WO2011108392A1 - 温水ヒートポンプおよびその制御方法 - Google Patents

温水ヒートポンプおよびその制御方法 Download PDF

Info

Publication number
WO2011108392A1
WO2011108392A1 PCT/JP2011/053768 JP2011053768W WO2011108392A1 WO 2011108392 A1 WO2011108392 A1 WO 2011108392A1 JP 2011053768 W JP2011053768 W JP 2011053768W WO 2011108392 A1 WO2011108392 A1 WO 2011108392A1
Authority
WO
WIPO (PCT)
Prior art keywords
hot water
water system
heat
temperature
way valve
Prior art date
Application number
PCT/JP2011/053768
Other languages
English (en)
French (fr)
Inventor
真人 岸
松尾 実
奥田 誠一
雅晴 仁田
建 永井
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Priority to KR1020147021495A priority Critical patent/KR101570019B1/ko
Priority to EP11750504.0A priority patent/EP2543935A4/en
Priority to CN201180007028.2A priority patent/CN102725591B/zh
Priority to US13/520,229 priority patent/US9664415B2/en
Publication of WO2011108392A1 publication Critical patent/WO2011108392A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H4/00Fluid heaters characterised by the use of heat pumps
    • F24H4/02Water heaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H1/00Water heaters, e.g. boilers, continuous-flow heaters or water-storage heaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D19/00Details
    • F24D19/10Arrangement or mounting of control or safety devices
    • F24D19/1006Arrangement or mounting of control or safety devices for water heating systems
    • F24D19/1009Arrangement or mounting of control or safety devices for water heating systems for central heating
    • F24D19/1015Arrangement or mounting of control or safety devices for water heating systems for central heating using a valve or valves
    • F24D19/1024Arrangement or mounting of control or safety devices for water heating systems for central heating using a valve or valves a multiple way valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D19/00Details
    • F24D19/10Arrangement or mounting of control or safety devices
    • F24D19/1006Arrangement or mounting of control or safety devices for water heating systems
    • F24D19/1009Arrangement or mounting of control or safety devices for water heating systems for central heating
    • F24D19/1039Arrangement or mounting of control or safety devices for water heating systems for central heating the system uses a heat pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D3/00Hot-water central heating systems
    • F24D3/18Hot-water central heating systems using heat pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/20Control of fluid heaters characterised by control inputs
    • F24H15/212Temperature of the water
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H4/00Fluid heaters characterised by the use of heat pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H9/00Details
    • F24H9/20Arrangement or mounting of control or safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H9/00Details
    • F24H9/20Arrangement or mounting of control or safety devices
    • F24H9/2007Arrangement or mounting of control or safety devices for water heaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B30/00Heat pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D2200/00Heat sources or energy sources
    • F24D2200/12Heat pump
    • F24D2200/126Absorption type heat pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D2220/00Components of central heating installations excluding heat sources
    • F24D2220/02Fluid distribution means
    • F24D2220/0235Three-way-valves
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/12Hot water central heating systems using heat pumps

