WO2016080712A1 - 수평배열 어셈블리용 초소형 led 소자, 이의 제조방법 및 이를 포함하는 수평배열 어셈블리 - Google Patents
수평배열 어셈블리용 초소형 led 소자, 이의 제조방법 및 이를 포함하는 수평배열 어셈블리 Download PDFInfo
- Publication number
- WO2016080712A1 WO2016080712A1 PCT/KR2015/012252 KR2015012252W WO2016080712A1 WO 2016080712 A1 WO2016080712 A1 WO 2016080712A1 KR 2015012252 W KR2015012252 W KR 2015012252W WO 2016080712 A1 WO2016080712 A1 WO 2016080712A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- semiconductor layer
- electrode
- conductive semiconductor
- led device
- layer
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 50
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 31
- 239000004065 semiconductor Substances 0.000 claims description 224
- 229910052751 metal Inorganic materials 0.000 claims description 136
- 239000002184 metal Substances 0.000 claims description 136
- 239000000758 substrate Substances 0.000 claims description 102
- 238000005530 etching Methods 0.000 claims description 26
- 238000009713 electroplating Methods 0.000 claims description 17
- 229920000642 polymer Polymers 0.000 claims description 14
- 238000007747 plating Methods 0.000 claims description 9
- 239000004005 microsphere Substances 0.000 claims description 7
- 239000002077 nanosphere Substances 0.000 claims description 7
- 238000001338 self-assembly Methods 0.000 claims description 6
- 238000010030 laminating Methods 0.000 claims description 3
- 239000010410 layer Substances 0.000 description 306
- 239000010408 film Substances 0.000 description 69
- 230000005684 electric field Effects 0.000 description 23
- 239000000463 material Substances 0.000 description 15
- 239000000243 solution Substances 0.000 description 15
- 239000011248 coating agent Substances 0.000 description 12
- 238000000576 coating method Methods 0.000 description 12
- 230000008569 process Effects 0.000 description 11
- 239000002904 solvent Substances 0.000 description 10
- 239000010931 gold Substances 0.000 description 7
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 6
- 238000004380 ashing Methods 0.000 description 6
- 238000001312 dry etching Methods 0.000 description 6
- 229910002704 AlGaN Inorganic materials 0.000 description 5
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 5
- 239000002245 particle Substances 0.000 description 5
- 239000002356 single layer Substances 0.000 description 5
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 4
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 4
- 230000008901 benefit Effects 0.000 description 4
- 239000011651 chromium Substances 0.000 description 4
- 238000007796 conventional method Methods 0.000 description 4
- 239000002019 doping agent Substances 0.000 description 4
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 4
- 229910052737 gold Inorganic materials 0.000 description 4
- 150000004767 nitrides Chemical class 0.000 description 4
- 238000001020 plasma etching Methods 0.000 description 4
- 239000010936 titanium Substances 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- 238000001039 wet etching Methods 0.000 description 4
- -1 InGaN Inorganic materials 0.000 description 3
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 3
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 3
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 238000005229 chemical vapour deposition Methods 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 3
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 3
- 229910052709 silver Inorganic materials 0.000 description 3
- 239000004332 silver Substances 0.000 description 3
- 229910052719 titanium Inorganic materials 0.000 description 3
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 2
- 229910052581 Si3N4 Inorganic materials 0.000 description 2
- 229910004298 SiO 2 Inorganic materials 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 238000000231 atomic layer deposition Methods 0.000 description 2
- 239000000969 carrier Substances 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 229910052804 chromium Inorganic materials 0.000 description 2
- 238000005253 cladding Methods 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 230000020169 heat generation Effects 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 239000011810 insulating material Substances 0.000 description 2
- 238000009413 insulation Methods 0.000 description 2
- 238000001459 lithography Methods 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 238000005240 physical vapour deposition Methods 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 229910052594 sapphire Inorganic materials 0.000 description 2
- 239000010980 sapphire Substances 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 235000012239 silicon dioxide Nutrition 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229920000742 Cotton Polymers 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 1
- JMASRVWKEDWRBT-UHFFFAOYSA-N Gallium nitride Chemical compound [Ga]#N JMASRVWKEDWRBT-UHFFFAOYSA-N 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- 229910010413 TiO 2 Inorganic materials 0.000 description 1
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 238000000429 assembly Methods 0.000 description 1
- 230000000712 assembly Effects 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 229920001940 conductive polymer Polymers 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000003795 desorption Methods 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000007772 electrode material Substances 0.000 description 1
- 238000004070 electrodeposition Methods 0.000 description 1
- 239000008151 electrolyte solution Substances 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 229920005570 flexible polymer Polymers 0.000 description 1
- 238000007667 floating Methods 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 229910052732 germanium Inorganic materials 0.000 description 1
- CJNBYAVZURUTKZ-UHFFFAOYSA-N hafnium(iv) oxide Chemical compound O=[Hf]=O CJNBYAVZURUTKZ-UHFFFAOYSA-N 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 1
- RHZWSUVWRRXEJF-UHFFFAOYSA-N indium tin Chemical compound [In].[Sn] RHZWSUVWRRXEJF-UHFFFAOYSA-N 0.000 description 1
- 238000009616 inductively coupled plasma Methods 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 238000001465 metallisation Methods 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000001127 nanoimprint lithography Methods 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- SIWVEOZUMHYXCS-UHFFFAOYSA-N oxo(oxoyttriooxy)yttrium Chemical compound O=[Y]O[Y]=O SIWVEOZUMHYXCS-UHFFFAOYSA-N 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 238000000059 patterning Methods 0.000 description 1
- 238000000206 photolithography Methods 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 210000000813 small intestine Anatomy 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 230000007480 spreading Effects 0.000 description 1
- 238000003892 spreading Methods 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 238000002207 thermal evaporation Methods 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- 239000012780 transparent material Substances 0.000 description 1
- JLTRXTDYQLMHGR-UHFFFAOYSA-N trimethylaluminium Chemical compound C[Al](C)C JLTRXTDYQLMHGR-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/48—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
- H01L33/62—Arrangements for conducting electric current to or from the semiconductor body, e.g. lead-frames, wire-bonds or solder balls
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/005—Processes
- H01L33/0062—Processes for devices with an active region comprising only III-V compounds
- H01L33/0075—Processes for devices with an active region comprising only III-V compounds comprising nitride compounds
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/02—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F21—LIGHTING
- F21S—NON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
- F21S4/00—Lighting devices or systems using a string or strip of light sources
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L25/00—Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
- H01L25/03—Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
- H01L25/04—Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
- H01L25/075—Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L25/00—Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
- H01L25/03—Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
- H01L25/04—Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
- H01L25/075—Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00
- H01L25/0753—Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00 the devices being arranged next to each other
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/005—Processes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/02—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
- H01L33/04—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction
- H01L33/06—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction within the light emitting region, e.g. quantum confinement structure or tunnel barrier
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/02—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
- H01L33/08—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a plurality of light emitting regions, e.g. laterally discontinuous light emitting layer or photoluminescent region integrated within the semiconductor body
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/02—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
- H01L33/20—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular shape, e.g. curved or truncated substrate
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/02—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
- H01L33/20—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular shape, e.g. curved or truncated substrate
- H01L33/24—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular shape, e.g. curved or truncated substrate of the light emitting region, e.g. non-planar junction
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/36—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
- H01L33/38—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes with a particular shape
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/44—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the coatings, e.g. passivation layer or anti-reflective coating
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/48—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82B—NANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
- B82B3/00—Manufacture or treatment of nanostructures by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
- B82B3/0042—Assembling discrete nanostructures into nanostructural devices
- B82B3/0052—Aligning two or more elements
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/93—Batch processes
- H01L2224/95—Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
- H01L2224/95053—Bonding environment
- H01L2224/95085—Bonding environment being a liquid, e.g. for fluidic self-assembly
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2933/00—Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
- H01L2933/0008—Processes
- H01L2933/0016—Processes relating to electrodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2933/00—Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
- H01L2933/0008—Processes
- H01L2933/0025—Processes relating to coatings
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2933/00—Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
- H01L2933/0008—Processes
- H01L2933/0033—Processes relating to semiconductor body packages
- H01L2933/0066—Processes relating to semiconductor body packages relating to arrangements for conducting electric current to or from the semiconductor body
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/02—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
- H01L33/26—Materials of the light emitting region
- H01L33/30—Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table
- H01L33/32—Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table containing nitrogen
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/36—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
- H01L33/38—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes with a particular shape
- H01L33/385—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes with a particular shape the electrode extending at least partially onto a side surface of the semiconductor body
Definitions
- the present invention relates to an ultra-small LED device for a horizontal array assembly, a method of manufacturing the same and a horizontal array assembly including the same, and more particularly, in the manufacture of a horizontal array assembly connected to the electrode line by the ultra-small LED device lying in the longitudinal direction
- the number of micro LEDs connected to the can be significantly increased, the arrangement of the devices is easier, and the electrical arrangement between the electrode and the device is very good, so that the horizontal array assembly can be realized to express a remarkably good amount of light.
- the present invention relates to a small LED device for assembly, a method of manufacturing the same, and a horizontal array assembly including the same.
- LED has been actively developed in 1992 by Nakamura of Nichia, Japan, by applying a low-temperature GaN compound complete layer to fuse high-quality monocrystalline GaN nitride semiconductors.
- An LED is a semiconductor having a structure in which n-type semiconductor crystals in which a plurality of carriers are electrons and p-type semiconductor crystals in which a plurality of carriers are holes are bonded to each other by using characteristics of a compound semiconductor. It is a semiconductor device that is converted to light and expressed.
- Korean Patent Laid-Open Publication No. 2009-0121743 discloses a light emitting diode manufacturing method and a light emitting diode manufactured thereby.
- LED semiconductors are called light revolutions because of their high light conversion efficiency, very low energy consumption, semi-permanent and environmentally friendly life.
- compound semiconductor technology has led to the development of high-brightness red, orange, green, blue, and white LEDs, which have been used in many fields such as traffic lights, cell phones, automotive headlights, outdoor billboards, LCD back light units, and indoor and outdoor lighting. It is being applied to and is being actively researched at home and abroad.
- GaN-based compound semiconductors having a wide bandgap are materials used in the manufacture of LED semiconductors emitting light in the green, blue and ultraviolet regions, and many studies have been conducted since white LED devices can be manufactured using blue LED devices. Is being done.
- micro LED devices in which the size of LEDs is manufactured in nano or micro units
- researches for utilizing such micro LED devices in lighting and displays are continuing.
- the focus of attention in these studies is on electrodes that can be applied to micro LED devices, their purpose, and electrode placement for reducing the space occupied by electrodes, and how to mount micro LEDs on the electrodes. .
- the part of the method of mounting the ultra-small LED device on the disposed electrode still has a very difficult difficulty to arrange and mount the ultra-small LED device on the electrode according to the size constraints of the ultra-small LED device. This is because the ultra-small LED device is nanoscale or microscale and cannot be placed and mounted in the desired electrode area by human hands.
- micro LED elements included in the unit electrode region it is very difficult to control the number of micro LED elements included in the unit electrode region, the positional relationship between the micro LED elements and the electrodes, etc., by mounting a micro LED element in the target electrode region as desired.
- the number of LED devices included in the unit area is limited and it is difficult to obtain an excellent amount of light.
- not all micro LED devices connected to two different electrodes can emit light without a defect such as an electrical short, there is a problem that it is more difficult to obtain a desired amount of light.
- the present invention has been made to solve the above-described problems, the first problem to be solved by the present invention can be easily mounted in the longitudinal direction of the small LED device, the alignment of the device to be mounted This improvement can significantly increase the number of LED devices included per unit area of the electrode line, and to provide a micro LED device for a horizontal array assembly and a method of manufacturing the same, which can remarkably improve the electrical connection between the LED device and the electrode.
- the second problem to be solved by the present invention is that the number of ultra-small LED device to be mounted per unit area of the electrode line through the ultra-small LED device according to the present invention significantly increased, the electrode is excellent in electrical connection with the electrode of the ultra-small LED device mounted It is to provide a horizontal array assembly that can emit a desired light amount when the power is applied to express the desired amount of light.
- the present invention provides a compact LED for a horizontal array assembly including a first conductive semiconductor layer, an active layer formed on the first conductive semiconductor layer, and a second conductive semiconductor layer formed on the active layer.
- a device comprising: an insulating film covering at least an outer surface of an active layer of an outer surface of a first conductive semiconductor layer, an active layer, and a second conductive semiconductor layer; And a metal cap formed on at least one end side of the micro LED device, wherein the metal cap extends from one end of the device to cover a part of the device side surface, and an outer surface of the metal cap is a curved surface at least in part.
- any one of the first conductive semiconductor layer and the second conductive semiconductor layer includes at least one n-type semiconductor layer, the other conductive semiconductor layer at least a p-type semiconductor layer It can contain one.
- the cross-sectional shape of the direction perpendicular to the semiconductor layer for the ultra-small LED device may be a dumbbell or cotton swab.
- the metal cap surface area may be 1: 1.1 to 10.0 with respect to the cross-sectional area of one end of the ultra-small LED device.
- the ultra-small LED device has a length of 100nm ⁇ 10 ⁇ m, the diameter of the LED device including the first conductive semiconductor layer, the active layer and the second conductive semiconductor layer is 100nm ⁇ 5 ⁇ m Can be.
- the metal cap may cover a portion of the outer surface of the insulating film formed on the outer surface of the ultra-small LED device.
- the present invention (1) including a first conductive semiconductor layer, an active layer and a second conductive semiconductor layer on the substrate so that the diameter of the LED element has a nano or micro size Etching the stacked laminates; (2) forming an insulating film on an outer surface including the first conductive semiconductor layer, the active layer, and the second conductive semiconductor layer in the etched laminate; And (3) removing the insulating film to expose a portion of the outer surface including the upper surface of the second conductive semiconductor layer, forming a metal cap on the exposed second outer surface of the conductive semiconductor layer, and then removing the substrate. It provides a micro LED device manufacturing method for a horizontal array assembly comprising.
- the step (1) comprises the steps of 1-1) including a first conductive semiconductor layer, an active layer and a second conductive semiconductor layer sequentially stacked on the substrate to produce a laminate; 1-2) forming an insulating layer and a metal mask layer on the second conductive semiconductor layer; 1-3) forming a polymer layer on the metal mask layer and forming a pattern on the polymer layer at nano or micro intervals; And 1-4) etching the nano or micro intervals according to the pattern, including the first conductive semiconductor layer, the active layer, and the second conductive semiconductor layer. It may include.
- step (1) comprises the steps of: 1-1) sequentially laminating a first conductive semiconductor layer, an active layer, and a second conductive semiconductor layer on a substrate; 1-2) forming an insulating layer and a metal mask layer on the second conductive semiconductor layer; 1-3) forming nanospheres or microsphere monolayers on the metal mask layer and performing self-assembly; And 1-4) etching the nano or micro intervals according to the pattern, including the first conductive semiconductor layer, the active layer, and the second conductive semiconductor layer. It may include.
- the step (3) is a step 3-1) removing the insulating film to expose a part of the outer surface including a part of the outer surface including the upper surface of the second conductive semiconductor layer. ; 3-2) plating the metal cap on the exposed outer surface of the second conductive semiconductor layer by immersing the laminate in an electrolytic plating solution and applying power to the laminate; And 3-3) removing the substrate from the laminate.
- the step (3) is 3-1) to remove the insulating film to expose a part of the outer surface including a part of the outer surface including the upper surface of the second conductive semiconductor layer.
- any one of the first conductive semiconductor layer and the second conductive semiconductor layer includes at least one n-type semiconductor layer, the other conductive semiconductor layer is a p-type semiconductor layer It may include at least one.
- the present invention to solve the second problem described above, the base substrate; An electrode line including a first electrode formed on the base substrate and a second electrode formed on the base substrate spaced apart from the first electrode; And a plurality of micro LED devices according to the present invention connected to the first electrode and the second electrode at the same time.
- the horizontal array assembly is a first ultra-small LED is connected to the upper surface of one of the first electrode and the second electrode of the device, the other side is connected to the upper surface of the other electrode device;
- a second micro LED device having one side of the device connected to one side of the first electrode and the other side of the device connected to one side of the second electrode facing one side of the first electrode;
- a third micro LED device having one side connected to the top surface of the first electrode or the second electrode and the other side connected to the side of the other electrode. It may include any one or more of.
- the plurality of ultra-small LED device is one side of the device is connected to one side of the first electrode, the other side of the second electrode of the second electrode facing one side of the first electrode It is connected to one side may be interposed by forming a multilayer between two different electrodes.
- each layer, region, pattern or structure may comprise a substrate, each layer, region, pattern of "on”, “top”, “top”, “under”, “On”, “top”, “top”, “under”, “bottom”, “bottom” is “directly” when described as being formed under “bottom” and “bottom” And both “indirectly” meaning.
- the “first electrode” and the “second electrode” may be further included according to an electrode region in which an ultra-small LED may be mounted or a method of disposing an electrode on a base substrate together with the region. It includes all of the electrode regions.
- connection means that one side of the micro LED device is in contact with the first electrode and the other side is in contact with the second electrode.
- electrically connected refers to a state in which the micro LED device may emit light when the micro LED device is inserted and connected between two different electrodes and power is applied to the electrode line.
- end side of the device is meant to include the end of one side and a part of the outer surface of the device that extends to the end in the longitudinal direction of the device.
- the “horizontal array assembly” is connected to the electrodes in a form in which a micro LED device connected to two different electrodes formed on the base substrate is laid horizontally with respect to the base substrate in the longitudinal direction of the device. Means the assembly to be implemented. An example thereof is shown in FIG. 1, and the length direction of the device means a direction perpendicular to each layer included in the ultra-small LED device.
- an ultra-small LED device may be easily mounted in a longitudinal direction in an electrode region, and the alignment of devices to be mounted may be improved, thereby significantly increasing the number of LED devices included per unit area of an electrode line.
- the number of micro LEDs mounted per unit area of the electrode line is significantly increased by using such micro LEDs, and the electrical connection with the electrodes of the micro LEDs mounted is excellent. By emitting light, the desired amount of light can be expressed, and the heat generation is reduced, so that the durability of the LED device is increased, the use cycle is extended, and the number of the light emitting devices is increased to implement a horizontal array assembly having excellent luminous efficiency. It can be applied to various fields such as lighting and display.
- FIG. 1 is a partial perspective view of a horizontal assembly using a conventional micro LED device.
- FIG. 2 is an exploded perspective view of a micro LED device including an insulating film.
- FIG 3 is a partial perspective view of a horizontal assembly including an ultra-small LED device including an insulating film.
- FIG. 4 is a perspective view of a micro LED device positioned between two electrodes in which an electric field is formed.
- FIG. 5 is a perspective view of a micro LED device according to a preferred embodiment of the present invention.
- FIG. 6 is a longitudinal cross-sectional view of a micro LED device according to a preferred embodiment of the present invention.
- FIG. 7 is a longitudinal cross-sectional view of a swab-shaped micro LED device according to a preferred embodiment of the present invention.
- FIG. 8 is a longitudinal cross-sectional view of a dumbbell-shaped micro LED device according to a preferred embodiment of the present invention.
- FIG. 9 is a cross-sectional view of a horizontal assembly according to a preferred embodiment of the present invention.
- FIG. 10 is a perspective view showing a manufacturing process of the ultra-small LED device according to an embodiment of the present invention.
- FIG. 11 is a perspective view showing a manufacturing process of a micro LED device according to an embodiment of the present invention.
- FIG. 12 is a perspective view of a horizontal assembly according to a preferred embodiment of the present invention.
- FIG. 13 is a perspective view of a horizontal assembly according to a preferred embodiment of the present invention.
- FIG. 14 is a perspective view illustrating a manufacturing process of a horizontal array assembly according to a preferred embodiment of the present invention.
- Fig. 15 is a plan view showing a conventional micro LED device self-aligning under an electric field.
- 16 is a plan view illustrating a micro LED device self-aligning under an electric field according to a preferred embodiment of the present invention.
- 17 is a perspective view of a conventional vertical assembly.
- the ultra-small LED device has a problem that it is very difficult to arrange and mount the electrode on the electrode because it cannot be placed and mounted on the target electrode area by human hands.
- the present inventors apply a power supply to an electrode line containing a solution containing an ultra-small LED element, and when the micro-LED element is self-aligned under the influence of an electric field, both ends of the element are connected to two different electrodes. It has been found that the array assembly can be implemented, but using the conventional micro LED device, the self-alignment of the micro LED device may be insufficient due to the electric field formed in the electrode line to which the power is applied, and the LED device that is not self-aligned may be disposed on the electrode line.
- FIG. 1 is a partial perspective view of a horizontal assembly using a conventional micro LED device, and FIG. 1 is spaced apart from the first electrode 10 and the first electrode 10 formed on the base substrate 1.
- the second electrode 20 formed on 1) and the micro LED device 30 connected to the first electrode 10 and the second electrode 20 are shown.
- the micro LED device 30 is connected to two different electrodes 10 and 20, but is connected to the first electrode 10 to the active layer 30 b of the micro LED device 30. 10) and as the electric short occurs when the power is applied to the second electrode 20, such a micro LED device 30 has a problem that can not emit light.
- FIG. 2 is an exploded perspective view of the ultra-small LED device 30 including the insulating coating.
- the ultra-small LED device of FIG. 2A includes an active layer 30b formed on the first conductive semiconductor layer 30a and an upper portion of the active layer 30b.
- An insulating coating 30f covering the entire second outer surface of the second conductive semiconductor layer 30c and the active layer 30b and covering only part of the first conductive semiconductor layer 30a and the second conductive semiconductor layer 30c is shown. .
- the ultra-small LED device of FIG. 2B includes an active layer 30b formed on the first conductive semiconductor layer 30a, a second conductive semiconductor layer 30c formed on the active layer 30b, and the first conductive semiconductor layer 30a.
- the first electrode layer 30d / the second electrode layer 30e and the insulating film 30f formed on the lower and upper portions of the second conductive semiconductor layer 30c, respectively, are formed of the first conductive semiconductor layer 30a, the active layer 30b, The outer surface of the second conductive semiconductor layer 30c is covered.
- FIG. 3 is a partial perspective view of a horizontal array assembly including an ultra-small LED device including an insulating film
- FIG. 3 is a view of the first electrodes 11, 12, 13, and the first electrode formed on the base substrate 1.
- the second electrodes 21 and 22 formed on the base substrate 1 and spaced apart from each other (11, 12, 13) and the micro LED device 32 connected to the first electrode 10 and the second electrode 20, 33, 34, 35).
- the A LED device 32, the B LED device 33, and the D LED device 35 have an electrode layer or a conductive semiconductor layer at both ends of the device electrically connected to the electrode directly.
- the C LED device 34 has only one side 32d of the device directly in contact with the first electrode 12, and the other side 33e is not directly in contact with the second electrode 22. You can see that you can't connect.
- the distance between two different electrodes, the length of an ultra-small LED device, and the thickness conditions of both ends of the device where the insulating film is not coated on the outer surface of the device must be coordination to realize a horizontal array assembly that can be achieved by electrical connection.
- the above conditions are those that require fine control of nano or micro units, and there is a problem in that it is very difficult to actually implement the desired horizontal array assembly.
