WO2011070847A1 - 希土類異方性磁石粉末およびその製造方法とボンド磁石 - Google Patents

希土類異方性磁石粉末およびその製造方法とボンド磁石 Download PDF

Info

Publication number
WO2011070847A1
WO2011070847A1 PCT/JP2010/067779 JP2010067779W WO2011070847A1 WO 2011070847 A1 WO2011070847 A1 WO 2011070847A1 JP 2010067779 W JP2010067779 W JP 2010067779W WO 2011070847 A1 WO2011070847 A1 WO 2011070847A1
Authority
WO
WIPO (PCT)
Prior art keywords
rare earth
raw material
magnet
powder
diffusion
Prior art date
Application number
PCT/JP2010/067779
Other languages
English (en)
French (fr)
Inventor
本蔵 義信
千里 三嶋
理央 山崎
Original Assignee
愛知製鋼株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 愛知製鋼株式会社 filed Critical 愛知製鋼株式会社
Priority to EP10835769.0A priority Critical patent/EP2511916B1/en
Priority to JP2011545136A priority patent/JP5472320B2/ja
Priority to US13/514,943 priority patent/US9640319B2/en
Priority to CN2010800553033A priority patent/CN102648502A/zh
Publication of WO2011070847A1 publication Critical patent/WO2011070847A1/ja
Priority to US15/484,962 priority patent/US10607755B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0578Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together bonded together
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/06Metallic powder characterised by the shape of the particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/17Metallic particles coated with metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/023Hydrogen absorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • C22C33/0257Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements
    • C22C33/0278Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements with at least one alloying element having a minimum content above 5%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/0293Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets diffusion of rare earth elements, e.g. Tb, Dy or Ho, into permanent magnets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/02Permanent magnets [PM]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/02Permanent magnets [PM]
    • H01F7/0205Magnetic circuits with PM in general
    • H01F7/0221Mounting means for PM, supporting, coating, encapsulating PM
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/35Iron
    • B22F2301/355Rare Earth - Fe intermetallic alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0572Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes with a protective layer

