WO2018180903A1 - 加熱装置、及び、加熱方法 - Google Patents

加熱装置、及び、加熱方法 Download PDF

Info

Publication number
WO2018180903A1
WO2018180903A1 PCT/JP2018/011456 JP2018011456W WO2018180903A1 WO 2018180903 A1 WO2018180903 A1 WO 2018180903A1 JP 2018011456 W JP2018011456 W JP 2018011456W WO 2018180903 A1 WO2018180903 A1 WO 2018180903A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat exchanger
load
flow rate
inlet
side heat
Prior art date
Application number
PCT/JP2018/011456
Other languages
English (en)
French (fr)
Inventor
正朋 小阪
哲爾 藤野
Original Assignee
三菱重工サーマルシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工サーマルシステムズ株式会社 filed Critical 三菱重工サーマルシステムズ株式会社
Priority to CN201880004466.5A priority Critical patent/CN109983280A/zh
Priority to EP18775084.9A priority patent/EP3531030A4/en
Publication of WO2018180903A1 publication Critical patent/WO2018180903A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D3/00Hot-water central heating systems
    • F24D3/08Hot-water central heating systems in combination with systems for domestic hot-water supply
    • F24D3/082Hot water storage tanks specially adapted therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D19/00Details
    • F24D19/10Arrangement or mounting of control or safety devices
    • F24D19/1006Arrangement or mounting of control or safety devices for water heating systems
    • F24D19/1009Arrangement or mounting of control or safety devices for water heating systems for central heating
    • F24D19/1015Arrangement or mounting of control or safety devices for water heating systems for central heating using a valve or valves
    • F24D19/1021Arrangement or mounting of control or safety devices for water heating systems for central heating using a valve or valves a by pass valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D19/00Details
    • F24D19/10Arrangement or mounting of control or safety devices
    • F24D19/1006Arrangement or mounting of control or safety devices for water heating systems
    • F24D19/1066Arrangement or mounting of control or safety devices for water heating systems for the combination of central heating and domestic hot water
    • F24D19/1072Arrangement or mounting of control or safety devices for water heating systems for the combination of central heating and domestic hot water the system uses a heat pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D3/00Hot-water central heating systems
    • F24D3/18Hot-water central heating systems using heat pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/20Control of fluid heaters characterised by control inputs
    • F24H15/212Temperature of the water
    • F24H15/223Temperature of the water in the water storage tank
    • F24H15/225Temperature of the water in the water storage tank at different heights of the tank
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/20Control of fluid heaters characterised by control inputs
    • F24H15/254Room temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H4/00Fluid heaters characterised by the use of heat pumps
    • F24H4/02Water heaters
    • F24H4/04Storage heaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D2200/00Heat sources or energy sources
    • F24D2200/12Heat pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D2220/00Components of central heating installations excluding heat sources
    • F24D2220/02Fluid distribution means
    • F24D2220/0235Three-way-valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/30Control of fluid heaters characterised by control outputs; characterised by the components to be controlled
    • F24H15/375Control of heat pumps
    • F24H15/38Control of compressors of heat pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • F25B2339/04Details of condensers
    • F25B2339/047Water-cooled condensers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/12Hot water central heating systems using heat pumps

