WO2022202197A1 - 希土類異方性磁石粉末およびその製造方法 - Google Patents
希土類異方性磁石粉末およびその製造方法 Download PDFInfo
- Publication number
- WO2022202197A1 WO2022202197A1 PCT/JP2022/009195 JP2022009195W WO2022202197A1 WO 2022202197 A1 WO2022202197 A1 WO 2022202197A1 JP 2022009195 W JP2022009195 W JP 2022009195W WO 2022202197 A1 WO2022202197 A1 WO 2022202197A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- rare earth
- magnet
- ratio
- magnet powder
- raw material
- Prior art date
Links
- 229910052761 rare earth metal Inorganic materials 0.000 title claims abstract description 77
- 239000000843 powder Substances 0.000 title claims abstract description 64
- 150000002910 rare earth metals Chemical class 0.000 title claims abstract description 35
- 238000004519 manufacturing process Methods 0.000 title claims description 12
- 239000002245 particle Substances 0.000 claims abstract description 35
- 229910052723 transition metal Inorganic materials 0.000 claims abstract description 17
- 229910052796 boron Inorganic materials 0.000 claims abstract description 5
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 claims abstract description 4
- 239000002994 raw material Substances 0.000 claims description 42
- 229910045601 alloy Inorganic materials 0.000 claims description 41
- 239000000956 alloy Substances 0.000 claims description 41
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 33
- 229910052739 hydrogen Inorganic materials 0.000 claims description 33
- 239000001257 hydrogen Substances 0.000 claims description 33
- 238000009792 diffusion process Methods 0.000 claims description 29
- 238000007323 disproportionation reaction Methods 0.000 claims description 18
- 239000013078 crystal Substances 0.000 claims description 17
- 238000005215 recombination Methods 0.000 claims description 12
- 230000006798 recombination Effects 0.000 claims description 10
- 238000010438 heat treatment Methods 0.000 claims description 6
- 238000002156 mixing Methods 0.000 claims description 5
- 239000006249 magnetic particle Substances 0.000 claims 1
- 229910052684 Cerium Inorganic materials 0.000 abstract description 7
- 229910052779 Neodymium Inorganic materials 0.000 abstract description 7
- 229910052777 Praseodymium Inorganic materials 0.000 abstract description 5
- 238000000034 method Methods 0.000 description 29
- 230000008569 process Effects 0.000 description 22
- 239000000203 mixture Substances 0.000 description 17
- 238000005984 hydrogenation reaction Methods 0.000 description 12
- 238000006243 chemical reaction Methods 0.000 description 11
- 150000001875 compounds Chemical class 0.000 description 8
- 229910052746 lanthanum Inorganic materials 0.000 description 7
- 239000006247 magnetic powder Substances 0.000 description 7
- 229920005989 resin Polymers 0.000 description 6
- 239000011347 resin Substances 0.000 description 6
- 239000011230 binding agent Substances 0.000 description 5
- 230000015572 biosynthetic process Effects 0.000 description 5
- 238000001816 cooling Methods 0.000 description 5
- 230000004907 flux Effects 0.000 description 5
- 239000011261 inert gas Substances 0.000 description 5
- 238000012545 processing Methods 0.000 description 5
- 230000009466 transformation Effects 0.000 description 5
- 229910052500 inorganic mineral Inorganic materials 0.000 description 4
- 239000011707 mineral Substances 0.000 description 4
- 229910052692 Dysprosium Inorganic materials 0.000 description 3
- 229910052771 Terbium Inorganic materials 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 3
- 229910052802 copper Inorganic materials 0.000 description 3
- 238000000354 decomposition reaction Methods 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 239000012535 impurity Substances 0.000 description 3
- 230000005415 magnetization Effects 0.000 description 3
- 238000010298 pulverizing process Methods 0.000 description 3
- 230000009467 reduction Effects 0.000 description 3
- 238000000748 compression moulding Methods 0.000 description 2
- 238000006356 dehydrogenation reaction Methods 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 238000001746 injection moulding Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 229910052758 niobium Inorganic materials 0.000 description 2
- 238000001721 transfer moulding Methods 0.000 description 2
- 229910000881 Cu alloy Inorganic materials 0.000 description 1
- 229910017767 Cu—Al Inorganic materials 0.000 description 1
- 229910052688 Gadolinium Inorganic materials 0.000 description 1
- 229910000583 Nd alloy Inorganic materials 0.000 description 1
- 229910052772 Samarium Inorganic materials 0.000 description 1
- 229910052768 actinide Inorganic materials 0.000 description 1
- 150000001255 actinides Chemical class 0.000 description 1
- 239000002775 capsule Substances 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- RKTYLMNFRDHKIL-UHFFFAOYSA-N copper;5,10,15,20-tetraphenylporphyrin-22,24-diide Chemical class [Cu+2].C1=CC(C(=C2C=CC([N-]2)=C(C=2C=CC=CC=2)C=2C=CC(N=2)=C(C=2C=CC=CC=2)C2=CC=C3[N-]2)C=2C=CC=CC=2)=NC1=C3C1=CC=CC=C1 RKTYLMNFRDHKIL-UHFFFAOYSA-N 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 150000002222 fluorine compounds Chemical class 0.000 description 1
- 229910052733 gallium Inorganic materials 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- 229910052735 hafnium Inorganic materials 0.000 description 1
- 238000000265 homogenisation Methods 0.000 description 1
- 150000004678 hydrides Chemical class 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000008595 infiltration Effects 0.000 description 1
- 238000001764 infiltration Methods 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 229910052747 lanthanoid Inorganic materials 0.000 description 1