Definitions

  • the present invention relates to a rare earth anisotropic magnet powder having excellent magnetic properties, a method for producing the same, and a bonded magnet.
  • Bond magnets made of compacts made of rare earth magnet powder hardened with a binder resin exhibit very high magnetic properties and excellent shape flexibility. For this reason, bond magnets are expected to be used in various appliances such as electric appliances and automobiles that are desired to save energy and weight.
  • Japanese Patent Publication No. 6-82575 Japanese Patent Laid-Open No. 10-326705 JP 2001-76917 A JP 2005-97711 A JP 2003-301203 A JP 2000-336405 A Japanese Patent No. 3452254 (JP 2002-93610) JP 2010-114200 A
  • Patent Document 1 discloses Nd 12.5 Dy 1.0 Fe bal. As one of rare-earth magnet powders having high magnetic properties . Disclosed is a powder produced from an alloy ingot having a composition of Co 5.6 B 6.5 Cu 0.5 (atomic%) (magnetic property 29 in the same document). However, Patent Document 1 merely adds Cu to the ingot as an example of a transition element that can be substituted for Fe. Moreover, the rare earth magnet powder containing Cu has clearly lower magnetic properties than other rare earth magnet powders containing no Cu.
  • Patent Documents 2 to 5 the situation is the same as that of Patent Document 1.
  • Patent Document 3 and Patent Document 4 there is a description that Cu is effective in improving the coercive force ([0094] of Patent Document 3 and [0011] of Patent Document 4).
  • the coercive force of the magnet powder (sample No. 28 of Patent Document 3) manufactured from the alloy ingot containing Cu is clearly lower than that of the other powder not containing Cu.
  • Patent Document 4 all of Dy and Tb are used.
  • the coercive force is improved, and the effect of Cu in the alloy ingot is unknown.
  • Cu is enumerated as one of the additional elements, and the magnet mother alloy containing Cu is illustrated ([0051] and [0095] of patent document 5).
  • the amount of Cu in the magnet mother alloy is as small as 0.01% by mass, and there is no description about the effect of Cu.
  • Patent Document 6 also describes that Cu suppresses the decrease in coercive force of magnet powder ([0139] of the same document), but there is no disclosure of magnet powder that actually contains Cu. The same applies to Patent Document 7.
  • non-patent document 1 etc. introduce a rare earth sintered magnet obtained by sintering an alloy powder to which Cu is added.
  • the purpose of including Cu in the rare earth sintered magnet is to improve the wettability of the Nd-rich phase effective for improving the coercive force on the surface of the powder particles to be sintered.
  • rare earth sintered magnets are made by so-called liquid phase sintering, in which an alloy powder pulverized to several to several tens of ⁇ m is heated at a high temperature to melt and bond the surfaces of the powder particles. For this reason, the crystal grains of the rare earth sintered magnet are almost the powder grains themselves before melting, and the average crystal grain size is as large as 3 to 10 ⁇ m.
  • rare earth magnet powder is composed of powder particles in which crystal grains having an average crystal grain size of 1 ⁇ m or less are aggregated, and is not sintered. Accordingly, the rare earth magnet powder and the rare earth sintered magnet have completely different grain boundary formation mechanisms that affect the development of magnetic properties, and both are handled as magnets in substantially different technical fields.
  • the present invention has been made under such circumstances. That is, a rare earth anisotropic magnet powder capable of improving coercive force while suppressing the use of rare elements such as Dy and Ga by a method different from the conventional one, a method for producing the same, and the rare earth anisotropic magnet
  • An object of the present invention is to provide a bonded magnet using powder.
  • the present inventor conducted diffusion heat treatment of a mixed powder of NdFeB magnet powder and NdCu powder, contrary to the conventional technical common sense in the technical field of rare earth magnet powder. As a result, we succeeded in obtaining a rare earth anisotropic magnet powder having very excellent magnetic properties. By further developing this result, the present invention described below has been completed.
  • the rare earth anisotropic magnet powder of the present invention is a tetragonal compound consisting of a rare earth element (hereinafter referred to as “R”), boron (B), and a transition element (hereinafter referred to as “TM”).
  • R a rare earth element
  • B boron
  • TM transition element
  • R 2 TM 14 B type 1 crystal having a crystal grain size of 0.05 to 1 ⁇ m and at least a rare earth element (hereinafter referred to as “R ′”).
  • Cu copper
  • R and R ′ are used as alternative names for specific rare earth element names. That is, “R” or “R ′” means one or more of all rare earth elements unless otherwise specified. For this reason, “R” and “R ′” may be the same kind of rare earth elements (for example, Nd) or may be different. Further, when R or R 'means a plurality of rare earth elements, they may all be the same, some may be the same and some may be different, or all may be different.
  • the rare earth elements constituting the tetragonal compound that is, R 2 TM 14 B 1 type crystal
  • R the rare earth elements constituting the envelope layer.
  • Elements are expressed as “R ′” in a unified manner. That is, R and R ′ are convenient notations based on the form of powder particles (tetragonal part or envelope layer part) as “things”, notation based on the production process of powder particles or the supply source (raw material), etc. is not.
  • R contributes to the formation of a tetragonal compound (that is, R 2 TM 14 B 1 type crystal), and is discharged when the tetragonal compound is formed.
  • An excess of rare earth elements formed to form an envelope layer is denoted as “R ′”.
  • Rt when it is necessary to indicate the rare earth elements contained in the whole powder particles with a symbol in general (or indicate all species thereof) without distinguishing between the tetragonal compound and the envelope layer, “Rt” is used as appropriate.
  • Rm when it is necessary to generally indicate rare earth elements contained in magnet raw materials by symbols (or indicate all species thereof), “Rm” is appropriately used.
  • “rare earth element” when it is simply referred to as “rare earth element”, “rare earth element” as a general concept including one or more elements in all rare earth elements and including R, R ′, Rt, Rm, etc. means.
  • the presence of the envelope layer makes it possible to obtain a rare earth anisotropic magnet powder that exhibits a very high coercive force with a high magnetic flux density.
  • the envelope layer can be made of R 'and Cu which are easily available and relatively inexpensive. That is, in the case of the present invention, a rare and expensive element such as Dy is not necessarily required to improve the coercive force. Therefore, according to the present invention, it is possible to stably supply rare earth anisotropic magnet powder and reduce costs.
  • the mechanism by which the rare earth anisotropic magnet powder of the present invention exhibits excellent magnetic properties is not necessarily clear.
  • the current situation is considered as follows.
  • the R′—Cu substances (alloys, compounds, etc.) constituting the envelope layer according to the present invention are often nonmagnetic and have a low melting point.
  • the envelope layer made of such a substance is easily wetted and easily covers the surface of the R 2 TM 14 B 1 type crystal which is the main phase of the magnet. For this reason, it is considered that the envelope layer repairs the strain existing on the surface of the R 2 TM 14 B 1 type crystal and suppresses the occurrence of reverse magnetic domains in the vicinity of the surface.
  • the envelope layer isolates each R 2 TM 14 B 1 type crystal and blocks the magnetic interaction by the adjacent R 2 TM 14 B 1 type crystal.
  • the R 2 TM 14 B 1 type crystal according to the present invention is very fine, and the surface layer and grain boundary of the crystal are much finer. For this reason, it is not always easy to directly observe the envelope layer of the present invention.
  • the excellent magnetic properties (especially the coercive force) exhibited by the rare earth anisotropic magnet powder of the present invention should be comprehensively considered from many research results on the rare earth anisotropic magnet powder.
  • the powder particles according to the present invention have the above-described R 2 TM 14 B 1 type crystal and the envelope layer.
  • the powder particles according to the present invention are composed of the above-described R 2 TM 14 B 1 type crystal and the envelope layer, but indirectly.
  • the form of a powder particle, a particle size, etc. are not ask
  • the form and thickness of the envelope layer are not limited.
  • the powder particles according to the present invention only need to have a part of the R 2 TM 14 B 1 type crystal whose surface is surrounded by the envelope layer. For this reason, the surface of the powder particle itself composed of a large number of crystals need not necessarily be surrounded by the envelope layer.
  • the rare earth anisotropic magnet powder composed of an aggregate of powder particles is sufficient if it has at least a part of the powder particles according to the present invention. That is, it is not necessary that all powder particles constituting the rare earth anisotropic magnet powder of the present invention are powder particles composed of R 2 TM 14 B 1 type crystals and an envelope layer. Therefore, the rare earth anisotropic magnet powder of the present invention may be a mixed powder in which a plurality of types of powder particles are mixed.
  • the average crystal grain size referred to in the present invention conforms to the method for obtaining the average diameter d of crystal grains in JIS G 0551.
  • the abundance ratio of the R 2 TM 14 B 1 type crystal, which is the main phase in the powder particles of the present invention, and the envelope layer on the outer peripheral surface (surface) is not limited. However, the smaller the volume ratio that the envelope layer is, the better.
  • R or R ' is at least one of yttrium (Y), lanthanoid and actinoid.
  • Y yttrium
  • actinoid lanthanum
  • La cerium
  • Pr praseodymium
  • Nd neodymium
  • Sm samarium
  • Gd gadolinium
  • Tb terbium
  • Dy dysprosium
  • Ho holmium
  • erbium Typical examples are Er
  • TM element thulium
  • Lu lutetium
  • Nd is common.
  • R 'and R may be completely coincident, partially coincident, or completely different.
  • TM is particularly preferably at least one of 3d transition element or 4d transition element.
  • the 3d transition element is atomic number 21 (Sc) to atomic number 29 (Cu)
  • the 4d transition element is atomic number 39 (Y) to atomic number 47 (Ag).
  • TM is preferably any of group 8 iron (Fe), cobalt (Co), or nickel (Ni), and more preferably Fe. Further, a part of boron can be substituted with carbon (C).
  • the rare earth anisotropic magnet powder of the present invention may be produced by any method, but if it is produced by the following production method of the present invention, a rare earth anisotropic magnet powder having high magnetic properties can be obtained efficiently. Is preferred. That is, the rare earth anisotropic magnet powder of the present invention serves as a source of at least R ′ and Cu, and a magnet raw material capable of producing an R 2 TM 14 B 1 type crystal that is a tetragonal compound of R, B, and TM.
  • a process comprising the steps of:
  • the “diffusion raw material serving as a supply source of at least R ′ and Cu” may be a raw material that contains elements necessary for forming the envelope layer together, or may be a mixture of raw materials that are independently included. Indicates.
  • the present invention may be a bonded magnet comprising the rare earth anisotropic magnet powder described above and a resin that consolidates the powder particles of the rare earth anisotropic magnet powder.
  • the compound used for manufacture of the bonded magnet may be sufficient as this invention. The compound is obtained by previously attaching a resin as a binder to the surface of each powder particle.
  • the rare earth anisotropic magnet powder used for these bonded magnets and compounds may be a composite powder in which a plurality of types of magnet powders having different average particle diameters and compositions are mixed.
  • the rare earth anisotropic magnet powder of the present invention includes “reforming element” which is an element effective for improving the characteristics in addition to the above-mentioned rare earth elements (including R, R ′), B, TM and Cu. May be included. There are various kinds of modifying elements, the combination of each element is arbitrary, and the content thereof is usually very small. Of course, the rare earth anisotropic magnet powder of the present invention may also contain “unavoidable impurities” that are difficult to remove due to cost or technical reasons.
  • x to y in this specification includes a lower limit value x and an upper limit value y.
  • various lower limit values or upper limit values described in the present specification can be arbitrarily combined to constitute a range such as “ab”.
  • any numerical value included in the range described in the present specification can be used as an upper limit value or a lower limit value for setting the numerical value range.
  • the present invention will be described in more detail with reference to embodiments of the invention.
  • the contents described in this specification including the following embodiments can be applied not only to the rare earth anisotropic magnet powder according to the present invention, but also to the manufacturing method, bonded magnet, and the like. Therefore, one or two or more configurations arbitrarily selected from the present specification can be added to the configuration of the present invention described above.
  • the structure related to the manufacturing method can be a structure related to an object if understood as a product-by-process. Note that which embodiment is the best depends on the target, required performance, and the like.
  • the powder particles according to the present invention are composed of an aggregate of R 2 TM 14 B type 1 crystals.
  • R is 11.8 at%
  • B is 5.9 at%
  • the balance is TM.
  • the powder particles of the present invention have an envelope layer containing R ′ in addition to the R 2 TM 14 B type 1 crystal, when viewed as a whole of the powder particles, the powder particles containing rare earth elements (Rt: R and R ′)
  • the total rare earth element is preferably 11.5 to 15 at%.
  • this range is richer than the theoretical composition value of the tetragonal compound, formation of a rare earth element rich phase such as an Nd rich phase is facilitated, and the coercivity of the rare earth anisotropic magnet powder can be improved.
  • Rt 12 to 15 at%
  • B 5.5 to 8 at%.
  • the powder particles may contain various elements effective for property improvement in addition to the above elements.
  • modifying elements TM (titanium), vanadium (V), zirconium (Zr), niobium (Nb), nickel (Ni), chromium (Cr), manganese (Mn), molybdenum (Mo)
  • TM titanium
  • vanadium (V) zirconium
  • Zr niobium
  • Nb nickel
  • Cr chromium
  • Mn manganese
  • Mo molybdenum
  • the powder particles may contain one or more of these elements. However, if these elements are excessive, the magnetic properties of the magnet powder may be deteriorated. Therefore, when the total powder particles are 100 at%, the total number of modifying elements is preferably 3 at% or less.
  • Ga is an element effective for improving the coercive force of the rare earth anisotropic magnet powder. It is preferable that the powder particles contain 0.05 to 1 at% Ga when the whole is 100 at%. Nb is an element effective for improving the residual magnetic flux density. The powder particles preferably contain 0.05 to 0.5% Nb when the whole is 100 at%. Of course, it is more preferable to add both of them in combination. Co is an element effective for improving the Curie point of the magnetic powder and thus for improving its heat resistance. The powder particles preferably contain 0.1 to 10 at% Co when the whole is 100 at%.
  • the enveloping layer is preferably Cu: 0.05 to 2 at%, more preferably 0.2 to 1 at% when the entire powder particle is 100 at%. Further, when the envelope layer of the present invention contains Al in addition to R ′ and Cu, a rare earth anisotropic magnet powder having a higher coercive force can be obtained. If Al is too little, the effect is poor, and if it is too much, the magnetic flux density of the magnet powder decreases. When the total powder particle is 100 at%, Al is preferably 0.1 to 5 at%, more preferably 1 to 3 at%.
  • the present inventors diligently researched and found that there is a preferable abundance ratio between rare earth elements (particularly Nd) and Cu contained in the whole powder particles in order to improve the coercive force of the rare earth anisotropic magnet powder. It was. In other words, there is a correlation between the Cu atomic ratio (Cu / Rt), which is the ratio of the total number of Cu atoms to the total number of rare earth element (Rt) atoms, and the coercivity of the rare earth anisotropic magnet powder.
  • Cu atomic ratio Cu atomic ratio
  • the preferred Cu atomic ratio can vary somewhat depending on the composition of the envelope layer.
  • the Cu atomic ratio is preferably 0.2 to 6.8%, more preferably 0.6 to 6.2%.
  • the Cu atomic ratio is preferably 0.6 to 11.8%, more preferably 1 to 8.6%.
  • the Cu atomic ratio of 1 to 6%, 1.3 to 5%, or even 1.6 to 4% is preferable because the coercive force of the rare earth anisotropic magnet powder can be improved. .
  • the production method of the present invention comprises a mixing step and a diffusion step.
  • the mixing step of the present invention is a magnetic raw material capable of generating an R 2 TM 14 B 1 type crystal that is a tetragonal compound of R, B, and TM, and at least a source of R ′ and Cu.
  • This is a step of obtaining a mixed raw material obtained by mixing a diffusion raw material.
  • a Henschel mixer, a roxing mixer, a ball mill, or the like can be used for mixing.
  • the magnet raw material and the diffusion raw material are preferably powders that have been pulverized, classified, etc., and are easily mixed uniformly.
  • Mixing is preferably performed in an oxidation-preventing atmosphere (for example, an inert gas atmosphere or a vacuum atmosphere).
  • the magnet raw material for example, an ingot material melted and cast by various melting methods (high frequency melting method, arc melting method, etc.) or a strip cast material manufactured by a strip cast method can be used. Among them, it is preferable to use a strip cast material. The reason is as follows.
  • the rare earth element content and the B content in the magnet raw material be close to the stoichiometric composition of the R 2 TM 14 B 1 compound.
  • a large amount of ⁇ Fe as the primary crystal tends to remain.
  • the soft magnetic ⁇ Fe phase tends to remain.
  • the efficiency is poor, and the magnetic properties of the rare earth anisotropic magnet powder are likely to deteriorate.
  • the soft magnetic ⁇ Fe phase can be eliminated in a short soaking time.
  • the crystal grains grow to a preferred size having an average crystal grain size of about 100 ⁇ m (50 to 250 ⁇ m).
  • a raw material of a rare earth anisotropic magnet powder that is, a magnet raw material
  • crystal grains of an appropriate size having no ⁇ Fe phase and a rare earth element rich phase formed at the grain boundary can be obtained.
  • the magnet raw material to be mixed with the diffusion raw material is preferably in the form of a powder obtained by subjecting an ingot, a strip, or the like to hydrogen pulverization or mechanical pulverization.
  • the diffusion raw material is a simple substance, an alloy, or a compound serving as a supply source of R ′ or Cu. Depending on the desired composition, a mixture of plural kinds of raw materials may be used. Note that at least one of the magnet raw material and the diffusion raw material may be a hydride.
  • a hydride is a substance in which hydrogen is bonded or dissolved in a simple substance, an alloy, a compound, or the like.
  • the diffusion raw material is preferably 0.1 to 10% by mass, more preferably 1 to 6% by mass, based on 100% by mass of the entire mixed raw material. If the diffusion raw material is too small, the formation of the envelope layer is insufficient, and if it is excessive, the magnetic flux density of the rare earth anisotropic magnet powder is lowered.
  • the diffusion process of the present invention is a process in which the above mixed raw material is heated to diffuse at least R ′ rare earth elements and Cu to the surface or grain boundary of the R 2 TM 14 B 1 type crystal.
  • the diffusion of rare earth elements and Cu includes surface diffusion, grain boundary diffusion, and body diffusion, but it is considered that the envelope layer is mainly formed by surface diffusion and grain boundary diffusion.
  • Heating during the diffusion process is preferably performed at a temperature at which the diffusion raw material is melted and easily diffuses at the grain boundaries.
  • the diffusion step can be performed in an antioxidation atmosphere (such as a vacuum atmosphere or an inert atmosphere) at 400 to 900 ° C. If the heating temperature is too low, diffusion does not proceed, and if it is too high, the R 2 TM 14 B 1 type crystal becomes coarse.
  • the diffusion step and the dehydrogenation step are integrally performed and then rapidly cooled.
  • a mixed raw material of a hydride of a magnet raw material or a hydride of a diffusion raw material is preferably placed in a vacuum atmosphere of 700 to 900 ° C. and 1 Pa or less.
  • a dehydrogenation (exhaust) step may be performed after the diffusion step, or a diffusion treatment may be performed after the dehydrogenation step.
  • the envelope layer of the present invention is a diffusion layer in which at least R ′ and Cu diffuse to the surface of the R 2 TM 14 B 1 type crystal or the grain boundary. It becomes.
  • Hydrogen treatment of magnet raw material Powder particles comprising an aggregate of fine R 2 TM 14 B 1 type crystals having an average crystal grain size of 0.05 to 1 ⁇ m are, for example, well-known hydrogen treatment for a base magnet raw material. It is obtained by doing.
  • the hydrogen treatment includes a disproportionation step in which the master alloy absorbs hydrogen to cause a disproportionation reaction, and a recombination step in which the master alloy after the disproportionation step is dehydrogenated and recombined, and HDDR (hydrogenation). It is called -decomposition (or decomposition) -destruction-recombination) or d-HDDR (dynamic-hydrogenation-decomposition (or disporation) -decomposition-recombination).
  • the disproportionation process comprises at least a high-temperature hydrogenation process
  • the recombination process comprises at least a dehydrogenation process (more specifically, a controlled exhaust process).
  • a dehydrogenation process more specifically, a controlled exhaust process
  • the hydrogen pressure / disproportionation reaction in the next process proceeds slowly so that the hydrogen pressure in the low temperature range below the temperature at which the hydrogenation / disproportionation reaction occurs.
  • This is a step of sufficiently dissolving hydrogen by applying a solid solution. More specifically, the low-temperature hydrogenation step is a step of holding a mother alloy (hereinafter simply referred to as “magnet alloy”) of a magnet raw material in a hydrogen gas atmosphere at 600 ° C. or lower and allowing the magnet alloy to occlude hydrogen. It is. By performing this step in advance, it becomes easy to control the reaction rate of the normal structure transformation in the subsequent high-temperature hydrogenation step.
  • the hydrogen pressure at that time is not particularly limited, but if it is, for example, about 0.03 to 0.1 MPa, the treatment time is shortened and it is efficient.
  • the hydrogen gas atmosphere may be a mixed gas atmosphere of hydrogen gas and inert gas.
  • the hydrogen pressure in this case is a hydrogen gas partial pressure. The same applies to the high-temperature hydrogenation process and the controlled exhaust process.
  • the high-temperature hydrogenation step is a step of causing a hydrogenation / disproportionation reaction to the magnet alloy. More specifically, the high-temperature hydrogenation step is a step of holding the magnet alloy after the low-temperature hydrogenation step in a hydrogen gas atmosphere at 0.01 to 0.06 MPa and 750 to 860 ° C.
  • the magnet alloy after the low-temperature hydrogenation process has a three-phase decomposed structure ( ⁇ Fe phase, RH 2 phase, Fe 2 B phase).
  • the tissue transformation reaction can be allowed to proceed gently in a state where the hydrogen pressure is suppressed.
  • the reaction rate When the hydrogen pressure is too low, the reaction rate is low, and the untransformed structure remains, leading to a decrease in coercive force. If the hydrogen pressure is excessive, the reaction rate is high and the anisotropic ratio is lowered. If the temperature of the hydrogen gas atmosphere is too low, the three-phase decomposition structure tends to be non-uniform and the coercive force is reduced. If the temperature is excessive, the crystal grains become coarse and the coercive force is lowered. In the high-temperature hydrogenation process, the hydrogen pressure or temperature does not need to be constant throughout. For example, at the end of the process in which the reaction rate decreases, at least one of hydrogen pressure and temperature may be increased to adjust the reaction rate to promote three-phase decomposition (tissue stabilization step).
  • the controlled exhaust process is a process in which the structure that has undergone the three-phase decomposition in the high-temperature hydrogenation process is recombined. In this controlled exhaust process, dehydrogenation is performed slowly under a relatively high hydrogen pressure, and the recombination reaction proceeds slowly. More specifically, the controlled exhaust process is a process in which the magnet alloy after the high-temperature hydrogenation process is held in a hydrogen gas atmosphere at 750 to 850 ° C. with a hydrogen pressure of 0.7 to 6 kPa. By this controlled exhaust process, hydrogen is removed from the RH 2 phase during the above three-phase decomposition.
  • the forced exhaust process is a process for removing hydrogen remaining in the magnet alloy and completing the dehydrogenation process.
  • This step is not particularly limited in terms of processing temperature, degree of vacuum, etc., but is preferably performed in a vacuum atmosphere of 750 to 850 ° C. and 1 Pa or less. If the treatment temperature is too low, it takes a long time to exhaust, and if it is too high, the crystal grains become coarse. If the degree of vacuum is too low, hydrogen may remain and the magnetic properties of the rare earth anisotropic magnet powder may deteriorate. Rapid cooling after this step is preferable because growth of crystal grains is suppressed.
  • the forced exhaust process does not need to be performed continuously with the controlled exhaust process.
  • a cooling process for cooling the magnet alloy after the control exhaust process may be inserted before the forced exhaust process. If a cooling process is provided, the forced exhaust process with respect to the magnet alloy after a control exhaust process can be batch-processed.
  • the magnet alloy (magnet raw material) in the cooling process is a hydride and has oxidation resistance. For this reason, it is also possible to take the magnet raw material into the atmosphere temporarily.