Definitions

  • the present invention relates to a heating device using a CO 2 refrigerant and a method for heating a liquid to be heated.
  • the load side of the heat pump is, for example, floor heating
  • the floor heating is a low temperature and low load
  • the temperature of a medium (such as water) used for heat exchange between the heat pump and the floor heating becomes relatively low. . Therefore, the temperature difference between the inlet and the outlet of the heat pump of this medium becomes small.
  • the efficiency (COP) of the heat pump decreases.
  • a medium (water) in a hot water storage tank is agitated by a mixing valve to reduce the temperature of the medium, thereby suppressing a decrease in operating efficiency even when a CO 2 refrigerant heat pump is used.
  • Enables low-temperature circulation heating operation such as heating.
  • the present invention provides a heating device and a heating method capable of maintaining high efficiency even when the load fluctuates.
  • the heating device has a refrigerant circuit in which CO 2 as a refrigerant circulates by repeating condensation and evaporation, and heats the liquid to be heated introduced from the inlet and discharges it from the outlet.
  • An exchange section a circulation path connected to the inlet and the outlet of the heat exchange section and circulating the heated liquid, and heat exchange with the heated liquid in the circulation path to cool the heated liquid
  • a load side heat exchanger a return flow path connecting the circulation path between an inlet side and an outlet side of the load side heat exchanger, and the return flow at the inlet side of the load side heat exchanger
  • One flow rate, and the load side heat exchange from the outlet of the heat exchange unit A flow rate adjustment unit capable of adjusting a second flow rate that is a flow rate of the heated liquid toward the inlet of the vessel, and operating the flow rate adjustment unit according to a temperature of an environment in which the load side heat exchanger is installed. And a controller that adjusts the ratio between the first flow rate and the second flow rate.
  • the ratio of the first flow rate and the second flow rate of the liquid to be heated can be adjusted by controlling the flow rate adjusting unit according to the environmental temperature of the load side heat exchanger. Therefore, for example, when the temperature of the environment of the load side heat exchanger becomes high, the second liquid to be heated flowing into the load side heat exchanger again through the return channel from the outlet of the load side heat exchanger.
  • One flow rate is made smaller than the second flow rate of the liquid to be heated that flows from the outlet of the heat exchange unit to the inlet of the load side heat exchanger. Then, the temperature of the liquid to be heated at the inlet of the load side heat exchanger can be lowered.
  • the heating device has a refrigerant circuit in which CO 2 as a refrigerant circulates by repeating condensation and evaporation, and heats the liquid to be heated introduced from the inlet and discharges it from the outlet.
  • a heat exchanging part a circulation path connected to the inlet and the outlet of the heat exchanging part and circulating the heated liquid, and exchanging heat with the heated liquid in the circulating path, and the heated liquid
  • a load side heat exchanger that cools the return side, a return flow path that connects the circulation path between the inlet side and the outlet side of the load side heat exchanger, and the inlet side of the load side heat exchanger
  • the flow rate of the heated liquid is provided at a connection portion between the return flow path and the circulation path, and flows from the outlet of the load side heat exchanger to the inlet of the load side heat exchanger via the return flow path.
  • a first flow rate, and the load side from the outlet of the heat exchange unit Between the first flow rate adjustment unit capable of adjusting the second flow rate that is the flow rate of the heated liquid toward the inlet of the heat exchanger, and between the outlet of the load side heat exchanger and the first flow rate adjustment unit A second flow rate adjusting unit provided and capable of adjusting a flow rate of the heated liquid on the outlet side of the load side heat exchanger; and the heated side on the inlet side and the outlet side of the load side heat exchanger.
  • An outlet-side control unit configured to operate the second flow rate adjusting unit so as to keep a temperature difference of the liquid constant, and to adjust a flow rate of the heated liquid on the outlet side of the load-side heat exchanger;
  • An inlet-side control unit that operates the first flow rate adjusting unit so as to keep the temperature of the heated liquid at the inlet side of the heat exchanger constant, and adjusts the ratio between the first flow rate and the second flow rate.
  • the flow rate of the heated liquid on the outlet side of the load side heat exchanger can be adjusted by controlling the second flow rate adjusting unit according to the temperature of the environment of the load side heat exchanger. It has become. For example, when the temperature of the load-side heat exchanger environment becomes high, the load-side heat exchanger has a constant temperature difference between the inlet side and the outlet side of the load-side heat exchanger.
  • the flow rate of the liquid to be heated that flows into the inlet of the load side heat exchanger again from the outlet through the return flow path can be reduced to reduce the amount of heat exchange in the load side heat exchanger. Therefore, it can suppress that the temperature of the to-be-heated liquid in the exit side of a load side heat exchanger rises. Therefore, the temperature of the heated liquid introduced from the outlet of the load-side heat exchanger to the inlet of the heat exchanger can be kept low.
  • the heating device is the heating device according to the second aspect, wherein the inlet side control unit is configured to adjust the first flow rate adjustment unit according to a temperature of an environment in which the load side heat exchanger is installed. May be operated to adjust the ratio between the first flow rate and the second flow rate.
  • the temperature of the heated liquid introduced again from the outlet of the load-side heat exchanger to the inlet of the heat exchange section can be kept low. Furthermore, the temperature of the liquid to be heated at the inlet of the load-side heat exchanger can be lowered by reducing the first flow rate compared to the second flow rate. Therefore, it can avoid that the temperature of the to-be-heated liquid becomes high at the exit of the load side heat exchanger as the temperature of the environment where the load side heat exchanger is installed increases. Therefore, the temperature of the liquid to be heated introduced from the outlet of the load side heat exchanger to the inlet of the heat exchange section can be further reduced.
  • the heating apparatus is the heating apparatus according to the first to third aspects, wherein the upper portion is between the connection portion between the circulation path and the return flow path and the outlet of the heat exchange section. And the lower part is connected to the circulation path between the connection part of the circulation path and the return flow path and the inlet of the heat exchange unit to store the liquid to be heated. And an operation control unit that performs control to stop and operate the heat exchange unit according to the liquid amount of the heated liquid that has reached a predetermined temperature or higher at the upper part of the storage tank. Also good.
  • CO 2 refrigerant heat pump device CO 2 water heater
  • a storage tank By providing such a storage tank, it is possible to always discharge the liquid to be heated at a constant temperature toward the load-side heat exchanger while performing ON / OFF control in the heat exchange unit. Further, a CO 2 refrigerant heat pump device (CO 2 water heater) provided with a storage tank can be applied to the heating device of this embodiment as it is. Therefore, the cost of the heating device can be suppressed.
  • the CO 2 refrigerant heating device performs heat exchange of the heat exchange unit according to the temperature of the environment in which the load side heat exchanger is installed. You may further provide the operation control part which adjusts capability.
  • Such an operation control unit can always discharge the liquid to be heated at a predetermined temperature toward the load-side heat exchanger without a storage tank for storing the liquid to be heated. Moreover, it is not necessary to provide a storage tank, and the heating device can be simplified.
  • the heating method according to the sixth aspect of the present invention includes a refrigerant circuit in which CO 2 as a refrigerant circulates by repeating condensation and evaporation, and heat exchange that heats the liquid to be heated introduced from the inlet and discharges it from the outlet. And a circulation path that is connected to the inlet and the outlet of the heat exchange section and through which the heated liquid circulates, and performs heat exchange with the heated liquid in the circulation path to cool the heated liquid
  • a heating method for heating the liquid to be heated with an apparatus comprising: a load side heat exchanger; and a return flow path connecting the circulation path between an inlet side and an outlet side of the load side heat exchanger.
  • the load-side heat exchanger is installed by reducing the first flow rate compared to the second flow rate. It can be avoided that the temperature of the liquid to be heated at the outlet of the load-side heat exchanger increases as the temperature of the environment increases. Therefore, the temperature of the liquid to be heated introduced from the outlet of the load-side heat exchanger to the inlet of the heat exchange unit can be kept low.
