WO2012111292A1 - 発光モジュールおよび車両用灯具 - Google Patents

発光モジュールおよび車両用灯具 Download PDF

Info

Publication number
WO2012111292A1
WO2012111292A1 PCT/JP2012/000904 JP2012000904W WO2012111292A1 WO 2012111292 A1 WO2012111292 A1 WO 2012111292A1 JP 2012000904 W JP2012000904 W JP 2012000904W WO 2012111292 A1 WO2012111292 A1 WO 2012111292A1
Authority
WO
WIPO (PCT)
Prior art keywords
light emitting
light
emitting module
led chip
emitting element
Prior art date
Application number
PCT/JP2012/000904
Other languages
English (en)
French (fr)
Inventor
康章 堤
正宣 水野
元弘 小松
Original Assignee
株式会社小糸製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社小糸製作所 filed Critical 株式会社小糸製作所
Priority to KR1020137024330A priority Critical patent/KR20130124569A/ko
Priority to EP12747074.8A priority patent/EP2677232A4/en
Priority to CN201280008951.2A priority patent/CN103392093B/zh
Publication of WO2012111292A1 publication Critical patent/WO2012111292A1/ja
Priority to US13/967,061 priority patent/US20130329440A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/10Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source
    • F21S41/14Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source characterised by the type of light source
    • F21S41/141Light emitting diodes [LED]
    • F21S41/143Light emitting diodes [LED] the main emission direction of the LED being parallel to the optical axis of the illuminating device
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60QARRANGEMENT OF SIGNALLING OR LIGHTING DEVICES, THE MOUNTING OR SUPPORTING THEREOF OR CIRCUITS THEREFOR, FOR VEHICLES IN GENERAL
    • B60Q1/00Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor
    • B60Q1/02Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to illuminate the way ahead or to illuminate other areas of way or environments
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60QARRANGEMENT OF SIGNALLING OR LIGHTING DEVICES, THE MOUNTING OR SUPPORTING THEREOF OR CIRCUITS THEREFOR, FOR VEHICLES IN GENERAL
    • B60Q1/00Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor
    • B60Q1/02Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to illuminate the way ahead or to illuminate other areas of way or environments
    • B60Q1/04Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to illuminate the way ahead or to illuminate other areas of way or environments the devices being headlights
    • B60Q1/14Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to illuminate the way ahead or to illuminate other areas of way or environments the devices being headlights having dimming means
    • B60Q1/1415Dimming circuits
    • B60Q1/1423Automatic dimming circuits, i.e. switching between high beam and low beam due to change of ambient light or light level in road traffic
    • B60Q1/143Automatic dimming circuits, i.e. switching between high beam and low beam due to change of ambient light or light level in road traffic combined with another condition, e.g. using vehicle recognition from camera images or activation of wipers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/10Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source
    • F21S41/12Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source characterised by the type of emitted light
    • F21S41/125Coloured light
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/10Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source
    • F21S41/14Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source characterised by the type of light source
    • F21S41/141Light emitting diodes [LED]
    • F21S41/151Light emitting diodes [LED] arranged in one or more lines
    • F21S41/153Light emitting diodes [LED] arranged in one or more lines arranged in a matrix
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/10Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source
    • F21S41/14Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source characterised by the type of light source
    • F21S41/176Light sources where the light is generated by photoluminescent material spaced from a primary light generating element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/60Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by a variable light distribution
    • F21S41/65Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by a variable light distribution by acting on light sources
    • F21S41/663Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by a variable light distribution by acting on light sources by switching light sources
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/93Batch processes
    • H01L24/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L24/97Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being connected to a common substrate, e.g. interposer, said common substrate being separable into individual assemblies after connecting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/075Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00
    • H01L25/0753Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00 the devices being arranged next to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/52Encapsulations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60QARRANGEMENT OF SIGNALLING OR LIGHTING DEVICES, THE MOUNTING OR SUPPORTING THEREOF OR CIRCUITS THEREFOR, FOR VEHICLES IN GENERAL
    • B60Q2300/00Indexing codes for automatically adjustable headlamps or automatically dimmable headlamps
    • B60Q2300/10Indexing codes relating to particular vehicle conditions
    • B60Q2300/11Linear movements of the vehicle
    • B60Q2300/116Vehicle at a stop
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60QARRANGEMENT OF SIGNALLING OR LIGHTING DEVICES, THE MOUNTING OR SUPPORTING THEREOF OR CIRCUITS THEREFOR, FOR VEHICLES IN GENERAL
    • B60Q2300/00Indexing codes for automatically adjustable headlamps or automatically dimmable headlamps
    • B60Q2300/40Indexing codes relating to other road users or special conditions
    • B60Q2300/45Special conditions, e.g. pedestrians, road signs or potential dangers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60QARRANGEMENT OF SIGNALLING OR LIGHTING DEVICES, THE MOUNTING OR SUPPORTING THEREOF OR CIRCUITS THEREFOR, FOR VEHICLES IN GENERAL
    • B60Q2400/00Special features or arrangements of exterior signal lamps for vehicles
    • B60Q2400/20Multi-color single source or LED matrix, e.g. yellow blinker and red brake lamp generated by single lamp
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/10Light-emitting diodes [LED]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1204Optical Diode
    • H01L2924/12041LED