Definitions

  • the present invention relates to a hot water heat pump and a control method thereof, and more particularly to temperature control of a hot water system derived from the hot water heat pump.
  • a hot water system that supplies hot water has a heat storage tank.
  • a part of the water stored in the heat storage tank is controlled in temperature by obtaining heat from a heat output heat exchanger provided in the main body of the hot water heat pump (for example, a patent) Reference 1).
  • the opening degree of the control valve provided in the heat source system and the refrigerant system led to the hot water heat pump is controlled according to the temperature of the hot water system (for example, Patent Document 2 to Patent Document 4).
  • Patent Document 1 has a problem that installation cost and installation space are required because a heat storage tank is provided in the hot water system.
  • the invention described in Patent Document 1 is configured to raise the temperature of the water in the heat storage tank by circulating the water stored in the heat storage tank to the hot water heat pump main body, so that it takes time to raise the temperature. There was a problem.
  • the present invention has been made in view of such circumstances, and it is possible to reduce the installation cost and the installation space, and it is possible to reduce the heating time of the hot water system and the control method thereof The purpose is to provide.
  • the hot water heat pump includes a hot water heat pump main body having a heat output heat exchanger that draws heat from a heat source system and outputs heat, a hot water system that obtains heat from the heat output heat exchanger, A three-way valve provided in a hot water system, and a control unit that controls the hot water heat pump main body and the three-way valve, wherein the control unit converts a part of the hot water system derived from the thermal output heat exchanger into the hot water
  • the opening degree of the three-way valve is controlled so as to lead to the upstream side of the output heat exchanger.
  • a hot water system for supplying hot water has a heat storage tank.
  • a part of the water stored in the heat storage tank obtains heat from a heat output heat exchanger provided in the hot water heat pump main body, thereby controlling the temperature.
  • the hot water system is directly obtained from the thermal output heat exchanger without providing additional equipment. Therefore, warm temperature is directly added to a warm water system, and the temperature increase rate of the warm water system derived from the warm output heat exchanger is increased. Therefore, it is possible to shorten the temperature raising time of the hot water system while reducing the installation cost of the hot water heat pump and downsizing the hot water heat pump.
  • a control unit for controlling the three-way valve is provided to circulate a part of the hot water system heated by obtaining the heat from the heat output heat exchanger to the hot water system led to the heat output heat exchanger. . Therefore, the temperature of the hot water system led to the thermal output heat exchanger can be controlled by controlling the opening degree of the three-way valve. Therefore, even when the temperature rise rate of the hot water system is increased by directly obtaining the heat from the heat output heat exchanger, the temperature fluctuation of the hot water system derived from the heat output heat exchanger can be controlled. .
  • the hot water heat pump includes an inlet-side hot water system temperature detector provided in a hot water system led to the thermal output heat exchanger, and between the thermal output heat exchanger and the three-way valve.
  • An outlet-side hot water system temperature detector provided in the hot water system, and the control unit detects the inlet-side hot water system temperature detected by the inlet-side hot water system temperature detector as the inlet-side hot water system target temperature. It is good also as controlling the opening degree of the said three-way valve.
  • the control part which controls the opening degree of a three-way valve according to the inlet side hot water system temperature was provided. Therefore, if the inlet-side hot water system temperature of the hot water system led to the thermal output heat exchanger is lower than the inlet-side hot water system target temperature, the flow rate of the hot water system circulating from the three-way valve to the thermal output heat exchanger is reduced. If the inlet side hot water system temperature of the water supply system that is increased and led to the thermal output heat exchanger rises above the inlet side hot water system target temperature, the flow rate of the hot water system that circulates from the three-way valve to the thermal output heat exchanger Can be reduced. Therefore, temperature fluctuation of the hot water system led to the warm heat output heat exchanger can be suppressed.
  • control unit is configured so that the outlet side hot water system temperature detected by the outlet side hot water system temperature detector becomes the outlet side hot water system target temperature. It is good also as controlling the thermal output of a heat pump main body.
  • control unit may feedback control the opening degree of the three-way valve and the thermal output.
  • a control unit that feedback controls the opening of the three-way valve and the thermal output is provided. Therefore, even when the inlet side hot water system temperature of the water supply system led to the thermal output heat exchanger fluctuates, the inlet side hot water system temperature can be maintained at the inlet side hot water system target temperature.
  • a control unit for feedback control of the thermal output is provided. Therefore, the outlet side hot water system temperature of the feed water system derived from the thermal output heat exchanger can be maintained at the outlet side hot water system target temperature. Therefore, even if the temperature change of the outlet-side hot water system temperature cannot be suppressed only by controlling the three-way valve, the temperature fluctuation of the hot water system derived from the thermal output heat exchanger can be suppressed.
  • the hot water heat pump according to the first aspect of the present invention is directed to the upstream inlet side hot water system temperature detector provided in the upstream hot water system where the hot water system led from the three-way valve joins, and the thermal output heat exchanger.
  • the feedforward control may be performed using the temperature and the inlet-side flow rate detected by the inlet-side flow rate detector.
  • Three-way valve according to the upstream inlet hot water system temperature of the upstream hot water system where the hot water system heated by the three-way valve joins and the flow rate of the hot water system at the inlet side of the thermal output heat exchanger where the heated hot water system joined A control unit for feed-forward control of the opening degree is provided. Therefore, even when the temperature and flow rate of the hot water system change abruptly, the water obtained by controlling the three-way valve to obtain heat can be supplied to the heat output heat exchanger. Therefore, the temperature fluctuation of the hot water system derived from the hot output heat exchanger can be suppressed.
  • control unit sets the opening of the three-way valve to the outlet side hot water system temperature using the outlet side hot water system temperature as the outlet side hot water system target temperature. It is also possible to control by adding a temperature compensation term that compensates so as to approach.
  • the opening degree of the three-way valve is controlled by adding a temperature compensation term that compensates for the temperature difference between the outlet side hot water system temperature and the outlet side hot water system target temperature from the outlet side hot water system temperature. Therefore, even when the temperature of the hot water system changes abruptly, the water obtained by controlling the three-way valve to obtain heat can be supplied to the heat output heat exchanger. Therefore, the temperature fluctuation of the hot water system derived from the hot output heat exchanger can be suppressed.
  • the control method of the hot water heat pump according to the second aspect of the present invention obtains heat from a hot water heat pump main body having a heat output heat exchanger that draws heat from a heat source system and outputs temperature, and the heat output heat exchanger.
  • a hot water heat pump main body of a hot water heat pump comprising a hot water system and a three-way valve provided in the hot water system, and a control method of the hot water heat pump for controlling the three-way valve, which is derived from the thermal output heat exchanger The opening degree of the three-way valve is controlled so that a part of the hot water system is led to the upstream side of the hot water output heat exchanger.
  • a control unit for controlling the three-way valve is provided to circulate a part of the hot water system heated by obtaining the heat from the heat output heat exchanger to the hot water system led to the heat output heat exchanger. . Therefore, the temperature of the hot water system led to the thermal output heat exchanger can be controlled by controlling the opening degree of the three-way valve. Therefore, even when the temperature rise rate of the hot water system is increased by directly obtaining the heat from the heat output heat exchanger, the temperature fluctuation of the hot water system derived from the heat output heat exchanger can be controlled. .
  • FIG. 1 is a schematic configuration diagram of a hot water heat pump according to a first embodiment of the present invention. It is a block diagram of the control method of the hot water heat pump concerning a 1st embodiment of the present invention. It is a modification of the schematic block diagram of the hot water heat pump which concerns on 1st Embodiment of this invention. It is a schematic block diagram of the hot water heat pump which concerns on 2nd Embodiment of this invention. It is a block diagram of the control method of the hot water heat pump which concerns on 2nd Embodiment of this invention. It is a schematic block diagram of the hot water heat pump which concerns on 3rd Embodiment of this invention. It is a block diagram of the control method of the hot water heat pump which concerns on 3rd Embodiment of this invention. It is a modification of the block diagram of the control method of the hot water heat pump which concerns on 3rd Embodiment of this invention.
  • FIG. 1 shows a schematic configuration diagram of a hot water heat pump according to the first embodiment of the present invention.
  • the hot water heat pump 1 includes a hot water heat pump main body 2, a water supply pump 3, and a three-way valve 4.
  • the hot water heat pump main body 2 has a thermal output heat exchanger (not shown).
  • the hot water heat pump main body 2 is typically a refrigerator capable of operating the heat pump 1, for example, an absorption refrigerator.
  • the thermal output heat exchanger draws heat from a heat source system led to the thermal output heat exchanger and outputs thermal heat.
  • the thermal output pumped by the thermal output heat exchanger is controlled by a control unit (not shown).
  • the heat pumped out by the heat output heat exchanger is added to the hot water system via the heat output heat exchanger.
  • the warm heat added to the warm water system is supplied to an external load (not shown) such as a fan coil.
  • the water in the heated hot water system (hereinafter referred to as “inlet-side hot water system”) 5 is supplied to the thermal output heat exchanger.
  • an inlet side hot water system temperature detector 20 for detecting the temperature of the inlet side hot water system 5 (inlet side hot water system temperature) is provided.
  • the temperatures of the upstream inlet-side hot water system 8 and the initial inlet-side hot water system 5 are set to 30 ° C., for example.
  • the inlet-side hot water system 5 led to the thermal output heat exchanger obtains heat by the thermal output heat exchanger and is derived from the thermal output heat exchanger.
  • an outlet side hot water system temperature detector 21 is provided between the hot water system (hereinafter referred to as “exit side hot water system”) 6 derived from the thermal output heat exchanger and a three-way valve 4 described later.
  • the outlet side hot water system 6 is provided with a three-way valve 4 that is a flow rate adjusting valve.
  • the partial flow rate (hereinafter referred to as “circulation hot water system”) 7 of the outlet-side hot water system 6 that has been heated is joined to the inlet-side hot water system 5 by controlling the three-way valve 4 by the control unit.
  • the outlet-side hot water system 6 that has not been led to the circulating hot water system 7 via the three-way valve 4 is led out of the hot water heat pump 1.
  • the circulating hot water system 7 joined to the upstream inlet side hot water system 8 via the three-way valve 4 is supplied with water at a temperature of 75 ° C. by joining with the low temperature, for example, 30 ° C. upstream inlet side hot water system 8. It is led to the heat output heat exchanger via the pump 3.
  • the inlet-side hot water system 5 led to the thermal output heat exchanger is added with hot heat drawn from the heat source system.
  • FIG. 1 The block diagram of the control method of the hot water heat pump which concerns on 1st Embodiment is shown by FIG.