  • the heating method according to the seventh aspect of the present invention includes a refrigerant circuit in which CO 2 as a refrigerant circulates by repeating condensation and evaporation, and heat exchange that heats the liquid to be heated introduced from the inlet and discharges it from the outlet. And a circulation path that is connected to the inlet and the outlet of the heat exchange section and through which the heated liquid circulates, and performs heat exchange with the heated liquid in the circulation path to cool the heated liquid
  • a heating method for heating the liquid to be heated with an apparatus comprising: a load side heat exchanger; and a return flow path connecting the circulation path between an inlet side and an outlet side of the load side heat exchanger.
  • the flow rate of the heated liquid at the outlet side of the load side heat exchanger is adjusted so that the temperature difference between the heated liquid at the inlet side and the outlet side of the load side heat exchanger is kept constant.
  • Flow rate adjustment step and before the load side heat exchanger on the inlet side The flow rate of the heated liquid from the outlet of the load-side heat exchanger to the inlet of the load-side heat exchanger via the return flow path so as to keep the temperature of the heated liquid constant, A flow rate adjustment step of adjusting a ratio of the flow rate of the heated liquid from the outlet of the heat exchange unit toward the inlet of the load side heat exchanger.
  • the outlet of the load-side heat exchanger is returned to the inlet of the load-side heat exchanger again through the return channel. Reduce the flow rate of liquid to be heated. As a result, the amount of heat exchange in the load-side heat exchanger decreases, and as a result, the temperature of the liquid to be heated on the inlet side of the load-side heat exchanger is kept constant. It is possible to prevent the temperature of the heated liquid from rising. Therefore, the temperature of the liquid to be heated introduced from the outlet of the load-side heat exchanger to the inlet of the heat exchange unit can be kept low.
  • the heating method of the eighth aspect of the present invention in the seventh aspect, in the flow rate ratio adjusting step, depending on the temperature of the environment in which the load-side heat exchanger is installed, The flow rate of the liquid to be heated from the outlet of the load side heat exchanger toward the inlet of the load side heat exchanger, and the target to be heated from the outlet of the heat exchange unit toward the inlet of the load side heat exchanger.
  • the ratio with the flow rate of the heated liquid may be further adjusted.
  • the load side heat exchanger by reducing the flow rate of the heated liquid flowing into the inlet of the load side heat exchanger again from the outlet of the load side heat exchanger through the return flow path, the load side heat exchanger
  • the temperature of the heated liquid introduced from the outlet to the inlet of the heat exchange unit can be kept low. Therefore, it can avoid that the temperature of the to-be-heated liquid becomes high at the exit of the load side heat exchanger as the temperature of the environment where the load side heat exchanger is installed increases. Therefore, the temperature of the liquid to be heated introduced from the outlet of the load side heat exchanger to the inlet of the heat exchange section can be further reduced.
  • the COP in the heat exchange section can be improved and high efficiency can be maintained.
  • the heating apparatus 1 of 1st embodiment of this invention performs heat exchange with the heat exchange unit 2 that heats water (liquid to be heated) W and the heated water (hot water) W to obtain water W.
  • the first flow rate adjustment unit (flow rate adjustment unit) 10 and the hot water storage tank (storage tank) 17, the inlet side control unit 11 including the MPU that controls the first flow rate adjustment unit 10, and the heat exchange unit 2 are operated.
  • An operation control unit 18 including an MPU to be controlled is provided.
  • the heat exchange unit 2 has a refrigerant circuit 13 in which CO 2 (carbon dioxide) circulates as a refrigerant.
  • the refrigerant circuit 13 is a heat pump having a compressor, a heat exchanger, piping, and the like (not shown). CO 2 circulates in the refrigerant circuit 13 by repeating condensation and evaporation. Thus, when the water W is introduced from the inlet 2a of the heat exchange unit 2, the water W is heated and discharged from the outlet 2b.
  • the load side heat exchanger 3 is, for example, a floor heating panel.
  • the temperature of the environment where the load-side heat exchanger 3 is provided (indoor temperature or outside temperature) varies depending on the season. During the season when it is not relatively cold, the load on the load-side heat exchanger 3 is low, and the amount of heat exchange with the water (hot water) W heated by the heat exchange unit 2 is low.
  • the circulation path 5 connects the outlet 2b of the heat exchange unit 2 and the inlet 3a of the load side heat exchanger 3, and connects the outlet 3b of the load side heat exchanger 3 and the inlet 2a of the heat exchange unit 2. It is a pipeline. Thereby, the water W circulates between the heat exchange part 2 and the load side heat exchanger 3.
  • the return flow path 6 connects the circulation path 5 between the inlet 3 a side and the outlet 3 b side of the load side heat exchanger 3. That is, the return flow path 6 is between the outlet 2b of the heat exchanger 2 and the inlet 3a of the load side heat exchanger 3, and between the inlet 2a of the heat exchanger 2 and the outlet 3b of the load side heat exchanger 3.
  • the circulation path 5 is connected between them. Thereby, a part of the water W from the outlet 3b of the load side heat exchanger 3 flows through the return flow path 6 toward the inlet 3a of the load side heat exchanger 3, and the remaining part is a heat exchange part. It distribute
  • the circulation pump 7 is provided on the load side heat exchanger 3 side on the outlet 3b side of the load side heat exchanger 3 with respect to the connection portion between the return flow path 6 and the circulation path 5.
  • the first flow rate adjusting unit 10 is, for example, a three-way valve.
  • the first flow rate adjusting unit 10 is provided at a connection portion between the return flow path 6 and the circulation path 5 on the inlet 3 a side of the load side heat exchanger 3. Then, the flow rate of the water W from the outlet 3b of the load side heat exchanger 3 to the inlet 3a of the load side heat exchanger 3 via the return flow path 6 (first flow rate Q1) and heat
  • the flow rate of water W (second flow rate Q2) from the outlet 2b of the exchange unit 2 toward the inlet 3a of the load-side heat exchanger 3 can be adjusted.
  • the inlet side control unit 11 operates the first flow rate adjustment unit 10 according to the temperature of the environment where the load side heat exchanger 3 is installed. Then, the ratio between the first flow rate Q1 and the second flow rate Q2 is adjusted. The inlet side control unit 11 positively adjusts the temperature of the water W supplied to the inlet 3a of the load side heat exchanger 3 by appropriately adjusting the ratio of the first flow rate Q1 and the second flow rate Q2.
  • the temperature of the environment in which the load-side heat exchanger 3 is installed is acquired from, for example, the external temperature sensor 15 that measures the external air temperature.
  • the temperature of the water W supplied to the inlet 3 a of the load-side heat exchanger 3 (hot water temperature) is installed between the first flow rate adjusting unit 10 in the circulation path 5 and the inlet 3 a of the load-side heat exchanger 3. It is measured by the temperature sensor 16.
  • the entrance side control part 11 respond
  • a table indicating the relationship with the hot water temperature (the temperature of the water W introduced into the load side heat exchanger 3) for ensuring the amount of heat necessary for the load side heat exchanger 3 is stored.
  • a hot water storage tank (storage tank) 17 is provided in the circulation path 5 and stores water (hot water) W. More specifically, the upper part of the hot water tank 17 is connected to the circulation path 5 between the connection part of the circulation path 5 and the return flow path 6 and the outlet 2b of the heat exchange part 2, and the lower part of the hot water tank 17 Is connected to the circulation path 5 between the connection portion between the circulation path 5 and the return flow path 6 and the inlet 2a of the heat exchange unit 2.
  • hot water (hot water) W is stored in the upper part and low temperature water W is stored in the lower part.
  • An upper temperature sensor 19a is provided on the upper side wall surface of the hot water tank 17, and a lower temperature sensor 19b is provided on the lower side wall surface.
  • the operation control unit 18 determines whether or not the temperature of the water (hot water) W in the hot water tank 17 is equal to or higher than a predetermined temperature at the height position where the upper temperature sensor 19a is provided. Stop or start operation (not shown). That is, the operation control unit 18 determines whether or not the amount of water (hot water) W equal to or higher than a predetermined temperature has reached the level of the upper temperature sensor 19a. Stop or start the operation.
  • the “predetermined temperature” is preferably 60 ° C. or higher and 90 ° C. or lower, but is preferably at least 60 ° C. or higher. Therefore, water W (hot water) having a predetermined temperature of, for example, 60 ° C. or more is always supplied from the hot water tank 17 to the circulation path 5 and flows toward the first flow rate adjustment unit 10.