Definitions

  • the present invention relates to a light emitting module including a light emitting element such as a light emitting diode.
  • a lamp unit that forms a high beam light distribution pattern When lighting a wide range of road surfaces with an automotive lamp at night, a lamp unit that forms a high beam light distribution pattern is often used. On the other hand, such a high beam light distribution pattern has a possibility of giving glare to oncoming vehicles and preceding vehicles, and therefore further improvement is required.
  • a vehicular lamp has been devised that widens the irradiation range by swiveling a lamp unit that forms a light distribution pattern for low beam in the left-right direction (see Patent Document 1).
  • a lamp unit that forms a light distribution pattern for low beam in the left-right direction
  • Patent Document 1 a lamp unit that forms a light distribution pattern for low beam in the left-right direction
  • LED Light Emitting Diode
  • a light source in which a plurality of white LEDs are arranged in a matrix has been devised (see cited document 2).
  • the present invention has been made in view of such circumstances, and an object of the present invention is to provide a light emitting module considering application to lighting and lamps.
  • a light-emitting module is provided with a substrate, a plurality of light-emitting elements mounted on the substrate and arranged in a matrix, and facing the light-emitting surface of the light-emitting element. And a light shielding portion provided so as to surround the periphery of the light emitting surface of at least some of the light emitting elements among the plurality of light emitting elements.
  • the plurality of light emitting elements may include a first light emitting element having a relatively high light intensity during lighting and a second light emitting element having a relatively low light intensity during lighting.
  • the light shielding portion may be provided mainly between the first light emitting element and the light emitting element adjacent to the first light emitting element.
  • the light emitting element may be a flip chip type element. Accordingly, for example, an area for connecting the wiring to the substrate is not required as compared with a light emitting element mounted on the substrate by wire bonding, and thus the interval between the light emitting elements can be narrowed. As a result, it is possible to suppress a shadow generated in the light distribution pattern due to the gap between the adjacent light emitting elements.
  • the fluorescent member may be a plate-like phosphor. This facilitates processing of the phosphor. In particular, various surface treatments for improving the brightness are possible.
  • the substrate may have a thermal expansion coefficient within a range of ⁇ 5 ppm / ° C. of the thermal expansion coefficient of the light emitting element. Thereby, it is possible to suppress a decrease in connection reliability caused by repeated temperature changes caused by turning on and off the light emitting element.
  • a lens that projects a light source image of light emitted from the light emitting element and the fluorescent member onto a virtual vertical screen in front of the irradiation direction may be further provided.
  • the lens may be directly bonded to the light emitting element or the fluorescent member. Thereby, the light from the light emitting element or the light that has passed through the fluorescent member is hardly absorbed and reflected at the interface with the lens, and the light flux emitted from the light emitting module is improved.
  • This vehicular lamp is a vehicular lamp that includes a light emitting module and a control circuit that controls turning on / off of the light emitting module, and the control circuit detects a state in which a vehicle equipped with the vehicular lamp is stopped.
  • the light-emitting module is controlled so that the light-on / off state of the light-emitting module becomes a stop mode with lower power consumption than the irradiation mode during traveling.
  • FIG. 6A is a schematic diagram for explaining the structure of an LED chip suitable for the light emitting module of the present embodiment
  • FIG. 6B is a schematic diagram showing a configuration of an LED chip of a comparative example.
  • FIG. 9A is a schematic diagram showing a state in which the electrode portions of the LED chip are arranged in the vertical direction
  • FIG. 9B is a schematic diagram showing a state in which the electrode portions of the LED chip are arranged in the horizontal direction. is there.
  • FIG. 13A is a schematic diagram showing a state in which LED chips in some columns (rows) are shifted among the LED chips arranged in a matrix
  • FIG. 13B shows a plurality of rectangular LEDs. It is a schematic diagram which shows the state which arrange
  • FIG. 15A is a schematic cross-sectional view of a light emitting module in which a light shielding film is formed on a part of the side surface of the light shielding frame, FIG.
  • FIG. 15B is an enlarged view of a part of the light shielding frame shown in FIG.
  • FIG. 15C is a diagram showing a modification of a part of the light shielding frame shown in FIG. It is a schematic diagram which shows the state which made the thickness of some light-shielding frames thin. It is a schematic diagram which shows the state which changed the area of the area
  • FIG. 25A is a schematic diagram showing a state in which the phosphor layer is created for each section by the potting method, and FIGS.
  • FIG. 25B to 25D are states in which the phosphor layer is created at once by the printing method. It is a schematic diagram which shows. It is a schematic sectional drawing which shows an example of a mounting substrate. It is a schematic diagram which shows the mounting substrate of double-sided wiring.
  • FIG. 28A is a schematic cross-sectional view of the light emitting module according to Comparative Example 1
  • FIG. 28B is a diagram illustrating a graph of the luminance distribution of the light emitting module according to Comparative Example 1.
  • FIG. 29A is a schematic cross-sectional view of the light emitting module according to the first embodiment
  • FIG. 29B is a diagram illustrating a graph of luminance distribution of the light emitting module according to the first embodiment.
  • FIG. 30A is a schematic cross-sectional view of the light emitting module according to the second embodiment
  • FIG. 30B is a diagram illustrating a graph of luminance distribution of the light emitting module according to the second embodiment.
  • FIG. 31A is a schematic cross-sectional view of the light emitting module according to the third embodiment
  • FIG. 31B is a diagram illustrating a luminance distribution graph of the light emitting module according to the third embodiment.
  • FIG. 32A is a schematic cross-sectional view of the light emitting module according to the fourth embodiment
  • FIG. 32B is a diagram illustrating a luminance distribution graph of the light emitting module according to the fourth embodiment.
  • FIG. 33A is a schematic cross-sectional view of the light emitting module according to the fifth embodiment
  • FIG. 33B is a diagram illustrating a luminance distribution graph of the light emitting module according to the fifth embodiment.
  • FIG. 34A is a schematic cross-sectional view of the light emitting module according to the sixth embodiment, and FIG. 34B is a diagram illustrating a graph of luminance distribution of the light emitting module according to the sixth embodiment.
  • FIG. 35A is a schematic cross-sectional view of the light emitting module according to the seventh embodiment, and FIG. 35B is a diagram illustrating a luminance distribution graph of the light emitting module according to the seventh embodiment.
  • FIG. 36A is a schematic cross-sectional view of the light emitting module according to Example 8, and FIG. 36B is a diagram illustrating a graph of the luminance distribution of the light emitting module according to Example 8.
  • the light emitting module according to the present embodiment can be applied to any lighting and lamps including vehicle lamps.
  • the light emitting module according to the present embodiment is suitable for lighting and lamps that realize a plurality of light distribution patterns by controlling the brightness of some or all of the plurality of light emitting elements included in the light emitting module.
  • FIG. 1 is a schematic cross-sectional view of a vehicular lamp according to the present embodiment.
  • the vehicular lamp 10 includes a lamp body 12, a translucent cover 14, a lamp unit 18 housed in a lamp chamber 16 formed by the lamp body 12 and the translucent cover 14, and a lamp unit in the lamp chamber 16. And a bracket 20 as a support member for supporting 18.
  • the lamp unit 18 is a direct-projection projector-type lamp unit, and includes a light emitting module 22 including a plurality of semiconductor light emitting elements, a projection lens 24, and a connecting member 26 for connecting the projection lens 24 to the bracket 20. .
  • the light emitting module 22 includes an LED chip 22a as a semiconductor light emitting element, and a thermally conductive insulating substrate 22b formed of ceramic or the like.
  • the light emitting module 22 is placed on the bracket 20 with its irradiation axis directed toward the front of the vehicle that is substantially parallel to the irradiation direction of the lamp unit 18 (the left direction in FIG. 10).
  • the connecting member 26 has a flat portion 26a that is disposed substantially horizontally and a curved portion 26b that is in a front region of the flat portion 26a.
  • the shape of the bending portion 26b is configured so as not to reflect the light emitted from the light emitting module 22.
  • the projection lens 24 is a plano-convex aspherical lens that projects light emitted from the light emitting module 22 forward of the lamp and has a convex front surface and a flat rear surface, and is on an optical axis Ax that extends in the vehicle front-rear direction. It arrange
  • FIG. 2 is a perspective view showing a main part of the lamp unit 18 shown in FIG.
  • FIG. 3 is a front view of the light emitting module 22 shown in FIG.
  • the light emitting module 22 has a plurality of LED chips 22a.
  • a total of 12 LED chips 22a, 6 in the horizontal direction H and 2 in the vertical direction V are arranged in a matrix on the heat conductive insulating substrate 22b. .
  • screw holes 28 are formed in predetermined edges (three corners) of the square bracket 20.
  • One end of the aiming screws 30 and 32 and the leveling shaft 34 is fastened to the screw hole 28.
  • the other ends of the aiming screws 30 and 32 and the leveling shaft 34 are fastened to screw holes (not shown) of the lamp body 12.
  • the vehicular lamp 10 is configured so that the optical axis of the lamp unit 18 can be adjusted in the horizontal direction or the vertical direction by the aiming screws 30 and 32, the leveling shaft 34, and the leveling actuator 36.
  • a heat radiation fin 38 is provided on the rear surface of the bracket 20. Further, a fan 40 that blows air toward the radiation fin 38 and cools the radiation fin 38 is provided between the radiation fin 38 and the lamp body 12.
  • FIG. 4 is a diagram showing an example of a light distribution pattern formed by the vehicular lamp 10 according to the present embodiment.
  • the vehicular lamp 10 shown in FIG. 1 has a light distribution pattern PH that does not irradiate a part of the front of the vehicle by turning off some LED chips 22a of the light emitting module 22. Can be formed.
  • the twelve rectangular areas shown in FIG. 4 correspond to the areas irradiated by the LED chips, and the hatched areas indicate a state where light is irradiated.
  • the vehicular lamp 10 turns off the LED chip corresponding to the area where the pedestrian 42, the preceding vehicle 44, and the oncoming vehicle 46 are present, so that glare for the pedestrian 42, the preceding vehicle 44, and the oncoming vehicle 46 is eliminated. Can be suppressed.
  • FIG. 5 is a schematic cross-sectional view showing an example of the light emitting module according to the present embodiment.
  • the light emitting module 50 according to the present embodiment includes a first light emitting unit 51a to a fourth light emitting unit 51d.
  • the first light emitting unit 51a includes a semiconductor light emitting element 52a.
  • the second light emitting unit 51b includes a semiconductor light emitting element 52b.
  • the third light emitting unit 51c includes a semiconductor light emitting element 52c.
  • the fourth light emitting unit 51d includes a semiconductor light emitting element 52d.
  • the semiconductor light emitting elements 52a to 52d arranged in a matrix are mounted on the substrate.
  • a phosphor layer 58 is provided so as to face the light emitting surfaces 56a to 56d of the respective semiconductor light emitting elements 52a to 52d.
  • the phosphor layer 58 functions as a light wavelength conversion member that converts the wavelength of the light emitted from the semiconductor light emitting elements 52a to 52d facing each other and emits the light. Note that the light emitting module 50 does not need to include the phosphor layer 58 when light having a necessary color or wavelength can be obtained without using the phosphor layer 58.
  • the interval W1 between the light emitting units is preferably smaller than the width W2 of the light emitting units.
  • the interval W1 may be appropriately designed by using experiments and previous knowledge while considering that no gap is generated between the regions irradiated by the respective light emitting units.
  • the interval W1 between the light emitting units may be set in the range of 10 to 500 ⁇ m.
  • Each light emitting unit can emit light of various colors by a combination of a semiconductor light emitting element and a phosphor.
  • it may be a light emitting unit that realizes white light by a combination of a semiconductor light emitting element that emits blue light and a phosphor that absorbs blue light and converts it into yellow light.
  • white light is obtained by combining a semiconductor light emitting element that emits ultraviolet light, a first phosphor that absorbs ultraviolet light and converts it into blue light, and a second phosphor that absorbs ultraviolet light and converts it into yellow light.
  • the light emitting unit that realizes the above may be used.
  • the semiconductor light emitting elements 52a to 52d are provided with light shielding portions 60a to 60d so as to cover the side surfaces and the lower surface of each semiconductor light emitting element.
  • the light shielding portions 60a to 60d may be separated from each other, or may be integrally formed as shown in FIG.
  • the light shielding portions 60a to 60d may be provided so as to surround the periphery of the light emitting surface of at least some of the semiconductor light emitting elements.
  • part of the light from the semiconductor light emitting element 52a is directed toward the phosphor layer 58 in the region 62b facing the light emitting surface 56b of the adjacent semiconductor light emitting element 52b. Even if it is irradiated, it is blocked by the light blocking portion 60a. Further, even if a part of the light of the semiconductor light emitting element 52b is irradiated toward the phosphor layer 58 in the regions 62a and 62c facing the light emitting surfaces 56a and 56c of the adjacent semiconductor light emitting elements 52a and 52c, the light shielding portion 60b. Blocked by.
  • the light shielding portion 60c Blocked by. Further, even if a part of the light of the semiconductor light emitting element 52d is irradiated toward the phosphor layer 58 in the region 62c facing the light emitting surface 56c of the adjacent semiconductor light emitting element 52c, it is blocked by the light shielding portion 60d.
  • the phosphor layer 58 in the region facing the light emitting surface of the adjacent semiconductor light emitting element is suppressed from being illuminated by the light emitted from at least one semiconductor light emitting element.
  • the irradiation target area of the light emitting unit 51b is prevented from being unintentionally illuminated.
  • the light is blocked by the light shielding portion that covers the side surface of the semiconductor light emitting element.
  • the vehicular lamp 10 including the light emitting module according to the present embodiment forms a light distribution pattern as shown in FIG. 4, the vehicle lamp 10 that exists in the region corresponding to the semiconductor light emitting element that is extinguished. Giving glare to occupants and pedestrians is suppressed.
  • array in a matrix means that at least a plurality of light emitting elements are m ⁇ 1 (m is an integer of 2 or more), 1 ⁇ n (n is an integer of 2 or more), m ⁇ n (m, n is an integer of 2 or more).
  • the two arrangement directions are not necessarily perpendicular to each other, and may be arranged in a parallelogram or trapezoid region as a whole.
  • the plurality of light emitting elements may not be all of a single type, and may be a combination of a plurality of types of light emitting elements.
  • a gap between the plurality of white LEDs arranged side by side may be projected as a dark shadow on the light distribution pattern.
  • the driver may feel annoying shadows.
  • the light emitting module according to the present embodiment can be improved by appropriately adopting various devices and configurations described below. It is also possible to achieve a high level of suppression of shadows generated in the light distribution pattern due to gaps between the semiconductor light emitting elements and light leakage to the extinguishing region in the light distribution pattern.
  • FIG. 6A is a schematic diagram for explaining the structure of an LED chip suitable for the light emitting module of the present embodiment
  • FIG. 6B is a schematic diagram showing a configuration of an LED chip of a comparative example.
  • a face down type (flip chip type) LED chip 64 see FIG. 6A
  • a face up type LED chip 66 FIG. 6 ( Adoption of b) is considered.
  • the face-up type LED chip 66 when the face-up type LED chip 66 is adopted, it is necessary to provide a chip interval for the wire bonding 68 connecting the upper surface 66a of the chip and the substrate 54. As a result, the light distribution pattern is likely to be shaded.
  • the flip chip type LED chip 64 is connected to the substrate via a protruding electrode (not shown) on the lower surface of the chip, wiring such as wire bonding is performed on the substrate. Since an area for connecting to the LED chip is not required, the space between the LED chips can be reduced. As a result, it is possible to suppress the occurrence of shadows that occur in the light distribution pattern due to the gaps between the adjacent LED chips 64.
  • FIG. 7 is a schematic diagram showing a state in which LED chips of different sizes are arranged in a matrix.
  • a high luminous intensity for example, 80,000 cd or more
  • a hot zone is required in the light distribution pattern of the headlamp. Therefore, a large-sized (for example, 1 mm ⁇ 1 mm) LED chip 70 that forms a hot zone in the central portion on the substrate is arranged.
  • small (for example, 0.3 mm ⁇ 0.3 mm) LED chips 72 are arranged in the peripheral portion for cost reduction. Thereby, it is possible to realize a light emitting module with reduced cost while enabling formation of a hot zone.
  • FIG. 8 is a schematic diagram showing a state in which LED chips having different shapes are arranged in a matrix.
  • a low beam light distribution pattern having an oblique cut-off line can be formed on a part of the upper portion of the light distribution pattern. Therefore, triangular LED chips 74 forming an oblique cut-off line are arranged on a part of the substrate.
  • normal LED chips 70 are arranged in the peripheral portion.
  • the hypotenuse of the LED chip 74 preferably has an angle of about 10 ° to 60 ° with respect to the horizontal direction. More preferably, they are 15 °, 30 °, 45 °, and the like.
  • FIG. 9A is a schematic diagram showing a state in which the electrode portions of the LED chip are arranged in the vertical direction
  • FIG. 9B is a schematic diagram showing a state in which the electrode portions of the LED chip are arranged in the horizontal direction. is there.
  • the luminance is relatively low in the electrode portion 70a, and the luminance is relatively high in the central portion between the electrodes 70a.
  • there is a gap (about 100 to 300 ⁇ m) between the LED chips the luminance at that portion is naturally lowered, and the luminance unevenness occurs as a whole of the light emitting module. Such luminance unevenness may appear as a shadow (black stripe) in the light distribution pattern.
  • the LED chips 70 are arranged so that the electrode direction is the vertical direction.
  • the LED chips 70 are arranged so that the electrode direction is the horizontal direction.
  • FIG. 10 is a schematic diagram showing a state in which the interval between the LED chips is changed depending on the location.
  • the distance C1 between the chips is narrowed, and the arrangement density of the chips is high, so the luminous intensity of the hot zone in the light distribution pattern. Can be increased.
  • the distance C2 between the chips is widened, and the arrangement density of the chips is low, so the number of chips that irradiate the peripheral part of the light distribution pattern is reduced.
  • the cost of the entire light emitting module can be reduced.
  • FIG. 11 is a schematic diagram showing a state in which a plurality of types of LED chips having different emission wavelengths are arranged.
  • the light emitting module shown in FIG. 11 includes an LED chip 70 that emits white light and an LED chip 78 that emits amber light. Thereby, the vehicle lamp which integrated the headlight and the turn signal lamp is realizable. Further, by further incorporating an LED chip 80 that emits ultraviolet light (UV) and an LED chip 82 that emits infrared light (IR), a light source function for a night vision camera can be added to the light emitting module.
  • UV ultraviolet light
  • IR infrared light
  • FIG. 12 is a schematic diagram showing a state in which a plurality of LED chips formed on one epitaxial substrate are mounted on a mounting substrate.
  • a gap of about 100 ⁇ m is generated between the chips due to the accuracy of the mounting machine. Therefore, a plurality of LED chips are formed on a single epitaxial substrate 84, and the epitaxial substrate between the chips is half-cut by a dicing blade and electrically cut (physically integrated) to thereby obtain individual LEDs. Divide into chips. Thereby, while being able to make the clearance gap between chips small, individual light control of each LED chip is attained.
  • FIG. 13A is a schematic diagram showing a state in which LED chips in some columns (rows) are shifted among the LED chips arranged in a matrix
  • FIG. 13B shows a plurality of rectangular LEDs. It is a schematic diagram which shows the state which arrange
  • the LED chips 86 arranged in the center row are shifted by a distance C3 in the right direction of the drawing with respect to the LED chips 88 arranged in the front or back row. ing.
  • the gap between the LED chips 86 arranged in the center row and the gap between the LED chips 88 arranged in the front or back row are shifted by a distance C3. Black stripes in the vertical direction (vertical direction) of the light distribution pattern to be formed are less noticeable.
  • the LED chips 90 are arranged in a matrix and diagonally so that the gap between the adjacent LED chips 90 is diagonal. Therefore, the black stripes in the vertical direction (vertical direction) and the horizontal direction (horizontal direction) of the light distribution pattern formed by the light emitting module are less noticeable.
  • FIG. 14 is a schematic diagram showing a state in which a light shielding frame is provided only around some LED chips.
  • a light shielding frame in order to prevent light leakage from the adjacent LED chip, it is preferable to provide a light shielding frame so as to surround the periphery of the light emitting surface.
  • the gap between the LED chips is too wide, a dark shadow is projected on a part of the light distribution pattern. Therefore, the gap between the LED chips cannot be increased so much, and the thickness of the light shielding frame must be reduced. .
  • the size of the component increases. Fabrication of a thin light-shielding frame requires fine processing. In particular, when the light-shielding frame is increased in size, the difficulty of fabrication increases, which may lead to an increase in manufacturing cost due to a decrease in yield and an increase in manufacturing time.
  • light leakage is likely to occur in the LED chip 70 that forms a hot zone arranged in the center of the substrate.
  • Such an LED chip 70 has a relatively high luminous intensity when lit to form a hot zone.
  • an LED chip 92 having a relatively low luminous intensity at the time of lighting is disposed.
  • the light shielding frame 94 is mainly provided between the LED chip 70 and the LED chip 92 adjacent to the LED chip 70.
  • FIG. 15A is a schematic cross-sectional view of a light emitting module in which a light shielding film is formed on a part of the side surface of the light shielding frame
  • FIG. 15B is an enlarged view of a part of the light shielding frame shown in FIG.
  • FIG. 15C is a diagram showing a modification of a part of the light shielding frame shown in FIG.
  • the light emitting module 100 includes a substrate 102, flip chip type LED chips 104a to 104d arranged on the substrate 102, and light shielding frames 106a to 106e arranged around each LED unit.
  • the light shielding frames 106a to 106e include a main body portion 108 formed of a transparent material such as glass and formed in a thin plate shape, and the main body portion 108. And a colored portion 110 formed on one side surface.
  • the coloring part 110 is not particularly limited in material and thickness as long as it functions as a light shielding film that shields light. Thereby, the width
  • a light shielding frame in which a colored portion 112 is formed only on the top of the main body portion 108 may be used.
  • the colored part is not particularly limited as long as it substantially functions as a light shielding part. For example, what is necessary is just to reflect or attenuate at least a part of light.
  • FIG. 16 is a schematic diagram illustrating a state in which a part of the light shielding frame is thinned. Decreasing the thickness of the light shielding frame 114 involves a difficulty in manufacturing. In view of light leakage, the thickness of the light-shielding frame needs to be particularly thin, and the other portions are made easy to manufacture. As shown in FIG. 16, LED chips 70 forming a hot zone are arranged in the central portion on the substrate. Therefore, the manufacturing cost of the entire light shielding frame 114 can be reduced by making the thickness of the light shielding frame 114a disposed in the gap between the LED chips 70 thinner than the other portions 114b.
  • FIG. 17 is a schematic diagram showing a state in which the area of the region where the light shielding frame surrounds the LED chip is changed by the chip.
  • the area of the region surrounding one of the LED chips 70 forming the hot zone is smaller than the area of the region surrounding one of the LED chips 116 around the LED chip 70. That is, the light shielding frame 118 that surrounds the LED chip 70 is configured such that the size of a plurality of partitioned areas varies depending on the location.
  • the LED chips 70 forming the hot zone can be arranged more densely, and the maximum luminous intensity of the hot zone can be increased.
  • FIG. 18 is a schematic cross-sectional view of a light emitting module in which a light shielding film is formed on the side surface of the phosphor.
  • the light emitting module 120 includes a substrate 122, flip chip type LED chips 124a to 124d arranged on the substrate 122, light shielding frames 126a to 126e arranged around each LED unit, and an upper side of each LED unit. And phosphor layers 128a to 128d provided on the substrate.