  • the temperature of the inlet side hot water system 5 detected by the inlet side hot water system temperature detector 20 does not reach the inlet side hot water system target temperature
  • the temperature of the inlet side hot water system 5 becomes the inlet side hot water system target temperature.
  • the three-way valve 4 is feedback-controlled so as to reach it.
  • the circulating hot water system 7 is circulated from the three-way valve 4 to the thermal output heat exchanger.
  • the circulation is circulated from the three-way valve 4 to the thermal output heat exchanger. The flow rate of the hot water system 7 can be reduced.
  • the temperature of the outlet-side hot water system 6 detected by the outlet-side hot water system temperature detector 21 has not reached the outlet-side hot water system target temperature
  • the temperature of the outlet-side hot water system 6 is the outlet-side hot water system target.
  • the thermal output of the hot water heat pump main body 2 is feedback controlled so as to match the temperature.
  • the inlet side water supply system 5 can control the heat obtained from the heat output heat exchanger.
  • the three-way valve 4 is feedback controlled according to the temperature of the inlet-side hot water system temperature detector 20 detected by the inlet-side hot water system temperature detector 20, and the temperature of the outlet hot water system 6 is detected by the outlet-side hot water system temperature detector 21.
  • the inlet-side hot water system (warm water system) 5 obtains the heat directly from the heat output heat exchanger without providing any other equipment. For this reason, since warm heat is directly added to the inlet-side hot water system 5, the temperature increase rate of the outlet-side hot water system (hot water system derived from the thermal output heat exchanger) 6 is increased. Therefore, it is possible to shorten the temperature raising time of the outlet side hot water system 6 while reducing the installation cost of the hot water heat pump 1 and reducing the size of the hot water heat pump 1.
  • the hot water heat pump 1 is configured so that a circulating heat system 7 which is a partial flow rate of the outlet side hot water system 6 heated by obtaining heat from the heat output heat exchanger is connected to the upstream inlet side hot water system 8.
  • the control part (not shown) which controls a three-way valve is provided so that it may circulate to the inlet side hot water system
  • the hot water heat pump 1 of the first embodiment includes a control unit that controls the opening degree of the three-way valve 4 according to the temperature of the inlet side hot water system 5. Therefore, when the temperature of the inlet side hot water system 5 is lower than the target temperature of the inlet side hot water system, the flow rate of the circulating hot water system (the hot water system circulating from the three-way valve 4 to the thermal output heat exchanger) 7 is increased. When the temperature of the inlet side hot water system 5 rises higher than the inlet side hot water system target temperature, the flow rate of the circulating hot water system 7 can be reduced. Therefore, the temperature fluctuation of the inlet side water supply system 5 led to the heat output heat exchanger can be suppressed.
  • the hot water heat pump 1 of the first embodiment includes a control unit that controls the thermal output of the hot water heat pump main body 2 according to the temperature of the outlet side hot water system 6.
  • a control unit that controls the thermal output of the hot water heat pump main body 2 according to the temperature of the outlet side hot water system 6.
  • the hot water heat pump 1 of the first embodiment includes a control unit that performs feedback control of the opening degree and the thermal output of the three-way valve 4. Therefore, even when the temperature of the inlet-side hot water system 5 varies, the temperature of the inlet-side hot water system 5 can be maintained at the inlet-side hot water system target temperature.
  • a control unit for feedback control of the thermal output is provided. Therefore, the temperature of the outlet side hot water system 6 can be maintained at the outlet side hot water system target temperature. Therefore, even if it is a case where the temperature change of the exit side hot water system
  • the outlet-side hot water system temperature detector 21 is described as being provided in the outlet-side hot water system 6 between the three-way valve 4 and the thermal output heat exchanger.
  • the present invention is not limited to this. Instead, as shown in FIG. 3, the outlet side hot water system temperature detector 21 may be provided in the outlet side hot water system downstream of the three-way valve 4.
  • the hot water heat pump and the control method of the second embodiment are the first in that the upstream inlet hot water system includes a temperature detector and a flow rate detector at the inlet of the thermal output heat exchanger, and feedforward control is added to the three-way valve.
  • the rest is the same as the first embodiment. Therefore, the same configuration and control method as those in the first embodiment are denoted by the same reference numerals and description thereof is omitted.
  • the schematic block diagram of the hot water heat pump which concerns on 2nd Embodiment is shown by FIG.
  • the upstream inlet hot water system 8 is provided with an upstream inlet side hot water system temperature detector 22.
  • the upstream inlet side hot water system temperature detector 22 detects the temperature of the upstream inlet hot water system 8 before joining the circulating hot water system 7.
  • an inlet-side flow rate detector 23 is provided at the inlet of the thermal output heat exchanger.
  • the inlet side flow rate detector 23 detects the flow rate of the inlet side hot water system 5 introduced into the thermal output heat exchanger.
  • FIG. 1 The block diagram of the control method of the hot water heat pump which concerns on 2nd Embodiment is shown by FIG.
  • the control unit performs feedback control of the three-way valve 4 so that the temperature of the inlet-side hot water system 5 reaches the inlet-side hot water system target temperature.
  • a control unit is determined based on a table for the temperature of the upstream inlet side hot water system 8 detected by the upstream inlet side hot water system temperature detector 22 and the flow rate of the inlet side hot water system 5 detected by the inlet side flow rate detector 23. Finds the opening of the three-way valve 4.
  • the opening degree of the three-way valve 4 obtained from the table is feedforward controlled by the control unit.
  • the control unit is configured so that the temperature of the outlet-side hot water system 6 matches the outlet-side hot water system target temperature.
  • the thermal output of the main body 2 is feedback controlled.
  • the hot water heat pump 1 of the second embodiment includes an upstream inlet side hot water system (an upstream side hot water system where the hot water system heated by the three-way valve 4 joins) 8 and an inlet side hot water system at the inlet of the thermal output heat exchanger.
  • the control part which feedforward-controls the opening degree of the three-way valve 4 according to the flow volume of 5 is provided. Therefore, even if the temperature and flow rate of the upstream inlet-side hot water system (hot water system) 8 change suddenly, the temperature of the inlet-side hot water system 5 guided to the thermal output heat exchanger by controlling the three-way valve 4 Can be controlled. Therefore, the temperature fluctuation of the outlet side hot water system 6 can be suppressed.
  • the hot water heat pump and the control method of the third embodiment include a temperature detector in the upstream inlet hot water system, a flow rate detector at the inlet of the thermal output heat exchanger, and a temperature detector in the heat source system introduced into the hot water heat pump body. And is different from the first embodiment in that the control of the temperature compensation term is added to the three-way valve, and the others are the same as in the first embodiment. Therefore, the same configuration and control method as those in the first embodiment are denoted by the same reference numerals and description thereof is omitted.
  • FIG. 6 shows a schematic configuration diagram of a hot water heat pump according to the third embodiment.
  • the upstream inlet side hot water system 8 is provided with a temperature detector 22 for the upstream inlet side hot water system.
  • the upstream inlet side hot water system temperature detector 22 detects the temperature of the upstream inlet side hot water system 8.
  • An inlet-side flow rate detector 23 is provided at the inlet of the thermal output heat exchanger.
  • the inlet side flow rate detector 23 detects the flow rate of the inlet hot water system 5 introduced into the thermal output heat exchanger.
  • an inlet side heat source system temperature detector 24 is provided in the heat source system 9 (hereinafter referred to as “inlet side heat source system”) led to the thermal output heat exchanger.
  • the inlet side heat source system temperature detector 24 detects the temperature of the inlet side heat source system 9.
  • FIG. 1 The block diagram of the control method of the hot water heat pump which concerns on 3rd Embodiment is shown by FIG.
  • the control unit performs feedback control of the three-way valve 4 so that the temperature of the inlet-side hot water system 5 reaches the inlet-side hot water system target temperature. To do. Further, the control unit obtains a deviation between the temperature of the inlet side hot water system 5 and the temperature of the outlet side hot water system 6. When the deviation is larger than the predetermined difference, the control unit inserts a first-order lag term.
  • control unit controls the three-way valve 4 by adding a temperature compensation term from the temperature of the outlet side hot water system 6 detected by the outlet side hot water system detector 21.
  • the temperature compensation term is to compensate so as to reduce the temperature difference between the temperature of the outlet-side hot water system 6 and the outlet-side hot water system target temperature.
  • control unit is a table for the temperature of the upstream inlet side hot water system 8 detected by the upstream inlet side hot water system temperature detector 22 and the flow rate of the inlet side hot water system 5 detected by the inlet side flow rate detector 23.
  • the opening degree of the three-way valve 4 is obtained, and the opening degree of the three-way valve 4 is feedforward controlled.
  • the control unit main body of the hot water heat pump so that the temperature of the outlet-side hot water system 6 matches the outlet-side hot water system target temperature.
  • the thermal output of 2 is feedback controlled.
  • the hot water heat pump 1 of the third embodiment compensates for the temperature difference (deviation) between the temperature of the outlet side hot water system 6 and the target temperature of the outlet side hot water system so as to decrease from the temperature of the outlet side hot water system 6.
  • a control unit for controlling the opening degree of the three-way valve 4. Therefore, even when the temperature of the outlet side hot water system 6 changes rapidly, the temperature of the inlet side hot water system 5 guided to the thermal output heat exchanger by controlling the three-way valve 4 can be controlled. Therefore, the temperature fluctuation of the outlet side hot water system 6 derived from the thermal output heat exchanger can be suppressed.
  • the three-way valve 4 is controlled by adding a temperature compensation term from the temperature of the outlet-side hot water system 6 detected by the outlet-side hot water system temperature detector 21, but the present invention is not limited to this. It is not limited to.
  • a compensation term may be added to the control of the three-way valve 4.
  • FIG. 8 shows a block diagram of a control method of the hot water heat pump in this case as a reference example.
  • the control unit When the temperature of the inlet-side hot water system 5 has not reached the inlet-side hot water system target temperature, the control unit performs feedback control of the three-way valve 4 so that the temperature of the inlet-side hot water system 5 reaches the inlet-side hot water system target temperature. To do. Furthermore, the control unit inserts a first-order lag term when the temperature of the inlet-side heat source system 9 is higher or lower than a predetermined temperature. Thereafter, the control unit adds a temperature compensation term to control the three-way valve 4. The temperature compensation term compensates so as to reduce the temperature difference between the temperature of the outlet-side hot water system 6 and the outlet-side hot water system target temperature, and is obtained from the temperature of the inlet-side heat source system 9.
  • control unit is a table for the temperature of the upstream inlet side hot water system 8 detected by the upstream inlet side hot water system temperature detector 22 and the flow rate of the inlet side hot water system 5 detected by the inlet side flow rate detector 23.
  • the opening degree of the three-way valve 4 is obtained, and the opening degree of the three-way valve 4 is feedforward controlled.
  • the three-way valve 4 is controlled by inserting a temporary delay term, but the temporary delay term may be omitted. Moreover, it is good also as what does not add feedforward control.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)
  • Steam Or Hot-Water Central Heating Systems (AREA)