- 150000002602 lanthanoids Chemical class 0.000 description 1
- 229910001004 magnetic alloy Inorganic materials 0.000 description 1
- 230000005389 magnetism Effects 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000003607 modifier Substances 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229910052755 nonmetal Inorganic materials 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000012188 paraffin wax Substances 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- -1 tetragonal compound Chemical class 0.000 description 1
- 229920005992 thermoplastic resin Polymers 0.000 description 1
- 229920001187 thermosetting polymer Polymers 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- 239000013585 weight reducing agent Substances 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/005—Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/032—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
- H01F1/04—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
- H01F1/047—Alloys characterised by their composition
- H01F1/053—Alloys characterised by their composition containing rare earth metals
- H01F1/055—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
- H01F1/057—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
- H01F1/0571—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F1/00—Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F1/00—Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
- B22F1/09—Mixtures of metallic powders
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F1/00—Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
- B22F1/14—Treatment of metallic powder
- B22F1/142—Thermal or thermo-mechanical treatment
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F1/00—Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
- B22F1/14—Treatment of metallic powder
- B22F1/145—Chemical treatment, e.g. passivation or decarburisation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F9/00—Making metallic powder or suspensions thereof
- B22F9/02—Making metallic powder or suspensions thereof using physical processes
- B22F9/023—Hydrogen absorption
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C33/00—Making ferrous alloys
- C22C33/02—Making ferrous alloys by powder metallurgy
- C22C33/0257—Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements
- C22C33/0278—Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements with at least one alloying element having a minimum content above 5%
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/002—Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/06—Ferrous alloys, e.g. steel alloys containing aluminium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/10—Ferrous alloys, e.g. steel alloys containing cobalt
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/12—Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/16—Ferrous alloys, e.g. steel alloys containing copper
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F41/00—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
- H01F41/02—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
- H01F41/0253—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
- H01F41/0293—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets diffusion of rare earth elements, e.g. Tb, Dy or Ho, into permanent magnets
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2201/00—Treatment under specific atmosphere
- B22F2201/10—Inert gases
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2201/00—Treatment under specific atmosphere
- B22F2201/20—Use of vacuum
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2301/00—Metallic composition of the powder or its coating
- B22F2301/35—Iron
- B22F2301/355—Rare Earth - Fe intermetallic alloys
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2998/00—Supplementary information concerning processes or compositions relating to powder metallurgy
- B22F2998/10—Processes characterised by the sequence of their steps
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2999/00—Aspects linked to processes or compositions used in powder metallurgy
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C2202/00—Physical properties
- C22C2202/02—Magnetic
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/032—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
- H01F1/04—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
- H01F1/047—Alloys characterised by their composition
- H01F1/053—Alloys characterised by their composition containing rare earth metals
- H01F1/055—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
- H01F1/057—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
- H01F1/0571—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
- H01F1/0573—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes obtained by reduction or by hydrogen decrepitation or embrittlement
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/032—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
- H01F1/04—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
- H01F1/047—Alloys characterised by their composition
- H01F1/053—Alloys characterised by their composition containing rare earth metals
- H01F1/055—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
- H01F1/057—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
- H01F1/0571—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
- H01F1/0575—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
- H01F1/0578—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together bonded together
Definitions
- the present invention relates to rare earth anisotropic magnet powder and the like.