  • the light shielding films 130a to 130e are formed on the respective side surfaces of the phosphor layers 128a to 128d.
  • the light shielding films 130a to 130e are made of, for example, a metal or an alloy.
  • a light shielding portion is configured by the light shielding frames 126a to 126e and the light shielding films 130a to 130e. Thereby, the shape of the light shielding frame can be simplified.
  • FIG. 19 is a schematic diagram showing a state in which a reflective film is formed on a part of the light shielding frame.
  • light shielding frames 134a to 134e are provided between the LED chips 124a to 124d and the phosphor layers 128a to 128d, respectively.
  • the light shielding frames 134a to 134e (hereinafter referred to as the light shielding frame 134) include a vertical portion 136a adjacent to the side portions of the LED chips 124a to 124d and the phosphor layer 128a to 128d side above the vertical portion 136a. And a tapered portion 136b adjacent to the portion.
  • the luminous intensity that can be achieved by the light emitting module is increased by forming a reflective film on the entire light shielding frame 134.
  • a reflective film is formed on the tapered portion 136b, the fluorescence from the phosphor layers 128a to 128d is mainly reflected, resulting in color unevenness. Therefore, in the light emitting module 132, the reflective film is not formed on the tapered portion 136b (phosphor layer portion), and the reflective film 138 is formed only on the side surface of the vertical portion 136a. Thereby, a light emitting module with little color unevenness is realized.
  • FIG. 20 is a schematic cross-sectional view of a light emitting module using an ultraviolet light emitting chip as an LED chip.
  • the white LED is usually composed of a blue light emitting LED chip and a yellow phosphor.
  • the light emitting module 140 includes LED chips 142a to 142d that emit ultraviolet light, and phosphor layers 144a to 144d provided to face the light emitting surfaces of the LED chips 142a to 142d, Is provided.
  • the phosphor layers 144a to 144d include a blue phosphor that is excited by ultraviolet rays and emits blue light, and a yellow phosphor that is excited by ultraviolet rays and emits yellow light. Further, light shielding frames 146a to 146e are provided between the LED chips 142a to 142d and the phosphor layers 144a to 144d, respectively.
  • the light emitting module 140 uses an ultraviolet light emitting type chip as an LED chip, color unevenness hardly occurs. Therefore, it is possible to form the reflective film 148 on the entire side surfaces of the light shielding frames 146a to 146e, and the configuration is simple compared to the case where the reflective film is formed only on a part of the side surfaces of the light shielding frames. Manufacturing is easy.
  • FIG. 21 is a schematic diagram showing a light emitting module in which the shape of the region partitioned by the frame is a hexagon.
  • the light shielding frame 152 included in the light emitting module 150 has a hexagonal shape in a region surrounding one of the LED chips 70.
  • the shadow directions projected on the light distribution pattern are the vertical direction (vertical direction) and the horizontal direction (horizontal direction).
  • the shape of the partition wall of the light shielding frame is hexagonal, shadows formed in the light distribution pattern also occur in directions other than the vertical direction (vertical direction) and the horizontal direction (horizontal direction). For this reason, the shadow generated in the light distribution pattern is less noticeable.
  • the shape of the area partitioned by the frame may be a polygon such as a pentagon or an octagon.
  • the configuration of the phosphor layer is not particularly limited as long as it can be applied to the various light emitting modules described above.
  • a resin composition in which a phosphor is dispersed, a glass composition, or a fluorescent ceramic can be used.
  • some forms preferable as a structure of fluorescent substance are illustrated.
  • the particle diameter (median diameter) of the powdered phosphor is set to 20 ⁇ m or less.
  • a UV-excited phosphor is used.
  • C Add silica or alumina particles as a diffusing agent to the phosphor layer.
  • D Foam is added as a diffusing agent.
  • E YAP (perovskite phase) is mixed in YAG (garnet layer).
  • FIG. 22 is a schematic diagram showing a state in which the size of the divided phosphor layers differs depending on the location.
  • the size of one partition 156 in the region R (halftone dot region) facing the LED chip forming the hot zone is made smaller than the partition 158 in the other regions. Thereby, the luminous intensity of the hot zone in the light distribution pattern formed by the light emitting module can be increased.
  • FIGS. 23A to 23G are schematic cross-sectional views for explaining the shape of the phosphor layer.
  • the phosphor layer is formed in a light shielding frame for light shielding.
  • the phosphor layer is preferably a plate-like phosphor. This facilitates processing of the phosphor. In particular, various surface processing (for example, formation of unevenness) for improving luminance is possible.
  • the phosphor layer 160 shown in FIG. 23 (a) has a trapezoidal shape.
  • the phosphor layer 162 shown in FIG. 23B is Y-shaped.
  • the phosphor layer 166 shown in FIG. 23C has a reflection portion 168 formed on the side surface.
  • the phosphor layer 170 shown in FIG. 23D has a light shielding portion 172 on the side surface.
  • the phosphor layer 174 shown in FIG. 23 (e) has a trapezoidal shape, and a wavelength selective filter 176 is formed on the side surface and the bottom surface. Therefore, the light emitted from the LED chip 178 reaches the phosphor layer 174 with the light having the wavelength selected by the wavelength selective filter 176.
  • a light diffusion phase 182 is provided above the emission surface 180a. Thereby, the brightness nonuniformity of the light radiate
  • a light diffusion phase 186 is provided below the incident surface 184a. Thereby, the light emitted from the LED chip 188 is incident on the phosphor layer 184 after the luminance unevenness is reduced by the light diffusion phase 186.
  • FIG. 24A to FIG. 24F are schematic cross-sectional views for explaining the arrangement of the phosphor layers in the light emitting module.
  • the phosphor layer can take various arrangements in order to be separated from the LED chip or to be combined with a lens, a light guide, a reflecting mirror or the like in consideration of improvement in luminance and suppression of color unevenness.
  • the phosphor layer 190 shown in FIG. 24A is arranged at a position separated from the LED chip 192. Thereby, the heat dissipation of the LED chip 192 and the phosphor layer 190 is improved, and the characteristics of the entire light emitting module are improved.
  • the phosphor layer 190 is surrounded by a light shielding frame 194 and has an emission surface 190 a having a smaller area than the light emitting surface 192 a of the LED chip 192. Thereby, the brightness
  • a lens 198 is provided in front of the emission surface 196a. Thereby, the light emitted from the phosphor layer 196 can be collected.
  • the phosphor layer 200 shown in FIG. 24C is provided such that the center 200a thereof is shifted from the center 202a of the LED chip 202.
  • the phosphor layer 204 shown in FIG. 24D is disposed above the light exit surface 206 a of the light guide 206.
  • the incident surface 206 b of the light guide is opposed to the light emitting surface 208 a of the LED chip 208.
  • the light emitted from the LED chip 208 passes through the light guide 206 and then enters the phosphor layer 204, whereby the light irradiation range is regulated. Thereby, the light leakage between several LED chips is suppressed.
  • the light guide 206 has a translucent (transparent) material that can transmit light emitted from the LED chip.
  • the light-transmitting material include organic materials such as transparent resin materials, inorganic materials such as transparent inorganic glass, mixtures of organic materials and inorganic materials, sol / gel materials, and the like.
  • the resin material include acrylic resin, polycarbonate resin, and epoxy resin.
  • the light emitting module shown in FIG. 24 (e) is characterized in that a lens 210 is disposed between the phosphor layer 190 and the LED chip 192. Thereby, the light emitted from the LED chip 192 is collected by the lens 210 and then enters the phosphor layer 190.
  • the light emitting module shown in FIG. 24F is characterized in that the light that is directed downward of the LED chip 192 is converged and directed toward the phosphor layer 190 using the reflecting mirror 212.
  • FIG. 25A is a schematic diagram showing a state in which the phosphor layer is created for each section by the potting method
  • FIGS. 25B to 25D are states in which the phosphor layer is created at once by the printing method. It is a schematic diagram which shows.
  • FIG. 25B shows the case where the printing direction is printed along the diagonal direction of each section corresponding to the LED chip
  • FIG. 25C shows the direction of the vertical side of each section corresponding to the LED chip
  • FIG. 25D shows a case where the printing direction is printed along the horizontal side of each section corresponding to the LED chip.
  • the phosphor layer 214 has a plurality of phosphors 214a partitioned to correspond to the respective LED chips arranged in a matrix.
  • a rectangular unevenness 214b is generated inside each side of the section, which is a concern.
  • the color unevenness 214c to 214e can be controlled in a certain direction by aligning the printing direction to one direction.
  • 4: Mounting board [Linear expansion coefficient]
  • the linear expansion coefficient of the mounting substrate is defined within a range of ⁇ 5 ppm / ° C. of the thermal expansion coefficient of the LED chip.
  • the thermal expansion coefficient is about 7 ppm / ° C.
  • alumina, AlN, Si, SiO 2 and the like are suitable.
  • the light emitting module has a large number of LED chips mounted on one mounting substrate. Therefore, the thermal conductivity of the mounting substrate is preferably increased in a range that does not greatly affect other performances of the light emitting module.
  • the portion of the mounting substrate on which the LED chip that irradiates the region corresponding to the hot zone may be a mounting substrate having a higher thermal conductivity than the other portions.
  • FIG. 26 is a schematic cross-sectional view showing an example of a mounting board.
  • the light emitting module 216 includes a mounting substrate 218, an LED chip 220 disposed in each recess 218a of the mounting substrate 218, and a phosphor layer 222 disposed on the LED chip.
  • Each recess 218 a is formed by carving the mounting substrate 218. Therefore, the light shielding part 218b is simultaneously formed so as to surround each concave part 218a.
  • the mounting substrate 218 to form the recess 218a, it is not necessary to dispose the light shielding frame on the substrate as a separate member. As a result, the number of assembling steps for the light emitting module is reduced, and the cost can be reduced.
  • As a material for the mounting substrate for example, silicon can be used.
  • FIG. 27 is a schematic diagram showing a mounting board for double-sided wiring.
  • a mounting board 224 with double-sided wiring.
  • the wiring 228a connected to the LED chip 226a in the front row and the wiring 228c connected to the LED chip 226c in the back row are formed on the surface 224a of the mounting substrate 224. Is formed.
  • the wiring 228 b connected to the LED chip 226 b in the middle row is formed on the back surface 224 b of the mounting substrate 224. Thereby, the substrate area can be reduced.
  • light other than the light reflecting surface above the light emitting surface of the LED chip may be a color that absorbs light (such as black) to suppress stray light.
  • the lens may be bonded to the phosphor layer. Further, the lens may be bonded to the LED chip. Such a lens may project a light source image by light emitted from the LED chip and the phosphor layer onto a virtual vertical screen in front of the irradiation direction. In this case, it is preferable to join without using an organic adhesive. This is because if the number of extra layers increases, the possibility of scattering or refraction at the interface between the layers increases. Therefore, the lens and the phosphor are bonded without an adhesive by various methods such as room temperature bonding, surface activation bonding, and anodic bonding. This makes it difficult for light from the LED chip or light that has passed through the phosphor layer to be absorbed and reflected at the interface with the lens, improving the luminous flux emitted from the light emitting module.
  • the substrate and the light-shielding frame are made of silicon and the glass used for the lens contains an alkali metal
  • the substrate and the light-shielding frame and the lens are anodically bonded (at about 500 ° C., by heating and applying a voltage to about 500 V, the glass (Technology for bonding by diffusing alkali metal in silicon).
  • the light emitting module can be hermetically sealed.
  • the linear expansion coefficient of glass be close to 3 ppm / ° C., which is the linear expansion coefficient of silicon.
  • the glass used for the lens is preferably a material having a linear expansion coefficient in the range of 1 to 10 ppm / ° C.
  • a lens array may be mounted on the above-described light emitting module in which LED chips are arranged in an array (matrix).
  • the lens array is formed by forming a plurality of lenses corresponding to each LED chip on a single plate-like member.
  • Such a lens array is disclosed, for example, in JP-T-2006-520518. Even if such a lens array is used, the light-emitting module according to the present embodiment includes a light-shielding portion, so that light leakage is suppressed.
  • the lens array may be manufactured by integral molding with a resin to reduce the cost.
  • CPC lens A CPC lens may be used as a kind of lens array. Thereby, the color nonuniformity in each light emitting unit can be eliminated.
  • the lens may be blurred only in the vertical direction.
  • a dark portion generated between the light emitting units one LED chip + 1 phosphor
  • Blur may be added in the vertical direction of the lens 24 (PES lens) or the like.
  • the lens may be blurred only in the lateral direction.
  • a dark portion generated between the light emitting units is projected as a black stripe in the horizontal direction, and the projection lens 24 shown in FIG. 1 may be blurred in the horizontal direction.
  • the lens may be blurred only in the oblique direction.
  • the dark portion generated between the light emitting units is projected in the oblique direction as a black stripe, and the projection lens 24 shown in FIG. 1 may be blurred in the oblique direction.
  • vertical, horizontal, and oblique blurring may be combined as appropriate.
  • Luminance unevenness and color unevenness may be reduced using an optical fiber array. Luminance unevenness and color unevenness can be reduced by installing a light guide layer in which optical fibers are bundled on an LED chip or a phosphor layer.
  • a flat microlens may be installed.
  • An optical lens may be formed by distributing a high refractive index or low refractive index component on a plate-shaped transparent body (GRIN lens).
  • the space between the projection lens 24 and the light emitting module 22 may be filled with silicone gel.
  • the light emitting module is a vehicle lamp (headlamp) having a different design. ).
  • the phosphor itself may be processed into a lens shape and may be a light emitting module mounted on an LED chip. Since the phosphor is in the shape of a convex lens, there is no confinement of light due to a critical angle, and the luminous flux of the entire light emitting module is improved.
  • the control circuit 1 includes a light-emitting module 22 and a control circuit (not shown) that controls turning on / off of the light-emitting module 22.
  • the control circuit detects a state in which the vehicle equipped with the vehicular lamp is stopped, the control circuit controls the lighting / light-off state of the light-emitting module so as to be a stop mode in which the power consumption is lower than the irradiation mode during traveling.
  • the control circuit controls the lighting / light-off state of the light-emitting module so as to be a stop mode in which the power consumption is lower than the irradiation mode during traveling.
  • the above-described control circuit can perform lighting on / off control of the LEDs of the light emitting module. Since the turn-on / off speed of the LED is fast, information can be transmitted by turning on the pulse. Therefore, the control circuit may include not only an on / off control function for ADB (Adaptive Driving Beam) but also a communication control function between vehicles (vehicles and other vehicles) and between roads (signals and vehicles, etc.).
  • ADB Adaptive Driving Beam
  • the main purpose of light distribution control by ADB is to partially turn off some of the plurality of LED chips to prevent glare.
  • the control circuit may perform control to increase the amount of light of the LED chip that irradiates the area where the pedestrian is present in order to alert the driver.
  • the light emitting module will be further described in detail using Examples and Comparative Examples.
  • four blue LED chips having a size of 1 ⁇ 1 mm and an emission peak wavelength of 450 nm are mounted on a mounting substrate made of aluminum nitride wired so that individual LEDs can be dimmed.
  • a light-shielding frame in which silicon was finely processed was mounted, and a phosphor layer was mounted to manufacture an LED package (hereinafter referred to as “light-emitting module”).
  • This light emitting module was placed on a heat sink made of aluminum die cast, and a current of 700 mA was passed through the four LED chips and stabilized for 10 minutes.
  • the luminance was measured from the front side of the light emitting surface of the light emitting module (upper surface of the light emitting module) with a two-dimensional color luminance meter CA1500 manufactured by Konica Minolta, and the luminance distribution in the longitudinal direction of the light emitting module was measured.
  • the longitudinal direction is a direction connecting approximately the centers of the light emitting surfaces of the LED chips.
  • the light emitting module having sufficiently low brightness at the light-off portion and light shielding was installed in a lamp equipped with a ⁇ 60 plano-convex lens having a focal length of 40 mm.
  • the light emitting module was turned on and projected onto a screen 25 m ahead, and the light intensity distribution was measured. Thereafter, the current of one LED was cut off as in the luminance measurement, and the luminous intensity distribution was measured again. In order not to give glare to the oncoming vehicle, the preceding vehicle, and the pedestrian, it is necessary to keep the luminous intensity of the region corresponding to the LED chip turned off at 625 cd or less.
  • FIG. 28A is a schematic cross-sectional view of the light emitting module according to Comparative Example 1
  • FIG. 28B is a diagram illustrating a graph of the luminance distribution of the light emitting module according to Comparative Example 1.
  • a curve S1 indicates a luminance distribution in a state where all four LEDs are turned on
  • a curve S2 indicates a luminance distribution in a state where only one LED chip is turned off. The same applies to the luminance distribution in the following embodiments.
  • the light emitting module 300 includes a substrate 302, a plurality of LED chips 304 mounted on the substrate 302, and a phosphor layer made of a single YAG sintered body with a size covering the plurality of LED chips 304. 306 and an outer frame 308 that is held by the substrate 302 and supports the outer peripheral portion of the phosphor layer 306.
  • neither the individual LED chip 304 nor the phosphor layer 306 has a structure (configuration) for optically separating (shading) adjacent light emitting portions (light emitting surfaces). Therefore, even if one LED chip was turned off, the luminance of that portion (the lowest portion of the curve S2 shown in FIG. 28B) was 1.5 cd / mm 2 and the light shielding was insufficient.
  • FIG. 29A is a schematic cross-sectional view of the light emitting module according to the first embodiment
  • FIG. 29B is a diagram illustrating a graph of luminance distribution of the light emitting module according to the first embodiment.
  • symbol is attached
  • each phosphor layer 312 is made of a YAG sintered plate having a size covering one LED chip 304, and a silver paste 314 is applied to the side surface thereof. Thereby, the light from the adjacent phosphor layer 312 is shielded. As a result, when one LED chip is turned off, the luminance of that portion (the lowest portion of the curve S2 shown in FIG. 29 (b)) is significantly reduced to 0.3 cd / mm 2, and the light shielding effect appears. Yes.
  • FIG. 30A is a schematic cross-sectional view of the light emitting module according to the second embodiment
  • FIG. 30B is a diagram illustrating a graph of luminance distribution of the light emitting module according to the second embodiment.
  • symbol is attached
  • a triangular frame 321 in which silicon is finely processed is installed between the LED chips 304 to shield the light.
  • the phosphor layer 322 is made of a YAG sintered plate having a size covering one LED chip 304, but nothing is applied to the side surface thereof.
  • the minimum luminous intensity when one LED chip was turned off was 500 cd, which is lower than 625 cd, which may give glare to oncoming vehicles, preceding vehicles, and pedestrians. I found out. From the results of Example 2, it was found that the occurrence of glare when applied to a lamp can be suppressed if the luminance of the light-off portion of the light emitting module is 0.6 cd / mm 2 or less.
  • FIG. 31A is a schematic cross-sectional view of the light emitting module according to the third embodiment
  • FIG. 31B is a diagram illustrating a luminance distribution graph of the light emitting module according to the third embodiment.
  • symbol is attached
  • each phosphor layer 312 is made of a YAG sintered plate having a size covering one LED chip 304, and a silver paste 314 is applied to the side surface thereof. Thereby, the light from the adjacent phosphor layer 312 is shielded.
  • the luminance of the portion is 0.3 cd. / Mm 2, which greatly reduces the light shielding effect.
  • FIG. 32A is a schematic cross-sectional view of the light emitting module according to the fourth embodiment
  • FIG. 32B is a diagram illustrating a luminance distribution graph of the light emitting module according to the fourth embodiment.
  • symbol is attached
  • a triangular frame 342 made by finely processing silicon is placed between the LED chips 304 to shield the light. Thereby, the light from the adjacent LED chip 304 is shielded.
  • the apex of the triangular frame 342 reaches the vicinity of the surface of the phosphor layer 344.
  • Each phosphor layer 344 is made of a YAG sintered plate having a size covering one LED chip 304. Thereby, the light from the adjacent phosphor layer 344 is shielded.
  • the luminance (the lowest part of the curve S2 shown in FIG. 32B) is 0 cd / mm. It is greatly reduced to 2 and a light shielding effect appears.
  • the minimum luminous intensity when one LED chip was turned off was 300 cd, which is lower than 625 cd, which may give glare to oncoming vehicles, preceding vehicles, and pedestrians. It was confirmed that
  • FIG. 33A is a schematic cross-sectional view of the light emitting module according to the fifth embodiment
  • FIG. 33B is a diagram illustrating a luminance distribution graph of the light emitting module according to the fifth embodiment.
  • FIG. 33B shows only the luminance distribution (curve S1) in a state where all four LEDs are lit.
  • symbol is attached
  • a triangular frame 342 made by finely processing silicon is installed between the LED chips 304 to shield the light. Thereby, the light from the adjacent LED chip 304 is shielded.
  • the apex of the triangular frame 342 is exposed from the surface of the phosphor layer 352.
  • the phosphor layer 352 is formed by printing a paste obtained by mixing 12% by volume of YAG powder with dimethyl silicone resin on the LED chip 304 with a squeegee. At that time, adjustment was made so that the tip of the triangular frame 342 was exposed. Thereby, the light from the adjacent phosphor layer 352 is shielded.
  • the luminance of the portion is greatly reduced to 0 cd / mm 2, and the light shielding effect appears. .
  • the minimum luminous intensity when one LED chip was turned off was 300 cd or less, and 625 cd that might give glare to oncoming vehicles, preceding vehicles, and pedestrians It was confirmed that it was below.
  • FIG. 34A is a schematic cross-sectional view of the light emitting module according to the sixth embodiment
  • FIG. 34B is a diagram illustrating a graph of luminance distribution of the light emitting module according to the sixth embodiment.
  • FIG. 34B only the luminance distribution (curve S1) in a state where all four LEDs are lit is shown.
  • symbol is attached
  • a vertical frame 362 made by finely processing silicon is installed between the LED chips 304 to shield the light.
  • the side surface of the vertical frame 362 is provided substantially perpendicular to the surface of the substrate 302. Thereby, the same effect as Example 5 was obtained.
  • FIG. 35A is a schematic cross-sectional view of the light emitting module according to the seventh embodiment
  • FIG. 35B is a diagram illustrating a luminance distribution graph of the light emitting module according to the seventh embodiment.
  • FIG. 35B only the luminance distribution (curve S1) in a state where all four LEDs are lit is shown.
  • symbol is attached
  • a frame 372 in which silicon is finely processed is installed between the LED chips 304 to shield the light.
  • the side surface of the frame 372 close to the substrate 302 (the lower portion shown in FIG. 35A) is provided substantially perpendicular to the surface of the substrate 302, and the side close to the surface of the phosphor layer 352 (FIG. 35).
  • the side of the upper part shown in (a) is provided obliquely with respect to the surface of the substrate 302. Thereby, the same effect as Example 5 was obtained.
  • FIG. 36A is a schematic cross-sectional view of the light emitting module according to Example 8
  • FIG. 36B is a diagram illustrating a graph of the luminance distribution of the light emitting module according to Example 8.
  • FIG. 36B shows only the luminance distribution (curve S1) in a state where all four LEDs are lit.
  • symbol is attached
  • a frame 372 in which silicon is finely processed is installed between the LED chips 304 to shield the light.
  • a phosphor layer 382 made of a YAG sintered plate cut along the shape of the frame 372 was mounted on the LED chip 304.
  • the YAG sintered plate preferably emits 40% or more of light as diffused light when linear light having a wavelength in the fluorescent region (600 nm) is incident.
  • the dark part (brightness reduction part) between the LED chips was very small, the change of the luminance distribution in the LED chip surface was small, and all the LEDs were turned on. The feeling of uniformity at the time was significantly improved.
  • the light emitting module of the present invention can be used for various lamps, for example, lighting lamps, displays, vehicle lamps, traffic lights, and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Engineering (AREA)
  • Mathematical Physics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Led Device Packages (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)
  • Fastening Of Light Sources Or Lamp Holders (AREA)