Abstract

設置コストおよび設置スペースを削減可能、かつ、温水系統の昇温時間の短縮化を図ることが可能な温水ヒートポンプおよびその制御方法を提供する。温水ヒートポンプ(1)は、熱源系統から熱を汲み取り温熱を出力する温熱出力熱交換器を有する温水ヒートポンプ本体(2)と、温熱出力熱交換器から温熱を得る温水系統(5、6)と、出口側温水系統(6)に設けられる三方弁(4)と、温水ヒートポンプ本体(2)および三方弁(4)を制御する制御部と、を備え、制御部は、温熱出力熱交換器から導出された出口側温水系統(6)の一部を温水出力熱交換器の上流側へ導くように三方弁(4)の開度を制御する。

Description

温水ヒートポンプおよびその制御方法
 本発明は、温水ヒートポンプおよびその制御方法に関し、特に、温水ヒートポンプから導出される温水系統の温度制御に関するものである。
 一般に、温水を供給する温水系統は、貯熱タンクを備えている。温水系統は、この貯熱タンク内に貯蔵されている一部の水が、温水ヒートポンプ本体に設けられている温熱出力熱交換器から温熱を得ることによって温度制御が行われている(例えば、特許文献1)。
 また、温水系統の温度に応じて、温水ヒートポンプに導かれる熱源系統や冷媒系統に設けられている制御弁の開度が制御されている(例えば、特許文献2から特許文献4)。
特開平7-225062号公報 特許第2894602号公報 特許第2842550号公報 特許第3075944号公報
 しかしながら、特許文献1に記載の発明は、温水系統に貯熱タンクを設けるため、設置コストや設置スペースが必要となる問題があった。また、特許文献1に記載の発明は、貯熱タンクに溜めた水を温水ヒートポンプ本体に循環させて貯熱タンク中の水の温度を昇温させる構成であるため、昇温に時間がかかるという問題があった。
 また、特許文献2から特許文献4に記載の発明は、熱源系統や冷媒系統の流量等を制御することによって温水系統の温度を制御するため、温水系統の温度を急激に変化させた場合には、温度変化に追従できないという問題があった。
 本発明は、このような事情に鑑みてなされたものであって、設置コストおよび設置スペースを削減可能、かつ、温水系統の昇温時間の短縮化を図ることが可能な温水ヒートポンプおよびその制御方法を提供することを目的とする。
 上記課題を解決するために、本発明の温水ヒートポンプおよびその制御方法は、以下の手段を採用する。
 本発明の第1の態様に係る温水ヒートポンプは、熱源系統から熱を汲み取り温熱を出力する温熱出力熱交換器を有する温水ヒートポンプ本体と、前記温熱出力熱交換器から温熱を得る温水系統と、前記温水系統に設けられる三方弁と、前記温水ヒートポンプ本体および前記三方弁を制御する制御部と、を備え、前記制御部は、前記温熱出力熱交換器から導出された温水系統の一部を該温水出力熱交換器の上流側へ導くように前記三方弁の開度を制御する。
 従来、温水を供給する温水系統は、貯熱タンクを備えている。温水系統は、この貯熱タンク内に貯蔵されている一部の水が、温水ヒートポンプ本体に設けられている温熱出力熱交換器から温熱を得ることによって温度制御が行われている。
 本発明の第1の態様では、別途機器等を設けることなく温水系統を温熱出力熱交換器から直接温熱を得ることとした。そのため、温熱が温水系統に直接付加されて温熱出力熱交換器から導出される温水系統の昇温速度が速くなる。したがって、温水ヒートポンプの設置費用の削減、温水ヒートポンプの小型化を図りつつ、温水系統の昇温時間を短縮することができる。
 また、温熱出力熱交換器から温熱を得ることによって昇温した温水系統の一部を、温熱出力熱交換器に導かれる温水系統に循環させるように三方弁を制御する制御部を設けることにした。そのため、三方弁の開度を制御することによって温熱出力熱交換器に導かれる温水系統の温度を制御することができる。したがって、温熱出力熱交換器から温熱を直接得ることによって温水系統の昇温速度が速くなった場合であっても、温熱出力熱交換器から導出される温水系統の温度変動を制御することができる。
 本発明の第1の態様に係る温水ヒートポンプは、前記温熱出力熱交換器に導かれる温水系統に設けられる入口側温水系統用温度検出器と、前記温熱出力熱交換器と前記三方弁との間の温水系統に設けられる出口側温水系統用温度検出器と、を備え、前記制御部は、前記入口側温水系統用温度検出器によって検出される入口側温水系統温度が入口側温水系統目標温度になるように、前記三方弁の開度を制御することとしても良い。
 三方弁の開度を入口側温水系統温度に応じて制御する制御部を設けることとした。そのため、温熱出力熱交換器に導かれる温水系統の入口側温水系統温度が入口側温水系統目標温度よりも低下した場合には、三方弁から温熱出力熱交換器へと循環する温水系統の流量を増加させ、温熱出力熱交換器に導かれる給水系統の入口側温水系統温度が入口側温水系統目標温度よりも上昇した場合には、三方弁から温熱出力熱交換器へと循環する温水系統の流量を減少させることができる。したがって、温熱出力熱交換器へ導かれる温水系統の温度変動を抑制することができる。
 本発明の第1の態様に係る温水ヒートポンプは、前記制御部が、前記出口側温水系統用温度検出器によって検出される出口側温水系統温度が出口側温水系統目標温度になるように、前記温水ヒートポンプ本体の温熱出力を制御することとしても良い。
 温水ヒートポンプ本体の温熱出力を出口側温水系統温度に応じて制御する制御部を設けることとした。これにより、出口側温水系統温度が出口側温水系統目標温度よりも低下した場合には、温熱出力を増加させ、出口側温水系統温度が出口側温水系統目標温度よりも上昇した場合には、温熱出力を低下させることができる。そのため、給水系統が温熱出力熱交換器から得られる温熱を制御することができる。したがって、温熱出力熱交換器から導出される温水系統の温度変動を抑制することができる。
 本発明の第1の態様に係る温水ヒートポンプは、前記制御部が、前記三方弁の開度および前記温熱出力をフィードバック制御することとしても良い。
 三方弁の開度と温熱出力とをフィードバック制御する制御部を設けることとした。そのため、温熱出力熱交換器に導かれる給水系統の入口側温水系統温度が変動した場合であっても、入口側温水系統温度を入口側温水系統目標温度に維持することができる。また、温熱出力をフィードバック制御する制御部を設けることとした。そのため、温熱出力熱交換器から導出される給水系統の出口側温水系統温度を出口側温水系統目標温度に維持することができる。したがって、三方弁を制御するだけでは出口側温水系統温度の温度変化を抑制することができない場合であっても、温熱出力熱交換器から導出される温水系統の温度変動を抑制することができる。
 本発明の第1の態様に係る温水ヒートポンプは、三方弁から導かれる温水系統が合流する上流側の温水系統に設けられる上流入口側温水系統用温度検出器と、前記温熱出力熱交換器に導かれる温水系統の流量を検出する入口側流量検出器と、を備え、前記制御部が、前記三方弁の開度を、前記上流入口側温水系統用温度検出器によって検出される上流入口側温水系統温度および前記入口側流量検出器によって検出される入口側流量を用いてフィードフォワード制御することとしても良い。
 三方弁によって昇温した温水系統が合流する上流側の温水系統の上流入口側温水系統温度および昇温した温水系統が合流した温熱出力熱交換器の入口側の温水系統の流量に応じて三方弁の開度をフィードフォワード制御する制御部を設けることとした。そのため、温水系統の温度や流量が急激に変化する場合であっても、三方弁を制御して温熱を得た水を温熱出力熱交換器に供給することができる。したがって、温熱出力熱交換器から導出される温水系統の温度変動を抑制することができる。
 本発明の第1の態様に係る温水ヒートポンプは、前記制御部が、前記三方弁の開度を、前記出口側温水系統温度を用いて前記出口側温水系統温度を前記出口側温水系統目標温度に近づけるように補償する温度補償項を付加して制御することとしても良い。
 出口側温水系統温度から、出口側温水系統温度と出口側温水系統目標温度との温度差を小さくするように補償する温度補償項を付加して三方弁の開度を制御することとした。そのため、温水系統の温度が急激に変化する場合であっても、三方弁を制御して温熱を得た水を温熱出力熱交換器に供給することができる。したがって、温熱出力熱交換器から導出される温水系統の温度変動を抑制することができる。
 また、本発明の第2の態様に係る温水ヒートポンプの制御方法は、熱源系統から熱を汲み取り温熱を出力する温熱出力熱交換器を有する温水ヒートポンプ本体と、前記温熱出力熱交換器から温熱を得る温水系統と、前記温水系統に設けられる三方弁と、を備えた温水ヒートポンプの前記温水ヒートポンプ本体および前記三方弁を制御する温水ヒートポンプの制御方法であって、前記温熱出力熱交換器から導出された温水系統の一部を該温水出力熱交換器の上流側へ導くように前記三方弁の開度を制御する。
 