- Bonded magnets in which rare earth magnet powder is hardened with binder resin, are widely used in various electromagnetic devices such as automobiles and electric appliances where energy saving and weight reduction are desired because they have excellent flexibility in shape and exhibit high magnetic properties. .
- rare earth elements which are the main raw materials for rare earth magnet powders.
- rare earth deposits are unevenly distributed, and the supply of rare earth elements involves geopolitical risks.
- research and development have mainly been made on reducing the amount of heavy rare earth elements (such as Dy) that are low in the earth's crust.
- Nd (or Pr), which is essential for the formation of the main phase of rare earth magnets, also has a supply risk, even if it is not as heavy as heavy rare earth elements, and it is required to reduce its usage. Proposals related to this are made, for example, in the following patent documents.
- Patent document 1 proposes a rare earth magnet powder obtained by subjecting a powder obtained by HDDR treatment to a raw material alloy in which part of Nd is replaced (replaced) with Ce, and further subjected to a diffusion and infiltration treatment with an NdCu alloy.
- a rare earth magnet powder obtained by subjecting a powder obtained by HDDR treatment to a raw material alloy in which part of Nd is replaced (replaced) with Ce, and further subjected to a diffusion and infiltration treatment with an NdCu alloy.
- the abundance ratio of each rare earth element contained in the rare earth mineral varies depending on the mineral species, most of them are generally Ce and La.
- the rare earth magnet powder of Patent Document 1 contains a rare element (Ga) that is generally effective in improving coercive force, it does not exhibit sufficient magnetic properties.
- the present inventors found that the rare earth anisotropic magnet powder in which a considerable amount of Nd or Pr is replaced with Ce or La has a Ga content that is contrary to conventional technical common sense. It was newly discovered that the smaller the amount, the higher the magnetic properties can be expressed. By further developing this result, the present invention described below has been completed.
- the present invention provides a rare earth anisotropic magnet powder comprising magnet particles containing a rare earth element, boron and a transition metal element, wherein the first rare earth element is Ce and/or La, and Nd and/or a second rare earth element that is Pr, and a first ratio (R1/Rt) that is the ratio of the number of atoms of the total amount (R1) of the first rare earth element to the total amount (Rt) of the rare earth elements 5 to 57%, and the La ratio (La/R1), which is the ratio of the number of La atoms to the total amount (R1) of the first rare earth element, is 0 to 35%, and the magnet particles are is 100 at %, the rare earth anisotropic magnet powder has a Ga content of 0.35 at % or less.
- the reason why the magnet powder of the present invention exhibits high magnetic properties is not clear.
- a composition system with a high content of R1 contrary to conventional technical common sense, it is certain that there is a negative correlation between the content of Ga and the magnetic properties (the magnetic properties tend to increase as the Ga content decreases). is.