- the ultra-small LED element is self-aligned by an electric field between two different electrodes and is connected to the two electrodes at the same time.
- the ultra-small LED element as shown in FIG. 2 is an area in which charge can be charged due to the insulation film (the insulation film is not coated). As the surface area of the exposed portion is significantly less, there may be a problem that the alignment is not properly due to the poor self-alignment.
- FIG. 4 is a perspective view of an ultra-small LED device positioned between two electrodes having an electric field, and the first electrode layer 30d of the ultra-small LED device is formed by an electric field formed by the first electrode 10 and the second electrode 20.
- the micro LED device may be connected to the first electrode and the second electrode.
- the surface area of the exposed portion of the micro LED device without the insulating coating is limited, there is a problem that the self-alignment of the micro LED device by the electric field is very poor, so that the micro LED device cannot be aligned and connected to the electrode as desired. .
- the thickness of the electrode layer (or the conductive semiconductor layer) and the device diameter must be increased, which reduces the number of micro LED devices that can be included in the unit electrode area. have.
- the ultra-small LED device is A metal cap extending from one end of the device and extending from the one end to cover a portion of the side surface of the device, wherein an outer surface of the metal cap has at least a portion of a curved surface, and the metal cap includes at least one of the micro LED devices. It has been sought to solve the above-mentioned problems by providing a micro LED device for a horizontal array assembly, characterized in that formed on the end side.
- the ultra-small LED device can be easily mounted in the longitudinal direction in the desired electrode region, and the alignment of the devices to be mounted can be improved, thereby significantly increasing the number of LED devices included per unit area of the electrode line.
- the electrical connection between the LED element and the electrode can be significantly improved.
- 'up', 'down', 'up', 'low', 'upper' and 'lower' refer to the vertical up and down directions based on each layer included in the ultra-small LED device. Means.
- FIG. 5 is a perspective view of an ultra-small LED device according to a preferred embodiment of the present invention.
- FIG. 5A illustrates an active layer 50b formed on the first conductive semiconductor layer 50a and a second formed on the active layer 50b.
- An insulating film 50f covering the outer surfaces of the conductive semiconductor layer 50c, the conductive semiconductor layers 50a and 50c, and the active layer 50b, and a metal cap formed at one end side in the direction of the second conductive semiconductor layer 50c of the device. (50e) is shown.
- 5B illustrates an active layer 50b formed on the first conductive semiconductor layer 50a, a second conductive semiconductor layer 50c formed on the active layer 50b, conductive semiconductor layers 50a and 50c, and an active layer 50b.
- the insulating film 50f which covers the outer surface of the (), and the metal caps 50d and 50e formed on both end sides of the device are shown.
- the conductive semiconductor layer may be used without limitation in the case of a conductive semiconductor layer included in a conventional LED device used for lighting, display, and the like.
- any one of the first conductive semiconductor layer and the second conductive semiconductor layer includes at least one n-type semiconductor layer, the other conductive semiconductor layer at least a p-type semiconductor layer It can contain one.
- the n-type semiconductor layer may have InxAlyGa1-x-yN (0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1, 0 ⁇ x + y ⁇ 1). At least one of a semiconductor material having a compositional formula, for example, InAlGaN, GaN, AlGaN, InGaN, AlN, InN, or the like may be selected, and a first conductive dopant (eg, Si, Ge, Sn, etc.) may be doped. According to a preferred embodiment of the present invention, the thickness of the first conductive semiconductor layer may be 1.5 to 5 ⁇ m, but is not limited thereto.
- the p-type semiconductor layer may be formed of InxAlyGa1-x-yN (0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1, 0 ⁇ x + y ⁇ 1). At least one of a semiconductor material having a compositional formula of, for example, InAlGaN, GaN, AlGaN, InGaN, AlN, InN, or the like may be selected, and a second conductive dopant (eg, Mg) may be doped. According to a preferred embodiment of the present invention, the thickness of the second conductive semiconductor layer may be 0.08 ⁇ 0.25 ⁇ m, but is not limited thereto.
- the active layer 50b is formed above the first conductive semiconductor layer 50a and below the second conductive semiconductor layer 50c and may be formed as a single or multiple quantum well structure.
- the active layer may be used without limitation in the case of the active layer included in a conventional LED device used for lighting, display, and the like.
- a cladding layer (not shown) doped with a conductive dopant may be formed on and / or under the active layer 50b, and the cladding layer doped with the conductive dopant may be formed of an AlGaN layer or an InAlGaN layer.
- materials such as AlGaN and AlInGaN may also be used as the active layer 50b.
- the thickness of the active layer may be 0.05 to 0.25 ⁇ m, but is not limited thereto.
- the first conductive semiconductor layer 50a, the active layer 50b, and the second conductive semiconductor layer 50c described above may be included as minimum components of the light emitting structure, and different phosphor layers, active layers, It may further include a semiconductor layer and / or an electrode layer.
- the insulating film 50f is formed to cover at least the outer surface of the active layer among the outer surfaces of the first conductive semiconductor layer, the active layer, and the second conductive semiconductor layer, and the power source is directly outside the element of the active layer 50f portion. Even if applied to the surface (for example, the active layer is in contact with the electrode), the active layer 50f is protected by the insulating film 50f, thereby preventing the short-circuit of the ultra-small LED device. In addition, it is possible to prevent damage to the semiconductor outer surface that may occur due to the collision between the devices during the self-alignment by the electric field formed between the two different electrodes, the micro LED device can prevent the durability degradation of the micro LED device.
- the insulating film prevents the metal cap described later from being formed on the entire outer surface of the device including the conductive semiconductor layer and the active layer, and at the same time, the metal cap is formed to have a wide surface area in various shapes on one or both ends of the device. It is in charge of the functions that help.
- the insulating film 50f is preferably silicon nitride (Si 3 N 4 ), silicon dioxide (SiO 2 ), aluminum oxide (Al 2 O 3 ), hafnium oxide (HfO 2 ), yttrium oxide (Y 2 O 3 ), and It may include any one or more of titanium dioxide (TiO 2 ), and more preferably consists of the above components, but may be transparent, but is not limited thereto.
- TiO 2 titanium dioxide
- the thickness of the insulating film may be 5 nm to 50 nm, but is not limited thereto.
- the metal cap covers not only the end of the one end side of the micro LED device but also a portion of the side portion where the metal cap extends to the end to further increase the surface area of the end of the device, wherein at least a part of the outer surface of the metal cap It has a curved shape.
- FIG. 6 is a longitudinal cross-sectional view of the ultra-small LED device according to the preferred embodiment of the present invention, and shows a metal cap 51e formed at one end of the device. More specifically, the metal cap (51e) is covered with the extended to the side surface portion (A 2) leading to one end of the side edge of the element (A 1) and the end (A 1), said metal cap (51e) of the second semiconductor The outer side surface of the layer 51c is covered but is not formed to cover the insulating film 51f.
- the cross section outline of the metal cap 51e includes a curved line, and thus the outer surface of the metal cap 51e includes a curved surface.
- the above-described insulating film 50f is formed to cover the outer surface of the small intestine including the outer surface of the active layer may be formed to cover a portion of the outer surface of the insulating film.
- FIG. 7 is a longitudinal cross-sectional view of a micro LED device according to another exemplary embodiment of the present invention, and shows metal caps 52e, 53e, 54e, and 55e formed at one end of the device.
- the inner surfaces of the metal caps 52e and 53e of FIGS. 7A and 7B cover the outer surfaces S 1 and S 2 of the insulating film facing the insulating films 52f and 53f, and the second semiconductor layer 52c.
- the upper surface (end) of 53c is covered.
- the cross-sectional outlines of the metal caps 52e and 53e of FIGS. 7A and 7B include curved lines, and thus the outer surface of the metal caps includes curved surfaces.
- the curved surface may be formed over the entire area of the metal cap 54e as in the small LED device of FIG. 7C, and may be formed in a partial region of the metal cap 55e as in the small LED device of FIG. 7D. More specifically, the ultra-small LED device of FIG. 7D shows that a partial region including the diagonal direction of the device in the longitudinal section is the curved surface R.
- At least a part of the outer surface of the metal cap is a curved surface according to the present invention, and preferably, the partial region may be a region through which a diagonal imaginary extension line (l in FIG. 7D) passes in a longitudinal cross section of the ultra-small LED device.
- the imaginary extension line 1 passes through the curved surface R of the metal cap 55e.
- the micro LED device is perpendicular to the two different electrodes when the small LED device is self-aligned and connected to the electrode under an electric field.
- the outer surface of the metal cap may be the entire area of the outer surface as shown in Figure 7a to 7c.
- the metal cap may be formed on both end sides of the ultra-small LED device.
- FIG. 8 is a longitudinal cross-sectional view of a micro LED device according to a preferred embodiment of the present invention
- FIG. 8A is a bottom surface (end) of the first conductive semiconductor layer 56a of the micro LED device and a side surface connected to the bottom surface.
- the top surface (the end) and the top of the first metal cap 55d and the second semiconductor layer 56c having at least a portion of the outer surface of the insulating film 56f and having a curved surface.
- the second metal cap 56e is formed by covering the side surface that extends to the surface but not covering the outer surface of the insulating coating 56f, and at least a portion of the outer surface of the metal cap is curved.
- FIG. 8B illustrates a first metal cap 57d facing the lower surface of the first conductive semiconductor layer 57a of the ultra-small LED device, covering a portion of the insulating film 57f, and having at least a partial area of the outer surface curved.
- a second metal cap 57e facing the upper surface of the second semiconductor layer 57c, covering a part of the insulating film 57f, and having at least a partial region of the outer surface thereof as a curved surface.
- the micro LED device is illustrated in FIG. 5A (or FIG. 6).
- a cross-sectional shape in a direction perpendicular to the semiconductor layer as shown in FIG. 7 may be a swab shape, and a cross-sectional shape in a direction perpendicular to the semiconductor layer as shown in FIG. 5B (or FIG. 8) may be a dumbbell shape.
- the surface area of the area that can be polarized under an electric field in a conventional LED device is significantly increased, so that more positive or negative charges are charged on the surface of the metal cap. It is possible to improve the self-alignment on the electrode assembly of the ultra-small LED device and at the same time have an advantage that can be more easily aligned. Accordingly, the area ratio of the device end cross-sectional area and the metal cap surface area at one end of the ultra-small LED device may be 1: 1.1 to 10.0, preferably 1.1 to 5, and even more preferably 1.1 to 3 days. Can be.
- the metal cap may be There may be a problem in that it is difficult to implement a very small LED due to a significant increase in the long axis direction and / or a short axis direction of the device, and the volume of one LED device may increase, thereby increasing the number of the small LED devices included in the limited electrode region.
- FIG. 9 is a cross-sectional view of a horizontal array assembly according to an exemplary embodiment of the present invention, and spaced apart from the first electrodes 14 and 15 and the first electrodes 14 and 15 formed on the base substrate 1.
- the micro LEDs 36 and 37 are connected to the second electrode 24 formed on the base substrate 1.
- the electrode layer or the semiconductor layer 36d of one side is in direct contact with the first electrode 14, whereas the electrode layer or the semiconductor layer 36e of the other side is the second. Since it is not in direct contact with the electrode 24, it cannot be electrically connected.
- a process of adjusting and matching the conditions such as the distance between two different electrodes 14 and 24, the length of the ultra-small LED device 36, and the length of the portion 36d where the insulating film is not coated is required. Do.
- matching all these conditions in nano or micro scale horizontal array assemblies presents a very difficult problem.
- the element 37 including the metal caps 37d and 37e according to the present invention among the ultra-small LED elements of FIG. 9 has two different electrodes without matching all conditions due to the metal caps 37d and 37e formed at both ends. It can be seen that it can be electrically connected to (15, 24) more easily.
- the metal caps 50d and 50e are gold (Au), copper (Cu), silver (Ag), nickel (Ni), cobalt (Co), platinum (Pt), chromium (Cr), titanium (Ti), aluminum It may be a metal of any one of (Al), nickel (Ni) and palladium (Pd), an oxide thereof, or an alloy of two or more metals.
- the metal cap materials at each end side may be the same or different.
- the use of a micro LED device according to a preferred embodiment of the present invention is the use of a horizontal array assembly. That is, the device is lying on the ground with respect to the device length direction in the direction perpendicular to each semiconductor layer of the micro LED device, and is suitable for an assembly in which both end sides of the device are respectively connected to two different electrodes. May not be the use of an assembly of vertical structure that is mounted upright and mounted three-dimensionally on an electrode in the longitudinal direction. In detail, FIG.
- FIG. 17 is a perspective view of a conventional vertical structure assembly, and includes a first electrode 510 formed on a base substrate 500, a second electrode 520 formed on a vertical upper portion of the first electrode, and the first electrode.
- the ultra-small LED device 530 interposed three-dimensionally upright in the longitudinal direction of the device between the second electrode and the second electrode.
- it is actually very difficult to connect a single micro LED device manufactured separately in a longitudinal direction.
- the ultra-small LED device according to the present invention may be more suitable for a horizontal assembly which is self-aligned under the influence of an electric field and connected to two different electrodes horizontally with respect to the ground.
- the micro LED device according to the preferred embodiment of the present invention may be manufactured by the manufacturing method described below.
- the manufacturing method is not limited thereto.
- the ultra-small LED device (1) is sequentially stacked including a first conductive semiconductor layer, an active layer and a second conductive semiconductor layer on the substrate so that the diameter of the LED device has a nano or micro size Etching the stacked laminate; (2) forming an insulating film on an outer surface including the first conductive semiconductor layer, the active layer, and the second conductive semiconductor layer in the etched laminate; And (3) removing the insulating film to expose a portion of the outer surface including the upper surface of the second conductive semiconductor layer, forming a metal cap on the exposed second outer surface of the conductive semiconductor layer, and then removing the substrate. It can be prepared to include.
- step (1) etching the laminate stacked sequentially, including the first conductive semiconductor layer, the active layer and the second conductive semiconductor layer on the substrate so that the diameter of the LED device has a nano or micro size; Do this.
- FIG. 10 is a perspective view illustrating a manufacturing process of a micro LED device according to an embodiment of the present invention.
- FIG. 10A illustrates a first conductive semiconductor layer 210 and an active layer 220 sequentially stacked on a substrate 200.
- the second conductive semiconductor layer 230 At least one of the first conductive semiconductor layer and the second conductive semiconductor layer may include at least one n-type semiconductor layer, and the other conductive semiconductor layer may include at least one p-type semiconductor layer.
- the substrate 200 may include a sapphire substrate (Al 2 O 3 ) and a transparent substrate such as glass.
- the substrate 200 may be selected from the group consisting of GaN, SiC, ZnO, Si, GaP and GaAs, conductive substrate, and the like.
- An uneven pattern may be formed on an upper surface of the substrate 200.
- the nitride semiconductor is grown on the substrate 200, and the growth equipment includes an electron beam evaporator, a physical vapor deposition (PVD), a chemical vapor deposition (CVD), a plasma laser deposition (PLD), and a dual-type thermal evaporator.
- the growth equipment includes an electron beam evaporator, a physical vapor deposition (PVD), a chemical vapor deposition (CVD), a plasma laser deposition (PLD), and a dual-type thermal evaporator.
- PVD physical vapor deposition
- CVD chemical vapor deposition
- PLD plasma laser deposition
- a dual-type thermal evaporator can be formed by sputtering, metal organic chemical vapor deposition (MOCVD), and the like, but is not limited thereto.
- a buffer layer (not shown) and / or an undoped semiconductor layer (not shown) may be formed on the substrate 200.
- the buffer layer may be formed of at least one of GaN, InN, AlN, InGaN, AlGaN, InAlGaN, and AlInN as a layer for reducing a difference in lattice constant from the substrate 200.
- the undoped semiconductor layer may be implemented as an undoped GaN layer, and serve as a substrate on which a nitride semiconductor is grown.
- the buffer layer and the undoped semiconductor layer may form only one layer, or both layers may or may not be formed.
- the thickness of the substrate may be 400 to 1500 ⁇ m, but is not limited thereto.
- first conductive semiconductor layer 210 the active layer 220, and the second conductive semiconductor layer 230 that are sequentially included and stacked on the substrate 200 are provided in the above-described preferred embodiment of the present invention.
- the etching process is performed such that the diameter of the LED device has a nano or micro size with respect to the laminates sequentially stacked on the substrate.
- 1-1) sequentially stacked on a substrate including a first conductive semiconductor layer, an active layer and a second conductive semiconductor layer; 1-2) forming an insulating layer and a metal mask layer on the second conductive semiconductor layer; 1-3) forming nanospheres or microsphere monolayers on the metal mask layer and performing self-assembly; And 1-4) etching the nano or micro intervals according to the pattern, including the first conductive semiconductor layer, the active layer, and the second conductive semiconductor layer. It may be performed including.
- FIG. 10B illustrates an insulating layer 240 and a metal mask layer 250 sequentially formed on the second conductive semiconductor layer 230.
- the insulating layer 240 may serve as a mask for the continuous etching of the second conductive semiconductor layer, the active layer, and the first conductive semiconductor layer, and may use an oxide or a nitride, and as a non-limiting example, silicon An oxide (SiO E or (SiO x ) and / or silicon nitride (Si 3 N 4 or SiN x ) may be used, but is not limited thereto.
- the thickness of the insulating layer is 0.5. But may not be limited to 1.5 ⁇ m.
- the metal mask layer 250 formed on the insulating layer 240 serves as a mask layer for etching, and may use a metal that is commonly used, and as a non-limiting example, chromium ( Cr) metal may be used, but is not limited thereto.
- the thickness of the metal mask layer may be 30 to 150 nm, but is not limited thereto.
- nanospheres or microspheres monolayers 260 may be formed on the metal mask layer 250 and self-assembly may be performed.
- FIG. 10C illustrates a cross-sectional perspective view of a nano sphere or micro sphere monolayer film 260 formed on the metal mask layer 250 of the present invention.
- the nano sphere or micro sphere monolayer film 260 is formed to serve as a mask for etching the metal mask layer 250.
- the method for forming the sphere particles may use the self-assembly of the sphere. In order to form a complete structural arrangement by self-assembly of the spheres, the spheres are sent at a constant speed on the surface of the water to self-assemble.
- the spheres formed while spreading in water are small and irregular, they are arranged regularly on the metal layer by applying additional energy and surfactant to form a large, regular array of spheres and floating a sphere of spheres over the metal mask layer 250.
- a spear monolayer film can be formed.
- the diameter of the sphere particles can be selectively used according to the desired diameter of the ultra-small LED device to be produced, preferably polystyrene spheres, silica spheres and the like having a diameter of 50 ⁇ 3000nm, but is not limited thereto.
- the step 1-4) may include etching the nano or micro intervals according to the pattern, including the first conductive semiconductor layer, the active layer, and the second conductive semiconductor layer.
- FIG. 10D to 10F illustrate a patterning process for etching nano or micro intervals
- FIG. 10D illustrates a cross-sectional perspective view of a nanosphere or microsphere monolayer film 260 formed on a metal mask layer after an ashing process.
- the spacing of the spheres may be spaced at intervals in which the desired diameter of the LED device may be realized, and more preferably, the spacing may be 50 to 3000 nm.
- the ashing process may be achieved through an ashing process of a conventional spear monolayer film, and preferably, may be performed through oxygen (O 2 ) -based reactive ion ashing and plasma ashing.
- FIG. 10E illustrates a cross-sectional perspective view in which the metal mask layer is etched 250 'using spear particles as a mask
- FIG. 10F illustrates etching using the metal mask layer 250' in which the spear particles 260 'are removed and etched.
- the insulating layer 240 ' Thereafter, the first conductive semiconductor layer, the active layer, and the second conductive semiconductor layer may be etched to a desired depth using the etched insulating layer 240 'as a mask as shown in FIG. 10G, and then the insulating layer 240' is removed.
- the etched laminate as shown in Figure 10h can be prepared.
- the removal of the etch process and the sphere particles / metal mask layer / insulating layer of Figure 10e to 10g may be by a conventional etching process, dry etching or wet etching may be performed alone or in combination.
- the etching process may be a dry etching method such as reactive ion etching (RIE) or inductively coupled plasma reactive ion etching (ICP-RIE).
- RIE reactive ion etching
- ICP-RIE inductively coupled plasma reactive ion etching
- the dry etching method is capable of unidirectional etching and is suitable for forming such a pattern.
- the wet etching method is an isotropic etching, the etching is performed in all directions, but the dry etching method can be etched in the depth direction to form a hole, the size and spacing of the holes in a desired pattern Can be formed.
- Cl 2 , O 2, or the like may be used as an etching gas capable of etching the metal mask.
- the step (1) is 1-1) including a first conductive semiconductor layer, an active layer and a second conductive semiconductor layer sequentially stacked on the substrate to manufacture a laminate Making; 1-2) forming an insulating layer and a metal mask layer on the second conductive semiconductor layer; 1-3) forming a polymer layer on the metal mask layer and forming a pattern on the polymer layer at nano or micro intervals; 1-4) etching the nano or micro intervals according to the pattern, including the first conductive semiconductor layer, the active layer, and the second conductive semiconductor layer; And 1-5) removing the insulating layer, the metal mask layer, and the polymer layer.
- a conventional polymer layer that can be used for conventional lithography, etc. is formed on the metal mask layer, and photolithography and e-beam are formed on the polymer layer. It may be achieved by forming a pattern at nano or micro intervals through lithography or nano imprint lithography and then dry or wet etching it and removing the polymer layer, metal mask layer and insulating layer.
- step (2) forming an insulating film on the outer surface including the first conductive semiconductor layer, the active layer and the second conductive semiconductor layer in the etched laminate.
- FIG. 10I illustrates a laminate in which an outer surface of the etched laminate is coated with an insulating coating 270.
- the coating of the insulating film may be a method of coating or dipping an insulating material on the outer surface of the etched laminate, but is not limited thereto.
- the material that may be used as the insulating film may preferably include any one or more selected from the group consisting of SiO 2 , Si 3 N 4 , Al 2 O 3, and TiO 2 , but is not limited thereto.
- this insulating material may form an insulating film on the outer surface of the etched laminate through ALD (atomic layer deposition) method, trimethyl aluminum (HMA) and H 2 O source can be supplied in the form of a pulse to form a thin film using chemical adsorption and desorption.
- the thickness of the insulating film formed may be from 5 to 50nm, according to a preferred embodiment of the present invention.
- step (3) the insulating film is removed so that a part of the outer surface including the upper surface of the second conductive semiconductor layer is exposed, and a metal cap is formed on the exposed outer surface of the second conductive semiconductor layer to remove the substrate. Perform the steps.
- the method for forming the metal cap on the outer surface of the second conductive semiconductor layer may use a conventional metal deposition method, preferably an electrochemical deposition method.
- the step (3) is a step 3-1) removing the insulating film so that a part of the outer surface of the second conductive semiconductor layer including the upper surface of the second conductive semiconductor layer is exposed. ; 3-2) plating the metal cap on the exposed outer surface of the second conductive semiconductor layer by immersing the laminate in an electrolytic plating solution and applying power to the laminate; And 3-3) removing the substrate from the laminate.
- the insulating film may be removed to expose a part of the outer surface of the second conductive semiconductor layer including the upper surface of the second conductive semiconductor layer.