Abstract

 発光モジュール50は、基板54と、基板54に搭載され、マトリックス状に配列されている複数の半導体発光素子52a~52dと、半導体発光素子の発光面56a~56dに対向するように設けられている蛍光体層58と、複数の半導体発光素子のうち少なくとも一部の発光素子の発光面の周囲を囲むように設けられている遮光部60a~60dと、を備えている。

Description

発光モジュールおよび車両用灯具
 本発明は、発光ダイオードなどの発光素子を備えた発光モジュールに関する。
 夜間、幅広い範囲の路面を自動車用灯具で照射する際には、ハイビーム用配光パターンを形成する灯具ユニットが用いられることが多い。一方、このようなハイビーム用配光パターンは、対向車や先行車へグレアを与える可能性があるため、更なる改良が求められている。
 例えば、ロービーム用配光パターンを形成する灯具ユニットを左右方向にスイブルすることで照射範囲を広げた車両用灯具が考案されている(特許文献1参照)。しかしながら、このような灯具は、スイブルのための機構部品が必要であり、装置が複雑化、大型化してしまうとともに、瞬時に配光を切り替えることが難しい。
 一方、近年、性能の向上が著しい白色発光ダイオード(以下、LED(Light Emitting Diode)と称する。)を光源に用いた車両用灯具の開発も進んでいる。例えば、複数の白色LEDをマトリックス状に配置した光源が考案されている(引用文献2参照)。
特開2007-30739号公報 特開2009-134965号公報
 本発明はこうした状況に鑑みてなされたものであり、その目的とするところは、照明や灯具への適用を考慮した発光モジュールを提供することにある。
 上記課題を解決するために、本発明のある態様の発光モジュールは、基板と、基板に搭載され、マトリックス状に配列されている複数の発光素子と、発光素子の発光面に対向するように設けられている蛍光部材と、複数の発光素子のうち少なくとも一部の発光素子の発光面の周囲を囲むように設けられている遮光部と、を備えている。
 この態様によると、遮光部により、発光素子間の光漏れが抑制される。
 複数の発光素子は、点灯時の光度が相対的に高い第1の発光素子と、点灯時の光度が相対的に低い第2の発光素子とを有してもよい。遮光部は、主として第1の発光素子と該第1の発光素子と隣接する発光素子との間に設けられていてもよい。これにより、第1の発光素子からの光漏れを抑制しつつ、発光モジュール全体に用いられる遮光部を減らすことができるため、コストの低減が図られる。
 発光素子は、フリップチップ型の素子であってもよい。これにより、例えば、ワイヤボンディングによって基板に実装する発光素子と比較して、配線を基板に接続する領域が必要ないため、発光素子間の間隔を狭めることができる。その結果、隣接する発光素子間の隙間に起因する配光パターンに生じる影を抑制できる。
 蛍光部材は、板状の蛍光体であってもよい。これにより、蛍光体の加工が容易となる。特に、輝度を向上するための種々の表面加工が可能となる。
 基板は、熱膨張係数が発光素子の熱膨張係数の±5ppm/℃の範囲内であってもよい。これにより、発光素子の点消灯による繰り返しの温度変化で生じる接続信頼性の低下を抑制できる。
 発光素子および蛍光部材から出射した光による光源像を、照射方向前方の仮想鉛直スクリーン上に投影するレンズを更に備えてもよい。レンズは、発光素子または蛍光部材に直接接合されていてもよい。これにより、発光素子からの光または蛍光部材を通過した光がレンズとの界面で吸収、反射されにくくなり、発光モジュールから出射する光束が向上する。
 本発明の別の態様は、車両用灯具である。この車両用灯具は、発光モジュールと、発光モジュールの点消灯を制御する制御回路と、を備えた車両用灯具であって、制御回路は、車両用灯具が装着された車両が停車した状態を検出した場合、発光モジュールの点消灯状態を、走行時における照射モードよりも消費電力の低い停車モードとなるように制御する。
 この態様によると、運転者の操作を必要とせずに車両用灯具の省電力化を実現できる。
 なお、以上の構成要素の任意の組合せ、本発明の表現を方法、装置、システム、などの間で変換したものもまた、本発明の態様として有効である。
 本発明によれば、照明や灯具への適用を考慮した発光モジュールを提供することができる。
本実施の形態に係る車両用灯具の概略断面図である。 図1に示す灯具ユニットの要部を示す斜視図である。 図1に示す発光モジュールの正面図である。 本実施の形態に係る車両用灯具により形成された配光パターンの一例を示す図である。 本実施の形態に係る発光モジュールの一例を示す概略断面図である。 図6(a)は、本実施の形態の発光モジュールに好適なLEDチップの構造を説明するための模式図、図6(b)は、比較例のLEDチップの構成を示す模式図である。 異なる大きさのLEDチップをマトリックス状に配列した状態を示す模式図である。 異なる形状のLEDチップをマトリックス状に配列した状態を示す模式図である。 図9(a)は、LEDチップの電極部分が縦方向に並んでいる様子を示す模式図、図9(b)は、LEDチップの電極部分が横方向に並んでいる様子を示す模式図である。 LEDチップの間隔を場所によって変化させた状態を示す模式図である。 発光波長の異なる複数種のLEDチップを配列した状態を示す模式図である。 一枚のエピタキシャル基板に形成された複数のLEDチップを実装基板上に搭載した状態を示す模式図である。 図13(a)は、マトリックス状に配列されているLEDチップのうち、一部の列(行)のLEDチップをずらした状態を示す模式図、図13(b)は、矩形の複数のLEDチップを斜めに、かつ、マトリックス状に配列した状態を示す模式図である。 一部のLEDチップの周囲にのみ遮光枠を設けた状態を示す模式図である。 図15(a)は、遮光枠の側面の一部に遮光膜を形成した発光モジュールの概略断面図、図15(b)は、図15(a)に示す遮光枠の一部の拡大図、図15(c)は、図15(b)に示す遮光枠の一部の変形例を示す図である。 遮光枠の一部の厚みを薄くした状態を示す模式図である。 遮光枠がLEDチップを囲む領域の面積をチップによって変更した状態を示す模式図である。 蛍光体の側面に遮光膜を形成した発光モジュールの概略断面図である。 遮光枠の一部に反射膜を形成した状態を示す模式図である。 LEDチップとして紫外線発光チップを用いた発光モジュールの概略断面図である。 枠で区画される領域の形状が六角形である発光モジュールを示す模式図である。 区画された蛍光体層の大きさが場所によって異なっている状態を示す模式図である。 図23(a)~図23(g)は、蛍光体層の形状を説明するための概略断面図である。 図24(a)~図24(f)は、発光モジュールにおける蛍光体層の配置を説明するための概略断面図である。 図25(a)は、ポッティング法により区画毎に蛍光体層を作成した状態を示す模式図、図25(b)~図25(d)は、印刷法により一度に蛍光体層を作成した状態を示す模式図である。 実装基板の一例を示す概略断面図である。 両面配線の実装基板を示す模式図である。 図28(a)は、比較例1に係る発光モジュールの概略断面図、図28(b)は、比較例1に係る発光モジュールの輝度分布のグラフを示す図である。 図29(a)は、実施例1に係る発光モジュールの概略断面図、図29(b)は、実施例1に係る発光モジュールの輝度分布のグラフを示す図である。 図30(a)は、実施例2に係る発光モジュールの概略断面図、図30(b)は、実施例2に係る発光モジュールの輝度分布のグラフを示す図である。 図31(a)は、実施例3に係る発光モジュールの概略断面図、図31(b)は、実施例3に係る発光モジュールの輝度分布のグラフを示す図である。 図32(a)は、実施例4に係る発光モジュールの概略断面図、図32(b)は、実施例4に係る発光モジュールの輝度分布のグラフを示す図である。 図33(a)は、実施例5に係る発光モジュールの概略断面図、図33(b)は、実施例5に係る発光モジュールの輝度分布のグラフを示す図である。 図34(a)は、実施例6に係る発光モジュールの概略断面図、図34(b)は、実施例6に係る発光モジュールの輝度分布のグラフを示す図である。 図35(a)は、実施例7に係る発光モジュールの概略断面図、図35(b)は、実施例7に係る発光モジュールの輝度分布のグラフを示す図である。 図36(a)は、実施例8に係る発光モジュールの概略断面図、図36(b)は、実施例8に係る発光モジュールの輝度分布のグラフを示す図である。
 以下、図面を参照しながら、本発明を実施するための形態について詳細に説明する。なお、図面の説明において同一の要素には同一の符号を付し、重複する説明を適宜省略する。
 本実施の形態に係る発光モジュールは、車両用灯具をはじめとする、あらゆる照明や灯具に適用可能なものである。特に、本実施の形態に係る発光モジュールは、発光モジュールが備える複数の発光素子の一部または全部の明るさを制御することで複数の配光パターンを実現する照明や灯具に好適である。
 (車両用灯具)
 はじめに、本実施の形態に係る発光モジュールが適用される灯具の一例として、車両用灯具を説明する。図1は、本実施の形態に係る車両用灯具の概略断面図である。
 車両用灯具10は、灯具ボディ12と、透光カバー14と、灯具ボディ12および透光カバー14によって形成された灯室16内に収容されている灯具ユニット18と、灯室16内において灯具ユニット18を支持する支持部材としてのブラケット20と、を備える。灯具ユニット18は、直射方式のプロジェクタ型灯具ユニットであり、複数の半導体発光素子を備える発光モジュール22と、投影レンズ24と、投影レンズ24をブラケット20と連結するための連結部材26と、を備える。
 発光モジュール22は、半導体発光素子としてのLEDチップ22aと、セラミックなどで形成された熱伝導性絶縁基板22bとを備える。発光モジュール22は、その照射軸が灯具ユニット18の照射方向(図10中左方向)と略平行となる車両前方に向けられた状態で、ブラケット20上に載置されている。
 連結部材26は、略水平に配置された平面部26aと、この平面部26aよりも前方領域にある湾曲部26bとを有する。湾曲部26bは、発光モジュール22から出射した光を反射しないように形状が構成されている。
 投影レンズ24は、発光モジュール22から出射した光を灯具前方に投影する、前方側表面が凸面で後方側表面が平面の平凸非球面レンズであって、車両前後方向に延びる光軸Ax上に配置され、連結部材26の車両前方側先端部に固定されている。投影レンズ24の後方焦点近傍には、発光モジュール22のLEDチップ22aが配置されている。発光モジュール22から出射した光は、投影レンズ24に直接入射する。投影レンズ24に入射した光は、投影レンズ24で集光されて略平行な光として前方に照射される。
 図2は、図1に示す灯具ユニット18の要部を示す斜視図である。図3は、図1に示す発光モジュール22の正面図である。図2、図3に示すように、発光モジュール22は、複数のLEDチップ22aを有している。本実施の形態に係る発光モジュール22においては、水平方向Hに6個、鉛直方向Vに2個、計12個のLEDチップ22aが、熱伝導性絶縁基板22b上にマトリックス状に配列されている。
 なお、図1、図3に示すように、四角形のブラケット20の所定の縁部(3つの角部)にはねじ穴28が形成されている。ねじ穴28には、エイミングスクリュー30,32、およびレベリングシャフト34のいずれかの一端が締結されている。また、エイミングスクリュー30,32、およびレベリングシャフト34の他端は、灯具ボディ12のねじ穴(不図示)に締結されている。これにより、ブラケット20は、灯具ボディ12の後面から前方へ離間した状態で灯具ボディ12に取り付けられている。車両用灯具10は、エイミングスクリュー30,32、レベリングシャフト34およびレベリングアクチュエータ36により、灯具ユニット18の光軸を水平方向あるいは垂直方向に調整できるように、構成されている。
 また、ブラケット20の後方側の面には、放熱フィン38が設けられている。また、放熱フィン38と灯具ボディ12との間には、放熱フィン38に向けて空気を送風し、放熱フィン38を冷却するファン40が設けられている。
 図4は、本実施の形態に係る車両用灯具10により形成された配光パターンの一例を示す図である。図1に示す車両用灯具10は、発光モジュール22の一部のLEDチップ22aを消灯することで、図4に示すように、車両前方の一部の領域を非照射とする配光パターンPHを形成できる。なお、図4に示す12個の矩形の領域は、LEDチップのそれぞれが照射する領域に対応しており、斜線で示されている領域は、光が照射されている状態を示している。
 したがって、車両用灯具10は、歩行者42、先行車44、対向車46が存在している領域に対応するLEDチップを消灯することで、歩行者42、先行車44、対向車46に対するグレアを抑制できる。
 (発光モジュール)
 次に、発光モジュールの好適な例について説明する。図5は、本実施の形態に係る発光モジュールの一例を示す概略断面図である。本実施の形態に係る発光モジュール50は、図5に示すように、第1発光ユニット51a~第4発光ユニット51dを備える。第1発光ユニット51aは、半導体発光素子52aを備える。第2発光ユニット51bは、半導体発光素子52bを備える。第3発光ユニット51cは、半導体発光素子52cを備える。第4発光ユニット51dは、半導体発光素子52dを備える。マトリックス状に配列されている半導体発光素子52a~52dは、基板54に搭載されている。
 また、各半導体発光素子52a~52dの発光面56a~56dに対向するように蛍光体層58が設けられている。蛍光体層58は、対向する半導体発光素子52a~52dが発する光を波長変換して出射する光波長変換部材として機能する。なお、発光モジュール50は、蛍光体層58を用いずに必要とする色や波長の光を得ることができる場合は、蛍光体層58を備えていなくてもよい。
 発光ユニット同士の間隔W1は、発光ユニットの幅W2より小さいとよい。間隔W1は、各発光ユニットのそれぞれが照射する領域の間に隙間が生じないように考慮しながら、実験やこれまでの知見を用いて適宜設計すればよい。発光モジュールを車両用灯具(車両用前照灯装置)に用いる場合、例えば、発光ユニット同士の間隔W1は10~500μmの範囲で設定されているとよい。なお、各発光ユニットは、半導体発光素子と蛍光体との組合せにより種々の色の光を出射することができる。例えば、青色光を発する半導体発光素子と、青色光を吸収し黄色光に変換する蛍光体と、の組合せにより白色光を実現する発光ユニットであってもよい。また、紫外光を発する半導体発光素子と、紫外光を吸収し青色光に変換する第1の蛍光体と、紫外光を吸収し黄色光に変換する第2の蛍光体と、の組合せにより白色光を実現する発光ユニットであってもよい。
 半導体発光素子52a~52dは、各半導体発光素子の側面および下面を覆うように遮光部60a~60dが設けられている。遮光部60a~60dは、それぞれ分離されていてもよいし、図5に示すように一体で形成されていてもよい。また、遮光部60a~60dは、複数の半導体発光素子のうち少なくとも一部の半導体発光素子の発光面の周囲を囲むように設けられていてもよい。
 このような遮光部60a~60dを備える発光モジュール50においては、半導体発光素子52aの光の一部が、隣接する半導体発光素子52bの発光面56bと対向する領域62bの蛍光体層58に向かって照射されても、遮光部60aによって遮られる。また、半導体発光素子52bの光の一部が、隣接する半導体発光素子52a,52cの発光面56a,56cと対向する領域62a,62cの蛍光体層58に向かって照射されても、遮光部60bによって遮られる。また、半導体発光素子52cの光の一部が、隣接する半導体発光素子52b,52dの発光面56b,56dと対向する領域62b,62dの蛍光体層58に向かって照射されても、遮光部60cによって遮られる。また、半導体発光素子52dの光の一部が、隣接する半導体発光素子52cの発光面56cと対向する領域62cの蛍光体層58に向かって照射されても、遮光部60dによって遮られる。
 このように、本実施の形態に係る発光モジュール50は、少なくとも一つの半導体発光素子から発する光によって、隣接する半導体発光素子の発光面と対向する領域の蛍光体層58が光ることが抑制される。その結果、例えば、発光ユニット51aが点灯し、発光ユニット51aに隣接している発光ユニット51bが消灯している場合に、発光ユニット51bの照射対象領域が意図せず照らされることが抑制される。また、少なくとも一つの半導体発光素子の光の一部が、隣接する半導体発光素子の照射領域に向かって照射されても、半導体発光素子の側面を覆う遮光部によって遮られる。
 したがって、点灯している半導体発光素子に隣接する半導体発光素子が消灯している場合に、消灯している半導体発光素子を備える発光ユニットの照射対象領域が意図せず照らされることが抑制される。つまり、複数の半導体発光素子間の光漏れが抑制される。これにより、本実施の形態に係る発光モジュールを備えた車両用灯具10が、図4に示すような配光パターンを形成した場合、消灯している半導体発光素子に対応する領域に存在する車両の乗員や歩行者に対して、グレアを与えることが抑制される。
 なお、前述の「マトリックス状に配列」とは、少なくとも、複数の発光素子がm×1(mは2以上の整数)、1×n(nは2以上の整数)、m×n(m、nはいずれも2以上の整数)で配列されている場合が含まれる。2つの配列方向は、必ずしも直交している必要はなく、全体として平行四辺形や台形の領域に配列されていてもよい。また、複数の発光素子は、全てが単一の種類でなくてもよく、複数種の発光素子を組み合わせたものであってもよい。
 ところで、従来の複数の白色LEDをマトリックス状に配置した光源を備える車両用灯具では、並んでいる複数の白色LEDの間の隙間が、配光パターンに暗い影として投影されてしまう場合がある。このような状況で車両を運転した場合、運転者にとって影が煩わしく感じる可能性がある。
 そこで、このような点に関して、発明者ら鋭意検討した結果、本実施の形態に係る発光モジュールでは、以下に述べる様々な工夫や構成を適宜採用することで改善できることが明らかとなった。また、半導体発光素子間の隙間などに起因する配光パターンに生じる影と、配光パターン内の消灯領域への光漏れと、の抑制を高度なレベルで両立し得ることも可能となる。
 以下の実施の形態で述べる工夫の一例を列挙すると次の通りとなる。
(1)発光素子(LEDチップ)の構造、大きさ、形状など
(2)遮光部の材質、形状、表面形状など
(3)蛍光部材の材質、形状、表面処理など
(4)実装基板の物性、形状など
(5)レンズの構成、材質、形状など
(6)制御回路
 なお、以下の説明では、工夫が施されている構成を中心に説明するものとし、その他の構成は不図示として説明を適宜省略する。
 (1:LEDチップ)
 [チップ構造]
 図6(a)は、本実施の形態の発光モジュールに好適なLEDチップの構造を説明するための模式図、図6(b)は、比較例のLEDチップの構成を示す模式図である。基板54上に複数のLEDチップをマトリックス状に搭載する場合、フェースダウンタイプ(フリップチップ型)(図6(a)参照)のLEDチップ64、または、フェースアップタイプのLEDチップ66(図6(b)参照)の採用が考えられる。
 しかしながら、図6(b)に示すように、フェースアップタイプのLEDチップ66を採用する場合、チップの上面66aと基板54とを結ぶワイヤボンディング68のために、チップ間隔を空ける必要がある。その結果、配光パターンに影が生じやすくなる。一方、図6(a)に示すように、フリップチップ型のLEDチップ64であれば、チップ下面の突起電極(不図示)を介して基板と接続されるため、ワイヤボンディングのような配線を基板に接続する領域が必要ないため、LEDチップ間の間隔を狭めることができる。その結果、隣接するLEDチップ64間の隙間に起因する配光パターンに生じる影の発生を抑制できる。
 [チップサイズ]