- the present invention can also be grasped as a method for producing magnet powder.
- the present invention may be a manufacturing method of obtaining the above-described magnet powder by subjecting a magnet alloy (mother alloy) in which a considerable amount of R2 is replaced with R1 to hydrogen treatment.
- the present invention uses the magnet powder obtained by the hydrogen treatment as a magnet raw material, adds a diffusion raw material that contributes to the formation of the grain boundary phase, and performs a diffusion treatment of heating to produce the above-mentioned magnetic powder.
- a magnet raw material having a main phase composed of R 2 TM 14 B 1 type crystal (R: rare earth element, TM: transition metal element) and a diffusion raw material serving as a grain boundary phase raw material.
- a method for manufacturing magnet powder may also include a diffusion step of heating the mixed raw material.
- the raw material for the magnet is subjected to, for example, a disproportionation step in which the mother alloy absorbs hydrogen to cause a disproportionation reaction, and a recombination step in which the mother alloy after the disproportionation step is dehydrogenated and recombined. can get.
- a bonded magnet is made of, for example, magnet powder and a resin that binds the powder particles together.
- a bonded magnet can be obtained by, for example, an injection molding method, a compression molding method, a transfer molding method, or the like.
- the present invention is also understood as a compound used for manufacturing bonded magnets.
- the compound is prepared by previously attaching a resin, which is a binder, to the surfaces of the powder particles.
- Magnet powders used for bonded magnets and compounds may be composite powders in which multiple types of magnet powders having different alloy compositions, average particle diameters, etc. are mixed in addition to the magnet powders described above.
- the “rare earth element” (also referred to as “R”) as used herein includes at least a first rare earth element (R1: one or more of Ce and La) and a second rare earth element (R2: Nd and one or more of Pr).
- R may contain a rare earth element (R3) other than R1 and R2.
- R3 is one or more of Y, lanthanides or actinides, such as Sm, Gd, Tb and Dy.
- the sum of R3 is, for example, 3 at % or less, 2 at % or less, or 1 at % or less with respect to the entire magnet particles.
- R also contributes to the formation of the grain boundary phase in addition to the main phase.
- the transition metal elements include elements (Fe, Nb, etc.) that mainly contribute to the formation of the main phase (R 2 TM 14 B 1 type crystal), and elements that mainly contribute to the formation of the grain boundary phase. and contributing elements (such as Cu).
- a portion of boron (B) may be substituted with C, for example.
- the present invention can also be extended to isotropic magnet powder, which is a type of rare earth magnet powder.
- anisotropic magnet powder generally has higher magnetic properties than isotropic magnet powder.
- the anisotropic magnet powder is composed of magnet particles having a magnetic flux density (Br) in one direction (the direction of the axis of easy magnetization, the direction of the c-axis) that is higher than the magnetic flux density in the other direction.
- x to y as used herein includes the lower limit value x and the upper limit value y.
- a new range such as “a to b” can be established as a new lower or upper limit of any numerical value included in the various numerical values or numerical ranges described herein.
- x to y ⁇ m means x ⁇ m to y k ⁇ m, and the same applies to other units (nm, KPa, etc.).
- One or more components arbitrarily selected from this specification may be added to the components of the present invention described above.
- the contents described in this specification can be appropriately applied not only to the magnetic powder of the present invention, but also to the manufacturing method thereof, the bonded magnet using the magnetic powder, and the like.
- Even a method component can be a material component. Which embodiment is the best depends on the target, required performance, and the like.
- the magnet powder is made up of aggregated magnet particles.
- the magnet particles are composed of aggregates of fine R 2 TM 14 B 1 type crystals (main phase) which are tetragonal compounds. At each crystal grain boundary, a grain boundary phase exists so as to surround each crystal grain.