  • the mixing step of mixing the magnet raw material and the diffusion raw material does not necessarily have to be after the above-described forced exhausting step. That is, the mixing process may be performed at any stage such as before the low temperature hydrogenation process, before the high temperature hydrogenation process, before the controlled exhaust process, or before the forced exhaust process.
  • the diffusion step may be performed independently of each step of the hydrogen treatment, or may be combined with at least one of those steps. For example, when the mixing process is performed before and after the low-temperature hydrogenation process, the diffusion process can also serve as the high-temperature hydrogenation process.
  • the magnet raw material in which fine R 2 TM 14 B 1 type crystal R 2 TM 14 B 1 H X
  • the diffusion raw material after the controlled exhaust process For example, after mixing the magnet raw material and the diffusion raw material after the controlled exhaust process (mixing process), a diffusion process that also serves as a forced exhaust process may be performed. Thereby, it is possible to efficiently produce a high coercivity rare earth anisotropic magnet powder in which each R 2 TM 14 B 1 type crystal is appropriately surrounded by an envelope layer.
  • the mixing process and the diffusion process may be performed after the magnet raw material after the controlled exhaust process is once cooled, or the mixing process and the diffusion process may be performed following the controlled exhaust process.
  • a diffusion treatment in which the magnet raw material after the forced evacuation step and the diffusion raw material not containing hydrogen are mixed and then heated in an inert atmosphere without evacuation is sufficient. In this case, the forced exhaust process after the diffusion process is not necessary.
  • the magnet raw material preferably has an average particle size of 3 to 200 ⁇ m
  • the diffusion raw material preferably has an average particle size of 3 to 30 ⁇ m. If the average particle size is too small, it is uneconomical and difficult to handle, and the oxidation resistance of the magnetic properties tends to decrease. On the other hand, if the average particle size is excessive, it is difficult to uniformly mix both raw materials.
  • powder particles made of an aggregate of fine R 2 TM 14 B 1 type crystals having an average crystal grain size of 0.05 to 1 ⁇ m can be obtained by methods other than the above-described hydrogen treatment.
  • an isotropic rare earth magnet powder made of an aggregate of fine R 2 TM 14 B 1 type crystals of about 0.03 ⁇ m produced by a liquid quenching method is anisotropically crystallized by hot hot pressing or the like. is there.
  • the powder particles obtained by this method have a crystal grain size of about 0.3 ⁇ m.
  • the use of the rare earth anisotropic magnet powder of the present invention is not limited. But the bond magnet which consists of the rare earth anisotropic magnet powder can be used for various apparatuses. This makes it possible to save energy, reduce the size and improve the performance of various devices.
  • the binder resin in the bond magnet may be a thermosetting resin or a thermoplastic resin. Further, a kneaded material such as a coupling agent or a lubricant may be added.
  • Example 1 ⁇ Production of sample> (1) Preparation of Magnet Raw Material Various magnetic raw materials made of a magnetic alloy having the composition shown in Table 1 (hereinafter, all component compositions are expressed in at%. Nd in Table 1 corresponds to Rm) were prepared. These magnet raw materials were manufactured as follows. First, raw materials weighed so as to have the composition shown in Table 1 were dissolved, and a magnet alloy (mother alloy) cast by a strip casting method (hereinafter referred to as “SC method”) was obtained. This magnet alloy was held in an Ar gas atmosphere at 1140 ° C. for 10 hours to homogenize the structure (homogenization heat treatment step).
  • SC method strip casting method
  • the magnet alloy after hydrogen pulverization in a hydrogen atmosphere with a hydrogen pressure of 0.13 MPa was subjected to hydrogenation (d-HDDR) to obtain a powdered magnet raw material.
  • This hydrogenation treatment was performed as follows. The magnet alloy after the hydrogenation treatment is pulverized with hydrogen to 1 mm or less.
  • the magnet alloy was rapidly cooled (first cooling step).
  • This magnet alloy was held in an atmosphere of 840 ° C. ⁇ 30 minutes ⁇ 10 ⁇ 1 Pa or less to perform a forced exhaust process.
  • the magnet alloy thus obtained was pulverized in a mortar in an inert gas atmosphere, and the particle size was adjusted to obtain a powdered magnet raw material having a particle size of 212 ⁇ m or less (average particle size of 100 ⁇ m).
  • the average particle size of the magnet raw material was measured by a HELOS & RODOS laser diffraction particle size distribution measuring device, and the average particle size was evaluated by a volume sphere equivalent diameter (VMD) (the same applies hereinafter).
  • VMD volume sphere equivalent diameter
  • Powder particles The crystal grain size of the powder particles of each sample was measured using SEM. All the crystals had a particle size of 1 ⁇ m or less, and the average crystal particle size was 0.2 to 0.5 ⁇ m. This average crystal grain size is determined in accordance with the method for determining the average diameter d of crystal grains in JIS G0551. Incidentally, this was viewed X-ray diffraction pattern for the powder particles, it was confirmed that the same diffraction peak of Nd 2 Fe 14 B 1.
  • sample No. Sample No. obtained by diffusing a diffusion material made of NdCu, for example, into a magnetic material (M1 in Table 1) having a composition close to 5-5.
  • M1 in Table 1 a magnetic material having a composition close to 5-5.
  • the coercive force is rapidly increasing. This tendency is shown in Sample No. in which a diffusion raw material made of NdCuAl is diffused. The same applies to 2-1 to 2-4. It is considered that these samples having a sudden increase in coercive force formed an envelope layer (diffusion layer) made of NdCu or NdCuAl at the grain boundary of the Nd 2 TM 14 B 1 type crystal by the diffusion treatment.
  • sample no. 5-3 has a remarkably low coercive force.
  • sample no. 4-1 and Sample No. 5-1 or sample no. 4-4 and sample no. 5-3 the sample No. 5 containing Cu from the ingot stage despite the fact that the overall composition was similar.
  • Sample No. 5-3 subjected to diffusion treatment. 4-1.
  • the magnetic properties are deteriorated compared to 4-4, and the coercive force is particularly lowered.
  • sample No. 2 containing Cu from the ingot stage and having an approximate composition excluding Cu. 5-1 and Sample No. Comparing 5-2, it can be seen that the coercive force decreases rapidly as the amount of Cu increases. From this, it can be seen that even if Cu is simply contained from the stage of the master alloy as in the prior art, the coercive force is rather lowered, and in such a case, Cu is not necessarily an element that improves the coercive force. . Sample No. 5-3 and sample no. As can be seen by comparing 5-5, the coercivity cannot be improved if Cu is simply present from the stage of the master alloy, even if Nd rich is formed, but rather the coercivity decreases. .
  • sample No. 1 containing Al that increases the coercive force.
  • sample No. 2 in which the balance of the contents of Cu and Nd is lost.
  • the coercive force is lower than the other samples.
  • sample No. 3-1 to 3-6 sample no.
  • sample no. As shown in 3-5, since Nd in the base magnet raw material (M5) is less than the theoretical composition value, the magnetic raw material contains ⁇ Fe having soft magnetism, and ⁇ Fe cannot be lost even if diffusion treatment is performed. The coercive force cannot be improved.
  • Sample No. shown in Table 3B As is clear from 4-1 to 4-7, even when several kinds of diffusion raw materials are used, the same tendency as described above is shown. Sample No. No. 4-7 does not contain a rare earth element (R ′) in the diffusion raw material, and the Nd amount is close to the theoretical composition value of R necessary for the production of R 2 TM 14 B 1 type crystal. For this reason, it is difficult to form an envelope layer containing Nd—Cu on the surface of the Nd 2 TM 14 B 1 type crystal, and it is considered that the coercive force and the magnetic flux density are greatly reduced.
  • R ′ rare earth element
  • FIG. 2A An electron micrograph obtained by observing the powder particles 3-2 with a transmission electron microscope (TEM) is shown in FIG. 2A. Moreover, the photograph which carried out the TEM observation of the powder particle (magnet raw material M1) before the diffusion process similarly was shown to FIG. 2B. Further, an ingot containing Cu and Al without any diffusion treatment (Fe-12.9% Nd-6.4% B-0.1% Nb-0.1% Cu-2.3% Al: unit is at %) Is a TEM observation of the powder particles obtained by performing the above-described hydrogenation treatment (d-HDDR) in FIG. 2C.
  • d-HDDR hydrogenation treatment
  • the Cu enriched part and the Nd enriched part were slightly observed at the crystal grain boundaries. However, these concentrated portions are scattered only in a small part of some crystals, and do not have a form that totally surrounds the surface of any crystal.
  • the magnetic properties of the sample shown in FIG. 2C are as follows: coercive force (iHc): 1146 kA / m, residual magnetic flux density (Br): 1.32 (T), maximum energy product ((BH) max): 290 kJ / m. 3 and the sample No. shown in FIG. It was smaller than the magnetic characteristics of 3-2. Such a difference in magnetic properties is considered to be affected by the formation of the envelope layer (diffusion layer) described above.
  • FIG. 3A shows an electron micrograph obtained by observing powder particles of 3-2 (diffusion raw material C2: 6% by mass) with a scanning electron microscope (SEM). Moreover, the photograph which carried out the SEM observation similarly about another powder particle which changed the mixing ratio of the diffusion raw material C2 to 3 mass% was shown to FIG. 3B. Further, FIG. 3C shows a photograph of the powder particles before diffusion treatment (sample No. 5-4) observed by SEM in the same manner.
  • the bond magnet made of such powder particles is suppressed from being deteriorated in magnetic properties due to oxidation, and exhibits excellent permanent demagnetization rate and thus heat resistance. This was confirmed by actually manufacturing a bonded magnet as shown below.
  • the compound was put into a cavity of a molding die and warm-molded (150 ° C., 882 MPa) in a magnetic field (1200 kA / m) to obtain a 7 mm square cubic compact.
  • This molded body was magnetized in a magnetic field of about 3600 kA / m (45 kOe) to obtain a bond magnet as a test material.
  • the permanent demagnetization rate is improved by the diffusion treatment and further by the increase of the mixing ratio of the diffusion raw materials. This agrees with the result of the SEM observation described above. That is, the permanent demagnetization rate deteriorated as the number of cracks on the surface of the powder particles increased, and conversely, the permanent demagnetization rate improved as the number of cracks filled with the diffusion material decreased. Further, as the mixing ratio of the diffusion raw material increased, the coercive force of the bond magnet itself also increased. This is probably because the diffusion raw material not only encapsulated the surface of the powder particles but also diffused to the crystal grain boundaries, and the enveloping layer surrounding the Nd 2 Fe 14 B 1 type crystal was sufficiently formed.
  • the permanent demagnetization ratio is a ratio to the initial magnetic flux (flux) of permanent demagnetization that does not recover even after re-magnetization, and was specifically determined as follows. First, an initial magnetic flux ⁇ 0 of a 7 mm square bonded magnet is measured. This bonded magnet is held in an air atmosphere at 120 ° C. for 1000 hours. This bond magnet is again magnetized under the same conditions as the initial magnetization, and the magnetic flux ⁇ 1 at that time is measured. Then, the ratio (( ⁇ 0 ⁇ 1) / ⁇ 0) of the permanent demagnetization amount ( ⁇ 0 ⁇ 1) to the initial magnetic flux amount ⁇ 0 is obtained. This was expressed as a percentage to obtain a permanent demagnetization factor.
  • Sample No. 6-1 Sample No. shown in Table 4 6-1 is a magnet powder obtained by changing the temperature of the high-temperature hydrogenation step described above from 840 ° C. to 860 ° C. Table 4 shows the integrated composition, magnetic properties, and the like of the sample thus obtained. As is apparent from Table 4, the coercive force (iHc) of the magnet powder can be further increased to about 1500 to 1650 kA / m by preparing a high-temperature hydrogenation process (structure stabilization process) and performing a diffusion treatment. . Unless otherwise specified, each sample was manufactured under the same conditions as in Example 1 (hereinafter referred to as “standard conditions”). The same applies to the subsequent samples.
  • standard conditions the same applies to the subsequent samples.
  • Sample No. 7-1 to 7-13 Sample No. shown in Table 5 7-1 to 7-13 are 5% by mass of the diffusion material in which Al contained in the diffusion material C2 is variously changed to another element (X) with respect to the whole (total of the magnet material and the diffusion material) It consists of a magnet powder that has been mixed and diffused.
  • the composition of the diffusion raw material C2 is Nd 80% -Cu 10% -Al 10% by mass.
  • Each sample shown in Table 5 was manufactured using a diffusion raw material (Nd 80% -Cu 10% -X 10%) in which Al: 10% by mass was replaced with 10% by mass of various elements (X).
  • Table 5 shows that the coercive force (iHc) of the magnet powder is most improved when a diffusion raw material containing Al in addition to Nd and Cu is used. It can also be seen that the use of a diffusion material containing Ga, Co, Zr, etc. after Al is effective in improving the coercivity of the magnet powder. Note that, like Dy, Tb, Ho, etc., Ga, Co, etc. are also rare elements, so it is preferable that their use is suppressed not only as a magnet raw material but also as a diffusion raw material.
  • Sample No. 8-1 to 8-4 and Sample No. 9-1 to 9-4 Using each sample shown in Table 6, the influence of the form of the diffusion raw material and the amount of Cu in the diffusion raw material on the magnetic properties of the magnet powder was examined.
  • Sample No. Nos. 8-1 to 8-4 were produced using Nd—Cu alloy powder as a diffusion raw material.
  • Nos. 9-1 to 9-4 are produced by using a mixed powder of Nd powder and Cu powder as a diffusion raw material.
  • the Nd—Cu alloy powders of 8-1 to 8-4 correspond to the amount of Cu, respectively.
  • Table 6 and FIG. 4 show the relationship between the amount of Nd in the diffusion raw material of each of these samples and the coercive force (iHc). From this, it can be seen that if the composition of the diffusion raw material is the same, the magnetic characteristics (particularly the coercive force) of each sample show the same tendency. That is, it can be said that the influence of the difference in the supply form of the diffusion raw material on the magnetic properties of the magnet powder is small. In any case, it was also found that the coercive force of the magnet powder is remarkably improved when Cu is contained in an amount of 1 to 47 at%, further 6 to 39 at% when the entire diffusion raw material is 100 at%. This is presumably because the diffusion raw material approaches the eutectic composition, its melting point is lowered, wettability is improved, and the diffusion raw material becomes easy to encapsulate the surface of the powder particles or diffuse to the crystal grain boundaries.
  • each of the magnet raw materials (mother alloys) of each sample shown in Table 8 has a theoretical composition close to the theoretical composition (Nd: 11.8 at%, B: 5.9 at%).
  • the coercive force (iHc) of the magnet powder before the diffusion treatment is small.
  • the magnet raw material used in the present invention is obtained before a disproportionation step, and further through a low-temperature hydrogenation step in which hydrogen is absorbed into the mother alloy in a low temperature region below the temperature at which the disproportionation reaction occurs. It is preferable.
  • the magnet powder before the diffusion treatment is a typical coercive force improving element and contains rare Ga. Nevertheless, the coercive force is not improved so much and the magnetization is not large (Sample No. 13-3, Sample No. 14-3).
  • the magnet powder subjected to diffusion treatment certainly increases the coercive force, but the residual magnetic flux density is not so large (Sample No. 13-4, Sample No. 14-4).
  • a magnet alloy that was subjected to a forced exhaust process (840 ° C. ⁇ 10 minutes ⁇ 50 Pa or less) following the controlled exhaust process was also prepared.
  • the hydrogen concentration remaining in these magnet powders was 15 ppm. These hydrogen concentrations are numerical values measured by a hydrogen analyzer (manufactured by Horiba Seisakusho).
  • the conditions which are not described in particular depend on standard conditions.
  • Each of these samples was sealed in a separate plastic bag containing an inert gas, and stored for 1 month.
  • the storage environment at this time was 35 to 40 ° C. and the relative humidity was 60 to 80% (RH).
  • the diffusion process described above was performed using each magnet raw material after storage.
  • a diffusion raw material a hydride of Nd-14.5% Cu-34.2% Al (at%) (C2 in Table 2) was used.
  • Hk shown in Table 11 is a magnetic field corresponding to 90% of the residual magnetic flux density (Br) in the second quadrant (demagnetization curve) of the magnetization curve, and is an index of squareness.
  • this Hk is small, the irreversible demagnetization factor (magnetization that does not recover due to the temperature history) increases, and the durability of the permanent magnet used in a high temperature environment decreases.
  • the magnet raw material mixed with the diffusion raw material contains hydrogen that suppresses its oxidative deterioration.
  • the hydrogen concentration at that time is preferably 40 to 1000 ppm, more preferably 70 to 500 ppm. If the hydrogen concentration is too low, the magnet raw material stored for a long time is likely to be oxidized or deteriorated, and the starting point of the reverse magnetic domain is likely to be generated in the magnet powder. If the hydrogen concentration is excessive, the controlled exhaust process is not completed and the recombination of the three-phase decomposed magnet alloy becomes incomplete, and the magnetic properties of the magnet powder may be deteriorated.
  • the hydrogen contained in them is dehydrogenated during the diffusion process performed in a high temperature vacuum atmosphere. As this dehydrogenation proceeds, the low melting point diffusion material starts to melt and diffuses into the magnet material.
  • a magnet powder having a composition in the vicinity of the theory with Rm (Nd) of 12.7 at% or less originally has a large magnetization (and consequently a residual magnetic flux density) but a very small coercive force.
  • the coercive force is expressed by blocking the magnetic interaction between adjacent crystal grains and isolating the crystal grains (single domain particles).
  • isolation means a nonmagnetic Nd-rich phase is usually precipitated at grain boundaries.
  • anisotropy and isolation are made at the same time.
  • an aggregate of single domain particles anisotropicated by the HDDR process including d-HDDR process
  • An envelope layer made of a nonmagnetic phase containing Nd that isolates magnetic domain particles is formed.
  • the amount of Nd necessary for isolation can be minimized while the Nd amount in the magnet raw material is close to the stoichiometric composition.
  • the obtained magnet powder exhibits magnetization (Is) close to the theoretical magnetization (saturation magnetization 1.6 T) of the Nd 2 Fe 14 B 1 type crystal, and extra precipitates such as Nd-rich phase at the grain boundaries. Is eliminated, and a uniform nonmagnetic envelope layer containing Nd is formed during the diffusion treatment, thereby exhibiting a sufficiently high coercive force.
  • both high saturation magnetization and high coercivity can be achieved.
  • the function of magnetic interaction and the coercive force of the magnetic raw material powder of the present invention are in inverse proportion.
  • the strength of the magnetic interaction is evaluated by the coercive force, and the state in which the magnetic interaction is working is set to 720 kA / m or less.
  • the closeness to the theoretical magnetization of the present invention is indicated by Is, and the saturation magnetization of the magnet raw material powder after the hydrogen treatment of the present invention is set to 1.4 T or more.
  • the present invention provides a high coercive force and high density without diluting the high saturation magnetization that can be originally expressed by subjecting the magnet material having a theoretical composition to diffusion treatment.
  • the present inventors have succeeded in obtaining a magnet powder that can achieve both saturation magnetization and high residual magnetic flux density. This is also clear from the results shown in Table 9.
  • the Rm 2 TM 14 B 1 type crystal and the magnet raw material have a theoretical composition.
  • Rm is 11.6 to 12.7 at%, 11.7 to 12.5 at%, 11.8 to 12.4 at%, or 11.9 to 12.3 at%
  • B is 5. It is preferably 5 to 7 at%, more preferably 5.9 to 6.5 at%.
  • the magnetic characteristics of such a magnet raw material include, for example, a coercive force (iHc) of 720 kA / m or less, 600 kA / m or 480 kA / m or less, and a magnetization (Is) of 1.40 T or more and 1.43 T or more. Is 1.46T or more.
  • modifying elements Nb, Zr, Ti, V, Cr, Mn, Ni, Mo, etc.
  • it is preferably 2.2 at% or less.
  • Co is the same group 8 element as Fe, and is an element effective for improving the Curie point and the like. Therefore, the entire magnetic powder may contain 0.5 to 5.4 at% Co.
  • Co is preferably supplied from at least one of a magnet raw material and a diffusion raw material.
  • the rare earth anisotropic magnet powder of the present invention has an Rt of 11.5 to 15 at% (more preferably 11.8 to 14.8 at%), and B: 5.5 to 8 at% (more preferably 5. 8 to 7 at%) and Cu: 0.05 to 1 at% are preferable.
  • the balance in this case is mainly TM, but in addition, the inclusion of various modifying elements and inevitable impurities is allowed.
  • the balance of TM is preferably 76 to 83 at% (more preferably 77 to 82.7 at%) of Fe and / or Co.
  • Nb 0.05 to 0.6 at% and / or Al: 0.1 to 2.8 at% are contained.
  • Cu 0.05 to 0.8 at% (further 0.3 to 0.7 at%), Al: 0.5 to 2 at%, or Co: 1 to 8 at% (further 2 to 5 at%) More preferred.
  • a certain amount of Cu is required.
  • sample No. 5-4 (Br: 1.34T, iHc: 1138 kA / m, BHmax: 326 kJ / m 3 )
  • the entire powder particles after the diffusion treatment are made 100 at%, Cu 0.2 at% or more is necessary.
  • Cu exceeds 0.8%, the improvement of the coercive force is considerably slowed and the residual magnetic flux density (Br) is lowered. Therefore, the total amount of powder particles is 100 at%, and Cu is preferably 0.8 at% or less, and more preferably 0.3 to 0.7 at% as described above.
  • the magnet raw materials used in the method for producing rare earth anisotropic magnet powders of the present invention are unavoidably Rm: 11.6 to 12.7 at% and B: 5.5 to 7 at%, with the balance being Fe and / or Co. It is preferable that it consists of impurities. This preferably contains Nb: 0.05 to 0.6 at%. Further, Co is more preferably 1 to 8 at% (more preferably 1 to 5 at%).
  • the diffusion raw material used in the method for producing the rare earth anisotropic magnet powder of the present invention is the balance of Cu of 1 to 47 at%, further 6 to 39 at% when the entire diffusion raw material is 100 at% as described above. It is preferable to comprise a rare earth element and inevitable impurities.
  • the diffusion raw material contains Al, it is preferable that Cu is 5 to 27 at%, Al: 20 to 55 at% when the entire diffusion raw material is 100 at%, and the remaining rare earth element and inevitable impurities.
  • the preferable range of the amount of Cu (or the atomic ratio between Nd and Cu) is relatively wide.
  • the preferable range of Al amount in the Nd—Cu—Al ternary diffusion raw material can also vary depending on the atomic ratio of Nd and Cu.
  • the range of Al shown in Table 7 and FIG. 5 is just one example. However, considering the results shown in Table 6 and FIG. 4, it can be said that Cu and Al in the Nd—Cu—Al ternary diffusion raw material are preferably in the above range.
  • the composition of the magnet raw material and the diffusion raw material shown here are those before the hydrogen treatment. Further, when the rare earth elements (Rt, Rm, R ′, etc.) are composed of two or more kinds, the total value thereof is used.
  • the rare earth elements (R, Rm, R ') used in the magnet powder of the present invention are typically Nd, but may contain Pr. Even if part of Nd in the magnet raw material or the diffusion raw material is replaced with Pr, the influence on the magnetic properties is small. In addition, a mixed rare earth material (zidymium) in which Nd and Pr are mixed is available at a relatively low cost. For this reason, it is preferable that the rare earth element referred to in the present invention comprises a mixed rare earth element of Nd and Pr because the cost of the magnet powder can be reduced.
  • Dy, Tb or Ho which are typical coercive force improving elements, are contained in the main phase (R 2 TM 14 B 1 type). Crystal) or an envelope layer.
  • these Dy, Tb, or Ho are rare elements and expensive, their use is preferably suppressed as much as possible.
  • the magnet raw material (R) and / or the diffusion raw material (R ′) according to the present invention preferably contains Pr together with Nd, and conversely does not contain Dy, Tb and Ho. Furthermore, the magnet raw material and / or the diffusion raw material may contain Y, La, and Ce in addition to Nd and Pr. If the content of these rare earth elements is small, the high magnetic properties of the rare earth anisotropic magnet powder of the present invention can be maintained. For example, when the whole magnet raw material is 100 at%, each is allowed to 3 at% or less.
  • the ratio of the diffusion raw material mixed with the magnet raw material may be appropriately adjusted depending on the composition of the magnet raw material, the desired coercive force, and the like. Even when a magnet raw material having a theoretical composition is used, mixing 1 to 10% by mass of the diffusion raw material with respect to the entire mixed raw material yields a magnet powder that exhibits a sufficiently high coercive force with a high residual magnetic flux density (high magnetization). It is done.
  • the coercive force can be easily adjusted by reducing the mixing ratio of the diffusion raw materials. For example, if a small amount of a diffusion raw material is mixed with a magnet raw material having a theoretical composition, a magnetic powder having a high magnetization and a coercive force adjusted to a desired range can be easily obtained. In particular, when the magnet raw material has a composition close to the theoretical value, even if the amount of the diffusion raw material is small, it is likely that the magnetic raw material is likely to diffuse uniformly to the crystal surface and grain boundaries. Examples of such magnet powders are shown in Table 12. The magnet raw material of each sample is manufactured based on standard conditions. Sample No. 17-2 and sample no. In 18-2, the diffusion raw material C2 is mixed with the magnetic raw material by a relatively small amount of 1.5% by mass, and the diffusion treatment described above is performed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Nanotechnology (AREA)
  • Hard Magnetic Materials (AREA)
  • Powder Metallurgy (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