 別途機器等を設けることなく温水系統を温熱出力熱交換器から直接温熱を得ることとした。そのため、温熱が温水系統に直接付加されて温熱出力熱交換器から導出される温水系統の昇温速度が速くなる。したがって、温水ヒートポンプの設置費用の削減、温水ヒートポンプの小型化を図りつつ、温水系統の昇温時間を短縮することができる。
 また、温熱出力熱交換器から温熱を得ることによって昇温した温水系統の一部を、温熱出力熱交換器に導かれる温水系統に循環させるように三方弁を制御する制御部を設けることにした。そのため、三方弁の開度を制御することによって温熱出力熱交換器に導かれる温水系統の温度を制御することができる。したがって、温熱出力熱交換器から温熱を直接得ることによって温水系統の昇温速度が速くなった場合であっても、温熱出力熱交換器から導出される温水系統の温度変動を制御することができる。
本発明の第1実施形態に係る温水ヒートポンプの概略構成図である。 本発明の第1実施形態に係る温水ヒートポンプの制御方法のブロック図である。 本発明の第1実施形態に係る温水ヒートポンプの概略構成図の変形例である。 本発明の第2実施形態に係る温水ヒートポンプの概略構成図である。 本発明の第2実施形態に係る温水ヒートポンプの制御方法のブロック図である。 本発明の第3実施形態に係る温水ヒートポンプの概略構成図である。 本発明の第3実施形態に係る温水ヒートポンプの制御方法のブロック図である。 本発明の第3実施形態に係る温水ヒートポンプの制御方法のブロック図の変形例である。
[第1実施形態]
 図1には、本発明の第1実施形態に係る温水ヒートポンプの概略構成図が示されている。
 図1に示されているように、温水ヒートポンプ1は、温水ヒートポンプ本体2と、給水ポンプ3と、三方弁4とを備えている。
 温水ヒートポンプ本体2は、図示しない温熱出力熱交換器を有している。温水ヒートポンプ本体2としては、典型的にはヒートポンプ1の運転が可能とされた冷凍機とされ、例えば吸収式冷凍機が挙げられる。
 温熱出力熱交換器は、温熱出力熱交換器に導かれる熱源系統から熱を汲み取り温熱を出力するものである。温熱出力熱交換器が汲み取る温熱出力は、図示しない制御部によって制御される。温熱出力熱交換器によって汲み取られた温熱は、温熱出力熱交換器を介して温水系統へと付加される。温水系統へと付加された温熱は、ファンコイル等の外部負荷(図示せず)へと供給される。
 温水ヒートポンプ1の外部から水が供給される温水系統(以下「上流入口側温水系統」という。)8は、給水ポンプ3によって昇圧される。昇圧された温水系統(以下「入口側温水系統」という。)5の水は、温熱出力熱交換器へと供給される。給水ポンプ3と温熱出力熱交換器との間には、入口側温水系統5の温度(入口側温水系統温度)を検出する入口側温水系統用温度検出器20が設けられている。上流入口側温水系統8および初期の入口側温水系統5の温度は、例えば、30℃とされる。
 温熱出力熱交換器に導かれた入口側温水系統5は、温熱出力熱交換器によって温熱を得て温熱出力熱交換器から導出される。温熱出力熱交換器から導出された温水系統(以下「出口側温水系統」という。)6と後述する三方弁4との間には、出口側温水系統用温度検出器21が設けられている。温熱出力熱交換器から温熱を得ることによって、出口側温水系統用温度検出器21によって検出される出口側温水系統の温度(出口側温水系統温度)は、例えば、80℃に昇温する。
 出口側温水系統6には、流量調整弁である三方弁4が設けられている。昇温した出口側温水系統6の一部流量(以下「循環温水系統」という。)7は、制御部によって三方弁4が制御されることによって入口側温水系統5に合流される。三方弁4を介して循環温水系統7へと導かれなかった昇温した出口側温水系統6は、温水ヒートポンプ1外へと導出される。
 三方弁4を介して上流入口側温水系統8に合流された循環温水系統7は、温度の低い、例えば、30℃の上流入口側温水系統8と合流することによって75℃の温度となって給水ポンプ3を経て温熱出力熱交換器へと導かれる。温熱出力熱交換器に導かれた入口側温水系統5には、熱源系統から熱を汲み取った温熱が付加される。
 次に、本発明の第1実施形態に係る温水ヒートポンプの制御方法について説明する。
 図2には、第1実施形態に係る温水ヒートポンプの制御方法のブロック線図が示されている。
 入口側温水系統用温度検出器20によって検出された入口側温水系統5の温度が入口側温水系統目標温度に達していない場合には、入口側温水系統5の温度が入口側温水系統目標温度に達するように三方弁4をフィードバック制御する。
 これにより、温熱出力熱交換器に導かれる入口側温水系統5の温度が入口側温水系統目標温度よりも低下した場合には、三方弁4から温熱出力熱交換器へと循環させる循環温水系統7の流量を増加させ、温熱出力熱交換器に導かれる入口側温水系統5の温度が入口側温水系統目標温度よりも上昇した場合には、三方弁4から温熱出力熱交換器へと循環させる循環温水系統7の流量を減少させることができる。
 さらに、出口側温水系統用温度検出器21によって検出された出口側温水系統6の温度が出口側温水系統目標温度に達していない場合には、出口側温水系統6の温度が出口側温水系統目標温度に一致するように温水ヒートポンプ本体2の温熱出力をフィードバック制御する。
 これにより、出口側温水系統6の温度が出口側温水系統目標温度よりも低下した場合には、温熱出力を増加させ、出口側温水系統6の温度が出口側温水系統目標温度よりも上昇した場合には、温熱出力を低下させることができる。そのため、入口側給水系統5が温熱出力熱交換器から得られる温熱を制御することができる。
 入口側温水系統用温度検出器20によって検出された入口側温水系統5の温度によって、三方弁4をフィードバック制御し、出口側温水系統用温度検出器21によって検出された出口温水系統6の温度によって温水ヒートポンプ本体2の温熱出力をフィードバック制御することにより、三方弁4の制御と、温熱出力の制御との干渉を避けることができる。
 以上の通り、第1実施形態に係る温水ヒートポンプおよびこの制御方法によれば、以下の作用効果を奏する。
 別途機器等を設けることなく入口側温水系統(温水系統)5は、温熱出力熱交換器から直接温熱を得ることとした。そのため、温熱が入口側温水系統5に直接付加されるため、出口側温水系統(温熱出力熱交換器から導出される温水系統)6の昇温速度が速くなる。したがって、温水ヒートポンプ1の設置費用の削減、温水ヒートポンプ1の小型化を図りつつ、出口側温水系統6の昇温時間を短縮することができる。
 また、第1実施形態に係る温水ヒートポンプ1は、温熱出力熱交換器から温熱を得ることによって昇温した出口側温水系統6の一部流量である循環温熱系統7を、上流入口側温水系統8を経て入口側温水系統(温熱出力熱交換器に導かれる温水系統)5に循環させるように三方弁を制御する制御部(図示せず)を備える。そのため、三方弁4の開度を制御することによって温熱出力熱交換器に導かれる入口側温水系統5の温度を制御することができる。したがって、温熱出力熱交換器から温熱を直接得ることによって出口側温水系統6の昇温速度が速くなる恐れがある場合であっても、出口側温水系統6の温度の温度変動を制御することができる。
 また、第1実施形態の温水ヒートポンプ1は、三方弁4の開度を入口側温水系統5の温度に応じて制御する制御部を備える。そのため、入口側温水系統5の温度が入口側温水系統目標温度よりも低下した場合には、循環温水系統(三方弁4から温熱出力熱交換器へと循環する温水系統)7の流量を増加させ、入口側温水系統5の温度が入口側温水系統目標温度よりも上昇した場合には、循環温水系統7の流量を減少させることができる。したがって、温熱出力熱交換器へ導かれる入口側給水系統5の温度変動を抑制することができる。
 また、第1実施形態の温水ヒートポンプ1は、温水ヒートポンプ本体2の温熱出力を出口側温水系統6の温度に応じて制御する制御部を備える。これにより、出口側温水系統6の温度が出口側温水系統目標温度よりも低下した場合には、温熱出力を増加させ、出口側温水系統6の温度が出口側温水系統目標温度よりも上昇した場合には、温熱出力を低下させることができる。そのため、入口側給水系統5が温熱出力熱交換器から得られる温熱を制御することができる。したがって、出口側温水系統6の温度変動を抑制することができる。
 また、第1実施形態の温水ヒートポンプ1は、三方弁4の開度と温熱出力とをフィードバック制御する制御部を備える。そのため、入口側温水系統5の温度が変動した場合であっても、入口側温水系統5の温度を入口側温水系統目標温度に維持することができる。また、温熱出力をフィードバック制御する制御部を設けることとした。そのため、出口側温水系統6の温度を出口側温水系統目標温度に維持することができる。したがって、三方弁4を制御するだけでは出口側温水系統6の温度変化を抑制することができない場合であっても、出口側温水系統6の温度変動を抑制することができる。
 なお、第1実施形態では、出口側温水系統用温度検出器21を三方弁4と温熱出力熱交換器との間の出口側温水系統6に設けるとして説明したが、本発明はこれに限定されるものではなく、図3に示すように出口側温水系統用温度検出器21を三方弁4の下流側の出口側温水系統に設けても良い。
[第2実施形態]
 以下、本発明の第2実施形態について説明する。第2実施形態の温水ヒートポンプおよびこの制御方法は、上流入口温水系統に温度検出器と温熱出力熱交換器の入口に流量検出器とを備え、三方弁にフィードフォワード制御が追加される点で第1実施形態と相違するが、その他は第1実施形態と同様である。したがって、第1実施形態と同一の構成、制御方法については、同一の符号を付してその説明を省略する。
 図4には、第2実施形態に係る温水ヒートポンプの概略構成図が示されている。
 上流入口温水系統8には、上流入口側温水系統用温度検出器22が設けられている。上流入口側温水系統用温度検出器22は、循環温水系統7合流前の上流入口温水系統8の温度を検出するものである。
 また、温熱出力熱交換器の入口には、入口側流量検出器23が設けられている。入口側流量検出器23は、温熱出力熱交換器に導入される入口側温水系統5の流量を検出するものである。
 次に、本発明の第2実施形態に係る温水ヒートポンプの制御方法について説明する。
 図5には、第2実施形態に係る温水ヒートポンプの制御方法のブロック線図が示されている。
 制御部は、入口側温水系統5の温度が入口側温水系統目標温度に達していない場合には、入口側温水系統5の温度が入口側温水系統目標温度に達するように三方弁4をフィードバック制御する。
 その後、上流入口側温水系統用温度検出器22によって検出された上流入口側温水系統8の温度と、入口側流量検出器23によって検出された入口側温水系統5の流量とに対するテーブルより、制御部は、三方弁4の開度を求める。
 テーブルより求められた三方弁4の開度は、制御部によって、フィードフォワード制御が行われる。
 一方、出口側温水系統6の温度が出口側温水系統目標温度に達していない場合には、出口側温水系統6の温度が出口側温水系統目標温度に一致するように、制御部は、温水ヒートポンプ本体2の温熱出力をフィードバック制御する。
 以上の通り、第2実施形態に係る温水ヒートポンプおよびこの制御方法によれば、以下の作用効果を奏する。
 第2実施形態の温水ヒートポンプ1は、上流入口側温水系統(三方弁4によって昇温した温水系統が合流する上流側の温水系統)8の温度および温熱出力熱交換器の入口の入口側温水系統5の流量に応じて三方弁4の開度をフィードフォワード制御する制御部を備える。そのため、上流入口側温水系統(温水系統)8の温度や流量が急激に変化する場合であっても、三方弁4を制御することによって温熱出力熱交換器に導かれる入口側温水系統5の温度を制御することができる。したがって、出口側温水系統6の温度変動を抑制することができる。
[第3実施形態]
 以下、本発明の第3実施形態について説明する。第3実施形態の温水ヒートポンプおよびこの制御方法は、上流入口側温水系統に温度検出器と、温熱出力熱交換器の入口に流量検出器と、温水ヒートポンプ本体に導入される熱源系統に温度検出器とを備え、三方弁に温度補償項の制御が付加される点で第1実施形態と相違し、その他は第1実施形態と同様である。したがって、第1実施形態と同一の構成、制御方法については、同一の符号を付してその説明を省略する。
 図6には、第3実施形態に係る温水ヒートポンプの概略構成図が示されている。
 上流入口側温水系統8には、上流入口側温水系統用温度検出器22が設けられている。上流入口側温水系統用温度検出器22は、上流入口側温水系統8の温度を検出するものである。
 温熱出力熱交換器の入口には、入口側流量検出器23が設けられている。入口側流量検出器23は、温熱出力熱交換器に導入される入口温水系統5の流量を検出するものである。
 また、温熱出力熱交換器へと導かれる熱源系統(以下「入口側熱源系統」という。)9には、入口側熱源系統用温度検出器24が設けられている。入口側熱源系統用温度検出器24は、入口側熱源系統9の温度を検出するものである。
 次に、本発明の第3実施形態に係る温水ヒートポンプの制御方法について説明する。
 図7には、第3実施形態に係る温水ヒートポンプの制御方法のブロック線図が示されている。
 制御部は、入口側温水系統5の温度が入口側温水系統目標温度に達していない場合には、入口側温水系統5の温度が入口側温水系統目標温度に達するように三方弁4をフィードバック制御する。
 さらに、制御部は、入口側温水系統5の温度と出口側温水系統6の温度との偏差を求める。制御部は、この偏差が所定差よりも大きい場合には、一次遅れ項を挿入する。その後、制御部は、出口側温水系統検出器21によって検出された出口側温水系統6の温度から、温度補償項を付加して三方弁4の制御を行う。温度補償項は、出口側温水系統6の温度と出口側温水系統目標温度との温度差を小さくするように補償するものである。
 さらに、制御部は、上流入口側温水系統用温度検出器22によって検出された上流入口側温水系統8の温度と、入口側流量検出器23によって検出された入口側温水系統5の流量とに対するテーブルより、三方弁4の開度を求めて、三方弁4の開度をフィードフォワード制御する。
 一方、制御部は、出口側温水系統6の温度が出口側温水系統目標温度に達していない場合には、出口側温水系統6の温度が出口側温水系統目標温度に一致するように温水ヒートポンプ本体2の温熱出力をフィードバック制御する。
 以上の通り、第3実施形態に係る温水ヒートポンプおよびこの制御方法によれば、以下の作用効果を奏する。
 第3実施形態の温水ヒートポンプ1は、出口側温水系統6の温度から、出口側温水系統6の温度と出口側温水系統目標温度との温度差(偏差)を小さくするように補償する温度補償項を付加して三方弁4の開度を制御する制御部を備える。そのため、出口側温水系統6の温度が急激に変化する場合であっても、三方弁4を制御して温熱出力熱交換器に導かれる入口側温水系統5の温度を制御することができる。したがって、温熱出力熱交換器から導出される出口側温水系統6の温度変動を抑制することができる。
 なお、第3実施形態では、出口側温水系統温度検出器21によって検出された出口側温水系統6の温度から温度補償項を付加して三方弁4を制御するとして説明したが、本発明はこれに限定されるものではない。例えば、入口側熱源系統用温度検出器24によって検出された入口側熱源系統9の温度から、出口側温水系統6の温度と出口側温水系統目標温度との温度差を小さくするように補償する温度補償項を三方弁4の制御に付加しても良い。
 図8に、この場合の温水ヒートポンプの制御方法のブロック線図を参考例として示す。
 制御部は、入口側温水系統5の温度が入口側温水系統目標温度に達していない場合には、入口側温水系統5の温度が入口側温水系統目標温度に達するように三方弁4をフィードバック制御する。
 さらに、制御部は、入口側熱源系統9の温度が所定温度よりも高い又は低い場合には、一次遅れ項を挿入する。その後、制御部は、温度補償項を付加して三方弁4の制御を行う。温度補償項は、出口側温水系統6の温度と出口側温水系統目標温度との温度差を小さくするように補償するものであり、入口側熱源系統9の温度から求められる。
 さらに、制御部は、上流入口側温水系統用温度検出器22によって検出された上流入口側温水系統8の温度と、入口側流量検出器23によって検出された入口側温水系統5の流量とに対するテーブルより、三方弁4の開度を求めて、三方弁4の開度をフィードフォワード制御する。
 また、本実施形態および変形例では、一時遅れ項を挿入して三方弁4を制御するとして説明したが、一時遅れ項を省略しても良い。また、フィードフォワード制御を追加しないものとしても良い。
1 温水ヒートポンプ
2 温水ヒートポンプ本体
4 三方弁
5 温水系統(入口側温水系統)
6 温水系統(出口側温水系統)
 