- Removal of the insulating film may be performed through a conventional etching method, preferably may be performed through directional etching, the specific method may be by a conventional method known in the art. .
- the portion where the insulating film is etched may be etched to a part of the upper surface of the second conductive semiconductor layer or a side surface of the second conductive semiconductor layer which is connected to the upper surface in consideration of the cross-sectional shape / surface area of the target metal cap.
- FIG. 10J illustrates that the insulating film 270 ′ is coated only on the outer surface of the etched laminate except for the upper surface of the second semiconductor layer by removing the insulating film on the upper surface of the second conductive semiconductor layer.
- the metal body may be plated on the exposed outer surface of the second conductive semiconductor layer by immersing the laminate in an electrolytic solution and applying power to the laminate.
- the electroplating solution may be configured differently depending on the material of the metal cap as a solution containing a material forming the desired metal cap.
- the electrolytic plating solution that may be used may be a plating solution containing HAuCl 4 , HCl, and DI water, or a KAuCl 4 plating solution, and the concentration of Au may be performed during electroplating. It may be designed differently in consideration of the size of the metal cap to be made, but is not particularly limited in the present invention, but may preferably be 0.005 to 50% by weight.
- the laminate including the exposed surface of the second conductive semiconductor layer may be immersed in the electrolytic plating solution as described above, and the metal cap forming material may be plated on the exposed outer surface of the second semiconductor layer.
- electroplating may be performed by attaching an electrode to the substrate of the laminate to apply power to the laminate, and the substrate may be a conductive substrate for easier metal cap formation.
- Specific electroplating method is not particularly limited in the present invention can be used a conventional method in the art. However, it is preferable to form a metal cap by applying power for 10 to 55 minutes with a direct current of -0.2 to -1.0 V. If power is applied for less than 10 minutes, it may be difficult to form a metal cap having a sufficient surface area and a desired cross-sectional shape, and if it exceeds 55 minutes, a short circuit may occur in the electrode.
- the method of forming the metal cap described above is not limited to the method through electroplating, but may be formed through thermal evaporation, E-Beam evaporation, sputter, or the like.
- FIG. 10K illustrates a metal cap 280 formed on a part of the outer surface of the device end side including the top surface of the second conductive semiconductor layer on which the insulating film is not coated by the above-described method.
- a micro LED device having a cross-sectional shape of a device and a swab may be manufactured.
- the support film may be attached to the upper portion of the metal cap, and the substrate may be removed by a conventional method such as laser lift off (LLO), and the plurality of micro LED devices may not be dispersed through the support film.
- LLO laser lift off
- the support film may be a polymer exposure or bonding metal, the thickness may be 0.3 ⁇ 70 ⁇ m but is not limited thereto.
- the step (3) is 3-1) of the second conductive semiconductor layer in order to manufacture a LED device having a metal cap is a dumbbell-shaped cross-section formed on both ends of the LED element Removing the insulating film to expose a portion of the outer surface including the upper surface; 3-2) plating the metal cap on the exposed outer surface of the second conductive semiconductor layer by immersing the laminate in an electrolytic plating solution and applying power to the laminate; 3-3) forming a support film on the metal cap and removing the substrate of the laminate; 3-4) After the substrate is removed, the substrate is immersed in the electrolytic plating solution and power is applied to the laminate to plate a metal cap on a part of the outer surface including the lower surface of the exposed first semiconductor layer, and then remove the supporting film. It can be performed, including.
- steps 3-1) to 3-2) is omitted in the same manner as described above in the method for manufacturing a swab-shaped LED device.
- step 3-3) may be performed to form a support film on the metal cap and to remove the substrate of the laminate.
- FIG. 11 is a perspective view illustrating a manufacturing process of a micro LED device according to one embodiment of the present invention.
- FIG. 11A is a metal cap 280a formed at one end of an LED device in a laminate manufactured through 3-2). Indicates that the support film 290 is attached to the lower portion of the. Thereafter, the support polymer 291 may be filled in the space between the support film 290 and the laminate as shown in FIG. 11B to increase the holding force of the LED device.
- the support polymer may be used in the art known in the art, it does not limit the specific kind in the present invention.
- the substrate 200 may be removed as shown in FIG. 11C, and the unetched first conductive semiconductor layer 210 under the substrate 200 may be removed to expose the lower portion of the first semiconductor layer as illustrated in FIG. 11D. Removal of the unetched first conductive semiconductor layer 210 may use methods known in the art, such as ultrasonic irradiation or dry etching.
- the metal substrate is plated on a part of the outer surface including the lower surface of the first semiconductor layer exposed by immersing the laminate in which the substrate is removed in step 3-4) and applying power to the laminate. Removing the film can be performed.
- the plating such as the electrolytic plating solution is omitted as described above.
- the metal cap forming material is plated on the exposed surface of the first semiconductor layer not coated with the insulating coating, the device in the direction of the first conductive semiconductor layer is as shown in FIG. 11E.
- the metal cap 280b may be formed at one end side.
- a micro LED device having a dumbbell-shaped cross-sectional shape of the device including metal caps 280a and 280b on both end sides of the device as shown in FIG. 11F can be manufactured.
- the present invention includes a horizontal array assembly including a micro LED device for a horizontal array assembly according to a preferred embodiment of the present invention described above.
- Horizontally arranged micro LED array is a base substrate; An electrode line including a first electrode formed on the base substrate and a second electrode spaced apart on the same plane as the first electrode; And a plurality of micro LED devices according to the present invention connected to the first electrode and the second electrode at the same time.
- FIG. 12 is a perspective view of a horizontal array ultra-small LED horizontal array assembly according to a preferred embodiment of the present invention, spaced apart from the first electrode 311 formed on the base substrate 300 and the first electrode 311.
- An electrode line 310 including a second electrode 312 formed on the base substrate 300 and ultra-small LED elements 321, 322, 323, which are simultaneously connected to the first electrode 311 and the second electrode 312. 324).
- the base substrate 300 includes a first electrode 311 formed on the base substrate 300 and a second electrode 312 formed on the base substrate 300 spaced apart from the first electrode 311.
- the electrode line 310 will be described.
- the meaning of “on the base substrate” means that the first electrode 311 and the second electrode 312 are formed directly on the surface of the base substrate or on the base substrate of the first electrode 311 and / or the second electrode 312. It can be formed spaced apart.
- the base substrate serves as a support of the horizontal array assembly.
- the base substrate 300 that can be used in the present invention may be used without limitation in the case of a base substrate in which an electrode may be formed. As a non-limiting example, it may be any one of a glass substrate, a quartz substrate, a sapphire substrate, a plastic substrate, and a flexible polymer film that can be bent. Even more preferably, the substrate may be transparent.
- the area of the base substrate is not limited, and the area of the first electrode to be formed on the base substrate, the area of the second electrode, the size of the ultra small LED device connected to the first electrode and the second electrode and the number of micro LED devices connected to the base substrate It may be changed in consideration of.
- the base substrate may have a thickness of 100 ⁇ m to 1 mm, but is not limited thereto.
- the first electrode 311 and the second electrode 312 may be a material commonly used as an electrode.
- the first electrode 311 and the second electrode 312 may each independently be at least one metal material selected from the group consisting of aluminum, titanium, indium, gold, and silver or indium tin (ITO).
- Oxide), ZnO: Al and CNT-conductive polymer (polmer) may be any one or more transparent materials selected from the group consisting of a composite.
- the first electrode and / or the second electrode may preferably have a structure in which two or more kinds of materials are stacked. Even more preferably, the first electrode and / or the second electrode may be an electrode in which two materials are stacked with titanium / gold.
- the material of the first electrode and / or the second electrode is not limited to the above description. In addition, the materials of the first electrode and / or the second electrode may be the same or different.
- the spacing, size and specific arrangement of the first electrode and the second electrode may be designed differently according to the purpose, and may be arranged in any conceivable structure such that two different electrodes may be vortexly arranged or alternately arranged with each other. Various modifications can be implemented depending on the purpose.
- the horizontal array assembly is a first ultra-small LED is connected to the upper surface of one of the first electrode and the second electrode of the device, the other side is connected to the upper surface of the other electrode device;
- a second micro LED device having one side of the device connected to one side of the first electrode and the other side of the device connected to one side of the second electrode facing one side of the first electrode;
- a third micro LED device having one side connected to the top surface of the first electrode or the second electrode and the other side connected to the side of the other electrode. It may include any one or more of.
- a first micro LED device 321 and 322 including a micro LED device having a swab shape 321 and a dumbbell shape 322; one side of the device is connected to one side of the first electrode 311, and the other side of the device
- a second micro LED device 323 connected to one side of the second electrode 312 facing the one side of the first electrode
- a third ultra-small LED device 324 connected to one side of the device to the top surface of the first electrode 311 and the other to the side of the second electrode 312.
- the above-described second ultra-small LED device interposed between two different electrodes may be interposed by forming a multilayer, thereby significantly increasing the number of micro-LED devices included per unit electrode area.
- a metal cap having a cross-sectional shape according to the present invention is formed at one end side or both end sides of the electrode, the lengthwise direction of the device when the micro LED device is rotated by an electric field and coupled to both sides of the electrode in the space between the electrodes.
- one side of the device is connected to one side of the first electrode, and the other side of the device is connected to one side of the first electrode. It may be interposed by forming a multilayer between two different electrodes connected to one side of the opposite second electrode.
- FIG. 13 is a cross-sectional view of a horizontal array assembly according to an exemplary embodiment of the present invention, wherein the first electrode 311 formed on the base substrate 300 faces the first side of the first electrode 311.
- the second electrode 312 and one end of the device formed on the base substrate 300 to be spaced apart from the first electrode 311 so as to have the second side surface are in contact with the first side surface of the first electrode 311, and the other end is
- a plurality of ultra-small LED elements 325 and 326 are formed by forming a multilayer between the two electrodes so as to contact the second side of the second electrode 312.
- a large number of ultra-small LED elements may be included in a limited electrode region, thereby enabling the implementation of a horizontal array assembly that emits an excellent amount of light.
- the horizontal array assembly according to a preferred embodiment of the present invention described above can be manufactured by the manufacturing method described below. However, it is not limited to this manufacturing method.
- a horizontal array assembly including: (a) forming a first electrode on a base substrate, and forming a second electrode on the base substrate to be spaced apart from the first electrode; (b) injecting a plurality of ultra-small LED devices and a solvent comprising a micro-LED device for a horizontal array assembly according to the present invention on a first electrode and a second electrode; And (c) applying power to the first electrode and the second electrode to self-align the micro LED device such that one end of the plurality of micro LED devices is in contact with the first electrode and the other end is in contact with the second electrode. ; It may be prepared to include.
- the description of the base substrate and the electrode is as described above, the method of forming the electrode on the base substrate can be used a known conventional method, it is not particularly limited in the present invention.
- step (b) the step of introducing a plurality of micro LED device and a solvent including a micro LED device on the first electrode and the second electrode.
- FIG. 14 is a perspective view illustrating a manufacturing process of a horizontal array assembly according to an exemplary embodiment of the present invention, and FIG. 14A is spaced apart from the first electrode 110 and the first electrode formed on the base substrate 100.
- the micro LED device 130 and the solvent 140 injected into the second electrode 120 formed on the base substrate 100 are shown.
- the method of injecting the ultra-small LED element and the solvent onto the first electrode and the second electrode is not particularly limited in the present invention.
- the micro LED device may be introduced simultaneously with the solvent or sequentially, regardless of the order.
- the micro LED device may be loaded after the micro LED device is added, and then the solvent may be concentrated to mount the micro LED device. There is an advantage.
- the solvent may be any one or more selected from the group consisting of acetone, water, alcohol and toluene, more preferably acetone.
- the kind of the solvent is not limited to the above description, and any solvent that can evaporate well without physically and chemically affecting the micro LED device may be used without limitation.
- the micro LED device may be added in 0.001 to 100 parts by weight based on 100 parts by weight of the solvent. If the amount is less than 0.001 parts by weight, the number of micro LED devices connected to the electrode may be small, and thus, the function of the micro LED electrode assembly may be difficult to function. In order to overcome this problem, the solution may need to be added several times. If exceeding parts by weight, there may be a problem that the alignment of the individual miniature LED elements may be disturbed.
- step (c) a power source is supplied to the first electrode and the second electrode to self-align the micro LED device such that one end side of the plurality of micro LED elements is in contact with the first electrode and the other end is in contact with the second electrode. Perform the step of applying.
- the micro LED device 130 when power is applied to the first electrode 110 and the second electrode 120 as shown in FIG. 14B, the micro LED device 130 is self-aligned such as rotation and position change so that one end of the device is first electrode as shown in FIG. 13C.
- the second assembly 120 may be in contact with the other electrode 110, and the second assembly 120 may be connected to the first electrode 110 and the second electrode 120 so that a plurality of micro LED devices 30a, 30b, and 30c may be connected to each other. have.
- Figure 15 is a plan view showing that the conventional micro LED device is self-aligned under an electric field
- the micro LED device 133 may rotate ( ⁇ ) at both ends in different electrode directions. do.
- the surface areas of both ends of the micro LED device 133 that are not coated on the insulating film are very small, so that the influence of the electric field may be insignificant. Thus, a larger electric field is formed to change the position of the micro LED device.
- FIG. 16 is a plan view illustrating self-alignment of the micro LED device according to the preferred embodiment of the present invention.
- the first electrode 114 and the second electrode 124 are spaced apart from each other on the base substrate 100.
- both ends thereof rotate in the direction of different electrodes ( ⁇ ).
- the ultra-small LED element 134 as shown in FIG.
- the metal cap 16 has a metal cap on both ends, which has a markedly improved surface area, so that the micro-LED element 134 can be more affected by an electric field, thereby moving and rotating the micro-LED element even under a low electric field. Changes can be made easier.
- the diagonal direction of the metal cap includes a curved surface, two different electrode surfaces and the longitudinal direction of the device are more easily perpendicular to each other. The advantage is that they can be aligned and that more micro LEDs can be included in a confined horizontal assembly area.
- An electric field required for self-alignment of the micro LED device may be formed by applying power to the first electrode and the second electrode.
- the power source may be direct current or alternating current, and may be implemented by changing the power source in consideration of the aspect ratio of the micro element, and the like.
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Computer Hardware Design (AREA)
- Manufacturing & Machinery (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- Led Devices (AREA)
- Led Device Packages (AREA)
Abstract
본 발명은 수평배열 어셈블리용 초소형 LED 소자, 이의 제조방법 및 이를 포함하는 수평배열 어셈블리에 관한 것으로, 보다 상세하게는 초소형 LED 소자가 길이방향으로 누워서 전극라인에 연결된 수평배열 어셈블리를 제조함에 있어 전극라인에 연결되는 초소형 LED 소자의 개수를 현저히 증가시킬 수 있으며, 소자의 배열을 보다 용이하게 하고, 전극과 소자간의 전기적 연결이 매우 우수하여 현저히 우수한 광량을 발현하는 수평배열 어셈블리를 구현시킬 수 있는 수평배열 어셈블리용 초소형 LED 소자, 이의 제조방법 및 이를 포함하는 수평배열 어셈블리에 관한 것이다.
Description
본 발명은 수평배열 어셈블리용 초소형 LED 소자, 이의 제조방법 및 이를 포함하는 수평배열 어셈블리에 관한 것으로, 보다 상세하게는 초소형 LED 소자가 길이방향으로 누워서 전극라인에 연결된 수평배열 어셈블리를 제조함에 있어 전극라인에 연결되는 초소형 LED 소자의 개수를 현저히 증가시킬 수 있으며, 소자의 배열을 보다 용이하게 하고, 전극과 소자간의 전기적 연결이 매우 우수하여 현저히 우수한 광량을 발현하는 수평배열 어셈블리를 구현시킬 수 있는 수평배열 어셈블리용 초소형 LED 소자, 이의 제조방법 및 이를 포함하는 수평배열 어셈블리에 관한 것이다.
LED는 1992년 일본 니치아사의 나카무라 등이 저온의 GaN 화합물 완층층을 적용하여 양질의 단결정 GaN 질화물 반도체를 융합시키는데 성공함으로써 개발이 활발하게 이루어져 왔다. LED는 화합물 반도체의 특성을 이용하여 다수의 캐리어가 전자인 n형 반도체 결정과 다수의 캐리어가 정공인 p형 반도체 결정이 서로 접합된 구조를 갖는 반도체로써, 전기신호를 원하는 영역의 파장대역을 가지는 빛으로 변환시켜 표출되는 반도체 소자이다. 이러한 LED와 관련하여 대한민국 공개특허공보 제2009-0121743은 발광다이오드 제조방법 및 이에 의해 제조되는 발광다이오드를 개시하고 있다.
이러한 LED 반도체는 광 변환 효율이 높기에 에너지 소비량이 매우 적으며 수명이 반영구적이고 환경 친화적이어서 그린 소재로서 빛의 혁명이라고 불린다. 최근에는 화합물 반도체 기술의 발달로 고휘도 적색, 주황, 녹색, 청색 및 백색 LED가 개발되었으며, 이를 활용하여 신호등, 핸드폰, 자동차 전조등, 옥외 전광판, LCD BLU(back light unit), 그리고 실내외 조명 등 많은 분야에서 응용되고 있으며 국내외에서 활발한 연구가 계속되고 있다. 특히 넓은 밴드갭을 갖는 GaN계 화합물 반도체는 녹색, 청색 그리고 자외선 영역의 빛을 방출하는 LED 반도체의 제조에 이용되는 물질이며, 청색 LED 소자를 이용하여 백색 LED 소자의 제작이 가능하므로 이에 대한 많은 연구가 이루어지고 있다.
이러한 일련의 연구들 중 LED의 크기를 나노 또는 마이크로 단위로 제작한 초소형 LED 소자를 이용한 연구가 활발히 이루어지고 있고, 이러한 초소형 LED 소자를 조명, 디스플레이에 등에 활용하기 위한 연구가 계속되고 있다. 이러한 연구에서 지속적으로 주목 받고 있는 부분은 초소형 LED 소자에 전원을 인가할 수 있는 전극, 활용목적 및 전극이 차지하는 공간의 감소 등을 위한 전극 배치, 배치된 전극에 초소형 LED의 실장방법 등에 관한 것들이다.
이 중에서도 배치된 전극에 초소형 LED소자를 실장시키는 방법에 대한 부분은 초소형 LED 소자의 크기적 제약에 따라 전극상에 초소형 LED 소자를 목적한 대로 배치 및 실장시키기 매우 어려운 난점이 여전히 상존하고 있다. 이는 초소형 LED 소자가 나노 스케일 또는 마이크로 스케일임에 따라 사람의 손으로 일일이 목적한 전극영역에 배치시키고 실장시킬 수 없기 때문이다.
또한, 목적한 전극영역에 초소형 LED 소자를 실장시킨다 하여 단위전극 영역에 포함되는 초소형 LED 소자의 개수, 초소형 LED 소자와 전극간의 위치관계 등을 목적한 대로 조절하기 매우 곤란하고, 2차원 평면상 LED 소자를 배열할 경우 단위면적에 포함되는 LED 소자의 개수는 한계가 있어 우수한 광량을 수득하기 어렵다. 나아가, 서로 다른 두 전극에 연결된 초소형 LED 소자 모두가 전기적 단락 등의 불량 없이 발광할 수 있는 것은 아니므로 목적하는 광량을 수득하기는 더욱 어려운 문제점이 있다.
이에 목적한 전극영역에 보다 용이하게 초소형 LED 소자가 길이방향으로 누워서 실장될 수 있고, 실장되는 소자의 정렬성이 향상되어 전극라인의 단위면적당 포함되는 LED소자의 개수를 현저히 증가시킬 수 있으며, LED 소자와 전극 간의 전기적 연결성을 현저히 향상시킬 수 있는 초소형 LED 소자의 구현이 시급한 실정이다.
본 발명은 상술한 문제점을 해결하기 위해 안출된 것으로, 본 발명이 해결하려는 첫 번째 과제는 목적한 전극영역에 보다 용이하게 초소형 LED 소자가 길이방향으로 누워서 실장될 수 있고, 실장되는 소자의 정렬성이 향상되어 전극라인의 단위면적당 포함되는 LED소자의 개수를 현저히 증가시킬 수 있으며, LED 소자와 전극 간의 전기적 연결성을 현저히 향상시킬 수 있는 수평배열 어셈블리용 초소형 LED 소자 및 그 제조방법을 제공하는 것이다.
본 발명이 해결하려는 두 번째 과제는 본 발명에 따른 초소형 LED 소자를 통해 전극라인의 단위면적당 실장되는 초소형 LED 소자의 개수가 현저히 증가하고, 실장된 초소형 LED 소자의 전극과의 전기적 연결성이 우수하여 전극에 전원을 인가 시 불량 없이 발광하여 목적하는 광량을 발현시킬 수 있는 수평배열 어셈블리를 제공하는 것이다.
상술한 첫 번째 과제를 해결하기 위해 본 발명은, 제1 도전성 반도체층, 상기 제1 도전성 반도체층 상부에 형성된 활성층, 및 상기 활성층 상부에 형성된 제2 도전성 반도체 층을 포함하는 수평배열 어셈블리용 초소형 LED 소자에 있어서, 상기 초소형 LED 소자는 제1 도전성 반도체층, 활성층 및 제2 도전성 반도체층의 외부면 중 적어도 활성층의 외부면을 덮는 절연피막; 및 초소형 LED 소자의 적어도 하나의 단부측에 형성된 금속캡;을 포함하고, 상기 금속캡은 소자의 일단부로부터 연장되어 소자 측면부 일부를 덮으며, 상기 금속캡의 외부면은 적어도 일부 영역이 곡면인 수평배열 어셈블리용 초소형 LED 소자를 제공한다.
본 발명의 바람직한 일실시예에 따르면, 상기 제1 도전성 반도체층 및 제2 도전성 반도체층 중 어느 하나의 반도체층은 n형 반도체층을 적어도 하나 포함하고, 다른 도전성 반도체층은 p형 반도체층을 적어도 하나 포함할 수 있다.
본 발명의 바람직한 다른 일실시예에 따르면, 상기 초소형 LED 소자에 대한 반도체층에 수직한 방향의 단면형상은 아령 또는 면봉 형상일 수 있다.
본 발명의 바람직한 또 다른 일실시예에 따르면, 상기 초소형 LED 소자 일단부측의 단면적에 대하여 금속캡 표면적은 1: 1.1 ~ 10.0 일 수 있다.
본 발명의 바람직한 다른 일실시예에 따르면, 상기 초소형 LED 소자는 길이가 100nm ~ 10㎛이며, 제1 도전성 반도체층, 활성층 및 제2 도전성 반도체층을 포함하는 LED 소자의 직경이 100nm ~ 5㎛일 수 있다.
본 발명의 바람직한 또 다른 일실시예에 따르면, 상기 금속캡은 초소형 LED 소자의 외부면에 형성된 절연피막의 외부면 일부를 덮을 수 있다.