 本発明の希土類異方性磁石粉末は、その粉末粒子が、希土類元素(R)とホウ素(B)と遷移元素(TM)との正方晶化合物であり平均結晶粒径が0.05~1μmのRTM14型結晶と、この結晶の表面を包囲し、少なくとも希土類元素(R')および銅(Cu)を含有する包囲層とからなることを特徴とする。この包囲層の存在により、GaやDyなどの稀少元素を使用することなく、希土類異方性磁石粉末の保磁力を著しく高めることができた。

Description

希土類異方性磁石粉末およびその製造方法とボンド磁石
 本発明は、磁気特性に優れる希土類異方性磁石粉末およびその製造方法とボンド磁石に関する。
 希土類磁石粉末をバインダ樹脂で固めた成形体からなるボンド磁石は、非常に高い磁気特性を発揮すると共に形状自由度等に優れる。このためボンド磁石は、省エネルギー化や軽量化等が望まれる電化製品や自動車等の各種機器への利用が期待されている。
 もっとも、ボンド磁石の利用を拡大するには、高温環境下でも安定した磁気特性が発揮されることが求められる。このため、ボンド磁石ひいては希土類磁石粉末の保磁力を向上させる研究開発が現在盛んになされている。
 現状では、ジスプロシウム(Dy)やガリウム(Ga)などを希土類磁石粉末へ添加または拡散させて、その保磁力を向上させているに留まる。しかし、DyやGaなどは非常に稀少な元素であり、資源の安定確保やコスト低減などの観点からそれらの使用には問題も多い。そこで、稀少元素の使用を抑制しつつ希土類磁石粉末の保磁力を向上させる方法が求められていた。
特公平6-82575号公報 特開平10-326705号公報 特開2001-76917号公報 特開2005-97711号公報 特開2003-301203号公報 特開2000-336405号公報 特許第3452254(特開2002-93610)号公報 特開2010-114200号公報
日本金属学会誌、第72巻、第12号(2008)1010-1014
 特許文献1は、高磁気特性の希土類磁石粉末の一つとして、Nd12.5Dy1.0Febal.Co5.66.5Cu0.5(原子%)の組成をもつ合金インゴットから製造した粉末を開示している(同文献中の磁気特性29)。もっとも、特許文献1は、Feと置換可能な遷移元素の一例としてCuをインゴットに添加しているに過ぎない。しかもCuを含む希土類磁石粉末は、Cuを含まない他の希土類磁石粉末よりも明らかに磁気特性が低い。
 特許文献2~5についても、事情は特許文献1と同様である。なお特許文献3および特許文献4には、Cuが保磁力の向上に有効である旨の記載があるが(特許文献3の[0094]、特許文献4の[0011])、特許文献3においてはCuを含む合金インゴットから製造された磁石粉末(特許文献3の試料No.28)の保磁力はCuを含まない他のものよりも明らかに低く、特許文献4においては、すべてDyおよびTbを利用して保磁力を向上したものであり、合金インゴットにおけるCuの効果は不明である。特許文献5でも、Cuを添加元素の一つとして列挙し、Cuを含む磁石母合金を例示している(特許文献5の[0051]、[0095])。しかし、その磁石母合金中のCu量は0.01質量%と微量であり、Cuの効果については何ら記載されていない。
 特許文献6も、Cuが磁石粉末の保磁力の低下を抑制する旨を記載しているが(同文献の[0139])、実際にCuを含む磁石粉末の開示はない。このことは特許文献7についても同様である。
 なお、希土類磁石粉末と技術分野が異なるが、Cuを添加した合金粉末を焼結させた希土類焼結磁石が非特許文献1等で紹介されている。希土類焼結磁石中にCuを含有させる目的は、焼結する粉末粒子の表面において、保磁力向上に有効なNdリッチ相の濡れ性を向上させることにある。
 しかし、そもそも希土類焼結磁石は、数~数十μm程度に粉砕した合金粉末を高温加熱して、その粉末粒子の表面を溶融し結合させる、いわゆる液相焼結で作られる。このため、希土類焼結磁石の結晶粒はほぼ溶融前の粉末粒そのものであり、その平均結晶粒径は3~10μmと大きい。一方、希土類磁石粉末は、平均結晶粒径が1μm以下の結晶粒が集合した粉末粒子から構成され、焼結されるものではない。従って希土類磁石粉末と希土類焼結磁石とは、磁気特性の発現に影響する粒界形成メカニズムが全く異なり、両者は実質的に異なる技術分野の磁石として取り扱われている。
 本発明は、このような事情の下で為されたものである。すなわち、従来とは異なる手法により、DyやGaなどの稀少元素の使用を抑制しつつも保磁力の向上を図ることができる希土類異方性磁石粉末とその製造方法、さらにその希土類異方性磁石粉末を用いたボンド磁石を提供することを目的とする。
 本発明者はこの課題を解決すべく鋭意研究し試行錯誤を重ねた結果、希土類磁石粉末の技術分野における従来の技術常識に反して、NdFeB系磁石粉末とNdCu粉末との混合粉末を拡散熱処理することにより、非常に優れた磁気特性の希土類異方性磁石粉末を得ることに新たに成功した。この成果をさらに発展させることで、以降に述べる本発明を完成するに至った。
《希土類異方性磁石粉末》
(1)本発明の希土類異方性磁石粉末は、希土類元素(以下「R」と表す。)とホウ素(B)と遷移元素(以下「TM」と表す。)との正方晶化合物であり平均結晶粒径が0.05~1μmのRTM14型結晶と、少なくとも希土類元素(以下「R’」と表す。
)および銅(Cu)を含有し該RTM14型結晶の表面を包囲する包囲層と、を有する粉末粒子を含むことを特徴とする。
(2)ここで「R」、「R’」は、具体的な希土類元素名を代替する称呼として用いている。つまり「R」または「R’」は、特に断らない限り全希土類元素中の一種または二種以上を意味する。このため、「R」と「R’」が同種の希土類元素(例えば、Nd)であることもあるし、相違することもある。またRまたはR’が複数の希土類元素を意味する場合、それらが全部一致することもあれば、一部が一致し一部が異なることも、全部異なることもある。
 但し本明細書では、便宜上、磁石の主相となる正方晶化合物(つまりRTM14型結晶)を構成する希土類元素は「R」で統一的に表記し、包囲層を構成する希土類元素は「R’」で統一的に表記する。つまりRとR’は、「物」としての粉末粒子の形態(正方晶部分か包囲層部分か)に基づく便宜的な表記であり、粉末粒子の製造過程または供給源(原料)等に基づく表記ではない。例えば、磁石原料(母合金)中の希土類元素であっても、正方晶化合物(つまりRTM14型結晶)の形成に寄与するものは「R」、その正方晶化合物の形成に際して排出された過剰な希土類元素であって包囲層を形成するものは「R’」と表記する。
 なお、正方晶化合物および包囲層の区別なく、粉末粒子全体に含まれる希土類元素を記号で敢えて一般的に示す(またはその全種を示す)必要があるときは、適宜、「Rt」を用いる。また磁石原料中に含まれる希土類元素を記号で敢えて一般的に示す(またはその全種を示す)必要があるときは、適宜、「Rm」を用いる。ちなみに単に「希土類元素」というときは、全希土類元素中の一種または二種以上の元素であって、R、R’、Rt、Rm等をも包含する一般的な概念としての「希土類元素」を意味する。
(3)本発明によれば、上記の包囲層の存在により、高磁束密度と共に非常に高い保磁力を発現する希土類異方性磁石粉末が得られる。しかもその包囲層は、入手が容易で比較的安価なR’およびCuで構成され得る。つまり、本発明の場合、保磁力向上のためにDyなどの稀少で高価な元素は必ずしも必要でない。このため、本発明によれば、希土類異方性磁石粉末の安定供給や低コスト化が可能となる。
 もっとも、本発明の希土類異方性磁石粉末が優れた磁気特性を発現するメカニズムは必ずしも定かではない。現状では次のように考えられる。本発明に係る包囲層を構成するR’-Cu物質(合金や化合物など)は、非磁性で低融点であることが多い。このような物質からなる包囲層は濡れ易く、磁石の主相であるRTM14型結晶の表面を覆い易い。このため、包囲層はRTM14型結晶の表面に存在する歪みを修復し、その表面付近における逆磁区の発生を抑えると考えられる。さらに包囲層は、各々のRTM14型結晶を孤立化させ、隣接するRTM14型結晶による磁気的相互作用を遮断すると考えられる。こうして本発明の希土類異方性磁石粉末では、磁束密度の低下を抑制しつつ、保磁力の著しい向上を図ることができたと考えられる。
 但し、本発明に係るRTM14型結晶は非常に微細であり、その結晶の表層や粒界はより一層微細である。このため、本発明の包囲層を直接観察することは必ずしも容易ではない。ただ直接的ではないにしろ、本発明の希土類異方性磁石粉末が示す非常に優れた磁気特性(特に保磁力)を、希土類異方性磁石粉末に関する多数の研究成果等から総合的に考察すれば、本発明に係る粉末粒子が上述したRTM14型結晶と包囲層とを有するものであるといい得る。例えば、後述する実施例欄の記載からも明らかなように、粉末(粒子)全体としてはほぼ同一組成であっても、本発明に係る試料と、従来のように単なるインゴット(磁石母合金)中にCuを含む試料とを比較すると、前者の方が後者よりも格段に磁気特性(特に保磁力)が優れている。この事情を勘案すれば、本発明に係る粉末粒子が上述したRTM14型結晶と包囲層とから構成されることが間接的ではあるが明白である。
(4)本発明では、粉末粒子の形態や粒径などは問わない。包囲層の形態や厚みも問わない。本発明に係る粉末粒子は、表面が包囲層で包囲されたRTM14型結晶が一部でも存在すればよい。このため、多数の結晶の集合体からなる粉末粒子自体の表面まで、必ずしも包囲層で包囲されている必要はない。
 さらに粉末粒子の集合体からなる希土類異方性磁石粉末も、そのような本発明に係る粉末粒子を少なくとも一部に有すれば足る。すなわち、本発明の希土類異方性磁石粉末を構成する全ての粉末粒子が、RTM14型結晶と包囲層とからなる粉末粒子である必要もない。従って、本発明の希土類異方性磁石粉末は複数種の粉末粒子を混合した混合粉末でもよい。
本発明でいう平均結晶粒径は、JIS G 0551中の結晶粒の平均直径dの求め方に準拠した。本発明の粉末粒子中における主相であるRTM14型結晶とその外周面(表面)にある包囲層との存在割合は問わない。もっとも、包囲層がしめる体積割合は少ないほど好ましい。
 本発明でいうRまたはR’は、イットリウム(Y)、ランタノイドおよびアクチノイドの一種以上である。その中でも、ランタン(La)、セリウム(Ce)、プラセオジム(Pr)、ネオジム(Nd)、サマリウム(Sm)、ガドリニウム(Gd)、テルビウム(Tb)、ジスプロシウム(Dy)、ホルミウム(Ho)、エルビウム(Er)、ツリウム(TM元素)、ルテチウム(Lu)が代表的である。さらにいえばNdが一般的である。またR’とRは、完全一致でも、一部一致でも、全く異なっていてもよい。
 TMは、特に3d遷移元素または4d遷移元素の1種以上であると好ましい。3d遷移元素は原子番号21(Sc)~原子番号29(Cu)であり、4d遷移元素は原子番号39(Y)~原子番号47(Ag)である。中でもTMは、8族の鉄(Fe)、コバルト(Co)またはニッケル(Ni)のいずれか、さらにいえばFeであると好適である。また、ホウ素の一部を炭素(C)に置換することも可能である。
《希土類異方性磁石粉末の製造方法》
 本発明の希土類異方性磁石粉末はその製造方法を問わないが、次のような本発明の製造方法により製造されると、効率的に高磁気特性の希土類異方性磁石粉末が得られて好適である。つまり本発明の希土類異方性磁石粉末は、RとBとTMとの正方晶化合物であるRTM14型結晶を生成し得る磁石原料と、少なくともR’およびCuの供給源となる拡散原料とを混合した混合原料を得る混合工程と、該混合原料を加熱して前記RTM14型結晶の表面または結晶粒界へ少なくともR’となる希土類元素とCuを拡散させる拡散工程と、を備えることを特徴とする製造方法により得られてもよい。
 なお、「少なくともR’およびCuの供給源となる拡散原料」とは、包囲層の形成に必要な元素を一緒に含む原料でもよいし、独立して別々に含む原料を混合したものでよいことを示す。
《ボンド磁石またはコンパウンド》
 さらに本発明は、上述した希土類異方性磁石粉末を用いたボンド磁石とも把握できる。すなわち本発明は、上述した希土類異方性磁石粉末と、この希土類異方性磁石粉末の粉末粒子を固結する樹脂と、からなることを特徴とするボンド磁石でもよい。また本発明は、そのボンド磁石の製造に用いられるコンパウンドであってもよい。コンパウンドは各々の粉末粒子表面にバインダである樹脂を予め付着させたものである。これらボンド磁石やコンパウンドに用いられる希土類異方性磁石粉末は、平均粒径や組成の異なる複数種の磁石粉末が混在した複合粉末でもよい。
《その他》
(1)本発明の希土類異方性磁石粉末は、上述した希土類元素(R、R’を含む)、B、TMおよびCu以外に、その特性改善に有効な元素である「改質元素」を含み得る。改質元素には種々あり、各元素の組合せは任意であり、通常その含有量は微量である。当然ながら本発明の希土類異方性磁石粉末は、コスト的または技術的な理由等によって除去困難な「不可避不純物」をも含み得る。
(2)特に断らない限り、本明細書でいう「x~y」は、下限値xおよび上限値yを含む。また、本明細書に記載した種々の下限値または上限値は、任意に組合わされて「a~b」のような範囲を構成し得る。さらに、本明細書に記載した範囲内に含まれる任意の数値を、数値範囲を設定するための上限値または下限値とすることができる。
Cu原子比と保磁力との相関を示すグラフである。 拡散処理した粉末粒子のTEM写真である。 その拡散処理前の粉末粒子のTEM写真である。 Cuを含むインゴットからなる拡散処理しない粉末粒子のTEM写真である。 拡散処理した粉末粒子(拡散原料:6質量%)のSEM写真である。 拡散処理した粉末粒子(拡散原料:3質量%)のSEM写真である。 拡散処理前の粉末粒子のSEM写真である。 拡散原料中のCu量(Nd量)と磁石粉末の保磁力との関係を示すグラフである。 拡散原料中のAl量と磁石粉末の保磁力との関係を示す分散図である。 磁石粉末のNd量と保磁力との関係を示す分散図である。 磁石粉末のNd量と磁化との関係を示す分散図である。
 発明の実施形態を挙げて本発明をより詳しく説明する。なお、以下の実施形態を含めて本明細書で説明する内容は、本発明に係る希土類異方性磁石粉末のみならず、その製造方法やボンド磁石等にも適用され得る。従って、上述した本発明の構成に、本明細書中から任意に選択した一つまたは二つ以上の構成を付加し得る。この際、製造方法に関する構成は、プロダクトバイプロセスとして理解すれば物に関する構成ともなり得る。なお、いずれの実施形態が最良であるか否かは、対象、要求性能等によって異なる。
《粉末粒子》
(1)本発明に係る粉末粒子は、RTM14型結晶の集合体からなる。この正方晶化合物の組成は原子%(at%)で表現すると、R:11.8at%、B:5.9at%、残部がTMである。
 もっとも本発明の粉末粒子は、RTM14型結晶の他にR’を含む包囲層を有するため、粉末粒子全体として観ると、希土類元素(Rt:RおよびR’を含む粉末粒子中の全希土類元素)は11.5~15at%が好ましい。この範囲が上記の正方晶化合物の理論組成値よりもリッチ側になると、Ndリッチ相などの希土類元素リッチ相の形成が容易になり、希土類異方性磁石粉末の保磁力が向上し得る。これらを踏まえて粉末粒子全体を100at%としたときに、Rt:12~15at%、B:5.5~8at%であるとより好ましい。
 粉末粒子は、上記元素以外にも、特性改善に有効な種々の元素を含み得る。このような改質元素として、TMであるチタン(Ti)、バナジウム(V)、ジルコニウム(Zr)、ニオブ(Nb)、ニッケル(Ni)、クロム(Cr)、マンガン(Mn)、モリブデン(Mo)、ハフニウム(Hf)、タングステン(W)、タンタル(Ta)などの他、アルミニウム(Al)、ガリウム(Ga)、ケイ素(Si)、亜鉛(Zn)、スズ(Sn)などがある。粉末粒子はこれら元素の1種以上を含有しても良い。もっとも、これらの元素が過多になると、磁石粉末の磁気特性が低下し得る。そこで粉末粒子全体を100at%としたとき、改質元素は合計で3at%以下であると好ましい。
 中でもGaは、希土類異方性磁石粉末の保磁力の向上に効果的な元素である。粉末粒子は全体を100at%としたときに、0.05~1at%のGaを含むと好ましい。またNbは、残留磁束密度の向上に有効な元素である。粉末粒子は全体を100at%としたときに、0.05~0.5%のNbを含むと好ましい。勿論、両者を複合添加すると一層好ましい。Coは、磁石粉末のキュリー点向上ひいてはその耐熱性の向上に有効な元素である。粉末粒子は全体を100at%としたときに0.1~10at%のCoを含むと好ましい。
(2)本発明に係る粉末粒子中の包囲層は、過少では希土類異方性磁石粉末の保磁力が向上せず、過多ではRTM14型結晶量が相対的に低下して磁束密度など磁気特性の低下を招く。
 包囲層は、粉末粒子全体を100at%としたときに、Cu:0.05~2at%さらには0.2~1at%であると好ましい。さらに本発明の包囲層は、R’およびCu以外にAlを含有すると、より一層高い保磁力の希土類異方性磁石粉末が得られる。Alが過少ではその効果が乏しく、過多では磁石粉末の磁束密度が低下する。粉末粒子全体を100at%としたときに、Al:0.1~5at%さらには1~3at%であると好ましい。
 ところで本発明者が鋭意研究したところ、希土類異方性磁石粉末の保磁力を向上させるには、粉末粒子全体に含まれる希土類元素(特にNd)とCuの間に好ましい存在比率があることがわかった。いいかえると、希土類元素(Rt)の全原子数に対するCuの全原子数の比率であるCu原子比(Cu/Rt)と希土類異方性磁石粉末の保磁力との間には相関がある。
 もっとも、好ましいCu原子比は、包囲層の組成により多少変化し得る。例えば、R’とCuとからなる包囲層の場合、Cu原子比は0.2~6.8%さらには0.6~6.2%が好ましい。さらに包囲層がAlを含む場合、Cu原子比は0.6~11.8%さらには1~8.6%が好ましい。もっともいずれの場合でも、Cu原子比が1~6%、1.3~5%さらには1.6~4%であると、希土類異方性磁石粉末の保磁力が向上し得るので好適である。
《製造方法》
 希土類異方性磁石粉末は種々の方法により製造可能であるが、本発明の製造方法は混合工程と拡散工程を備えてなる。
(1)混合工程
 本発明の混合工程は、RとBとTMとの正方晶化合物であるRTM14型結晶を生成し得る磁石原料と、少なくともR’およびCuの供給源となる拡散原料とを混合した混合原料を得る工程である。混合にはヘンシェルミキサ、ロキシングミキサ、ボールミル等を用いることができる。磁石原料や拡散原料は、粉砕、分級等をした粉末であると、均一混合がされ易く好ましい。混合は、酸化防止雰囲気(例えば、不活性ガス雰囲気や真空雰囲気)で行われるのが好ましい。
 磁石原料には、例えば、種々の溶解法(高周波溶解法、アーク溶解法等)により溶解、鋳造したインゴット材やストリップキャスト法で製作したストリップキャスト材を用いることができる。中でもストリップキャスト材を用いるのが好ましい。この理由は次の通りである。
 非常に高い残留磁束密度Brを得るためには、磁石原料中の希土類元素量とB量をRTM14化合物の化学量論組成に近づけことが好ましい。しかし、そうすると初晶としてのαFeが多く残存しやすくなる。
 ここでインゴット材の場合、冷却速度が遅いので軟磁性αFe相が残存し易い。このαFe相を消失させるためにソーキング時間を長くする必要があり、効率が悪く希土類異方性磁石粉末の磁気特性も劣化しやすい。一方ストリップキャスト材の場合、冷却速度が早いので軟磁性αFe相の残存が少量で微細に分布するか、もしくは殆どない。このため、短いソーキング時間で、軟磁性αFe相を消失させることができる。
 このストリップキャスト材を均質化処理すれば、その結晶粒は平均結晶粒径が100μm程度(50~250μm)の好ましいサイズまで成長する。こうして出来たストリップを粉砕すれば、αFe相が無く、粒界に希土類元素リッチ相が形成された、適切なサイズの結晶粒からなる希土類異方性磁石粉末の原料(つまり磁石原料)が得られる。
 このような事情の下、磁石原料は全体を100at%としたときに、少なくとも希土類元素が11.5~15at%であることが好ましい。このようにストリップキャスト材を用いれば、磁石原料中に含まれる希土類元素の下限値を正方晶化合物の理論組成値よりも低くすることもできる。勿論、拡散原料と混合される磁石原料は、インゴットやストリップ等を水素粉砕や機械粉砕等した粉末状であると好ましい。
 拡散原料は、R’やCuの供給源となる単体、合金、化合物である。所望組成に応じて複数種の原料を混合したものでもよい。なお、磁石原料または拡散原料の少なくとも一方は、水素化物でもよい。水素化物は、単体、合金、化合物などに水素が結合または固溶したものである。拡散原料は、混合原料全体を100質量%とすると0.1~10質量%さらには1~6質量%であるとよい。拡散原料が過少では包囲層の形成が不十分となり、過多では希土類異方性磁石粉末の磁束密度が低下する。
(2)拡散工程
 本発明の拡散工程は、上記の混合原料を加熱してRTM14型結晶の表面または結晶粒界へ少なくともR’となる希土類元素とCuを拡散させる工程である。希土類元素やCuの拡散には表面拡散、粒界拡散または体拡散があるが、包囲層は主に表面拡散、粒界拡散により形成されると考えられる。拡散工程中の加熱は、拡散原料が溶融して粒界拡散し易い温度でなされると好ましい。例えば、拡散原料のトータル組成にも依るが、拡散工程は400~900℃の酸化防止雰囲気(真空雰囲気または不活性雰囲気等)でなされ得る。加熱温度が過小では拡散が進行せず、過大ではRTM14型結晶の粗大化を招く。
 磁石原料や拡散原料に水素化物を用いた場合、拡散工程と脱水素工程は一体的になされ、その後急冷されるのが好ましい。具体的には、磁石原料の水素化物や拡散原料の水素化物の混合原料を700℃~900℃で1Pa以下の真空雰囲気におくとよい。また、混合原料中に水素が残存する場合は、拡散工程後に脱水素(排気)工程を行なってもよいし、脱水素工程後に、拡散処理を行ってもよい。このような拡散工程を経て希土類異方性磁石粉末を製造した場合、本発明の包囲層は、少なくともR’およびCuがRTM14型結晶の表面または結晶粒界へ拡散した拡散層となる。