Claims (7)

  1.  熱源系統から熱を汲み取り温熱を出力する温熱出力熱交換器を有する温水ヒートポンプ本体と、
     前記温熱出力熱交換器から温熱を得る温水系統と、
     前記温水系統に設けられる三方弁と、 前記温水ヒートポンプ本体および前記三方弁を制御する制御部と、を備え、
     前記制御部は、前記温熱出力熱交換器から導出された温水系統の一部を該温水出力熱交換器の上流側へ導くように前記三方弁の開度を制御する温水ヒートポンプ。
  2.  前記温熱出力熱交換器に導かれる温水系統に設けられる入口側温水系統用温度検出器と、
     前記温熱出力熱交換器と前記三方弁との間の温水系統に設けられる出口側温水系統用温度検出器と、を備え、 前記制御部は、前記入口側温水系統用温度検出器によって検出される入口側温水系統温度が入口側温水系統目標温度になるように、前記三方弁の開度を制御する請求項1に記載の温水ヒートポンプ。
  3.  前記制御部は、前記出口側温水系統用温度検出器によって検出される出口側温水系統温度が出口側温水系統目標温度になるように、前記温水ヒートポンプ本体の温熱出力を制御する請求項1または請求項2に記載の温水ヒートポンプ。
  4.  前記制御部は、前記三方弁の開度および前記温熱出力をフィードバック制御する請求項1から請求項3のいずれかに記載の温水ヒートポンプ。
  5.  三方弁から導かれる温水系統が合流する上流側の温水系統に設けられる上流入口側温水系統用温度検出器と、
     前記温熱出力熱交換器に導かれる温水系統の流量を検出する入口側流量検出器と、を備え、
     前記制御部は、前記三方弁の開度を、前記上流入口側温水系統用温度検出器によって検出される上流入口側温水系統温度および前記入口側流量検出器によって検出される入口側流量を用いてフィードフォワード制御する請求項1から請求項4のいずれかに記載の温水ヒートポンプ。
  6. 前記制御部は、前記三方弁の開度を、前記出口側温水系統温度を用いて前記出口側温水系統温度を前記出口側温水系統目標温度に近づけるように補償する温度補償項を付加して制御する請求項1から請求項5のいずれかに記載の温水ヒートポンプ。
  7.  熱源系統から熱を汲み取り温熱を出力する温熱出力熱交換器を有する温水ヒートポンプ本体と、前記温熱出力熱交換器から温熱を得る温水系統と、前記温水系統に設けられる三方弁と、を備えた温水ヒートポンプの前記温水ヒートポンプ本体および前記三方弁を制御する温水ヒートポンプの制御方法であって、
     前記温熱出力熱交換器から導出された温水系統の一部を該温水出力熱交換器の上流側へ導くように前記三方弁の開度を制御する温水ヒートポンプの制御方法。
     
PCT/JP2011/053768 2010-03-05 2011-02-22 温水ヒートポンプおよびその制御方法 WO2011108392A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020147021495A KR101570019B1 (ko) 2010-03-05 2011-02-22 온수 히트 펌프 및 그 제어 방법
EP11750504.0A EP2543935A4 (en) 2010-03-05 2011-02-22 HOT WATER HEAT PUMP AND METHOD FOR CONTROLLING IT
CN201180007028.2A CN102725591B (zh) 2010-03-05 2011-02-22 热水热泵及其控制方法
US13/520,229 US9664415B2 (en) 2010-03-05 2011-02-22 Hot-water heat pump and method of controlling the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-048886 2010-03-05
JP2010048886A JP5729910B2 (ja) 2010-03-05 2010-03-05 温水ヒートポンプおよびその制御方法

Publications (1)

Publication Number Publication Date
WO2011108392A1 true WO2011108392A1 (ja) 2011-09-09

Family

ID=44542048

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/053768 WO2011108392A1 (ja) 2010-03-05 2011-02-22 温水ヒートポンプおよびその制御方法

Country Status (6)

Country Link
US (1) US9664415B2 (ja)
EP (1) EP2543935A4 (ja)
JP (1) JP5729910B2 (ja)
KR (2) KR101570019B1 (ja)
CN (1) CN102725591B (ja)
WO (1) WO2011108392A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103703323A (zh) * 2011-11-11 2014-04-02 三菱重工业株式会社 温水加热系统以及控制装置及控制方法
CN110513930A (zh) * 2019-09-05 2019-11-29 四川长虹空调有限公司 空气源热泵机组变频压缩机加减载控制方法