또한, 상술한 첫 번째 과제를 해결하기 위해 본 발명은, (1) LED 소자의 직경이 나노 또는 마이크로 크기를 가지도록 기판상에 제1 도전성 반도체층, 활성층 및 제2 도전성 반도체층을 포함하여 순차적으로 적층된 적층체를 식각하는 단계; (2) 식각된 적층체에서 제1 도전성 반도체층, 활성층 및 제2 도전성 반도체층을 포함하는 외부면에 절연피막을 형성시키는 단계; 및 (3) 제2 도전성 반도체층의 상부면을 포함하는 일부 외부면이 노출되도록 절연피막을 제거하고, 노출된 제2 도전성 반도체층 외부면에 금속캡을 형성시킨 후 기판을 제거하는 단계;를 포함하는 수평배열 어셈블리용 초소형 LED 소자 제조방법을 제공한다.
본 발명의 바람직한 일실시예에 따르면, 상기 (1) 단계는 1-1) 기판상에 제1 도전성 반도체층, 활성층 및 제2 도전성 반도체층을 포함하여 순차적으로 적층시켜 적층체를 제조하는 단계; 1-2) 제2 도전성 반도체층 상에 절연층 및 금속 마스크층을 형성하는 단계; 1-3) 상기 금속 마스크층 상에 폴리머층을 형성하고 상기 폴리머층에 나노 또는 마이크로 간격으로 패턴을 형성하는 단계; 및 1-4) 상기 제1 도전성 반도체층, 활성층 및 제2 도전성 반도체층을 포함하여 패턴에 따라 나노 또는 마이크로 간격으로 식각하는 단계; 를 포함할 수 있다.
본 발명의 바람직한 다른 일실시예에 따르면, 상기 (1) 단계는 1-1) 기판상에 제1 도전성 반도체층, 활성층 및 제2 도전성 반도체층을 포함하여 순차적으로 적층하는 단계; 1-2) 제2 도전성 반도체층 상에 절연층 및 금속 마스크층을 형성하는 단계; 1-3) 상기 금속 마스크층 위에 나노스피어 또는 마이크로 스피어 단층막을 형성하고 자기조립을 수행하는 단계; 및 1-4) 상기 제1 도전성 반도체층, 활성층 및 제2 도전성 반도체층을 포함하여 패턴에 따라 나노 또는 마이크로 간격으로 식각하는 단계; 를 포함할 수 있다.
본 발명의 바람직한 다른 일실시예에 따르면, 상기 (3) 단계는 3-1) 제2 도전성 반도체층의 상부면을 포함하는 일부 외부면을 포함하는 일부 외부면이 노출되도록 절연피막을 제거하는 단계; 3-2) 적층체를 전해도금액에 침지 및 적층체에 전원을 인가하여 노출된 제2 도전성 반도체층의 외부면에 금속캡을 도금시키는 단계; 및 3-3) 적층체에서 기판을 제거하는 단계;를 포함할 수 있다.
본 발명의 바람직한 또 다른 일실시예에 따르면, 상기 (3) 단계는 3-1) 제2 도전성 반도체층의 상부면을 포함하는 일부 외부면을 포함하는 일부 외부면이 노출되도록 절연피막을 제거하는 단계; 3-2) 적층체를 전해도금액에 침지 및 적층체에 전원을 인가하여 노출된 제2 도전성 반도체층의 외부면에 금속캡을 도금시키는 단계; 3-3) 상기 금속캡 상부에 지지필름을 형성 및 적층체의 기판을 제거하는 단계; 3-4) 기판이 제거된 적층체를 전해도금액에 침지 및 적층체에 전원을 인가하여 노출된 제1 반도체층의 하부면을 포함하는 일부 외부면에 금속캡을 도금시킨 후 지지필름을 제거하는 단계;를 포함할 수 있다.
본 발명의 바람직한 다른 일실시예에 따르면, 상기 제1 도전성 반도체층 및 제2 도전성 반도체층 중 어느 하나의 반도체층은 n형 반도체층을 적어도 하나 포함하고, 다른 도전성 반도체층은 p형 반도체층을 적어도 하나 포함할 수 있다.
한편, 상술한 두 번째 과제를 해결하기 위해 본 발명은, 베이스 기판; 상기 베이스 기판상에 형성된 제1 전극 및 상기 제1 전극과 이격하여 베이스기판상에 형성된 제2 전극을 포함하는 전극라인; 및 상기 제1 전극과 제2 전극에 동시에 연결된 본 발명에 따른 복수개의 초소형 LED 소자;를 포함하는 수평배열 어셈블리를 제공한다.
본 발명의 바람직한 일실시예에 따르면, 상기 수평배열 어셈블리는 소자의 일측이 제1 전극 및 제2 전극 중 어느 한 전극의 상부면에 연결되고, 타측이 다른 전극의 상부면에 연결된 제1 초소형 LED 소자; 소자의 일측이 제1 전극의 일측면에 연결되고, 소자의 타측이 상기 제1 전극의 일측면과 마주보는 제2 전극의 일측면에 연결된 제2 초소형 LED 소자; 및 소자의 일측이 제1 전극 또는 제2 전극의 상부면에 연결되고, 타측이 다른 전극의 측면에 연결된 제3 초소형 LED 소자; 중 어느 하나 이상을 포함할 수 있다.
본 발명의 바람직한 다른 일실시예에 따르면, 상기 복수개의 초소형 LED 소자는 소자의 일측이 제1 전극의 일측면에 연결되고, 소자의 타측이 상기 제1 전극의 일측면과 마주보는 제2 전극의 일측면에 연결되어 서로 다른 두 전극 사이에 멀티레이어를 형성하여 개재될 수 있다.
이하, 본 발명에서 사용한 용어에 대해 정의한다.
본 발명에 따른 구현예의 설명에 있어서, 각 층, 영역, 패턴 또는 구조물들이 기판, 각 층, 영역, 패턴들의 “위(on)”, “상부”, “상”, “아래(under)", "하부”, “하”에 형성되는 것으로 기재되는 경우에 있어, “위(on)”, “상부”, “상”, “아래(under)", "하부”, “하”는 “directly"와 "indirectly"의 의미를 모두 포함한다.
본 발명에 따른 구현예의 설명에 있어 “제1 전극”과 “제2 전극”은 초소형 LED가 실질적으로 실장될 수 있는 전극 영역 또는 상기 영역과 더불어 베이스 기판상 전극을 배치하는 방법에 따라 더 포함될 수 있는 전극 영역까지를 모두 포함한다.
본 발명에 따른 구현예의 설명에 있어서, “연결”이란 초소형 LED 소자의 일측이 제1 전극에 접하고, 타측이 제2 전극에 접하는 것을 의미한다. 또한, “전기적으로 연결”이란 초소형 LED 소자가 서로 다른 두 전극 사이에 끼워져 연결됨과 동시에 전원을 전극라인에 인가할 때 초소형 LED 소자가 발광할 수 있는 상태를 의미한다.
본 발명에 따른 구현예의 설명에 있어서, “동일”, “수평” 또는 “수직”은 물리적으로 정확한 “동일”, “수평” 또는 “수직”에 제한되지 않고, 실질적으로 “동일”, “평행” 또는 “수직”이라 볼 수 있는 정도까지를 포함하는 의미이다.
본 발명에 따른 구현예의 설명에 있어서, 소자의 “단부측”이란 소자의 길이방향으로 일측의 끝단 및 끝단에 이어지는 소자의 외부면 일부를 포함하는 의미이다.
본 발명에 따른 구현예의 설명에 있어서, “수평배열 어셈블리”는 베이스 기판상에 형성된 서로 다른 두 전극에 연결되는 초소형 LED 소자가 소자의 길이방향으로 베이스기판에 대하여 수평하게 누워 있는 형상으로 전극에 연결되도록 구현된 어셈블리를 의미한다. 이에 대한 일예시는 도 1과 같고, 상기 소자의 길이방향이란 초소형 LED 소자에 포함되는 각 층에 수직한 방향을 의미한다.
본 발명은 목적한 전극영역에 보다 용이하게 초소형 LED 소자가 길이방향으로 누워서 실장될 수 있고, 실장되는 소자의 정렬성이 향상되어 전극라인의 단위면적당 포함되는 LED소자의 개수를 현저히 증가시킬 수 있으며, LED 소자와 전극 간의 전기적 연결성을 현저히 향상시킬 수 있는 초소형 LED 소자를 구현할 수 있다. 또한, 이러한 초소형 LED 소자를 사용하여 전극라인의 단위면적당 실장되는 초소형 LED 소자의 개수가 현저히 증가하고, 실장된 초소형 LED 소자의 전극과의 전기적 연결성이 우수하여 전극에 전원을 인가 시 불량 없이 높은 강도로 발광하여 목적하는 광량을 발현시킬 수 있고, 발열이 감소하여 LED 소자의 내구성이 증가함에 따라 사용주기가 연장되고, 발광되는 소자의 개수가 증가되어 발광효율이 우수한 수평배열 어셈블리를 구현시킬 수 있어 조명, 디스플레이 등 다양한 분야에 응용될 수 있다.
도 1은 종래의 초소형 LED 소자를 사용한 수평 어셈블리의 부분사시도이다.
도 2는 절연피막을 포함하는 초소형 LED 소자의 분해사시도이다.
도 3은 절연피막을 포함하는 초소형 LED 소자를 포함하는 수평어셈블리의 부분사시도이다.
도 4는 전기장이 형성된 두 전극 사이에 위치하는 초소형 LED 소자의 사시도이다.
도 5는 본 발명의 바람직한 일구현예에 따른 초소형 LED 소자의 사시도이다.
도 6은 본 발명의 바람직한 일구현예에 따른 초소형 LED 소자의 종단면도이다.
도 7은 본 발명의 바람직한 일구현예에 따른 면봉형상 초소형 LED 소자의 종단면도이다.
도 8은 본 발명의 바람직한 일구현예에 따른 아령형상 초소형 LED 소자의 종단면도이다.
도 9는 본 발명의 바람직한 일구현예에 따른 수평어셈블리에 대한 단면도이다.
도 10은 본 발명의 일구현예에 따른 초소형 LED 소자의 제조공정을 나타내는 사시도이다.
도 11은 본 발명의 일구현예에 따른 초소형 LED 소자의 제조공정을 나타내는 사시도이다.
도 12는 본 발명의 바람직한 일구현예에 따른 수평어셈블리의 사시도이다.
도 13은 본 발명의 바람직한 일구현예에 따른 수평어셈블리의 사시도이다.
도 14는 본 발명의 바람직한 일구현예에 따른 수평배열 어셈블리의 제조공정을 나타내는 사시도이다.
도 15는 종래의 초소형 LED 소자가 전기장 하에서 자기정렬 하는 것을 나타내는 평면도이다.
도 16은 본 발명의 바람직한 일구현예에 따른 초소형 LED 소자가 전기장 하에서 자기정렬 하는 것을 나타내는 평면도이다.
도 17은 종래의 수직구조 어셈블리의 사시도이다.
이하, 본 발명의 바람직한 일구현예를 첨부되는 도면을 통해 보다 상세하게 설명한다.
상술한 바와 같이 초소형 LED 소자는 크기적 제약에 따라 사람의 손으로 일일이 목적한 전극영역에 배치시키고 실장시킬 수 없기 때문에 전극상에 목적한 대로 배치 및 실장시키기 매우 어려운 문제점이 있었다. 본 발명자는 이러한 문제점을 해결하기 위해 초소형 LED 소자를 포함하는 용액이 투입된 전극라인에 전원을 인가시 초소형 LED 소자가 전기장의 영향을 받아 자기정렬 되어 서로 다른 두 전극에 소자의 양단이 연결된 초소형 LED 수평배열 어셈블리를 구현할 수 있음을 알게 되었으나 종래의 초소형 LED 소자를 사용해서는 전원이 인가된 전극라인에 형성된 전기장에 의해 초소형 LED 소자의 자기정렬이 미진할 수 있고, 자기정렬이 미진한 LED 소자는 전극라인에 불량하게 배열되어 전극에 연결되는 초소형 LED 소자의 개수를 증가시킬 수 없는 문제점이 있을 수 있음을 인식했다. 즉, 목적한 전극영역에 초소형 LED 소자를 실장시킨다 하여 단위전극 영역에 포함되는 초소형 LED 소자의 개수, 초소형 LED 소자와 전극간의 위치관계 등을 목적한 대로 조절하기 매우 곤란하고, 초소형 LED 소자의 불량한 정렬은 2차원 평면상에 LED 소자를 배열 시 단위면적에 포함시킬 수 있는 LED 소자의 개수를 현저히 감소시켜 우수한 광량을 수득할 수 없는 다른 문제가 여전히 상존한다.
구체적으로 도 1은 종래의 초소형 LED 소자를 사용한 수평 어셈블리의 부분사시도로써, 도1은 베이스기판(1)상에 형성된 제1 전극(10), 상기 제1 전극(10)에 이격되어 베이스기판(1)상에 형상된 제2 전극(20) 및 상기 제1 전극(10)과 제2 전극(20)에 연결된 초소형 LED 소자(30)를 나타낸다. 상기 초소형 LED 소자(30)는 서로 다른 두 전극(10, 20)에 연결은 되어 있지만, 초소형 LED 소자(30)의 활성층(30b)까지 제1 전극(10)에 연결된 상태로 만일 제1 전극(10) 및 제2 전극(20)에 전원을 인가 시에 전기적 단락이 발생함에 따라 이러한 초소형 LED 소자(30)는 발광하지 못하는 문제점이 있었다.
본 발명자는 이러한 문제점을 해결하여 초소형 LED 소자가 전극상에 불량 없이 수평 배열된 수평 어셈블리를 구현하기 위해 외부면에 절연피막이 코팅된 초소형 LED 소자(도 1의 31)를 사용하여 수평 어셈블리를 구현을 시도하였다. 구체적으로 도 2는 절연피막을 포함하는 초소형 LED 소자(30)의 분해사시도로써, 도 2a의 초소형 LED 소자는 제1 도전성 반도체층(30a) 상부에 형성된 활성층(30b), 상기 활성층(30b) 상부에 형성된 제2 도전성 반도체층(30c) 및 상기 활성층(30b)의 외부면 전체를 덮고, 제1 도전성 반도체층(30a)과 제2 도전성 반도체층(30c)의 일부만 덮는 절연피막(30f)을 나타낸다. 또한 도 2b의 초소형 LED 소자는 제1 도전성 반도체층(30a) 상부에 형성된 활성층(30b), 상기 활성층(30b) 상부에 형성된 제2 도전성 반도체층(30c), 상기 제1 도전성 반도체층(30a)과 제2 도전성 반도체층(30c)의 하부 및 상부에 각각 형성된 제1 전극층(30d)/제2 전극층(30e) 및 절연피막(30f)이 제1 도전성 반도체층(30a), 활성층(30b) 및 제2 도전성 반도체층(30c)의 외부면을 덮고 있다. 도 2a 또는 2b와 같이 외부면에 절연피막이 코팅된 초소형 LED 소자를 사용할 경우 소자의 활성층과 전극이 접촉하여 발생하는 전기적 단락의 불량은 막을 수 있었으나 오히려 절연피막으로 인해 초소형 LED 소자의 전극상 배열이 불량해져 단위전극 면적당 포함되는 초소형 LED 소자의 개수를 증가시킬 수 없었고, 초소형 LED 소자가 전극에 연결되더라도 전기적으로 연결되지 않은 경우가 빈번함에 따라 목적하는 광량을 수득하기 어려운 문제점은 여전히 존재하였다.
구체적으로 도 3 은 절연피막을 포함하는 초소형 LED 소자를 포함하는 수평배열 어셈블리의 부분사시도로써, 도 3은 베이스기판(1)상에 형성된 제1 전극(11, 12, 13), 상기 제1 전극(11, 12, 13)에 이격되어 베이스기판(1)상에 형상된 제2 전극(21, 22) 및 상기 제1 전극(10)과 제2 전극(20)에 연결된 초소형 LED 소자(32, 33, 34, 35)를 나타낸다. 도 3의 초소형 LED 소자 중 제A LED 소자(32), 제B LED 소자(33) 및 제D LED 소자(35)는 소자의 양 단부측의 전극층 또는 도전성 반도체층이 전극과 직접 접하여 전기적으로 연결된 초소형 LED 소자인데 반하여, 제C LED 소자(34)는 소자의 일측(32d)만 제1 전극(12)에 직접 접하고 있고, 타측(33e)은 제2 전극(22)과 직접 접하지 않아 전기적으로 연결되지 못함을 확인할 수 있다. 즉, 서로 다른 두 전극 사이의 거리, 초소형 LED 소자의 길이, 소자의 외부면에서 절연피막이 코팅되지 않은 양 단부측의 두께 조건 등이 정합(coordination)을 이루어야 전기적 연결까지 달성된 수평배열 어셈블리를 구현할 수 있는 반면에 상기 조건들은 나노 또는 마이크로 단위의 미세한 조절이 요구되는 것들로 실제로 목적한 수평배열 어셈블리를 구현시키기 매우 어려운 문제점이 있다.
또한, 초소형 LED 소자는 서로 다른 두 전극 사이의 전기장에 의해 자기정렬하여 두 전극에 동시에 연결되는데, 도 2와 같은 초소형 LED 소자는 절연피막으로 인해 전하가 하전될 수 있는 영역(절연피막이 코팅되지 않은 노출부분)의 표면적이 현저히 적음에 따라 자기정렬이 미진하여 정렬이 제대로 되지 못하는 문제점이 있을 수 있다. 구체적으로 도 4는 전기장이 형성된 두 전극 사이에 위치하는 초소형 LED 소자의 사시도로써, 제1 전극(10) 및 제2 전극(20)에 의해 형성된 전기장에 의해 초소형 LED 소자의 제1 전극층(30d)은 음전하를, 제2 전극층(30e)은 양전하를 띠게 되며 정전기적 인력에 의해 제1 전극층(30d)은 제2 전극(20), 제2 전극층(30e)은 제1 전극(10) 쪽으로 자기정렬하여 초소형 LED 소자는 제1 전극 및 제2 전극에 연결될 수 있다. 그러나 절연피막이 코팅되지 않는 초소형 LED 소자의 노출부분의 표면적은 한정적임에 따라 전기장에 의한 초소형 LED 소자의 자기정렬이 매우 미진하여 목적하는 대로 초소형 LED 소자를 전극에 정렬 및 연결시킬 수 없는 문제점이 있다. 또한, 전기장에 의해 하전될 수 있는 영역의 표면적을 크게 하기 위해서는 전극층(또는 도전성 반도체층)의 두께 및 소자의 직경을 증가시켜야 되고 이는 단위전극 면적에 포함될 수 있는 초소형 LED 소자 개수를 감소시키는 문제점이 있다.
나아가, 초소형 LED 소자가 전극에 연결된 상태라도 전극과 전기적 연결이 미흡한 초소형 LED 소자가 다수 포함되어 발광되지 않아 불량이 발생하거나 전극과 초소형 LED 소자의 연결부분의 높은 저항에 따라 발열이 심해 소자의 내구성이 현저히 저하되는 문제점이 있다.
이에 본 발명에서는 제1 도전성 반도체층, 상기 제1 도전성 반도체층 상부에 형성된 활성층, 및 상기 활성층 상부에 형성된 제2 도전성 반도체 층을 포함하는 수평배열 어셈블리용 초소형 LED 소자에 있어서, 상기 초소형 LED 소자는 소자의 일단부 및 상기 일단부로부터 연장되어 소자의 측면부 일부를 덮고 있는 금속캡;을 포함하며, 상기 금속캡의 외부면은 적어도 일부 영역이 곡면이고, 상기 금속캡은 초소형 LED 소자의 적어도 하나의 단부측에 형성되는 것을 특징으로 하는 수평배열 어셈블리용 초소형 LED 소자를 제공함으로써 상술한 문제의 해결을 모색하였다. 이를 통해 목적한 전극영역에 보다 용이하게 초소형 LED 소자가 길이방향으로 누워서 실장될 수 있고, 실장되는 소자의 정렬성이 향상되어 전극라인의 단위면적당 포함되는 LED소자의 개수를 현저히 증가시킬 수 있으며, LED 소자와 전극 간의 전기적 연결성을 현저히 향상시킬 수 있다.
이하, 초소형 LED 소자의 설명에서 ‘위’, ‘아래’, ‘상’, ‘하’, ‘상부’ 및 ‘하부’는 초소형 LED 소자에 포함된 각 층을 기준으로 하여 수직의 상, 하 방향을 의미한다.
구체적으로 도 5는 본 발명의 바람직한 일구현예에 따른 초소형 LED 소자의 사시도로써, 도 5a는 제1 도전성 반도체층(50a) 상부에 형성된 활성층(50b), 상기 활성층(50b) 상부에 형성된 제2 도전성 반도체층(50c), 도전성 반도체층(50a, 50c) 및 활성층(50b)의 외부면을 덮는 절연피막(50f), 및 소자의 제2 도전성 반도체층(50c) 방향의 일단부측에 형성된 금속캡(50e)을 나타낸다. 또한, 도 5b은 제1 도전성 반도체층(50a) 상부에 형성된 활성층(50b), 상기 활성층(50b) 상부에 형성된 제2 도전성 반도체층(50c), 도전성 반도체층(50a, 50c) 및 활성층(50b)의 외부면을 덮는 절연피막(50f), 및 소자의 양 단부측에 형성된 금속캡(50d, 50e)을 나타낸다.
먼저, 본 발명의 바람직한 일구현예에 따른 초소형 LED 소자의 도전성 반도체층(50a, 50c)에 대해 설명한다.
상기 도전성 반도체층은 조명, 디스플레이 등에 사용되는 통상의 LED 소자에 포함하는 도전성 반도체층인 경우 제한 없이 사용될 수 있다. 본 발명의 바람직한 일구현예에 따르면, 상기 제1 도전성 반도체층 및 제2 도전성 반도체층 중 어느 하나의 반도체층은 n형 반도체층을 적어도 하나 포함하고, 다른 도전성 반도체층은 p형 반도체층을 적어도 하나 포함할 수 있다.
상기 제1 도전성 반도체층(50a)이 n형 반도체층을 포함하는 경우 상기 n형 반도체층은 InxAlyGa1-x-yN (0≤x≤1, 0 ≤y≤1, 0≤x+y≤1)의 조성식을 갖는 반도체 재료 예컨대, InAlGaN, GaN, AlGaN, InGaN, AlN, InN등에서 어느 하나 이상이 선택될 수 있으며, 제1 도전성 도펀트(예: Si, Ge, Sn 등)가 도핑될 수 있다. 본 발명의 바람직한 일구현예에 따르면 상기 제1도전성 반도체층의 두께는 1.5 ~ 5㎛일 수 있으나 이에 제한되지 않는다.
상기 제2 도전성 반도체층(50c)이 p형 반도체층을 포함하는 경우 상기 p형 반도체층은 InxAlyGa1-x-yN (0≤x≤1, 0 ≤y≤1, 0≤x+y≤1)의 조성식을 갖는 반도체 물질 예컨대, InAlGaN, GaN, AlGaN, InGaN, AlN, InN등에서 어느 하나 이상이 선택될 수 있으며, 제 2도전성 도펀트(예: Mg)가 도핑될 수 있다. 본 발명의 바람직한 일구현예에 따르면, 상기 제2 도전성 반도체층의 두께는 0.08 ~ 0.25㎛일 수 있으나 이에 제한되지 않는다.