- the composition of the tetragonal compound itself constituting the main phase is stoichiometrically R: 11.8 at %, B: 5.9 at %, and the balance being TM. Since magnet grains contain a grain boundary phase, the total amount (Rt) of rare earth elements with respect to the whole (100 at%) is, for example, 12 to 18 at%, 12.5 to 16.5 at%, or further 13 to 15 at%. . Also, B is, for example, 5.5 to 8 at %, further 6 to 7 at %, relative to the entire magnet particles. The remainder other than R and B is transition metal elements (TM), typical metal elements (Al, etc.), typical nonmetal elements (C, O, etc.), impurities, and the like.
- TM transition metal elements
- the magnet particles further have a first ratio (R1/Rt), which is the ratio of the number of atoms of the total amount (R1) of the first rare earth element to Rt, for example, 5 to 57%, 10 to It is preferably 52%, 15-48%, 20-46%, 25-44%, or even 30-40%. If the first ratio is too large, the magnetic properties will deteriorate. Even if the first ratio is small, high magnetic properties can be obtained.
- R1/Rt is the ratio of the number of atoms of the total amount (R1) of the first rare earth element to Rt, for example, 5 to 57%, 10 to It is preferably 52%, 15-48%, 20-46%, 25-44%, or even 30-40%. If the first ratio is too large, the magnetic properties will deteriorate. Even if the first ratio is small, high magnetic properties can be obtained.
- Ce is, for example, 1 to 8 at%, 2 to 7 at%, or even 3 to 6 at% with respect to the entire magnet grain (100 at%)
- La is 0.05 to It may be 2 at %, 0.1 to 1.5 at %, or even 0.15 to 1 at %.
- Ga Content Magnet particles are considered to exhibit higher magnetic properties as they do not substantially contain Ga (Ga-less). Considering the case where Ga is included as an impurity, the Ga content relative to the entire magnet particles (100 at%) is 0.35 at% or less (0 to 0.35 at%), or 0.3 at% or less. , 0.2 at % or less, or 0.15 at % or less.
- Modifying element Magnet particles may contain modifying elements that are effective in improving properties.
- Modifier elements include Cu, Al, Si, Ti, V, Cr, Ni, Zn, Ga, Zr, Nb, Mo, Mn, Sn, Hf, Ta, W, Dy, Tb, Co, and the like.
- the magnet particles may contain 0.1 to 3 at%, 0.3 to 2.5 at%, or even 0.5 to 2.0 at% of Cu with respect to the whole.
- the magnet particles may contain 0.2 to 3 at %, 0.5 to 2.5 at %, further 0.8 to 2 at % of Al with respect to the whole.
- Such modifying elements can improve the coercive force of magnet particles.
- the fact that Cu and Al contribute to the improvement of the coercive force of magnet particles (the generation of grain boundary phases) is described in detail in, for example, International Publication (WO2011/70847). The entire text (entire content) of the publication is incorporated herein as appropriate.
- the magnet particles may contain 0.05 to 0.7 at %, 0.07 to 0.5 at %, and further 0.1 to 0.3 at % of Nb based on the whole. This modifying element can improve the residual magnetic flux density of the magnet particles.
- the size (average crystal grain size) of R 2 TM 14 B 1 type crystals constituting the main phase is 0.05 to 1 ⁇ m, further 0.1 to 0.8 ⁇ m.
- the average crystal grain size is determined, for example, according to the method for determining the average diameter d of crystal grains in JIS G 0551.
- Magnet particles have a grain boundary phase around (grain boundary) the crystal (main phase).
- the grain boundary phase is a non-magnetic phase composed of a rare earth element compound or the like that is excessive (rich) relative to the stoichiometric composition of the crystal. Its thickness is, for example, 1-30 nm or even 5-20 nm.
- a grain boundary phase consisting of a compound (or alloy) of Cu and/or Al and R can be formed.
- Magnet powder (magnet raw material) is obtained, for example, by subjecting a magnet alloy (mother alloy) to hydrogen treatment (HDDR).