  • the inlet-side control unit 11 determines the heat exchange amount necessary for the load-side heat exchanger 3. Thereafter, the inlet side control unit 11 determines the hot water temperature based on the table.
  • the inlet-side control unit 11 returns the flow rate (first flow rate) of water (hot water) W flowing into the inlet 3a of the load-side heat exchanger 3 again from the outlet 3b of the load-side heat exchanger 3 via the return flow path 6.
  • Q1 is passed through the first flow rate adjusting unit 10 from the outlet 2b of the heat exchange unit 2 through the hot water storage tank 17, and the flow rate of the water (hot water) W toward the inlet 3a of the load side heat exchanger 3 (second flow rate). Less than Q2) (flow rate ratio adjustment step). Then, the temperature of the water (hot water) W flowing into the load side heat exchanger 3 is lowered from 35 degrees to 30 degrees, for example.
  • the first flow rate adjusting unit 10 is controlled according to the temperature of the environment of the load side heat exchanger 3, and for example, the environment of the load side heat exchanger 3 as described above.
  • the first flow rate Q1 is made smaller than the second flow rate Q2. Then, the temperature of the water W at the inlet 3a of the load side heat exchanger 3 can be lowered.
  • the heating device 21 according to the second embodiment of the present invention will be described.
  • the same parts as those in the first embodiment are denoted by the same reference numerals, and redundant description is omitted.
  • the second embodiment is different from the first embodiment in that in addition to the configuration of the first embodiment, the second flow rate adjustment unit 22 and the outlet side control unit 23 including an MPU and the like are provided. Moreover, the function of the entrance side control part 11 differs from 1st embodiment.
  • the second flow rate adjusting unit 22 is, for example, a valve or an inverter pump. When an inverter pump is used for the second flow rate adjusting unit 22, the circulation pump 7 is not necessary.
  • the second flow rate adjusting unit 22 is provided on the outlet side 3b side of the load side heat exchanger 3 and closer to the load side heat exchanger 3 than the connection portion between the circulation path 5 and the return path 6. That is, the second flow rate adjusting unit 22 is provided between the outlet 3 b of the load side heat exchanger 3 and the first flow rate adjusting unit 10.
  • the second flow rate adjusting unit 22 adjusts the flow rate of the water W on the outlet 3b side of the load side heat exchanger 3.
  • a flow rate sensor 28 is provided in the circulation path 5 between the outlet 3b of the load-side heat exchanger 3 and the second flow rate adjustment unit 22.
  • An inlet side temperature sensor 25 is provided between the first flow rate adjusting unit 10 and the load side heat exchanger 3, and an outlet side temperature is provided between the outlet 3 b of the load side heat exchanger 3 and the return flow path 6.
  • a sensor 26 is provided. The inlet temperature sensor 25 and the temperature sensor 16 monitored by the inlet controller 11 may be shared.
  • the outlet-side control unit 23 operates the second flow rate adjustment unit 22 according to the temperature of the environment in which the load-side heat exchanger 3 is installed based on the measurement value of the external temperature sensor 15. That is, the outlet side control unit 23 operates the second flow rate adjustment unit 22 so that the temperature difference between the inlet side temperature sensor 25 and the outlet side temperature sensor 26 is always constant.
  • the inlet side control unit 11 operates the first flow rate adjustment unit 10 so as to keep the temperature of the water (hot water) W on the inlet 3a side of the load side heat exchanger 3 constant, The ratio between the first flow rate Q1 and the second flow rate Q2 is adjusted.
  • the measured values of the inlet side temperature sensor 25, the outlet side temperature sensor 26, and the flow rate sensor 28 are set so that the temperature difference of the water W between the inlet 3a side and the outlet 3b side of the load side heat exchanger 3 is kept constant. While looking, the flow rate of the water W on the outlet 3b side of the load side heat exchanger 3 is determined. At this time, the inlet side control unit 11 adjusts the ratio of the first flow rate Q1 and the second flow rate Q2 so that the temperature of the water W (hot water) at the inlet 3a of the load side heat exchanger 3 is always constant (flow rate). Ratio adjustment process).
  • the load on the load side heat exchanger 3 decreases during the day. Therefore, when the flow rate of the water W flowing through the load side heat exchanger 3 does not change, the temperature of the water W on the outlet 3b side of the load side heat exchanger 3 becomes high. Therefore, on such a day, the amount of heat exchange in the load-side heat exchanger 3 is reduced to suppress the temperature rise of the water W on the outlet 3b side of the load-side heat exchanger 3, and the outlet of the load-side heat exchanger 3 In order to keep the temperature of the water W on the 3b side low, it is necessary to keep the temperature difference between the inlet 3a side and the outlet 3b side of the load side heat exchanger 3 constant.
  • the flow rate of water (hot water) W flowing into the load side heat exchanger 3 is 0.8. It is necessary to be in a state to drive in.
  • the outlet-side control unit 23 operates the second flow rate adjusting unit 22 on the outlet 3b side of the load-side heat exchanger 3 so that the flow rate of the water W flowing through the load-side heat exchanger 3 is 0.8 ( Flow rate adjustment step).
  • the second flow rate Q2 decreases, the ratio between the second flow rate Q2 and the first flow rate Q1 changes, and the water (hot water) flowing into the inlet 3a of the load-side heat exchanger 3 from the first flow rate adjustment unit 10 changes.
  • the temperature of W decreases.
  • the temperature of the water W on the inlet 3a side of the load side heat exchanger 3 is kept constant by controlling the first flow rate adjusting unit 10 by the inlet side control unit 11. For this reason, the temperature rise of the water W by the side of the exit 3b of the load side heat exchanger 3 is suppressed as a result.
  • the second flow rate adjusting unit 22 is controlled according to the temperature of the environment of the load-side heat exchanger 3, and the water on the outlet 3b side of the load-side heat exchanger 3 is controlled.
  • the flow rate of W can be adjusted. Therefore, the temperature of the water W introduced from the outlet 3b of the load-side heat exchanger 3 to the inlet 2a of the heat exchange unit 2 can be kept low. Therefore, the COP of the heating device 21 can be kept high. That is, high efficiency can be achieved even when the load fluctuates.
  • the hot water storage tank 17 is provided, the water W having a constant temperature can always be distributed toward the load-side heat exchanger 3. Furthermore, the CO 2 refrigerant heat pump device (CO 2 hot water supply device) provided with the hot water tank 17 can be applied to the heating device 21 of this embodiment as it is. Therefore, the cost of the heating device 21 can be suppressed.
  • CO 2 refrigerant heat pump device CO 2 hot water supply device
  • the heating device 31 includes a heat exchanging unit 2 that heats the water W and a load side that cools the water W by exchanging heat with the heated water (hot water) W.
  • the heat exchanger 3 the circulation path 5 through which the water W can be circulated by connecting the heat exchange section 2 and the load side heat exchanger 3, the return flow path 6 provided in the circulation path 5, the first flow rate Control the adjustment unit (flow rate adjustment unit) 10, the second flow rate adjustment unit 22, the hot water storage tank (storage tank) 17, the inlet side control unit 11 that controls the first flow rate adjustment unit 10, and the second flow rate adjustment unit 22.
  • an operation control unit 18 that controls the operation of the heat exchange unit 2.
  • the inlet-side control unit 11 performs heat generation.
  • the temperature difference between the inlet 2a and the outlet 2b of the exchange unit 2 can be increased. Therefore, the COP of the heating device 31 can be maintained in a high state, and high efficiency can be achieved.
  • the temperature of the water W introduced into the inlet 2a of the heat exchange part 2 from the outlet 3b of the load side heat exchanger 3 by the outlet side control part 23 can be suppressed low. Therefore, the COP of the heating device 31 can be maintained in a high state, and high efficiency can be achieved.
  • the operation control unit 42 adjusts the heat exchange capability of the heat exchange unit 2 according to the temperature of the environment where the load-side heat exchanger 3 is installed. More specifically, the operation control unit 42 appropriately adjusts the temperature of the water (hot water) W discharged from the outlet 2b of the heat exchange unit 2 by adjusting the rotation speed of the compressor of the refrigerant circuit 13. It has become.
  • the operation control unit 42 can always discharge the water W at a predetermined temperature from the heat exchange unit 2 without a hot water storage tank for storing the water W. Further, it is not necessary to provide a hot water tank, and the heating device 41 can be simplified.
  • the heating device 41 having no hot water storage tank as in this embodiment may be applied to the first embodiment or the second embodiment.
  • first flow rate adjustment unit 10 and the second flow rate adjustment unit 22 may be manually operated without using the inlet side control unit 11 and the outlet side control unit 23.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Water Supply & Treatment (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)
  • Steam Or Hot-Water Central Heating Systems (AREA)