다음으로 상기 활성층(50b)은 제1 도전성 반도체층(50a) 상부 및 제2 도전성 반도체층(50c) 하부에 형성되며, 단일 또는 다중 양자 우물 구조로 형성될 수 있다. 상기 활성층은 조명, 디스플레이 등에 사용되는 통상의 LED 소자에 포함되는 활성층인 경우 제한 없이 사용될 수 있다. 상기 활성층(50b)의 위 및/또는 아래에는 도전성 도펀트가 도핑된 클래드층(미도시)이 형성될 수도 있으며, 상기 도전성 도펀트가 도핑된 클래드층은 AlGaN층 또는 InAlGaN층으로 구현될 수 있다. 그 외에 AlGaN, AlInGaN 등의 물질도 활성층(50b)으로 이용될 수 있음은 물론이다. 이러한 활성층(50b)에서는 전계를 인가하였을 때, 전자-정공 쌍의 결합에 의하여 빛이 발생하게 된다. 본 발명의 바람직한 일구현예에 따르면 상기 활성층의 두께는 0.05 ~ 0.25㎛일 수 있으나 이에 제한되지 않는다.
상술한 제1도전형 반도체층(50a), 활성층(50b) 및 제 2도전성 반도체층(50c)은 발광 구조물의 최소 구성 요소로 포함될 수 있고, 각 층의 위/아래에 다른 형광체층, 활성층, 반도체층 및/또는 전극층을 더 포함할 수도 있다.
다음으로 상기 절연피막(50f)은 제1 도전성 반도체층, 활성층 및 제2 도전성 반도체층의 외부면 중 적어도 활성층의 외부면을 덮도록 형성되고, 전원이 직접적으로 활성층(50f) 부분의 소자의 외부면에 인가(예를 들어 전극에 활성층이 접촉)되더라도 절연피막(50f)으로 인해 활성층(50f)이 보호됨으로써 초소형 LED 소자가 전기적 단락 되는 것을 방지할 수 있다. 또한, 초소형 LED 소자가 서로 다른 두 전극 사이에 형성된 전기장에 의해 자기정렬 시 소자간의 부딪침 등으로 발생할 수 있는 반도체 외부 표면의 손상을 방지할 수 있어 초소형 LED 소자의 내구성 저하를 예방할 수 있다. 나아가, 절연피막은 후술하는 금속캡이 도전성 반도체층 및 활성층을 포함하는 소자의 외부면 전체에 형성되는 것을 방지하는 동시에 소자의 일단측 또는 양단측에 금속캡이 다양한 형상으로 넓은 표면적을 갖도록 형성되는 것을 도와주는 기능을 담당한다.
상기 절연피막(50f)은 바람직하게는 질화규소(Si3N4), 이산화규소(SiO2), 산화알루미늄(Al2O3), 산화하프늄(HfO2), 산화이트륨(Y2O3) 및 이산화티타늄(TiO2) 중 어느 하나 이상을 포함할 수 있으며, 보다 바람직하게는 상기 성분으로 이루어지나 투명한 것일 수 있으며, 다만 이에 한정되지 않는다. 투명한 절연피막의 경우 상술한 절연피막(50f)의 역할을 하는 동시에 절열피막을 코팅함으로써 만일하나 발생할 수 있는 소자의 발광효율 감소를 최소화할 수 있다. 본 발명의 바람직한 일구현예에 따르면 상기 절연피막의 두께는 5nm ~ 50nm 일 수 있으나 이에 제한되지 않는다.
다음으로 초소형 LED 소자의 적어도 하나의 단부측에 형성되는 금속캡(50d, 50e)에 대해 설명한다.
상기 금속캡은 초소형 LED 소자의 일단부측의 끝단 뿐만 아니라 및 소자 끝단측의 표면적을 더욱 증가시키기 위해 금속캡이 상기 끝단에 이어지는 측면부의 일부를 덮으며, 이때, 금속캡의 외부면의 적어도 일부 영역이 곡면 형상을 갖는다.
구체적으로 도 6은 본 발명의 바람직한 일구현예에 따른 초소형 LED 소자의 종단면도로써, 소자의 일단부측에 형성된 금속캡(51e)을 나타낸다. 더 구체적으로 상기 금속캡(51e)은 소자의 일단부측 중 끝단(A1) 및 상기 끝단(A1)에 이어지는 측면부(A2)까지 연장하여 덮고 있으며, 상기 금속캡(51e)은 제2 반도체 층(51c)의 외부 측면을 덮으나 절연피막(51f)을 덮지 않게 형성되어 있다. 또한, 상기 금속캡(51e) 단면 외곽선은 곡선을 포함하며, 이에 따라 금속캡의 외부면은 곡면을 포함하고 있다.
한편, 상술한 절연피막(50f)이 활성층의 외부면을 포함하여 소장의 외부면을 덮도록 형성된 경우 절연피막의 외부면 일부를 덮도록 형성될 수 있다.
구체적으로 도 7은 본 발명의 바람직한 다른 일구현예에 따른 초소형 LED 소자의 종단면도로써, 소자의 일단부측에 형성된 금속캡(52e, 53e, 54e, 55e)을 나타낸다. 도 7a 및 도7b 의 금속캡(52e, 53e)의 내부면은 절연피막(52f, 53f)에 대면하여 절연피막의 일부 외부면(S1, S2)을 덮으며, 제2 반도체층(52c, 53c)의 상부면(끝단)을 덮고 있다. 또한, 도 7a 및 도7b의 금속캡(52e, 53e) 단면 외곽선은 곡선을 포함하며, 이에 따라 금속캡의 외부면은 곡면을 포함하고 있다.
또한, 곡면이 도 7c의 초소형 LED 소자와 같이 금속캡(54e)의 전영역에 걸쳐 형성될 수 있고, 도 7d의 초소형 LED 소자와 같이 금속캡(55e)의 일부영역에 형성될 수 있다. 더 구체적으로 도 7d의 초소형 LED 소자는 종단면에서 소자의 대각선 방향쪽을 포함하는 일부영역이 곡면(R)임을 나타낸다.
본 발명에 따른 초소형 LED 소자는 금속캡의 외부면의 적어도 일부가 곡면인데, 바람직하게는 상기 일부영역은 초소형 LED 소자의 종단면에서 대각선 방향 가상의 연장선(도 7d의 l)이 통과하는 영역일 수 있고, 구체적으로 도7d에서 가상의 연장선(l)은 금속캡(55e)의 곡면(R)을 통과하고 있다. 금속캡의 외부면 중 적어도 일부영역, 특히 소자의 종단면에서 대각선 방향의 금속캡 외부면이 곡면일 경우 전기장 하에서 초소형 LED 소자가 자기 정렬하여 전극에 연결될 때 서로 다른 두 전극에 초소형 LED 소자가 수직하도록 배열되기 용이하여 전극영역을 차지하는 한 개의 LED 소자의 면적이 최소가 되도록 배열시키는데 매우 유리할 수 있고, 이를 통해 더 많은 LED 소자를 전극영역에 실장시킬 수 있다. 또한, 본 발명의 바람직한 다른 일구현예에 따르면, 상기 금속캡의 외부면은 도 7a 내지 7c와 같이 외부면의 전 영역이 곡면일 수 있다.
한편, 본 발명의 바람직한 또 다른 일구현예에 따르면, 상기 금속캡은 초소형 LED 소자의 양 단부측에 형성될 수 있다. 구체적으로 도 8은 본 발명의 바람직한 일구현예에 따른 초소형 LED 소자의 종단면도로써, 도 8a는 초소형 LED 소자의 제1 도전성 반도체층(56a)의 하부면(끝단)과 상기 하부면에 이어지는 측면을 덮으나 절연피막(56f)의 외부면을 덮지 않으며, 금속캡 외부면의 적어도 일부영역이 곡면인 제1 금속캡(55d) 및 제2 반도체층(56c)의 상부면(끝단)과 상기 상부면에 이어지는 측면을 덮으나 절연피막(56f)의 외부면을 덮지 않으며, 금속캡 외부면의 적어도 일부영역이 곡면인 제2 금속캡(56e)을 나타낸다.
또한, 도 8b는 초소형 LED 소자의 제1 도전성 반도체층(57a)의 하부면에 대면하고, 절연피막(57f)의 일부를 덮으며, 외부면의 적어도 일부영역이 곡면인 제1 금속캡(57d) 및 제2 반도체층(57c)의 상부면에 대면하고, 절연피막(57f)의 일부를 덮으며, 외부면의 적어도 일부영역이 곡면인 제2 금속캡(57e)을 나타낸다.
이상으로 상술한 것과 같은 본 발명에 따른 초소형 LED 소자에 포함되는 금속캡은 적어도 일부영역이 곡면인 외부면을 가지므로 본 발명의 바람직한 일구현예에 따르면, 초소형 LED 소자는 도 5a(또는 도 6, 도 7)과 같이 반도체층에 수직한 방향의 단면형상이 면봉형상일 수 있고, 도 5b(또는 도 8)과 같이 반도체층에 수직한 방향의 단면형상이 아령형상일 수 있다.
초소형 LED 소자의 적어도 일단부측에 상술한 것과 같은 형상을 가지도록 형성된 금속캡으로 인해 종래의 LED 소자에 전기장 하에서 분극될 수 있는 영역의 표면적이 현저히 증가하여 보다 많은 양전하 또는 음전하가 금속캡 표면에 하전될 수 있어 초소형 LED 소자의 전극어셈블리상 자기정렬을 향상시킴과 동시에 보다 용이하게 위치정렬 시킬 수 있는 이점이 있다. 이에 따라 바람직하게는 상기 초소형 LED 소자 일단부측의 소자 끝단 단면적과 금속캡 표면적의 면적비는 1: 1.1 ~ 10.0일 수 있고, 바람직하게는 1.1 ~ 5일 수 있고, 보다 더 바람직하게는 1.1 ~ 3일 수 있다. 만일 면적 비가 1: 1.1 미만인 경우 금속캡을 구비함으로써 발현시킬 수 있는 효과의 향상이 미미하고, 금속캡이 기능을 제대로 수행할 수 없을 수 있으며, 만일 면적 비가 1: 10을 초과하는 경우 금속캡이 소자의 장축방향 및/또는 단축방향으로 현저히 커져 초소형의 LED를 구현하기 어렵고 하나의 LED 소자가 차지하는 부피가 커져서 한정된 전극영역에 포함되는 초소형 LED 소자의 개수를 증가시킬 수 없는 문제점이 있을 수 있다.
또한, 상술한 형상의 금속캡을 구비한 초소형 LED 소자를 통해 수평배열 어셈블리를 구현할 경우 어셈블리의 전극의 폭, 전극 사이의 거리, 초소형 LED 소자의 길이, 소자에서 절연피막이 코팅되지 않은 노출부분의 두께 등의 조건들이 정확히 정합(coordination) 되도록 조건들을 미세하게 조절하지 않아도 목적하는 자기정렬을 통한 위치 정렬성 및 전기적 연결성을 충분히 달성된 수평배열 어셈블리를 구현할 수 있다. 구체적으로 도 9는 본 발명의 바람직한 일구현예에 따른 수평배열 어셈블리에 대한 단면도로써, 베이스기판(1) 상에 형성된 제1 전극(14, 15), 상기 제1 전극(14, 15)와 이격되어 베이스기판(1) 상에 형성된 제2 전극(24)에 초소형 LED 소자들(36, 37)이 연결되어 있다. 초소형 LED 소자 중 금속캡이 없는 초소형 LED 소자(36)의 경우 일측의 전극층 또는 반도체층(36d)은 제1 전극(14)에 직접 접하고 있는데 반하여, 타측의 전극층 또는 반도체층(36e)은 제2 전극(24)에 직접 접하고 있지 않아 전기적으로 연결되지 못하고 있다. 이러한 문제점을 해결하기 위해서는 서로 다른 두 전극(14, 24) 사이의 거리, 초소형 LED 소자(36)의 길이 및 절연피막이 코팅되지 않은 부분(36d)의 길이 등의 조건을 조절하여 정합시키는 과정이 필요하다. 그러나 나노 또는 마이크로 스케일의 수평배열 어셈블리에서 이러한 모든 조건들을 정합시키는 것은 매우 어려운 문제점이 있다. 이에 반하여 도 9의 초소형 LED 소자 중 본 발명에 따른 금속캡(37d. 37e)을 포함하는 소자(37)는 양단부측에 형성된 금속캡(37d, 37e)으로 인하여 모든 조건들의 정합 없이도 서로 다른 두 전극(15, 24)에 보다 용이하게 전기적으로 연결될 수 있음을 알 수 있다.
상기 금속캡(50d, 50e)은 금(Au), 구리(Cu), 은(Ag), 니켈(Ni), 코발트(Co), 백금(Pt), 크롬(Cr), 티타늄(Ti), 알루미늄(Al), 니켈(Ni) 및 팔라듐(Pd) 중 어느 하나의 금속, 이들의 산화물 또는 2 이상 금속의 합금일 수 있다. 상기 초소형 LED 소자가 양 단부측에 금속캡을 포함하는 경우 각 단부측의 금속캡 재질은 동일하거나 상이할 수 있다.
한편, 본 발명에 따른 초소형 LED 소자의 용도에 대해 구체적으로 설명한다. 본 발명의 바람직한 일구현예에 따른 초소형 LED 소자의 용도는 수평배열 어셈블리의 용도이다. 즉 초소형 LED 소자의 각 반도체층에 수직한 방향의 소자 길이방향을 기준으로 소자가 지면에 대해 누워 있는 형상으로 서로 다른 두 전극에 소자의 양 단부측이 각각 연결되는 어셈블리에 적합하며, 초소형 LED 소자가 길이방향으로 전극상에 3차원 직립하여 실장되는 수직구조의 어셈블리의 용도가 아닐 수 있다. 구체적으로 도 17은 종래의 수직구조 어셈블리의 사시도로써, 베이스기판(500) 상에 형상된 제1 전극(510), 상기 제1 전극의 수직 상부에 형성된 제2 전극(520) 및 상기 제1 전극과 제2 전극 사이에 소자의 길이방향으로 3차원 직립하여 개재된 초소형 LED 소자(530)를 나타낸다. 도 17과 같은 수직구조의 어셈블리를 구현하기 위해서는 제1 전극상에 초소형 LED 소자를 성장시키는 것 이외에 별도로 제조된 낱개의 초소형 LED 소자를 길이방향으로 일일이 세워서 연결시키는 것은 사실상 매우 어렵다. 또한, 지면에 대해 누워 있는 상태의 초소형 LED 소자에 대해 상하 방향으로 전기장을 형성시킨다고 하여 초소형 LED 소자가 길이방향으로 3차원 직립하여 자기정렬될 수 있는 것이 결코 아니다. 이에 따라 본 발명에 따른 초소형 LED 소자는 전기장의 영향에 따라 자기정렬 되어 지면에 대해 수평하게 서로 다른 두 전극에 연결되어 구현되는 수평어셈블리에 보다 적합할 수 있다.
이상으로 상술한 본 발명의 바람직한 일구현예에 따른 초소형 LED 소자는 후술하는 제조방법으로 제조될 수 있다. 다만, 제조방법이 이에 한정되는 것은 아니다.
본 발명의 바람직한 일구현예에 따른 초소형 LED 소자는 (1) LED 소자의 직경이 나노 또는 마이크로 크기를 가지도록 기판상에 제1 도전성 반도체층, 활성층 및 제2 도전성 반도체층을 포함하여 순차적으로 적층된 적층체를 식각하는 단계; (2) 식각된 적층체에서 제1 도전성 반도체층, 활성층 및 제2 도전성 반도체층을 포함하는 외부면에 절연피막을 형성시키는 단계; 및 (3) 제2 도전성 반도체층의 상부면을 포함하는 일부 외부면이 노출되도록 절연피막을 제거하고, 노출된 제2 도전성 반도체층 외부면에 금속캡을 형성시킨 후 기판을 제거하는 단계;를 포함하여 제조될 수 있다.
먼저, (1) 단계로써, LED 소자의 직경이 나노 또는 마이크로 크기를 가지도록 기판상에 제1 도전성 반도체층, 활성층 및 제2 도전성 반도체층을 포함하여 순차적으로 적층된 적층체를 식각하는 단계;를 수행한다.
우선 적층체를 제조하기 위해 기판위에 제1 도전성 반도체층, 활성층 및 제2 도전성 반도체층을 포함하여 순차적으로 형성한다. 구체적으로 도 10은 본 발명의 일구현예에 따른 초소형 LED 소자의 제조공정을 나타내는 사시도로써, 도 10a는 기판(200)상에 순차적으로 적층된 제1 도전성 반도체층(210), 활성층(220) 및 제2 도전성 반도체층(230)을 나타낸다. 상기 제1 도전성 반도체층 및 제2 도전성 반도체층 중 어느 하나의 반도체층은 n형 반도체층을 적어도 하나 포함하고, 다른 도전성 반도체층은 p형 반도체층을 적어도 하나 포함할 수 있다.
상기 기판(200)은 사파이어 기판(Al203) 및 유리와 같은 투과성 기판을 포함할 수 있다. 또한 상기 기판(200)은 GaN, SiC, ZnO, Si, GaP 및 GaAs, 도전성 기판 등으로 이루어진 군에서 선택될 수 있다. 상기 기판(200)의 상면은 요철 패턴이 형성될 수도 있다.
상기 기판(200) 위에는 질화물 반도체가 성장되는데, 그 성장 장비는 전자빔 증착기, PVD(physical vapor deposition), CVD(chemical vapor deposition), PLD(plasma laser deposition), 이중형의 열증착기(dual-type thermal evaporator) 스퍼터링(sputtering), MOCVD(metal organic chemical vapor deposition) 등에 의해 형성할 수 있으며, 이러한 장비로 한정하지는 않는다.
상기 기판(200)상 위에는 버퍼층(미도시) 또는/및 언도프드 반도체층(미도시)이 형성될 수 있다. 상기 버퍼층은 상기 기판(200)과의 격자 상수 차이를 줄여주기 위한 층으로서, GaN, InN, AlN, InGaN, AlGaN, InAlGaN, AlInN 중 적어도 하나로 형성될 수 있다. 상기 언도프드 반도체층은 언도프드(undoped) GaN층으로 구현될 수 있으며, 질화물 반도체가 성장되는 기판으로 기능하게 된다. 상기 버퍼층 및 언도프드 반도체층은 어느 한 층만 형성하거나, 두 층 모두 형성되거나 형성되지 않을 수도 있다. 본 발명의 바람직한 일구현예에 따르면 상기 기판의 두께는 400 ~ 1500㎛일 수 있으나 이에 제한되지 않는다.
상기 기판(200) 상에 순차적으로 포함되어 적층되는 제1 도전성 반도체층(210), 활성층(220) 및 제2 도전성 반도체층(230)에 대한 구체적인 설명은 상술한 본 발명의 바람직한 일구현예에 따른 초소형 LED 소자에 대한 설명과 동일하여 생략한다.
다음으로 상술한 것과 같이 기판상에 순차적으로 적층된 적층체에 대해 LED 소자의 직경이 나노 또는 마이크로 크기를 가지도록 식각하는 단계를 수행한다.
이를 위해 본 발명의 바람직한 일구현예에 따른 1-1) 기판상에 제1 도전성 반도체층, 활성층 및 제2 도전성 반도체층을 포함하여 순차적으로 적층하는 단계; 1-2) 제2 도전성 반도체층 상에 절연층 및 금속 마스크층을 형성하는 단계; 1-3) 상기 금속 마스크층 위에 나노스피어 또는 마이크로 스피어 단층막을 형성하고 자기조립을 수행하는 단계; 및 1-4) 상기 제1 도전성 반도체층, 활성층 및 제2 도전성 반도체층을 포함하여 패턴에 따라 나노 또는 마이크로 간격으로 식각하는 단계; 를 포함하여 수행될 수 있다.
제1 도전성 반도체층, 활성층 및 제2 도전성 반도체층을 포함하여 순차적으로 기판상에 적층(1-1) 단계) 후 상기 제2 도전성 반도체층 상에 절연층 및 금속마스크층을 형성(1-2) 단계)시킬 수 있다. 구체적으로 도 10b는 제2 도전성 반도체층(230) 상에 순차적으로 형성된 절연층(240) 및 금속마스크층(250)을 나타낸다.
상기 절연층(240)은 제2 도전성 반도체층, 활성층 및 제 1도전성 반도체층의 연속적인 에칭을 위한 마스크의 역할을 수행할 수 있으며, 산화물 또는 질화물을 이용할 수 있고, 이에 대한 비제한적인 예로 실리콘 산화물(SiO E 또 (SiOx) 및/또는 실리콘 질화물 (Si3N4 또는 SiNx)이 이용될 수 있으나 이에 제한되는 것은 아니다. 본 발명의 바람직한 일구현예에 따르면 상기 절연층의 두께는 0.5 ~ 1.5 ㎛일 수 있으나 이에 제한되지 않는다.
상기 절연층(240)의 상에 형성되는 금속 마스크층(250)은 에칭을 위한 마스크층 의 역할을 수행하는 것으로, 통상적으로 사용되는 금속을 이용할 수 있으며, 이에 대한 비제한적인 예로써, 크롬(Cr) 금속이 이용될 수 있으나 이에 제한되는 것은 아니다. 본 발명의 바람직한 일구현예에 따르면 상기 금속 마스크층의 두께는 30 ~ 150 nm일 수 있으나 이에 제한되지 않는다.
다음 1-3) 단계로 상기 금속 마스크층(250) 위에 나노스피어 또는 마이크로 스피어 단층막(260)을 형성하고 자기조립을 수행하는 단계를 수행할 수 있다.
구체적으로 도 10c는 본 발명의 금속 마스크층(250) 상에 형성된 나노 스피어 또는 마이크로 스피어 단층막(260)의 단면사시도를 나타낸다. 상기 나노 스피어 또는 마이크로 스피어 단층막(260)은 금속 마스크층(250)의 에칭을 위한 마스크 역할을 하기 위하여 형성하는 것으로서 스피어 입자의 형성방법은 스피어의 자기조립 특성을 이용할 수 있다. 스피어들의 자기조립에 의한 완전한 한층의 구조 배열 형성을 위하여 물 표면 위에 스피어를 일정한 속도로 띄어 보내어 서로 자기 조립되도록 만든다. 물에서 퍼지면서 형성된 스피어 영역은 작고 불규칙적이기 때문에 추가적인 에너지와 계면활성제를 가하여 크고 규칙적인 배열을 가진 스피어 한 층을 형성하고 상기 금속 마스크층(250) 위로 스피어 한층을 떠냄으로서 금속층 위에 규칙적으로 배열된 스피어 단층막을 형성할 수 있다. 스피어 입자의 직경은 최종 생산하려는 초소형 LED 소자의 원하는 직경에 따라 선택적으로 사용될 수 있으며, 바람직하게는 50 ~ 3000㎚의 직경을 갖는 폴리스티렌 스피어, 실리카 스피어 등을 사용할 수 있으나 이에 제한되지 않는다.
다음 1-4) 단계로 상기 제1 도전성 반도체층, 활성층 및 제2 도전성 반도체층을 포함하여 패턴에 따라 나노 또는 마이크로 간격으로 식각하는 단계를 포함하여 수행할 수 있다.