(3)磁石原料の水素処理
 平均結晶粒径が0.05~1μmという微細なRTM14型結晶の集合体からなる粉末粒子は、例えば、ベースとなる磁石原料に周知の水素処理を行うことで得られる。水素処理は、母合金に吸水素させ不均化反応を生じさせる不均化工程と、この不均化工程後の母合金から脱水素して再結合させる再結合工程とからなり、HDDR(hydrogenation-decomposition(もしくはdisproportionation)-desorption-recombination)またはd-HDDR(dynamic-hydrogenation-decomposition(もしくはdisproportionation)-desorption-recombination)と呼ばれる。
 例えば、d-HDDRの場合、不均化工程は少なくとも高温水素化工程からなり、再結合工程は少なくとも脱水素工程(より詳しくは制御排気工程)からなる。以下、水素処理の各工程について説明する。
 (a)低温水素化工程は、次工程(高温水素化工程)での水素化・不均化反応が緩やかに進むように、水素化・不均化反応を生じる温度以下の低温域で水素圧をかけて水素を十分固溶させる工程である。より具体的にいうと、低温水素化工程は、磁石原料の母合金(以下単に「磁石合金」という。)を600℃以下の水素ガス雰囲気中に保持して、磁石合金に水素を吸蔵させる工程である。この工程を予め行うことで、後続の高温水素化工程における順組織変態の反応速度制御が容易となる。
 水素ガス雰囲気の温度が過大では、磁石合金が部分的に組織変態を起し、組織が不均一となる。その際の水素圧力は特に問わないが、例えば0.03~0.1MPa程度であると、処理時間が短縮されて効率的である。なお、水素ガス雰囲気は、水素ガスと不活性ガスとの混合ガス雰囲気であっても良い。この場合の水素圧力は水素ガス分圧である。これは、高温水素化工程や制御排気工程においても同様である。
 (b)高温水素化工程は、磁石合金に対して水素化・不均化反応をさせる工程である。より具体的にいうと、高温水素化工程は、その低温水素化工程後の磁石合金を、0.01~0.06MPaで750~860℃の水素ガス雰囲気中に保持する工程である。この高温水素化工程により、低温水素化工程後の磁石合金は、三相分解(αFe相、RH相、FeB相)された組織となる。この際、磁石合金は低温水素化工程で既に水素を吸蔵しているため、水素圧力を抑えた状況で、組織変態反応を穏やかに進行させることができる。
 水素圧力が過小では反応速度が低く、未変態組織が残存して保磁力の低下を招く。水素圧力が過大では反応速度が高く、異方化率の低下を招く。水素ガス雰囲気の温度が過小では三相分解組織が不均一となり易く、保磁力の低下を招く。その温度が過大では結晶粒が粗大化して保磁力の低下を招く。なお、高温水素化工程は、水素圧力または温度が終始一定である必要はない。例えば、反応速度が低下する工程末期で水素圧力または温度の少なくとも一方を上昇させて反応速度を調整し、三相分解を促進させてもよい(組織安定化工程)。
 (c)制御排気工程は、高温水素化工程で三相分解した組織を再結合反応をさせる工程である。この制御排気工程では、比較的高い水素圧力下で緩やかに脱水素がなされ、緩やかに再結合反応が進行する。より具体的にいうと、制御排気工程は、高温水素化工程後の磁石合金を水素圧力が0.7~6kPaで750~850℃の水素ガス雰囲気中に保持する工程である。この制御排気工程により、上記の三相分解中のRH相から水素が除去される。こうして組織が再結合し、FeB相の結晶方位が転写した微細なRTM14型結晶の水素化物(RFeBH)が得られる。水素圧力が過小では、水素が急激に抜けてしまい磁束密度の低下を招き、過大では上記の逆変態が不十分となり保磁力が低下し得る。処理温度が過小では逆変態反応が適切に進行せず、過大では結晶粒の粗大化を招く。なお、高温水素化工程と制御排気工程とを略同温度で行えば、水素圧力の変更のみで高温水素化工程から制御排気工程に移行し易い。
 (d)強制排気工程は、磁石合金中に残留した水素を取除き、脱水素処理を完了させる工程である。この工程は、処理温度や真空度等が特に限定されないが、750~850℃の1Pa以下の真空雰囲気で行われると好ましい。処理温度が過小では排気に長時間を要し、過大では結晶粒の粗大化を招く。真空度が過小では、水素が残存して希土類異方性磁石粉末の磁気特性が低下し得る。この工程後に急冷すれば、結晶粒の成長が抑止されて好ましい。
 強制排気工程は、制御排気工程と連続的に行う必要はない。強制排気工程前に、制御排気工程後の磁石合金を冷却する冷却工程を入れても良い。冷却工程を設けると、制御排気工程後の磁石合金に対する強制排気工程をバッチ処理できる。冷却工程の磁石合金(磁石原料)は、水素化物であり耐酸化性がある。このため、その磁石原料を一時的に大気中へ取出すことも可能である。
 (e)ところで、磁石原料が上述の水素処理を経て得られる場合、磁石原料と拡散原料とを混合する混合工程は、必ずしも上記の強制排気工程後である必要はない。つまり混合工程は、低温水素化工程前、高温水素化工程前、制御排気工程前、強制排気工程前など、いずれの段階でなされてもよい。また拡散工程は、水素処理の各工程と独立してなされてもよいし、それらの少なくとも一工程と兼用させてもよい。例えば、低温水素化工程の前後で混合工程を行った場合、拡散工程は高温水素化工程で兼ねることも可能である。
 もっとも、制御排気工程後に微細なRTM14型結晶(RTM14)が生成された磁石原料と拡散原料とを混合すると好ましい。例えば、制御排気工程後の磁石原料と拡散原料とを混合した後(混合工程)、強制排気工程を兼ねる拡散工程を行うとよい。これにより、各RTM14型結晶が包囲層で適切に包囲された高保磁力の希土類異方性磁石粉末を効率的に製造し得る。
 なお、制御排気工程後の磁石原料を一旦冷却した後に混合工程、拡散工程を行ってもよいし、その制御排気工程に続けて混合工程、拡散工程を行ってもよい。勿論、強制排気工程後の磁石原料と水素を含有しない拡散原料とを混合した後に、真空排気を伴わない不活性雰囲気下で加熱する拡散処理でも十分である。この場合、拡散工程後の強制排気工程は不要となる。
 ちなみに、磁石原料は、平均粒径が3~200μmであると好ましく、拡散原料は平均粒経3~30μmであると好ましい。平均粒径が過小では不経済で、取り扱いがむずかしくなり、磁気特性の耐酸化性が低下する傾向にある。一方、平均粒径が過大では均一に両原料を混合することが難しい。
 また、平均結晶粒径が0.05~1μmという微細なRTM14型結晶の集合体からなる粉末粒子は、上述した水素処理以外の方法でも得られる。例えば、液体急冷法により製造した0.03μm程度の微細なRTM14型結晶の集合体からなる等方性希土類磁石粉末を、熱間ホットプレス等で結晶を異方化させる方法がある。この方法で得た粉末粒子は結晶粒径が0.3μm程度となる。
《用途》
 本発明の希土類異方性磁石粉末の用途は限定されない。もっとも、その希土類異方性磁石粉末からなるボンド磁石は、各種機器に使用することができる。これにより各種機器の省エネルギー化、軽量小型化、高性能化等を図れる。ボンド磁石中のバインダ樹脂は、熱硬化性樹脂でも熱可塑性樹脂でもよい。また、カップリング剤や滑剤等を添加混錬したものでもよい。
 実施例を挙げて本発明をより具体的に説明する。
[実施例1]
《試料の製造》
(1)磁石原料の調製
 表1に示す組成(以降、成分組成は全てat%で表す。なお表1中のNdがRmに相当する。)の磁石合金からなる種々の磁石原料を用意した。これらの磁石原料は次のようにして製造した。先ず表1に示す組成となるように秤量した原料を溶解し、ストリップキャスト法(以下「SC法」という。)により鋳造した磁石合金(母合金)を得た。この磁石合金を1140℃のArガス雰囲気中に10時間保持して組織を均質化させた(均質化熱処理工程)。
 次に水素圧力0.13MPaの水素雰囲気で水素粉砕した後の磁石合金に、水素化処理(d-HDDR)を施して粉末状の磁石原料を得た。この水素化処理は次のようにして行った。なお、その水素化処理後の磁石合金は1mm以下に水素粉砕される。
 磁石合金をそれぞれ15gを処理炉に入れて、室温×0.1MPa×1時間の低温水素雰囲気中でその磁石合金を保持した(低温水素化工程)。これに続けて780℃×0.03MPaの高温水素雰囲気中に磁石合金を30分間保持した(高温水素化工程)。この後、5分間かけてその雰囲気を840℃へ昇温し、840℃×0.03MPa×60分間の高温水素雰囲気中で磁石合金を保持した(組織安定化工程)。こうして反応速度を調整しつつ、磁石合金を三相(α-Fe、RH、FeB)に分解する順変態を生じさせた(不均化工程)。この後、処理炉内から水素を連続的に排気して840℃×5~1kPaの雰囲気中で磁石合金を90分間保持して、順変態後の磁石合金内にRTM14型結晶を生成する逆変態を生じさせた(制御排気工程/再結合工程)。
 これに続けて磁石合金を急冷した(第1冷却工程)。この磁石合金を840℃×30分×10-1Pa以下の雰囲気中に保持して強制排気工程を行った。こうして得られた磁石合金を、不活性ガス雰囲気中で乳鉢で解砕後、粒度調整して粒径が212μm以下(平均粒径100μm)の粉末状の磁石原料を得た。なお磁石原料の平均粒径は、HELOS&RODOSレーザ回折式粒子径分布測定装置により測定し、平均粒径の評価は体積球相当径(VMD)により評価した(以下同様)。なお、ここでは量産時を考慮して強制排気工程前に第1冷却工程を行ったが、制御排気工程に続けて強制排気工程を行い、その後、磁石合金を急冷させてもよい。
(2)拡散原料の調製
 表2に示す組成の拡散原料を種々用意した。これら拡散原料は次のようにして製造した。先ず表2に示す組成となるように秤量した原料を溶解し、ブックモールド法により鋳造した原料合金を得た。この原料合金を水素粉砕した後、さらに湿式のボールミルで粉砕して平均粒経6μmの粉末状の拡散原料(水素化物)を得た。この粉砕後の原料合金を不活性ガス雰囲気中で乾燥させた。こうして粉末状の拡散原料を得た。
(3)混合および拡散処理
 上述した各種の磁石原料および拡散原料を、不活性ガス雰囲気中で表3Aおよび表3B(以下まとめて単に「表3」という。)に示す混合割合で混合し混合原料を得た(混合工程)。なお混合割合は、混合原料全体を100質量%としたときの各拡散原料の質量割合である。
 この混合原料を10-1Paの真空雰囲気中で800℃×1時間加熱した(拡散工程)。これに続けて混合原料を急冷した(第2冷却工程)。こうして各種の希土類異方性磁石粉末(以下単に「磁石粉末」という。)からなる試料を得た。なお表3には、各試料の統合組成(磁石原料および拡散原料の各組成とそれらの混合割合とから算出した拡散処理後の試料の組成)も併せて示した。また比較のために、拡散原料の添加および拡散処理を行わない各種の試料(磁石原料のままの試料)も用意し、その組成も表3に併せて示した。
《測定》
(1)粉末粒子
 各試料の粉末粒子の結晶粒径をSEMを用いて測定した。いずれの結晶も粒径が1μm以下であり、平均結晶粒径は0.2~0.5μmであった。なお、この平均結晶粒径はJIS G0551中の結晶粒の平均直径dの求め方に準拠して求めたものである。なお、この粉末粒子についてX線回折パターンを見たところ、NdFe14の回折ピークと同一であることが確認された。
(2)磁気特性
 各試料(磁石粉末)をカプセルに詰めて、温度80℃程度で磁場(1193kA/m)中で配向させた後、着磁(3580kA/m)を行った。この着磁後の磁石粉末の磁気特性を、試料振動型磁力計(VSM:Vibrating Sample Magnetometer )を用いて測定した。この際、各試料の密度は7.5g/cmと仮定した。こうして得た結果を表3に併せて示した。
(3)Cu原子比
 表3に示した各試料について、それらの統合組成から希土類元素(Rt)であるNd(at%)に対するCu(at%)の比(Cu/Nd)を求めて表3に併せて示した。また表3Aに示した試料No.1-1~1-10(Nd-Cu)と試料No.2-1~2-5(Nd-Cu-Al)とについて、Cu原子比と保磁力の関係を図1に示した。
《評価》
(1)包囲層または拡散処理の影響
 磁石原料のみで製造された磁石粉末(若しくは単に「磁石原料」)中の希土類元素(Rm=Rt)であるNdがRTM14型結晶の生成に必要な理論組成値:11.8at%に近い試料No.5-5を観ると、保磁力(iHc)が極端に低い。このため、試料No.5-5は本来は高い磁束密度(Br)が得られるはずの組成であるが、その保磁力の低下に影響されて磁束密度まで低い値となっている。
 これに対して、その試料No.5-5に近似した組成の磁石原料(表1のM1)へ、例えばNdCuからなる拡散原料を拡散させた試料No.1-1~1-6を観ると、保磁力が急増している。この傾向は、NdCuAlからなる拡散原料を拡散させた試料No.2-1~2-4などについても同様である。これら保磁力が急増した試料では、拡散処理により、NdTM14型結晶の粒界に、NdCuまたはNdCuAlからなる包囲層(拡散層)が形成されためと考えられる。一方、母合金(インゴット)の段階からCuを含有させ、拡散処理を施さない試料No.5-1または試料No.5-3は、保磁力が著しく低くなっている。特に、試料No.4-1と試料No.5-1または試料No.4-4と試料No.5-3を比較すると、全体的な組成が近似しているにも拘わらず、インゴット段階からCuを含有させた試料No.5-1およびNo.5-3は、拡散処理した試料No.4-1およびNo.4-4よりも磁気特性が劣化しており、特に保磁力の低下は著しい。
 このような相違は、RTM14型結晶の周囲におけるNdおよびCuの存在形態が異なるためと考えられる。つまり、インゴット段階からCuを含有させた試料No.5-1、No.5-3では、RTM14型結晶の周囲にNdおよびCuが存在するとしても、それは例えば粘性や濡れ性等の性質が本発明でいう包囲層と異なり、塊状で結晶の表面を包囲するようなものではないと考えられる。これに対して拡散処理した試料No.4-1およびNo.4-4では、NdおよびCuが粘性や濡れ性等にとって最適な組成であり、RTM14型結晶の表面をほぼ均一にまたは滑らかに包囲していると考えられる。こうして試料No.4-1およびNo.4-4では、RTM14型結晶の表面に存在する歪みが修復され、またはその表面付近における逆磁区の発生が効果的に抑制されて、試料No.5-1およびNo.5-3よりも著しく高い保磁力を発現するようになったと考えられる。
さらに、インゴット段階からCuを含有しており、Cuを除いて近似した組成を有する試料No.5-1と試料No.5-2を比較すると、Cuが多くなると保磁力が急減することがわかる。このことから、従来のように単に母合金の段階からCuを含有させても、むしろ保磁力が低下することがわかり、そのような場合におけるCuは必ずしも保磁力を向上させる元素ではないことがわかる。また試料No.5-3と試料No.5-5を比較するとわかるように、単に母合金の段階からCuが存在するのみでは、仮にNdリッチが形成される状況であっても、保磁力の向上は望めず、むしろ保磁力は低下する。これは、本発明でいうようなNdCuまたはNdCuAlからなる包囲層がNdTM14型結晶の表面にほぼ均一に形成されないためと考えられる。なお、試料No.5-4の保磁力が高いのは、磁石粉末中に保磁力を向上させるGaが含有されているためである。
(2)Cu量とNd量
 表3に示した各試料の統合組成および磁気特性と、図1のグラフとから、磁石粉末の保磁力と、磁石粉末中のCuおよびNdの含有量との間に相関があることがわかる。すなわち、RTM14型結晶の結晶粒界(または粒界相)へ、Cuのみならずそれに相応するNd(R’)が共に導入されることが、磁石粉末の保磁力の向上に必要である。例えば、試料No.1-1~1-6では、拡散処理によりNd(R)がRTM14型結晶の生成に必要なRの理論組成値:11.8at%を超えて導入されており、Cuもそれに相応する量が導入されている。その結果、それらの試料の保磁力は955kA/mを超える高い値となっている。一方、試料No.1-8~No.1-10のように、Cuに対してNdが少なくても、Ndのみが多くても、保磁力の高い磁石粉末は得られなかった。
 この傾向は保磁力を高めるAlを含有する試料No.2-1~2-5についてもいえる。例えば、CuとNdの含有量のバランスが崩れた試料No.2-5では、他の試料よりも保磁力が低下している。さらに同様のことは、試料No.3-1~3-6についてもいえる。もっとも、試料No.3-5のように、ベースとなる磁石原料(M5)中のNdが理論組成値よりも過少なため磁石原料中に軟磁性を有するαFeを含み、拡散処理を行ってもαFeを消失できないので保磁力の向上は望めない。逆に、試料No.3-3、試料No.3-4または試料No.3-6のように、磁石原料中にNdが十分に存在する場合、NdTM14型結晶の表面にNdCu(Al)からなる良好な包囲層が形成され易くなり、高い保磁力が得られたと考えられる。
(3)拡散原料
 表3Bに示す試料No.4-1~4-7から明らかなように、数種の拡散原料を用いた場合でも、上述した内容と同様の傾向を示すことがわかる。また試料No.4-7は、拡散原料中に希土類元素(R’)を含まず、Nd量もRTM14型結晶の生成に必要なRの理論組成値に近い。このためNdTM14型結晶の表面にNd-Cuを含む包囲層が形成され難く、保磁力および磁束密度が大幅に低くなったと考えられる。
(4)粉末粒子のTEM観察
 試料No.3-2の粉末粒子を透過型電子顕微鏡(TEM)で観察した電子顕微鏡写真を図2Aに示した。また、その拡散処理前の粉末粒子(磁石原料M1)を同様にTEM観察した写真を図2Bに示した。さらに、拡散処理をせず、CuおよびAlを含むインゴット(Fe-12.9%Nd-6.4%B-0.1%Nb-0.1%Cu-2.3%Al:単位はat%)に前述した水素化処理(d-HDDR)を施して得た粉末粒子を同様にTEM観察した写真を図2Cに示した。
 先ず図2Aから明らかなように、拡散処理した粉末粒子の場合、NdFe14型結晶の表面を包囲するような、CuおよびNdの明確な濃化部が結晶粒界に観察された。このことからも、結晶の表面を包囲するNdCuからなる包囲層(拡散層)が形成されていることが明らかとなった。
 一方、拡散処理前の粉末粒子の場合、図2Bから明らかなように、Cuの濃化部は勿論、Ndの濃化部もほとんど観察されなかった。これは、その磁石原料(M1)中のNd量が理論組成に近く、いわゆるNdリッチ相もほとんど形成されなかったためと考えられる。
 CuおよびAlをインゴットから含む粉末粒子の場合は、図2Cから明らかなように、Cuの濃化部およびNdの濃化部が結晶粒界に僅かに観察された。しかし、それらの濃化部は、いくつかの結晶のごく一部に点在するに留まり、いずれの結晶の表面をも全体的に包囲するような形態でない。ちなみに、図2Cに示した試料の磁気特性は、保磁力(iHc):1146kA/m、残留磁束密度(Br):1.32(T)、最大エネルギー積((BH)max):290kJ/mであり、保磁力および最大エネルギー積ともに図2Aに示した試料No.3-2の磁気特性よりも小さかった。このような磁気特性の相違は、上述の包囲層(拡散層)の形成が影響していると考えられる。
(5)粉末粒子のSEM観察
 試料No.3-2(拡散原料C2:6質量%)の粉末粒子を走査型電子顕微鏡(SEM)で観察した電子顕微鏡写真を図3Aに示した。また、その拡散原料C2の混合割合を3質量%に変更した別の粉末粒子を同様にSEM観察した写真を図3Bに示した。さらに、拡散処理前の粉末粒子(試料No.5-4)を同様にSEM観察した写真を図3Cに示した。
 先ず、図3Cからわかるように、d-HDDR処理して得られた拡散処理前の粉末粒子の表面部には、多数の亀裂(クラック)が存在していた。一方、拡散処理した粉末粒子の表面は連続的で、そのようなクラックが消失していることが、図3Aや図3Bから明らかとなった。これは、融点が低く濡れ性に優れる拡散原料が粉末粒子の表面を被包すると共に、d-HDDR処理後にできたクラックを埋めたためと考えられる。このことは、粉末粒子の表面に観られる細い線状のクラック痕からもわかる。そして拡散原料の混合割合が3質量%程度になるとクラックはほぼ観られなくなり、拡散原料の混合割合が6質量%程度になるとクラックはほぼ完全に消失することも確認できた。
 このように、粉末粒子の割れの起点となるクラックが粉末粒子の表面から減少しさらには消失すると、当然に粉末粒子は割れ難くなり、酸化され易い新生面の生成が抑制される。その結果、このような粉末粒子からなるボンド磁石は、酸化による磁気特性の低下が抑制されて、優れた永久減磁率ひいては耐熱性を発現するようになる。このことを、次に示すようなボンド磁石を実際に製造して確認した。
《ボンド磁石》
(1)製造
 上述した図3A~図3Cに示すSEM観察で用いた3種の希土類異方性磁石粉末を用いてボンド磁石を製造した。具体的には、先ず、全体の3質量%に相当するエポキシ固形樹脂と15質量%に相当する市販のSmFeN系異方性磁石粉末(住友金属鉱山株式会社製または日亜化学工業株式会社製))と残部である各磁石粉末とからなるコンパウンドを用意した。このコンパウンドは、ヘンシェエルミキサーでよく混合した磁石粉末へ、エポキシ固形樹脂を加えて、バンバリーミキサーで加熱混練(110 ℃ )して得た。なお、ここで用いた上記3種の磁石粉末の平均粒径はすべで100μmであった。またSmFeN系異方性磁石粉末は、組成がFe-10%Sm-13%N(at%)で平均粒径が3μmであった。
 次に、そのコンパウンドを成形型のキャビティへ投入して、磁場中(1200kA/m)で温間成形(150℃、882MPa)して、7mm角の立方体状の成形体を得た。この成形体を約3600kA/m(45kOe)の磁場中で着磁することにより、供試材であるボンド磁石を得た。
(2)永久減磁率