Abstract

加熱装置(1)が、負荷側熱交換器(3)の入口(3a)側での戻り流路(6)と循環路(5)との接続部分に設けられ、戻り流路(6)を介して負荷側熱交換器(3)の出口(3b)から負荷側熱交換器(3)の入口(3a)に向かう水(W)の流量である第一流量(Q1)、及び、冷媒であるCO2が凝縮と蒸発を繰り返して循環する熱交換部(2)の出口(2b)から負荷側熱交換器(3)の入口(3a)に向かう水(W)の流量である第二流量(Q2)とを調整可能な流量調整部(10)と、負荷側熱交換器(3)が設置された環境の温度に応じて流量調整部(10)を動作させ、第一流量(Q1)と第二流量(Q2)との比率を調整させる制御部(11)と、を備えている。

Description

加熱装置、及び、加熱方法
 本発明は、CO冷媒を用いた加熱装置、及び、被加熱液体の加熱方法に関する。
 本願は、2017年3月30日に出願された特願2017-067487号に基づき優先権を主張し、その内容をここに援用する。
 従来から、環境負荷の少ない自然冷媒と呼ばれるCO(二酸化炭素)を用いたヒートポンプが知られている(特許文献1参照)。
 このようなヒートポンプはCOの特性上、高温状態での一過式の加熱運転を得意とするシステムである。このため低温状態で、入口温度と出口温度の温度差が少ない運転を行った場合には、COP(Coefficient Of Performance)が大幅に低下してしまうといった問題がある。
 ここでヒートポンプの負荷側が例えば床暖房である場合、床暖房は低温低負荷であるため、ヒートポンプと床暖房との間での熱交換に供される媒体(水等)の温度は比較的低くなる。よってこの媒体のヒートポンプの入口と出口とでの温度差は小さくなり、例えば床暖房等の低負荷にCO冷媒のヒートポンプを用いようとすると、ヒートポンプの効率(COP)は低下する。
 そこで、現状では例えば貯湯タンク内の媒体(水)をミキシングバルブによって撹拌し、媒体の温度を低下させるシステムを用いることで、CO冷媒のヒートポンプを用いても運転効率低下を抑制しつつ、床暖房等の低温循環加熱運転を可能としている。
特開2010-101549号公報
 しかしながら、このようなCO冷媒のヒートポンプシステムを用いた場合、負荷へは一定温度、一定流量の媒体しか供給できない。仮にヒートポンプの負荷が床暖房である場合には、季節に応じて負荷から返送される媒体の温度が変動する。特に比較的寒くない季節には負荷である床暖房での熱交換量が少なくなり、負荷から返送される媒体の温度が高くなる。この結果、ヒートポンプの入口の媒体の温度が高くなり、ヒートポンプの入口と出口との温度差は小さくなる。
 そこで本発明は、負荷が変動する場合であっても、高効率を維持可能な加熱装置、及び、加熱方法を提供する。
 本発明の第一の態様に係る加熱装置は、冷媒であるCOが凝縮と蒸発を繰り返して循環する冷媒回路を有するとともに、入口から導入された被加熱液体を加熱して出口から吐出する熱交換部と、前記熱交換部の前記入口と前記出口とに接続されて前記被加熱液体が循環する循環路と、前記循環路の前記被加熱液体と熱交換を行って該被加熱液体を冷却する負荷側熱交換器と、前記負荷側熱交換器の入口側と出口側との間で前記循環路を接続する戻り流路と、前記負荷側熱交換器の前記入口側での前記戻り流路と前記循環路との接続部分に設けられ、前記戻り流路を介して前記負荷側熱交換器の前記出口から前記負荷側熱交換器の前記入口に向かう前記被加熱液体の流量である第一流量、及び、前記熱交換部の前記出口から前記負荷側熱交換器の前記入口に向かう前記被加熱液体の流量である第二流量を調整可能な流量調整部と、前記負荷側熱交換器が設置された環境の温度に応じて、前記流量調整部を動作させ、前記第一流量と前記第二流量との比率を調整させる制御部と、を備えている。
 このような加熱装置によれば、負荷側熱交換器の環境の温度に応じて流量調整部を制御し、被加熱液体の第一流量と第二流量との比率を調整可能となっている。従って、例えば負荷側熱交換器の環境の温度が高くなった際には、負荷側熱交換器の出口から戻り流路を介して再び負荷側熱交換器の入口に流入する被加熱液体の第一流量を、熱交換部の出口から負荷側熱交換器の入口に流入する被加熱液体の第二流量と比べて少なくする。すると、負荷側熱交換器の入口での被加熱液体の温度を下げることができる。この結果、負荷側熱交換器の設置された環境の温度の上昇に応じて負荷側熱交換器の出口での被加熱液体の温度が高くなってしまうことを回避できる。よって負荷側熱交換器の出口から熱交換部の入口へ導入される被加熱液体の温度を低く抑えることができる。
 また、本発明の第二の態様に係る加熱装置は、冷媒であるCOが凝縮と蒸発を繰り返して循環する冷媒回路を有するとともに、入口から導入された被加熱液体を加熱して出口から吐出する熱交換部と、前記熱交換部の前記入口と前記出口とに接続されて前記被加熱液体が循環する循環路と、前記循環路の前記被加熱液体と熱交換を行って該被加熱液体を冷却する負荷側熱交換器と、前記負荷側熱交換器の入口側と出口側との間で前記循環路を接続する戻り流路と、前記負荷側熱交換器の前記入口側での前記戻り流路と前記循環路との接続部分に設けられ、前記戻り流路を介して前記負荷側熱交換器の前記出口から前記負荷側熱交換器の前記入口に向かう前記被加熱液体の流量である第一流量、及び、前記熱交換部の前記出口から前記負荷側熱交換器の前記入口に向かう前記被加熱液体の流量である第二流量を調整可能な第一流量調整部と、前記負荷側熱交換器の前記出口と前記第一流量調整部との間に設けられ、前記負荷側熱交換器の前記出口側の前記被加熱液体の流量を調整可能な第二流量調整部と、前記負荷側熱交換器の前記入口側と前記出口側での前記被加熱液体の温度差を一定に保つように前記第二流量調整部を動作させ、前記負荷側熱交換器の前記出口側での前記被加熱液体の流量を調整させる出口側制御部と、前記負荷側熱交換器の前記入口側での前記被加熱液体の温度を一定に保つように前記第一流量調整部を動作させ、前記第一流量と前記第二流量との比率を調整させる入口側制御部と、を備えている。
 このような加熱装置によれば、負荷側熱交換器の環境の温度に応じて第二流量調整部を制御し、負荷側熱交換器の出口側での前記被加熱液体の流量を調整可能となっている。例えば負荷側熱交換器の環境の温度が高くなった際には、負荷側熱交換器の入口側と出口側との被加熱液体の温度差を一定に保つように、負荷側熱交換器の出口から戻り流路を介して再び負荷側熱交換器の入口に流入する被加熱液体の流量を少なくして負荷側熱交換器での熱交換量を減少させることができる。よって、負荷側熱交換器の出口側での被加熱液体の温度が上昇することを抑えることができる。従って、負荷側熱交換器の出口から熱交換部の入口へ導入される被加熱液体の温度を低く抑えることができる。
 本発明の第三の態様に係る加熱装置は、上記第二の態様において、前記入口側制御部は、前記負荷側熱交換器が設置された環境の温度に応じて、前記第一流量調整部を動作させ、前記第一流量と前記第二流量との比率を調整してもよい。
 このような加熱装置によれば、負荷側熱交換器の出口から熱交換部の入口へ再び導入される被加熱液体の温度を低く抑えることができる。さらに、第一流量を第二流量と比べて少なくすることで負荷側熱交換器の入口での被加熱液体の温度を下げることができる。よって、負荷側熱交換器の設置された環境の温度の上昇にともなって負荷側熱交換器の出口での被加熱液体の温度が高くなってしまうことを回避できる。従って負荷側熱交換器の出口から熱交換部の入口へ導入される被加熱液体の温度をさらに低く抑えることができる。
 本発明の第四の態様に係る加熱装置は、上記第一から第三の態様において、上部が、前記循環路と前記戻り流路との接続部分と、前記熱交換部の前記出口との間で前記循環路に接続され、下部が、前記循環路と前記戻り流路との接続部分と、前記熱交換部の前記入口との間で前記循環路に接続されて、前記被加熱液体を貯留する貯留槽と、前記貯留槽の上部で所定の温度以上となった前記被加熱液体の液量に応じて前記熱交換部を停止及び運転する制御を行う運転制御部と、をさらに備えていてもよい。
 このような貯留槽が設けられていることで、熱交換部でON/OFF制御を行いつつ常に一定の温度の被加熱液体を負荷側熱交換器に向けて吐出することができる。また、貯留槽が設けられたCO冷媒のヒートポンプ装置(CO給湯機)を、そのまま本態様の加熱装置に適用することができる。よって加熱装置のコストを抑えることが可能である。
 本発明の第五の態様に係るCO冷媒加熱装置は、上記第一から第三の態様において、前記負荷側熱交換器が設置された環境の温度に応じて、前記熱交換部の熱交換能力を調整する運転制御部をさらに備えていてもよい。
 このような運転制御部によって、被加熱液体を貯留する貯留槽がなくとも、常に所定の温度の被加熱液体を負荷側熱交換器に向けて吐出することができる。また、貯留槽を設ける必要がなくなり、加熱装置の簡素化が可能となる。
 本発明の第六の態様の加熱方法は、冷媒であるCOが凝縮と蒸発を繰り返して循環する冷媒回路を有するとともに、入口から導入された被加熱液体を加熱して出口から吐出する熱交換部と、前記熱交換部の前記入口と前記出口とに接続されて前記被加熱液体が循環する循環路と、前記循環路の前記被加熱液体と熱交換を行って該被加熱液体を冷却する負荷側熱交換器と、前記負荷側熱交換器の入口側と出口側との間で前記循環路を接続する戻り流路と、を備える装置で前記被加熱液体を加熱する加熱方法であって、前記負荷側熱交換器が設置された環境の温度に応じて、前記戻り流路を介して前記負荷側熱交換器の前記出口から前記負荷側熱交換器の前記入口に向かう前記被加熱液体の流量と、前記熱交換部の前記出口から前記負荷側熱交換器の前記入口に向かう前記被加熱液体の流量との比率を調整する流量比率調整工程を含んでいる。