도 10 d 내지 10f는 나노 또는 마이크로 간격으로 식각하기 위한 패터닝 공정으로써, 도 10d는 금속마스크층 위에 형성된 나노스피어 또는 마이크로 스피어 단층막(260)이 애싱(ashing) 공정을 거친 후의 단면사시도로써, 애싱(ashing) 공정을 통해 스피어 입자의 간격이 목적하는 LED 소자의 직경이 구현될 수 있는 간격으로 이격될 수 있고 보다 바람직하게는 상기 간격은 50 ~ 3000㎚ 일 수 있다.
상기 애싱공정은 통상의 스피어 단층막의 애싱공정을 통해 달성될 수 있으며, 바람직하게는 산소(O2) 기반의 Reactive ion ashing (반응성 이온 애싱)과 plasma ashing(플라즈마 애싱)을 통해 수행될 수 있다.
도 10e는 스피어 입자를 마스크로 하여 금속마스크층이 식각(250’)된 단면사시도를 나타내고, 도 10f는 스피어 입자(260’)가 제거되고 식각된 금속마스크층(250’)을 마스크로 하여 식각된 절연층(240’)을 나타낸다. 이후에 도 10g와 같이 식각된 절연층(240’)을 마스크로 하여 제1 도전성 반도체층, 활성층 및 제2 도전성 반도체층을 원하는 깊이로 식각할 수 있고, 그 후 절연층(240’)을 제거하여 도 10h와 같은 식각된 적층체를 제조할 수 있다.
상기 도 10e 내지 10g의 식각공정 및 스피어 입자/금속 마스크층/절연층의 제거는 통상적인 식각공정에 의할 수 있으며, 건식식각법 또는 습식식각법을 단독 또는 병용 실시할 수 있다. 구체적으로 상기 식각공정은 RIE(reactive ion etching: 반응성 이온 에칭) 또는 ICP-RIE(inductively coupled plasma reactive ion etching: 유도 결합 플라즈마 반응성 이온 에칭)와 같은 건식 식각법이 이용될 수 있다. 이러한 건식 식각법은 습식 식각법과 달리, 일방성 식각이 가능하여 이러한 패턴을 형성하기에 적합하다. 즉, 습식 식각법은 등방성(isotropic) 식각이 이루어져, 모든 방향으로 식각이 이루어지나, 이와 달리 건식식각법은 홀을 형성하기 위한 깊이 방향이 식각이 가능하여, 홀의 크기 및 간격 등을 원하는 패턴으로 형성할 수 있다. 이때, 상기 RIE 또는 ICP-RIE법을 이용할 경우, 금속 마스크를 식각할 수 있는 에칭 가스로는 Cl2, O2 등이 이용될 수 있다.
한편, 본 발명의 바람직한 다른 일구현예에 따르면, 상기 (1) 단계는 1-1) 기판상에 제1 도전성 반도체층, 활성층 및 제2 도전성 반도체층을 포함하여 순차적으로 적층시켜 적층체를 제조하는 단계; 1-2) 제2 도전성 반도체층 상에 절연층 및 금속 마스크층을 형성하는 단계; 1-3) 상기 금속 마스크층 상에 폴리머층을 형성하고 상기 폴리머층에 나노 또는 마이크로 간격으로 패턴을 형성하는 단계; 1-4) 상기 제1 도전성 반도체층, 활성층 및 제2 도전성 반도체층을 포함하여 패턴에 따라 나노 또는 마이크로 간격으로 식각하는 단계; 및 1-5) 상기 절연층, 금속 마스크층 및 폴리머층을 제거하는 단계;를 포함하여 수행할 수 있다.
구체적으로 제2 도전성 반도체층의 위에 절연층 및 금속 마스크층을 형성한 후 상기 금속마스크층 위에 통상의 리소그래피 등에 사용될 수 있는 통상의 폴리머층을 형성하고 상기 폴리머층에 포토 리소그레피, e-빔 리소그래피, 또는 나노 임프린트 리소그래피 등의 방법을 통해 나노 또는 마이크로 간격으로 패턴을 형성한 후 이를 건식 또는 습식식각하고 폴리머층, 금속마스크층, 절연층을 제거하는 것을 통해 달성될수 있다.
다음으로 (2)단계로써, 식각된 적층체에서 제1 도전성 반도체층, 활성층 및 제2 도전성 반도체층을 포함하는 외부면에 절연피막을 형성시키는 단계;를 수행한다.
구체적으로 도 10i는 식각된 적층체의 외부면이 절연피막(270)으로 코팅된 적층체를 나타낸다. 상기 절연피막의 코팅은 식각된 적층체의 외부면에 절연물질을 도포하거나 이를 침지하는 방법을 이용할 수 있으나 이에 제한되는 것은 아니다. 상기 절연피막으로 사용될 수 있는 물질은 바람직하게는 SiO2, Si3N4, Al2O3 및 TiO2로 이루어지는 군으로부터 선택되는 어느 하나 이상을 포함할 수 있으나 이에 제한되지 않는다. 바람직하게는 Al2O3일 수 있고, 이러한 절연물질은 ALD(atomic layer deposition : 원자 층 증착)방식을 통하여 식각된 적층체의 외부면에 절연피막을 형성시킬 수 있으며 TMA(trimethyl aluminum)와 H2O 소스를 펄스형태로 공급하여 화학적 흡착과 탈착을 이용하여 박막을 형성할 수 있다. 이때 형성되는 절연피막의 두께는 본 발명의 바람직한 일구현예에 따르면, 5 ~ 50nm일 수 있다.
다음으로 (3) 단계로써 제2 도전성 반도체층의 상부면을 포함하는 일부 외부면이 노출되도록 절연피막을 제거하고, 노출된 제2 도전성 반도체층 외부면에 금속캡을 형성시킨 후 기판을 제거하는 단계를 수행한다.
상기 (3)단계에서 제2 도전성 반도체층 외부면에 금속캡을 형성시키는 방법은 통상의 금속증착방법을 사용할 수 있고, 바람직하게는 전기화학증착법을 이용할 수 있다. 이에 본 발명의 바람직한 일구현예에 따르면, 상기 (3) 단계는 3-1) 제2 도전성 반도체층의 상부면을 포함하는 제2 도전성 반도체층의 일부 외부면이 노출되도록 절연피막을 제거하는 단계; 3-2) 적층체를 전해도금액에 침지 및 적층체에 전원을 인가하여 노출된 제2 도전성 반도체층의 외부면에 금속캡을 도금시키는 단계; 및 3-3) 적층체에서 기판을 제거하는 단계를 수행할 수 있다.
먼저, 3-1) 단계로 제2 도전성 반도체층의 상부면을 포함하는 제2 도전성 반도체층의 일부 외부면이 노출되도록 절연피막을 제거하는 단계를 수행할 수 있다.
상기 절연피막의 제거는 통상적인 식각방법을 통해 수행할 수 있으며, 바람직하게는 방향성 식각(directional etching)을 통해 수행될 수 있고, 이의 구체적 방법은 당업계에서 공지된 통상의 방법에 의할 수 있다. 이때, 목적하는 금속캡의 단면형상/표면적 등을 고려하여 절연피막이 식각되는 부분을 제2 도전성 반도체층의 상부면 또는 상부면과 이어지는 제2 도전성 반도체층의 일부 측면까지 식각할 수 있다. 다만, 전극과 활성층이 직접 접촉하여 발생하는 전기적 단락을 방지 위해 활성층에 인접하는 제2 도전성 반도체층의 일부측면까지 노출시키는 것은 바람직하지 않을 수 있다. 구체적으로 도 10j는 제2 도전성 반도체층 상부면의 절연피막이 제거됨으로써, 제2 반도체층의 상부면을 제외하고 식각된 적층체의 외부면에만 절연피막(270')이 코팅된 것을 나타낸다.
이후 3-2)단계로써, 적층체를 전해도금액에 침지 및 적층체에 전원을 인가하여 노출된 제2 도전성 반도체층의 외부면에 금속캡을 도금시키는 단계를 수행할 수 있다.
상기 전해도금액은 목적하는 금속캡의 형성물질을 포함하는 용액으로써 금속캡의 재질에 따라 달리 구성될 수 있다. 대표적으로 금속캡을 금(Au)으로 형성시킬 경우 사용될 수 있는 전해도금액은 HAuCl4, HCl 및 DI water가 혼합된 도금액 또는 KAuCl4 도금액일 수 있고, 이때 Au의 농도는 전기도금 수행시간, 형성시키려는 금속캡의 크기를 고려하여 달리 설계될 수 있어 본 발명에서 특별히 한정하지는 않으나 바람직하게는 0.005 ~ 50 중량% 일 수 있다.
상기와 같은 전해도금액에 제2 도전성 반도체층의 노출면을 포함하는 적층체를 침지시켜 금속캡 형성 물질을 노출된 제2 반도체층 외부면에 도금을 수행할 수 있다. 구체적으로 적층체의 기판에 전극을 부착하여 적층체에 전원을 인가시켜 전기도금을 수행할 수 있으며, 보다 용이한 금속캡의 형성을 위해 상기 기판은 도전성 기판인 것이 바람직할 수 있다. 구체적인 전기도금의 수행방법은 당업계의 통상의 방법을 사용할 수 있어 본 발명에서 특별히 한정하지 않는다. 다만, -0.2 ~ -1.0 V의 직류로 10 ~ 55 분 동안 전원을 인가하여 금속캡을 형성시킴이 바람직하다. 만일 전원이 10 분 미만으로 인가될 경우 충분한 표면적을 가지고 목적하는 단면형상을 갖는 금속캡의 형성이 어려울 수 있고, 55분을 초과하면 전극에 단락이 발생할 수 있는 문제가 있다.
상술한 금속캡의 형성방법은 전기도금을 통한 방법이나 반드시 이에 제한되지 않고, Thermal Evaporation, E-Beam Evaporation, Sputter 등을 통해서도 형성시킬 수 있다.
구체적으로 도 10k는 상술한 방법에 의해 절연피막이 코팅되지 않는 제2 도전성 반도체층 상부면을 포함하여 소자 단부측 외부면의 일부에 형성된 금속캡(280)을 나타낸다.
이후 3-3) 단계로 도 10l과 같이 적층체에서 기판을 제거하는 단계를 수행하면 소자의 단면형상이 면봉형상인 초소형 LED 소자가 제조될 수 있다.
기판을 제거하는 과정에서 바람직하게는 지지필름을 금속캡 상부에 부착하고 기판을 laser lift off(LLO) 등의 통상의 방법을 통해 제거할 수 있고, 지지필름을 통해 복수개의 초소형 LED 소자가 분산되지 않고, 기판의 제거과정에서 발생할 수 있는 LED 소자의 크랙을 방지할 수 있다. 상기 지지필름은 폴리머 엑포시 또는 본딩 메탈일 수 있으며, 두께는 0.3 ~ 70 ㎛일 수 있으나 이에 제한되지 않는다.
한편, 본 발명의 바람직한 다른 일구현예에 따르면, 금속캡이 LED 소자의 양단부측에 형성된 단면이 아령형상인 LED 소자를 제조하기 위해 상기 (3) 단계는 3-1) 제2 도전성 반도체층의 상부면을 포함하는 일부 외부면이 노출되도록 절연피막을 제거하는 단계; 3-2) 적층체를 전해도금액에 침지 및 적층체에 전원을 인가하여 노출된 제2 도전성 반도체층의 외부면에 금속캡을 도금시키는 단계; 3-3) 상기 금속캡 상부에 지지필름을 형성 및 적층체의 기판을 제거하는 단계; 3-4) 기판이 제거된 적층체를 전해도금액에 침지 및 적층체에 전원을 인가하여 노출된 제1 반도체층의 하부면을 포함하는 일부 외부면에 금속캡을 도금시킨 후 지지필름을 제거하는 단계;를 포함하여 수행될 수 있다.
상기 3-1) 내지 3-2) 단계까지의 설명은 면봉형상 LED 소자의 제조방법에서 상술한 것과 동일하여 생략한다.
제2 도전성 반도체층의 외부면에 금속캡을 형성시킨 후 3-3)단계로 상기 금속캡 상부에 지지필름을 형성 및 적층체의 기판을 제거하는 단계를 수행할 수 있다.
구체적으로 도 11은 본 발명의 일구현예에 따른 초소형 LED 소자의 제조공정을 나타내는 사시도로써, 도 11a는 3-2)를 통해 제조된 적층체에서 LED 소자의 일단부측에 형성된 금속캡(280a)의 하부에 지지필름(290)을 부착하는 것을 나타낸다. 이후 LED 소자의 지지력을 증가시키기 위해 도 11b와 같이 지지필름(290)과 적층체 사이 공간에 서포트폴리머(291)를 채울 수도 있다. 상기 서포트폴리머는 당업계에서 공지 관용으로 이용되는 것을 사용할 수 있으며, 이에 본 발명에서는 구체적 종류를 한정하지 않는다.
이후 도 11c와 같이 기판(200)을 제거하고, 기판(200)하부의 식각되지 않은 제1 도전성 반도체층(210)을 제거하여 도 11d와 같이 제1 반도체층의 하부를 노출시킬 수 있다. 상기 식각되지 않은 제1 도전성 반도체층(210)의 제거는 초음파 조사 또는 건식식각 등 당업계 공지된 방법을 사용할 수 있다.
다음 3-4) 단계로 기판이 제거된 적층체를 전해도금액에 침지 및 적층체에 전원을 인가하여 노출된 제1 반도체층의 하부면을 포함하는 일부 외부면에 금속캡을 도금시킨 후 지지필름을 제거하는 단계를 수행할 수 있다.
상기 전해도금액 등 도금의 구체적이 설명은 상술한 바와 같아 생략하며, 절연피막이 코팅되지 않은 제1 반도체층의 노출면에 금속캡 형성물질을 도금시키면 도 11e와 같이 제1 도전성 반도체층 방향의 소자 일단부측에 금속캡(280b)을 형성시킬 수 있다. 이후 서포트폴리머, 지지필름을 제거하면 도 11f와 같이 소자의 양단부측에 금속캡(280a, 280b)을 포함하는, 소자의 단면형상이 아령형상인 초소형 LED 소자를 제조할 수 있다.
한편, 본 발명은 이상으로 상술한 본 발명의 바람직한 일구현예에 따른 수평배열 어셈블리용 초소형 LED 소자를 포함하는 수평배열 어셈블리를 포함한다.
본 발명의 바람직한 일구현예에 따른 수평 배열된 초소형 LED 수평배열 어셈블리는 베이스 기판; 상기 베이스 기판상에 형성된 제1 전극 및 상기 제1 전극과 동일평면상에 이격되어 형성된 제2 전극을 포함하는 전극라인; 및 상기 제1 전극과 제2 전극에 동시에 연결된 본 발명에 따른 복수개의 초소형 LED 소자;를 포함한다.
구체적으로 도 12는 본 발명의 바람직한 일구현예에 따른 수평배열 초소형 LED 수평배열 어셈블리의 사시도로써, 베이스기판(300) 상에 형성된 제1 전극(311), 상기 제1 전극(311)에 이격되어 베이스기판(300) 상에 형성된 제2 전극(312)을 포함하는 전극라인(310) 및 상기 제1 전극(311) 및 제2 전극(312)에 동시에 연결된 초소형 LED 소자(321, 322, 323, 324)를 나타낸다.
먼저, 베이스기판(300) 및 상기 베이스기판(300) 상에 형성된 제1 전극(311), 상기 제1 전극(311)에 이격되어 베이스기판(300) 상에 형성된 제2 전극(312)을 포함하는 전극라인(310)에 대해 설명한다.
상기 "베이스기판 상"의 의미는 제1 전극(311) 및 제2 전극(312)이 베이스기판 표면에 직접적으로 형성 또는 제1 전극(311) 및/또는 제2 전극(312)베이스기판 상부에 이격하여 형성될 수 있음을 의미한다. 상기 베이스기판은 수평배열 어셈블리의 지지체 역할을 수행한다. 본 발명에서 사용할 수 있는 베이스기판(300)은 통상적으로 전극이 형성될 수 있는 베이스 기판인 경우 제한 없이 사용될 수 있다. 이에 대한 비제한적인 예로써, 유리기판, 수정기판, 사파이어 기판, 플라스틱 기판 및 구부릴 수 있는 유연한 폴리머 필름 중 어느 하나일 수 있다. 보다 더 바람직하게는 상기 기판은 투명한 것일 수 있다. 상기 베이스기판의 면적은 제한이 없으며, 베이스 기판상에 형성될 제1 전극의 면적, 제2 전극의 면적, 상기 제1 전극 및 제2 전극에 연결되는 초소형 LED 소자 사이즈 및 연결되는 초소형 LED 소자 개수를 고려하여 변경될 수 있다. 바람직하게 상기 베이스기판의 두께는 100㎛ 내지 1 mm일 수 있으나, 이에 제한되는 것은 아니다.
상기 제1 전극(311) 및 제2 전극(312)은 통상적으로 전극으로 사용되는 물질일 수 있다. 이에 대한 비제한적인 예로써, 상기 제1 전극(311) 및 제2 전극(312)은 각각 독립적으로 알루미늄, 타이타늄, 인듐, 골드 및 실버로 이루어진 군에서 선택된 어느 하나 이상의 금속물질 또는 ITO(Indum Tin Oxide), ZnO:Al 및 CNT-전도성 폴리머(polmer) 복합체로 이루어진 군에서 선택된 어느 하나 이상의 투명물질일 수 있다. 이러한 전극물질이 2종 이상일 경우 제1 전극 및/또는 제2 전극은 바람직하게는 2종 이상의 물질이 적층된 구조일 수 있다. 보다 더 바람직하게는 제1 전극 및/또는 제2 전극은 타이타늄/골드로 2종 물질이 적층된 전극일 수 있다. 다만 제1 전극 및/또는 제2 전극의 재질은 상기 기재에 제한되는 것은 아니다. 또한, 제1 전극 및/또는 제2 전극의 재질은 동일하거나 상이할 수 있다.
상기 제1 전극 및 제2 전극의 이격간격, 크기 및 구체적인 배치는 목적에 따라 달리 설계될 수 있으며, 서로 다른 두 전극이 소용돌이 배치되거나 상호 교번적으로 배치될 수 있는 등 상상 가능한 모든 구조의 배치로 목적에 따라 다양하게 변형하여 구현할 수 있다.
본 발명의 바람직한 일구현예에 따르면, 상기 수평배열 어셈블리는 소자의 일측이 제1 전극 및 제2 전극 중 어느 한 전극의 상부면에 연결되고, 타측이 다른 전극의 상부면에 연결된 제1 초소형 LED 소자; 소자의 일측이 제1 전극의 일측면에 연결되고, 소자의 타측이 상기 제1 전극의 일측면과 마주보는 제2 전극의 일측면에 연결된 제2 초소형 LED 소자; 및 소자의 일측이 제1 전극 또는 제2 전극의 상부면에 연결되고, 타측이 다른 전극의 측면에 연결된 제3 초소형 LED 소자; 중 어느 하나 이상을 포함할 수 있다. 구체적으로 도 12의 수평배열 어셈블리는 소자의 일측이 제1 전극(311) 및 제2 전극(312) 중 어느 한 전극의 상부면에 연결되고, 타측이 다른 전극의 상부면에 연결된 단면의 형상이 면봉형상(321) 및 아령형상(322)인 초소형 LED 소자를 포함하는 제1 초소형 LED 소자(321, 322);, 소자의 일측이 제1 전극(311)의 일측면에 연결되고, 소자의 타측이 상기 제1 전극의 일측면과 마주보는 제2 전극(312)의 일측면에 연결된 제2 초소형 LED 소자(323); 및 소자의 일측이 제1 전극(311)의 상부면에 연결되고, 타측이 제2 전극(312) 의 측면에 연결된 제3 초소형 LED 소자(324);를 나타낸다.
또한, 서로 다른 두 전극 사이에 끼워져 개재되는 상술한 제2 초소형 LED 소자는 멀티레이어를 형성하여 끼워져 개재될 수 있고 이를 통해 단위전극 면적 당 포함되는 초소형 LED 소자의 개수를 현저히 증가시킬 수 있으며, 소자의 일단부측 또는 양단부측에 본 발명에 따른 단면형상을 가지는 금속캡이 형성될 경우 전극 사이의 이격공간에서 초소형 LED 소자가 전기장에 의해 회전하여 양 전극의 측면에 결합할 때 소자의 길이방향이 전극의 측면과 수직에 가깝도록 결합되기 보다 용이한 이점이 있다. 또한, 이를 통해 한 개의 LED 소자가 차지하는 부피가 감소함에 따라 다른 초소형 LED 소자가 이격공간에 개재될 수 있는 공간이 늘어남에 따라 더 많은 초소형 LED 소자를 포함시킬 수 있고 이를 통해 광량이 우수한 수평배열 어셈블리를 구현할 수 있다. 이를 위해 본 발명의 바람직한 일구현예에 따르면, 수평배열 어셈블리에 포함되는 복수개의 초소형 LED 소자는 소자의 일측이 제1 전극의 일측면에 연결되고, 소자의 타측이 상기 제1 전극의 일측면과 마주보는 제2 전극의 일측면에 연결되어 서로 다른 두 전극 사이에 멀티레이어를 형성하여 개재될 수 있다.
구체적으로 도 13은 본 발명의 바람직한 일구현예에 따른 수평배열 어셈블리의 단면도로써, 베이스기판(300) 상에 형성된 제1 전극(311), 상기 제1 전극(311)의 제Ⅰ 측면과 마주보는 제Ⅱ 측면을 가지도록 베이스기판(300)상에 제1 전극(311)과 이격되어 형성된 제2 전극(312) 및 소자의 일단이 제1 전극(311)의 제Ⅰ 측면에 접하고, 타단이 제2 전극(312)의 제Ⅱ 측면에 접하도록 두 전극 사이에 멀티레이어를 형성하여 개재된 복수개의 초소형 LED 소자(325, 326)를 나타낸다. 도 13과 같은 수평배열 어셈블리가 구현될 경우 한정된 전극영역에 많은 수의 초소형 LED 소자를 포함시킬 수 있음에 따라 현저히 우수한 광량을 발광하는 수평배열 어셈블리의 구현이 가능할 수 있다.
이상을 상술한 본 발명의 바람직한 일구현예에 따른 수평배열 어셈블리는 후술하는 제조방법으로 제조될 수 있다. 다만, 이러한 제조방법에 제한되는 것은 아니다.
본 발명에 따른 바람직한 일구현예의 수평배열 어셈블리는 (a) 베이스기판상에 제1 전극을 형성시키고, 상기 제1 전극에 이격되도록 베이스기판 상에 제2 전극을 형성시키는 단계; (b) 제1 전극 및 제2 전극상에 본 발명에 따른 수평배열 어셈블리용 초소형 LED 소자를 포함하는 복수개의 초소형 LED 소자 및 용매를 투입시키는 단계; 및 (c) 상기 복수개의 초소형 LED 소자들의 일단부측이 제1 전극에 접하고 타단부측이 제2 전극에 접하도록 초소형 LED 소자를 자기정렬 시키기 위해 제1 전극 및 제2 전극에 전원을 인가하는 단계; 를 포함하여 제조될 수 있다.