 図7は、異なる大きさのLEDチップをマトリックス状に配列した状態を示す模式図である。発光モジュールを車両用灯具に適用する場合、前照灯の配光パターンにおいて、ホットゾーンと呼ばれる高い光度(例えば、8万cd以上。)が要求される領域がある。そこで、基板上の中央部にホットゾーンを形成する大型(例えば、1mm×1mm。)のLEDチップ70を配列する。一方、その周辺部はコストダウンのために小型(例えば、0.3mm×0.3mm。)のLEDチップ72を配列する。これにより、ホットゾーンの形成を可能としつつ、コストが低減された発光モジュールを実現することができる。
 [チップ形状]
 図8は、異なる形状のLEDチップをマトリックス状に配列した状態を示す模式図である。発光モジュールを車両用灯具に適用する場合、配光パターンの上部の一部に斜めのカットオフラインを有するロービーム用配光パターンを形成できることが要求される場合がある。そこで、基板上の一部に、斜めのカットオフラインを形成する三角形のLEDチップ74を配列する。一方、その周辺部は通常のLEDチップ70を配列する。LEDチップ74の斜辺は、水平方向に対して10°~60°程度の角度を有することが好ましい。より好ましくは、15°、30°、45°などである。
 [チップ内の電極方向]
 図9(a)は、LEDチップの電極部分が縦方向に並んでいる様子を示す模式図、図9(b)は、LEDチップの電極部分が横方向に並んでいる様子を示す模式図である。LEDチップ70において、電極部分70aでは輝度が相対的に低く、電極70a間の中央部分では輝度が相対的に高くなるため、発光面内で輝度ムラが生じている。また、LEDチップ間には隙間(100~300μm程度)があるので、その部分における輝度も当然下がっており、発光モジュール全体としても輝度ムラが生じている。このような輝度ムラは、配光パターンにおいて影(黒スジ)として表れることがある。
 そこで、左右(水平)方向の黒スジを抑制したい場合は、図9(a)に示すように、電極方向が縦方向になるようにLEDチップ70を配列する。一方、上下(鉛直)方向の黒スジを抑制したい場合は、図9(b)に示すように、電極方向が横方向になるようにLEDチップ70を配列する。
 [チップ間隔]
 図10は、LEDチップの間隔を場所によって変化させた状態を示す模式図である。例えば、前述のホットゾーンを形成するLEDチップ70が配列されている中央部では、チップ間の間隔C1が狭まっており、チップの配置密度が高くなっているため、配光パターンにおけるホットゾーンの光度を高めることができる。一方、LEDチップ76が配列されている周辺部では、チップ間の間隔C2が広げられており、チップの配置密度が低くなっているため、配光パターンの周辺部を照射するチップの数を減らすことができ、発光モジュール全体のコストダウンが可能となる。
 [発光波長(発光色)の異なる複数種のLEDチップの組合せ]
 図11は、発光波長の異なる複数種のLEDチップを配列した状態を示す模式図である。図11に示す発光モジュールは、白色光を発するLEDチップ70と、アンバ光を発するLEDチップ78とを備えている。これにより、ヘッドライトとターンシグナルランプとを一体化した車両用灯具を実現できる。また、紫外線(UV)を発するLEDチップ80、赤外線(IR)を発するLEDチップ82を更に組み込むことにより、暗視カメラ用の光源機能を発光モジュールに付加することができる。
 [エピタキシャル層の分割]
 図12は、一枚のエピタキシャル基板に形成された複数のLEDチップを実装基板上に搭載した状態を示す模式図である。ばらばらのLEDチップを対で基板上に搭載する場合、搭載機の精度上100μm程度の隙間がチップ間に生じる。そこで、一枚のエピタキシャル基板84上に複数のLEDチップを形成し、チップ間にあるエピタキシャル基板をダイシングブレードによりハーフカットして電気的に切断(物理的には一体)することによって、個々のLEDチップに分割する。これにより、チップ間の隙間を小さくできるとともに、各LEDチップの個別調光が可能となる。
 [チップ配置]
 図13(a)は、マトリックス状に配列されているLEDチップのうち、一部の列(行)のLEDチップをずらした状態を示す模式図、図13(b)は、矩形の複数のLEDチップを斜めに、かつ、マトリックス状に配列した状態を示す模式図である。図13(a)に示すように、中央の列に配置されているLEDチップ86は、手前または奥側の列に配置されているLEDチップ88に対して図の右方向に距離C3だけずらされている。これにより、中央の列に配置されているLEDチップ86同士の隙間と、手前または奥側の列に配置されているLEDチップ88同士の隙間と、が距離C3だけずれているので、発光モジュールが形成する配光パターンの縦方向(鉛直方向)の黒スジが目立ちにくくなる。
 また、図13(b)に示すように、隣接するLEDチップ90との隙間が斜めになるように、各LEDチップ90をマトリックス状、かつ、斜めに配列されている。そのため、発光モジュールが形成する配光パターンの縦方向(鉛直方向)および横方向(水平方向)の黒スジが目立ちにくくなる。
 (2:遮光部)
 [部分的に設置]
 図14は、一部のLEDチップの周囲にのみ遮光枠を設けた状態を示す模式図である。前述のように、隣接するLEDチップからの光漏れを防止するためには、発光面の周囲を囲むように遮光枠を設けることが好ましい。しかしながら、LEDチップ間の隙間を広げすぎると配光パターンの一部に暗い影が投影されてしまうため、LEDチップ間の隙間をあまり広げることもできず、遮光枠の厚みも薄くしなければならない。加えて、全てのLEDチップの間に遮光枠を設けると、部品が大型化してしまう。薄い遮光枠の作製には微細加工が必要であり、特に遮光枠が大型化すると作製の難易度が高まり、収率の低下や製造時間の増大から製造コストの上昇を招く可能性がある。
 光漏れが生じやすいのは、例えば、図14に示すように、基板上の中央部に配列されているホットゾーンを形成するLEDチップ70である。このようなLEDチップ70は、ホットゾーンを形成するために点灯時の光度が相対的に高い。一方、LEDチップ70の周囲には、点灯時の光度が相対的に低いLEDチップ92が配置されている。そして、遮光枠94は、主としてLEDチップ70とLEDチップ70と隣接するLEDチップ92との間に設けられている。これにより、LEDチップ70からの光漏れを抑制しつつ、発光モジュール全体に用いられる遮光枠94を簡素化、小型化することができるため、コストの低減が図られる。
 [枠の側面を着色]
 図15(a)は、遮光枠の側面の一部に遮光膜を形成した発光モジュールの概略断面図、図15(b)は、図15(a)に示す遮光枠の一部の拡大図、図15(c)は、図15(b)に示す遮光枠の一部の変形例を示す図である。発光モジュール100は、基板102と、基板102上に配列されているフリップチップタイプのLEDチップ104a~104dと、各LEDユニットの周囲に配置されている遮光枠106a~106eとを備えている。
 図15(b)に示すように、遮光枠106a~106e(以下、遮光枠106と称する)は、ガラスなどの透明な材料からなる、薄板状に形成されている本体部108と、本体部108の一方の側面に形成された着色部110と、を有する。着色部110は、光を遮光する遮光膜として機能するものであれば材質や厚みは特に限定されない。これにより、遮光枠106のうち、遮光部として機能する部分の幅を抑えることができ、配光パターンに生じる影の発生を抑制できる。また、図15(c)に示すように、本体部108の頭頂部にのみ着色部112を形成した遮光枠であってもよい。着色部は、実質的に遮光部として機能するものであれば、特に構成は限定されない。例えば、少なくとも光の一部を反射または減衰させるものであればよい。
 [枠の厚みを部分的に変更]
 図16は、遮光枠の一部の厚みを薄くした状態を示す模式図である。遮光枠114の厚みを薄くすることは、製造上の難易度を伴う。そこで、光漏れの観点から遮光枠の厚みを特に薄くする必要がある部分だけ厚みを薄くし、それ以外の部分については製造が容易な厚みとする。図16に示すように、基板上の中央部には、ホットゾーンを形成するLEDチップ70が配列されている。そこで、LEDチップ70間の隙間に配置されている遮光枠114aの厚みを他の部分114bよりも薄くすることで、遮光枠114全体の製造コストを低減できる。
 [枠の大きさを部分的に変更]
 図17は、遮光枠がLEDチップを囲む領域の面積をチップによって変更した状態を示す模式図である。図17に示すように、ホットゾーンを形成するLEDチップ70の一つを囲む領域の面積は、LEDチップ70の周囲にあるLEDチップ116の一つを囲む領域の面積よりも小さい。つまり、LEDチップ70を囲む遮光枠118は、区画されている複数の領域の大きさが場所によって異なるように構成されている。その結果、ホットゾーンを形成するLEDチップ70をより密集して配置することが可能となり、ホットゾーンの最大光度を上げることができる。
 [遮光膜]
 図18は、蛍光体の側面に遮光膜を形成した発光モジュールの概略断面図である。発光モジュール120は、基板122と、基板122上に配列されているフリップチップタイプのLEDチップ124a~124dと、各LEDユニットの周囲に配置されている遮光枠126a~126eと、各LEDユニットの上方に設けられている蛍光体層128a~128dと、を備えている。
 蛍光体層128a~128dの各側面には、遮光膜130a~130eが形成されている。遮光膜130a~130eは、例えば、金属や合金で構成されている。発光モジュール120においては、遮光枠126a~126eおよび遮光膜130a~130eによって遮光部が構成されている。これにより、遮光枠の形状を単純にできる。
 [反射膜が形成されている遮光枠]
 図19は、遮光枠の一部に反射膜を形成した状態を示す模式図である。発光モジュール132は、LEDチップ124a~124dおよび蛍光体層128a~128dのそれぞれの間に、遮光枠134a~134eが設けられている。遮光枠134a~134e(以下、遮光枠134と称する)は、LEDチップ124a~124dの側部に隣接している鉛直部136aと、鉛直部136aの上方であって蛍光体層128a~128dの側部に隣接しているテーパ部136bとを有する。
 一般的に、遮光枠134の全てに反射膜を形成することで発光モジュールが実現できる光度は高まる。しかしながら、テーパ部136bに反射膜を形成すると、蛍光体層128a~128dからの蛍光を主として反射するので、色ムラとなる。そこで、発光モジュール132は、テーパ部136b(蛍光体層部)には反射膜が形成されておらず、鉛直部136aの側面にのみ反射膜138が形成されている。これにより、色ムラの少ない発光モジュールが実現される。
 [紫外線発光チップ]
 図20は、LEDチップとして紫外線発光チップを用いた発光モジュールの概略断面図である。白色LEDは、通常、青色発光LEDチップと黄色蛍光体とで構成される。この構成では、青色の透過光が分離しやすいため、色ムラが生じやすい。そこで、図20に示すように、発光モジュール140は、紫外線を発光するLEDチップ142a~142dと、LEDチップ142a~142dの発光面と対向するように設けられている蛍光体層144a~144dと、を備える。蛍光体層144a~144dは、紫外線により励起され青色の光を発する青色蛍光体と、紫外線により励起され黄色の光を発する黄色蛍光体と、を含む。また、LEDチップ142a~142dおよび蛍光体層144a~144dのそれぞれの間に、遮光枠146a~146eが設けられている。
 発光モジュール140は、LEDチップとして紫外線発光タイプのチップを用いているため、色ムラが生じにくい。そのため、遮光枠146a~146eの側面の全面に反射膜148を形成することが可能となり、遮光枠の側面の一部のみに反射膜を形成する場合と比較して構成が単純となり、遮光枠の製造が容易となる。
 [枠で区画される領域の形状]
 図21は、枠で区画される領域の形状が六角形である発光モジュールを示す模式図である。図21に示すように、発光モジュール150が備える遮光枠152は、LEDチップ70の一つを囲む領域の形状が六角形である。遮光枠の仕切り壁の形状が四角形の場合、配光パターンに投影される影の方向は、縦方向(鉛直方向)および横方向(水平方向)である。一方、遮光枠の仕切り壁の形状が六角形の場合、配光パターンに形成される影は、縦方向(鉛直方向)および横方向(水平方向)、以外の方向にも生じる。そのため、配光パターンに生じる影が目立ちにくくなる。なお、枠で区画される領域の形状は、五角形や八角形などの多角形であってもよい。
 (3:蛍光体層)
 [蛍光体の材質]
 蛍光体層の構成は、前述の種々の発光モジュールに適用できるものであれば、特に限定されない。例えば、蛍光体を分散させた樹脂組成物やガラス組成物、蛍光セラミックが挙げられる。以下では、蛍光体の構成として好ましい幾つかの形態について例示する。
 白色LEDチップ間の輝度ムラ、色ムラを低減するためには、青色光と黄色光、または、赤色光と青色光と緑色光、の混合が重要になる。そのためには、蛍光体層内における蛍光体を均一に拡散(分散)させることが好ましい。そこで、以下の構成が挙げられる。
 (ア)粉体状蛍光体の粒子径(メディアン径)を20μm以下とする。
 (イ)UV励起の蛍光体を用いる。
 (ウ)蛍光体層に拡散剤としてシリカやアルミナ粒子を添加する。
 (エ)拡散剤として泡(ボイド)を入れる。
 (オ)YAG(ガーネット層)内にYAP(ペロブスカイト相)を混入させる。
 [蛍光体層の大きさ]
 図22は、区画された蛍光体層の大きさが場所によって異なっている状態を示す模式図である。蛍光体層154は、ホットゾーンを形成するLEDチップと対向している領域R(網点領域)における一つの区画156の大きさを、それ以外の領域における区画158よりも小さくしている。これにより、発光モジュールが形成する配光パターンにおけるホットゾーンの光度を上げることができる。
 [蛍光体層の形状]
 図23(a)~図23(g)は、蛍光体層の形状を説明するための概略断面図である。各図に示している発光モジュールにおいて、蛍光体層は、遮光のために遮光枠内に形成されている。なお、蛍光体層の製造には、形状や寸法の高精度な加工制御が重要である。そのため、蛍光体層は、板状の蛍光体が好ましい。これにより、蛍光体の加工が容易となる。特に、輝度を向上するための種々の表面加工(例えば凹凸の形成)が可能となる。
 図23(a)に示す蛍光体層160は、台形状である。図23(b)に示す蛍光体層162は、Y字形状である。図23(c)に示す蛍光体層166は、側面に反射部168が形成されている。図23(d)に示す蛍光体層170は、側面に遮光部172が形成されている。図23(e)に示す蛍光体層174は、台形状であり、側面および底面に波長選択性フィルタ176が形成されている。したがって、LEDチップ178から出射された光は、波長選択性フィルタ176により選択された波長の光が蛍光体層174に到達する。
 図23(f)に示す蛍光体層180は、出射面180aの上方に光拡散相182が設けられている。これにより、蛍光体層180から出射する光の輝度ムラを低減することができる。図23(g)に示す蛍光体層184は、入射面184aの下方に光拡散相186が設けられている。これにより、LEDチップ188から出射する光は、光拡散相186によって輝度ムラが低減されてから、蛍光体層184に入射する。なお、光拡散相と蛍光体層とは、接着剤を用いずに、熱圧着、常温接合などの方法で接合することが好ましい。これにより、光が接着剤層を通過する際の散乱や減衰を防止できるため、発光モジュール全体の光取り出し効率が向上する。
 [蛍光体層の配置]
 図24(a)~図24(f)は、発光モジュールにおける蛍光体層の配置を説明するための概略断面図である。蛍光体層は、輝度の向上や色ムラ抑制を考慮して、LEDチップと分離したり、レンズ、導光体、反射鏡などと組み合わせたりするために、種々の配置をとりうる。
 図24(a)に示す蛍光体層190は、LEDチップ192と離間した位置に配置されている。これにより、LEDチップ192や蛍光体層190の放熱性が向上し、発光モジュール全体の特性が改善する。また、蛍光体層190は、遮光枠194に囲まれており、LEDチップ192の発光面192aよりも面積の小さい出射面190aを有している。これにより、発光モジュールの輝度が向上する。
 図24(b)に示す蛍光体層196は、その出射面196aの前方にレンズ198が設けられている。これにより、蛍光体層196から出射した光を集光できる。図24(c)に示す蛍光体層200は、その中心200aがLEDチップ202の中心202aに対してずれるように設けられている。
 図24(d)に示す蛍光体層204は、導光体206の出射面206aの上方に配置されている。導光体の入射面206bは、LEDチップ208の発光面208aと対向している。このように、LEDチップ208が発する光が導光体206を通過してから蛍光体層204に入射することで光の照射範囲が規制される。これにより、複数のLEDチップ間の光漏れが抑制される。
 ここで、導光体206は、LEDチップが発する光を透過させることができる透光性(透明)材料を有する。透光性材料としては、例えば、透明な樹脂材料などの有機材料、透明な無機ガラスなどの無機材料、有機材料と無機材料との混合物、ゾル・ゲル材料、などが挙げられる。例えば、樹脂材料としては、アクリル樹脂、ポリカーボネート樹脂、エポキシ樹脂などが挙げられる。
 図24(e)に示す発光モジュールは、蛍光体層190とLEDチップ192との間にレンズ210が配置されている点に特徴がある。これにより、LEDチップ192が出射した光は、レンズ210で集光されてから蛍光体層190に入射する。図24(f)に示す発光モジュールは、反射鏡212を用いてLEDチップ192の下方へ向かう光を集束し、蛍光体層190へ向かわせている点に特徴がある。
 [蛍光体層の形成方法]
 図25(a)は、ポッティング法により区画毎に蛍光体層を作成した状態を示す模式図、図25(b)~図25(d)は、印刷法により一度に蛍光体層を作成した状態を示す模式図である。図25(b)は、印刷方向をLEDチップに対応する各区画の対角線の方向に沿って印刷した場合、図25(c)は、印刷方向をLEDチップに対応する各区画の縦辺の方向に沿って印刷した場合、図25(d)は、印刷方向をLEDチップに対応する各区画の横辺に沿って印刷した場合、を示している。
 図25(a)に示すように、蛍光体層214は、各LEDチップに対応するように区画された複数の蛍光体214aがマトリックス状に配置されている。蛍光体層214をポッティング法により区画毎に形成した場合、区画の各辺の内側に矩形のムラ214bが発生するため、目視で気になる。
 蛍光体層の形成方法としては、粉体蛍光体を樹脂と混合し、ペースト状にしたものを印刷によって形成する方法もある。そこで、図25(b)~図25(d)に示すように、印刷方向を一方向に揃えることにより、色ムラ214c~214eを一定方向に制御できる。
 (4:実装基板)
 [線膨張係数]
 発光モジュールは、1枚の実装基板上に多くのLEDチップを搭載する。そこで、発光モジュールの熱サイクル試験で実装基板にクラックを発生させないために、実装基板の線膨張係数をLEDチップの熱膨張係数の±5ppm/℃の範囲内に規定する。これにより、LEDチップの点消灯による繰り返しの温度変化で生じる接続信頼性の低下を抑制できる。なお、LEDチップがGaNの場合、その熱膨張係数は約7ppm/℃である。実装基板の主成分としては、アルミナ、AlN、Si、SiOなどが好適である。
 [熱伝導率]
 前述のように、発光モジュールは、1枚の実装基板上に多くのLEDチップを搭載する。そこで、実装基板の熱伝導率は、発光モジュールの他の性能に大きく影響しない範囲で、高くするとよい。また、ホットゾーンに対応する領域を照射するLEDチップが搭載される実装基板の部分は、それ以外の部分よりも熱伝導率の高い実装基板としてもよい。