 このような加熱方法によれば、例えば負荷側熱交換器の環境の温度が高くなった際には、第一流量を第二流量と比べて少なくすることで、負荷側熱交換器の設置された環境の温度の上昇にともなって負荷側熱交換器の出口での被加熱液体の温度が高くなってしまうことを回避できる。よって負荷側熱交換器の出口から熱交換部の入口へ導入される被加熱液体の温度を低く抑えることができる。
 本発明の第七の態様の加熱方法は、冷媒であるCOが凝縮と蒸発を繰り返して循環する冷媒回路を有するとともに、入口から導入された被加熱液体を加熱して出口から吐出する熱交換部と、前記熱交換部の前記入口と前記出口とに接続されて前記被加熱液体が循環する循環路と、前記循環路の前記被加熱液体と熱交換を行って該被加熱液体を冷却する負荷側熱交換器と、前記負荷側熱交換器の入口側と出口側との間で前記循環路を接続する戻り流路と、を備える装置で前記被加熱液体を加熱する加熱方法であって、前記負荷側熱交換器の前記入口側と前記出口側での前記被加熱液体の温度差を一定に保つように前記負荷側熱交換器の前記出口側での前記被加熱液体の流量を調整する流量調整工程と、前記負荷側熱交換器の前記入口側での前記被加熱液体の温度を一定に保つように、前記戻り流路を介して前記負荷側熱交換器の前記出口から前記負荷側熱交換器の前記入口に向かう前記被加熱液体の流量と、前記熱交換部の前記出口から前記負荷側熱交換器の前記入口に向かう前記被加熱液体の流量との比率を調整する流量比率調整工程とを含んでいる。
 このような加熱方法によれば、例えば負荷側熱交換器の環境の温度が高くなった際には、負荷側熱交換器の出口から戻り流路を介して再び負荷側熱交換器の入口に流入する被加熱液体の流量を少なくする。すると負荷側熱交換器での熱交換量が減少し、この結果、負荷側熱交換器の入口側での被加熱液体の温度は一定に保たれているため負荷側熱交換器の出口側での被加熱液体の温度が上昇することを抑えることができる。よって負荷側熱交換器の出口から熱交換部の入口へ導入される被加熱液体の温度を低く抑えることができる。
 本発明の第八の態様の加熱方法は、上記第七の態様において、前記流量比率調整工程では、前記負荷側熱交換器が設置された環境の温度に応じて、前記戻り流路を介して前記負荷側熱交換器の前記出口から前記負荷側熱交換器の前記入口に向かう前記被加熱液体の流量と、前記熱交換部の前記出口から前記負荷側熱交換器の前記入口に向かう前記被加熱液体の流量との比率をさらに調整してもよい。
 このような加熱方法によれば、負荷側熱交換器の出口から戻り流路を介して再び負荷側熱交換器の入口に流入する被加熱液体の流量を少なくすることで負荷側熱交換器の出口から熱交換部の入口へ導入される被加熱液体の温度を低く抑えることができる。よって、負荷側熱交換器の設置された環境の温度の上昇にともなって負荷側熱交換器の出口での被加熱液体の温度が高くなってしまうことを回避できる。従って負荷側熱交換器の出口から熱交換部の入口へ導入される被加熱液体の温度をさらに低く抑えることができる。
 上記の加熱装置、及び、加熱方法によれば、負荷が変動する場合であっても、熱交換部でのCOPを向上でき、高効率を維持可能である。
本発明の第一実施形態の加熱装置の全体構成図である。 本発明の第二実施形態の加熱装置の全体構成図である。 本発明の第三実施形態の加熱装置の全体構成図である。 本発明の第四実施形態の加熱装置の全体構成図である。
〔第一実施形態〕
 以下、本発明の第一実施形態の加熱装置1について説明する。
 図1に示すように、本実施形態に係る加熱装置1は、水(被加熱液体)Wを加熱する熱交換部2と、加熱された水(湯)Wと熱交換を行って水Wを冷却する負荷側熱交換器3と、熱交換部2と負荷側熱交換器3との間を接続して水Wが循環可能な循環路5と、循環路5に設けられた戻り流路6、第一流量調整部(流量調整部)10、及び貯湯槽(貯留槽)17と、第一流量調整部10を制御するMPU等からなる入口側制御部11と、熱交換部2の運転を制御するMPU等からなる運転制御部18を備えている。
 熱交換部2は、冷媒としてCO(二酸化炭素)が循環する冷媒回路13を有している。冷媒回路13は不図示の圧縮機、熱交換器、配管等を有するヒートポンプである。冷媒回路13をCOが凝縮と蒸発を繰り返して循環する。これにより熱交換部2の入口2aから水Wが導入されると、この水Wが加熱されて出口2bから吐出される。
 負荷側熱交換器3は、例えば床暖房パネル等である。この負荷側熱交換器3が設けられた環境の温度(室内の温度や外気温)は、季節によって変動する。比較的寒くない季節、日には負荷側熱交換器3での負荷は低くなり、熱交換部2で加熱された水(湯)Wとの熱交換量は低くなる。
 循環路5は、熱交換部2の出口2bと、負荷側熱交換器3の入口3aとを接続するとともに、負荷側熱交換器3の出口3bと熱交換部2の入口2aとを接続する管路である。これにより、水Wが熱交換部2と負荷側熱交換器3との間で循環するようになっている。
 戻り流路6は、負荷側熱交換器3の入口3a側と出口3b側との間で循環路5を接続する。即ち、戻り流路6は、熱交換部2の出口2bと負荷側熱交換器3の入口3aとの間、及び、熱交換部2の入口2aと負荷側熱交換器3の出口3bとの間で循環路5を接続している。これにより、負荷側熱交換器3の出口3bからの水Wの一部が戻り流路6を介して負荷側熱交換器3の入口3aに向かって流通し、残りの一部は熱交換部2の入口2aに向かって流通するようになっている。
 本実施形態では、負荷側熱交換器3の出口3b側で、戻り流路6と循環路5との接続部分よりも負荷側熱交換器3側に循環ポンプ7が設けられている。
 第一流量調整部10は、例えば三方弁である。この第一流量調整部10は、負荷側熱交換器3の入口3a側での戻り流路6と循環路5との接続部分に設けられている。そして第一流量調整部10によって、戻り流路6を介して負荷側熱交換器3の出口3bから負荷側熱交換器3の入口3aに向かう水Wの流量(第一流量Q1)と、熱交換部2の出口2bから負荷側熱交換器3の入口3aに向かう水Wの流量(第二流量Q2)とを調整可能としている。
 入口側制御部11は、負荷側熱交換器3が設置された環境の温度に応じて、第一流量調整部10を動作させる。そして第一流量Q1と第二流量Q2との比率が調整される。入口側制御部11は、第一流量Q1と第二流量Q2との比率を適宜調整することで、負荷側熱交換器3の入口3aに供給される水Wの温度を積極的に調整する。負荷側熱交換器3が設置された環境の温度は、例えば外気温を計測する外温センサ15等から取得される。また負荷側熱交換器3の入口3aに供給される水Wの温度(出湯温度)は、循環路5における第一流量調整部10と負荷側熱交換器3の入口3aとの間に設置された温度センサ16で計測される。
 また、入口側制御部11は、外気温に対して何度の水W(湯)を負荷側熱交換器3に供給するべきかを決定するため、例えば予め外気温と、外気温に応じた負荷側熱交換器3で必要な熱量を確保するための出湯温度(負荷側熱交換器3へ導入する水Wの温度)との関係を示すテーブルを記憶している。
 貯湯槽(貯留槽)17は循環路5に設けられ、水(湯)Wを貯留する。より具体的には、貯湯槽17の上部は、循環路5と戻り流路6との接続部分と、熱交換部2の出口2bとの間で循環路5に接続され、貯湯槽17の下部は、循環路5と戻り流路6との接続部分と、熱交換部2の入口2aとの間で循環路5に接続されている。貯湯槽17内では温度の高い水(湯)Wが上部に、温度の低い水Wが下部に貯留されている。貯湯槽17の上部の側壁面には上部温度センサ19aが設けられ、下部の側壁面には下部温度センサ19bが設けられている。
 運転制御部18は、上部温度センサ19aの設けられた高さ位置で貯湯槽17内の水(湯)Wの温度が所定の温度以上であるか否かに基づき、熱交換部2の圧縮機(不図示)の運転の停止、又は、開始を行う。即ち、運転制御部18は所定の温度以上である水(湯)Wの水量が上部温度センサ19aの高さ位置までの水量となったか否かに基づき熱交換部2の圧縮機(不図示)の運転の停止、又は、開始を行う。
 より具体的には、上部温度センサ19aで、貯湯槽17内の水(湯)Wの温度が所定の温度以上となったことが計測された場合には熱交換部2の運転を停止し、水(湯)Wの温度が所定の温度よりも低くなった場合には熱交換部2の運転を開始するように、熱交換部2のON/OFF制御を行う。
 ここで上記の「所定の温度」は、60度以上90度以下であるとよいが、少なくとも60度以上の温度であるとよい。従って、貯湯槽17からは常時、例えば60度以上の所定の温度の水W(湯)が循環路5に供給され、第一流量調整部10に向かって流通する。
 次に、本実施形態で水Wを加熱する加熱方法の手順を説明する。
 まず、外温センサ15の計測値に基づき、負荷側熱交換器3で必要な熱交換量を入口側制御部11にて判断する。その後、入口側制御部11は、上記テーブルに基づいて出湯温度を決定する。
 比較的寒くない季節、日には負荷側熱交換器3での負荷が下がる。よって、このような場合には、例えば負荷側熱交換器3に流入させる水(湯)Wの温度が35度で運転を行っている状態から、30度にする必要がある。