- HDDR hydrogen treatment
- the HDDR referred to in this specification also includes improved d-HDDR and the like unless otherwise specified.
- HDD HDDR is roughly divided into a disproportionation process (HD: Hydrogenation-Disproportionation) and a recombination process (DR: Desorption-Recombination).
- the disproportionation step is a step of exposing the magnet alloy placed in the treatment furnace to a predetermined hydrogen atmosphere to cause a disproportionation reaction in the magnet alloy that has absorbed hydrogen.
- the disproportionation step is, for example, hydrogen partial pressure: 5 to 100 kPa, further 10 to 50 kPa, atmosphere temperature: 700 to 900 ° C., further 725 to 875 ° C., treatment time: 0.5 to 5 hours, further 1 to 3 hours. done in Although the form of the magnet alloy does not matter, it is usually in the form of granules or small blocks.
- the recombination process is a process of dehydrogenating the magnet alloy after the disproportionation process to cause a recombination reaction in the magnet alloy.
- hydrogen partial pressure 3 kPa or less, further 1.5 kPa or less
- atmosphere temperature 700 to 900° C., further 725 to 875° C.
- treatment time 0.5 to 5 hours, further 1 to 2 hours. done.
- d-HDDR HDDR may be performed as d-HDDR (dynamic-hydrogenation-disproportionation-desorption-recombination) in which all or part of the HD process or the DR process are the following processes.
- the low-temperature hydrogenation process is a process in which the magnet alloy in the treatment furnace is held in a hydrogen atmosphere at a temperature below the temperature at which disproportionation occurs (for example, room temperature to 300°C or room temperature to 100°C). be.
- the magnet alloy is brought into a state in which hydrogen is preliminarily occluded, and the disproportionation reaction in the subsequent high-temperature hydrogenation step (corresponding to the disproportionation step) proceeds slowly. This makes it easier to control the reaction rate of normal structural transformation.
- the hydrogen partial pressure at this time may be, for example, about 30 to 100 kPa.
- the hydrogen atmosphere referred to in this specification may be a mixed gas atmosphere of hydrogen and an inert gas (the same shall apply hereinafter).
- the high temperature hydrogenation step is a step of holding the magnet alloy (or the magnet alloy after the low temperature hydrogenation step) in a hydrogen atmosphere of 750 to 860°C with a hydrogen partial pressure of 10 to 60 kPa. Through this step, the magnet alloy undergoes a disproportionation reaction (forward transformation reaction) and becomes a three-phase decomposition structure ( ⁇ Fe phase, RH 2 phase, Fe 2 B phase).
- the hydrogen partial pressure or the ambient temperature may not be constant throughout this process.
- at least one of hydrogen partial pressure and temperature may be increased to adjust the reaction rate and promote three-phase decomposition (structural stabilization step).
- the controlled exhaust process is a process of holding the magnet alloy (or the magnet alloy after the high-temperature hydrogenation process) in a hydrogen atmosphere of 750 to 850° C. with a hydrogen partial pressure of 0.5 to 6 kPa. Due to this step, the magnet alloy undergoes a recombination reaction (reverse transformation reaction) associated with dehydrogenation. As a result, the three-phase decomposition structure becomes a hydride of fine R 2 TM 14 B 1 -type crystals (RFeBH x ) in which hydrogen is removed from the RH 2 phase and the crystal orientation of the Fe 2 B phase is transferred. The recombination reaction in this step proceeds slowly because it is carried out under a relatively high hydrogen partial pressure. If the high-temperature hydrogenation process and the controlled exhaust process are performed at approximately the same temperature, the high-temperature hydrogenation process can be shifted to the controlled exhaust process only by changing the hydrogen partial pressure.
- the forced evacuation step is preferably performed in a vacuum atmosphere of 1 Pa or less at 750 to 850° C., for example. This step removes hydrogen remaining in the magnet alloy and completes the dehydrogenation. A rare earth anisotropic magnet (or magnet raw material) is thus obtained.