 それぞれのボンド磁石について、耐熱性や耐候性の指標となる永久減磁率を求めた。試料No.3-2の磁石粉末(拡散原料:6質量%)からなるボンド磁石は、永久減磁率が2.42%で初期保磁力(減磁前の保磁力)が1312kA/mであった。拡散原料を3質量%とした磁石粉末からなるボンド磁石は、永久減磁率が3.81%で初期保磁力が1114kA/mであった。一方、拡散処理を施さなかった試料No.5-4の磁石粉末からなるボンド磁石は、永久減磁率が5.02%で初期保磁力が1058kA/mであった。
 これらのことから、拡散処理により、さらには拡散原料の混合割合の増加によって、永久減磁率が向上することが明らかである。これは、上述したSEM観察の結果と一致する。すなわち、粉末粒子の表面にあるクラックが多いほど永久減磁率は悪化し、逆にクラックが拡散原料で埋められて少なくなるほど永久減磁率は向上した。また拡散原料の混合割合が増加すると、ボンド磁石自体の保磁力も増加した。これは、拡散原料が単に粉末粒子の表面を被包するのみならず結晶粒界にまで拡散して、NdFe14型結晶を包囲する包囲層が十分に形成されたためと考えられる。
 なお、永久減磁率は、再着磁しても回復しない永久減磁分の初期磁束量(フラックス)に対する割合であり、具体的には次のようにして求めた。先ず着磁した7mm角のボンド磁石の初期磁束量φ0を測定する。このボンド磁石を120℃の大気雰囲気中に1000時間保持する。このボンド磁石に、初期の着磁と同条件で再度着磁を行い、そのときの磁束量φ1を測定する。そして永久減磁分(φ0-φ1)の初期磁束量φ0に対する割合((φ0-φ1)/φ0)を求める。これを百分率で表して永久減磁率とした。
[実施例2]
 上述した各試料の他に、以降に示す各試料も製造し、それらについても種々評価した。
(1)試料No.6-1
 表4に示した試料No.6-1は、前述した高温水素化工程の温度を840℃から860℃に変更して得た磁石粉末からなる。こうして得られた本試料の統合組成、磁気特性等を表4に示した。この表4から明らかなように、高温水素化工程(組織安定化工程)を調製し、拡散処理を施すことにより、磁石粉末の保磁力(iHc)はさらに1500~1650kA/m程度まで上昇し得る。なお、特に断らない限り、各試料の製造は、実施例1と同じ条件(以下これを「標準条件」という。)で行った。以降の試料についても同様である。
(2)試料No.7-1~7-13
 表5に示した試料No.7-1~7-13は、拡散原料C2に含まれるAlを他の元素(X)に種々変更した拡散原料を、全体(磁石原料と拡散原料との合計)に対して5質量%の割合で混合して拡散処理をした磁石粉末からなる。なお、拡散原料C2の組成は質量%でNd80%-Cu10%-Al10%となる。表5に示した各試料は、そのAl:10質量%を、種々の元素(X)10質量%で置換した拡散原料(Nd80%-Cu10%-X10%)を用いて製造したものである。
 表5から、NdおよびCuに加えてAlを含む拡散原料を用いると、磁石粉末の保磁力(iHc)が最も向上することがわかる。Alに次いで、Ga、Co、Zr等が含まれる拡散原料を用いても、磁石粉末の保磁力の向上に有効であることもわかる。なお、Dy、Tb、Ho等と同様に、GaやCo等も稀少元素であるので、磁石原料としては勿論、拡散原料としても、それらの使用が抑制されると好ましい。
(3)試料No.8-1~8-4と試料No.9-1~9-4
 表6に示す各試料を用いて、拡散原料の形態と拡散原料中におけるCu量とが磁石粉末の磁気特性に及ぼす影響を調べた。試料No.8-1~8-4は、Nd-Cu合金粉末を拡散原料として製造したものであり、試料No.9-1~9-4は、Nd粉末とCu粉末との混合粉末を拡散原料として製造したものである。なお、試料No.9-1~9-4の混合粉末と試料No.8-1~8-4のNd-Cu合金粉末とは、それぞれCu量に関して対応している。
 それら各試料の拡散原料中におけるNd量と保磁力(iHc)との関係を表6および図4(Cu:Xat%)に示した。これから、拡散原料の組成が同じなら、各試料の磁気特性(特に保磁力)も同様な傾向を示すことがわかる。すなわち、拡散原料の供給形態の相違が磁石粉末の磁気特性へ及ぼす影響は小さいといえる。いずれの場合でも、拡散原料全体を100at%としたときにCuが1~47at%さらには6~39at%含まれていると、磁石粉末の保磁力が顕著に向上することもわかった。これは拡散原料が共晶組成に近づいて、その融点が低下し、濡れ性が向上して、拡散原料が粉末粒子の表面を被包したり結晶粒界へ拡散し易くなったためと考えられる。
(4)試料No.10-1~10-6
 表6および図4に示す結果を踏まえて、さらに組成が(Nd0.8Cu0.2100-X-AlX (数値は原子比を示す。)となる合金粉末から調製した拡散原料を用いて、表7に示す各試料を製造した。これら各試料の拡散原料中におけるAl量と得られた磁石粉末の磁気特性との関係を表7および図5に示した。これらから、拡散原料全体を100at%としたときにAlが2~62at%、6~60at%さらには10~58at%含まれていると磁石粉末の保磁力が顕著に向上することがわかった。
(5)試料No.11-1~11-2および試料No.12-1~12-2
 表8に示す各試料を製造し、拡散処理前における磁石原料の製造条件の相違が、磁石粉末の磁気特性へ及ぼす影響について調べた。表8中の「d-HDDR」は、磁石原料を前述した標準条件に基づきつつ、制御排気工程時の処理炉内の圧力を1kPaに変更して製造した場合である。
 表8に示す各試料の磁石原料(母合金)は、いずれも、理論組成(Nd:11.8at%、B:5.9at%)に近い理論近傍組成からなる。磁石原料がこのようなストイキメトリーな組成(stoichiometric composition)からなる場合、拡散処理前における磁石粉末の保磁力(iHc)は、いずれも小さい。
 しかし、拡散処理を行うと、いずれも保磁力(iHc)は大きく向上した。なお、磁石原料中にCoが含まれると、キュリー点の向上と共に磁気特性全体がさらに向上するが、上記の傾向を示す点は同じである。
 このように理論近傍組成の磁石原料を用いる場合、高磁気特性の磁石粉末を効率的に得るにはd-HDDRが優れる。よって、本発明で用いる磁石原料は、不均化工程前に、さらに、不均化反応を生じる温度以下の低温域で母合金に水素を吸収させる低温水素化工程を経て得られたものであると好適である。
(6)試料No.13-1~13-4および試料No.14-1~14-4
 表9に示す各試料を製造し、磁石原料の組成の相違が、磁石粉末の磁気特性へ及ぼす影響について調べた。なお、表9中の各試料に用いた磁石原料は、前述した標準条件(d-HDDR)に基づいて製造したものである。但し、試料No.13-1および試料No.13-2では、組織安定化工程の水素圧力を0.02MPaとして製造した。これら磁石原料に拡散処理を行う場合は、既述の通り行った。
 表9に併せて示した各試料の磁気特性から次のことがわかる。理論近傍組成の磁石原料を用いた場合、拡散処理前の磁石粉末は、その磁化(Is)が大きい反面、その保磁力(iHc)が極端に小さい(試料No.13-1、試料No.14-1)。ところが、これに拡散処理した磁石粉末では、本来有する高磁化が保持されつつ保磁力が急増して、高残留磁束密度であると共に非常に高い保磁力が発現される(試料No.13-2、試料No.14-2)。
 一方、Rm(Nd)、Bがリッチ側にあり理論近傍組成から外れている磁石原料を用いた場合、拡散処理前の磁石粉末は、代表的な保磁力向上元素であり稀少なGaを含むにも拘わらず保磁力がさほど向上しておらず、磁化も大きくない(試料No.13-3、試料No.14-3)。これに拡散処理した磁石粉末は、確かに保磁力が急増するものの、残留磁束密度がさほど大きくない(試料No.13-4、試料No.14-4)。
 こうして、理論近傍組成の磁石原料に本発明に係る拡散処理を行うことにより、稀少なGaなどの保磁力向上元素を用いるまでもなく、保磁力、残留磁束密度さらには最大エネルギー積などの各点に関して従来の磁石粉末と同等以上の磁石粉末が得られることが明らかとなった。
(7)試料No.15-1~15-3および試料No.16-1~16-2
 希土類元素としてNd以外にPrを含有する各種の磁石粉末と、重希土類元素(Dy、Tb、Ho等)をも含有する各種の磁石粉末とを製造し、それらの磁気特性を調べて表10に示した。なお、表10中の各試料に用いた磁石原料は、前述した標準条件(d-HDDR)に基づいて製造したものである。ここでPrの供給源には、NdとPrの混合希土類原料(ジジム)を用いた。重希土類元素の供給源には、保磁力向上元素として代表的なDy合金(Dy58at%-Fe42at%)を用いた。拡散処理は既述の通り行った。
 表10に併せて示した各試料の磁気特性から次のことがわかる。磁石原料または拡散原料の少なくとも一方がPrを含む試料No.15-1~15-3は、統合組成(希土類元素はRt=Nd+Prで評価)がほぼ同じ試料No.3-2または試料No.4-1等と、同等の磁気特性を発現している。これらのことから、原料中のNdの一部をPrで置換しても、上述した各試料と同様に、磁気特性に優れる磁石粉末が得られることがわかる。そして、希土類元素源として比較的安価なジジムを用いれば、高磁気特性の磁石粉末を低コストで得ることができる。
 拡散原料が重希土類元素(Dy)を含む試料No.16-1~16-2はいずれも、他の試料に対して、保磁力が大幅に向上している。そして両試料の統合組成(希土類元素はRt=Nd+Prで評価)はほぼ同じであるため、それらの磁気特性もほぼ同様なレベルとなった。なお、これらの試料の残留磁束密度や最大エネルギー積は他の試料よりも若干低下しているが、これは重希土類元素を含む拡散原料が3質量%増量されているためである。
(8)試料No.H1-1~H2-2
 量産時のバッチ処理を考慮し、水素を残存させた磁石原料(水素化物)を用いた表11に示す各種の磁石粉末も製造した。具体的には次の通りである。先ず、SC法により得たFe-12.2%Nd-6.5%B-0.2%Nb(at%)の磁石合金を10kg用意した。この磁石合金を水素圧力0.10MPaの水素雰囲気で水素粉砕して粉末状の磁石原料を得た。これに低温水素化工程を施した後、810℃×0.03MPaの高温水素雰囲気中に磁石合金を95分間保持した(高温水素化工程)。この後、10分間かけてその雰囲気を860℃へ昇温し、860℃×0.03MPa×95分間の高温水素雰囲気中で磁石合金を保持した(組織安定化工程)。
 この後、処理炉内から水素を連続的に排気して860℃×5~1kPaの雰囲気中で磁石合金を50分間保持した(制御排気工程)。この制御排気工程後の磁石合金を、不活性ガス雰囲気中で乳鉢で解砕して、粒径:45~212μmに分級した磁石原料粉末(試料No.H1-1)と、粒径:45μm以下に分級した磁石原料粉末(試料No.H2-1)を得た。これらの磁石原料粉末に残存する水素濃度は100ppm(質量比)であった。
 また、その制御排気工程後に続けて強制排気工程(840℃×10分× 50 Pa以下)を行った磁石合金も用意した。これを不活性ガス雰囲気中で自由粉砕機で解砕して、粒径:45~212μmに分級した磁石原料粉末(試料No.H1-2)と、粒径:45μm以下に分級した磁石原料粉末(試料No.H2-2)を得た。これらの磁石粉末中に残存する水素濃度は15ppmであった。これらの水素濃度は 水素分析装置(堀場製作所製) により測定した数値である。なお、各磁石粉末の製造に関して、特に記載していない条件は標準条件に依る。
 これら各試料を、不活性ガスを入れた別々のビニール袋中に入れて密封し、1月間保存した。このときの保存環境は35~40℃、相対湿度60~80%(RH)とした。この保存後の各磁石原料を用いて、既述した拡散処理を行った。拡散原料には、Nd-14.5%Cu-34.2%Al(at%)の水素化物(表2のC2)を用いた。
 こうして得られた各磁石粉末の磁気特性を表11に併せて示した。なお、表11に示したHkは、磁化曲線の第2象限(減磁曲線)において、残留磁束密度(Br)の90%に対応する磁場であり、角型性の指標となる。このHkが小さいと、不可逆減磁率(温度履歴により回復しない磁化)が大きくなり、高温環境下で使用される永久磁石の耐久性が低下する。
 表11の結果から明らかなように、一時的または長期的に保存した磁石原料を用いる場合、残存水素量が多いほど、高磁気特性の磁石粉末を安定して得られることがわかる。逆に、磁石原料中に残存する水素濃度が小さいと、磁石粉末の磁気特性が低下し、特に温度特性または高温耐久性に影響する角型性(Hk)が大きく低下する。このような傾向は、酸化する表面積が増大する小粒径の磁石原料(試料No.H2-1および試料No.H2-2)を用いる場合ほど顕著である。
 従って、拡散原料と混合する磁石原料は、その酸化劣化を抑制する水素を含有していると好適である。その際の水素濃度は、40~1000ppmさらには70~500ppmであると好ましい。水素濃度が過小では長期保管した磁石原料が酸化または劣化し易くなり、逆磁区の発生起点を磁石粉末に生じ易くなる。水素濃度が過大では制御排気工程が未完で三相分解された磁石合金の再結合が不完全となり、却って磁石粉末の磁気特性が低下し得る。
 なお、水素化物からなる磁石原料および拡散原料を用いて磁石粉末を製造する場合、それらに含まれる水素は、高温真空雰囲気中でなされる拡散処理中に脱水素される。この脱水素の進行に伴い、低融点の拡散原料は溶融を始め、磁石原料中へ拡散等していく。
《本発明に関する補足》
(1)Rm(Nd)量と磁気特性の関係
 Nd量の異なる種々の磁石合金(Fe-X%Nd-(100-X)%B:at%)を用いて標準条件下で磁石粉末を製造し、それらの保磁力(iHc)を図6Aに、飽和磁化(Is)を図6Bに示した。これらから、Rm(Nd):12.7at%ぐらいを境にして磁石粉末の磁気特性が急変することがわかる。すなわち、Rm(Nd)が12.7at%以下の理論近傍組成からなる磁石粉末は、本来、磁化(ひいては残留磁束密度)は大きいが、保磁力が非常に小さくなることがわかる。
 ここで保磁力は一般的に、隣接する結晶粒間の磁気的相互作用を遮断させ、結晶粒(単磁区粒子)を孤立化させることにより発現すると考えられている。このような孤立化手段として、従来、非磁性のNdリッチ相を粒界に析出させることが通常であった。この場合、異方化と孤立化とが同時になされることになる。これに対して本発明では、先ず、HDDR処理(d-HDDR処理を含む)で異方化された単磁区粒子の集合体をつくり、次に、その単磁区粒子(結晶粒)の周りに単磁区粒子を孤立化させるNdを含む非磁性相からなる包囲層をつくっている。これにより、隣接する単磁区粒子間に作用する磁気的相互作用によって生じる保磁力の著しい低下が回避され、保磁力の向上が図られる。
 この本発明によれば、磁石原料中のNd量をストイキメトリー組成に近づけつつ、孤立化に必要なNd量を必要最小限にできる。この結果、得られた磁石粉末は、NdFe14型結晶の理論磁化(飽和磁化1.6T)に近い磁化(Is)を発揮すると共に、粒界においてNdリッチ相等の余分な析出物が排除され、拡散処理時にNdを含む均一な非磁性の包囲層が形成されて、十分に高い保磁力を発揮する。こうして高い飽和磁化と高い保磁力の両立が図られる。
 ここで、本発明の磁石原料粉末の磁気的相互作用の働きと保磁力とは逆比例の関係にあると考えられる。本発明では、その磁気的相互作用の強さを保磁力で評価し、磁気的相互作用が働いている状態を720kA/m以下とする。本発明の理論磁化への近さをIsで指標し、本発明の水素処理後の磁石原料粉末の飽和磁化を1.4T以上とする。
(2)組成
 本発明は、そのような状況の下で、理論近傍組成の磁石原料に拡散処理を施すことによって、磁石原料が本来発現し得る高飽和磁化を希釈させることなく、高保磁力と高飽和磁化または高残留磁束密度とを両立できる磁石粉末を得ることに成功したものである。このことは表9に示す結果からも明らかである。
 そこで本発明では、RmTM14型結晶や磁石原料が理論近傍組成であると好ましい。具体的には、Rmが11.6~12.7at%、11.7~12.5at%、11.8~12.4at%さらには11.9~12.3at%であり、Bが5.5~7at%さらには5.9~6.5at%であると好ましい。このような磁石原料の磁気特性は、例えば、保磁力(iHc)が720kA/m以下、600kA/mさらには480kA/m以下であり、磁化(Is)が1.40T以上、1.43T以上さらには1.46T以上である。
 もっとも、それらの中に少量の改質元素(Nb、Zr、Ti、V、Cr、Mn、Ni、Mo等)が含まれてもよいことは当然であり、磁石原料中の各改質元素は、例えば、2.2at%以下であると好ましい。さらにCoは、Feと同じ8族元素であり、キュリー点等の向上に有効な元素である。そこで、磁石粉末全体として0.5~5.4at%のCoが含まれていてもよい。なおCoは、磁石原料または拡散原料の少なくとも一方から供給されるとよい。
  以上を踏まえて、本発明の希土類異方性磁石粉末は、Rt:11.5~15at%(さらには11.8~14.8at%)、B:5.5~8at%(さらには5.8~7at%)およびCu:0.05~1at%であると好適である。この場合の残部は主にTMであるが、その他、各種の改質元素や不可避不純物の含有が許容される。残部であるTMを敢えていうと、例えば、Feおよび/またはCoが76~83at%(さらには77~82.7at%)が好ましい。
 さらに、Nb:0.05~0.6at%および/またはAl:0.1~2.8at%が含まれると好ましい。なお、Cu:0.05~0.8at%(さらには0.3~0.7at%)、Al:0.5~2at%またはCo:1~8at%(さらに2~5at%)であるとより好ましい。
 稀少元素であるDy、Ga等の使用を抑止しつつ、それら元素を用いた従来の希土類異方性磁石粉末と同等な高磁気特性の磁石粉末を得るには、ある程度のCuが必要である。例えば、試料No.5-4(Br:1.34T、iHc:1138kA/m、BHmax:326kJ/m)と同等な磁気特性の磁石粉末を得るには、拡散処理後の粉末粒子全体を100at%として、Cuが0.2at%以上必要である。もっとも、Cuが0.8%を超えると、保磁力の向上がかなり鈍化すると共に残留磁束密度(Br)の低下が生じる。従って、粉末粒子全体を100at%として、Cuは0.8at%以下が好ましく、上述したように0.3~0.7at%であるとより好ましい。
 また本発明の希土類異方性磁石粉末の製造方法で用いる磁石原料は、Rm:11.6~12.7at%およびB:5.5~7at%と、残部がFeおよび/またはCoと、不可避不純物とからなると好適である。これにNb:0.05~0.6at%が含まれると好ましい。またCo:1~8at%(さらには1~5at%)であるとより好ましい。
 また本発明の希土類異方性磁石粉末の製造方法で用いる拡散原料は、前述のように拡散原料全体を100at%としたときにCuが1~47at%さらには6~39at%と、残部である希土類元素と、不可避不純物とからなると好適である。また拡散原料がAlを含む場合、拡散原料全体を100at%としたときにCuが5~27at%、Al:20~55at%と、残部である希土類元素と、不可避不純物とからなると好適である。
 ここで表6や図4から明らかなように、Nd-Cu2元系拡散原料を用いた場合では、好ましいCu量(またはNdとCuの原子比)の範囲は比較的広い。このためNd-Cu-Al3元系拡散原料における好ましいAl量の範囲も、NdとCuの原子比に応じて変動し得る。表7や図5に示すAlの範囲はその一例に過ぎない。もっとも、表6や図4に示す結果を考慮すれば、Nd-Cu-Al3元系拡散原料のCuおよびAlは、上記の範囲であると好ましいといえる。なお、ここで示した磁石原料および拡散原料の組成は水素処理前のものである。また希土類元素(Rt、Rm、R’等)が2種以上からなるときは、それらの合計値である。
(3)希土類元素
 本発明の磁石粉末に用いられる希土類元素(R、Rm、R’)は、Ndが代表的であるが、Prを含んでいてもよい。磁石原料や拡散原料中のNdの一部がPrに置換されても、磁気特性への影響は少ない。しかもNdとPrとの混在した混合希土類原料(ジジム)は比較的安価に入手可能である。このため、本発明でいう希土類元素がNdとPrの混合希土類元素からなると、磁石粉末の低コスト化も図れ得るので好ましい。また、本発明の希土類異方性磁石粉末の保磁力をさらに高めるために、代表的な保磁力向上元素であるDy、TbまたはHoの一種以上を、主相内(RTM14型結晶)または包囲層内に含んでもよい。もっとも、これらDy、TbまたはHoは稀少元素で高価なため、それらの使用は可能な限り抑制されるほど好ましい。
 よって、本発明に係る磁石原料(R)および/または拡散原料(R’)は、Ndと共にPrを含むと好ましく、逆にDy、TbおよびHoを含まないと好ましい。さらに、磁石原料および/または拡散原料は、Nd、Prの他、Y、La、Ceを含有してもよい。これらの希土類元素は、その含有量が少量なら、本発明の希土類異方性磁石粉末の高磁気特性も維持され得る。例えば、磁石原料全体を100at%としたときに、それぞれ3at%以下まで許容される。
(4)拡散原料の混合割合
 磁石原料に混合する拡散原料の割合は、磁石原料の組成、所望する保磁力等によって適宜調整すればよい。理論近傍組成の磁石原料を用いた場合でも、混合原料全体に対して拡散原料を1~10質量%混合すると、高残留磁束密度(高磁化)と共に十分に高い保磁力を発現する磁石粉末が得られる。
 もっとも、磁石粉末の用途によっては、高い残留磁束密度は必要であるが、高い保磁力は必要ない場合もある。このような場合は、拡散原料の混合割合を減少させることにより、保磁力を容易に調整し得る。例えば、理論近傍組成の磁石原料に少量の拡散原料を混合して拡散処理すれば、高磁化でありつつ、保磁力が所望範囲に調整された磁石粉末を容易に得ることができる。特に磁石原料が理論近傍組成である場合、拡散原料はたとえ少量でも、結晶の表面や粒界へ均一に拡散し易いと思われる。このような磁石粉末の例を表12に示した。各試料の磁石原料は標準条件に基づき製造したものである。試料No.17-2および試料No.18-2は、それら磁石原料に拡散原料C2を、比較的少量の1.5質量%だけ混合して既述の拡散処理をしたものである。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000013