 [実装基板の彫り込み]
 図26は、実装基板の一例を示す概略断面図である。発光モジュール216は、実装基板218と、実装基板218の各凹部218aに配置されたLEDチップ220と、LEDチップの上部に配置された蛍光体層222と、を備える。各凹部218aは、実装基板218を彫り込むことで形成されている。そのため、各凹部218aを囲むように遮光部218bが同時に形成される。このように、実装基板218を彫り込んで凹部218aを形成することで、遮光枠を別部材として基板上に配置する必要がなくなる。その結果、発光モジュールの組立て工数が低減され、コストダウンが可能となる。なお、実装基板の材料としては、例えば、シリコンを用いることができる。
 [配線パターン]
 図27は、両面配線の実装基板を示す模式図である。図27に示すように、LEDチップが3列以上の場合、両面配線の実装基板224を使用することが好ましい。図27に示すように、手前側の行にあるLEDチップ226aと接続されている配線228a、および、奥側の行にあるLEDチップ226cと接続されている配線228cは、実装基板224の表面224aに形成されている。一方、真ん中の行にあるLEDチップ226bと接続されている配線228bは、実装基板224の裏面224bに形成されている。これにより、基板面積を減らすことができる。
 [反射部]
 前述の反射部のうち、LEDチップの発光面より上方の光反射面以外は光を吸収する色(黒色など)にして迷光を抑えるとよい。
 (5:レンズ)
 [レンズの接合方法]
 図24(b)に示すように、レンズを蛍光体層に接合する場合がある。また、レンズをLEDチップに接合してもよい。このようなレンズは、LEDチップおよび蛍光体層から出射した光による光源像を、照射方向前方の仮想鉛直スクリーン上に投影するものであってもよい。この場合、有機系接着材を使用せずに接合することが好ましい。余分な層が増えると、層同士の界面で散乱や屈折が生じる可能性が高まるためである。そこで、レンズと蛍光体等とを、常温接合、界面活性化接合、陽極接合など種々の方法により、接着剤レスで接合する。これにより、LEDチップからの光または蛍光体層を通過した光がレンズとの界面で吸収・反射されにくくなり、発光モジュールから出射する光束が向上する。
 [陽極接合]
 基板や遮光枠がシリコン製であり、レンズに用いるガラスがアルカリ金属を含有している場合、基板や遮光枠とレンズとを陽極接合(500℃、500V程度の加熱、電圧を加えることにより、ガラス中のアルカリ金属をシリコン中に拡散させて接合する技術)ができる。これにより、発光モジュールの気密封止が可能となる。
 [線膨張係数]
 前述の陽極接合を行う場合、ガラスの線膨張係数をシリコンの線膨張係数である3ppm/℃に近づけることが好ましい。具体的には、レンズに用いるガラスとしては、線膨張係数が1~10ppm/℃の範囲にある材料が好ましい。
 [レンズアレイ]
 LEDチップがアレイ(マトリックス)状に配列されている上述の発光モジュールに、レンズアレイを搭載してもよい。レンズアレイは、各LEDチップに対応するレンズを一枚の板状の部材に複数形成したものである。このようなレンズアレイとしては、例えば、特表2006-520518に開示されている。本実施の形態に係る発光モジュールは、このようなレンズアレイを用いても、遮光部を備えているため光漏れが抑制される。なお、レンズアレイを樹脂による一体成形により作製しコストを低減してもよい。
 [CPCレンズ]
 レンズアレイの一種とし、CPCレンズを利用してもよい。これにより、個々の発光ユニット内の色ムラが解消できる。
 [レンズのぼかし]
 縦方向のみレンズにぼかしを入れてもよい。LEDアレイを全点灯させた時、発光ユニット(1つのLEDチップ+1つの蛍光体)間に生じる暗部が黒スジとして縦方向に投影されてしまうような場合、最終出射レンズである図1に示す投影レンズ24(PESレンズ)等の縦方向にぼかしを入れてもよい。
 また、横方向のみレンズにぼかしを入れてもよい。LEDアレイを全点灯させた時、発光ユニット間に生じる暗部が黒スジとして横方向に投影されてしまうような場合、図1に示す投影レンズ24の横方向にぼかしを入れてもよい。
 また、斜め方向のみレンズにぼかしを入れてもよい。LEDアレイを全点灯させた時、発光ユニット間に生じる暗部が黒スジとして斜め方向に投影されてしまうような場合、図1に示す投影レンズ24の斜め方向にぼかしを入れてもよい。なお、縦、横、斜め方向のぼかしを適宜組み合わせてもよい。
 [光ファイバアレイ]
 光ファイバアレイを用いて輝度ムラ、色ムラを低減してもよい。LEDチップ上もしくは蛍光体層上に光ファイバを束にした導光体層を設置することによって、輝度ムラ、色ムラを低減できる。
 [平板マイクロレンズ]
 平板マイクロレンズを設置してもよい。板状の透明体に高屈折率もしくは低屈折率成分を分布させることによって光学レンズを形成してもよい(GRINレンズ)。
 [空間充填]
 図1に示す車両用灯具10では、LEDチップ22aから出射した光は投影レンズ24に到達するまでに空気層を通過する。そのため、界面反射により光束の取り出し効率に改善の余地がある。そこで、このような空気層が介在しないような構成が好ましい。例えば、投影レンズ24と発光モジュール22との間をシリコーンゲルで充填するとよい。
 このように、レンズと発光モジュールの間にゲルなどを充填して光学的に接続しつつ、機械的には接着していない(密着)場合、発光モジュールをデザインの異なる車両用灯具(前照灯)に適用できる。
 [蛍光体レンズ]
 蛍光体自体をレンズ形状に加工し、LEDチップに搭載した発光モジュールとしてもよい。蛍光体が凸レンズ状なため、臨界角による光の閉じこめがなく、発光モジュール全体としての光束が向上する。
 (6:制御回路)
 [停車時の省電力化]
 車両は、信号待ち等で停車中の場合、路面を照射する必要はないが、他車から認知されるために点灯が必要であった。また、従来のバルブタイプの光源を用いた車両では、停車時にヘッドライトを消灯すると、バルブ寿命が短くなる問題があった。しかしながら、本実施の形態に係る発光モジュールでは、光源としてLEDを用いているため、点消灯による光源寿命への影響は少ない。そこで、安全性と省電力を両立するために、停車中は電流を低下または遮断する省電力モードを設定することが可能である。
 図1に示す車両用灯具10は、発光モジュール22と、発光モジュール22の点消灯を制御する制御回路(不図示)と、を備えている。制御回路は、車両用灯具が装着された車両が停車した状態を検出した場合、発光モジュールの点消灯状態を、走行時における照射モードよりも消費電力の低い停車モードとなるように制御する。これにより、運転者の操作を必要とせずに車両用灯具の省電力化を実現できる。
 [通信機能の付加]
 前述の制御回路は、発光モジュールのLEDの点消灯制御を行うことができる。LEDの点消灯速度は速いため、パルス点灯させることにより情報を発信することができる。そこで、制御回路は、ADB(Adaptive Driving Beam)用の点消灯制御機能だけでなく、車車間(自車と他車)および路車間(信号機と車等)の通信制御機能を備えてもよい。
 [衝突時のフラッシュ]
 近年、業務車両を中心にドライブレコーダの搭載が進んでいる。しかし、搭載されているカメラなどの撮像手段の性能は低く、特に夜間には光量不足により画像が不鮮明になることがある。そこで、車両用灯具10の制御回路は、衝突の瞬間を検知する検知手段からの情報に基づいて衝突の瞬間を検知した場合、発光モジュール22の光量を上げる。これにより、車両が備える撮像手段により鮮明に事故を記録できる。
 [点消灯時の制御]
 車両用灯具10におけるADBによる配光制御の場合、他車が出現したときには、他車が存在する領域を照射しているLEDチップを瞬時に消灯させないと他車へグレアを与えてしまう。一方、他車がいなくなった瞬間にそれまで消灯していたLEDチップを点灯した場合には、運転者に違和感を与える。そこで、制御回路は、それまで消灯していたLEDチップを点灯させる場合には、徐々に光量が増すようにLEDチップへの電流(電圧)を制御する。
 [スポットライト]
 ADBによる配光制御は、グレア防止のために複数のLEDチップの一部を部分的に消灯することが主な目的である。しかしながら、制御回路は、歩行者などを検出した場合には、ドライバに注意喚起するために、歩行者が存在する領域を照射するLEDチップの光量をスポット的に上げる制御を行ってもよい。
 以下、発光モジュールを実施例および比較例を用いて更に詳述する。はじめに、個々のLEDを調光できるように配線した窒化アルミ製の実装基板上に、大きさ1×1mm、発光ピーク波長450nmの青色LEDチップを4個搭載する。次に、シリコンを微細加工した遮光枠を搭載し、蛍光体層を実装してLEDパッケージ(以下、「発光モジュール」と称する。)を作製した。
 この発光モジュールをアルミダイキャスト製のヒートシンクに載せて、4個のLEDチップに700mAの電流を流して10分間安定させた。発光モジュールの光出射面の正面(発光モジュール上面)から、コニカミノルタ製の2次元色彩輝度計CA1500で輝度を測定し、発光モジュールの長手方向の輝度分布を測定した。ここで、長手方向は、各LEDチップの発光面のほぼ中心をつないだ方向である。
 その後、1個のLEDチップの電流を遮断して輝度分布を測定し、更に消灯部の輝度を測定した。消灯部の輝度が十分低く、遮光できている発光モジュールを焦点距離40mmのφ60の平凸レンズを備えた灯具に設置した。発光モジュールを点灯させて25m先のスクリーンへ投影して光度分布を測定した。その後、輝度測定と同じように1個のLEDの電流を遮断して、再度光度分布を測定した。対向車や先行車、歩行者にグレアを与えないためには、消灯したLEDチップに対応する領域の光度を625cd以下に保つ必要がある。
 (比較例1)
 図28(a)は、比較例1に係る発光モジュールの概略断面図、図28(b)は、比較例1に係る発光モジュールの輝度分布のグラフを示す図である。図28(b)において、曲線S1は、4個のLED全てが点灯している状態の輝度分布、曲線S2は、LEDチップを1個だけ消灯した状態の輝度分布、を示している。なお、以下の各実施例における輝度分布においても同様である。
 比較例1に係る発光モジュール300は、基板302と、基板302に搭載されている複数のLEDチップ304と、複数のLEDチップ304を覆う大きさの一枚のYAG焼結体からなる蛍光体層306と、基板302に保持され、蛍光体層306の外周部を支持する外枠308と、を備える。
 発光モジュール300においては、個々のLEDチップ304も蛍光体層306も、隣接する発光部分(発光面)を光学的に分離(遮光)するための構造物(構成)は有していない。そのため、LEDチップ1個を消灯しても、その部分の輝度(図28(b)に示す曲線S2の最低部分)は1.5cd/mmと遮光が不十分であった。
 (実施例1)
 図29(a)は、実施例1に係る発光モジュールの概略断面図、図29(b)は、実施例1に係る発光モジュールの輝度分布のグラフを示す図である。なお、実施例1に係る発光モジュールにおいて、比較例1と同じ構成については、同じ符号を付して説明を適宜省略する。
 発光モジュール310においては、LEDチップ304間には遮光する構造物は設置していない。一方、各蛍光体層312は、1個のLEDチップ304を覆う大きさのYAG焼結板からなり、その側面には銀ペースト314が塗布されている。これにより、隣接する蛍光体層312からの光が遮光される。その結果、LEDチップ1個を消灯すると、その部分の輝度(図29(b)に示す曲線S2の最低部分)が0.3cd/mmと大幅に輝度が低減し、遮光の効果が現れている。
 (実施例2)
 図30(a)は、実施例2に係る発光モジュールの概略断面図、図30(b)は、実施例2に係る発光モジュールの輝度分布のグラフを示す図である。なお、実施例2に係る発光モジュールにおいて、前述と同じ構成については、同じ符号を付して説明を適宜省略する。
 発光モジュール320においては、LEDチップ304間にシリコンを微細加工した三角枠321を設置して遮光した。これにより、隣接するLEDチップ304からの光が遮光される。一方、蛍光体層322は、1個のLEDチップ304を覆う大きさのYAG焼結板からなるが、その側面には何も塗布されていない。その結果、LEDチップ1個を消灯すると、その部分の輝度(図30(b)に示す曲線S2の最低部分)が0.6cd/mmと大幅に低減し、遮光の効果が現れている。
 そこで、灯具に発光モジュール320を組み込んで光度分布を測定したところ、LEDチップ1個を消灯したときの最低光度が500cdとなり、対向車や先行車、歩行者にグレアを与えるおそれのある625cdを下回っていることがわかった。実施例2の結果より、発光モジュールの消灯部の輝度が0.6cd/mm以下であれば、灯具に適用したときのグレアの発生を抑制できることがわかった。
 (実施例3)
 図31(a)は、実施例3に係る発光モジュールの概略断面図、図31(b)は、実施例3に係る発光モジュールの輝度分布のグラフを示す図である。なお、実施例3に係る発光モジュールにおいて、前述と同じ構成については、同じ符号を付して説明を適宜省略する。
 発光モジュール330においては、LEDチップ304間にシリコンを微細加工した三角枠321を設置して遮光した。これにより、隣接するLEDチップ304からの光が遮光される。一方、各蛍光体層312は、1個のLEDチップ304を覆う大きさのYAG焼結板からなり、その側面には銀ペースト314が塗布されている。これにより、隣接する蛍光体層312からの光が遮光される。このように、LEDチップ間と蛍光体層間を光学的に分離することによって、LEDチップ1個を消灯すると、その部分の輝度(図31(b)に示す曲線S2の最低部分)が0.3cd/mmと大幅に低減し、遮光の効果が現れている。
 (実施例4)
 図32(a)は、実施例4に係る発光モジュールの概略断面図、図32(b)は、実施例4に係る発光モジュールの輝度分布のグラフを示す図である。なお、実施例4に係る発光モジュールにおいて、前述と同じ構成については、同じ符号を付して説明を適宜省略する。
 発光モジュール340においては、LEDチップ304間にシリコンを微細加工した三角枠342を設置して遮光した。これにより、隣接するLEDチップ304からの光が遮光される。三角枠342は、その頂点が蛍光体層344の表面近傍まで達している。各蛍光体層344は、1個のLEDチップ304を覆う大きさのYAG焼結板からなる。これにより、隣接する蛍光体層344からの光が遮光される。このように、LEDチップ間と蛍光体層間を光学的に分離することによって、LEDチップ1個を消灯すると、その部分の輝度(図32(b)に示す曲線S2の最低部分)が0cd/mmと大幅に低減し、遮光の効果が現れている。
 そこで、灯具に発光モジュール340を組み込んで光度分布を測定したところ、LEDチップ1個を消灯したときの最低光度が300cdとなり、対向車や先行車、歩行者にグレアを与えるおそれのある625cdを下回っていることが確認された。
 (実施例5)
 図33(a)は、実施例5に係る発光モジュールの概略断面図、図33(b)は、実施例5に係る発光モジュールの輝度分布のグラフを示す図である。図33(b)においては、4個のLED全てが点灯している状態の輝度分布(曲線S1)のみを示している。なお、実施例5に係る発光モジュールにおいて、前述と同じ構成については、同じ符号を付して説明を適宜省略する。
 発光モジュール350においては、LEDチップ304間にシリコンを微細加工した三角枠342を設置して遮光した。これにより、隣接するLEDチップ304からの光が遮光される。三角枠342は、その頂点が蛍光体層352の表面から露出している。蛍光体層352は、YAG粉体をジメチルシリコーン樹脂に12体積%混合したペーストを、LEDチップ304上にスキージで印刷することで形成されている。その際、三角枠342の先端が露出するように調整した。これにより、隣接する蛍光体層352からの光が遮光される。このように、LEDチップ間と蛍光体層間を光学的に分離することによって、LEDチップ1個を消灯すると、その部分の輝度が0cd/mmと大幅に低減し、遮光の効果が現れている。
 そこで、灯具に発光モジュール340を組み込んで光度分布を測定したところ、LEDチップ1個を消灯したときの最低光度が300cd以下となり、対向車や先行車、歩行者にグレアを与えるおそれのある625cdを下回っていることが確認された。
 (実施例6)
 図34(a)は、実施例6に係る発光モジュールの概略断面図、図34(b)は、実施例6に係る発光モジュールの輝度分布のグラフを示す図である。図34(b)においては、4個のLED全てが点灯している状態の輝度分布(曲線S1)のみを示している。なお、実施例6に係る発光モジュールにおいて、前述と同じ構成については、同じ符号を付して説明を適宜省略する。
 発光モジュール360においては、LEDチップ304間にシリコンを微細加工した垂直枠362を設置して遮光した。垂直枠362は、その側面が基板302の表面に対してほぼ垂直に設けられている。これにより、実施例5と同様の作用効果が得られた。
 (実施例7)
 図35(a)は、実施例7に係る発光モジュールの概略断面図、図35(b)は、実施例7に係る発光モジュールの輝度分布のグラフを示す図である。図35(b)においては、4個のLED全てが点灯している状態の輝度分布(曲線S1)のみを示している。なお、実施例7に係る発光モジュールにおいて、前述と同じ構成については、同じ符号を付して説明を適宜省略する。
 発光モジュール370においては、LEDチップ304間にシリコンを微細加工した枠372を設置して遮光した。枠372は、基板302に近い側(図35(a)に示す下部)の側面が基板302の表面に対してほぼ垂直に設けられているとともに、蛍光体層352の表面に近い側(図35(a)に示す上部)の側面が基板302の表面に対して斜めに設けられている。これにより、実施例5と同様の作用効果が得られた。
 (実施例8)
 図36(a)は、実施例8に係る発光モジュールの概略断面図、図36(b)は、実施例8に係る発光モジュールの輝度分布のグラフを示す図である。図36(b)においては、4個のLED全てが点灯している状態の輝度分布(曲線S1)のみを示している。なお、実施例8に係る発光モジュールにおいて、前述と同じ構成については、同じ符号を付して説明を適宜省略する。
 発光モジュール380においては、LEDチップ304間にシリコンを微細加工した枠372を設置して遮光した。LEDチップ304上には枠372の形状に沿って切断したYAG焼結板からなる蛍光体層382を搭載した。YAG焼結板は、蛍光領域の波長(600nm)の直線光が入射されたときに40%以上の光が拡散光として出射するものが好ましい。
 このように構成した発光モジュール380の輝度分布、光度分布を測定したところ、LEDチップ間の暗部(輝度低下部)が非常に少なく、LEDチップ面内の輝度分布の変化も少なく、全LEDを点灯したときの均一感が著しく向上した。
 以上、本発明を上述の実施の形態や各実施例を参照して説明したが、本発明は上述の実施の形態や実施例に限定されるものではなく、実施の形態や実施例の構成を適宜組み合わせたものや置換したものについても本発明に含まれるものである。また、当業者の知識に基づいて実施の形態や各実施例における組合せや処理の順番を適宜組み替えることや各種の設計変更等の変形を実施の形態や各実施例に対して加えることも可能であり、そのような変形が加えられた実施の形態も本発明の範囲に含まれうる。
 10 車両用灯具、 12 灯具ボディ、 14 透光カバー、 18 灯具ユニット、 22 発光モジュール、 22a LEDチップ、 24 投影レンズ、 50 発光モジュール、 54 基板、 56a 発光面、 58 蛍光体層、 60a 遮光部、 64 LEDチップ。
 本発明の発光モジュールは、種々の灯具、例えば照明用灯具、ディスプレイ、車両用灯具、信号機等に利用することができる。