상기 (a) 단계에서, 베이스기판, 전극에 대한 설명은 상술한 바와 같으며, 베이스기판에 전극을 형성하는 방법은 공지관용의 방법을 사용할 수 있고, 본 발명에서 특별히 한정하지 않는다.
다음으로 (b)단계로써, 제1 전극 및 제2 전극상에 초소형 LED 소자를 포함하는 복수개의 초소형 LED 소자 및 용매를 투입시키는 단계를 수행한다.
구체적으로 도 14는 본 발명의 바람직한 일구현예에 따른 수평배열 어셈블리의 제조공정을 나타내는 사시도로써, 도 14a는 베이스기판(100) 상에 형성된 제1 전극(110) 및 상기 제1 전극에 이격되어 베이스 기판(100)상에 형성된 제2 전극(120)에 투입된 초소형 LED 소자(130)와 용매(140)를 나타낸다.
초소형 LED 소자 및 용매를 제1 전극 및 제2 전극상에 투입하는 방법은 본 발명에서 특별히 한정하지 않는다. 상기 초소형 LED 소자는 용매와 동시에 또는 순서와 관계없이 순차적으로 투입될 수 있으나, 바람직하게는 초소형 LED 소자를 투입한 후 용매를 투입함이 목적하는 전극영역에 집중하여 초소형 LED 소자를 실장시킬 수 있는 이점이 있다.
바람직하게 상기 용매는 아세톤, 물, 알코올 및 톨루엔으로 이루어진 군에서 선택된 어느 하나 이상일 수 있고, 보다 바람직하게는 아세톤일 수 있다. 다만, 용매의 종류는 상기의 기재에 제한되는 것은 아니며 초소형 LED 소자에 물리적, 화학적 영향을 미치지 않으면서 잘 증발할 수 있는 용매의 경우 어느 것이나 제한 없이 사용될 수 있다.
바람직하게 초소형 LED 소자는 용매 100 중량부에 대해 0.001 내지 100 중량부로 투입될 수 있다. 만일 0.001 중량부 미만으로 투입될 경우 전극에 연결되는 초소형 LED 소자의 수가 적어 초소형 LED 전극어셈블리의 정상적 기능발휘가 어려울 수 있고, 이를 극복하기 위하여 여러 번 용액을 적가해야 되는 문제점이 있을 수 있으며, 100 중량부를 초과하는 경우 초소형 LED 소자들 개개의 정렬이 방해를 받을 수 있는 문제점이 있을 수 있다.
다음으로 (c) 단계로써, 상기 복수개의 초소형 LED 소자들의 일단부측이 제1 전극에 접하고 타단부측이 제2 전극에 접하도록 초소형 LED 소자를 자기정렬 시키기 위해 제1 전극 및 제2 전극에 전원을 인가하는 단계를 수행한다.
구체적으로 도 14b와 같이 제1 전극(110) 및 제2 전극(120)에 전원을 인가 시 초소형 LED 소자(130)는 회전 및 위치 변경 등 자기정렬 하여 도 13c와 같이 소자의 일단이 제1 전극(110)에 접하고 제2 전극(120) 에 소자의 타단이 접하여 제1 전극(110) 및 제2 전극(120)에 복수개의 초소형 LED 소자(30a, 30b, 30c)가 연결된 수평 어셈블리를 구현할 수 있다.
본 발명의 바람직한 일구현예에 따른 초소형 LED 소자를 자기정렬 시킬 경우 위치정렬 및 전극과의 연결성이 향상될 수 있는데, 구체적으로 도 15는 종래의 초소형 LED 소자가 전기장 하에서 자기정렬 하는 것을 나타내는 평면도로써, 베이스 기판(100) 상에 이격되어 형성된 제1 전극(113) 및 제2 전극(123)에 전원을 인가하면 초소형 LED 소자(133)는 양 끝단이 각각 서로 다른 전극 방향으로 회전(α)하게 된다. 도 15와 같이 초소형 LED 소자(133)의 절연피막에 코팅되지 않은 양 단부측의 표면적이 매우 적어 전기장에 의한 영향이 미미할 수 있어 초소형 LED 소자의 이동, 회전 등 위치변경을 위해서는 더 큰 전기장을 형성시켜야 되는 문제점이 있을 수 있고, 절연피막이 코팅되지 않은 노출된 부분의 외부면, 특히 소자의 단면에서 대각선 방향의 외부면이 곡면이 아님에 따라 소자의 일단부측이 전극에 접했을 때 전극면에 수직이 되도록 배향되기 어려울 수 있다. 이에 반하여, 도 16은 본 발명의 바람직한 일구현예에 따른 초소형 LED 소자가 자기정렬 하는 것을 나타내는 평면도로써, 베이스 기판(100) 상에 이격되어 형성된 제1 전극(114) 및 제2 전극(124)에 전원을 인가하면 초소형 LED 소자(134)는 양 끝단이 각각 서로 다른 전극 방향으로 회전(β)하게 된다. 이때 도 16와 같은 초소형 LED 소자(134)는 양 단부측에 표면적이 현저히 향상된 금속캡을 구비함으로써, 전기장에 의한 영향을 보다 더 잘 받을 수 있어 낮은 전기장 하에서도 초소형 LED 소자의 이동, 회전 등 위치변경을 보다 용이하게 시킬 수 있다. 또한, 상기 금속캡의 외부면 중 일부영역, 바람직하게는 소자의 단면에서 대각선 방향의 금속캡 외부면이 곡면을 포함하는 경우 보다 용이하게 서로 다른 두 전극면과 소자의 길이방향이 서로 수직이 되도록 위치정렬 시킬 수 있고 이를 통해 더 많은 초소형 LED 소자를 한정된 영역의 수평어셈블리 영역에 포함시킬 수 있는 이점이 있다.
상기 초소형 LED 소자의 자기정렬을 위해 필요한 전기장은 제1 전극 및 제2 전극에 전원을 인가시킴으로써 형성시킬 수 있다. 상기 전원은 직류 또는 교류일 수 있으며, 초소형 소자의 종횡비 등을 고려하여 전원을 달리 변경하여 실시할 수 있어 본 발명에서는 특별히 한정하지 않는다.
본 발명의 기술 사상은 상술한 바람직한 일구현예들에 따라 구체적으로 기재되었으나, 상기한 구현예는 그 설명을 위한 것이며 그 제한을 위한 것이 아님을 주의하여야 한다. 또한, 본 발명의 기술 분야의 통상의 전문가라면 본 발명의 기술 사상의 범위내에서 다양한 구현예가 가능함을 이해할 수 있을 것이다.
Claims (15)
- 제1 도전성 반도체층, 상기 제1 도전성 반도체층 상부에 형성된 활성층, 및 상기 활성층 상부에 형성된 제2 도전성 반도체 층을 포함하는 수평배열 어셈블리용 초소형 LED 소자에 있어서, 상기 초소형 LED 소자는제1 도전성 반도체층, 활성층 및 제2 도전성 반도체층의 외부면 중 적어도 활성층의 외부면을 덮는 절연피막; 및소자의 적어도 하나의 단부측에 형성된 금속캡;을 포함하고,상기 금속캡은 소자의 일단부로부터 연장되어 소자 측면부 일부를 덮으며, 상기 금속캡의 외부면은 적어도 일부 영역이 곡면인 것을 특징으로 하는 수평배열 어셈블리용 초소형 LED 소자.
- 제1항에 있어서,상기 제1 도전성 반도체층 및 제2 도전성 반도체층 중 어느 하나의 반도체층은 n형 반도체층을 적어도 하나 포함하고, 다른 도전성 반도체층은 p형 반도체층을 적어도 하나 포함하는 것을 특징으로 하는 수평배열 어셈블리용 초소형 LED 소자.
- 제1항에 있어서,상기 초소형 LED 소자에 대한 반도체층에 수직한 방향의 단면형상은 아령 또는 면봉 형상인 것을 특징으로 하는 수평배열 어셈블리용 초소형 LED 소자.
- 제1항에 있어서,상기 초소형 LED 소자 일단부측의 단면적에 대하여 금속캡 표면적은 1: 1.1 ~ 10.0인 것을 특징으로 하는 수평배열 어셈블리용 초소형 LED 소자.
- 제1항에 있어서,상기 초소형 LED 소자는 길이가 100nm ~ 10㎛이며, 제1 도전성 반도체층, 활성층 및 제2 도전성 반도체층을 포함하여 LED 소자의 직경이 100nm ~ 5㎛ 인 것을 특징으로 하는 수평배열 어셈블리용 초소형 LED 소자.
- 제1항에 있어서,상기 금속캡은 초소형 LED 소자의 외부면에 형성된 절연피막의 외부면 일부를 덮는 것을 특징으로 하는 수평배열 어셈블리용 초소형 LED 소자.
- (1) LED 소자의 직경이 나노 또는 마이크로 크기를 가지도록 기판상에 제1 도전성 반도체층, 활성층 및 제2 도전성 반도체층을 포함하여 순차적으로 적층된 적층체를 식각하는 단계;(2) 식각된 적층체에서 제1 도전성 반도체층, 활성층 및 제2 도전성 반도체층을 포함하는 외부면에 절연피막을 형성시키는 단계; 및(3) 제2 도전성 반도체층의 상부면을 포함하는 일부 외부면이 노출되도록 절연피막을 제거하고, 노출된 제2 도전성 반도체층 외부면에 금속캡을 형성시킨 후 기판을 제거하는 단계;를 포함하는 수평배열 어셈블리용 초소형 LED 소자 제조방법.
- 제7항에 있어서, 상기 (1) 단계는1-1) 기판상에 제1 도전성 반도체층, 활성층 및 제2 도전성 반도체층을 포함하여 순차적으로 적층시켜 적층체를 제조하는 단계;1-2) 제2 도전성 반도체층 상에 절연층 및 금속 마스크층을 형성하는 단계;1-3) 상기 금속 마스크층 상에 폴리머층을 형성하고 상기 폴리머층에 나노 또는 마이크로 간격으로 패턴을 형성하는 단계; 및1-4) 상기 제1 도전성 반도체층, 활성층 및 제2 도전성 반도체층을 포함하여 패턴에 따라 나노 또는 마이크로 간격으로 식각하는 단계;를 포함하는 것을 특징으로 하는 수평배열 어셈블리용 초소형 LED 소자 제조방법.
- 제7항에 있어서, 상기 (1) 단계는1-1) 기판상에 제1 도전성 반도체층, 활성층 및 제2 도전성 반도체층을 포함하여 순차적으로 적층하는 단계;1-2) 제2 도전성 반도체층 상에 절연층 및 금속 마스크층을 형성하는 단계;1-3) 상기 금속 마스크층 위에 나노스피어 또는 마이크로 스피어 단층막을 형성하고 자기조립을 수행하는 단계; 및1-4) 상기 제1 도전성 반도체층, 활성층 및 제2 도전성 반도체층을 포함하여 패턴에 따라 나노 또는 마이크로 간격으로 식각하는 단계;를 포함하는 것을 특징으로 하는 수평배열 어셈블리용 초소형 LED 소자 제조방법.
- 제7항에 있어서, 상기 (3) 단계는3-1) 제2 도전성 반도체층의 상부면을 포함하는 일부 외부면이 노출되도록 절연피막을 제거하는 단계;3-2) 적층체를 전해도금액에 침지 및 적층체에 전원을 인가하여 노출된 제2 도전성 반도체층의 외부면에 금속캡을 도금시키는 단계; 및3-3) 적층체에서 기판을 제거하는 단계;를 포함하는 수평배열 어셈블리용 초소형 LED 소자 제조방법.
- 제10항에 있어서, 상기 (3) 단계는3-1) 제2 도전성 반도체층의 상부면을 포함하는 일부 외부면이 노출되도록 절연피막을 제거하는 단계;3-2) 적층체를 전해도금액에 침지 및 적층체에 전원을 인가하여 노출된 제2 도전성 반도체층의 외부면에 금속캡을 도금시키는 단계;3-3) 상기 금속캡 상부에 지지필름을 형성 및 적층체의 기판을 제거하는 단계;3-4) 기판이 제거된 적층체를 전해도금액에 침지 및 적층체에 전원을 인가하여 노출된 제1 반도체층의 하부면을 포함하는 일부 외부면에 금속캡을 도금시킨 후 지지필름을 제거하는 단계;를 포함하는 수평배열 어셈블리용 초소형 LED 소자 제조방법.
- 제7항에 있어서,상기 제1 도전성 반도체층 및 제2 도전성 반도체층 중 어느 하나의 반도체층은 n형 반도체층을 적어도 하나 포함하고, 다른 도전성 반도체층은 p형 반도체층을 적어도 하나 포함하는 것을 특징으로 하는 수평배열 어셈블리용 초소형 LED 소자 제조방법.
- 베이스 기판;상기 베이스 기판상에 형성된 제1 전극 및 상기 제1 전극과 이격하여 베이스 기판상에 형성된 제2 전극을 포함하는 전극라인; 및상기 제1 전극과 제2 전극에 동시에 연결된 제1항 내지 제7항 중 어느 한 항에 따른 복수개의 초소형 LED 소자;를 포함하는 수평배열 어셈블리.
- 제13항에 있어서, 상기 수평배열 어셈블리는소자의 일측이 제1 전극 및 제2 전극 중 어느 한 전극의 상부면에 연결되고, 타측이 다른 전극의 상부면에 연결된 제1 초소형 LED 소자;소자의 일측이 제1 전극의 일측면에 연결되고, 소자의 타측이 상기 제1 전극의 일측면과 마주보는 제2 전극의 일측면에 연결된 제2 초소형 LED 소자; 및소자의 일측이 제1 전극 또는 제2 전극의 상부면에 연결되고, 타측이 다른 전극의 측면에 연결된 제3 초소형 LED 소자; 중 어느 하나 이상을 포함하는 것을 특징으로 하는 수평배열 어셈블리.
- 제13항에 있어서,상기 복수개의 초소형 LED 소자는 소자의 일측이 제1 전극의 일측면에 연결되고, 소자의 타측이 상기 제1 전극의 일측면과 마주보는 제2 전극의 일측면에 연결되어 서로 다른 두 전극 사이에 멀티레이어를 형성하여 개재된 것을 특징으로 하는 수평배열 어셈블리.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910853132.1A CN110600604B (zh) | 2014-11-18 | 2015-11-13 | 用于水平排列组件的超小型发光二极管元件、其制造方法及包括其的水平排列组件 |
CN201580062456.3A CN107210350B (zh) | 2014-11-18 | 2015-11-13 | 用于水平排列组件的超小型发光二极管元件、其制造方法及包括其的水平排列组件 |
US15/528,046 US10910512B2 (en) | 2014-11-18 | 2015-11-13 | Nano-scale LED element for horizontally-aligned assembly, method for manufacturing same, and horizontally-aligned assembly comprising same micro-LED |
US17/164,763 US11728457B2 (en) | 2014-11-18 | 2021-02-01 | Nano-scale LED element for horizontally-aligned assembly, method for manufacturing same, and horizontally-aligned assembly comprising same |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2014-0161067 | 2014-11-18 | ||
KR1020140161067A KR101672781B1 (ko) | 2014-11-18 | 2014-11-18 | 수평배열 어셈블리용 초소형 led 소자, 이의 제조방법 및 이를 포함하는 수평배열 어셈블리 |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/528,046 A-371-Of-International US10910512B2 (en) | 2014-11-18 | 2015-11-13 | Nano-scale LED element for horizontally-aligned assembly, method for manufacturing same, and horizontally-aligned assembly comprising same micro-LED |
US17/164,763 Continuation US11728457B2 (en) | 2014-11-18 | 2021-02-01 | Nano-scale LED element for horizontally-aligned assembly, method for manufacturing same, and horizontally-aligned assembly comprising same |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016080712A1 true WO2016080712A1 (ko) | 2016-05-26 |
Family
ID=56014181
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2015/012252 WO2016080712A1 (ko) | 2014-11-18 | 2015-11-13 | 수평배열 어셈블리용 초소형 led 소자, 이의 제조방법 및 이를 포함하는 수평배열 어셈블리 |
Country Status (4)
Country | Link |
---|---|
US (2) | US10910512B2 (ko) |
KR (1) | KR101672781B1 (ko) |
CN (2) | CN110600604B (ko) |
WO (1) | WO2016080712A1 (ko) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108206228A (zh) * | 2016-12-19 | 2018-06-26 | 三星显示有限公司 | 发光设备以及发光设备的制造方法 |
CN109545934A (zh) * | 2018-12-20 | 2019-03-29 | 湘能华磊光电股份有限公司 | 微孔型led电极结构及其制备方法 |
US10964842B2 (en) | 2014-11-18 | 2021-03-30 | Samsung Display Co., Ltd. | Electrode assembly comprising micro-LED elements and method for manufacturing same |
US11063194B2 (en) | 2016-01-14 | 2021-07-13 | Samsung Display Co., Ltd. | Ultra-small LED electrode assembly |
WO2022080937A1 (ko) * | 2020-10-16 | 2022-04-21 | 삼성디스플레이 주식회사 | 표시 장치 |
WO2024023677A1 (en) * | 2022-07-24 | 2024-02-01 | Hyperlume Inc. | Method of packaging and integration for multi-layer system |
Families Citing this family (77)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US12087871B2 (en) * | 2013-05-22 | 2024-09-10 | W&W Sens Devices, Inc. | Microstructure enhanced absorption photosensitive devices |
KR101672781B1 (ko) | 2014-11-18 | 2016-11-07 | 피에스아이 주식회사 | 수평배열 어셈블리용 초소형 led 소자, 이의 제조방법 및 이를 포함하는 수평배열 어셈블리 |
KR101627365B1 (ko) * | 2015-11-17 | 2016-06-08 | 피에스아이 주식회사 | 편광을 출사하는 초소형 led 전극어셈블리, 이의 제조방법 및 이를 포함하는 led 편광램프 |
KR101987196B1 (ko) * | 2016-06-14 | 2019-06-11 | 삼성디스플레이 주식회사 | 픽셀 구조체, 픽셀 구조체를 포함하는 표시장치 및 그 제조 방법 |
KR102608419B1 (ko) | 2016-07-12 | 2023-12-01 | 삼성디스플레이 주식회사 | 표시장치 및 표시장치의 제조방법 |
KR102592276B1 (ko) | 2016-07-15 | 2023-10-24 | 삼성디스플레이 주식회사 | 발광장치 및 그의 제조방법 |
KR102574603B1 (ko) * | 2016-07-15 | 2023-09-07 | 삼성디스플레이 주식회사 | 발광장치 및 그의 제조방법 |
KR102587215B1 (ko) | 2016-12-21 | 2023-10-12 | 삼성디스플레이 주식회사 | 발광 장치 및 이를 구비한 표시 장치 |
KR102236769B1 (ko) * | 2017-07-18 | 2021-04-06 | 삼성전자주식회사 | 엘이디 모듈 제조장치 및 엘이디 모듈 제조방법 |
US10522363B2 (en) | 2017-07-24 | 2019-12-31 | Microlink Devices, Inc. | Systems and methods for perforation and ohmic contact formation for GaN epitaxial lift-off using an etch stop layer |
US10361246B2 (en) * | 2017-09-15 | 2019-07-23 | Samsung Display Co., Ltd. | Ultra-small LED electrode assembly having improved luminance and method of manufacturing the same |
KR102513267B1 (ko) | 2017-10-13 | 2023-03-23 | 삼성디스플레이 주식회사 | 표시 장치 및 이의 제조 방법 |
KR101961834B1 (ko) * | 2017-11-06 | 2019-03-26 | 전북대학교산학협력단 | Led 디스플레이 장치 제조방법 |
KR102446139B1 (ko) * | 2017-12-06 | 2022-09-22 | 삼성디스플레이 주식회사 | 발광 다이오드 장치 및 이의 제조 방법 |
KR102446211B1 (ko) * | 2017-12-11 | 2022-09-23 | 삼성디스플레이 주식회사 | 발광 소자의 검사 방법 및 발광 소자의 검사 장치 |
TWI727247B (zh) * | 2018-02-02 | 2021-05-11 | 中央研究院 | 偏振選擇的奈米發光二極體 |
KR102493479B1 (ko) * | 2018-02-06 | 2023-02-01 | 삼성디스플레이 주식회사 | 표시 장치의 제조 방법 |
KR102053217B1 (ko) | 2018-03-22 | 2020-01-09 | 삼성디스플레이 주식회사 | 초소형 led 전극 어셈블리 및 이의 제조 방법 |
KR102017554B1 (ko) * | 2018-03-27 | 2019-09-03 | (주)라이타이저 | 원칩 타입의 발광 소자 및 그 제조 방법 |
KR102078643B1 (ko) * | 2018-04-04 | 2020-04-07 | (주)라이타이저 | 원칩 타입의 발광 다이오드를 이용한 디스플레이 장치 및 그 제조 방법 |
KR102145192B1 (ko) * | 2018-04-19 | 2020-08-19 | 엘지전자 주식회사 | 반도체 발광 소자를 이용한 디스플레이 장치 및 이의 제조방법 |
KR102585158B1 (ko) * | 2018-07-04 | 2023-10-05 | 삼성디스플레이 주식회사 | 표시 장치 |
KR102606922B1 (ko) | 2018-07-06 | 2023-11-27 | 삼성디스플레이 주식회사 | 표시 장치 및 그 제조 방법 |
KR102657126B1 (ko) | 2018-07-20 | 2024-04-16 | 삼성디스플레이 주식회사 | 발광 장치 및 이를 구비한 표시 장치 |
KR102545982B1 (ko) | 2018-07-24 | 2023-06-21 | 삼성디스플레이 주식회사 | 표시 장치 및 그 제조 방법 |
KR102652501B1 (ko) | 2018-09-13 | 2024-03-29 | 삼성디스플레이 주식회사 | 발광 소자의 제조방법 및 발광 소자를 포함하는 표시 장치 |
KR102663635B1 (ko) | 2018-09-19 | 2024-05-14 | 삼성디스플레이 주식회사 | 발광 장치 및 이를 구비하는 표시 장치 |
KR102590984B1 (ko) * | 2018-10-30 | 2023-10-18 | 삼성디스플레이 주식회사 | 발광 소자 구조물 및 발광 소자의 제조방법 |
KR102645630B1 (ko) | 2018-11-06 | 2024-03-08 | 삼성디스플레이 주식회사 | 표시 장치 및 그것의 제조 방법 |
KR102621668B1 (ko) * | 2018-11-08 | 2024-01-09 | 삼성디스플레이 주식회사 | 표시 장치 및 표시 장치 제조 방법 |
KR102647790B1 (ko) * | 2018-11-20 | 2024-03-14 | 삼성디스플레이 주식회사 | 표시 장치 및 표시 장치 제조 방법 |
KR102579915B1 (ko) * | 2018-11-22 | 2023-09-18 | 삼성디스플레이 주식회사 | 표시 장치 및 그것의 제조 방법 |
KR102666614B1 (ko) * | 2018-11-27 | 2024-05-17 | 삼성디스플레이 주식회사 | 표시 장치 |
KR102701758B1 (ko) * | 2018-11-27 | 2024-09-04 | 삼성디스플레이 주식회사 | 발광 소자, 이의 제조 방법 및 발광 소자를 구비한 표시 장치 |
CN109765472A (zh) * | 2018-12-29 | 2019-05-17 | 江西兆驰半导体有限公司 | 一种非直接电接触式的发光二极管器件的电致发光量测方法 |
KR102626452B1 (ko) * | 2019-01-15 | 2024-01-18 | 삼성디스플레이 주식회사 | 발광 소자의 제조방법 및 발광 소자를 포함하는 표시 장치 |
KR20210003991A (ko) | 2019-07-02 | 2021-01-13 | 삼성디스플레이 주식회사 | 발광 소자, 이의 제조 방법 및 표시 장치 |
US20220254959A1 (en) * | 2019-07-10 | 2022-08-11 | Samsung Display Co., Ltd. | Light emitting element, manufacturing method thereof, and display device comprising the light emitting element |
KR102692217B1 (ko) * | 2019-08-01 | 2024-08-07 | 삼성디스플레이 주식회사 | 표시 장치 및 그의 제조 방법 |
KR20210025144A (ko) * | 2019-08-26 | 2021-03-09 | 삼성디스플레이 주식회사 | 발광 소자, 이의 제조 방법 및 이를 포함하는 표시 장치 |
KR102251195B1 (ko) | 2019-10-01 | 2021-05-12 | 윤치영 | 수직 정렬된 버티컬 타입 초소형 엘이디를 구비한 엘이디 어셈블리 |
KR102186922B1 (ko) | 2019-10-01 | 2020-12-04 | 윤치영 | 버티컬 타입 초소형 엘이디의 수직 정렬방법 및 이를 이용한 엘이디 어셈블리 제조방법 |
KR102512547B1 (ko) | 2019-10-01 | 2023-03-29 | 윤치영 | 수직 정렬된 버티컬 타입 초소형 엘이디를 구비한 엘이디 어셈블리 |
US11869880B2 (en) | 2019-11-05 | 2024-01-09 | Samsung Electronics Co., Ltd. | Method of transferring micro-light emitting diode for LED display |
KR102171697B1 (ko) | 2019-12-02 | 2020-10-30 | 삼성디스플레이 주식회사 | Led 전극 어셈블리 및 이의 제조 방법 |
KR102282383B1 (ko) | 2019-12-02 | 2021-07-27 | 삼성디스플레이 주식회사 | Led 전극 어셈블리 및 이의 제조 방법 |
KR20210072194A (ko) * | 2019-12-06 | 2021-06-17 | 삼성디스플레이 주식회사 | 발광 소자의 정렬 방법, 이를 이용한 표시 장치의 제조 방법 및 표시 장치 |
US11749708B2 (en) | 2020-01-03 | 2023-09-05 | Seoul Viosys Co., Ltd. | Light emitting device and LED display apparatus including the same |
US11948922B2 (en) * | 2020-01-03 | 2024-04-02 | Seoul Viosys Co., Ltd. | Light emitting device and LED display apparatus including the same |
KR20210090780A (ko) | 2020-01-10 | 2021-07-21 | 삼성디스플레이 주식회사 | 발광 소자 및 이를 포함하는 디스플레이 장치 |
KR20210111919A (ko) | 2020-03-03 | 2021-09-14 | 삼성디스플레이 주식회사 | 표시 장치 및 이의 제조 방법 |
KR102332349B1 (ko) * | 2020-04-28 | 2021-11-26 | 국민대학교산학협력단 | 마이크로-나노핀 led 소자 및 이의 제조방법 |
US20230223492A1 (en) * | 2020-04-27 | 2023-07-13 | Kookmin University Industry Academy Cooperation Foundation | Micro-nanopin led element and method for producing same |
KR102345917B1 (ko) * | 2020-04-27 | 2021-12-30 | 국민대학교산학협력단 | 마이크로-나노핀 led 소자 및 이의 제조방법 |
KR102332350B1 (ko) * | 2020-05-25 | 2021-11-26 | 국민대학교산학협력단 | 마이크로-나노핀 led 전극어셈블리 및 이의 제조방법 |
KR20210147158A (ko) * | 2020-05-27 | 2021-12-07 | 삼성디스플레이 주식회사 | 발광 소자, 이의 제조 방법, 발광 소자를 포함한 잉크 조성물 및 장치 |
KR20210152086A (ko) * | 2020-06-05 | 2021-12-15 | 삼성디스플레이 주식회사 | 발광 소자, 이의 제조 방법 및 표시 장치 |
KR102303496B1 (ko) * | 2020-07-16 | 2021-09-16 | 광운대학교 산학협력단 | 외부 광원의 빛을 조사하여 일방향의 극성 배열성이 향상된 종횡비 1.2 미만의 초소형 led의 전극 어셈블리 및 그 제조방법 |
KR102375861B1 (ko) * | 2020-07-28 | 2022-03-16 | 광운대학교 산학협력단 | 백투백 구조의 초소형 이중 led 소자 및 그 제조 방법과 백투백 구조의 초소형 이중 led 의 전극 어셈블리 및 그 제조방법 |
KR20220019902A (ko) * | 2020-08-10 | 2022-02-18 | 삼성디스플레이 주식회사 | 발광 소자 및 이를 이용한 표시 장치와 그의 제조 방법 |
KR20220021946A (ko) | 2020-08-13 | 2022-02-23 | 삼성디스플레이 주식회사 | 발광 소자, 이의 제조 방법 및 표시 장치 |
KR20220028944A (ko) * | 2020-08-31 | 2022-03-08 | 삼성전자주식회사 | 나노 막대 발광 소자 및 그 제조 방법 |
KR20220031833A (ko) * | 2020-09-04 | 2022-03-14 | 삼성디스플레이 주식회사 | 발광 소자 및 이를 포함하는 표시 장치 |
KR20220037553A (ko) | 2020-09-17 | 2022-03-25 | 삼성디스플레이 주식회사 | 표시 장치 |
KR20210039320A (ko) | 2020-10-15 | 2021-04-09 | 윤치영 | 수직 정렬된 버티컬 타입 초소형 엘이디를 구비한 엘이디 어셈블리 |
KR20220070127A (ko) * | 2020-11-20 | 2022-05-30 | 고려대학교 산학협력단 | 나노로드 발광소자 및 그 제조 방법 |
KR102532677B1 (ko) * | 2021-02-05 | 2023-05-17 | 전북대학교산학협력단 | 초소형 led 소자 정렬 단위체, 이의 제조 방법 및 초소형 led 소자를 포함하는 어레이 모듈 제조 방법 |
KR20220113602A (ko) | 2021-02-05 | 2022-08-16 | 삼성디스플레이 주식회사 | 표시 장치 및 그 제조 방법 |
KR102573265B1 (ko) * | 2021-03-25 | 2023-08-31 | 국민대학교산학협력단 | 초박형 led 전극어셈블리 및 이의 제조방법 |
CN113571620B (zh) * | 2021-06-30 | 2023-08-04 | 上海天马微电子有限公司 | 显示面板及显示装置 |
WO2023282365A1 (ko) * | 2021-07-05 | 2023-01-12 | 엘지전자 주식회사 | 반도체 발광 소자 및 디스플레이 장치 |
KR20230033195A (ko) * | 2021-08-30 | 2023-03-08 | 삼성디스플레이 주식회사 | 발광 소자 및 이를 포함하는 표시 장치 |
KR102559016B1 (ko) | 2021-09-01 | 2023-07-25 | 한국광기술원 | 초미세 화소구조, 표시장치 및 그 제조 방법 |
CN114005912B (zh) * | 2021-10-29 | 2023-08-11 | 嘉兴学院 | 一种椭圆纳米棒、发光二极管的制备方法及显示装置 |
KR102665449B1 (ko) * | 2021-11-03 | 2024-05-10 | (재)한국나노기술원 | 화합물 반도체 나노로드의 제조방법, 이를 이용하여 제조된 화합물 반도체 나노로드 및 화합물 반도체 나노로드 어레이 |
KR20230076926A (ko) * | 2021-11-23 | 2023-06-01 | 삼성디스플레이 주식회사 | 발광 소자 및 이를 포함하는 표시 장치 |
KR20240139125A (ko) * | 2023-03-09 | 2024-09-23 | 삼성디스플레이 주식회사 | 발광 소자, 이를 포함한 표시 장치 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070042520A1 (en) * | 2005-08-17 | 2007-02-22 | Samsung Electro-Mechanics Co., Ltd. | Method of manufacturing vertical GaN-based light emitting diode |
US20090137075A1 (en) * | 2007-11-23 | 2009-05-28 | Samsung Electro-Mechanics Co., Ltd. | Method of manufacturing vertical light emitting diode |
US20120248408A1 (en) * | 2011-03-30 | 2012-10-04 | Paek Ho-Sun | Light-emitting device and method of manufacturing the same |
KR20120122159A (ko) * | 2011-04-28 | 2012-11-07 | 국민대학교산학협력단 | 초소형 led 소자 및 그 제조방법 |
US8871544B2 (en) * | 2010-05-06 | 2014-10-28 | Samsung Electronics Co., Ltd. | Vertical light-emitting devices having patterned emitting unit and methods of manufacturing the same |
Family Cites Families (46)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7279718B2 (en) * | 2002-01-28 | 2007-10-09 | Philips Lumileds Lighting Company, Llc | LED including photonic crystal structure |
CN1489224A (zh) * | 2003-09-02 | 2004-04-14 | 陈洪花 | 高亮度超薄光半导体器件 |
KR100674827B1 (ko) | 2004-07-28 | 2007-01-25 | 삼성전기주식회사 | 백라이트 유니트용 led 패키지 |
JP4984433B2 (ja) | 2005-05-16 | 2012-07-25 | 大日本印刷株式会社 | 発光層の形成方法およびそれを用いた有機発光デバイスの製造方法 |
US8330173B2 (en) * | 2005-06-25 | 2012-12-11 | Seoul Opto Device Co., Ltd. | Nanostructure having a nitride-based quantum well and light emitting diode employing the same |
KR100763894B1 (ko) * | 2006-03-21 | 2007-10-05 | 삼성에스디아이 주식회사 | Led 칩을 이용한 디스플레이 장치의 제조방법 |
US7825328B2 (en) * | 2007-04-09 | 2010-11-02 | Taiwan Semiconductor Manufacturing Company, Ltd. | Nitride-based multi-junction solar cell modules and methods for making the same |
KR101351110B1 (ko) | 2007-08-24 | 2014-01-16 | 한국과학기술원 | 통신 시스템에서 암호화된 데이터 송수신 장치 및 방법 |
FR2929864B1 (fr) | 2008-04-09 | 2020-02-07 | Commissariat A L'energie Atomique | Auto-assemblage de puces sur un substrat |
US8129710B2 (en) | 2008-04-24 | 2012-03-06 | Hans Cho | Plasmon enhanced nanowire light emitting diode |
KR100955319B1 (ko) | 2008-05-23 | 2010-04-29 | 고려대학교 산학협력단 | 발광다이오드 제조방법 및 이에 의해 제조되는발광다이오드 |
CN101603636B (zh) | 2008-06-10 | 2012-05-23 | 展晶科技(深圳)有限公司 | 光源装置 |
US8357960B1 (en) * | 2008-09-18 | 2013-01-22 | Banpil Photonics, Inc. | Multispectral imaging device and manufacturing thereof |
KR100903280B1 (ko) | 2008-10-13 | 2009-06-17 | 최운용 | 리던던시 전극을 갖는 엘이디 어셈블리 및 그 제조 방법 |
KR20100091269A (ko) | 2009-02-10 | 2010-08-19 | 최운용 | 리던던시 전극을 갖는 엘이디 어셈블리 및 그 제조 방법 |
KR20100066768A (ko) | 2008-12-10 | 2010-06-18 | 삼성엘이디 주식회사 | Led 패키지 및 이를 구비한 led 패키지 장치 |
WO2010071658A1 (en) * | 2008-12-19 | 2010-06-24 | Hewlett-Packard Development Company, Hewlett-Packard Development Company, L.P. | Photovoltaic structure and method of fabrication employing nanowire on stub |
SE533531C2 (sv) * | 2008-12-19 | 2010-10-19 | Glo Ab | Nanostrukturerad anordning |
KR101047094B1 (ko) * | 2009-05-12 | 2011-07-14 | 주식회사 크리어전자 | 쇼트 방지기능이 구비된 양방향 플러그 |
US9559231B2 (en) * | 2009-08-24 | 2017-01-31 | Shih-Ping Bob Wang | Photovoltaic nanowire structures and related fabrication methods |
US8872214B2 (en) * | 2009-10-19 | 2014-10-28 | Sharp Kabushiki Kaisha | Rod-like light-emitting device, method of manufacturing rod-like light-emitting device, backlight, illuminating device, and display device |
JP5308988B2 (ja) | 2009-10-23 | 2013-10-09 | スタンレー電気株式会社 | Led光源装置の製造方法 |
KR101035356B1 (ko) * | 2009-12-10 | 2011-05-20 | 삼성모바일디스플레이주식회사 | 유기 발광 표시 장치 및 그 제조 방법 |
JP4814394B2 (ja) | 2010-03-05 | 2011-11-16 | シャープ株式会社 | 発光装置の製造方法 |
JP5492822B2 (ja) | 2010-03-05 | 2014-05-14 | シャープ株式会社 | 発光装置、照明装置およびバックライト |
KR20120138805A (ko) | 2010-03-12 | 2012-12-26 | 샤프 가부시키가이샤 | 발광 장치의 제조 방법, 발광 장치, 조명 장치, 백라이트, 액정 패널, 표시 장치, 표시 장치의 제조 방법, 표시 장치의 구동 방법 및 액정 표시 장치 |
AU2011268135B2 (en) * | 2010-06-18 | 2014-06-12 | Glo Ab | Nanowire LED structure and method for manufacturing the same |
US9024335B2 (en) | 2010-08-23 | 2015-05-05 | Psi Co., Ltd. | Multi-package white LED device |
KR20150098246A (ko) | 2010-09-01 | 2015-08-27 | 샤프 가부시키가이샤 | 발광 소자 및 그 제조 방법, 발광 장치의 제조 방법, 조명 장치, 백라이트, 표시 장치 및 다이오드 |
TWI416765B (zh) | 2011-01-17 | 2013-11-21 | Light emitting diodes | |
KR101209446B1 (ko) * | 2011-04-28 | 2012-12-07 | 피에스아이 주식회사 | 초소형 led 소자 번들 및 그 제조방법 |
KR101209449B1 (ko) | 2011-04-29 | 2012-12-07 | 피에스아이 주식회사 | 풀-칼라 led 디스플레이 장치 및 그 제조방법 |
KR101871501B1 (ko) | 2011-07-29 | 2018-06-27 | 엘지이노텍 주식회사 | 발광 소자 패키지 및 이를 구비한 조명 시스템 |
EP2742782B1 (en) | 2011-09-06 | 2015-05-13 | Koninklijke Philips N.V. | Method for manufacturing a led matrix |
KR101916274B1 (ko) * | 2013-01-24 | 2018-11-07 | 삼성전자주식회사 | 반도체 발광소자 및 그 제조방법 |
KR101554032B1 (ko) * | 2013-01-29 | 2015-09-18 | 삼성전자주식회사 | 나노구조 반도체 발광소자 |
KR101429095B1 (ko) * | 2013-07-09 | 2014-08-12 | 피에스아이 주식회사 | 초소형 led 전극어셈블리를 이용한 led 램프 |
KR101436123B1 (ko) * | 2013-07-09 | 2014-11-03 | 피에스아이 주식회사 | 초소형 led를 포함하는 디스플레이 및 이의 제조방법 |
US9773761B2 (en) * | 2013-07-09 | 2017-09-26 | Psi Co., Ltd | Ultra-small LED electrode assembly and method for manufacturing same |
KR102067420B1 (ko) | 2013-08-30 | 2020-01-17 | 엘지디스플레이 주식회사 | 발광다이오드어셈블리 및 그를 포함한 액정표시장치 |
JP2015076585A (ja) | 2013-10-11 | 2015-04-20 | 住友電工プリントサーキット株式会社 | Ledモジュール及びled照明器具 |
KR102223036B1 (ko) * | 2014-08-18 | 2021-03-05 | 삼성전자주식회사 | 나노구조 반도체 발광소자 |
KR101672781B1 (ko) | 2014-11-18 | 2016-11-07 | 피에스아이 주식회사 | 수평배열 어셈블리용 초소형 led 소자, 이의 제조방법 및 이를 포함하는 수평배열 어셈블리 |
KR101713818B1 (ko) | 2014-11-18 | 2017-03-10 | 피에스아이 주식회사 | 초소형 led 소자를 포함하는 전극어셈블리 및 그 제조방법 |
JP6191667B2 (ja) | 2015-08-31 | 2017-09-06 | 日亜化学工業株式会社 | 発光装置 |
KR102568252B1 (ko) * | 2016-07-21 | 2023-08-22 | 삼성디스플레이 주식회사 | 발광 장치 및 그의 제조방법 |
-
2014
- 2014-11-18 KR KR1020140161067A patent/KR101672781B1/ko active IP Right Grant
-
2015
- 2015-11-13 US US15/528,046 patent/US10910512B2/en active Active
- 2015-11-13 CN CN201910853132.1A patent/CN110600604B/zh active Active
- 2015-11-13 WO PCT/KR2015/012252 patent/WO2016080712A1/ko active Application Filing
- 2015-11-13 CN CN201580062456.3A patent/CN107210350B/zh active Active
-
2021
- 2021-02-01 US US17/164,763 patent/US11728457B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070042520A1 (en) * | 2005-08-17 | 2007-02-22 | Samsung Electro-Mechanics Co., Ltd. | Method of manufacturing vertical GaN-based light emitting diode |
US20090137075A1 (en) * | 2007-11-23 | 2009-05-28 | Samsung Electro-Mechanics Co., Ltd. | Method of manufacturing vertical light emitting diode |
US8871544B2 (en) * | 2010-05-06 | 2014-10-28 | Samsung Electronics Co., Ltd. | Vertical light-emitting devices having patterned emitting unit and methods of manufacturing the same |
US20120248408A1 (en) * | 2011-03-30 | 2012-10-04 | Paek Ho-Sun | Light-emitting device and method of manufacturing the same |
KR20120122159A (ko) * | 2011-04-28 | 2012-11-07 | 국민대학교산학협력단 | 초소형 led 소자 및 그 제조방법 |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10964842B2 (en) | 2014-11-18 | 2021-03-30 | Samsung Display Co., Ltd. | Electrode assembly comprising micro-LED elements and method for manufacturing same |
US11855239B2 (en) | 2014-11-18 | 2023-12-26 | Samsung Display Co., Ltd. | Electrode assembly having lower electrode directly on the surface of a base substrate, a first electrode on the lower electrode, and the second electrode formed on and spaced apart from the first electrode |
US11063194B2 (en) | 2016-01-14 | 2021-07-13 | Samsung Display Co., Ltd. | Ultra-small LED electrode assembly |
US11552232B2 (en) | 2016-01-14 | 2023-01-10 | Samsung Display Co., Ltd. | Ultra-small LED electrode assembly |
CN108206228A (zh) * | 2016-12-19 | 2018-06-26 | 三星显示有限公司 | 发光设备以及发光设备的制造方法 |
CN108206228B (zh) * | 2016-12-19 | 2022-11-25 | 三星显示有限公司 | 发光设备以及发光设备的制造方法 |
US11610934B2 (en) | 2016-12-19 | 2023-03-21 | Samsung Display Co., Ltd. | Light emitting device and manufacturing method of the light emitting device |
CN109545934A (zh) * | 2018-12-20 | 2019-03-29 | 湘能华磊光电股份有限公司 | 微孔型led电极结构及其制备方法 |
WO2022080937A1 (ko) * | 2020-10-16 | 2022-04-21 | 삼성디스플레이 주식회사 | 표시 장치 |
WO2024023677A1 (en) * | 2022-07-24 | 2024-02-01 | Hyperlume Inc. | Method of packaging and integration for multi-layer system |
Also Published As
Publication number | Publication date |
---|---|
CN110600604B (zh) | 2022-11-29 |
US10910512B2 (en) | 2021-02-02 |
CN110600604A (zh) | 2019-12-20 |
CN107210350B (zh) | 2019-10-08 |
US20170317228A1 (en) | 2017-11-02 |
CN107210350A (zh) | 2017-09-26 |
US20210151624A1 (en) | 2021-05-20 |
US11728457B2 (en) | 2023-08-15 |
KR101672781B1 (ko) | 2016-11-07 |
KR20160059576A (ko) | 2016-05-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2016080712A1 (ko) | 수평배열 어셈블리용 초소형 led 소자, 이의 제조방법 및 이를 포함하는 수평배열 어셈블리 | |
WO2016080710A1 (ko) | 초소형 led 소자를 포함하는 전극어셈블리 및 그 제조방법 | |
KR101770632B1 (ko) | 자가 조립형 초소형 led 전극어셈블리 제조용 용매 및 이를 통해 자가 조립형 초소형 led 전극어셈블리를 제조하는 방법 | |
US9773761B2 (en) | Ultra-small LED electrode assembly and method for manufacturing same | |
WO2012148228A2 (ko) | 초소형 led 소자 및 그 제조방법 | |
CN108682725A (zh) | 一种垂直结构的led器件及其制造方法 | |
WO2011028076A2 (ko) | 반도체 발광 소자 및 이의 제조 방법 | |
WO2012148231A2 (ko) | 초소형 led 소자 번들 및 그 제조방법 | |
WO2009134029A2 (ko) | 반도체 발광소자 | |
WO2009145502A2 (ko) | 발광 소자 | |
KR20190073133A (ko) | 마이크로led 표시장치 | |
EP3204966A1 (en) | Semiconductor device and method of manufacturing the same | |
KR20170098368A (ko) | 발광 다이오드 트랜스퍼 방법 | |
WO2009131401A2 (ko) | 발광 소자 및 그 제조방법 | |
CN110416244A (zh) | 显示面板及其制作方法 | |
WO2020085678A1 (en) | Display device using semiconductor light emitting device and method for manufacturing the same | |
WO2021221437A1 (ko) | 마이크로-나노핀 led 소자 및 이의 제조방법 | |
EP3631866A1 (en) | Light emitting diode apparatus and method of manufacturing the same | |
WO2020009520A1 (ko) | 마이크로 led 전사 헤드 및 이를 이용한 마이크로 led 전사 시스템 | |
US20180211992A1 (en) | Solution deposited magnetically guided chiplet displacement | |
US20230130620A1 (en) | High-resolution ultra-thin led display for ar and vr devices and manufacturing method thereof | |
WO2019203404A1 (ko) | 반도체 발광 소자를 이용한 디스플레이 장치 및 이의 제조방법 | |
US20240021768A1 (en) | Micro-nano pin led electrode assembly, manufacturing method therefor, and light source including same | |
KR102332350B1 (ko) | 마이크로-나노핀 led 전극어셈블리 및 이의 제조방법 | |
EP4044263A1 (en) | SINGLE-END ELECTRICAL CONTACTING AND SINGLE-END CHARGE CARRIER INJECTING µLED LIGHT-EMITTING AND DISPLAY DEVICE AND PREPARATION METHOD THEREFOR |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15861478 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15528046 Country of ref document: US |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 15861478 Country of ref document: EP Kind code of ref document: A1 |