Claims (10)

  1.  希土類元素(以下「R」と表す。)とホウ素(B)と遷移元素(以下「TM」と表す。)との正方晶化合物であり平均結晶粒径が0.05~1μmのRTM14型結晶と、
     少なくとも希土類元素(以下「R’」と表す。)および銅(Cu)を含有し該RTM14型結晶の表面を包囲する包囲層と、を有する粉末粒子を含むことを特徴とする希土類異方性磁石粉末。
  2.  前記粉末粒子は、希土類元素の全原子数に対するCuの全原子数の比率であるCu原子比が1~6%である請求項1に記載の希土類異方性磁石粉末。
  3.  前記包囲層は、さらにアルミニウム(Al)を含有する請求項1または2に記載の希土類異方性磁石粉末。
  4.  前記包囲層は、少なくともR’およびCuが前記RTM14型結晶の結晶粒界へ拡散した拡散層からなる請求項1または3に記載の希土類異方性磁石粉末。
  5.  前記粉末粒子は、全体を100原子%(at%)としたときに、
     11.5~15at%の希土類元素(RおよびR’を含む全希土類元素)と、
     5.5~8at%のBと、
     0.05~ 2at%のCuとを含む請求項1または4に記載の希土類異方性磁石粉末。
  6.  RとBとTMとの正方晶化合物であるRTM14型結晶を生成し得る磁石原料と少なくともR’およびCuの供給源となる拡散原料とを混合した混合原料を得る混合工程と、
     該混合原料を加熱して前記RTM14型結晶の表面または結晶粒界へ少なくともR’となる希土類元素とCuを拡散させる拡散工程と、
     を備えることを特徴とする希土類異方性磁石粉末の製造方法。
  7.  前記磁石原料は、
     母合金に吸水素させ不均化反応を生じさせる不均化工程と、
     該不均化工程後の母合金から脱水素して再結合させる再結合工程と、
     を経て得られたものである請求項6に記載の希土類異方性磁石粉末の製造方法。
  8.  前記磁石原料は、前記不均化工程前に、さらに、前記不均化反応を生じる温度以下の低温域で前記母合金に水素を吸収させる低温水素化工程を経て得られたものである請求項7に記載の希土類異方性磁石粉末の製造方法。
  9.  前記磁石原料は、全体を100at%としたときに、Rが11.6~12.7at%でBが5.5~7at%である理論近傍組成を有する請求項6または8に記載の希土類異方性磁石粉末の製造方法。
  10.  請求項1~5のいずれかに記載の希土類異方性磁石粉末と、
     該希土類異方性磁石粉末の粉末粒子を固結する樹脂と、
     からなることを特徴とするボンド磁石。
PCT/JP2010/067779 2009-12-09 2010-10-08 希土類異方性磁石粉末およびその製造方法とボンド磁石 WO2011070847A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP10835769.0A EP2511916B1 (en) 2009-12-09 2010-10-08 Rare-earth anisotropic magnet powder, method for producing same, and bonded magnet
JP2011545136A JP5472320B2 (ja) 2009-12-09 2010-10-08 希土類異方性磁石粉末およびその製造方法とボンド磁石
US13/514,943 US9640319B2 (en) 2009-12-09 2010-10-08 Anisotropic rare earth magnet powder, method for producing the same, and bonded magnet
CN2010800553033A CN102648502A (zh) 2009-12-09 2010-10-08 稀土类各向异性磁铁粉末及其制造方法和粘结磁铁
US15/484,962 US10607755B2 (en) 2009-12-09 2017-04-11 Anisotropic rare earth magnet powder, method for producing the same, and bonded magnet

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2009279314 2009-12-09
JP2009-279314 2009-12-09
JP2010190868 2010-08-27
JP2010-190868 2010-08-27

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US13/514,943 A-371-Of-International US9640319B2 (en) 2009-12-09 2010-10-08 Anisotropic rare earth magnet powder, method for producing the same, and bonded magnet
US15/484,962 Continuation US10607755B2 (en) 2009-12-09 2017-04-11 Anisotropic rare earth magnet powder, method for producing the same, and bonded magnet

Publications (1)

Publication Number Publication Date
WO2011070847A1 true WO2011070847A1 (ja) 2011-06-16

Family

ID=44145400

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/067779 WO2011070847A1 (ja) 2009-12-09 2010-10-08 希土類異方性磁石粉末およびその製造方法とボンド磁石

Country Status (5)