Claims (7)

  1.  基板と、
     前記基板に搭載され、マトリックス状に配列されている複数の発光素子と、
     前記発光素子の発光面に対向するように設けられている蛍光部材と、
     前記複数の発光素子のうち少なくとも一部の発光素子の発光面の周囲を囲むように設けられている遮光部と、
     を備えていることを特徴とする発光モジュール。
  2.  前記複数の発光素子は、点灯時の光度が相対的に高い第1の発光素子と、点灯時の光度が相対的に低い第2の発光素子とを有し、
     前記遮光部は、主として前記第1の発光素子と該第1の発光素子と隣接する発光素子との間に設けられていることを特徴とする請求項1に記載の発光モジュール。
  3.  前記発光素子は、フリップチップ型の素子であることを特徴とする請求項1または2に記載の発光モジュール。
  4.  前記蛍光部材は、板状の蛍光体であることを特徴とする請求項1乃至3のいずれか1項に記載の発光モジュール。
  5.  前記基板は、熱膨張係数が前記発光素子の熱膨張係数の±5ppm/℃の範囲内であることを特徴とする請求項1乃至4のいずれか1項に記載の発光モジュール。
  6.  発光素子および蛍光部材から出射した光による光源像を、照射方向前方の仮想鉛直スクリーン上に投影するレンズを更に備え、
     前記レンズは、前記発光素子または前記蛍光部材に直接接合されている、
     ことを特徴とする請求項1乃至5のいずれか1項に記載の発光モジュール。
  7.  請求項1乃至6のいずれか1項に記載の発光モジュールと、
     前記発光モジュールの点消灯を制御する制御回路と、を備えた車両用灯具であって、
     前記制御回路は、車両用灯具が装着された車両が停車した状態を検出した場合、前記発光モジュールの点消灯状態を、走行時における照射モードよりも消費電力の低い停車モードとなるように制御する、
     ことを特徴とする車両用灯具。
PCT/JP2012/000904 2011-02-15 2012-02-10 発光モジュールおよび車両用灯具 WO2012111292A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020137024330A KR20130124569A (ko) 2011-02-15 2012-02-10 발광 모듈 및 차량용 등기구
EP12747074.8A EP2677232A4 (en) 2011-02-15 2012-02-10 Light emitting module and lighting device for vehicle
CN201280008951.2A CN103392093B (zh) 2011-02-15 2012-02-10 发光模块及车辆用灯具
US13/967,061 US20130329440A1 (en) 2011-02-15 2013-08-14 Light-emitting module and automotive lamp

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-030123 2011-02-15
JP2011030123A JP2012169189A (ja) 2011-02-15 2011-02-15 発光モジュールおよび車両用灯具

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/967,061 Continuation US20130329440A1 (en) 2011-02-15 2013-08-14 Light-emitting module and automotive lamp

Publications (1)

Publication Number Publication Date
WO2012111292A1 true WO2012111292A1 (ja) 2012-08-23

Family

ID=46672239

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/000904 WO2012111292A1 (ja) 2011-02-15 2012-02-10 発光モジュールおよび車両用灯具

Country Status (6)

Country Link
US (1) US20130329440A1 (ja)
EP (1) EP2677232A4 (ja)
JP (1) JP2012169189A (ja)
KR (1) KR20130124569A (ja)
CN (1) CN103392093B (ja)
WO (1) WO2012111292A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103199179A (zh) * 2013-04-18 2013-07-10 苏州东山精密制造股份有限公司 一种led光源及其封胶方法
WO2014191530A1 (fr) * 2013-05-30 2014-12-04 Valeo Vision Module d'éclairage pour projecteur de véhicule automobile, projecteur équipé de tels modules, et ensemble de projecteurs
CN104276077A (zh) * 2013-07-03 2015-01-14 斯坦雷电气株式会社 光源装置、车辆用前照灯、车辆用前照灯系统
US20150136306A1 (en) * 2013-11-18 2015-05-21 Nichia Corporation Method for manufacturing light distribution member, and method for manufacturing light emitting device
JP2015174541A (ja) * 2014-03-14 2015-10-05 株式会社デンソー 車載装置
WO2018030411A1 (ja) * 2016-08-08 2018-02-15 市光工業株式会社 車両用灯具
US10338459B2 (en) 2015-05-15 2019-07-02 Sony Corporation Light converter and light source unit, and projector
US11050007B2 (en) 2018-09-28 2021-06-29 Nichia Corporation Light emitting device

Families Citing this family (123)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0626717B2 (ja) * 1989-08-04 1994-04-13 孝一 遠藤 表示板の製造方法
FR2973475B1 (fr) * 2011-03-30 2018-05-25 Gb Developpement Module d'eclairage, a homogeneite d'eclairage amelioree.
EP3056385B1 (en) 2011-09-01 2018-06-06 Koito Manufacturing Co., Ltd. Automotive headlamp apparatus
JP5915063B2 (ja) * 2011-09-29 2016-05-11 カシオ計算機株式会社 蛍光体デバイス、照明装置及びプロジェクタ装置
JP6192897B2 (ja) 2012-04-11 2017-09-06 サターン ライセンシング エルエルシーSaturn Licensing LLC 発光装置、表示装置および照明装置
PT2858269T (pt) 2012-05-24 2018-05-28 Panasonic Ip Corp America Método de comunicação de informações
US8988574B2 (en) 2012-12-27 2015-03-24 Panasonic Intellectual Property Corporation Of America Information communication method for obtaining information using bright line image
US9088360B2 (en) 2012-12-27 2015-07-21 Panasonic Intellectual Property Corporation Of America Information communication method
US9087349B2 (en) 2012-12-27 2015-07-21 Panasonic Intellectual Property Corporation Of America Information communication method
EP2940889B1 (en) 2012-12-27 2019-07-31 Panasonic Intellectual Property Corporation of America Visible-light-communication-signal display method and display device
US10951310B2 (en) 2012-12-27 2021-03-16 Panasonic Intellectual Property Corporation Of America Communication method, communication device, and transmitter
US9560284B2 (en) 2012-12-27 2017-01-31 Panasonic Intellectual Property Corporation Of America Information communication method for obtaining information specified by striped pattern of bright lines
US9252878B2 (en) 2012-12-27 2016-02-02 Panasonic Intellectual Property Corporation Of America Information communication method
JP6328060B2 (ja) 2012-12-27 2018-05-23 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカPanasonic Intellectual Property Corporation of America 表示方法
US9608727B2 (en) 2012-12-27 2017-03-28 Panasonic Intellectual Property Corporation Of America Switched pixel visible light transmitting method, apparatus and program
US10530486B2 (en) 2012-12-27 2020-01-07 Panasonic Intellectual Property Corporation Of America Transmitting method, transmitting apparatus, and program
US10523876B2 (en) 2012-12-27 2019-12-31 Panasonic Intellectual Property Corporation Of America Information communication method
US9608725B2 (en) 2012-12-27 2017-03-28 Panasonic Intellectual Property Corporation Of America Information processing program, reception program, and information processing apparatus
CN104956609B (zh) 2012-12-27 2017-11-24 松下电器(美国)知识产权公司 信息通信方法和信息通信装置
US9008352B2 (en) 2012-12-27 2015-04-14 Panasonic Intellectual Property Corporation Of America Video display method
SG11201400469SA (en) 2012-12-27 2014-06-27 Panasonic Corp Information communication method
US10303945B2 (en) 2012-12-27 2019-05-28 Panasonic Intellectual Property Corporation Of America Display method and display apparatus
US8922666B2 (en) 2012-12-27 2014-12-30 Panasonic Intellectual Property Corporation Of America Information communication method
KR102003001B1 (ko) * 2013-03-13 2019-07-23 엘지이노텍 주식회사 발광 모듈
DE102013104132A1 (de) * 2013-04-24 2014-10-30 Osram Opto Semiconductors Gmbh Optoelektronischer Halbleiterchip und optoelektronisches Halbleiterbauteil
EP2999014B1 (en) * 2013-05-13 2020-01-22 Seoul Semiconductor Co., Ltd. Manufacturing method of light-emitting device package
JP6186904B2 (ja) * 2013-06-05 2017-08-30 日亜化学工業株式会社 発光装置
US20150021634A1 (en) * 2013-07-22 2015-01-22 Rohm Co., Ltd. Display unit using led light sources
JP2015023221A (ja) * 2013-07-22 2015-02-02 ローム株式会社 表示装置
JP6162543B2 (ja) * 2013-08-23 2017-07-12 スタンレー電気株式会社 車両用前照灯
WO2015075937A1 (ja) 2013-11-22 2015-05-28 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ 情報処理プログラム、受信プログラムおよび情報処理装置
JP6888650B2 (ja) * 2013-12-13 2021-06-16 日亜化学工業株式会社 発光装置
JP2015207754A (ja) * 2013-12-13 2015-11-19 日亜化学工業株式会社 発光装置
WO2015135839A1 (en) * 2014-03-10 2015-09-17 Osram Opto Semiconductors Gmbh Wavelength conversion element, light-emitting semiconductor component comprising a wavelength conversion element, method for producing a wavelength conversion element and method for producing a light-emitting semiconductor component comprising a wavelength conversion element
JP6477001B2 (ja) 2014-03-14 2019-03-06 日亜化学工業株式会社 発光装置及び発光装置の製造方法
US9620436B2 (en) * 2014-04-09 2017-04-11 Invensas Corporation Light emitting diode device with reconstituted LED components on substrate
DE102014105734A1 (de) * 2014-04-23 2015-10-29 Osram Opto Semiconductors Gmbh Optoelektronisches Halbleiterbauteil und Verfahren zur Herstellung eines optoelektronischen Halbleiterbauteils
WO2016009061A1 (en) * 2014-07-18 2016-01-21 Koninklijke Philips N.V. Led light source for automotive application
WO2016051895A1 (ja) * 2014-09-30 2016-04-07 シャープ株式会社 波長変換部材、発光装置、照明装置、および車両用前照灯
CN104325924A (zh) * 2014-10-12 2015-02-04 郭和友 单个换光集成变光led车用大灯
JP6511766B2 (ja) * 2014-10-15 2019-05-15 日亜化学工業株式会社 発光装置
JP6547548B2 (ja) * 2014-10-31 2019-07-24 日亜化学工業株式会社 発光装置及び配光可変ヘッドランプシステム
BR102015027316B1 (pt) 2014-10-31 2021-07-27 Nichia Corporation Dispositivo emissor de luz e sistema de lâmpada frontal de farol de acionamento adaptativo
EP3220558B1 (en) 2014-11-14 2019-03-06 Panasonic Intellectual Property Corporation of America Reproduction method, reproduction device and program
KR102288384B1 (ko) * 2014-11-18 2021-08-11 서울반도체 주식회사 발광 장치
KR102306802B1 (ko) * 2014-11-18 2021-09-30 서울반도체 주식회사 발광 장치
CN107210344B (zh) * 2014-11-18 2020-05-15 首尔半导体株式会社 发光装置及包括该发光装置的车辆用照明灯
JP6486078B2 (ja) * 2014-11-21 2019-03-20 スタンレー電気株式会社 発光装置
DE102015101573A1 (de) * 2015-02-04 2016-08-04 Osram Opto Semiconductors Gmbh Konversionselement und optoelektronisches Bauelement
RU2704054C2 (ru) * 2015-04-17 2019-10-23 ФОРД ГЛОУБАЛ ТЕКНОЛОДЖИЗ, ЭлЭлСи Молдинг с подсветкой для транспортного средства
JP6668608B2 (ja) * 2015-04-27 2020-03-18 日亜化学工業株式会社 発光装置の製造方法
RU2699965C2 (ru) * 2015-04-27 2019-09-11 ФОРД ГЛОУБАЛ ТЕКНОЛОДЖИЗ, ЭлЭлСи Вырабатывающий свет узел для транспортного средства (варианты)
US10415795B2 (en) 2015-05-15 2019-09-17 Nichia Corporation Method of manufacturing light distribution member with shielded individual transmissive pieces and light-shielding frame, method of manufacturing light emitting device having light distribution member, light distribution member, and light emitting device
JP6537891B2 (ja) * 2015-05-25 2019-07-03 スタンレー電気株式会社 発光装置及びその製造方法
US9761773B2 (en) 2015-06-18 2017-09-12 Nichia Corporation Light emitting device
JP6643831B2 (ja) * 2015-08-31 2020-02-12 シチズン電子株式会社 発光装置
JP6327220B2 (ja) 2015-08-31 2018-05-23 日亜化学工業株式会社 発光装置
KR20180080124A (ko) 2015-11-06 2018-07-11 파나소닉 인텔렉츄얼 프로퍼티 코포레이션 오브 아메리카 가시광 신호의 생성 방법, 신호 생성 장치 및 프로그램
CN107466477B (zh) 2015-11-12 2021-08-10 松下电器(美国)知识产权公司 显示方法、计算机可读取记录介质以及显示装置
WO2017082184A1 (ja) 2015-11-12 2017-05-18 株式会社小糸製作所 光源モジュールおよび車両用灯具
CN108291701A (zh) * 2015-11-20 2018-07-17 株式会社小糸制作所 灯具单元
JP6782539B2 (ja) * 2015-11-24 2020-11-11 スタンレー電気株式会社 発光装置
WO2017104666A1 (ja) 2015-12-17 2017-06-22 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ 表示方法および表示装置
KR102476137B1 (ko) 2016-02-25 2022-12-12 삼성전자주식회사 발광소자 패키지의 제조 방법
JP6711021B2 (ja) 2016-03-02 2020-06-17 日亜化学工業株式会社 発光装置及びその製造方法
JP6940740B2 (ja) * 2016-05-06 2021-09-29 日亜化学工業株式会社 発光装置の製造方法
JP6788375B2 (ja) * 2016-05-11 2020-11-25 スタンレー電気株式会社 発光装置および照明装置
JP2017204577A (ja) * 2016-05-12 2017-11-16 スタンレー電気株式会社 面発光レーザ装置
JP6741467B2 (ja) * 2016-05-12 2020-08-19 株式会社小糸製作所 車両用灯具
DE102016109040A1 (de) * 2016-05-17 2017-11-23 Osram Opto Semiconductors Gmbh Modul für eine videowand mit einer folie
JP6924559B2 (ja) * 2016-05-25 2021-08-25 スタンレー電気株式会社 発光ダイオード装置
FR3053439B1 (fr) * 2016-07-01 2018-08-10 Valeo Vision Dispositif lumineux apte a generer une source a pixels fins
JP6428730B2 (ja) * 2016-08-24 2018-11-28 日亜化学工業株式会社 発光装置
DE102016216624A1 (de) * 2016-09-02 2018-03-08 Osram Gmbh Modul und beleuchtungssystem
DE102016220915A1 (de) * 2016-10-25 2018-04-26 Osram Opto Semiconductors Gmbh Verfahren zur Herstellung von optoelektronischen Halbleiterbauteilen und optoelektronisches Halbleiterbauteil
FR3058500B1 (fr) * 2016-11-09 2019-08-02 Valeo Vision Source de lumiere a semi-conducteur et dispositif lumineux pour vehicule automobile comportant une telle source
JP6769248B2 (ja) 2016-11-09 2020-10-14 日亜化学工業株式会社 発光装置
CN110114988B (zh) 2016-11-10 2021-09-07 松下电器(美国)知识产权公司 发送方法、发送装置及记录介质
CN110073490B (zh) 2016-12-21 2023-01-03 亮锐控股有限公司 Led的对准布置
JP6662322B2 (ja) * 2017-02-09 2020-03-11 日亜化学工業株式会社 発光装置
JP2018205651A (ja) * 2017-06-09 2018-12-27 株式会社小糸製作所 耐熱入射部を備えたライトガイド
KR101989099B1 (ko) * 2017-06-14 2019-06-13 엘지전자 주식회사 차량용 램프 및 차량
JP6939133B2 (ja) 2017-06-22 2021-09-22 豊田合成株式会社 発光装置
FR3068111B1 (fr) * 2017-06-23 2020-09-04 Valeo Vision Module lumineux pour vehicule automobile
JP6941503B2 (ja) * 2017-08-24 2021-09-29 スタンレー電気株式会社 車両用前照灯システム
US10790267B2 (en) * 2017-08-28 2020-09-29 Lumens Co., Ltd. Light emitting element for pixel and LED display module
JP6806023B2 (ja) * 2017-09-29 2020-12-23 日亜化学工業株式会社 発光装置
DE102017124307A1 (de) * 2017-10-18 2019-04-18 Osram Opto Semiconductors Gmbh Optoelektronischer Halbleiterchip und Verfahren zur Herstellung eines optoelektronischen Halbleiterchips
CN108237965A (zh) * 2017-12-06 2018-07-03 天长市天新电子实业有限公司 一种智能化车载led灯调控方法
US11557703B2 (en) 2017-12-21 2023-01-17 Lumileds Llc Light intensity adaptive LED sidewalls
JP7011302B2 (ja) * 2017-12-25 2022-01-26 丸茂電機株式会社 Led光源装置、led光源装置の製造方法およびスポットライト
CN107968101A (zh) * 2017-12-26 2018-04-27 上海得倍电子技术有限公司 一种高清led显示屏模组结构及其制造方法
JP7042615B2 (ja) * 2017-12-28 2022-03-28 スタンレー電気株式会社 車両用前照灯
KR102006188B1 (ko) * 2017-12-29 2019-08-01 엘지전자 주식회사 반도체 발광 소자를 이용한 차량용 램프 및 그 제어방법
CN107940392A (zh) * 2017-12-29 2018-04-20 帝欧(上海)光电科技有限公司 Led光学透镜模组和矩阵大灯
CN108253373A (zh) * 2018-01-05 2018-07-06 张轹冰 一种自适应照明的阵列式激光车灯
DE102018106035A1 (de) * 2018-03-15 2019-09-19 HELLA GmbH & Co. KGaA Beleuchtungsvorrichtung für Fahrzeuge
CN108426232A (zh) * 2018-04-24 2018-08-21 华域视觉科技(上海)有限公司 基于变折射率透镜的光源组件、车灯总成及汽车
JP7133973B2 (ja) * 2018-05-10 2022-09-09 スタンレー電気株式会社 半導体発光装置
US10998297B1 (en) * 2018-05-15 2021-05-04 Facebook Technologies, Llc Nano-porous metal interconnect for light sources
JP7177336B2 (ja) * 2018-07-20 2022-11-24 日亜化学工業株式会社 発光装置
EP3608959B1 (en) * 2018-08-06 2023-11-15 Nichia Corporation Light emitting device and method for manufacturing same
JP6989782B2 (ja) * 2018-08-06 2022-02-03 日亜化学工業株式会社 発光装置及びその製造方法
JP7305970B2 (ja) * 2019-01-28 2023-07-11 市光工業株式会社 車両用前照灯
JP7243330B2 (ja) * 2019-03-15 2023-03-22 市光工業株式会社 発光素子及び車両用灯具、並びに発光素子の製造方法
FR3095494B1 (fr) * 2019-04-26 2021-09-10 Psa Automobiles Sa Dispositif d’éclairage adaptatif pour projecteur de véhicule
JP7267836B2 (ja) * 2019-05-16 2023-05-02 スタンレー電気株式会社 発光装置
JP7484457B2 (ja) * 2019-06-12 2024-05-16 東レ株式会社 マイクロledディスプレイ装置
JP7372526B2 (ja) * 2019-09-24 2023-11-01 日亜化学工業株式会社 発光装置の製造方法及び発光モジュールの製造方法
JP7385444B2 (ja) * 2019-11-25 2023-11-22 株式会社小糸製作所 光源ユニット、及びそれを備えた車両用灯具
KR20210081475A (ko) 2019-12-23 2021-07-02 서울반도체 주식회사 헤드 램프 장치
TWI720785B (zh) * 2020-01-15 2021-03-01 東貝光電科技股份有限公司 微型led發光裝置及其製造方法
JPWO2022025031A1 (ja) 2020-07-31 2022-02-03
CN112993133B (zh) * 2020-10-22 2022-07-22 重庆康佳光电技术研究院有限公司 显示装置及其制作方法
JP7328557B2 (ja) 2020-11-30 2023-08-17 日亜化学工業株式会社 光源、光源装置および光源の製造方法
JP7044990B2 (ja) * 2020-12-03 2022-03-31 日亜化学工業株式会社 発光装置
JP7381911B2 (ja) * 2021-09-28 2023-11-16 日亜化学工業株式会社 光源及び発光モジュール
KR102533685B1 (ko) * 2022-02-25 2023-05-17 주식회사 씨티랩 광원장치
JP2023151025A (ja) * 2022-03-31 2023-10-16 市光工業株式会社 発光装置及び車両用前照灯
JP7531090B2 (ja) 2022-04-28 2024-08-09 日亜化学工業株式会社 発光装置及び発光モジュール
DE102022130786B4 (de) 2022-11-22 2024-07-25 Marelli Automotive Lighting Reutlingen (Germany) GmbH Beleuchtungseinrichtung für ein Kraftfahrzeug
WO2024128323A1 (ja) * 2022-12-16 2024-06-20 スタンレー電気株式会社 照明装置
WO2024181337A1 (ja) * 2023-02-27 2024-09-06 日亜化学工業株式会社 車両用灯具、および車両

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004276738A (ja) * 2003-03-14 2004-10-07 Koito Mfg Co Ltd 車両用灯具
JP2005183327A (ja) * 2003-12-24 2005-07-07 Stanley Electric Co Ltd 車両前照灯
JP2005203499A (ja) * 2004-01-14 2005-07-28 Casio Comput Co Ltd 発光ダイオード及びそれを用いた測距用光源及び測距装置
JP2008135227A (ja) * 2006-11-27 2008-06-12 Shinko Electric Ind Co Ltd 照明装置
JP2009193953A (ja) * 2008-12-19 2009-08-27 Stanley Electric Co Ltd 車両前照灯用光源装置
JP2010003946A (ja) * 2008-06-23 2010-01-07 Zeniya Sangyo Kk 発光素子用パッケージ及び発光素子の製造方法
JP2010114095A (ja) * 2010-02-05 2010-05-20 Stanley Electric Co Ltd 光源モジュールおよび該光源モジュールを具備する灯具
JP2010287777A (ja) * 2009-06-12 2010-12-24 Koito Mfg Co Ltd 発光モジュールおよび車両用前照灯

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5473306A (en) * 1994-10-24 1995-12-05 Adell; Robert Motor vehicle lighting system
JP2000294894A (ja) * 1998-12-21 2000-10-20 Seiko Epson Corp 回路基板およびその製造方法ならびに回路基板を用いた表示装置および電子機器
JP2000082849A (ja) * 1999-09-27 2000-03-21 Toshiba Corp 半導体発光素子、半導体発光装置およびその製造方法
JP2003317971A (ja) * 2002-04-26 2003-11-07 Semiconductor Energy Lab Co Ltd 発光装置およびその作製方法
JP4314911B2 (ja) * 2003-08-20 2009-08-19 スタンレー電気株式会社 車両前照灯
US20080081105A1 (en) * 2003-09-22 2008-04-03 Samsung Sdi Co., Ltd. Method of fabricating full color organic light-emtting device having color modulation layer using liti method
JP4526256B2 (ja) * 2003-10-17 2010-08-18 スタンレー電気株式会社 光源モジュールおよび該光源モジュールを具備する灯具
JP4667803B2 (ja) * 2004-09-14 2011-04-13 日亜化学工業株式会社 発光装置
JP2007030739A (ja) * 2005-07-28 2007-02-08 Fujitsu Ten Ltd 車載灯具制御装置および車載灯具制御方法
JP4812543B2 (ja) * 2006-06-28 2011-11-09 株式会社小糸製作所 車両用灯具
JP2009134965A (ja) * 2007-11-29 2009-06-18 Stanley Electric Co Ltd 照明装置及び照明装置の製造方法
EP2068068B1 (en) * 2007-12-07 2013-11-20 Stanley Electric Co., Ltd. Vehicle headlamp
JP2010000957A (ja) * 2008-06-20 2010-01-07 Koito Mfg Co Ltd 車両用前照灯装置
US8957428B2 (en) * 2008-09-25 2015-02-17 Koninklijke Philips N.V. Coated light emitting device and method for coating thereof
US8342720B2 (en) * 2008-10-10 2013-01-01 Stanley Electric Co., Ltd. Vehicle light and road illumination device
JP2010161139A (ja) * 2009-01-07 2010-07-22 Toshiba Corp 発光装置
US20100301359A1 (en) * 2009-05-26 2010-12-02 Ming-Hsiung Liu Light Emitting Diode Package Structure
JP2011040495A (ja) * 2009-08-07 2011-02-24 Koito Mfg Co Ltd 発光モジュール
JP2011108588A (ja) * 2009-11-20 2011-06-02 Koito Mfg Co Ltd 発光モジュールおよび車両用灯具
JP2011204376A (ja) * 2010-03-24 2011-10-13 Stanley Electric Co Ltd 半導体発光装置
JP4945658B2 (ja) * 2010-05-17 2012-06-06 スタンレー電気株式会社 車両用前照灯

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004276738A (ja) * 2003-03-14 2004-10-07 Koito Mfg Co Ltd 車両用灯具
JP2005183327A (ja) * 2003-12-24 2005-07-07 Stanley Electric Co Ltd 車両前照灯
JP2005203499A (ja) * 2004-01-14 2005-07-28 Casio Comput Co Ltd 発光ダイオード及びそれを用いた測距用光源及び測距装置
JP2008135227A (ja) * 2006-11-27 2008-06-12 Shinko Electric Ind Co Ltd 照明装置
JP2010003946A (ja) * 2008-06-23 2010-01-07 Zeniya Sangyo Kk 発光素子用パッケージ及び発光素子の製造方法
JP2009193953A (ja) * 2008-12-19 2009-08-27 Stanley Electric Co Ltd 車両前照灯用光源装置
JP2010287777A (ja) * 2009-06-12 2010-12-24 Koito Mfg Co Ltd 発光モジュールおよび車両用前照灯
JP2010114095A (ja) * 2010-02-05 2010-05-20 Stanley Electric Co Ltd 光源モジュールおよび該光源モジュールを具備する灯具

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2677232A4 *

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103199179A (zh) * 2013-04-18 2013-07-10 苏州东山精密制造股份有限公司 一种led光源及其封胶方法
WO2014191530A1 (fr) * 2013-05-30 2014-12-04 Valeo Vision Module d'éclairage pour projecteur de véhicule automobile, projecteur équipé de tels modules, et ensemble de projecteurs
FR3006421A1 (fr) * 2013-05-30 2014-12-05 Valeo Vision Module d'eclairage pour projecteur de vehicule automobile, projecteur equipe de tels modules, et ensemble de projecteurs
CN105263755A (zh) * 2013-05-30 2016-01-20 法雷奥照明公司 用于机动车辆前照灯的照明模块、配备有这种模块的前照灯以及前照灯组件
CN104276077B (zh) * 2013-07-03 2018-04-24 斯坦雷电气株式会社 光源装置、车辆用前照灯、车辆用前照灯系统
CN104276077A (zh) * 2013-07-03 2015-01-14 斯坦雷电气株式会社 光源装置、车辆用前照灯、车辆用前照灯系统
US20150136306A1 (en) * 2013-11-18 2015-05-21 Nichia Corporation Method for manufacturing light distribution member, and method for manufacturing light emitting device
JP2015099816A (ja) * 2013-11-18 2015-05-28 日亜化学工業株式会社 配光部材の製造方法及び発光装置の製造方法
US9744754B2 (en) 2013-11-18 2017-08-29 Nichia Corporation Method for manufacturing light distribution member, and method for manufacturing light emitting device
JP2015174541A (ja) * 2014-03-14 2015-10-05 株式会社デンソー 車載装置
US10338459B2 (en) 2015-05-15 2019-07-02 Sony Corporation Light converter and light source unit, and projector
US10775687B2 (en) 2015-05-15 2020-09-15 Sony Corporation Light converter and light source unit, and projector
JP2018026206A (ja) * 2016-08-08 2018-02-15 市光工業株式会社 車両用灯具
WO2018030411A1 (ja) * 2016-08-08 2018-02-15 市光工業株式会社 車両用灯具
US11050007B2 (en) 2018-09-28 2021-06-29 Nichia Corporation Light emitting device

Also Published As

Publication number Publication date
CN103392093A (zh) 2013-11-13
JP2012169189A (ja) 2012-09-06
EP2677232A4 (en) 2018-04-04
US20130329440A1 (en) 2013-12-12
KR20130124569A (ko) 2013-11-14
CN103392093B (zh) 2016-05-04
EP2677232A1 (en) 2013-12-25

Similar Documents

Publication Publication Date Title
WO2012111292A1 (ja) 発光モジュールおよび車両用灯具
JP2015149307A (ja) 発光モジュールおよび車両用灯具
JP7072037B2 (ja) 光源装置及び照明装置
JP4140042B2 (ja) 蛍光体を用いたled光源装置及びled光源装置を用いた車両前照灯
EP2511602B1 (en) Light-emitting device
JP7217412B2 (ja) 発光装置及びその製造方法
US7520647B2 (en) Light source and vehicle lamp
KR101798884B1 (ko) 발광소자 어셈블리 및 이를 포함하는 전조등
US10591129B2 (en) Lighting device for a vehicle, combining two light sources
US8258527B2 (en) Lighting device and semiconductor light source device
US20060285341A1 (en) Lamp, optical module, vehicle headlight including the same, and method for controlling color tone of emitted light
JP2005093191A5 (ja)
KR101574405B1 (ko) 발광 모듈
JP6052952B2 (ja) 発光モジュールおよび車両用灯具
JP2004158294A (ja) 車両用前照灯
JP2009060113A (ja) ケーシング下部を備えたケーシング
JP2018041723A (ja) 発光モジュールおよび車両用前照灯
JP6989782B2 (ja) 発光装置及びその製造方法
JP2012195350A (ja) 発光装置及びその製造方法
JP2014022084A (ja) 車両用灯具
JP2014010917A (ja) 照明装置および車両用前照灯
JP2014036202A (ja) 発光装置、その製造方法および車両用灯具
WO2018180658A1 (ja) 波長変換素子及び発光装置
JP2014186897A (ja) 光源装置およびそれを用いた車両用前照灯
JP2023113522A (ja) 車両用灯具

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201280008951.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12747074

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2012747074

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20137024330

Country of ref document: KR

Kind code of ref document: A