 そこで、入口側制御部11は、負荷側熱交換器3の出口3bから戻り流路6を介して再び負荷側熱交換器3の入口3aに流入する水(湯)Wの流量(第一流量Q1)を、熱交換部2の出口2bから貯湯槽17を介して第一流量調整部10を通過し、負荷側熱交換器3の入口3aに向かう水(湯)Wの流量(第二流量Q2)に比べて少なくする(流量比率調整工程)。すると、負荷側熱交換器3に流入させる水(湯)Wの温度が例えば35度から30度に下がる。
 以上説明した本実施形態の加熱装置1によれば、負荷側熱交換器3の環境の温度に応じて第一流量調整部10を制御し、上記のように例えば負荷側熱交換器3の環境の温度が高くなった際には、第一流量Q1を、第二流量Q2と比べて少なくする。すると、負荷側熱交換器3の入口3aでの水Wの温度を下げることができる。
 この結果、負荷側熱交換器3の設置された環境の温度の上昇に応じて負荷側熱交換器3の出口3bでの水Wの温度が高くなってしまうことを回避できる。よって負荷側熱交換器3の出口3bから熱交換部2の入口2aへ導入される水Wの温度を低く抑えることができる。よって、負荷側熱交換器3での負荷が変動する場合であっても、熱交換部2の入口2aと出口2bとの温度差を大きくすることができ、加熱装置1のCOPを高い状態に維持できる。従って負荷が変動する場合であっても、高効率化を達成可能である。
〔第二実施形態〕
 次に、本発明の第二実施形態の加熱装置21について説明する。以下に説明する第二実施形態においては、第一実施形態と同一部分に同一符号を付して説明するとともに、重複説明を省略する。第二実施形態では、第一実施形態の構成に加え、第二流量調整部22、及びMPU等からなる出口側制御部23を備えている点で第一実施形態とは異なっている。また入口側制御部11の機能が第一実施形態とは異なっている。
 第二流量調整部22は、例えば弁や、インバータポンプ等である。第二流量調整部22にインバータポンプを用いる場合は循環ポンプ7は不要である。第二流量調整部22は負荷側熱交換器3の出口3b側で、かつ、循環路5と戻り流路6との接続部分よりも負荷側熱交換器3側に設けられている。即ち、第二流量調整部22は、負荷側熱交換器3の出口3bと第一流量調整部10との間に設けられている。第二流量調整部22は、負荷側熱交換器3の出口3b側の水Wの流量を調整する。
 ここで本実施形態では、負荷側熱交換器3の出口3bと第二流量調整部22との間で循環路5に流量センサ28が設けられている。また、第一流量調整部10と負荷側熱交換器3との間には入口側温度センサ25が設けられ、負荷側熱交換器3の出口3bと戻り流路6との間に出口側温度センサ26が設けられている。入口側温度センサ25と、入口側制御部11が監視する上記温度センサ16とは共通化してもよい。
 出口側制御部23は、外温センサ15の計測値に基づき、負荷側熱交換器3が設置された環境の温度に応じて第二流量調整部22を動作させる。即ち、出口側制御部23は、入口側温度センサ25と出口側温度センサ26との温度差が常に一定となるように第二流量調整部22を動作させる。
 入口側制御部11は、第一実施形態とは異なり、負荷側熱交換器3の入口3a側での水(湯)Wの温度を一定に保つように第一流量調整部10を動作させ、第一流量Q1と第二流量Q2との比率を調整する。
 次に、本実施形態で水Wを加熱する加熱方法の手順を説明する。
 まず、負荷側熱交換器3の入口3a側と出口3b側での水Wの温度差を一定に保つように、入口側温度センサ25、出口側温度センサ26、及び流量センサ28の計測値を見ながら、負荷側熱交換器3の出口3b側での水Wの流量を決定する。
 この際、入口側制御部11は常に負荷側熱交換器3の入口3aでの水W(湯)の温度が一定となるように第一流量Q1と第二流量Q2の比率を調整する(流量比率調整工程)。
 比較的寒くない季節、日には負荷側熱交換器3での負荷が下がる。よって、負荷側熱交換器3を流通する水Wの流量が変わらない場合には、負荷側熱交換器3の出口3b側での水Wの温度が高くなってしまう。そこで、このような日には負荷側熱交換器3での熱交換量を減らして負荷側熱交換器3の出口3b側での水Wの温度上昇を抑え、負荷側熱交換器3の出口3b側での水Wの温度を低い状態に保つために、負荷側熱交換器3の入口3a側と出口3b側との温度差を一定に保つようにする必要がある。そこで、例えば負荷側熱交換器3に流入させる水(湯)Wの流量が1で運転を行っている状態から、負荷側熱交換器3に流入させる水(湯)Wの流量が0.8で運転を行う状態とする必要がある。
 出口側制御部23は、負荷側熱交換器3の出口3b側で第二流量調整部22を動作させ、負荷側熱交換器3を流通する水Wの流量を0.8の状態とする(流量調整工程)。またこの際、第二流量Q2が減少するため第二流量Q2と第一流量Q1との比率が変化し、第一流量調整部10から負荷側熱交換器3の入口3aに流入する水(湯)Wの温度が低下する。しかし、第一流量調整部10が入口側制御部11で制御されて負荷側熱交換器3の入口3a側の水Wの温度は一定に保たれる。このため、結果として負荷側熱交換器3の出口3b側の水Wの温度上昇が抑制される。
 以上説明した本実施形態の加熱装置21によれば、負荷側熱交換器3の環境の温度に応じて第二流量調整部22を制御し、負荷側熱交換器3の出口3b側での水Wの流量を調整可能となっている。従って負荷側熱交換器3の出口3bから熱交換部2の入口2aへ導入される水Wの温度を低く抑えることができる。よって、加熱装置21のCOPを高い状態に維持できる。即ち負荷が変動する場合であっても高効率化を達成可能である。
 また貯湯槽17が設けられていることで、常に一定の温度の水Wを負荷側熱交換器3に向けて流通させることができる。さらに貯湯槽17が設けられたCO冷媒のヒートポンプ装置(CO給湯機)を、そのまま本実施形態の加熱装置21に適用することができる。よって加熱装置21のコストを抑えることが可能である。
〔第三実施形態〕
 次に、本発明の第三実施形態の加熱装置31について説明する。以下に説明する第三実施形態においては、第一実施形態及び第二実施形態と同一部分に同一符号を付して説明するとともに、重複説明を省略する。第三実施形態は、第一実施形態及び第二実施形態の両方の構成を備えている。
 即ち、図3に示すように本実施形態に係る加熱装置31は、水Wを加熱する熱交換部2と、加熱された水(湯)Wと熱交換を行って水Wを冷却する負荷側熱交換器3と、熱交換部2と負荷側熱交換器3との間を接続して水Wが循環可能な循環路5と、循環路5に設けられた戻り流路6、第一流量調整部(流量調整部)10、第二流量調整部22、及び貯湯槽(貯留槽)17と、第一流量調整部10を制御する入口側制御部11と、第二流量調整部22を制御する出口側制御部23と、熱交換部2の運転を制御する運転制御部18を備えている。
 このような本実施形態の加熱装置31によれば、上記の他の実施形態で説明したように負荷側熱交換器3での負荷が変動する場合であっても、入口側制御部11によって熱交換部2の入口2aと出口2bとの温度差を大きくすることができる。よって、加熱装置31のCOPを高い状態に維持でき、高効率化を達成可能である。また、出口側制御部23によって負荷側熱交換器3の出口3bから熱交換部2の入口2aへ導入される水Wの温度を低く抑えることができる。よって、加熱装置31のCOPを高い状態に維持でき、高効率化を達成可能である。
〔第四実施形態〕
 次に、本発明の第四実施形態の加熱装置41について説明する。以下に説明する第四実施形態においては、第一実施形態から第三実施形態と同一部分に同一符号を付して説明するとともに、重複説明を省略する。第四実施形態は図4に示すように、第三実施形態とは異なり、貯湯槽17が設けられていない。
 本実施形態では、運転制御部42は、負荷側熱交換器3が設置された環境の温度に応じて、熱交換部2の熱交換能力を調整するようになっている。より具体的には運転制御部42は、冷媒回路13の圧縮機の回転数を調整することで、熱交換部2の出口2bから吐出される水(湯)Wの温度を適宜調整するようになっている。
 このような本実施形態の加熱装置41によれば、運転制御部42によって、水Wを貯留する貯湯槽がなくとも、常に所定の温度の水Wを熱交換部2から吐出可能となる。
 また、貯湯槽を設ける必要がなくなり、加熱装置41の簡素化が可能となる。
 ここで、本実施形態のように貯湯槽が無い加熱装置41は、第一実施形態に適用してもよいし、第二実施形態に適用してもよい。
 以上、本発明の実施形態について図面を参照して詳述したが、各実施形態における各構成及びそれらの組み合わせ等は一例であり、本発明の趣旨から逸脱しない範囲内で、構成の付加、省略、置換、およびその他の変更が可能である。また、本発明は実施形態によって限定されることはなく、特許請求の範囲によってのみ限定される。
 例えば、入口側制御部11、出口側制御部23を用いず、手動で第一流量調整部10、第二流量調整部22を動作させてもよい。
 上記の加熱装置、及び加熱方法によれば、負荷が変動する場合であっても、高効率を維持可能である。
1  加熱装置
2  熱交換部
2a  入口
2b  出口
3  負荷側熱交換器
3a  入口
3b  出口
5  循環路
6  戻り流路
7  循環ポンプ
10  第一流量調整部
11  入口側制御部
13  冷媒回路
15  外温センサ
16  温度センサ
17  貯湯槽(貯留槽)
18  運転制御部
19a  上部温度センサ
19b  下部温度センサ
21  加熱装置
22  第二流量調整部
23  出口側制御部
25  入口側温度センサ
26  出口側温度センサ
28  流量センサ
31  加熱装置
41  加熱装置
42  運転制御部
Q1  第一流量
Q2  第二流量
W  水