Country Link
US (2) US9640319B2 (ja)
EP (1) EP2511916B1 (ja)
JP (1) JP5472320B2 (ja)
CN (2) CN107424694A (ja)
WO (1) WO2011070847A1 (ja)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6180046A (ja) * 1984-09-28 1986-04-23 Eiken Kizai Kk ジチオスレイト−ルによる喀痰集細胞法
WO2011145674A1 (ja) * 2010-05-20 2011-11-24 独立行政法人物質・材料研究機構 希土類永久磁石の製造方法および希土類永久磁石
JP2012244105A (ja) * 2011-05-24 2012-12-10 Toyota Motor Corp 希土類磁石の製造方法
WO2013035628A1 (ja) * 2011-09-09 2013-03-14 戸田工業株式会社 R-t-b系希土類磁石粉末、r-t-b系希土類磁石粉末の製造方法、及びボンド磁石
WO2013061784A1 (ja) * 2011-10-28 2013-05-02 Tdk株式会社 R-t-b系合金粉末、並びに異方性ボンド磁石用コンパウンド及び異方性ボンド磁石
WO2013073486A1 (ja) * 2011-11-14 2013-05-23 トヨタ自動車株式会社 希土類磁石とその製造方法
CN103227046A (zh) * 2012-01-31 2013-07-31 美蓓亚株式会社 粘结磁体的制造方法
CN104051103A (zh) * 2013-03-13 2014-09-17 户田工业株式会社 R-t-b类稀土磁体粉末、r-t-b类稀土磁体粉末的制造方法和粘结磁体
CN104064301A (zh) * 2014-07-10 2014-09-24 北京京磁电工科技有限公司 一种钕铁硼磁体及其制备方法
US9257227B2 (en) 2012-01-26 2016-02-09 Toyota Jidosha Kabushiki Kaisha Method for manufacturing rare-earth magnet
JP2016115774A (ja) * 2014-12-12 2016-06-23 トヨタ自動車株式会社 希土類磁石粉末及びその製造方法
WO2016133071A1 (ja) * 2015-02-18 2016-08-25 日立金属株式会社 R-t-b系焼結磁石の製造方法
JP2017188690A (ja) * 2017-05-12 2017-10-12 ミネベアミツミ株式会社 ボンド磁石の製造方法
US9859055B2 (en) 2012-10-18 2018-01-02 Toyota Jidosha Kabushiki Kaisha Manufacturing method for rare-earth magnet
US10056177B2 (en) 2014-02-12 2018-08-21 Toyota Jidosha Kabushiki Kaisha Method for producing rare-earth magnet
JP2021077883A (ja) * 2019-11-06 2021-05-20 有研稀土新材料股▲フン▼有限公司 希土類異方性ボンド磁性粉の作製方法
WO2022202197A1 (ja) 2021-03-26 2022-09-29 愛知製鋼株式会社 希土類異方性磁石粉末およびその製造方法

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107424694A (zh) * 2009-12-09 2017-12-01 爱知制钢株式会社 稀土类各向异性磁铁粉末及其制造方法和粘结磁铁
JP6256140B2 (ja) * 2013-04-22 2018-01-10 Tdk株式会社 R−t−b系焼結磁石
JP6361089B2 (ja) * 2013-04-22 2018-07-25 Tdk株式会社 R−t−b系焼結磁石
US10468165B2 (en) 2013-06-05 2019-11-05 Toyota Jidosha Kabushiki Kaisha Rare-earth magnet and method for manufacturing same
JP6489201B2 (ja) * 2015-02-18 2019-03-27 日立金属株式会社 R−t−b系焼結磁石の製造方法
CN108220732B (zh) * 2016-12-22 2019-12-31 有研稀土新材料股份有限公司 合金材料、粘结磁体以及稀土永磁粉的改性方法
CN108922766B (zh) * 2018-07-11 2021-06-18 江西开源自动化设备有限公司 一种烧结稀土永磁体的制备方法及旋转式hddr炉
EP3826036A4 (en) * 2018-07-19 2022-04-13 Aichi Steel Corporation RARE EARTH MAGNET POWDER PRODUCTION PROCESS
JP7187920B2 (ja) * 2018-09-21 2022-12-13 住友金属鉱山株式会社 多結晶希土類遷移金属合金粉末およびその製造方法
CN111354524B (zh) * 2018-12-24 2021-10-01 董元 一种钕铁硼各向异性粘结磁粉的制备方法
CN110890190A (zh) * 2019-11-06 2020-03-17 有研稀土新材料股份有限公司 一种异方性粘结磁粉及其制备方法
CN113444982A (zh) * 2020-03-25 2021-09-28 Neo新材料技术(新加坡)私人有限公司 合金粉末及其制备方法
CN111599562B (zh) * 2020-05-29 2024-03-29 福建省金龙稀土股份有限公司 一种钕铁硼永磁材料、其原料组合物、其制备方法和应用
CN111916285A (zh) * 2020-08-08 2020-11-10 烟台首钢磁性材料股份有限公司 一种低重稀土高矫顽力烧结钕铁硼磁体的制备方法
CN115083712A (zh) * 2021-03-15 2022-09-20 Tdk株式会社 稀土系磁铁粉末、粘结磁铁、烧结磁铁、及它们的制造方法
CN114974869A (zh) * 2022-06-01 2022-08-30 北京工业大学 一种利用废旧烧结钕铁硼块体高效再生高性能钕铁硼磁体的方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01132106A (ja) * 1987-08-19 1989-05-24 Mitsubishi Metal Corp 希土類−Fe−B系合金磁石粉末
JPH10326705A (ja) 1997-05-26 1998-12-08 Aichi Steel Works Ltd 希土類磁石粉末およびその製造方法
JP2000096102A (ja) * 1998-09-18 2000-04-04 Aichi Steel Works Ltd 耐熱希土類合金異方性磁石粉末
JP2000336405A (ja) 1999-05-26 2000-12-05 Sumitomo Special Metals Co Ltd 永久磁石用希土類系合金粉末の製造方法
JP2001076917A (ja) 1999-06-28 2001-03-23 Aichi Steel Works Ltd 異方性希土類磁石粉末の製造方法
JP2002093610A (ja) 2000-09-20 2002-03-29 Aichi Steel Works Ltd 異方性磁石粉末の製造方法、異方性磁石粉末の原料粉末およびボンド磁石
JP2003301203A (ja) 2001-12-19 2003-10-24 Sumitomo Special Metals Co Ltd 希土類−鉄−硼素系合金、ならびに磁気異方性永久磁石粉末およびその製造方法
JP2005097711A (ja) 2002-10-30 2005-04-14 Mitsubishi Materials Corp 磁気異方性および熱的安定性に優れた希土類磁石粉末およびその製造方法
WO2006112403A1 (ja) * 2005-04-15 2006-10-26 Hitachi Metals, Ltd. 希土類焼結磁石とその製造方法
JP2010114200A (ja) 2008-11-05 2010-05-20 Daido Steel Co Ltd 希土類磁石の製造方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63114939A (ja) * 1986-04-11 1988-05-19 Tokin Corp R↓2t↓1↓4b系複合型磁石材料とその製造方法
GB8707905D0 (en) * 1987-04-02 1987-05-07 Univ Birmingham Magnets
JPS6427205A (en) * 1987-07-22 1989-01-30 Shinetsu Chemical Co Manufacture of sintered rare earth permanent magnet
JPH01105502A (ja) * 1987-10-17 1989-04-24 Tokin Corp 耐酸化性に優れた希土類永久磁石及びその製造方法
JP2654952B2 (ja) * 1987-10-26 1997-09-17 株式会社トーキン 希土類永久磁石材料およびその製造方法
JPH07272914A (ja) * 1994-03-31 1995-10-20 Tdk Corp 焼結磁石およびその製造方法
JP3540438B2 (ja) * 1995-05-16 2004-07-07 Tdk株式会社 磁石およびその製造方法
JPH09275004A (ja) * 1995-07-07 1997-10-21 Daido Steel Co Ltd 永久磁石とその製造方法
JP3267133B2 (ja) 1995-12-18 2002-03-18 昭和電工株式会社 希土類磁石用合金及びその製造方法並びに永久磁石の製造方法
JP3871219B2 (ja) * 2003-01-16 2007-01-24 愛知製鋼株式会社 異方性磁石粉末の製造方法
US8420160B2 (en) * 2006-09-15 2013-04-16 Intermetallics Co., Ltd. Method for producing sintered NdFeB magnet
JP4645854B2 (ja) 2007-08-24 2011-03-09 信越化学工業株式会社 希土類永久磁石の製造方法
CN101266855B (zh) * 2007-12-29 2012-05-23 横店集团东磁股份有限公司 稀土永磁材料及其制造方法
CN101320609B (zh) * 2008-03-21 2010-07-28 浙江大学 晶界相重构的高耐蚀性烧结钕铁硼磁体及其制备方法
CN107424694A (zh) * 2009-12-09 2017-12-01 爱知制钢株式会社 稀土类各向异性磁铁粉末及其制造方法和粘结磁铁

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01132106A (ja) * 1987-08-19 1989-05-24 Mitsubishi Metal Corp 希土類−Fe−B系合金磁石粉末
JPH0682575B2 (ja) 1987-08-19 1994-10-19 三菱マテリアル株式会社 希土類−Fe−B系合金磁石粉末
JPH10326705A (ja) 1997-05-26 1998-12-08 Aichi Steel Works Ltd 希土類磁石粉末およびその製造方法
JP2000096102A (ja) * 1998-09-18 2000-04-04 Aichi Steel Works Ltd 耐熱希土類合金異方性磁石粉末
JP2000336405A (ja) 1999-05-26 2000-12-05 Sumitomo Special Metals Co Ltd 永久磁石用希土類系合金粉末の製造方法
JP2001076917A (ja) 1999-06-28 2001-03-23 Aichi Steel Works Ltd 異方性希土類磁石粉末の製造方法
JP2002093610A (ja) 2000-09-20 2002-03-29 Aichi Steel Works Ltd 異方性磁石粉末の製造方法、異方性磁石粉末の原料粉末およびボンド磁石
JP3452254B2 (ja) 2000-09-20 2003-09-29 愛知製鋼株式会社 異方性磁石粉末の製造方法、異方性磁石粉末の原料粉末およびボンド磁石
JP2003301203A (ja) 2001-12-19 2003-10-24 Sumitomo Special Metals Co Ltd 希土類−鉄−硼素系合金、ならびに磁気異方性永久磁石粉末およびその製造方法
JP2005097711A (ja) 2002-10-30 2005-04-14 Mitsubishi Materials Corp 磁気異方性および熱的安定性に優れた希土類磁石粉末およびその製造方法
WO2006112403A1 (ja) * 2005-04-15 2006-10-26 Hitachi Metals, Ltd. 希土類焼結磁石とその製造方法
JP2010114200A (ja) 2008-11-05 2010-05-20 Daido Steel Co Ltd 希土類磁石の製造方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JOURNAL OF THE JAPAN INSTITUTE OF METALS, vol. 72, no. 12, 2008, pages 1010 - 1014
See also references of EP2511916A4

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6180046A (ja) * 1984-09-28 1986-04-23 Eiken Kizai Kk ジチオスレイト−ルによる喀痰集細胞法
WO2011145674A1 (ja) * 2010-05-20 2011-11-24 独立行政法人物質・材料研究機構 希土類永久磁石の製造方法および希土類永久磁石
JP5856953B2 (ja) * 2010-05-20 2016-02-10 国立研究開発法人物質・材料研究機構 希土類永久磁石の製造方法および希土類永久磁石
JP2012244105A (ja) * 2011-05-24 2012-12-10 Toyota Motor Corp 希土類磁石の製造方法
US20140326363A1 (en) * 2011-09-09 2014-11-06 Toda Kogyo Corp. R-t-b-based rare earth magnet particles, process for producing the r-t-b-based rare earth magnet particles, and bonded magnet
WO2013035628A1 (ja) * 2011-09-09 2013-03-14 戸田工業株式会社 R-t-b系希土類磁石粉末、r-t-b系希土類磁石粉末の製造方法、及びボンド磁石
US20210366636A1 (en) * 2011-09-09 2021-11-25 Toda Kogyo Corp. R-t-b-based rare earth magnet particles, process for producing the r-t-b-based rare earth magnet particles, and bonded magnet
EP2755214A4 (en) * 2011-09-09 2015-08-05 Toda Kogyo Corp R-T-B RARE EARTH MAGNET POWDER, PROCESS FOR PRODUCING R-T-B RARE EARTH MAGNET POWDER, AND BONDING MAGNET
JPWO2013035628A1 (ja) * 2011-09-09 2015-03-23 戸田工業株式会社 R−t−b系希土類磁石粉末、r−t−b系希土類磁石粉末の製造方法、及びボンド磁石
CN103782352A (zh) * 2011-09-09 2014-05-07 户田工业株式会社 R-t-b类稀土磁体粉末、r-t-b类稀土磁体粉末的制造方法和粘结磁体
US10026531B2 (en) 2011-10-28 2018-07-17 Tdk Corporation R-T-B based alloy powder, compound for anisotropic bonded magnet and anisotropic bonded magnet
WO2013061784A1 (ja) * 2011-10-28 2013-05-02 Tdk株式会社 R-t-b系合金粉末、並びに異方性ボンド磁石用コンパウンド及び異方性ボンド磁石
JP2013110389A (ja) * 2011-10-28 2013-06-06 Tdk Corp R−t−b系合金粉末、並びに異方性ボンド磁石用コンパウンド及び異方性ボンド磁石
US10199145B2 (en) 2011-11-14 2019-02-05 Toyota Jidosha Kabushiki Kaisha Rare-earth magnet and method for producing the same
WO2013073486A1 (ja) * 2011-11-14 2013-05-23 トヨタ自動車株式会社 希土類磁石とその製造方法
JPWO2013073486A1 (ja) * 2011-11-14 2015-04-02 トヨタ自動車株式会社 希土類磁石
US9257227B2 (en) 2012-01-26 2016-02-09 Toyota Jidosha Kabushiki Kaisha Method for manufacturing rare-earth magnet
CN103227046A (zh) * 2012-01-31 2013-07-31 美蓓亚株式会社 粘结磁体的制造方法
JP2013157505A (ja) * 2012-01-31 2013-08-15 Minebea Co Ltd ボンド磁石の製造方法
US9859055B2 (en) 2012-10-18 2018-01-02 Toyota Jidosha Kabushiki Kaisha Manufacturing method for rare-earth magnet
US11120932B2 (en) 2013-03-13 2021-09-14 Toda Kogyo Corp. R-T-B-based rare earth magnet particles, and bonded magnets containing R-T-B-based rare earth magnet particles
CN104051103A (zh) * 2013-03-13 2014-09-17 户田工业株式会社 R-t-b类稀土磁体粉末、r-t-b类稀土磁体粉末的制造方法和粘结磁体
JP2014177660A (ja) * 2013-03-13 2014-09-25 Toda Kogyo Corp R−t−b系希土類磁石粉末、r−t−b系希土類磁石粉末の製造方法、及びボンド磁石
US10056177B2 (en) 2014-02-12 2018-08-21 Toyota Jidosha Kabushiki Kaisha Method for producing rare-earth magnet
CN104064301A (zh) * 2014-07-10 2014-09-24 北京京磁电工科技有限公司 一种钕铁硼磁体及其制备方法
JP2016115774A (ja) * 2014-12-12 2016-06-23 トヨタ自動車株式会社 希土類磁石粉末及びその製造方法
WO2016133071A1 (ja) * 2015-02-18 2016-08-25 日立金属株式会社 R-t-b系焼結磁石の製造方法
JPWO2016133071A1 (ja) * 2015-02-18 2017-11-02 日立金属株式会社 R−t−b系焼結磁石の製造方法
JP2017188690A (ja) * 2017-05-12 2017-10-12 ミネベアミツミ株式会社 ボンド磁石の製造方法
JP2021077883A (ja) * 2019-11-06 2021-05-20 有研稀土新材料股▲フン▼有限公司 希土類異方性ボンド磁性粉の作製方法
JP7244476B2 (ja) 2019-11-06 2023-03-22 有研稀土新材料股▲フン▼有限公司 希土類異方性ボンド磁性粉の作製方法
WO2022202197A1 (ja) 2021-03-26 2022-09-29 愛知製鋼株式会社 希土類異方性磁石粉末およびその製造方法

Also Published As

Publication number Publication date
US9640319B2 (en) 2017-05-02
JPWO2011070847A1 (ja) 2013-04-22
US10607755B2 (en) 2020-03-31
CN102648502A (zh) 2012-08-22
EP2511916A4 (en) 2014-03-05
CN107424694A (zh) 2017-12-01
US20130009736A1 (en) 2013-01-10
US20170221618A1 (en) 2017-08-03
JP5472320B2 (ja) 2014-04-16
EP2511916B1 (en) 2017-01-11
EP2511916A1 (en) 2012-10-17

Similar Documents

Publication Publication Date Title
JP5472320B2 (ja) 希土類異方性磁石粉末およびその製造方法とボンド磁石
JP5892139B2 (ja) 希土類異方性磁石とその製造方法
JP3452254B2 (ja) 異方性磁石粉末の製造方法、異方性磁石粉末の原料粉末およびボンド磁石
JP3143156B2 (ja) 希土類永久磁石の製造方法
JP3871219B2 (ja) 異方性磁石粉末の製造方法
JP5218869B2 (ja) 希土類−鉄−窒素系合金材、希土類−鉄−窒素系合金材の製造方法、希土類−鉄系合金材、及び希土類−鉄系合金材の製造方法
WO2011145674A1 (ja) 希土類永久磁石の製造方法および希土類永久磁石
JP6037128B2 (ja) R−t−b系希土類磁石粉末、r−t−b系希土類磁石粉末の製造方法、及びボンド磁石
JP5288277B2 (ja) R−t−b系永久磁石の製造方法
JP2010123722A (ja) 永久磁石とそれを用いた永久磁石モータおよび発電機
JP2012253247A (ja) 複合磁性材及びその製造方法
JP5757394B2 (ja) 希土類永久磁石の製造方法
JP5288276B2 (ja) R−t−b系永久磁石の製造方法
JP2008127648A (ja) 希土類異方性磁石粉末の製造方法
JP2853838B2 (ja) 希土類永久磁石の製造方法
JPWO2004003245A1 (ja) ボンド磁石用合金、等方性磁石粉末および異方性磁石粉末とそれらの製造方法並びにボンド磁石
JP4702522B2 (ja) R−t−b系焼結磁石及びその製造方法
JP3118740B2 (ja) 希土類磁石材料および希土類ボンド磁石
JP3731597B2 (ja) 複合希土類異方性ボンド磁石、複合希土類異方性ボンド磁石用コンパウンドおよびそれらの製造方法
JPH06207204A (ja) 希土類永久磁石の製造方法
JP4466491B2 (ja) 動力用モータ
JP7401479B2 (ja) 希土類異方性磁石粉末およびその製造方法
JP2005286175A (ja) R−t−b系焼結磁石及びその製造方法
JP2000286118A (ja) 焼結磁石の製造方法
JP2005286176A (ja) R−t−b系焼結磁石及びその製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080055303.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10835769

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011545136

Country of ref document: JP

REEP Request for entry into the european phase

Ref document number: 2010835769

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2010835769

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 6020/DELNP/2012

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 13514943

Country of ref document: US