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5729910B2 (ja) * 2010-03-05 2015-06-03 三菱重工業株式会社 温水ヒートポンプおよびその制御方法
EP2413048B1 (de) * 2010-07-30 2013-06-05 Grundfos Management A/S Brauchwassererwärmungseinheit
CN104769364B (zh) * 2012-11-16 2017-09-08 格兰富控股联合股份公司 热平衡机组及其控制方法与控制装置
DE102012024347A1 (de) * 2012-12-13 2014-06-18 Robert Bosch Gmbh Heizungsvorrichtung und Verfahren zu deren Betrieb
KR101549657B1 (ko) * 2013-11-08 2015-09-03 한국에너지기술연구원 지역난방 네트워크 간의 열교환 제어 시스템 및 그 방법
FR3046665A1 (fr) * 2016-01-08 2017-07-14 Elax Dev Unite de controle pour controler une temperature d'un premier liquide caloporteur en entree d'une pompe a chaleur eau/eau
KR101950888B1 (ko) * 2017-02-02 2019-02-21 김인수 보일러
CN107131651B (zh) * 2017-04-17 2020-06-30 广东芬尼克兹节能设备有限公司 一种稳定调节水温的装置和方法
CN107504548A (zh) * 2017-09-18 2017-12-22 江苏中圣管道工程技术有限公司 一种汽水混合集中供热系统
JP6894814B2 (ja) * 2017-09-21 2021-06-30 日立建機株式会社 ハイブリッド式作業機械
CN109442602B (zh) * 2018-08-27 2021-04-13 广东芬尼克兹节能设备有限公司 一种热泵机组的水路控制系统及其控制方法
CA3060479C (en) * 2019-09-20 2022-11-15 Payam Tavakoli System and method for controlling water heater output temperature
CN110726245B (zh) * 2019-10-08 2021-05-25 广东纽恩泰新能源科技发展有限公司 一种户用变频直热空气能热泵热水器
CN110953688A (zh) * 2019-12-30 2020-04-03 格力电器(武汉)有限公司 一种供水循环系统及水箱水路测试方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0375944B2 (ja) 1985-06-28 1991-12-03 Nippon Telegraph & Telephone
JPH07225062A (ja) 1994-02-16 1995-08-22 Hitachi Ltd 吸収式ヒートポンプ
JP2842550B2 (ja) 1994-11-25 1999-01-06 東京瓦斯株式会社 吸収冷温水機
JP2894602B2 (ja) 1995-10-02 1999-05-24 東京瓦斯株式会社 吸収冷温水機及びその制御方法
JP2005121283A (ja) * 2003-10-16 2005-05-12 Matsushita Electric Ind Co Ltd ヒートポンプ給湯機
JP2005257268A (ja) * 2005-04-21 2005-09-22 Matsushita Electric Ind Co Ltd ヒートポンプ給湯装置
JP2008249164A (ja) * 2007-03-29 2008-10-16 Mitsubishi Electric Corp 給湯装置

Family Cites Families (89)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1611764A (en) * 1921-07-22 1926-12-21 Louis R Mendelson Indirect water heater
US2619326A (en) * 1949-11-29 1952-11-25 Gen Electric Fluid heating system, including a heat pump
US3490517A (en) * 1965-08-10 1970-01-20 Nat Service Ind Inc Dynamically integrated comfort conditioning system
US3403723A (en) * 1965-08-10 1968-10-01 Lithonia Lighting Inc Dynamically integrated comfort conditioning system
US3658244A (en) * 1970-03-20 1972-04-25 Ranco Inc Air tempering system
SE389188B (sv) * 1973-12-20 1976-10-25 Projectus Ind Produkter Ab Forfarande och anordning for vermning av fluider i olika kretsar for skilda foremal medelst en vermepump, innefattande en koldmediekrets med en expansionsventil, en forangare, en kompressor och ett kondensorapparat
US4257556A (en) * 1975-05-07 1981-03-24 Skala Stephen F Fluid heat transfer system
DE2721301A1 (de) * 1977-05-12 1978-11-23 Geb Entian Anneliese Ohms Heizungsanlage fuer gebaeude mit einer zweitfeuerstelle
CH644460A5 (de) 1980-02-27 1984-07-31 Aquametro Ag Anlage zum transport von waerme mittels eines fluides.
DE3014029A1 (de) * 1980-04-11 1981-10-22 Rheinisch-Westfälisches Elektrizitätswerk AG, 4300 Essen Waermepumpenanlagen fuer heizungszwecke
JPS5721727A (en) * 1980-07-11 1982-02-04 Hitachi Ltd Heat pump type heater
JPS5721726A (en) * 1980-07-11 1982-02-04 Hitachi Ltd Heat pump type heater
US4341263A (en) * 1980-11-11 1982-07-27 Morteza Arbabian Waste water heat recovery apparatus
GB2090023B (en) * 1980-12-22 1984-04-18 British Gas Corp Central heating control system
DE3105373A1 (de) * 1981-02-13 1982-11-11 Siemens AG, 1000 Berlin und 8000 München Heizungsanlage
DE3207435A1 (de) * 1982-02-06 1983-09-08 Joh. Vaillant Gmbh U. Co, 5630 Remscheid Steuer- und regeleinrichtung fuer eine sorptionswaermepumpe
DE3302065A1 (de) * 1982-02-06 1983-08-18 Joh. Vaillant Gmbh U. Co, 5630 Remscheid Sorptionswaermepumpe
JPS6029863B2 (ja) * 1982-12-10 1985-07-12 工業技術院長 太陽熱利用プラント
US4498622A (en) * 1983-05-23 1985-02-12 Borg-Warner Corporation Quick recovery heat pump water heater
US4522253A (en) * 1983-08-10 1985-06-11 The Bennett Levin Associates, Inc. Water-source heat pump system
CA1214336A (en) * 1983-10-11 1986-11-25 Sven G. Oskarsson Heat pump system
JPS61125540A (ja) * 1984-11-21 1986-06-13 Fuji Heavy Ind Ltd 給湯用ヒ−トポンプ装置
DE3608867A1 (de) * 1986-03-17 1987-09-24 Stiebel Eltron Gmbh & Co Kg Aufladesteuerung eines waermepumpenbeheizten warmwasserspeichers
JPS632357A (ja) * 1986-06-19 1988-01-07 インタ−ナショナル ビジネス マシ−ンズ コ−ポレ−ション ヒート・シンク装置
JPS6332224A (ja) * 1986-07-25 1988-02-10 Takuma Co Ltd 熱供給システム
US4824740A (en) * 1987-06-15 1989-04-25 International Fuel Cell Corporation Fuel cell stack cooling system
GB8919654D0 (en) * 1989-08-31 1989-10-11 Worcester Heat Systems Ltd Improvements in or relating to water heating systems
US5115491A (en) * 1990-12-17 1992-05-19 Maier Perlman Tempering system for storage tank water heaters utilizing inlet and outlet heat exchanger
US5366151A (en) * 1993-12-27 1994-11-22 Ford Motor Company Hybrid vehicle fuel vapor management apparatus
JP3075944B2 (ja) 1994-11-29 2000-08-14 三洋電機株式会社 吸収冷温水機
DE19509419A1 (de) * 1995-03-16 1996-09-19 Klaus Grubert Zirkulationspumpensteuerung
JP3735891B2 (ja) * 1995-05-26 2006-01-18 株式会社ノーリツ 1缶2水路式風呂釜装置
US5613372A (en) * 1995-05-26 1997-03-25 Dumont Management, Inc. Heat pump system dehumidifier with secondary water loop
US5727396A (en) * 1995-12-15 1998-03-17 Gas Research Institute Method and apparatus for cooling a prime mover for a gas-engine driven heat pump
US5947373A (en) * 1996-02-09 1999-09-07 Sanyo Electric Co., Ltd. Refrigerant circuit with fluid heated refrigerant
DE19620399A1 (de) * 1996-05-21 1997-11-27 Stiebel Eltron Gmbh & Co Kg Verfahren zum Heizen mit einer Wärmepumpe
JP3632357B2 (ja) * 1997-03-17 2005-03-23 松下電器産業株式会社 ヒートポンプ式風呂給湯システム
US7147071B2 (en) * 2004-02-04 2006-12-12 Battelle Energy Alliance, Llc Thermal management systems and methods
US5918805A (en) * 1998-01-14 1999-07-06 Yankee Scientific, Inc. Self-powered space heating system
US6109346A (en) * 1998-01-20 2000-08-29 Hill; Gary G. Waste heat auxiliary tank system method and apparatus
CN2392132Y (zh) * 1999-09-23 2000-08-16 杨民 热水器用恒温出水装置
US6560978B2 (en) * 2000-12-29 2003-05-13 Thermo King Corporation Transport temperature control system having an increased heating capacity and a method of providing the same
JP3969154B2 (ja) * 2001-08-24 2007-09-05 株式会社デンソー 貯湯式給湯器
JP2003106653A (ja) 2001-09-28 2003-04-09 Kansai Electric Power Co Inc:The ヒートポンプ式給湯装置
JP3742356B2 (ja) * 2002-03-20 2006-02-01 株式会社日立製作所 ヒートポンプ給湯機
FR2847972B1 (fr) * 2002-11-29 2005-03-04 Realisation Mecaniques Engenee Echangeur de chaleur et dispositif de production d'eau chaude sanitaire
JP2004268752A (ja) * 2003-03-10 2004-09-30 Denso Corp 熱管理システム
JP3956925B2 (ja) * 2003-09-24 2007-08-08 松下電器産業株式会社 給湯装置
JP4304601B2 (ja) * 2004-01-20 2009-07-29 株式会社ノーリツ 貯留式給湯装置およびコージェネレーションシステム
US6862894B1 (en) * 2004-02-04 2005-03-08 Donald R. Miles Adaptive auxiliary condensing device and method
DE102004018034B4 (de) * 2004-04-14 2014-07-24 Stiebel Eltron Gmbh & Co. Kg Verfahren zur Einschaltung einer Wärmepumpe in Verbindung mit einem Brauchwasserspeicher für Wärmepumpen
JP4279725B2 (ja) * 2004-06-03 2009-06-17 関西電力株式会社 ヒートポンプ式給湯暖房装置
JP2006083720A (ja) * 2004-09-14 2006-03-30 Honda Motor Co Ltd コジェネレーション装置
US8567689B2 (en) * 2004-09-17 2013-10-29 Carrier Corporation Sanitary operator of a hot water heat pump
JP2006177625A (ja) * 2004-12-24 2006-07-06 Corona Corp 貯湯式給湯風呂装置
EP1906107A4 (en) * 2005-06-30 2015-07-22 Toshiba Carrier Corp HOT WATER SUPPLY DEVICE OF A HEAT PUMP
GB0522307D0 (en) * 2005-11-01 2005-12-07 Zenex Technologies Ltd A burner and heat exchanger combination, and a boiler including such a burner and heat exchanger combination
JP3966889B2 (ja) * 2005-12-28 2007-08-29 シャープ株式会社 ヒートポンプ式給湯機
DE102006017198A1 (de) * 2006-04-12 2007-10-25 Joachim Kiefer Wärmespeicheranlage
JP4857903B2 (ja) * 2006-05-17 2012-01-18 ダイキン工業株式会社 給湯機
KR101270615B1 (ko) * 2006-07-25 2013-06-07 엘지전자 주식회사 코제너레이션 및 그 제어 방법
KR101270616B1 (ko) * 2006-07-27 2013-06-07 엘지전자 주식회사 코제너레이션
WO2008025849A2 (en) * 2006-08-31 2008-03-06 Colipu A/S A solar air system with a heat pump
KR100805551B1 (ko) * 2006-10-17 2008-02-20 주식회사 경동나비엔 보일러 배기연도의 응결방지방법
US8955763B2 (en) * 2007-10-04 2015-02-17 Consolidated Edison Company Of New York, Inc. Building heating system and method of operation
EP2184563A4 (en) * 2008-02-04 2016-02-17 Mitsubishi Electric Corp AIR CONDITIONING AND WATER HEATING COMPLEX SYSTEM
JP4859874B2 (ja) * 2008-05-12 2012-01-25 三菱重工業株式会社 冷却海水移送ポンプの回転数制御装置
JP2009281650A (ja) * 2008-05-21 2009-12-03 Daikin Ind Ltd 暖房システム
JP4949325B2 (ja) * 2008-06-03 2012-06-06 本田技研工業株式会社 コージェネレーション装置
JP5171410B2 (ja) * 2008-06-11 2013-03-27 リンナイ株式会社 温水供給システム
KR101329509B1 (ko) * 2008-08-04 2013-11-13 엘지전자 주식회사 히트펌프 연동 온수 순환 시스템 및 제어 방법
US8657207B2 (en) * 2008-08-26 2014-02-25 Lg Electronics Inc. Hot water circulation system associated with heat pump and method for controlling the same
JP5713536B2 (ja) * 2009-01-05 2015-05-07 三菱電機株式会社 ヒートポンプ式給湯器
CN102282436A (zh) * 2009-01-20 2011-12-14 大金工业株式会社 水热交换器和热水热源装置
JP5200996B2 (ja) * 2009-02-24 2013-06-05 ダイキン工業株式会社 ヒートポンプシステム
JP2010196946A (ja) * 2009-02-24 2010-09-09 Daikin Ind Ltd ヒートポンプシステム
JP5316074B2 (ja) * 2009-02-24 2013-10-16 ダイキン工業株式会社 ヒートポンプシステム
JP2010196953A (ja) * 2009-02-24 2010-09-09 Daikin Ind Ltd ヒートポンプシステム
JP5551882B2 (ja) * 2009-02-24 2014-07-16 ダイキン工業株式会社 ヒートポンプシステム
WO2010109632A1 (ja) * 2009-03-26 2010-09-30 三菱電機株式会社 温度調整装置、流体供給システム、暖房システム、温度調整装置の取付方法及び流体供給方法
US20120000236A1 (en) * 2009-04-13 2012-01-05 Panasonic Corporation Heat pump heating system
FR2947895A3 (fr) * 2009-07-07 2011-01-14 Bosch Gmbh Robert Installation de chauffage et/ou de fourniture d'eau chaude sanitaire
FR2947896B1 (fr) * 2009-07-07 2016-07-01 Bosch Gmbh Robert Installation de chauffage et/ou de fourniture d'eau chaude sanitaire
JP5570531B2 (ja) * 2010-01-26 2014-08-13 三菱電機株式会社 ヒートポンプ装置
JP5729910B2 (ja) * 2010-03-05 2015-06-03 三菱重工業株式会社 温水ヒートポンプおよびその制御方法
CN102893097B (zh) 2010-04-15 2015-08-05 三菱电机株式会社 热水供给系统控制装置及热水供给系统控制程序及热水供给系统运转方法
JP4947197B2 (ja) * 2010-07-15 2012-06-06 ダイキン工業株式会社 ヒートポンプシステム
JP5375908B2 (ja) * 2011-09-15 2013-12-25 ダイキン工業株式会社 ヒートポンプ給湯機
KR102025740B1 (ko) * 2012-10-29 2019-09-26 삼성전자주식회사 히트펌프장치

