371)을 통해 반도체 발광 소자(150)의 제1 도전형 반도체층(151)으로 공급되고, 양(+)의 전압이 제2 전극 배선(372)을 통해 반도체 발광 소자(150)의 제2 도전형 반도체층(153)으로 공급될 수 있다. 특히, 음(-)의 전압이 반도체 발광 소자(150)의 제2 도전형 반도체층(153)의 하면뿐만 아니라 측면으로 공급되므로, 제1 도전형 반도체층(151)에서 더욱 더 넓은 영역에서 더욱 더 많은 캐리어, 즉 전자가 생성되어 활성층(152)으로 주입되므로, 활성층(152)에서 생성되는 광량이 증가되어 광 효율이 향상될 수 있다. 광 효율의 향상으로 인해 휘도가 증가될 수 있다.
제4 실시예에 따르면, 반도체 발광 소자(150)에 본딩층이나 금속 범프가 구비될 필요가 없다. 즉, 제1 실시예에서는 자가 조립시 제1 조립 배선(321) 및 제2 조립 배선(322) 사이에 형성된 유전영동힘에 의해 미리 조립 홀(345) 내에 전도체(350)를 포집시킨 후, 상기 포집된 전도체(350) 상에 자성체 및 유전영동힘에 의해 반도체 발광 소자(150)를 조립한 후, 열을 가해 전도체(350)의 폴리머(3520)를 녹여 전도체(350)의 전도성 입자(3510)를 연결 전극으로서 반도체 발광 소자(150)의 제1 전극(154)과 제2 조립 배선(322)을 전기적으로 연결할 수 있다. 따라서 반도체 발광 소자(150)에 본딩층이나 금속 범프가 구비될 필요가 없어, 반도체 발광 소자(150)의 제조가 용이하고 제조 비용을 줄이고 제조 공정이 단순해질 수 있다. 또한, 반도체 발광 소자(150)에 본딩층이나 금속 범프가 구비될 필요가 없어, 반도체 발광 소자(150)의 두께가 줄어 디스플레이 장치(300C)의 두께 및 무게를 줄일 수 있다.
제4 실시예에 따르면, 조립 홀(345) 내에서 반도체 발광 소자(150) 주위, 즉 반도체 발광 소자(150)와 기판(310) 사이뿐만 아니라 조립 홀(345)의 내측과 반도체 발광 소자(150)의 외측 사이에도 전도체(350)가 배치되어, 이 전도체(350)에 의해 반도체 발광 소자(150)가 제2 조립 배선(322), 제1 절연층(330) 및 격벽(340)에 단단하게 고정되므로 반도체 발광 소자(150)와 기판(310) 간의 본딩력이 강화될 뿐만 아니라 수율이 획기적으로 향상될 수 있다.
제4 실시예에 따르면, 제2 조립 배선(322)뿐만 아니라 제1 전극 배선(371)으로 음(-)의 전압이 반도체 발광 소자(150)의 제1 도전형 반도체층(151)의 하면 및 측면으로 공급됨으로써, 광 효율이 향상되어 휘도 향상이 가능하다.
상기의 상세한 설명은 모든 면에서 제한적으로 해석되어서는 아니되고 예시적인 것으로 고려되어야 한다. 실시예의 범위는 첨부된 청구항의 합리적 해석에 의해 결정되어야 하고, 실시예의 등가적 범위 내에서의 모든 변경은 실시예의 범위에 포함된다.
실시예는 영상이나 정보를 디스플레이하는 디스플레이 분야에 채택될 수 있다.
실시예는 반도체 발광 소자를 이용하여 영상이나 정보를 디스플레이하는 디스플레이 분야에 채택될 수 있다. 반도체 발광 소자는 마이크로급 반도체 발광 소자나 나노급 반도체 발광 소자일 수 있다.

Claims (18)

  1. 기판;
    상기 기판 상에 배치되고, 조립 홀을 갖는 격벽;
    상기 조립 홀에 전도체; 및
    상기 조립 홀 내에서 상기 전도체 상에 배치되는 반도체 발광 소자를 포함하고,
    상기 전도체는,
    상기 기판과 상기 반도체 발광 소자 사이에 제1 전도체; 및
    상기 조립 홀의 내측과 상기 반도체 발광 소자의 외측 사이에 제2 전도체를 포함하는
    디스플레이 장치.
  2. 제1항에 있어서,
    상기 전도체는,
    복수의 전도성 입자; 및
    상기 복수의 전도성 입자 각각을 둘러싸는 폴리머를 포함하는
    디스플레이 장치.
  3. 제2항에 있어서,
    상기 제1 전도체 및 상기 제2 전도체 각각에서 서로 인접한 전도성 입자 사이의 폴리머는 서로 병합되는
    디스플레이 장치.
  4. 제3항에 있어서,
    상기 제2 전도체의 상기 복수의 전도성 입자 중 제2-1 전도성 입자는 상기 병합된 폴리머의 상면 아래에 배치되는
    디스플레이 장치.
  5. 제4항에 있어서,
    상기 제2 전도체에서 상기 복수의 전도성 입자 중 제2-2 전도성 입자는 상기 병합된 폴리머의 상면 상에 배치되는
    디스플레이 장치.
  6. 제5항에 있어서,
    제2-1 전도성 입자 및 상기 제2-2 전도성 입자는 서로 접촉되는
    디스플레이 장치.
  7. 제5항에 있어서,
    상기 격벽 상에 제2 절연층;
    상기 제2 절연층을 통해 상기 반도체 발광 소자의 상측에 전기적으로 연결되는 제2 전극 배선을 포함하는
    디스플레이 장치.
  8. 제7항에 있어서,
    상기 반도체 발광 소자는,
    발광부;
    상기 발광부를 둘러싸는 보호층;
    상기 발광부의 하측에 접하는 제1 전극; 및
    상기 발광부의 상측에 접하는 제2 전극을 포함하고,
    상기 제1 전극의 일부는 상기 발광부의 하측 둘레를 따라 배치되는 연장 전극을 포함하는
    디스플레이 장치.
  9. 제8항에 있어서,
    상기 제2-1 전도성 입자는 상기 연장 전극과 접하는
    디스플레이 장치.
  10. 제7항에 있어서,
    상기 제2 절연층을 통해 상기 제2-2 전도성 입자에 접하는 제1 전극 배선을 포함하는
    디스플레이 장치.
  11. 제10항에 있어서,
    상기 기판의 제1 영역 상에 제1 조립 배선;
    상기 기판의 제2 영역 상에 제2 조립 배선;
    상기 기판 상에 제1 절연층을 포함하는
    디스플레이 장치.
  12. 제11항에 있어서,
    상기 제1 전극 배선은 상기 제2 조립 배선과 전기적으로 연결되는
    디스플레이 장치.
  13. 제12항에 있어서,
    상기 제1 전극 배선은,
    상기 제2 조립 배선과 수직으로 중첩되지 않는
    디스플레이 장치.
  14. 제11항에 있어서,
    상기 제2 조립 배선은 제1 전극 배선이고,
    상기 제1 전극 배선은 상기 제1 전도체를 통해 상기 반도체 발광 소자의 하측에 전기적으로 연결되는
    디스플레이 장치.
  15. 제11항에 있어서,
    상기 제2 조립 배선 상에 복수의 그루브를 포함하고,
    상기 제1 전도체의 상기 복수의 전도성 입자가 상기 복수의 그루브에 배치되는
    디스플레이 장치.
  16. 제15항에 있어서,
    상기 제1 절연층과 상기 반도체 발광 소자 사이에 제3 전도체를 포함하고,
    상기 제3 전도체에서 서로 인접한 전도성 입자 사이의 폴리머는 서로 병합되는
    디스플레이 장치.
  17. 제16항에 있어서,
    상기 제1 전도체의 상기 복수의 전도성 입자가 상기 제3 전도체의 상기 복수의 전도성 입자보다 많은
    디스플레이 장치.
  18. 제1항에 있어서,
    상기 반도체 발광 소자는,
    마이크로급 발광 소자 및 나노급 발광 소자 중 하나를 포함하는
    디스플레이 장치.
PCT/KR2021/009792 2021-07-28 2021-07-28 디스플레이 장치 WO2023008604A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020247003484A KR20240032890A (ko) 2021-07-28 2021-07-28 디스플레이 장치
US18/578,185 US20240332473A1 (en) 2021-07-28 2021-07-28 Display device
PCT/KR2021/009792 WO2023008604A1 (ko) 2021-07-28 2021-07-28 디스플레이 장치

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/KR2021/009792 WO2023008604A1 (ko) 2021-07-28 2021-07-28 디스플레이 장치

Publications (1)

Publication Number Publication Date
WO2023008604A1 true WO2023008604A1 (ko) 2023-02-02

Family

ID=85086867

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/009792 WO2023008604A1 (ko) 2021-07-28 2021-07-28 디스플레이 장치

Country Status (3)

Country Link
US (1) US20240332473A1 (ko)
KR (1) KR20240032890A (ko)
WO (1) WO2023008604A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150046253A (ko) * 2012-09-24 2015-04-29 럭스뷰 테크놀로지 코포레이션 마이크로 소자 안정화 포스트
KR20170026959A (ko) * 2015-08-31 2017-03-09 삼성디스플레이 주식회사 표시장치 및 표시장치의 제조방법
KR20190104277A (ko) * 2019-08-20 2019-09-09 엘지전자 주식회사 마이크로 led를 이용한 디스플레이 장치 및 이의 제조 방법
KR20200009899A (ko) * 2018-07-20 2020-01-30 엘지디스플레이 주식회사 스트레쳐블 표시 장치
KR20200026775A (ko) * 2019-11-28 2020-03-11 엘지전자 주식회사 반도체 발광소자를 이용한 디스플레이 장치 및 이의 제조방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150046253A (ko) * 2012-09-24 2015-04-29 럭스뷰 테크놀로지 코포레이션 마이크로 소자 안정화 포스트
KR20170026959A (ko) * 2015-08-31 2017-03-09 삼성디스플레이 주식회사 표시장치 및 표시장치의 제조방법
KR20200009899A (ko) * 2018-07-20 2020-01-30 엘지디스플레이 주식회사 스트레쳐블 표시 장치
KR20190104277A (ko) * 2019-08-20 2019-09-09 엘지전자 주식회사 마이크로 led를 이용한 디스플레이 장치 및 이의 제조 방법
KR20200026775A (ko) * 2019-11-28 2020-03-11 엘지전자 주식회사 반도체 발광소자를 이용한 디스플레이 장치 및 이의 제조방법

Also Published As

Publication number Publication date
KR20240032890A (ko) 2024-03-12
US20240332473A1 (en) 2024-10-03

Similar Documents

Publication Publication Date Title
WO2020230989A1 (ko) 표시 장치 및 그의 제조 방법
WO2020050467A1 (ko) 발광 장치 및 이를 구비하는 표시 장치
WO2021002490A1 (ko) 마이크로 led를 이용한 디스플레이 장치 및 이의 제조 방법
WO2020027401A1 (ko) 발광 장치 및 이를 구비한 표시 장치
WO2022097785A1 (ko) 발광 소자 및 이를 포함하는 디스플레이 장치
WO2017034268A1 (ko) 반도체 발광 소자를 이용한 디스플레이 장치
WO2020105809A1 (ko) 화소, 이를 구비하는 표시 장치, 및 그의 제조 방법
WO2021132789A1 (ko) 발광 소자를 이용한 디스플레이의 제조 장치 및 그 제조 방법
WO2021118181A1 (ko) 발광 소자 및 이를 포함하는 표시 장치
WO2022025365A1 (ko) 표시 장치
WO2021025243A1 (ko) 반도체 발광 소자를 이용한 디스플레이 장치
WO2021002598A1 (ko) 발광 소자, 이의 제조 방법 및 표시 장치
WO2022149633A1 (ko) 자가조립장치 및 자가조립방법
WO2023003049A1 (ko) 디스플레이 장치
WO2022119018A1 (ko) 디스플레이 장치
WO2021157787A1 (ko) 색 변환 기판, 및 이를 포함하는 표시 장치
WO2021020714A1 (ko) 쌍극자 정렬 장치, 쌍극자 정렬 방법 및 표시 장치의 제조 방법
WO2023008604A1 (ko) 디스플레이 장치
WO2022004958A1 (ko) 표시 장치
WO2022097787A1 (ko) 잉크젯 헤드 장치
WO2023277215A1 (ko) 디스플레이 장치
WO2020251070A1 (ko) 마이크로 led를 이용한 디스플레이 장치 및 이의 제조 방법
WO2023013801A1 (ko) 디스플레이 장치
WO2022149663A1 (ko) 표시 장치
WO2022203099A1 (ko) 발광 소자 패키지 및 디스플레이 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21951974

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18578185

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20247003484

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21951974

Country of ref document: EP

Kind code of ref document: A1