Claims (8)

  1.  冷媒であるCOが凝縮と蒸発を繰り返して循環する冷媒回路を有するとともに、入口から導入された被加熱液体を加熱して出口から吐出する熱交換部と、
     前記熱交換部の前記入口と前記出口とに接続されて前記被加熱液体が循環する循環路と、
     前記循環路の前記被加熱液体と熱交換を行って該被加熱液体を冷却する負荷側熱交換器と、
     前記負荷側熱交換器の入口側と出口側との間で前記循環路を接続する戻り流路と、
     前記負荷側熱交換器の前記入口側での前記戻り流路と前記循環路との接続部分に設けられ、前記戻り流路を介して前記負荷側熱交換器の前記出口から前記負荷側熱交換器の前記入口に向かう前記被加熱液体の流量である第一流量、及び、前記熱交換部の前記出口から前記負荷側熱交換器の前記入口に向かう前記被加熱液体の流量である第二流量を調整可能な流量調整部と、
     前記負荷側熱交換器が設置された環境の温度に応じて、前記流量調整部を動作させ、前記第一流量と前記第二流量との比率を調整させる制御部と、
     を備える加熱装置。
  2.  冷媒であるCOが凝縮と蒸発を繰り返して循環する冷媒回路を有するとともに、入口から導入された被加熱液体を加熱して出口から吐出する熱交換部と、
     前記熱交換部の前記入口と前記出口とに接続されて前記被加熱液体が循環する循環路と、
     前記循環路の前記被加熱液体と熱交換を行って該被加熱液体を冷却する負荷側熱交換器と、
     前記負荷側熱交換器の入口側と出口側との間で前記循環路を接続する戻り流路と、
     前記負荷側熱交換器の前記入口側での前記戻り流路と前記循環路との接続部分に設けられ、前記戻り流路を介して前記負荷側熱交換器の前記出口から前記負荷側熱交換器の前記入口に向かう前記被加熱液体の流量である第一流量、及び、前記熱交換部の前記出口から前記負荷側熱交換器の前記入口に向かう前記被加熱液体の流量である第二流量を調整可能な第一流量調整部と、
     前記負荷側熱交換器の前記出口と前記第一流量調整部との間に設けられ、前記負荷側熱交換器の前記出口側の前記被加熱液体の流量を調整可能な第二流量調整部と、
     前記負荷側熱交換器の前記入口側と前記出口側での前記被加熱液体の温度差を一定に保つように前記第二流量調整部を動作させ、前記負荷側熱交換器の前記出口側での前記被加熱液体の流量を調整させる出口側制御部と、
     前記負荷側熱交換器の前記入口側での前記被加熱液体の温度を一定に保つように前記第一流量調整部を動作させ、前記第一流量と前記第二流量との比率を調整させる入口側制御部と、
     を備える加熱装置。
  3.  前記入口側制御部は、前記負荷側熱交換器が設置された環境の温度に応じて、前記第一流量調整部を動作させ、前記第一流量と前記第二流量との比率を調整する請求項2に記載の加熱装置。
  4.  上部が、前記循環路と前記戻り流路との接続部分と、前記熱交換部の前記出口との間で前記循環路に接続され、下部が、前記循環路と前記戻り流路との接続部分と、前記熱交換部の前記入口との間で前記循環路に接続されて、前記被加熱液体を貯留する貯留槽と、
     前記貯留槽の上部で所定の温度以上となった前記被加熱液体の液量に応じて前記熱交換部を停止及び運転する制御を行う運転制御部と、
     をさらに備える請求項1から3のいずれか一項に記載の加熱装置。
  5.  前記負荷側熱交換器が設置された環境の温度に応じて、前記熱交換部の熱交換能力を調整する運転制御部をさらに備える請求項1から3のいずれか一項に記載の加熱装置。
  6.  冷媒であるCOが凝縮と蒸発を繰り返して循環する冷媒回路を有するとともに、入口から導入された被加熱液体を加熱して出口から吐出する熱交換部と、
     前記熱交換部の前記入口と前記出口とに接続されて前記被加熱液体が循環する循環路と、
     前記循環路の前記被加熱液体と熱交換を行って該被加熱液体を冷却する負荷側熱交換器と、
     前記負荷側熱交換器の入口側と出口側との間で前記循環路を接続する戻り流路と、
     を備える装置で前記被加熱液体を加熱する加熱方法であって、
     前記負荷側熱交換器が設置された環境の温度に応じて、前記戻り流路を介して前記負荷側熱交換器の前記出口から前記負荷側熱交換器の前記入口に向かう前記被加熱液体の流量と、前記熱交換部の前記出口から前記負荷側熱交換器の前記入口に向かう前記被加熱液体の流量との比率を調整する流量比率調整工程を含む加熱方法。
  7.  冷媒であるCOが凝縮と蒸発を繰り返して循環する冷媒回路を有するとともに、入口から導入された被加熱液体を加熱して出口から吐出する熱交換部と、
     前記熱交換部の前記入口と前記出口とに接続されて前記被加熱液体が循環する循環路と、
     前記循環路の前記被加熱液体と熱交換を行って該被加熱液体を冷却する負荷側熱交換器と、
     前記負荷側熱交換器の入口側と出口側との間で前記循環路を接続する戻り流路と、
     を備える装置で前記被加熱液体を加熱する加熱方法であって、
     前記負荷側熱交換器の前記入口側と前記出口側での前記被加熱液体の温度差を一定に保つように前記負荷側熱交換器の前記出口側での前記被加熱液体の流量を調整する流量調整工程と、
     前記負荷側熱交換器の前記入口側での前記被加熱液体の温度を一定に保つように、前記戻り流路を介して前記負荷側熱交換器の前記出口から前記負荷側熱交換器の前記入口に向かう前記被加熱液体の流量と、前記熱交換部の前記出口から前記負荷側熱交換器の前記入口に向かう前記被加熱液体の流量との比率を調整する流量比率調整工程と、
     を含む加熱方法。
  8.  前記流量比率調整工程では、前記負荷側熱交換器が設置された環境の温度に応じて、前記戻り流路を介して前記負荷側熱交換器の前記出口から前記負荷側熱交換器の前記入口に向かう前記被加熱液体の流量と、前記熱交換部の前記出口から前記負荷側熱交換器の前記入口に向かう前記被加熱液体の流量との比率をさらに調整する請求項7に記載の加熱方法。
PCT/JP2018/011456 2017-03-30 2018-03-22 加熱装置、及び、加熱方法 WO2018180903A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201880004466.5A CN109983280A (zh) 2017-03-30 2018-03-22 加热装置及加热方法
EP18775084.9A EP3531030A4 (en) 2017-03-30 2018-03-22 HEATING DEVICE AND HEATING METHOD

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017067487A JP2018169108A (ja) 2017-03-30 2017-03-30 加熱装置、及び、加熱方法
JP2017-067487 2017-03-30

Publications (1)

Publication Number Publication Date
WO2018180903A1 true WO2018180903A1 (ja) 2018-10-04

Family

ID=63677043

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/011456 WO2018180903A1 (ja) 2017-03-30 2018-03-22 加熱装置、及び、加熱方法

Country Status (4)

Country Link
EP (1) EP3531030A4 (ja)
JP (1) JP2018169108A (ja)
CN (1) CN109983280A (ja)
WO (1) WO2018180903A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190024995A1 (en) * 2017-07-18 2019-01-24 Eisenmann Se Supply circuit for a heat exchange medium for a consumer, industrial plant and method for operating them

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7315438B2 (ja) * 2019-11-22 2023-07-26 三菱重工サーマルシステムズ株式会社 加熱システム、及びその制御方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009281719A (ja) * 2008-02-04 2009-12-03 Daikin Ind Ltd 暖房給湯装置
JP2010101549A (ja) 2008-10-23 2010-05-06 Panasonic Corp 貯湯式給湯機
JP2017067487A (ja) 2015-09-28 2017-04-06 国立大学法人 鹿児島大学 データ処理方法、データ処理装置、及びプログラム

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010065930A (ja) * 2008-09-11 2010-03-25 Daikin Ind Ltd 暖房システム及び暖房給湯システム
JP5470374B2 (ja) * 2009-04-13 2014-04-16 パナソニック株式会社 ヒートポンプ式暖房装置
WO2012032787A1 (ja) * 2010-09-10 2012-03-15 パナソニック株式会社 熱媒体循環型ヒートポンプ暖房機
EP3159613B1 (en) * 2014-06-20 2019-10-02 Mitsubishi Electric Corporation Heat pump heating system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009281719A (ja) * 2008-02-04 2009-12-03 Daikin Ind Ltd 暖房給湯装置
JP2010101549A (ja) 2008-10-23 2010-05-06 Panasonic Corp 貯湯式給湯機
JP2017067487A (ja) 2015-09-28 2017-04-06 国立大学法人 鹿児島大学 データ処理方法、データ処理装置、及びプログラム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3531030A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190024995A1 (en) * 2017-07-18 2019-01-24 Eisenmann Se Supply circuit for a heat exchange medium for a consumer, industrial plant and method for operating them

Also Published As

Publication number Publication date
CN109983280A (zh) 2019-07-05
EP3531030A1 (en) 2019-08-28
JP2018169108A (ja) 2018-11-01
EP3531030A4 (en) 2020-03-11

Similar Documents

Publication Publication Date Title
KR100859245B1 (ko) 히트 펌프 급탕 마루 난방 장치
US20060218949A1 (en) Water-cooled air conditioning system using condenser water regeneration for precise air reheat in dehumidifying mode
JP5015523B2 (ja) 熱源機運転制御方法および装置
EP2508806B1 (en) Heat pump system and heat pump unit controlling method
JP4981530B2 (ja) 熱源システムの流量制御装置および熱源システムの流量制御方法
EP2857761B1 (en) Water heater
JP2007327725A (ja) ヒートポンプ式給湯機
JP2008128809A (ja) 試験用温度調整装置
JP4923812B2 (ja) ブライン放熱式暖房装置
WO2018180903A1 (ja) 加熱装置、及び、加熱方法
JP2009174746A (ja) クリーンルーム用の給気温度制御システム
JP4552836B2 (ja) ヒートポンプ式給湯装置
JP2009264715A (ja) ヒートポンプ温水システム
JP2006266596A (ja) 貯湯式給湯器
JP6479203B2 (ja) 冷凍サイクル装置
JP2016114294A (ja) 暖房装置
JP5319502B2 (ja) ヒートポンプ式暖房装置
JP2018169108A5 (ja)
JP5802514B2 (ja) ヒートポンプ式給湯機
WO2017145238A1 (ja) 貯湯式給湯システム
JP2010133598A (ja) ヒートポンプ式給湯機
JP2019039596A (ja) ヒートポンプ熱源機
JP2005016947A (ja) ヒートポンプ給湯機
JP2006078048A (ja) ヒートポンプ加熱装置
JP7358131B2 (ja) 冷媒冷却システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18775084

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018775084

Country of ref document: EP

Effective date: 20190520

NENP Non-entry into the national phase

Ref country code: DE