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0375944B2 (ja) 1985-06-28 1991-12-03 Nippon Telegraph & Telephone
JPH07225062A (ja) 1994-02-16 1995-08-22 Hitachi Ltd 吸収式ヒートポンプ
JP2842550B2 (ja) 1994-11-25 1999-01-06 東京瓦斯株式会社 吸収冷温水機
JP2894602B2 (ja) 1995-10-02 1999-05-24 東京瓦斯株式会社 吸収冷温水機及びその制御方法
JP2005121283A (ja) * 2003-10-16 2005-05-12 Matsushita Electric Ind Co Ltd ヒートポンプ給湯機
JP2005257268A (ja) * 2005-04-21 2005-09-22 Matsushita Electric Ind Co Ltd ヒートポンプ給湯装置
JP2008249164A (ja) * 2007-03-29 2008-10-16 Mitsubishi Electric Corp 給湯装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2543935A4

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103703323A (zh) * 2011-11-11 2014-04-02 三菱重工业株式会社 温水加热系统以及控制装置及控制方法
EP2778555A4 (en) * 2011-11-11 2016-01-06 Mitsubishi Heavy Ind Ltd HOT WATER HEATING SYSTEM, CONTROL DEVICE AND CONTROL METHOD
CN103703323B (zh) * 2011-11-11 2016-06-08 三菱重工业株式会社 温水加热系统以及控制装置及控制方法
CN110513930A (zh) * 2019-09-05 2019-11-29 四川长虹空调有限公司 空气源热泵机组变频压缩机加减载控制方法
CN110513930B (zh) * 2019-09-05 2021-07-13 四川长虹空调有限公司 空气源热泵机组变频压缩机加减载控制方法

Also Published As

Publication number Publication date
EP2543935A4 (en) 2013-11-20
JP5729910B2 (ja) 2015-06-03
CN102725591A (zh) 2012-10-10
US9664415B2 (en) 2017-05-30
EP2543935A1 (en) 2013-01-09
KR20140108590A (ko) 2014-09-11
KR20120104372A (ko) 2012-09-20
CN102725591B (zh) 2015-01-14
US20120280052A1 (en) 2012-11-08
KR101570019B1 (ko) 2015-11-17
JP2011185477A (ja) 2011-09-22

Similar Documents

Publication Publication Date Title
WO2011108392A1 (ja) 温水ヒートポンプおよびその制御方法
US20200217520A1 (en) Controlled hydronic distribution system
US9010280B2 (en) Hot-water supply system
JP5905077B2 (ja) 空気調和システム
EP2610558B1 (en) Heat pump system and control method of heat pump apparatus of heat pump system
KR100985391B1 (ko) 개별난방 제어 시스템에서 난방 부하 변동에 따른 보일러의제어방법 및 이를 이용한 개별난방 제어 시스템
JP4620746B2 (ja) クリーンルーム用の給気温度制御システム
KR20220012301A (ko) 온도 제어 시스템 및 온도 제어 방법
EP3115699B1 (en) Heat pump hot water apparatus
JP4600139B2 (ja) 空調装置及びその制御方法
JP2006266596A (ja) 貯湯式給湯器
JP5496771B2 (ja) 温度制御装置を用いた温度制御方法
JP2002280036A (ja) 燃料電池の冷却制御装置
JP5247621B2 (ja) 給湯暖房システム
JP2017067422A (ja) ブライン供給装置
JP2007107842A (ja) 温水システム
JP4984302B2 (ja) 送水圧制御システムおよび送水圧制御方法
WO2018180903A1 (ja) 加熱装置、及び、加熱方法
JP2014001880A (ja) 貯湯式給湯機
EP3525060B1 (en) Flow control module and method for controlling the flow in a hydronic system
CN110953719B (zh) 一种防止燃气热水器采暖出水温度过高的控制方法
US20090234506A1 (en) Method for Controlling and/or Regulating Room Temperature in a Building
JP2014159888A (ja) 給湯システム
JP5989481B2 (ja) 貯湯式給湯機
JP2010019523A (ja) 暖房用熱源機

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180007028.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11750504

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13520229

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2011750504

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011750504

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20127018525

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE