WO2011145674A1 - 希土類永久磁石の製造方法および希土類永久磁石 - Google Patents

希土類永久磁石の製造方法および希土類永久磁石 Download PDF

Info

Publication number
WO2011145674A1
WO2011145674A1 PCT/JP2011/061488 JP2011061488W WO2011145674A1 WO 2011145674 A1 WO2011145674 A1 WO 2011145674A1 JP 2011061488 W JP2011061488 W JP 2011061488W WO 2011145674 A1 WO2011145674 A1 WO 2011145674A1
Authority
WO
WIPO (PCT)
Prior art keywords
powder
permanent magnet
rare earth
alloy
temperature
Prior art date
Application number
PCT/JP2011/061488
Other languages
English (en)
French (fr)
Inventor
和博 宝野
忠勝 大久保
アミン ホセイン セペリ
宣介 野澤
西内 武司
広沢 哲
Original Assignee
独立行政法人物質・材料研究機構
日立金属株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 独立行政法人物質・材料研究機構, 日立金属株式会社 filed Critical 独立行政法人物質・材料研究機構
Priority to CN201180024008.6A priority Critical patent/CN102918611B/zh
Priority to US13/698,748 priority patent/US20130068992A1/en
Priority to JP2012515921A priority patent/JP5856953B2/ja
Publication of WO2011145674A1 publication Critical patent/WO2011145674A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • C22C33/0257Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements
    • C22C33/0278Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements with at least one alloying element having a minimum content above 5%
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0573Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes obtained by reduction or by hydrogen decrepitation or embrittlement
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/0266Moulding; Pressing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/0293Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets diffusion of rare earth elements, e.g. Tb, Dy or Ho, into permanent magnets

Definitions

  • the present invention relates to a method for manufacturing a rare earth permanent magnet and a rare earth permanent magnet manufactured by the manufacturing method.
  • Typical RTB-based permanent magnets as high performance permanent magnets includes an R 2 T 14 B phase (Nd 2 Fe 14 B type compound phase), which is a ternary tetragonal compound, as a main phase, and exhibits excellent magnetic properties.
  • An HDDR (Hydrogenation-Deposition-Desorption-Recombination) processing method is known as one of the methods for manufacturing an RTB-based permanent magnet.
  • the HDDR processing method means a process of sequentially performing hydrogenation and disproportionation, dehydrogenation and recombination, and is mainly used for anisotropic bonded magnets. It is adopted as a method for producing magnet powder.
  • an RTB-based alloy ingot or powder is maintained at a temperature of 500 ° C. to 1000 ° C. in an H 2 gas atmosphere or a mixed atmosphere of an H 2 gas and an inert gas. Then, hydrogen is occluded in the ingot or powder.
  • dehydrogenation treatment is performed at a temperature of 500 ° C. to 1000 ° C. until a vacuum atmosphere with an H 2 pressure of 13 Pa or less, or an inert atmosphere with an H 2 partial pressure of 13 Pa or less, and then cooled.
  • a hydrogenation and disproportionation reaction proceeds by heat treatment for storing hydrogen, and a fine structure is formed. Both hydrogenation and disproportionation reactions are collectively referred to as “HD reactions”.
  • HD reactions Both hydrogenation and disproportionation reactions are collectively referred to as “HD reactions”.
  • a reaction of Nd 2 Fe 14 B + 2H 2 ⁇ 2NdH 2 + 12Fe + Fe 2 B proceeds.
  • DR reactions dehydrogenation and recombination reactions proceed.
  • the dehydrogenation and recombination reactions are collectively referred to as “DR reactions”.
  • a typical DR reaction for example, a reaction of 2NdH 2 + 12Fe + Fe 2 B ⁇ Nd 2 Fe 14 B + 2H 2 proceeds.
  • an alloy containing a fine R 2 T 14 B crystal phase is obtained.
  • HD treatment The heat treatment for causing the HD reaction
  • DR treatment the heat treatment for causing the DR reaction
  • HDDR processing performing HD processing and DR processing
  • the RTB-based permanent magnet powder produced by the HDDR process has a large coercive force while exhibiting magnetic anisotropy.
  • the reason for having such properties is that the size of crystal grains constituting the metal structure after HDDR treatment is as very fine as 0.1 ⁇ m to 1 ⁇ m, and the reaction conditions and composition are appropriately selected. This is because an aggregate of crystal grains having easy magnetization axes aligned in one direction is formed.
  • the size of the ultrafine crystal grains is close to the single domain critical grain size of the tetragonal R 2 T 14 B compound, a high coercive force can be exhibited even in a powder state.
  • An aggregate of very fine crystal grains of the tetragonal R 2 T 14 B-based compound obtained by the HDDR treatment is called “recrystallized texture”.
  • HDDR magnetic powder Magnet powder produced by HDDR treatment
  • a binder resin binder
  • an anisotropic bonded magnet is produced by performing compression molding or injection molding in a magnetic field. Further, it has been studied to use HDD as a bulk magnet by densifying HDDR magnetic powder by hot compression molding or the like.
  • the RTB permanent magnet made from HDDR magnetic powder has a problem that its heat resistance is not sufficiently high. For example, in applications such as automobiles that are exposed to high temperatures, irreversible demagnetization is likely to occur if the heat resistance of the magnet is low. Therefore, HDDR magnetic powder is difficult to use for automobile applications unless the heat resistance is sufficiently improved. In order to improve the heat resistance, it is necessary to improve the coercive force itself of the HDDR magnetic powder. So far, several methods for improving the coercive force of HDDR magnetic powder have been proposed.
  • Patent Document 1 describes the formation of a R 2 Fe 14 B phase and the formation of a fine crystal structure by subjecting a mixed powder obtained by blending rare earth hydride powder, ferroboron powder and iron powder to HDDR. A method of performing it simultaneously is disclosed.
  • the coercive force is improved by adding Dy, Tb, Pr to the rare earth hydride powder and adding Co, C, Al, Ga, Si, Cr, Ti, V, Nb to the iron powder. Is described.
  • Patent Document 2 describes that a coating layer of Nd, Dy, Tb, Pr, or an alloy containing them is formed on the surface of HDDR magnetic powder. Specifically, a powder of an alloy of these elements and an element having a melting point T M of 500 ° C. ⁇ T M ⁇ T H + 100 ° C. (T H is the HDDR processing temperature) is prepared, mixed with the HDDR magnetic powder, and heat-treated. It is described. When the above elements are diffused on the HDDR magnetic powder surface, the coercive force is improved.
  • the heat treatment temperature T D is set so as to satisfy the condition of 400 ° C. ⁇ T D ⁇ T H + 50 ° C.
  • an NdCo alloy or DyCo alloy having a specific composition is used as an example of the alloy.
  • Patent Document 3 diffusion heat treatment was performed by mixing a hydride powder of an R—Fe—B-based material with a simple substance such as Dy, Tb, Nd, or Pr, an alloy, a compound, or a hydride powder thereof. Later, a method for performing a dehydrogenation step is described. It is described that it is preferable that the alloy, the compound, and the hydride include one or more of 3d transition element and 4d transition element. In particular, it is disclosed that Fe, Co, and Ni are effective in improving magnetic characteristics. In the examples, NdCo alloys and DyCo alloys having a specific composition are disclosed as examples of the alloy.
  • Patent Document 5 discloses that HDDR magnet powder is coated with an aluminum film and then heat-treated at 450 ° C. to 600 ° C.
  • Non-Patent Document 1 in the conventional HDDR magnetic powder, ferromagnetic elements (Fe, Co, Ni) are present in the Nd-rich phase existing at the grain boundary between the Nd 2 Fe 14 B type crystal phase which is a hard magnetic phase. It is disclosed that the existence ratio is high.
  • Non-Patent Document 2 discloses that the coercivity of HDDR magnetic powder is expressed by domain wall pinning in the grain boundary Nd-rich phase.
  • Non-Patent Document 3 discloses that the Nd-rich phase composition of HDDR magnetic powder in which a small amount of Ga is added to the alloy composition is different from that in the case where Ga is not added, and this is a factor for improving the coercive force.
  • An object of the present invention is to provide a method for producing a rare earth permanent magnet that improves the coercive force of HDDR magnetic powder without using resource-rare and expensive elements such as Dy and Tb for HDDR magnetic powder. .
  • the method for producing a rare earth permanent magnet of the present invention is a RTB permanent magnet powder (R is Nd and / or Rd) produced by the HDDR method and having a recrystallized texture with an average crystal grain size of 0.1 ⁇ m to 1 ⁇ m.
  • R is Nd and / or Rd
  • T is a transition metal element containing Fe or a part of Fe substituted with Co and / or Ni and containing 50 atomic% or more of Fe
  • Step A R ′ (R ′ is a rare earth element containing Nd and / or Pr at 90 atomic% or more and not including Dy and Tb with respect to the entire R ′) and Cu, and Cu is 2 atomic%.
  • Step B of preparing an R′—Cu based alloy powder of 50 atomic% or less Step C of mixing the RTB based permanent magnet powder and R′—Cu based alloy powder, and the mixed powder An inert atmosphere or true
  • the RTB-based permanent magnet powder does not contain Dy and Tb.
  • the coercive force of the RTB permanent magnet powder is 1200 kA / m or more.
  • the step B includes a step b1 for producing an R′—Cu based alloy by a rapid cooling method and a step b2 for pulverizing the R′—Cu based alloy.
  • the mixed powder in the step D, is held at a temperature of 500 ° C. or more and 900 ° C. or less for a time of 5 minutes or more and 240 minutes or less.
  • the second heat treatment step D ′ is performed at a temperature not lower than 450 ° C. and not higher than 600 ° C. and not higher than the heat treatment temperature in the step D.
  • the mixed powder before the step D, includes step E of densification by hot forming at a temperature of 500 ° C. to 900 ° C. and a pressure of 20 MPa to 3000 MPa.
  • the mixed powder includes a step E of performing densification by hot forming at a temperature of 500 ° C. to 900 ° C. and a pressure of 20 MPa to 3000 MPa.
  • the step D includes a step of performing densification by hot forming at a pressure of 20 MPa to 3000 MPa during the heat treatment.
  • the rare earth permanent magnet of the present invention is a rare earth permanent magnet produced by any one of the production methods described above, mainly comprising an R 2 T 14 B type compound phase having an average crystal grain size of 0.1 ⁇ m to 1 ⁇ m, An R-rich phase having a thickness of 1 nm or more and 3 nm or less, which always contains R, Fe, and Cu, is formed between the R 2 T 14 B type compound phases.
  • the inventors consider that it is effective to increase the coercive force by demagnetizing the grain boundary phase in the recrystallized texture of HDDR magnetic powder and breaking the magnetic coupling between fine crystal grains.
  • Various methods for demagnetizing the grain boundary phase by introducing a nonmagnetic element into the grain boundary portion of the main phase (R 2 Fe 14 B phase) of the present invention were studied.
  • the alloy powder of Nd and / or Pr rare earth metal and Cu is mixed with HDDR magnetic powder and heat treatment is performed under appropriate conditions, the grain boundary phase in HDDR magnetic powder is improved, and the coercive force is increased. It has been found that it can be improved, and the present invention has been completed.
  • the method for producing a rare earth permanent magnet of the present invention is a step of first preparing an RTB-based permanent magnet powder (sometimes referred to as “HDDR magnetic powder”) produced by the HDDR method.
  • R is a rare earth element containing Nd and / or Pr at 95 atomic% or more of the total R.
  • T is obtained by substituting Fe or a part of Fe with Co and / or Ni, and is a transition metal element containing 50 atomic% or more of Fe.
  • the individual powder particles constituting the RTB-based permanent magnet powder are aggregates of fine crystal grains having an average crystal grain size of 0.1 ⁇ m to 1 ⁇ m.
  • the aspect ratio (major axis / minor axis ratio) of the fine crystal grains is 2 or less.
  • Step B for preparing R′—Cu-based alloy powder is performed.
  • R ′ is a rare earth element not containing Dy and Tb, and 90% or more of R ′ is Nd and / or Pr.
  • the R′—Cu based alloy is made of R ′ and Cu and may contain inevitable impurities.
  • Cu in the R'-Cu-based alloy powder is 2 atomic% or more and 50 atomic% or less.
  • process A and process B are arbitrary, and may be executed at different places at the same time.
  • “preparing” includes not only manufacturing in-house but also purchasing products manufactured by other companies.
  • Step C of mixing the above RTB system permanent magnet powder and R′—Cu system alloy powder is performed.
  • the process D which heat-processes this mixed powder at the temperature of 500 degreeC or more and 900 degrees C or less in inert atmosphere or a vacuum is performed.
  • the R′—Cu based alloy powder mixed with the HDDR magnetic powder functions as a Cu supply source, whereby Cu is efficiently supplied from the R′—Cu based alloy powder to the HDDR magnetic powder.
  • Cu powder is simply used as the Cu supply source, the effect of improving the coercive force as in the present invention cannot be obtained.
  • Cu and Nd (and / or Pr) given to the HDDR magnetic powder are concentrated not in the fine crystal grains but in the grain boundary phase, thereby reforming the grain boundary phase and increasing the coercive force. Details will be described later.
  • the thickness of the grain boundary phase of the conventional HDDR magnetic powder is about the same as that of a normal RTB-based sintered magnet.
  • the abundance ratio of the ferromagnetic elements (Fe, Co, Ni) is present in the Nd-rich phase existing at the grain boundary between the Nd 2 Fe 14 B type crystal phase which is the hard magnetic phase. It is suggested that it is high (Non-patent Document 2).
  • Non-patent Document 2 In the conventional HDDR magnetic powder in which such a ferromagnetic element is present in a high concentration in the R-rich phase, the magnetic coupling between the crystal grains is not sufficiently broken, thereby achieving a sufficient coercive force. It may not have been.
  • Cu or Nd (and / or Pr) supplied from the R′—Cu-based alloy powder to the HDDR magnetic powder diffuses the grain boundary phase of the HDDR magnetic powder.
  • the concentration of Cu and Nd, particularly Cu, which are nonmagnetic elements in the grain boundary phase is increased, which is considered to contribute to the improvement of the coercive force.
  • the fact that the introduction of Cu increases the thickness of the grain boundary phase in the HDDR magnetic powder was also confirmed, as will be described later with respect to the examples of the present invention. It is thought that the thickness of the grain boundary phase was made more suitable, and as a result, it contributed to the improvement of the coercive force.
  • Nd (and / or Pr) and Cu which are constituent elements of the R′—Cu alloy used in the present invention, are elements that are much cheaper and easier to obtain than Dy and Tb. Further, many transition metal elements cause a decrease in saturation magnetization when dissolved in the Nd 2 Fe 14 B phase, which is the main phase of HDDR magnetic powder, but Cu is an element that is relatively difficult to dissolve in the Nd 2 Fe 14 B phase. Therefore, even if added to the HDDR magnetic powder, a decrease in the saturation magnetization can be suppressed.
  • the RTB-based permanent magnet powder (HDDR magnetic powder) used in the present invention is produced by subjecting a raw material powder produced by pulverizing a raw material alloy (starting alloy) by a known method to HDDR treatment.
  • a raw material powder produced by pulverizing a raw material alloy (starting alloy) by a known method to HDDR treatment.
  • starting alloy raw material alloy
  • each step for producing the RTB-based permanent magnet powder will be described in detail.
  • an RTB-based alloy (starting alloy) having an R 2 T 14 B phase (Nd 2 Fe 14 B type compound phase) as a hard magnetic phase is prepared.
  • R is a rare earth element and contains 95 atomic% or more of Nd and / or Pr.
  • the rare earth element R in this specification may contain yttrium (Y).
  • T is a transition metal element in which Fe or a part of Fe is substituted with Co and / or Ni and contains 50 atomic% or more of Fe.
  • B is boron, and a part thereof may be substituted with C (carbon).
  • the RTB-based alloy used as the starting alloy preferably contains 50% by volume or more of the R 2 T 14 B phase. In order to obtain a higher residual magnetic flux density Br , it is preferable to contain 80% by volume or more of the R 2 T 14 B phase.
  • the composition ratio of the rare earth element R in the starting alloy is preferably 11 atomic% or more and 18 atomic% or less. When the rare earth element R is less than 11 atomic%, it becomes difficult to obtain fine crystal grains by the HDDR treatment, and the effect of the present invention cannot be obtained. On the other hand, if the composition ratio of the rare earth element R becomes too high, the magnetization is lowered.
  • composition ratio of the rare earth element R exceeds 18 atomic%, there is a high possibility that the magnetization of the magnet after diffusing the R′—Cu alloy will be smaller than the conventional high coercivity magnet obtained by adding Dy. Become.
  • a more preferable range of the composition ratio of the rare earth element R is 12 atom% or more and 16 atom% or less.
  • the coercive force of the RTB magnet powder can be further increased by using Dy and / or Tb for a part of the rare earth element R contained in the starting alloy (about 5 atomic% of the total R). Therefore, in the present invention, adding Dy and / or Tb as a part of the rare earth element R is not necessarily excluded. However, from the viewpoint of minimizing the amount of Dy and Tb, which are expensive and scarce resources, even when adding Dy and / or Tb, the amount of addition may be limited to less than 5 atomic% of the total R. Preferably, Nd and / or Pr occupy 95 atomic% or more of the total R.
  • the rare earth element R does not contain Dy or Tb above the inevitable impurity level.
  • the grain boundary phase of HDDR magnetic powder can be modified by using an R′—Cu alloy, thereby improving the coercive force. High coercive force can be achieved even if this is reduced.
  • composition ratio of B contained in the starting alloy is 5 atomic% or more and 10 atomic% or less.
  • the composition ratio of B is more preferably 5.8 atomic% or more and 8 atomic% or less, and further preferably 6 atomic% or more and 7.5 atomic% or less.
  • T occupies the remainder.
  • T is a transition metal element in which Fe or a part of Fe is substituted with Co and / or Ni and contains 50 atomic% or more of Fe.
  • a part of T may be Co and / or Ni for the purpose of increasing the Curie point and enhancing the corrosion resistance. From the viewpoint of increasing the saturation magnetization of the R 2 T 14 B phase, it is desirable to select Co rather than Ni.
  • the total amount of Co with respect to the entire alloy is preferably 20 atomic% or less, and more preferably 8 atomic% or less from the viewpoint of cost and the like. High magnetic properties can be obtained even when Co is not contained at all, but more stable magnetic properties can be obtained when it contains 1 atomic% or more of Co.
  • elements such as Al, Ti, V, Cr, Ga, Nb, Mo, In, Sn, Hf, Ta, W, Cu, Si, and Zr are appropriately added to the raw material alloy. Also good.
  • the total amount is preferably 10 atomic% or less.
  • V, Ga, In, Hf, and Ta are expensive, addition of 1 atomic% or less is preferable from the viewpoint of cost and the like.
  • the starting alloy can be produced by a known method such as a book mold method, a centrifugal casting method, or a strip casting method.
  • a known method such as a book mold method, a centrifugal casting method, or a strip casting method.
  • the easy magnetization axes of the crystal grains present in the powder particles before HDDR processing must be aligned in one direction. .
  • the size of the main phase (R 2 T 14 B phase) in the starting alloy in the polycrystalline state is larger than the particle size of the pulverized powder particles. Is preferred.
  • a raw material powder is produced by pulverizing the raw material alloy (starting alloy) by a known method.
  • the starting alloy is pulverized using a mechanical pulverization method such as a jaw crusher or a known hydrogen pulverization method to produce coarsely pulverized powder having a size of about 50 ⁇ m to 1000 ⁇ m.
  • HDDR process is performed with respect to the raw material powder obtained by the said grinding
  • the temperature raising step for the HD reaction is performed in a hydrogen gas atmosphere with a hydrogen partial pressure of 10 kPa or more and 500 kPa or less, or a mixed atmosphere of hydrogen gas and an inert gas (such as Ar or He), an inert gas atmosphere, or in a vacuum.
  • an inert gas such as Ar or He
  • an inert gas atmosphere or in a vacuum.
  • the HD treatment is performed at 650 ° C. or more and less than 1000 ° C. in a hydrogen gas atmosphere having a hydrogen partial pressure of 10 kPa or more and 500 kPa or less or a mixed atmosphere of hydrogen gas and inert gas (Ar, He, etc.).
  • the hydrogen partial pressure during HD processing is more preferably 20 kPa or more and 200 kPa or less.
  • the treatment temperature is more preferably 700 ° C. or higher and 900 ° C. or lower.
  • the time required for HD processing is 15 minutes or more and 10 hours or less, and is typically set in a range of 30 minutes or more and 5 hours or less.
  • the atmosphere at the time of temperature increase is a hydrogen partial pressure of 50 kPa or less, or an inert gas It is preferably carried out in a vacuum, and more preferably, the hydrogen partial pressure at the time of temperature rise is 5 kPa to 50 kPa, more preferably 10 kPa to 50 kPa. ) Can be obtained.
  • the HD process and the DR process can be performed continuously in the same apparatus, but can also be performed discontinuously using different apparatuses.
  • DR treatment is performed at 650 ° C. or more and less than 1000 ° C. in a vacuum or an inert gas atmosphere.
  • the treatment time is usually 15 minutes or more and 10 hours or less, and is typically set in a range of 30 minutes or more and 2 hours or less.
  • the atmosphere can be controlled stepwise (for example, the hydrogen partial pressure can be lowered stepwise or the atmospheric pressure can be lowered stepwise).
  • the coercive force (H cJ ) of the HDDR magnetic powder produced by the above method is preferably 1200 kA / m or more.
  • a magnet having high coercive force and heat resistance can be easily produced.
  • Such HDDR magnetic powder can be realized, for example, by adding a trace amount of Ga of about 0.1 to 1 atomic% to the alloy composition.
  • the R′—Cu alloy powder used in the present invention is an alloy powder composed of R ′ and Cu except for inevitable impurities, and Cu of 2 atomic% to 50 atomic%.
  • R ′ is a rare earth element containing at least one of Nd and Pr as a main element. Specifically, R ′ contains Nd and / or Pr in an amount of 90 atomic% or more with respect to the whole R ′, and does not contain Dy and Tb exceeding the inevitable impurity level. The total proportion of Nd and Pr in the entire R ′ is more preferably 97 atomic% or more.
  • Cu in the R′—Cu alloy powder is 2 atom% or more and 50 atom% or less, and preferably 5 atom% or more and 40 atom% or less.
  • R'-Cu Cu alloy powder and is less than 2 atomic% the coercive force is improved to some extent, H k (H k is the magnitude of the demagnetizing field to the value of magnetization becomes 90% of B r in the demagnetization curve Is significantly reduced, it is impossible to obtain sufficient heat resistance.
  • H k is the magnitude of the demagnetizing field to the value of magnetization becomes 90% of B r in the demagnetization curve Is significantly reduced, it is impossible to obtain sufficient heat resistance.
  • Cu in the R′—Cu alloy powder is larger than 50 atomic%, the coercive force is not sufficiently improved.
  • the range of Cu in the R′—Cu alloy powder is 10 atomic% or more and 30 atomic% or less, that is, NdCu and Nd (or PrCu and Pr) in the Nd—Cu binary phase diagram and the Pr—Cu binary phase diagram. More preferably, it is on the Nd (or Pr) rich side of the eutectic composition.
  • the R'-Cu alloy powder can be produced using a known alloy powder production method. In order to proceed the reaction more uniformly when mixed with HDDR magnetic powder and heat-treated, it is preferable to make the structure of the R'-Cu alloy fine and uniform. From such a point of view, it is preferable to employ a method in which an alloy is produced by a rapid cooling method such as a melt spinning method or a twin roll method as a method for producing an R′—Cu alloy, and the quenched alloy is pulverized.
  • a rapid cooling method such as a melt spinning method or a twin roll method
  • FIG. 2 shows an example of a quenching device that can be suitably used in the embodiment of the present invention.
  • a quenching device that can be suitably used in the embodiment of the present invention.
  • an example of a method for producing an R′—Cu alloy using this apparatus will be described.
  • the alloy is melted by high frequency melting in an inert gas atmosphere to form a molten alloy 1.
  • the molten metal 1 is sprayed to the cooling roll 3 from a hot water nozzle 2 having an orifice diameter of 0.5 to 2 mm ⁇ . Since the cooling roll 3 rotates at a high speed, the molten metal 1 that has contacted the surface of the cooling roll 3 is rapidly deprived of heat by the cooling roll and rapidly cooled. The molten metal 1 is blown from the rotating cooling roll 3 and becomes a ribbon-like quenched alloy 4.
  • the cooling roll 3 is preferably made of carbon steel, tungsten, iron, copper, molybdenum, beryllium or an alloy thereof excellent in thermal conductivity and durability.
  • the surface speed (roll peripheral speed) of the cooling roll 3 during the rapid cooling process is preferably 1 to 50 m / sec. If the speed is less than 1 m / sec, the cooling rate is not sufficiently high, and the structure in the quenched alloy becomes coarse, making it difficult to obtain a desired effect. Moreover, the pulverizability deteriorates as the thickness of the quenched alloy increases. If the roll peripheral speed exceeds 50 m / sec, there is a possibility of inhibiting the production of a stable alloy.
  • the cooling rate of the molten alloy is preferably in the range of 1 ⁇ 10 2 ° C./second to 1 ⁇ 10 9 ° C./second.
  • a known single roll quenching apparatus using Cu or the like for the roll is used.
  • the particle size of the powder is relatively large.
  • the diffusion treatment is used. The effect of improving the coercive force can be obtained.
  • Such a powder is effective in terms of suppressing oxidation due to the active R′—Cu alloy and ensuring safety.
  • the diffusion treatment may be performed using finer powder for the purpose of uniform mixing with the HDDR magnetic powder.
  • the pulverization of the R'-Cu alloy may be performed simultaneously with the later-described mixing with the RTB-based permanent magnet powder (step C). By doing in this way, the increase in the number of processes can be avoided. Further, since the pulverization of the RTB-based permanent magnet powder further proceeds, it is more uniformly mixed with the R′—Cu alloy. This also contributes to increasing the effect of element diffusion from the R'-Cu alloy to the RTB-based permanent magnet powder.
  • the mixing of the RTB-based permanent magnet powder and the R′—Cu alloy powder is performed using a known technique such as a mixer, or as described above, while the R′—Cu alloy is pulverized, the RT -Simultaneous mixing with B-based permanent magnet powder.
  • the mixing ratio of the R′—Cu alloy to the RTB system permanent magnet powder is in the range of 1: 100 to 1: 5 by mass ratio. Preferably there is.
  • the mixing ratio of the R′—Cu alloy is smaller than 1: 100, the effect of improving the coercive force does not become obvious. Further, even if the mixing ratio of the R′—Cu alloy is larger than 1: 5, the coercive force is not further improved and only the magnetization is lowered.
  • a more preferable range of the mixing ratio is 1:50 to 1: 5.
  • the ratio of the rare earth element (R + R ′) to the total composition of the mixed powder of the RTB-based permanent magnet powder and the R′—Cu alloy powder is preferably 12 atom% or more and 25 atom% or less.
  • the composition ratio of the rare earth element (R + R ′) is less than 12 atomic%, an R-rich phase is not sufficiently formed at the grain boundary of the main phase (R 2 T 14 B phase), so that a high coercive force can be obtained. Have difficulty.
  • the composition ratio of the rare earth element (R + R ′) increases, the magnetization decreases.
  • the composition ratio of the rare earth element (R + R ′) exceeds 25 atomic%, the magnetization value of the conventional high coercivity magnet obtained by adding Dy becomes smaller.
  • the composition ratio of the rare earth element (R + R ′) is more preferably 12.5 atomic% to 22 atomic%, and further preferably 13 atomic% to 20 atomic%.
  • the ratio of Cu to the total composition of the mixed powder of the RTB-based permanent magnet powder and the R′—Cu alloy powder is preferably 0.1 atomic% or more and 5 atomic% or less. If it is less than 0.1 atomic%, the R-rich phase composition at the grain boundary of the main phase (R 2 T 14 B phase) is not optimized, and it is difficult to obtain a high coercive force. On the other hand, if the ratio of Cu exceeds 5 atomic%, Nd in the main phase (R 2 T 14 B phase) reacts with Cu, and as a result, a phase that adversely affects the coercive force such as ⁇ -Fe phase may appear. Arise.
  • the composition ratio of Cu is preferably 0.2 atomic percent or more and 3 atomic percent or less.
  • step D the mixed powder is heat-treated at a temperature of 500 ° C. or higher and 900 ° C. or lower in vacuum or in an inert gas (step D).
  • the heat treatment temperature is less than 500 ° C., the diffusion does not proceed sufficiently, and the coercive force is not sufficiently improved.
  • the heat treatment temperature exceeds 900 ° C., the RTB-based permanent magnet powder grows crystal grains, leading to a decrease in coercive force.
  • a preferable heat treatment temperature range is 550 ° C. or higher and 850 ° C. or lower, and more preferably 600 ° C. or higher and 800 ° C. or lower.
  • the atmosphere is preferably an inert gas atmosphere such as argon or helium or a vacuum.
  • the heat treatment time is preferably 5 minutes or more and 240 minutes or less. If the heat treatment time is less than 5 minutes, there is a possibility that diffusion does not proceed sufficiently.
  • the upper limit of the treatment time is not particularly limited, but if it exceeds 240 minutes, not only the productivity is lowered, but also oxidation due to a very small amount of oxygen and moisture present in the atmosphere during the heat treatment occurs, resulting in a magnetic property. May be reduced.
  • the heat treatment is performed at 450 ° C. or higher and 600 ° C. or lower in vacuum or in an inert gas.
  • the coercive force can be further improved by performing the second heat treatment step (step D ′) at a temperature lower than the temperature.
  • the heat treatment time in the second heat treatment step is preferably 1 minute or more and 180 minutes or less. If the heat treatment time is less than 1 minute, the effect of the second heat treatment cannot be obtained. If the heat treatment time exceeds 180 minutes, not only the productivity is lowered, but also a very small amount of oxygen and moisture present in the atmosphere during the heat treatment. This is because there is a possibility that the magnetic properties are deteriorated due to oxidation by the above.
  • the magnet after the diffusion heat treatment can be used in the form of a bonded magnet after being pulverized or pulverized and then mixed with a resin and molded.
  • densification by hot forming step E can be performed before or after the diffusion heat treatment to obtain a full-density magnet.
  • a hot forming method As a hot forming method, a known method such as a hot press method or a discharge plasma sintering (SPS) method is adopted. However, in consideration of productivity, a high frequency hot press method capable of rapidly heating a mold or a sample is used. An SPS method that can be rapidly heated by direct energization is preferably used.
  • SPS discharge plasma sintering
  • the hot forming may be performed on the sample after the diffusion heat treatment, that is, after the coercive force is improved, or a mixed powder of the RTB-based magnet powder and the R′—Cu alloy powder. (Hereinafter, simply referred to as “mixed powder”) can be simultaneously subjected to diffusion heat treatment while densifying. Furthermore, by performing densification of the mixed powder by hot forming and then performing heat treatment in step D, diffusion of the R′—Cu alloy can be promoted to improve the coercive force.
  • FIG. 3 schematically shows a hot press apparatus used in the method of manufacturing a rare earth magnet according to the embodiment of the present invention.
  • This hot press device is capable of high-speed heating by high-frequency heating (heating rate of 5 ° C / second or more) and high-speed cooling by helium gas (cooling rate of -5 ° C / second or more). Can be bulked.
  • the hot press apparatus of FIG. 3 is a uniaxial press apparatus, and has an opening (cavity) for receiving a mixed powder, a sample powder subjected to a diffusion treatment of an R′—Cu alloy, or a green compact thereof in the center.
  • a pressurizing cylinder 15 that moves up and down. Pressure is applied to the pressure cylinder 15 from a pressure mechanism 17.
  • the pressure cylinder 15 may be provided to raise and lower the lower punch 13b.
  • the mold 12 and the punches 13 a and 13 b are disposed in the chamber 11, and the chamber 11 is evacuated by being evacuated by a vacuum device 18 or supplied from a helium gas supply source (for example, a cylinder) 19. Filled with helium gas.
  • a helium gas supply source for example, a cylinder
  • Filled with helium gas By filling the chamber 11 with helium gas, it is possible to prevent the powder and the green compact from being oxidized. Further, by supplying helium gas, the temperature of the object to be processed can be reduced at a high speed (temperature decrease rate of ⁇ 5 ° C./second or more).
  • a high-frequency coil 14 is provided around the mold 12, and the high-frequency power supplied from the high-frequency power supply 16 heats the mold 12 and the green compact of the HDDR powder in the mold 12 at a high temperature (heating rate 5 ° C. / Second).
  • the mold 12 and the punches 13a and 13b are formed of a material that can withstand the highest ultimate temperature (500 ° C. to 900 ° C.) and the highest applied pressure (20 MPa to 3000 MPa), for example, carbon or cemented carbide, in the atmosphere gas to be used. ing.
  • a mixed powder of RTB system permanent magnet powder and R′—Cu powder produced by the HDDR method is inserted into a mold, and as shown in FIG. After evacuating the apparatus to 1 ⁇ 10 ⁇ 2 Pa or less, the temperature is raised thereafter.
  • the powder or green compact can be heated to a predetermined temperature within a range of 500 ° C. or more and 900 ° C. or less at a temperature rising rate of 5 ° C./second or more by high-frequency heating.
  • the pressure is maintained for 1 to 240 minutes while applying a predetermined pressure of 20 MPa to 3000 MPa, and then cooled.
  • the bulk body can be cooled with helium gas at a temperature decrease rate of ⁇ 5 ° C./second or more.
  • the pressure during hot pressing is preferably 20 MPa or more and 3000 MPa or less, and more preferably 50 MPa or more and 1000 MPa or less.
  • the pressure is less than 20 MPa, densification may not occur sufficiently.
  • the pressure exceeds 3000 MPa, not only the material of the mold that can be used is restricted, but also a composition that melts at the hot press temperature.
  • the R′—Cu alloy is used, there is a possibility that the exudation of the R′—Cu alloy that has become a liquid phase becomes obvious and the productivity is hindered or the diffusion to the HDDR magnetic powder does not occur sufficiently. It is.
  • the temperature of Step D is preferably 500 ° C. or higher and 900 ° C. or lower.
  • the magnet obtained by the present invention has a recrystallized texture peculiar to the RTB system magnet obtained by HDDR treatment, that is, the average crystal grain size is 0.1 ⁇ m to 1 ⁇ m, and the crystal grain aspect ratio ( The long axis / short axis ratio has a texture of 2 or less.
  • the crystal grains constituting the recrystallized texture are R 2 T 14 B type compound phases.
  • Each powder particle of the HDDR magnetic powder includes a large number of fine crystal grains. The average grain size and aspect ratio of these crystal grains are measured by observing the cross section of the magnet with a transmission electron microscope (TEM).
  • the average grain size and aspect ratio of crystal grains can be obtained by image analysis of individual crystal grains of a TEM image obtained by observing a magnet sample processed into a thin piece with a focused ion beam (FIB) or the like. it can.
  • the average particle diameter can be obtained by calculating the equivalent circle diameter in the TEM image of each crystal grain and simply averaging them.
  • the major axis of the crystal grain is the longest diameter in the cross-sectional observation of the crystal grain, and the short axis is the shortest diameter.
  • an R-rich phase having a thickness of 1 nm or more and 3 nm or less that always contains R, Fe, and Cu is formed.
  • the thickness of the grain boundary phase (R-rich phase) is preferably 1.5 nm or more and 3 nm or less.
  • step A ⁇ Production of RTB permanent magnet powder (step A)> After producing a cast alloy having a composition of Nd 12.5 Fe bal Co 8 B 6.5 Ga 0.2 (atomic%), subjecting it to a homogenization heat treatment in a reduced pressure argon atmosphere at 1110 ° C. for 16 hours, and then pulverizing it to recover a powder of 300 ⁇ m or less The HDDR process was performed. In the HDDR treatment, the temperature was raised to 850 ° C. in an argon atmosphere in a tubular furnace, then switched to an atmospheric pressure hydrogen stream, held at 850 ° C. for 4 hours, and subjected to a hydrogenation-disproportionation (HD) treatment.
  • HD hydrogenation-disproportionation
  • each crystal grain had a substantially equiaxed shape with an average aspect ratio of 2 or less typically obtained by HDDR processing.
  • Nd—Cu rapidly cooled alloys having the compositions shown in Tables 1 to 6 were produced at a roll peripheral speed of 31.4 m / sec by a melt spinning method (single roll method) using a Cu roll.
  • the obtained sample was crushed, fixed with paraffin while being oriented in a magnetic field, and then evaluated for magnetic properties using a high magnetic field VSM.
  • VSM Magnetic VSM manufactured by Oxford Instruments Co.
  • an external magnetic field static magnetic field
  • the measured coercivity values are listed in the rightmost column of Tables 1-6.
  • Example 7 ⁇ Production and mixing of RTB-based permanent magnet powder and R'-Cu alloy (steps A to C)> A rapidly cooled alloy having a composition of Nd 80 Cu 20 (atomic%) prepared under the same conditions as in Experimental Examples 1 to 6 and Nd 12.5 Fe bal Co 8 B 6.5 Ga 0.2 (atomic) prepared under the same conditions as in Experimental Examples 1 to 6 %) Composition of the RTB system permanent magnet powder was mixed at a mixing ratio shown in Table 7, and mixed in a glove box whose atmosphere was replaced with argon gas while being pulverized in a mortar.
  • Steps D and D ′ > The prepared mixed powder was put into a quartz container and then evacuated to less than 8 ⁇ 10 ⁇ 3 Pa in an infrared lamp heating device (QHC-E44VHT manufactured by ULVAC-RIKO). Thereafter, the temperature was raised to 700 ° C. in about 5 seconds and held at 700 ° C. for 30 minutes to perform the first heat treatment (step D). Subsequently, after the temperature was lowered to 550 ° C. in about 5 seconds, the second heat treatment (step D ′) was performed by holding at 550 ° C. for 60 minutes. Then it was cooled. Similarly, after performing the steps up to the first heat treatment (held at 700 ° C. for 30 minutes), a sample was immediately cooled without performing the second heat treatment.
  • QHC-E44VHT infrared lamp heating device
  • the obtained sample was crushed, fixed with paraffin while being oriented in a magnetic field, and magnetic properties were evaluated using a high magnetic field VSM.
  • VSM Magnetic VSM manufactured by Oxford Instruments Co., Ltd.
  • an external magnetic field static magnetic field
  • the coercive force was evaluated by sweeping the intensity.
  • Table 7 shows that the coercive force is further increased by the second heat treatment.
  • the composition of the quenched alloy is as shown in Table 8.
  • the quenched alloy was pulverized using a coffee mill in a chamber substituted with argon gas, and then a powder of 150 ⁇ m or less was recovered to produce an Nd—M alloy powder.
  • the obtained RTB system permanent magnet powder and Nd-M alloy powder were mixed.
  • Table 9 shows the results of measuring the particle size distribution of 5 g of Nd—Cu alloy powder using a JIS Z8801 sieve. As shown in Table 9, in this powder, particles having a particle size of 25 ⁇ m or more accounted for 50% by mass or more of the whole.
  • FIG. 4 is a diagram showing element mapping. In the vicinity of the main phase interface of this sample, elemental analysis in the depth direction was performed with a laser-assisted three-dimensional atom probe.
  • FIG. 5A is a graph showing the concentration distribution in the depth direction of Nd, Fe, Co, and B in the vicinity of the main phase interface.
  • FIG. 5B is a graph showing the concentration distribution of Cu in the depth direction.
  • 5C is a graph showing the concentration distribution of Ga in the depth direction in the vicinity of the main phase interface.
  • the part where the decrease in Fe concentration and the increase in Nd concentration occur locally is the grain boundary phase (Nd rich phase), and the left and right portions thereof are adjacent to two main phase crystal grains. It corresponds.
  • Nd rich phase grain boundary phase
  • Cu rich phase the grain boundary phase
  • FIGS. 5A and 5B it was confirmed that Cu was concentrated in the Nd-rich phase.
  • the amount of Cu in the main phase obtained by atom probe analysis was confirmed to be as low as 0.0125 atomic% or less even when statistical errors were taken into account, and Cu introduced by diffusion was a grain boundary phase. It was found to concentrate.
  • FIG. 6A is a view showing a cross-sectional TEM photograph in the vicinity of the main phase grain boundary of the RTB-based permanent magnet powder (comparative example) in which Cu was not introduced
  • FIG. 6B is the main phase grain boundary of the above sample. It is a figure which shows the high-resolution electron micrograph (cross-sectional TEM photograph) in the vicinity.
  • the thickness of the grain boundary phase (Nd-rich phase) increased from 1.3 nm (Comparative Example) to 2.4 nm (Example).
  • step A ⁇ Production of RTB permanent magnet powder (step A)> A cast alloy having a composition of Nd 12.5 Fe bal Co 8 B 6.5 Ga 1 (atomic%) was prepared and subjected to a homogenization heat treatment in a reduced pressure argon atmosphere at 1110 ° C. for 16 hours. The alloy was pulverized to recover a powder of 300 ⁇ m or less, and then subjected to HDDR treatment. As the HDDR treatment, first, the temperature was raised to 830 ° C. in an argon atmosphere using a tubular furnace, then switched to an atmospheric pressure hydrogen stream and held at 830 ° C. for 2 hours to perform a hydrogenation-disproportionation (HD) treatment. Went. Thereafter, the dehydrogenation-recombination (DR) treatment was performed by switching to a reduced pressure argon flow of 5.33 kPa and maintaining at the same temperature for 30 minutes. Thereafter, it was cooled to produce an RTB permanent magnet powder.
  • HD hydrogenation-disproportionation
  • the coercive force (H cJ ) of the obtained RTB -based permanent magnet powder was measured with a vibrating sample magnetometer (VSM, VSM-5-20 manufactured by Toei Kogyo Co., Ltd.) and found to be 1199 kA / m. . Moreover, when the average value of the average grain size and aspect ratio of the obtained magnet powder was determined in the same manner as in Experimental Example 1, they were 0.31 ⁇ m and 2 or less, respectively.
  • the coercive force of the alloy having the Nd 45 Cu 55 composition was significantly lower than that of the starting magnetic powder.
  • the coercive force (H cJ ) is also improved in the diffusion of metal Nd, but it can be seen that the value of H k is lower than 400 kA / m (about 5 kOe).
  • high H cJ and H k of 400 kA / m or more are obtained, and in particular, Nd 95 Cu 5 , Nd 90 Cu 10 , Nd 80 Cu 20 composition. High H k was obtained when the alloy was used.
  • the coercive force is greatly different between Nd 55 Cu 45 and Nd 45 Cu 55 because the NdCu phase and the Nd phase coexist on the Nd rich side of the Nd 50 Cu 50 composition in the equilibrium diagram, whereas the Nd poor side Then, it seems that there is some relationship with the coexistence of the NdCu phase and the NdCu 2 phase.
  • step A ⁇ Production of RTB permanent magnet powder (step A)> A cast alloy having a composition of Nd 12.5 Fe bal Co 3 B 6.2 Ga 0.2 (atomic%) was prepared and subjected to a homogenization heat treatment in a reduced pressure argon atmosphere at 1110 ° C. for 16 hours. The alloy was pulverized to recover a powder of 300 ⁇ m or less, and then subjected to HDDR treatment. As the HDDR treatment, first, the temperature was raised to 820 ° C. in an argon atmosphere using a tubular furnace, then switched to an atmospheric pressure hydrogen stream and held at 820 ° C. for 2 hours to perform a hydrogenation-disproportionation (HD) treatment. Went. Then, dehydrogenation-recombination (DR) treatment was performed by switching to a reduced pressure argon flow of 5.33 kPa and holding at the same temperature for 1 hour. Thereafter, it was cooled to produce an RTB permanent magnet powder.
  • HD hydrogenation-disproportionation
  • the coercive force (H cJ ) of the obtained RTB -based permanent magnet powder was measured with a vibrating sample magnetometer (VSM, VSM-5-20 manufactured by Toei Kogyo Co., Ltd.) and found to be 1191 kA / m. . Moreover, when the average crystal grain size and the average value of the aspect ratio of the obtained magnet powder were determined by the same method as in Experimental Example 1, they were 0.33 ⁇ m and 2 or less, respectively.
  • step A ⁇ Production of RTB permanent magnet powder (step A)> A cast alloy having a composition of Nd 15 Fe bal Co 8 B 6.5 Ga 0.2 (atomic%) was prepared and subjected to a homogenization heat treatment in a reduced pressure argon atmosphere at 1110 ° C. for 16 hours. The alloy was pulverized to recover a powder of 300 ⁇ m or less, and then subjected to HDDR treatment. As the HDDR treatment, first, the temperature was raised to 830 ° C. in an argon atmosphere using a tubular furnace, then switched to an atmospheric pressure hydrogen stream and held at 830 ° C. for 3 hours to perform a hydrogenation-disproportionation (HD) treatment. Went. Then, dehydrogenation-recombination (DR) treatment was performed by switching to a reduced pressure argon flow of 5.33 kPa and holding at the same temperature for 1 hour. Thereafter, it was cooled to produce an RTB permanent magnet powder.
  • HD hydrogenation-disproportionation
  • the coercive force (H cJ ) of the obtained RTB -based permanent magnet powder was measured with a vibrating sample magnetometer (VSM, VSM-5-20 manufactured by Toei Kogyo Co., Ltd.) and found to be 1319 kA / m. . Further, when the average crystal grain size and the average aspect ratio of the obtained magnet powder were determined in the same manner as in Experimental Example 1, they were 0.37 ⁇ m and 2 or less, respectively.
  • step A ⁇ Production of RTB permanent magnet powder (step A)> A cast alloy having a composition of Nd 13.5 Fe bal Co 8 B 6.5 (atomic%) was prepared and subjected to a homogenization heat treatment in a reduced pressure argon atmosphere at 1110 ° C. for 16 hours. The alloy was pulverized to recover a powder of 300 ⁇ m or less, and then subjected to HDDR treatment. As the HDDR treatment, first, the temperature was raised to 850 ° C. in an argon atmosphere using a tube furnace, and then switched to atmospheric hydrogen flow and maintained at 850 ° C. for 3 hours to be a hydrogenation-disproportionation (HD) treatment. Went. Then, dehydrogenation-recombination (DR) treatment was performed by switching to a reduced pressure argon flow of 5.33 kPa and holding at the same temperature for 1 hour. Thereafter, it was cooled to produce an RTB permanent magnet powder.
  • HD hydrogenation-disproportionation
  • the coercive force (H cJ ) of the obtained RTB -based permanent magnet powder was measured with a vibrating sample magnetometer (VSM, VSM-5-20 manufactured by Toei Kogyo Co., Ltd.) and found to be 896 kA / m. .
  • VSM vibrating sample magnetometer
  • the average crystal grain size and the average value of the aspect ratio of the obtained magnet powder were determined by the same method as in Experimental Example 1, they were 0.33 ⁇ m and 2 or less, respectively.
  • ⁇ Hot press Process E> 3.85 g of the prepared mixed powder was inserted into a nonmagnetic cemented carbide die having an inner diameter of 8.3 mm, and hot pressing was performed using a high-frequency hot press apparatus shown in FIG. 3 to obtain a cylindrical bulk body. Specifically, after applying the pressure shown in Table 17 in a vacuum of 1 ⁇ 10 ⁇ 2 Pa or less, the mold was heated to a temperature shown in Table 17 at a temperature increase rate of 11 ° C./sec by high-frequency heating, After holding for 2 minutes, helium gas was immediately introduced into the chamber and cooled.
  • a bulk magnet having a coercive force higher than that of the starting magnetic powder can be produced by mixing the Nd—Cu alloy, then bulking it by hot pressing, and then performing a first heat treatment. It was. On the other hand, it was confirmed that the coercive force remained below the starting magnetic powder even when only the RTB system permanent magnet powder was hot-pressed and heat-treated without being mixed with the Nd—Cu alloy.
  • ⁇ Heat treatment> The prepared mixed powder was put into a quartz container and then evacuated to less than 8 ⁇ 10 ⁇ 3 Pa in an infrared lamp heating device (QHC-E44VHT manufactured by ULVAC-RIKO). Then, after raising the temperature to 650 ° C. in about 1 minute, the temperature is further raised to 700 ° C. in about 3 minutes, held at 700 ° C. for 30 minutes to perform the first heat treatment (step D), and to room temperature in about 30 minutes Cooled down. Subsequently, the temperature was raised to 500 ° C. in about 1 minute, then raised to 550 ° C. in about 3 minutes, and then held at 550 ° C. for 60 minutes to perform the second heat treatment (step D ′). Then it was cooled.
  • QHC-E44VHT manufactured by ULVAC-RIKO
  • the obtained sample was crushed and fixed while being oriented in a magnetic field, and the temperature dependence of the magnetic properties was evaluated using a high magnetic field VSM.
  • VSM MPMS SQUID VSM manufactured by Quantum Design
  • the oriented sample was set in a VSM (MPMS SQUID VSM manufactured by Quantum Design), heated to each set temperature from 300K (about 27 ° C.) to 400K (about 127 ° C.), and then 7T
  • the magnetic field intensity was swept to ⁇ 7 T, and the coercive force at each temperature was evaluated.
  • Fig. 7 shows the relationship between measured temperature and coercive force.
  • the temperature coefficient of coercive force obtained from the slope of the plot is ⁇ 0.4% / ° C., and the temperature coefficient of coercive force of a commercially available Nd—Fe—B sintered magnet having the same coercive force ( ⁇ 0.55%). / ° C), it was confirmed that the magnet of the present invention has excellent temperature dependence of coercive force.
  • ⁇ Heat treatment (Process D)> 4 g of the prepared mixed powder was oriented in an external magnetic field of 0.8 T and a pressure of 140 MPa was applied in parallel to the orientation direction to produce a temporary compact, and then inserted into a nonmagnetic cemented carbide die having an inner diameter of 8 mm. Then, the first heat treatment was performed while performing hot pressing using the high frequency hot pressing apparatus shown in FIG. 3 to obtain a cylindrical bulk body. Specifically, after raising the temperature to 580 ° C. at a temperature increase rate of 11 ° C./sec in a vacuum of 1 ⁇ 10 ⁇ 2 Pa or less, holding at 580 ° C. for 2 minutes while applying a pressure of 586 MPa, After heat treatment at the same time, helium gas was immediately introduced into the chamber and rapidly cooled.
  • the coercive force (H cJ ) of the obtained sample showed a high value of 1309 kA / m.
  • a high-performance permanent magnet can be manufactured while reducing the amount of rare resources such as Dy and Tb.

Abstract

 HDDR法によって作製され、平均結晶粒径が0.1μmから1μmで結晶粒のアスペクト比(長軸/短軸の比)が2以下であるR-T-B系永久磁石粉末を準備する(工程A)。RはNd、PrをR全体に対して95原子%以上含む希土類元素、TはFeまたはFeの一部をCoおよび/またはNiで置換したものであり、Feを50原子%以上含む遷移金属元素である。一方、R'とCuからなり、かつ、Cuが2原子%以上50原子%以下であるR'-Cu系合金粉末を準備する(工程B)。R'はNdおよび/またはPrをR'全体に対して90原子%以上含み、DyおよびTbを含まない希土類元素である。R-T-B系永久磁石粉末とR'-Cu系合金粉末とを混合した(工程C)後、混合粉末を不活性雰囲気または真空中において500℃以上900℃以下の温度で熱処理を行う(工程D)。

Description

希土類永久磁石の製造方法および希土類永久磁石
 本発明は、希土類永久磁石の製造方法および当該製造方法によって製造された希土類永久磁石に関する。
 高性能永久磁石として代表的なR-T-B系永久磁石(RはNdおよび/またはPrを含む希土類元素、TはFeまたはFeの一部をCoおよび/またはNiで置換したもの、Bはホウ素)は、三元系正方晶化合物であるR214B相(Nd2Fe14B型化合物相)を主相として含み、優れた磁気特性を発揮する。
 R-T-B系永久磁石の製造方法のひとつとして、HDDR(Hydrogenation-Disproportionation-Desorption-Recombination)処理法が知られている。HDDR処理法は水素化(Hydrogenation)および不均化(Disproportionation)と、脱水素(Desorption)および再結合(Recombination)とを順次実行するプロセスを意味しており、主に異方性ボンド磁石用の磁石粉末の製造方法として採用されている。公知のHDDR処理によれば、まず、R-T-B系合金のインゴットまたは粉末を、H2ガス雰囲気、またはH2ガスと不活性ガスとの混合雰囲気中で温度500℃~1000℃に保持し、上記のインゴットまたは粉末に水素を吸蔵させる。その後、例えばH2圧力が13Pa以下の真空雰囲気、またはH2分圧が13Pa以下の不活性雰囲気になるまで温度500℃~1000℃で脱水素処理し、次いで冷却する。
 上記処理において、典型的には以下の反応が進行する。
 まず、水素を吸蔵させるための熱処理により、水素化および不均化反応が進行して微細組織が形成される。水素化および不均化反応の両方をあわせて「HD反応」と呼ぶ。典型的なHD反応では、Nd2Fe14B+2H2→2NdH2+12Fe+Fe2Bの反応が進行する。
 HD反応に続いて、脱水素ならびに再結合反応が進行する。脱水素ならびに再結合反応をあわせて「DR反応」と呼ぶ。典型的なDR反応では、例えば2NdH2+12Fe+Fe2B→Nd2Fe14B+2H2の反応が進行する。こうして、微細なR214B結晶相を含む合金が得られる。
 なお、HD反応を起こすための熱処理を「HD処理」、DR反応を起こすための熱処理を「DR処理」と称する。また、HD処理ならびにDR処理を行うことを「HDDR処理」と称する。
 HDDR処理を施して製造されたR-T-B系永久磁石粉末は、粉末ながら大きな保磁力を有し、磁気的な異方性を示している。このような性質を有する理由は、HDDR処理後における金属組織を構成している結晶粒(crystal grains)のサイズが0.1μm~1μmと非常に微細であり、反応条件や組成を適切に選択することにより、容易磁化軸が一方向にそろった結晶粒の集合体が形成されるためである。極微細結晶粒のサイズが正方晶R214B系化合物の単磁区臨界粒径に近いと、粉末状態でも高い保磁力を発揮することができる。HDDR処理によって得られる正方晶R214B系化合物の非常に微細な結晶粒の集合体を「再結晶集合組織」と呼ぶ。
 HDDR処理によって作製された磁石粉末(以下、「HDDR磁粉」と称する)は、通常、結合樹脂(バインダ)と混合され、混合物(コンパウンド)にされる。その後、磁界中で圧縮成形や射出成形を行うことにより、異方性ボンド磁石が作製される。また、熱間圧縮成形などによってHDDR磁粉を緻密化し、バルク磁石として用いることも検討されている。
 しかし、HDDR磁粉から作製したR-T-B系永久磁石には、耐熱性が十分に高くはないという課題がある。例えば自動車のように高温にさらされる用途では磁石の耐熱性が低いと不可逆減磁が生じる可能性が高い。したがって、HDDR磁粉は、耐熱性を十分に改善しない限り、自動車用途に用いることが困難である。耐熱性を改善するためには、HDDR磁粉の保磁力そのものを向上させる必要がある。これまで、HDDR磁粉の保磁力を向上させる方法がいくつか提案されている。
 特許文献1には、希土類水素化物粉末、フェロボロン粉末および鉄粉末を配合して得られた混合粉末に対してHDDR処理を行うことにより、R2Fe14B相の生成と微細結晶組織の形成を同時に行う方法が開示されている。特許文献1には、希土類水素化物粉末にDy、Tb、Prを、鉄粉末にCo、C、Al、Ga、Si、Cr、Ti、V、Nbを添加することにより、保磁力が向上することが記載されている。
 特許文献2には、Nd、Dy、Tb、もしくはPr、またはそれらを含有する合金によるコーティング層をHDDR磁粉の表面に形成することが記載されている。具体的には、これらの元素と融点TMが500℃≦TM≦TH+100℃(THはHDDR処理温度)の元素の合金の粉末を用意し、HDDR磁粉と混合して熱処理することが記載されている。上記の元素がHDDR磁粉表面に拡散されると、保磁力が向上する。熱処理温度TDは、400℃≦TD≦TH+50℃の条件を満足するように設定される。特許文献2の実施例では、上記合金の例として、特定組成のNdCo合金やDyCo合金が使用されている。
 特許文献3には、R-Fe-B系材料の水素化物粉末に、Dy、Tb、Nd、Prなどの単体、合金、化合物、またはそれらの水素化物の粉末を混合して拡散熱処理を行った後、脱水素工程を行う方法が記載されている。上記の合金、化合物、水素化物が3d遷移元素および4d遷移元素の1種以上を含むことが好適であると記載されている。特に、Fe、Co、Niが磁気特性の向上を図る上で有効であることが開示されている。実施例では、上記合金の例として特定組成のNdCo合金やDyCo合金が開示されている。
 特許文献4では、Dy、Tb、Ho、Er、Tm、Gd、Nd、Sm、Pr、Ce、La、Y、Zr、Cr、Mo、V、Ga、Zn、Cu、Mg、Li、Al、Mn、Nb、Tiの中から選択される少なくとも一種の金属蒸気を、磁粉に付着させて熱処理・拡散を行うことにより、磁気特性、耐食性および耐候性が向上することが開示されている。Dy、Tb等が磁粉の粒界に拡散することにより、磁気特性の優れた磁石が得られると記載されている。
 特許文献5は、HDDR磁石粉末をアルミニウム膜で被覆した後、450℃~600℃で熱処理を行うことを開示している。
 一方、HDDR磁粉の粒界組成に関する研究が進められてきた。非特許文献1には、従来のHDDR磁粉においては、硬磁性相であるNd2Fe14B型結晶相間の粒界に存在するNdリッチ相内で、強磁性元素(Fe、Co、Ni)の存在比率が高いことが開示されている。また、非特許文献2では、HDDR磁粉の保磁力が粒界Ndリッチ相における磁壁のピニングによって発現することが開示されている。更に、非特許文献3では、合金組成にGaを微量添加したHDDR磁粉のNdリッチ相組成がGa未添加の場合と変わっており、これが保磁力向上の要因であることが開示されている。
特開平2-217406号公報 特開2000-96102号公報 特開2002-93610号公報 特開2008-69415号公報 特開2005-15918号公報
 従来、HDDR磁粉に対して種々の添加元素を種々のタイミングで添加することにより、保磁力を向上させることが検討されてきた。その多くは、添加元素として用いられるDyまたはTbに保磁力向上の主たる役割を担わせたものである。DyおよびTbは高い保磁力向上効果を有するが、これらの元素は、希少資源であり高価な元素である。このため、DyおよびTbの使用量を最小限に抑えつつ、HDDR磁粉の保磁力を向上させることが強く望まれている。
 本発明は、HDDR磁粉に対し、Dy、Tbなどの資源的に希少で高価な元素を使用することなく、HDDR磁粉の保磁力を向上させる希土類永久磁石の製造方法を提供することを目的としている。
 本発明の希土類永久磁石の製造方法は、HDDR法によって作製され、平均結晶粒径が0.1μm以上1μm以下の再結晶集合組織を有するR-T-B系永久磁石粉末(RはNdおよび/またはPrをR全体に対して95原子%以上含む希土類元素、TはFeまたはFeの一部をCoおよび/またはNiで置換したものであり、Feを50原子%以上含む遷移金属元素)を準備する工程Aと、R’(R’はNdおよび/またはPrをR’全体に対して90原子%以上含み、DyおよびTbを含まない希土類元素)とCuからなり、かつ、Cuが2原子%以上50原子%以下であるR’-Cu系合金粉末を準備する工程Bと、前記R-T-B系永久磁石粉末とR’-Cu系合金粉末とを混合する工程Cと、前記混合粉末を不活性雰囲気または真空中において、500℃以上900℃以下の温度で熱処理を行う工程Dとを含む。
 好ましい実施形態において、前記R-T-B系永久磁石粉末がDyおよびTbを含有していない。
 好ましい実施形態において、前記R-T-B系永久磁石粉末の保磁力が1200kA/m以上である。
 好ましい実施形態において、前記工程Bは、急冷法によってR’-Cu系合金を作製する工程b1と、R’-Cu系合金を粉砕する工程b2とを含む。
 好ましい実施形態において、前記工程Dでは、前記混合粉末を500℃以上900℃以下の温度で、5分以上240分以下の時間、保持する。
 好ましい実施形態において、前記工程Dの後に、450℃以上600℃以下であって、工程Dにおける熱処理温度以下の温度で第2の熱処理工程D´を行う。
 好ましい実施形態において、前記工程Dの前に、前記混合粉末に対し、500℃以上900℃以下の温度、20MPa以上3000MPa以下の圧力で熱間成形による緻密化を行なう工程Eを包含する。
 好ましい実施形態において、前記工程Dの後に、前記混合粉末に対し、500℃以上900℃以下の温度、20MPa以上3000MPa以下の圧力で熱間成形による緻密化を行なう工程Eを包含する。
 好ましい実施形態において、前記工程Dは、前記熱処理中において20MPa以上3000MPa以下の圧力で熱間成形による緻密化を行なう工程を包含する。
 本発明の希土類永久磁石は、上記のいずれかの製造方法によって製造される希土類永久磁石であって、平均結晶粒径が0.1μmから1μmのR214B型化合物相を主体とし、前記R214B型化合物相間にR、Fe、Cuを必ず含む厚さ1nm以上3nm以下のRリッチ相が形成されている。
 本発明によれば、Dy、Tbなどの高価な希少資源の使用を抑制しつつ、保磁力が処理前よりも大幅に向上した高特性なR-T-B系永久磁石を提供することができる。
本発明の製造方法を説明するためのフローチャートである。 本発明の実施形態で用いることのできる急冷装置の一例を示す図である。 本発明における実施形態の希土類磁石の製造方法に用いられるホットプレス装置を模式的に示す図である。 本発明の実施例における元素マッピングを示す図である。 (a)は、本発明の実施例の主相界面近傍におけるNd、Fe、Co、Bの深さ方向濃度分布を示すグラフ、(b)は、その実施例の主相界面近傍におけるCuの深さ方向濃度分布を示すグラフ、(c)は、その実施例の主相界面近傍におけるGaの深さ方向濃度分布を示すグラフである。 Cu導入を行わなかったHDDR磁粉(比較例)の主相粒界近傍における断面TEM写真を示す図である。 Cu導入を行ったHDDR磁粉(実施例)の主相粒界近傍における断面TEM写真を示す図である。 本発明の実施例について測定温度と保磁力の関係を示すグラフである。
 発明者らは、HDDR磁粉の再結晶集合組織における粒界相を非磁性化し、微細な結晶粒間の磁気的な結合を分断することが保磁力を高めることに有効であると考え、HDDR磁粉の主相(R2Fe14B相)粒界部分に非磁性元素を導入して粒界相を非磁性化する方法を種々検討した。その結果、Ndおよび/またはPrの希土類金属とCuとの合金粉末をHDDR磁粉に混合して適切な条件の熱処理を行うと、HDDR磁粉内の粒界相の改質が実現し、保磁力を向上できることを見出し、本発明を完成するに至った。
 本発明の希土類永久磁石の製造方法は、図1に示すように、まず、HDDR法によって作製されたR-T-B系永久磁石粉末(「HDDR磁粉」と称する場合がある)を準備する工程Aを行う。ここで、RはNdおよび/またはPrをR全体の95原子%以上含む希土類元素である。TはFeまたはFeの一部をCoおよび/またはNiで置換したものであり、Feを50原子%以上含む遷移金属元素である。このR-T-B系永久磁石粉末を構成する個々の粉末粒子は、平均結晶粒径が0.1μm~1μmの微細結晶粒の集合体である。微細結晶粒のアスペクト比(長軸/短軸の比)は2以下である。
 一方、R’-Cu系合金粉末を準備する工程Bを行う。ここで、R’は、DyおよびTbを含まない希土類元素であり、R’全体の90原子%以上はNdおよび/またはPrである。R’-Cu系合金は、R’およびCuからなり、不可避の不純物を含みうる。このR’-Cu系合金粉末におけるCuは2原子%以上50原子%以下である。
 上記の工程Aおよび工程Bの順序は任意であり、同時期に別々の場所で実行されていてもよい。なお、本明細書において「準備する」とは、自社で製造することのみならず、他社が製造したものを購入することをも含むものとする。
 次に、上記のR-T-B系永久磁石粉末およびR’-Cu系合金粉末を混合する工程Cを行う。そして、この混合粉末を不活性雰囲気または真空中において、500℃以上900℃以下の温度で熱処理を行う工程Dを行う。
 本発明によれば、HDDR磁粉と混合されるR’-Cu系合金粉末がCuの供給源として機能することにより、CuがR’-Cu系合金粉末からHDDR磁粉に効率的に供給される。なお、Cu供給源として単にCu粉末を使用しても本発明のような保磁力の向上効果は得られない。HDDR磁粉に与えられたCuおよびNd(および/またはPr)は、微細な結晶粒の内部にではなく粒界相に濃縮され、粒界相を改質し、保磁力を高める。詳細は、後述する。従来のHDDR磁粉の粒界相の厚さは、通常のR-T-B系焼結磁石程度である。先述したとおり、従来のHDDR磁粉においては、硬磁性相であるNd2Fe14B型結晶相間の粒界に存在するNdリッチ相内では、強磁性元素(Fe、Co、Ni)の存在比率が高いことが示唆されている(非特許文献2)。このような強磁性元素がRリッチ相内に高い濃度で存在する従来のHDDR磁粉では、結晶粒間の磁気的な結合が十分に分断されておらず、これにより、充分な保磁力が達成されていなかった可能性がある。しかし、本発明によれば、R’-Cu系合金粉末からHDDR磁粉に供給されたCuやNd(および/またはPr)がHDDR磁粉の粒界相を拡散する。その結果、本発明の実施例について後述するように、粒界相における非磁性元素であるCuやNd、特にCuの濃度が上昇し、これが保磁力改善に寄与していると考えられる。また、本発明の実施例について後述するように、Cuの導入がHDDR磁粉における粒界相の厚さを増加させる事実も確認された。粒界相の厚さがより適性化され、結果、保磁力改善に寄与したと考えられる。
 本発明で使用するR’-Cu系合金の構成元素であるNd(および/またはPr)およびCuは、DyおよびTbに比べて格段に安価で入手しやすい元素である。また、多くの遷移金属元素は、HDDR磁粉の主相であるNd2Fe14B相に固溶すると飽和磁化の低下を招くが、CuはNd2Fe14B相に比較的固溶しにくい元素であるため、HDDR磁粉に添加しても、その飽和磁化の低下を抑制することができる。
 以下、本発明の好ましい実施形態をより詳細に説明する。
<R-T-B系永久磁石粉末>
 本発明で用いるR-T-B系永久磁石粉末(HDDR磁粉)は、原料合金(出発合金)を公知の方法で粉砕して作製した原料粉末に対し、HDDR処理を施すことによって作製される。以下、R-T-B系永久磁石粉末を作製するための各工程を詳細に説明する。
〈出発合金〉
 まず、硬磁性相としてR214B相(Nd2Fe14B型化合物相)を有するR-T-B系合金(出発合金)を用意する。ここで、「R」は、希土類元素であり、Ndおよび/またはPrを95原子%以上含む。本明細書における希土類元素Rはイットリウム(Y)を含んでいてもよい。「T」は、FeまたはFeの一部をCoおよび/またはNiで置換したものであり、Feを50原子%以上含む遷移金属元素である。「B」はホウ素でありその一部をC(炭素)で置換してもよい。出発合金として用いられるR-T-B系合金は、R214B相を50体積%以上含むことが好ましい。より高い残留磁束密度Brを得るためには、R214B相を80体積%以上含むことが好ましい。
 出発合金として用いられるR-T-B系合金に含まれる希土類元素Rの大部分は、R214B相を構成しているが、一部は、Rリッチ相やR23相や、その他の相を構成している。出発合金に占める希土類元素Rの組成比率は、11原子%以上18原子%以下であることが好ましい。希土類元素Rが11原子%未満の場合は、HDDR処理によって微細結晶粒を得ることが困難となり、本発明の効果が得られない。一方、希土類元素Rの組成比率が高くなりすぎると、磁化の低下を招来する。希土類元素Rの組成比率が18原子%を超えると、R’-Cu合金を拡散した後の磁石の磁化が、Dyの添加によって得られる従来の高保磁力磁石よりも小さくなってしまう可能性が高くなる。希土類元素Rの組成比率のより好ましい範囲は、12原子%以上16原子%以下である。
 出発合金に含まれる希土類元素Rの一部(R全体の5原子%程度)をDyおよび/またはTbとすることにより、R-T-B磁石粉末の保磁力を更に高めることもできる。したがって、本発明では、希土類元素Rの一部としてDyおよび/またはTbを添加することを必ずしも排除しない。しかしながら、高価で希少な資源であるDy、Tbの使用量を極力抑えるという観点からは、Dyおよび/またはTbを添加する場合でも、その添加量をR全体の5原子%未満で制限することが好ましく、Ndおよび/またはPrがR全体の95原子%以上を占めていることが好ましい。希少元素の消費量低減という観点から、希土類元素Rは、DyやTbを不可避の不純物レベル以上に含まないことがより好ましい。前述したように、本発明によれば、R’-Cu合金を用いてHDDR磁粉の粒界相を改質し、それによって保磁力を向上させることが可能になるため、DyおよびTbの添加量を低減しても高保磁力化を達成することができる。
 出発合金に含まれるBの組成比率が低すぎると保磁力を低下させるR217相等が析出し、高すぎると非磁性相であるBリッチ相等が増加して残留磁束密度Brが低下する。このため、出発合金に含まれるBの組成比率は5原子%以上10原子%以下であることが好ましい。Bの組成比率は、5.8原子%以上8原子%以下であることがより好ましく、6原子%以上7.5原子%以下であることがさらに好ましい。
 Tは残余を占める。前述したとおり、Tは、FeまたはFeの一部をCoおよび/またはNiで置換したものであり、Feを50原子%以上含む遷移金属元素である。キュリー点を高めること、耐食性を高めることなどを目的としてTの一部をCoおよび/またはNiとすることがある。R214B相の飽和磁化を高めるという観点から、NiよりもCoを選定することが望ましい。また、合金全体に対するCoの総量は、コストなどの観点から、20原子%以下であることが好ましく、8原子%以下であることがさらに好ましい。Coを全く含有しない場合でも高い磁気特性は得られるが、1原子%以上のCoを含有すると、より安定した磁気特性を得ることができる。
 磁気特性向上などの効果を得るため、原料合金にAl、Ti、V、Cr、Ga、Nb、Mo、In、Sn、Hf、Ta、W、Cu、Si、Zrなどの元素を適宜添加してもよい。ただし、添加量の増加は、特に飽和磁化の低下を招くため、総量が10原子%以下とすることが好ましい。特に、V、Ga、In、Hf、Taは高価なため、コストなどの観点から1原子%以下の添加が好ましい。
 出発合金はブックモールド法や遠心鋳造法、ストリップキャスト法など公知の方法によって作製され得る。ただし、HDDR処理後に磁石粉末の各粒子が優れた磁気的異方性を示すためには、HDDR処理前の粉末粒子中に存在する結晶粒の容易磁化軸が一方向にそろっている必要がある。理想的には一つの粉末粒子中に存在するR214B相は一つである。このため、粉砕する前の段階において、多結晶状態にある出発合金中で主相(R214B相)のサイズが、粉砕後の粉末粒子の粒子径よりも大きな組織になっていることが好ましい。
 ブックモールド法や遠心鋳造法によって主相(R214B相)を粗大化させた原料合金を作製した場合、鋳造の初晶であるα-Feを完全除去することが困難である。このため、原料合金における組織均質化などを目的として、粉砕前の原料合金に対して熱処理を施すことが好ましい。このような熱処理は、真空または不活性雰囲気において、典型的には1000℃以上の温度で実行され得る。
〈原料粉末〉
 次に、原料合金(出発合金)を公知の方法で粉砕することにより原料粉末を作製する。本実施形態では、まず、ジョークラッシャなどの機械的粉砕法や公知の水素粉砕法などを用いて出発合金を粉砕し、大きさ50μm~1000μm程度の粗粉砕粉を作製する。
<HDDR処理>
 次に、上記粉砕工程によって得られた原料粉末に対し、HDDR処理を施す。HD反応のための昇温工程は、水素分圧10kPa以上500kPa以下の水素ガス雰囲気または水素ガスと不活性ガス(ArやHeなど)の混合雰囲気、不活性ガス雰囲気、真空中のいずれかで行う。昇温工程を不活性ガス雰囲気または真空中で行うと、昇温時の反応速度制御の困難性に起因する磁気特性低下を抑制することができる。
 HD処理は、水素分圧10kPa以上500kPa以下の水素ガス雰囲気または水素ガスと不活性ガス(ArやHeなど)の混合雰囲気で、650℃以上1000℃未満で行う。HD処理時の水素分圧は20kPa以上200kPa以下がより好ましい。処理温度は700℃以上900℃以下であることがより好ましい。HD処理に要する時間は、15分以上10時間以下であり、典型的には30分以上5時間以下の範囲に設定される。なお、R-T-B系合金中のTについて、Co量が合金全体の組成に対し、3原子%以下の場合は、昇温時の雰囲気を50kPa以下の水素分圧、もしくは、不活性ガスや真空中で行なうことが好ましく、より好ましくは昇温時の水素分圧を5kPa以上50kPa以下、更に好ましくは、10kPa以上50kPa以下とすることにより、HDDR処理後に優れた磁気特性(高い残留磁束密度)を得ることができる。
 HD処理のあと、DR処理を行う。HD処理とDR処理は同一の装置内で連続的に行うこともできるが、別々の装置を用いて不連続に行うこともできる。
 DR処理は、真空または不活性ガス雰囲気下において650℃以上1000℃未満で行う。処理時間は、通常、15分以上10時間以下であり、典型的には30分以上2時間以下の範囲に設定される。なお、雰囲気を段階的に制御する(例えば水素分圧を段階的に下げたり、雰囲気圧力を段階的に下げたりする)ことができることは言うまでもない。
 前記の方法で作製するHDDR磁粉の保磁力(HcJ)は1200kA/m以上であることが好ましい。このような磁粉を用いることにより、高い保磁力および耐熱性を有する磁石を容易に作製することができる。このようなHDDR磁粉は、例えば0.1~1原子%程度の微量のGaを合金組成に添加することにより実現できる。
<R’-Cu合金粉末>
 本発明に用いられるR’-Cu合金粉末は、不可避の不純物以外はR’とCuからなり、Cuが2原子%以上50原子%以下である合金の粉末である。
 R’はNdおよびPrの少なくとも一方を主な元素として含む希土類元素である。具体的には、R’は、Ndおよび/またはPrをR’全体に対して90原子%以上含むとともに、不可避の不純物レベル以上のDyおよびTbを含まない。R’全体に占めるNdおよびPrの合計の割合は、97原子%以上であることがより好ましい。
 R’-Cu合金粉末中のCuは2原子%以上50原子%以下であり、5原子%以上40原子%以下であることが好ましい。R’-Cu合金粉末中のCuが2原子%より小さいと、保磁力はある程度向上するが、Hk(Hkは減磁曲線において磁化の値がBrの90%となる減磁界の大きさ)が大幅に低下することにより、十分な耐熱性が得られない。R’-Cu合金粉末中のCuが50原子%より大きいと、保磁力が十分に向上しない。R’-Cu合金粉末中のCuの範囲は10原子%以上30原子%以下、すなわち、Nd-Cu二元系状態図やPr-Cu二元系状態図におけるNdCuとNd(またはPrCuとPr)の共晶組成よりNd(またはPr)リッチ側にあることがさらに好ましい。
 R’-Cu合金粉末は公知の合金粉末作製方法を用いて作製することができる。HDDR磁粉と混合して熱処理したときの反応をより均一に進行させるためには、R’-Cu合金の組織を微細かつ均一にすることが好ましい。このような観点から、R’-Cu合金の作製方法としてメルトスピニング法や双ロール法などの急冷法で合金を作製し、その急冷合金を粉砕する方法を採用することが好ましい。
 図2は、本発明の実施形態で好適に使用され得る急冷装置の一例を示している。以下、この装置を用いてR’-Cu合金を製造する方法の例を説明する。
 まず、不活性ガス雰囲気中において高周波溶解を行うことによって合金を溶融し、合金の溶湯1を形成する。溶湯1は、0.5~2mmφのオリフィス径を有する出湯ノズル2から冷却ロール3に噴射される。冷却ロール3は高速度で回転しているため、冷却ロール3の表面に接触した溶湯1は、冷却ロールによって急速に熱を奪われ、急冷される。溶湯1は回転する冷却ロール3から飛ばされ、リボン状の急冷合金4となる。
 冷却ロール3は,熱伝導性や耐久性に優れる炭素鋼、タングステン、鉄、銅、モリブデン、ベリリウムまたはそれらの合金から形成されていることが好ましい。急冷工程中の冷却ロール3の表面速度(ロール周速度)は1~50m/秒とすることが好ましい。1m/秒未満になると冷却速度が十分速くないために急冷合金中の組織が粗大となり、所望の効果が得られにくくなる。また、急冷合金の厚さが増すことにより、粉砕性が悪化する。ロール周速度が50m/秒を超えると安定的な合金の作製を阻害する可能性が生じる。本実施形態の場合、合金溶湯の冷却速度は、1×102℃/秒以上1×109℃/秒以下の範囲となることが好ましい。例えばメルトスピニング法によって合金を作製する場合には、ロールにCuなどを用いた公知の単ロール急冷装置を用いる。
 R’-Cu合金粉末を用いることで、粉末の粒度が比較的大きい、例えば、JIS Z8801のふるいで分級したときの25μm以上の粉末の割合が50質量%以上である場合にも、拡散処理による保磁力向上の効果が得られる。このような粉末は、R’-Cu合金が活性であることに起因する酸化の抑制や安全性の確保等の観点で有効である。無論、HDDR磁粉との均一混合を目的として、より微細な粉末を用いて拡散処理を行なってもよい。
 R’-Cu合金の粉砕は、後述するR-T-B系永久磁石粉末との混合(工程C)と同時に行ってもよい。このようにすることにより、工程数の増加を避けることができる。また、R-T-B系永久磁石粉末の粉砕が更に進行するため、より均一にR’-Cu合金と混合される。このことは、R’-Cu合金からR-T-B系永久磁石粉末への元素拡散の効果を増大させることにも寄与する。
 <混合>
 R-T-B系永久磁石粉末とR’-Cu合金粉末の混合は、ミキサー等の公知の技術を用いて行なうか、もしくは、前記のとおり、R’-Cu合金を粉砕しながらR-T-B系永久磁石粉末との混合を同時に行なう。R’-Cu合金のR-T-B系永久磁石粉末に対する混合割合(R’-Cu合金粉末:R-T-B系永久磁石粉末)が質量比で1:100から1:5の範囲であることが好ましい。1:100よりもR’-Cu合金の混合比が小さくなると保磁力向上効果が顕在化しない。また、1:5よりもR’-Cu合金の混合比が大きくなっても保磁力はそれ以上向上することがなく、磁化が低下するのみとなってしまう。より好ましい混合比の範囲は、1:50から1:5である。
 R-T-B系永久磁石粉末とR’-Cu合金粉末の混合粉末全体の組成に対する、希土類元素(R+R’)の割合は、12原子%以上25原子%以下であることが好ましい。希土類元素(R+R’)の組成比率が12原子%未満の場合は、主相(R214B相)の粒界にRリッチ相が十分に形成されないために、高い保磁力を得ることが困難である。一方、希土類元素(R+R’)の組成比率が高くなると磁化の低下を招来する。例えば、希土類元素(R+R’)の組成比率が25原子%を超えると、Dyの添加によって得られる従来の高保磁力磁石の磁化の値よりも小さくなってしまう。希土類元素(R+R’)の組成比率は、12.5原子%以上22原子%以下がより好ましく、13原子%以上20原子%以下がさらに好ましい。
 R-T-B系永久磁石粉末とR’-Cu合金粉末の混合粉末全体の組成に対する、Cuの割合は、0.1原子%以上5原子%以下であることが好ましい。0.1原子%未満の場合は、主相(R214B相)の粒界のRリッチ相組成が適正化されないために、高い保磁力を得ることが困難である。一方、Cuの割合が5原子%を超えると主相(R214B相)中のNdがCuと反応する結果、α-Fe相など保磁力に悪影響を与える相が発現する可能性が生じる。Cuの組成比率は0.2原子%以上3原子%以下であることが好ましい。
 なお、本発明で好ましい範囲にある組成比率(Cu=0.5原子%)でCuをR-T-B系合金組成に添加してからHDDR処理を行った場合に高い特性を得ることが非常に困難であることが、例えば、R. Nakayama and T. Takeshita: Journal of Alloys and Compounds, Vol. 193, 259 (1993)に開示されている。
<拡散熱処理>
 次に、上記混合粉末を真空中、あるいは不活性ガス中にて500℃以上900℃以下の温度で熱処理する(工程D)。熱処理温度が500℃未満では、十分に拡散が進行しないために保磁力が十分向上しない。また、熱処理温度が900℃を超えると、R-T-B系永久磁石粉末が結晶粒成長してしまい、保磁力の低下を招来する。好ましい熱処理温度の範囲は、550℃以上850℃以下であり、さらに好ましくは、600℃以上800℃以下である。熱処理中の酸化を抑制するため、雰囲気はアルゴンやヘリウムなどの不活性ガス雰囲気または真空が好ましい。また、熱処理時間は5分以上240分以下が好ましい。熱処理時間が5分未満では、十分に拡散が進行しない可能性がある。また、処理時間の上限に特に制約はないが、240分を超えると、生産性の低下を招くだけでなく、熱処理時に雰囲気中に存在する極微量の酸素や水分による酸化が起こって磁気特性が低下する可能性がある。
 なお、500℃以上900℃以下の温度で熱処理を行なう第1の熱処理工程(工程D)の後に、真空中、あるいは不活性ガス中にて450℃以上600℃以下であって、工程Dにおける熱処理温度以下の温度で第2の熱処理工程(工程D´)を行なうことにより、さらに保磁力を向上させることができる。第2の熱処理工程における熱処理時間は1分以上180分以下が好ましい。熱処理時間が1分未満では、第2の熱処理の効果が得られず、また、180分を超えると、生産性の低下を招くだけでなく、熱処理時に雰囲気中に存在する極微量の酸素や水分による酸化が起こって磁気特性が低下する可能性があるからである。
<熱間成形>
 上記拡散熱処理後の磁石は、解砕または粉砕した後、樹脂と混合して成形を行いボンド磁石の形でも用いることができる。より高い特性の磁石を得るためには、上記拡散熱処理の前または後に熱間成形による緻密化(工程E)を行ってフルデンス磁石とすることもできる。
 熱間成形法としてはホットプレス法や放電プラズマ焼結(SPS)法など、公知の方法が採用されるが、生産性を考慮すると、金型を急速に加熱できる高周波ホットプレス法や、試料に直接通電して急速加熱ができるSPS法が好適に用いられる。
 なお、磁界を付与して個々の磁石粉末の磁化容易方向をそろえてから熱間成形を行なうことにより、異方性フルデンス磁石が作製でき、高い残留磁束密度(Br)を得ることができる。この場合には、室温の磁界中で圧縮成形することにより、仮成形体を作製し、これを熱間成形する方法がハンドリングなどの点で有効である。
 熱間成形は、拡散熱処理を行なった後、すなわち、保磁力が向上した後のサンプルに対して行なってもよいし、R-T-B系磁石粉末とR’-Cu合金の粉末の混合粉末(以下、単に「混合粉末」と呼ぶ)を緻密化させながら同時に拡散熱処理を行なうこともできる。さらに、熱間成形によって混合粉末の緻密化を行い、その後さらに工程Dの熱処理を行なうことでR’-Cu合金の拡散を促進させて保磁力を向上させることもできる。
 図3に、本発明における実施形態の希土類磁石の製造方法に用いられるホットプレス装置を模式的に示す。このホットプレス装置は、高周波加熱による高速加熱(昇温速度5℃/秒以上)と、ヘリウムガスによる高速冷却(降温速度-5℃/秒以上)とが可能であり、粉末を15分以内でバルク化することができる。
 図3のホットプレス装置は、一軸プレス装置であり、混合粉末やR’-Cu合金の拡散処理を行なったサンプルの粉末、またはそれらの圧粉体を受容する開口部(キャビティ)を中央に有する金型(ダイ)12と、混合粉末やR’-Cu合金の拡散処理を行なったサンプルの粉末、またはそれらの圧粉体を加圧するための上パンチ13aおよび下パンチ13bと、上パンチ13aを昇降させる加圧シリンダー15とを備えている。加圧シリンダー15には加圧機構17から圧力が与えられる。加圧シリンダー15は下パンチ13bを昇降させるように設けても良い。
 金型12およびパンチ13a、13bは、チャンバ11内に配置されており、チャンバ11内は真空装置18で真空に引くことによって真空状態とするか、またはヘリウムガス供給源(例えばボンベ)19から供給されるヘリウムガスによって充たされる。チャンバ11内をヘリウムガスで充たすことによって、粉末や圧粉体が酸化されることを防止することができる。また、ヘリウムガスを供給することによって、被処理物の温度を高速(降温速度-5℃/秒以上)で低下させることもができる。
 金型12の周囲には高周波コイル14が設けられており、高周波電源16から供給される高周波電力によって金型12および金型12内のHDDR粉末の圧粉体を高速加熱(昇温速度5℃/秒以上)することが出来る。
 金型12およびパンチ13a、13bは、使用する雰囲気ガス中で、最高到達温度(500℃~900℃)および最高印加圧力(20MPa~3000MPa)に耐えうる材料、例えばカーボンまたは超硬合金で形成されている。
 本発明の実施形態では、HDDR法によって作製されたR-T-B系永久磁石粉末とR’-Cu粉末の混合粉末を金型内に挿入し、図3に示すように、ホットプレス装置内に設置して、装置内を1×10-2Pa以下まで排気した後、その後昇温を行なう。
 なお、昇温時は加圧しても加圧しなくても構わない。
 本実施形態に用いるホットプレス装置では、高周波加熱により、粉末もしくは圧粉体を5℃/秒以上の昇温速度で500℃以上900℃以下の範囲内の所定の温度に加熱することができる。
 その後、温度が500℃以上900℃以下の所定の温度に到達した後、20MPa以上3000MPa以下の所定の圧力を印加しながら1分以上240分以下の所定の時間保持し、その後冷却を行なう。本実施形態では、ヘリウムガスによってバルク体を-5℃/秒以上の降温速度で冷却することができる。
 ホットプレス時の圧力は、20MPa以上3000MPa以下が好ましく、50MPa以上1000MPa以下がより好ましい。圧力が20MPaよりも小さいときは緻密化が十分に起こらない可能性があり、3000MPaを超えると、用いることのできる金型の材質などに制約が生じるだけでなく、ホットプレス温度で溶解する組成を有するR’-Cu合金を用いる場合には、液相となったR’-Cu合金の染み出しが顕在化して生産性が阻害されたりHDDR磁粉への拡散が十分に起こらない可能性があるからである。
 ホットプレスによる保持時間が短い場合には、R’-Cu合金の拡散が十分に起こらないことがある。このような場合にはホットプレスの後に工程Dを適用してR’-Cu合金を拡散させることが好ましい。この場合、工程Dの温度は500℃以上900℃以下が好ましい。
<磁石の微細組織>
 本発明で得られる磁石は、HDDR処理で得られるR-T-B系磁石特有の再結晶集合組織、すなわち、平均結晶粒径が0.1μmから1μmであり、かつ、結晶粒のアスペクト比(長軸/短軸の比)が2以下の集合組織を有している。この再結晶集合組織を構成する結晶粒は、R214B型化合物相である。HDDR磁粉の個々の粉末粒子には多数の微細な結晶粒が含まれている。これらの結晶粒の平均粒径およびアスペクト比は、磁石の断面を透過電子顕微鏡(TEM)で観察することによって計測される。具体的には、例えば集束イオンビーム(FIB)等で薄片に加工した磁石のサンプルを観察したTEM像の個々の結晶粒を画像解析することによって結晶粒の平均粒径およびアスペクト比を求めることができる。ここで、平均粒径は、個々の結晶粒のTEM像における円相当径を求め、これらを単純平均することで得ることができる。また、結晶粒の長軸は当該結晶粒の断面観察における最も長い直径であり、短軸は最も短い直径である。
 また、上記のR214B型化合物相間(粒界相)には、R、Fe、Cuを必ず含む厚さ1nm以上3nm以下のRリッチ相が形成される。この粒界相(Rリッチ相)の厚さは、好ましくは1.5nm以上3nm以下である。Cuの効果については必ずしも明らかにされていないが、先述した非特許文献1から3に示されるように、Rリッチ相の組成や厚さが粒界近傍での磁壁の移動のしやすさに影響を与えていると考えられる。Cu添加による保磁力向上の効果は、粒界に位置するRリッチ相にCuが濃縮し、Rリッチ相の厚さや性質が変化することが要因としてなっていると考えられる。
 以下に、本発明による実施例と比較例を説明する。
(実験例1~6)
<R-T-B系永久磁石粉末の作製(工程A)>
 Nd12.5FebalCo86.5Ga0.2(原子%)組成の鋳造合金を作製し、1110℃の減圧アルゴン雰囲気で16時間均質化熱処理を行った後、粉砕して300μm以下の粉末を回収した後、HDDR処理を行った。HDDR処理は、管状炉にてアルゴン雰囲気中で850℃まで昇温した後、大気圧水素流気に切り換えて、850℃で4時間保持して水素化-不均化(HD)処理を行い、その後、5.33kPaの減圧アルゴン流気に切り換えて、同じ温度で30分間保持することにより、脱水素-再結合(DR)処理を行なった後冷却してR-T-B系永久磁石粉末を作製した。得られたR-T-B系永久磁石粉末の保磁力(HcJ)を振動試料型磁力計(VSM、東英工業社製VSM-5-20)で測定した結果、1321kA/mであった。また、得られた磁石粉末を集束イオンビーム(FIB)加工して薄片を作製し、透過電子顕微鏡(TEM)で観察した。このTEM像(1.8μm×1.8μmの領域)に存在する結晶粒に対して画像解析によって求めた円相当径の平均値(観察された33個測定の平均)は、0.29μmであった。また、個々の結晶粒は、HDDR処理で典型的に得られるアスペクト比の平均値が2以下のほぼ等軸的な形状を有していた。
<R’-Cu系合金の作製(工程B)>
 表1~6に示す組成のNd-Cuの急冷合金を、Cuロールを用いたメルトスピニング法(単ロール法)により、ロール周速度31.4m/秒で作製した。
<混合(工程C)>
 上記工程Aで作製したR-T-B系永久磁石粉末と上記工程Bで作製したNd-Cu系合金を表1~6に示す混合比で配合し、アルゴンガスで雰囲気を置換したグローブボックス内で、乳鉢で粉砕しながら混合した。表において、混合比は、重量比率であり、Nd、およびCuは、混合粉末全体の組成に対する割合である。
<熱処理(工程D)>
 作製した混合粉末を石英製の容器に投入したのち、赤外線ランプ加熱装置(アルバック理工社製QHC-E44VHT)で、8×10-3Pa未満まで真空引きをした後、約5秒で第1の熱処理温度まで昇温した。引き続き、第1の熱処理条件で保持した後、冷却した。第1の熱処理条件は、表1~6に示す通りである。実験例1~6では、第2の熱処理は行っていない。
<評価>
 得られたサンプルを解砕し、磁界中で配向しながらパラフィンで固定した後、高磁界VSMを用いて磁気特性を評価した。具体的には熱消磁状態のサンプルをVSM(オックスフォードインスツルメンツ社製MaglabVSM)装置にセットし、9.5Tまで外部磁界(静磁界)を付与してサンプルを磁化させた。その後、-9.5Tまで磁界強度を掃引して、保磁力を評価した。測定された保磁力の値は、表1~6の右端の欄に記載している。
 表1~6に示すように、磁石粉末にNd-Cu合金を混合して所定の条件で熱処理することにより、保磁力が大幅に向上することが確認された。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
(実験例7)
<R-T-B系永久磁石粉末およびR’-Cu合金の作製、混合(工程A~C)>
 実験例1~6と同一の条件で作製したNd80Cu20(原子%)組成の急冷合金と、実験例1~6と同一の条件で作製したNd12.5FebalCo86.5Ga0.2(原子%)組成のR-T-B系永久磁石粉末とを表7に示す混合比で配合し、アルゴンガスで雰囲気を置換したグローブボックス内で、乳鉢で粉砕しながら混合した。
<熱処理(工程DおよびD´)>
 作製した混合粉末を、石英製の容器に投入したのち、赤外線ランプ加熱装置(アルバック理工社製QHC-E44VHT)中で、8×10-3Pa未満まで真空引きをした。その後、5秒程度で700℃まで昇温し、700℃で30分間保持して第1の熱処理(工程D)を行なった。引き続き、5秒程度で550℃まで降温した後、550℃で60分間保持して第2の熱処理(工程D´)を行った。その後、冷却した。また、同様にして第1の熱処理(700℃で30分間保持)までの工程を行った後、第2の熱処理を行なわずに、直ちに冷却したサンプルを作製した。
<評価>
 得られたサンプルを解砕し、磁界中で配向しながらパラフィンで固定し、高磁界VSMを用いて磁気特性を評価した。具体的には熱消磁状態のサンプルをVSM(オックスフォードインスツルメンツ社製MaglabVSM)装置にセットし、9.5Tまで外部磁界(静磁界)を付与してサンプルを磁化させた後、-9.5Tまで磁界強度を掃引して、保磁力を評価した。
 表7から、第2の熱処理によって保磁力が更に増加することがわかる。
Figure JPOXMLDOC01-appb-T000007
(実験例8)
<R-T-B系永久磁石粉末およびR’-M合金の作製、混合(工程A~C)>
 実験例1と同一の条件でNd12.5FebalCo86.5Ga0.2(原子%)組成のR-T-B系永久磁石粉末を作製した。
 一方、単ロール急冷法にてロール周速度20m/秒でNd―M組成(M=Cu、Co、Ni、Mn)の急冷合金を作製した。急冷合金の組成は、表8に示す通りである。アルゴンガスに置換したチャンバ中でコーヒーミルを用いて急冷合金を粉砕した後、150μm以下の粉末を回収してNd-M合金粉末を作製した。得られたR-T-B系永久磁石粉末とNd-M合金粉末を混合した。
 得られた粉末のうち、Nd-Cu合金粉末5gについて、JIS Z8801のふるいを用いて粒度分布を測定した結果を表9に示す。この粉末は、表9に示されるように、粒径25μm以上の粒子が全体の50質量%以上を占めていた。
<熱処理(工程D)>
 作製した混合粉末を、Nb箔で包んだのち、加熱源にタングステンヒータを用いた高真空熱処理装置内に挿入した。6×10-3Pa未満まで真空引きをした後、表8に示す第1の熱処理温度まで30分で昇温した。引き続き、第1の熱処理温度で30分間保持した後、アルゴンガスを導入して冷却した。
<評価>
 得られたサンプルを300μm以下に解砕した後、磁界中で配向しながらパラフィンで固定した。4.8MA/mのパルス磁界で着磁した後、VSM(東英工業社製VSM-5-20)を用いて磁気特性を評価した。
 表8および表9からわかるように、Nd-Cu合金を用いた実施例では25μm以上の粗い粒子を用いても大幅に保磁力が向上することを確認した。一方、Cuに代えてCo、Ni、Mnを含むNd-M合金の粉末を用いた比較例では、充分な保磁力向上効果を得ることができなかった。
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
(実験例9)
 実験例7で作製したサンプルのうち、第1の熱処理(700℃×30分)のみを行なったもの(HcJ=1512kA/m)について、透過電子顕微鏡(TEM)および電子エネルギー損失スペクトロスコピー(EELS)を用いて元素マッピングを行った。図4は、元素マッピングを示す図である。このサンプルの主相界面近傍において、レーザ補助3次元アトムプローブにより、深さ方向元素分析を行った。図5(a)は、主相界面近傍におけるNd、Fe、Co、Bの深さ方向濃度分布を示すグラフである。図5(b)は、Cuの深さ方向濃度分布を示すグラフである。図5(c)は、主相界面近傍におけるGaの深さ方向濃度分布を示すグラフである。図5(a)において、Fe濃度の低下とNd濃度の増加が局所的に生じている部位が粒界相(Ndリッチ相)であり、その左右の部分が隣接する2つの主相結晶粒に相当している。図5(a)および図5(b)からわかるように、Ndリッチ相にCuが濃縮していることが確認された。なお、アトムプローブ分析により得られた、主相中のCuの量は、統計誤差を考慮しても0.0125原子%以下と極めて低いことが確認され、拡散によって導入されたCuは粒界相に濃縮することがわかった。
 図6Aは、Cu導入を行わなかったR-T-B系永久磁石粉末(比較例)の主相粒界近傍における断面TEM写真を示す図であり、図6Bは、上記サンプルの主相粒界近傍における高分解能電子顕微鏡写真(断面TEM写真)を示す図である。Cu導入の結果、粒界相(Ndリッチ相)の厚さは1.3nm(比較例)から2.4nm(実施例)に増加したことを確認した。
(実験例10)
<R-T-B系永久磁石粉末およびR’-Cu合金の作製、混合(工程A~C)>
 実験例8と同一の条件で作製したNd80Cu20(原子%)組成の急冷合金粉末と実験例8と同一の条件で作製したNd12.5FebalCo86.5Ga0.2(原子%)組成のR-T-B系永久磁石粉末とを表10に示す混合比で混合した。
<熱処理(工程D)>
 作製した混合粉末をNb箔で包んだのち、加熱源にタングステンヒータを用いた高真空熱処理装置内に挿入した。6×10-3Pa未満まで真空引きをした後、表10に示す第1の熱処理温度まで30分で昇温した。第1の熱処理温度で30分間保持した後、アルゴンガスを導入して冷却した。
<評価>
 得られたサンプルを300μm以下に解砕した後、磁界中で配向しながらパラフィンで固定し、4.8MA/mのパルス磁界で着磁した後、VSM(東英工業社製VSM-5-20)を用いて磁気特性を評価した。
 表10に示すように、Nd-Cu合金粉末とR-T-B系永久磁石粉末の混合比が1:5~1:80において保磁力が向上することが確認され、特に混合比1:5~1:20において高い保磁力が得られた。
Figure JPOXMLDOC01-appb-T000010
(実験例11)
<R-T-B系永久磁石粉末の作製(工程A)>
 Nd12.5FebalCo86.5Ga1(原子%)組成の鋳造合金を作製し、1110℃の減圧アルゴン雰囲気で16時間均質化熱処理を行った。この合金を粉砕して300μm以下の粉末を回収した後、HDDR処理を行った。HDDR処理としては、まず、管状炉を用いてアルゴン雰囲気中で830℃まで昇温した後、大気圧水素流気に切り換えて830℃で2時間保持して水素化-不均化(HD)処理を行った。その後、5.33kPaの減圧アルゴン流気に切り換えて同じ温度で30分間保持することにより、脱水素-再結合(DR)処理を行った。その後、冷却してR-T-B系永久磁石粉末を作製した。
 得られたR-T-B系永久磁石粉末の保磁力(HcJ)を振動試料型磁力計(VSM、東英工業社製VSM-5-20)で測定した結果、1199kA/mであった。また、得られた磁石粉末の平均結晶粒径とアスペクト比の平均値を実験例1と同様の方法で求めたところ、それぞれ0.31μm、および2以下であった。
<R’-Cu合金の作製、混合(工程B、C)>
 実験例8と同一の条件で作製したNd80Cu20(原子%)組成の急冷合金粉末をR-T-B系永久磁石粉末と混合した。
<熱処理(工程D)>
 作製した混合粉末を、Nb箔で包んだのち、加熱源にタングステンヒータを用いた高真空熱処理装置内に挿入した。6×10-3Pa未満まで真空引きをした後、表11に示す第1の熱処理温度まで30分で昇温した。第1の熱処理温度で30分間保持した後、アルゴンガスを導入して冷却した。
<評価>
 得られたサンプルを300μm以下に解砕した後、磁界中で配向しながらパラフィンで固定し、4.8MA/mのパルス磁界で着磁した後、VSM(東英工業社製VSM-5-20)を用いて磁気特性を評価した。
 表11に示すように、実験例1から10と異なる組成のR-T-B系永久磁石粉末に対しても保磁力の向上効果が確認された。
Figure JPOXMLDOC01-appb-T000011
(実験例12)
<R-T-B系永久磁石粉末およびR’-Cu合金の作製、混合(工程A~C)>
 実験例8と同一の条件で作製したNd80Cu20(原子%)組成の急冷合金粉末と実験例8と同一の条件で作製したNd12.5FebalCo86.5Ga0.2(原子%)組成のR-T-B系永久磁石粉末(HcJ=1323kA/m)とを表12に示す混合比で混合した。
<熱処理(工程D)>
 作製した混合粉末をNb箔で包んだのち、加熱源にタングステンヒータを用いた高真空熱処理装置内に挿入した。6×10-3Pa未満まで真空引きをした後、表12に示す第1の熱処理温度まで30分で昇温した。第1の熱処理温度で表12に示す時間保持した後、アルゴンガスを導入して冷却した。
<評価>
 得られたサンプルを300μm以下に解砕した後、磁界中で配向しながらパラフィンで固定し、4.8MA/mのパルス磁界で着磁した後、VSM(東英工業社製VSM-5-20)を用いて磁気特性を評価した。
 表12に示すように、第1の熱処理温度が500℃から900℃の範囲で保磁力の向上が確認された。一方、熱処理温度が450℃では保磁力が若干低下し、930℃では保磁力は大幅に低下した。
Figure JPOXMLDOC01-appb-T000012
(実験例13)
<R-T-B系永久磁石粉末およびR’-Cu合金の作製、混合(工程A~C)>
 表13に示す組成を有し、実験例8と同一の条件で作製したNd-Cuの急冷合金粉末と、実験例8と同一の条件で作製したNd12.5FebalCo86.5Ga0.2(原子%)組成のR-T-B系永久磁石粉末(HcJ=1321kA/m)とを表13に示す混合比で混合した。
<熱処理(工程D)>
 作製した混合粉末をNb箔で包んだのち、加熱源にタングステンヒータを用いた高真空熱処理装置内に挿入した。6×10-3Pa未満まで真空引きをした後、800℃まで30分で昇温した。その後、第1の熱処理温度で800℃で30分間保持して第1の熱処理を行なった後、アルゴンガスを導入して冷却した。
<評価>
 得られたサンプルを300μm以下に解砕した後、磁界中で配向しながらパラフィンで固定し、4.8MA/mのパルス磁界で着磁した後、VSM(東英工業社製VSM-5-20)を用いて磁気特性を評価した。
Figure JPOXMLDOC01-appb-T000013
 表13に示すように、Nd45Cu55組成の合金では出発磁粉よりも保磁力が大幅に低下した。一方、金属Ndの拡散においても保磁力(HcJ)が向上しているがHkの値が400kA/m(約5kOe)を下回っていることがわかる。一方、実施例に示すNd-Cu合金組成の拡散では、高いHcJと400kA/m以上のHkが得られており、特に、Nd95Cu5、Nd90Cu10、Nd80Cu20組成の合金を用いたときに高いHkが得られた。なお、Nd55Cu45とNd45Cu55で大きく保磁力が異なるのは、平衡状態図においてNd50Cu50組成よりもNdリッチ側ではNdCu相とNd相が共存するのに対し、Ndプア側ではNdCu相とNdCu2相が共存することと何らかの関係があるものと思われる。
(実験例14)
<R-T-B系永久磁石粉末の作製(工程A)>
 Nd12.5FebalCo36.2Ga0.2(原子%)組成の鋳造合金を作製し、1110℃の減圧アルゴン雰囲気で16時間均質化熱処理を行った。この合金を粉砕して300μm以下の粉末を回収した後、HDDR処理を行った。HDDR処理としては、まず、管状炉を用いてアルゴン雰囲気中で820℃まで昇温した後、大気圧水素流気に切り換えて820℃で2時間保持して水素化-不均化(HD)処理を行った。その後、5.33kPaの減圧アルゴン流気に切り換えて同じ温度で1時間保持することにより、脱水素-再結合(DR)処理を行った。その後、冷却してR-T-B系永久磁石粉末を作製した。
 得られたR-T-B系永久磁石粉末の保磁力(HcJ)を振動試料型磁力計(VSM、東英工業社製VSM-5-20)で測定した結果、1191kA/mであった。また、得られた磁石粉末の平均結晶粒径とアスペクト比の平均値を実験例1と同様の方法で求めたところ、それぞれ0.33μm、および2以下であった。
<R’-Cu合金の作製、混合(工程B、C)>
 実験例8と同一の条件で作製したNd80Cu20(原子%)組成の急冷合金粉末をR-T-B系永久磁石粉末と混合した。
<熱処理(工程D)>
 作製した混合粉末を、Nb箔で包んだのち、加熱源にタングステンヒータを用いた高真空熱処理装置内に挿入した。6×10-3Pa未満まで真空引きをした後、表14に示す第1の熱処理温度まで30分で昇温した。第1の熱処理温度で30分間保持した後、アルゴンガスを導入して冷却した。
<評価>
 得られたサンプルを300μm以下に解砕した後、磁界中で配向しながらパラフィンで固定し、4.8MA/mのパルス磁界で着磁した後、VSM(東英工業社製VSM-5-20)を用いて磁気特性を評価した。
 表14に示すように、実験例1から13と異なる組成のR-T-B系永久磁石粉末に対しても保磁力の向上効果が確認された。
Figure JPOXMLDOC01-appb-T000014
(実験例15)
<R-T-B系永久磁石粉末の作製(工程A)>
 Nd15FebalCo86.5Ga0.2(原子%)組成の鋳造合金を作製し、1110℃の減圧アルゴン雰囲気で16時間均質化熱処理を行った。この合金を粉砕して300μm以下の粉末を回収した後、HDDR処理を行った。HDDR処理としては、まず、管状炉を用いてアルゴン雰囲気中で830℃まで昇温した後、大気圧水素流気に切り換えて830℃で3時間保持して水素化-不均化(HD)処理を行った。その後、5.33kPaの減圧アルゴン流気に切り換えて同じ温度で1時間保持することにより、脱水素-再結合(DR)処理を行った。その後、冷却してR-T-B系永久磁石粉末を作製した。
 得られたR-T-B系永久磁石粉末の保磁力(HcJ)を振動試料型磁力計(VSM、東英工業社製VSM-5-20)で測定した結果、1319kA/mであった。また、得られた磁石粉末の平均結晶粒径とアスペクト比の平均値を実験例1と同様の方法で求めたところ、それぞれ0.37μm、および2以下であった。
<R’-Cu合金の作製、混合(工程B、C)>
 実験例8と同一の条件で作製したNd80Cu20(原子%)組成の急冷合金粉末をR-T-B系永久磁石粉末と混合した。
<熱処理(工程D)>
 作製した混合粉末を、Nb箔で包んだのち、加熱源にタングステンヒータを用いた高真空熱処理装置内に挿入した。6×10-3Pa未満まで真空引きをした後、800℃まで30分で昇温した。その後800℃で30分間保持して第1の熱処理を行なった後、アルゴンガスを導入して冷却した。
<評価>
 得られたサンプルを300μm以下に解砕した後、磁界中で配向しながらパラフィンで固定し、4.8MA/mのパルス磁界で着磁した後、VSM(東英工業社製VSM-5-20)を用いて磁気特性を評価した。
 表15に示すように、実験例1から14と異なる組成のR-T-B系永久磁石粉末に対しても保磁力の向上効果が確認された。
Figure JPOXMLDOC01-appb-T000015
(実験例16)
<R-T-B系永久磁石粉末の作製(工程A)>
 Nd13.5FebalCo86.5(原子%)組成の鋳造合金を作製し、1110℃の減圧アルゴン雰囲気で16時間均質化熱処理を行った。この合金を粉砕して300μm以下の粉末を回収した後、HDDR処理を行った。HDDR処理としては、まず、管状炉を用いてアルゴン雰囲気中で850℃まで昇温した後、大気圧水素流気に切り換えて850℃で3時間保持して水素化-不均化(HD)処理を行った。その後、5.33kPaの減圧アルゴン流気に切り換えて同じ温度で1時間保持することにより、脱水素-再結合(DR)処理を行った。その後、冷却してR-T-B系永久磁石粉末を作製した。
 得られたR-T-B系永久磁石粉末の保磁力(HcJ)を振動試料型磁力計(VSM、東英工業社製VSM-5-20)で測定した結果、896kA/mであった。また、得られた磁石粉末の平均結晶粒径とアスペクト比の平均値を実験例1と同様の方法で求めたところ、それぞれ0.33μm、および2以下であった。
<R’-Cu合金の作製、混合(工程B、C)>
 実験例8と同一の条件で作製したNd80Cu20(原子%)組成の急冷合金粉末をR-T-B系永久磁石粉末と混合した。
<熱処理(工程D)>
 作製した混合粉末を、Nb箔で包んだのち、加熱源にタングステンヒータを用いた高真空熱処理装置内に挿入した。6×10-3Pa未満まで真空引きをした後、800℃まで30分で昇温した。その後800℃で30分間保持して第1の熱処理を行なった後、アルゴンガスを導入して冷却した。
<評価>
 得られたサンプルを300μm以下に解砕した後、磁界中で配向しながらパラフィンで固定し、4.8MA/mのパルス磁界で着磁した後、VSM(東英工業社製VSM-5-20)を用いて磁気特性を評価した。
 表16に示すように、実験例1から15と異なる組成のR-T-B系永久磁石粉末に対しても保磁力の向上効果が確認された。
Figure JPOXMLDOC01-appb-T000016
<実験例17>
<R-T-B系永久磁石粉末およびR’-Cu合金の作製、混合(工程A~C)>
 実験例8と同一の条件で作製したNd80Cu20(原子%)組成の急冷合金粉末と実験例8と同一の条件で作製したNd12.5FebalCo86.5Ga0.2(原子%)組成のR-T-B系永久磁石粉末(HcJ=1323kA/m)とを表17に示す混合比で混合した。
<ホットプレス(工程E)>
 作製した混合粉末3.85gを内径8.3mmの非磁性超硬合金製のダイスに挿入し、図3に示す高周波ホットプレス装置を用いてホットプレスを行い、円柱状のバルク体を得た。具体的には1×10-2Pa以下の真空中で表17に示す圧力を印加しながら、金型を高周波加熱により11℃/secの昇温速度で表17に示す温度まで加熱した後、2分間保持し、その後直ちにチャンバ内にヘリウムガスを導入し冷却した。
<熱処理(工程D)>
 得られたバルク体を、Nb箔で包んだのち、石英管中に投入し、アルゴン雰囲気中で表17に示す条件で第1の熱処理を行なった後、石英管ごと急冷した。
<評価>
 得られた円柱状のサンプルの上下面を表面研削盤で加工するとともに、サンプル側面の酸化相を除去し、4.8MA/mのパルス磁界で着磁した後、BHトレーサ(装置名:MTR-1412(メトロン技研社製))を用いて磁気特性を評価した。
 表18に示すように、Nd-Cu合金を混合した後、ホットプレスでバルク化し、その後第1の熱処理を行なうことで、出発磁粉よりも保磁力を向上させたバルク磁石を作製することができた。一方、Nd-Cu合金と混合せずにR-T-B系永久磁石粉末のみをホットプレスして熱処理しても、保磁力は出発磁粉以下の値にとどまることが確認された。
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000018
(実験例18)
<R-T-B系永久磁石粉末およびR’-Cu合金の作製、混合(工程A~C)>
 実験例1~7と同一の条件で作製したNd80Cu20(原子%)組成の急冷合金と、実験例1~7と同一の条件で作製したNd12.5FebalCo86.5Ga0.2(原子%)組成のR-T-B系永久磁石粉末とを、(R’-Cu系合金):(R-T-B系永久磁石粉末)が質量比で1:5になるように配合し、アルゴンガスで雰囲気を置換したグローブボックス内で、乳鉢で粉砕しながら混合した。
<熱処理>
 作製した混合粉末を、石英製の容器に投入した後、赤外線ランプ加熱装置(アルバック理工社製QHC-E44VHT)中で、8×10-3Pa未満まで真空引きをした。その後、約1分で650℃まで昇温後、さらに約3分で700℃まで昇温し、700℃で30分間保持して第一の熱処理(工程D)を行ない、約30分で室温まで冷却した。引き続き、約1分で500℃まで昇温後、約3分で550℃まで昇温した後、550℃で60分間保持して第2の熱処理(工程D´)を行った。その後、冷却した。
<評価>
 得られたサンプルを解砕し、磁界中で配向しながら固定し、高磁界VSMを用いて磁気特性の温度依存性を評価した。具体的には配向したサンプルをVSM(カンタム・デザイン社製 MPMS SQUID VSM)装置にセットし、300K(約27℃)から400K(約127℃)までの各設定温度にサンプルを加熱した後、7Tまで外部磁界を付与してサンプルを磁化させた後、-7Tまで磁界強度を掃引して、各温度における保磁力を評価した。
 測定温度と保磁力の関係を図7に示す。プロットの傾きから求めた保磁力の温度係数は-0.4%/℃であり、同一保磁力を有する市販のNd―Fe-B系焼結磁石の保磁力の温度係数(-0.55%/℃)と比べて、本発明の磁石が優れた保磁力の温度依存性を有していることが確認できた。
(実験例19)
<R-T-B系永久磁石粉末およびR’-Cu合金の作製、混合(工程A~C)>
 実験例16と同一の方法で作製したNd13.5FebalCo86.5(原子%)組成のR-T-B系永久磁石粉末(HcJ=896kA/m)とNd80Cu20(原子%)組成の急冷合金粉末を(R’-Cu系合金):(R-T-B系永久磁石粉末)が質量比で1:10になるように配合し、アルゴンガスで雰囲気を置換したグローブボックス内で、乳鉢で粉砕しながら混合した。
<熱処理(工程D)>
 作製した混合粉末4gを0.8Tの外部磁界中で配向させながら配向方向に平行に140MPaの圧力を付与して仮成形体を作製した後、内径8mmの非磁性超硬合金製のダイスに挿入し、図3に示す高周波ホットプレス装置を用いてホットプレスを行ないながら、第1の熱処理を行い、円柱状のバルク体を得た。具体的には、1×10-2Pa以下の真空中で11℃/secの昇温速度で580℃まで昇温した後、586MPaの圧力を印加しながら580℃で2分間保持して、緻密化と同時に熱処理を行った後、直ちにチャンバ内にヘリウムガスを導入し急冷した。
<評価>
 得られた円柱状のサンプルの上下面を表面研削盤で加工するとともに、サンプル側面の酸化相を除去し、4.8MA/mのパルス磁界で着磁した後、BHトレーサ(装置名:MTR-1412(メトロン技研社製))を用いて磁気特性を評価した。
 得られたサンプルの保磁力(HcJ)は1309kA/mと高い値を示した。
 本発明によれば、Dy、Tbなどの希少資源の使用量を低減しつつ高性能な永久磁石が製造できる。
 1  合金の溶湯
 2  出湯ノズル
 3  冷却ロール
 4  リボン状の急冷合金
11  チャンバ
12  金型
13a 上パンチ
13b 下パンチ
14  高周波コイル
15  加圧シリンダー
16  高周波電源
17  加圧機構
18  真空装置
19  ヘリウムガス供給源

Claims (10)

  1.  HDDR法によって作製され、平均結晶粒径が0.1μm以上1μm以下の再結晶集合組織を有するR-T-B系永久磁石粉末(RはNdおよび/またはPrをR全体に対して95原子%以上含む希土類元素、TはFeまたはFeの一部をCoおよび/またはNiで置換したものであり、Feを50原子%以上含む遷移金属元素)を準備する工程Aと、
     R’(R’はNdおよび/またはPrをR’全体に対して90原子%以上含み、DyおよびTbを含まない希土類元素)とCuからなり、かつ、Cuが2原子%以上50原子%以下であるR’-Cu系合金粉末を準備する工程Bと、
     前記R-T-B系永久磁石粉末とR’-Cu系合金粉末とを混合する工程Cと、
     前記混合粉末を不活性雰囲気または真空中において、500℃以上900℃以下の温度で熱処理を行う工程Dと、
    を含む希土類永久磁石の製造方法。
  2.  前記R-T-B系永久磁石粉末がDyおよびTbを含有していない請求項1に記載の希土類永久磁石の製造方法。
  3.  前記R-T-B系永久磁石粉末の保磁力が1200kA/m以上である請求項1に記載の希土類永久磁石の製造方法。
  4.  前記工程Bは、
     急冷法によってR’-Cu系合金を作製する工程b1と、
     R’-Cu系合金を粉砕する工程b2と
    を含む請求項1に記載の希土類永久磁石の製造方法。
  5.  前記工程Dにおいて、前記混合粉末を500℃以上900℃以下の温度で、5分以上240分以下の時間、保持する請求項1に記載の希土類永久磁石の製造方法。
  6.  前記工程Dの後に、450℃以上600℃以下であって、工程Dにおける熱処理温度以下の温度で第2の熱処理工程D´を行う請求項5に記載の希土類永久磁石の製造方法。
  7.  前記工程Dの前に、前記混合粉末に対し、500℃以上900℃以下の温度、20MPa以上3000MPa以下の圧力で熱間成形による緻密化を行なう工程Eを包含する、請求項1から6のいずれかに記載の希土類永久磁石の製造方法。
  8.  前記工程Dの後に、前記混合粉末に対し、500℃以上900℃以下の温度、20MPa以上3000MPa以下の圧力で熱間成形による緻密化を行なう工程Eを包含する、請求項1から6のいずれかに記載の希土類永久磁石の製造方法。
  9.  前記工程Dは、前記熱処理中において20MPa以上3000MPa以下の圧力で熱間成形による緻密化を行なう工程を包含する、請求項1から6のいずれかに記載の希土類永久磁石の製造方法。
  10.  請求項1から9のいずれかに記載の製造方法によって製造される希土類永久磁石であって、
     平均結晶粒径が0.1μmから1μmのR214B型化合物相を主体とし、
     前記R214B型化合物相間にR、Fe、Cuを必ず含む厚さ1nm以上3nm以下のRリッチ相が形成されている、希土類永久磁石。
PCT/JP2011/061488 2010-05-20 2011-05-19 希土類永久磁石の製造方法および希土類永久磁石 WO2011145674A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201180024008.6A CN102918611B (zh) 2010-05-20 2011-05-19 稀土类永磁体的制造方法和稀土类永磁体
US13/698,748 US20130068992A1 (en) 2010-05-20 2011-05-19 Method for producing rare earth permanent magnets, and rare earth permanent magnets
JP2012515921A JP5856953B2 (ja) 2010-05-20 2011-05-19 希土類永久磁石の製造方法および希土類永久磁石

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2010-116531 2010-05-20
JP2010116531 2010-05-20
JP2010-171905 2010-07-30
JP2010171905 2010-07-30

Publications (1)

Publication Number Publication Date
WO2011145674A1 true WO2011145674A1 (ja) 2011-11-24

Family

ID=44991766

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/061488 WO2011145674A1 (ja) 2010-05-20 2011-05-19 希土類永久磁石の製造方法および希土類永久磁石

Country Status (4)

Country Link
US (1) US20130068992A1 (ja)
JP (1) JP5856953B2 (ja)
CN (1) CN102918611B (ja)
WO (1) WO2011145674A1 (ja)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013035628A1 (ja) 2011-09-09 2013-03-14 戸田工業株式会社 R-t-b系希土類磁石粉末、r-t-b系希土類磁石粉末の製造方法、及びボンド磁石
EP2722856A1 (en) * 2012-10-17 2014-04-23 Shin-Etsu Chemical Co., Ltd. Rare earth sintered magnet and making method
EP2779179A2 (en) 2013-03-13 2014-09-17 Toda Kogyo Corporation R-T-B-based rare earth magnet particles, process for producing the R-T-B-based rare earth magnet particles, and bonded magnet
KR101480486B1 (ko) * 2013-12-26 2015-01-12 주식회사 포스코 소결자석 제조용 미분쇄 장치
EP3054460A1 (en) 2015-01-29 2016-08-10 Toda Kogyo Corp. Process for producing r-t-b-based rare earth magnet powder, r-t-b-based rare earth magnet powder, and bonded magnet
WO2016153056A1 (ja) * 2015-03-25 2016-09-29 Tdk株式会社 希土類磁石
KR101780884B1 (ko) * 2013-03-12 2017-09-21 인터메탈릭스 가부시키가이샤 RFeB계 소결 자석의 제조 방법 및 이에 의해 제조되는 RFeB계 소결 자석
JP2017212396A (ja) * 2016-05-27 2017-11-30 トヨタ自動車株式会社 希土類磁石粉末の製造方法
JP2018104818A (ja) * 2016-12-22 2018-07-05 グリレム アドヴァンスド マテリアルズ カンパニー リミテッドGrirem Advanced Materials Co.,Ltd. 合金材料、ボンド磁石および希土類永久磁石粉末の変性方法
JP2018174317A (ja) * 2017-03-31 2018-11-08 Tdk株式会社 R−t−b系永久磁石
KR101918975B1 (ko) * 2017-08-09 2018-11-16 한국기계연구원 Nd-Fe-B계 자석 및 그 제조방법
US10950373B2 (en) 2014-12-08 2021-03-16 Lg Electronics Inc. Hot-pressed and deformed magnet comprising nonmagnetic alloy and method for manufacturing same

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103258634B (zh) * 2013-05-30 2015-11-25 烟台正海磁性材料股份有限公司 一种制备高性能R-Fe-B系烧结磁体方法
KR102070869B1 (ko) 2013-09-11 2020-01-29 엘지전자 주식회사 고보자력 및 고잔류자속밀도를 갖는 네오디뮴계 재생 소결자석 및 그의 재생처리방법
CN106141162B (zh) * 2015-04-01 2018-11-06 有研稀土新材料股份有限公司 稀土永磁粉、其晶化方法和制备方法及粘结磁体
JP6645219B2 (ja) * 2016-02-01 2020-02-14 Tdk株式会社 R−t−b系焼結磁石用合金、及びr−t−b系焼結磁石
CN108074693B (zh) * 2016-11-16 2019-11-22 中国科学院宁波材料技术与工程研究所 一种钕铁硼永磁材料及其制备方法
CN106548844B (zh) * 2016-12-06 2019-01-29 中国科学院宁波材料技术与工程研究所 一种热变形稀土永磁材料及其制备方法
WO2018138841A1 (ja) * 2017-01-26 2018-08-02 日産自動車株式会社 焼結磁石の製造方法
CN107134360A (zh) * 2017-05-11 2017-09-05 中国科学院宁波材料技术与工程研究所 一种晶界改性制备高性能y基稀土永磁体的方法
JP7187920B2 (ja) * 2018-09-21 2022-12-13 住友金属鉱山株式会社 多結晶希土類遷移金属合金粉末およびその製造方法
JP7139920B2 (ja) * 2018-12-03 2022-09-21 Tdk株式会社 R‐t‐b系永久磁石
CN110767402B (zh) * 2019-11-06 2021-02-26 有研稀土新材料股份有限公司 一种异方性粘结磁粉及其制备方法
CN110752087B (zh) * 2019-11-06 2021-12-14 有研稀土新材料股份有限公司 稀土类异方性粘结磁粉的制备方法
CN111968850B (zh) * 2020-07-15 2022-04-19 西安工程大学 一种放电等离子烧结制备高矫顽力钕铁硼永磁材料的方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000096102A (ja) * 1998-09-18 2000-04-04 Aichi Steel Works Ltd 耐熱希土類合金異方性磁石粉末
WO2004064085A1 (ja) * 2003-01-16 2004-07-29 Aichi Steel Corporation 異方性磁石粉末の製造方法
JP2011061038A (ja) * 2009-09-10 2011-03-24 Toyota Central R&D Labs Inc 希土類磁石とその製造方法および磁石複合部材
WO2011070847A1 (ja) * 2009-12-09 2011-06-16 愛知製鋼株式会社 希土類異方性磁石粉末およびその製造方法とボンド磁石

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02173246A (ja) * 1988-12-24 1990-07-04 Tokin Corp 永久磁石合金及びその製造方法
JPH04322405A (ja) * 1991-04-22 1992-11-12 Shin Etsu Chem Co Ltd 希土類永久磁石
JP3405806B2 (ja) * 1994-04-05 2003-05-12 ティーディーケイ株式会社 磁石およびその製造方法
JPH09165601A (ja) * 1995-12-12 1997-06-24 Sumitomo Special Metals Co Ltd 永久磁石用異方性希土類合金粉末及び異方性ボンド磁石の製造方法
JP3452254B2 (ja) * 2000-09-20 2003-09-29 愛知製鋼株式会社 異方性磁石粉末の製造方法、異方性磁石粉末の原料粉末およびボンド磁石
US6955729B2 (en) * 2002-04-09 2005-10-18 Aichi Steel Corporation Alloy for bonded magnets, isotropic magnet powder and anisotropic magnet powder and their production method, and bonded magnet
CN101346780B (zh) * 2006-05-18 2012-02-08 日立金属株式会社 R-Fe-B系多孔质磁铁及其制造方法
JP4700578B2 (ja) * 2006-08-30 2011-06-15 株式会社日立製作所 高抵抗希土類系永久磁石の製造方法
CN101266855B (zh) * 2007-12-29 2012-05-23 横店集团东磁股份有限公司 稀土永磁材料及其制造方法
JP2010263172A (ja) * 2008-07-04 2010-11-18 Daido Steel Co Ltd 希土類磁石およびその製造方法
CN101499347B (zh) * 2008-11-04 2012-05-16 北京倍力隆磁材料技术有限公司 一种良好温度特性复合各向异性稀土永磁材料的制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000096102A (ja) * 1998-09-18 2000-04-04 Aichi Steel Works Ltd 耐熱希土類合金異方性磁石粉末
WO2004064085A1 (ja) * 2003-01-16 2004-07-29 Aichi Steel Corporation 異方性磁石粉末の製造方法
JP2011061038A (ja) * 2009-09-10 2011-03-24 Toyota Central R&D Labs Inc 希土類磁石とその製造方法および磁石複合部材
WO2011070847A1 (ja) * 2009-12-09 2011-06-16 愛知製鋼株式会社 希土類異方性磁石粉末およびその製造方法とボンド磁石

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013035628A1 (ja) 2011-09-09 2013-03-14 戸田工業株式会社 R-t-b系希土類磁石粉末、r-t-b系希土類磁石粉末の製造方法、及びボンド磁石
EP3410446A1 (en) * 2012-10-17 2018-12-05 Shin-Etsu Chemical Co., Ltd. Rare earth sintered magnet and making method
EP2722856A1 (en) * 2012-10-17 2014-04-23 Shin-Etsu Chemical Co., Ltd. Rare earth sintered magnet and making method
JP2014099594A (ja) * 2012-10-17 2014-05-29 Shin Etsu Chem Co Ltd 希土類焼結磁石の製造方法及び希土類焼結磁石
CN106941038A (zh) * 2012-10-17 2017-07-11 信越化学工业株式会社 稀土烧结磁体及其制造方法
JP2017063206A (ja) * 2012-10-17 2017-03-30 信越化学工業株式会社 微結晶合金中間製造物の製造方法及び微結晶合金中間製造物
TWI575081B (zh) * 2012-10-17 2017-03-21 信越化學工業股份有限公司 稀土經燒結之磁石及製造方法
US9734947B2 (en) 2012-10-17 2017-08-15 Shin-Etsu Chemical Co., Ltd. Rare earth sintered magnet and making method
KR101780884B1 (ko) * 2013-03-12 2017-09-21 인터메탈릭스 가부시키가이샤 RFeB계 소결 자석의 제조 방법 및 이에 의해 제조되는 RFeB계 소결 자석
EP2779179A2 (en) 2013-03-13 2014-09-17 Toda Kogyo Corporation R-T-B-based rare earth magnet particles, process for producing the R-T-B-based rare earth magnet particles, and bonded magnet
US11120932B2 (en) 2013-03-13 2021-09-14 Toda Kogyo Corp. R-T-B-based rare earth magnet particles, and bonded magnets containing R-T-B-based rare earth magnet particles
EP2779179A3 (en) * 2013-03-13 2014-12-17 Toda Kogyo Corporation R-T-B-based rare earth magnet particles, process for producing the R-T-B-based rare earth magnet particles, and bonded magnet
JP2014177660A (ja) * 2013-03-13 2014-09-25 Toda Kogyo Corp R−t−b系希土類磁石粉末、r−t−b系希土類磁石粉末の製造方法、及びボンド磁石
US20140266525A1 (en) * 2013-03-13 2014-09-18 Toda Kogyo Corp. R-t-b-based rare earth magnet particles, process for producing the r-t-b-based rare earth magnet particles, and bonded magnet
KR101480486B1 (ko) * 2013-12-26 2015-01-12 주식회사 포스코 소결자석 제조용 미분쇄 장치
US10950373B2 (en) 2014-12-08 2021-03-16 Lg Electronics Inc. Hot-pressed and deformed magnet comprising nonmagnetic alloy and method for manufacturing same
EP3054460A1 (en) 2015-01-29 2016-08-10 Toda Kogyo Corp. Process for producing r-t-b-based rare earth magnet powder, r-t-b-based rare earth magnet powder, and bonded magnet
WO2016153056A1 (ja) * 2015-03-25 2016-09-29 Tdk株式会社 希土類磁石
JPWO2016153056A1 (ja) * 2015-03-25 2018-02-22 Tdk株式会社 希土類磁石
JPWO2016153057A1 (ja) * 2015-03-25 2018-03-01 Tdk株式会社 希土類磁石
JPWO2016153055A1 (ja) * 2015-03-25 2018-03-01 Tdk株式会社 希土類磁石
WO2016153057A1 (ja) * 2015-03-25 2016-09-29 Tdk株式会社 希土類磁石
JP2020123735A (ja) * 2015-03-25 2020-08-13 Tdk株式会社 希土類磁石
WO2016153055A1 (ja) * 2015-03-25 2016-09-29 Tdk株式会社 希土類磁石
JP2017212396A (ja) * 2016-05-27 2017-11-30 トヨタ自動車株式会社 希土類磁石粉末の製造方法
JP2018104818A (ja) * 2016-12-22 2018-07-05 グリレム アドヴァンスド マテリアルズ カンパニー リミテッドGrirem Advanced Materials Co.,Ltd. 合金材料、ボンド磁石および希土類永久磁石粉末の変性方法
JP2018174317A (ja) * 2017-03-31 2018-11-08 Tdk株式会社 R−t−b系永久磁石
JP7114971B2 (ja) 2017-03-31 2022-08-09 Tdk株式会社 R-t-b系永久磁石
KR101918975B1 (ko) * 2017-08-09 2018-11-16 한국기계연구원 Nd-Fe-B계 자석 및 그 제조방법

Also Published As

Publication number Publication date
CN102918611A (zh) 2013-02-06
JPWO2011145674A1 (ja) 2013-07-22
US20130068992A1 (en) 2013-03-21
JP5856953B2 (ja) 2016-02-10
CN102918611B (zh) 2015-09-09

Similar Documents

Publication Publication Date Title
JP5856953B2 (ja) 希土類永久磁石の製造方法および希土類永久磁石
US11024448B2 (en) Alloy for R-T-B-based rare earth sintered magnet, process of producing alloy for R-T-B-based rare earth sintered magnet, alloy material for R-T-B-based rare earth sintered magnet, R-T-B-based rare earth sintered magnet, process of producing R-T-B-based rare earth sintered magnet, and motor
TWI673730B (zh) R-Fe-B系燒結磁石及其製造方法
JP5892139B2 (ja) 希土類異方性磁石とその製造方法
JP5754232B2 (ja) 高保磁力NdFeB磁石の製法
WO2014157451A1 (ja) R-t-b系焼結磁石
JP5288277B2 (ja) R−t−b系永久磁石の製造方法
JP4702547B2 (ja) 傾斜機能性希土類永久磁石
WO2010113371A1 (ja) R-t-b系希土類永久磁石用合金材料、r-t-b系希土類永久磁石の製造方法およびモーター
TWI738932B (zh) R-Fe-B系燒結磁石及其製造方法
JP2009302318A (ja) RL−RH−T−Mn−B系焼結磁石
JP5757394B2 (ja) 希土類永久磁石の製造方法
JP2016017203A (ja) R−t−b系希土類焼結磁石用合金の製造方法及びr−t−b系希土類焼結磁石の製造方法
JP5288276B2 (ja) R−t−b系永久磁石の製造方法
JP2013115156A (ja) R−t−b系永久磁石の製造方法
JP2012195392A (ja) R−t−b系永久磁石の製造方法
WO2012029527A1 (ja) R-t-b系希土類永久磁石用合金材料、r-t-b系希土類永久磁石の製造方法およびモーター
JP6623998B2 (ja) R−t−b系焼結磁石の製造方法
JP2018060997A (ja) R−t−b系焼結磁石の製造方法
JP2022008212A (ja) R-t-b系永久磁石およびモータ
JP2016169438A (ja) R−t−b系希土類焼結磁石及びr−t−b系希土類焼結磁石用合金
JP4650218B2 (ja) 希土類系磁石粉末の製造方法
WO2009125671A1 (ja) R-t-b系合金及びr-t-b系合金の製造方法、r-t-b系希土類永久磁石用微粉、r-t-b系希土類永久磁石、r-t-b系希土類永久磁石の製造方法
JP7447573B2 (ja) R-t-b系永久磁石
JP5235264B2 (ja) 希土類焼結磁石及びその製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180024008.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11783608

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012515921

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13698748

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11783608

Country of ref document: EP

Kind code of ref document: A1