- the forced exhaust process may be performed separately from the controlled exhaust process.
- a forced evacuation step may be batched to the cooled magnet alloy after the controlled evacuation step. Rapid cooling is preferable for cooling after the forced evacuation step in order to suppress the growth of crystal grains.
- Diffusion Treatment forms a non-magnetic phase on the surface or grain boundary of the R 2 TM 14 B 1 type crystal, thereby improving the coercive force of the magnet particles.
- a mixed raw material (powder) obtained by mixing a diffusion raw material (powder) with a magnetic raw material (powder) obtained after hydrogen treatment of a magnet alloy (mother alloy) is separately treated in a vacuum atmosphere or an inert gas atmosphere. It is done by heating inside (diffusion process).
- the magnet raw material and the diffusion raw material may be mixed, and the diffusion treatment may also be performed in the subsequent process. good.
- Diffusion raw materials are, for example, light rare earth element alloys (eg, Cu alloys, Cu—Al alloys) or compounds, heavy rare earth elements (Dy, Tb, etc.), their alloys or compounds (eg, fluorides), and the like.
- Light rare earth element-based diffusion raw materials are superior in supply stability to heavy rare earth element-based diffusion raw materials.
- Magnetic powders are used in a variety of applications.
- a typical example is a bond magnet.
- a bonded magnet is mainly composed of rare earth magnet powder and a binder (for example, binder resin).
- the binder resin may be a thermosetting resin or a thermoplastic resin. Bond magnets are formed by compression molding, injection molding, transfer molding, or the like, for example.
- Rare-earth anisotropic magnet powder can exhibit its original high magnetic properties by being compacted in an oriented magnetic field.
- the magnet raw materials were obtained by subjecting magnet alloys (mother alloys) having the compositions shown in Table 1A to hydrogen treatment (d-HDDR), which will be described later.
- the magnet alloy was obtained by heating an ingot obtained by arc melting in vacuum at 1100° C. for 20 hours in vacuum (homogenization heat treatment).
- This magnet alloy was subjected to hydrogen pulverization (hydrogen partial pressure: 100 kPa x room temperature x 3 hours). Further, the pulverized powder was sieved (classified) in an inert gas atmosphere.
- the powdered magnetic alloy (-212 ⁇ m) thus obtained was supplied to d-HDDR.
- the diffusion raw material an Nd alloy (compound) having each component composition shown in Table 1A was used.
- the diffusion raw material was obtained by hydrogen pulverizing an ingot obtained by the book molding method, further wet pulverizing it with a ball mill, and drying it in an inert gas atmosphere.
- a powdery diffusion raw material having an average particle size of about 6 ⁇ m (D50) was obtained.
- d-HDDR Hydrogen treatment
- d-HDDR processing was performed by controlling the hydrogen partial pressure and temperature in the processing furnace. Specifically, a disproportionation reaction (forward transformation reaction) was caused in the magnet alloy by a high-temperature hydrogenation step (800 to 840° C. ⁇ 20 kPa ⁇ 4 hours) (disproportionation step).
- a controlled exhaust step (840° C. ⁇ 1 kPa ⁇ 1.5 hours) for continuously exhausting hydrogen from the processing furnace, followed by a forced exhaust step (840° C. ⁇ 10 ⁇ 2 Pa ⁇ 0.5 hours). and In this way, a recombination reaction (reverse transformation reaction) was caused in the magnet alloy (recombination process).
- the workpiece in the processing furnace was cooled by cooling the furnace in a vacuum state (cooling step). This treated material was lightly pulverized in Ar gas and sieved (classified) to obtain a powdery magnet raw material (-212 ⁇ m).
- each magnet powder (sample) having the overall composition shown in Table 1B was obtained.
- the overall composition shown in Table 1B was calculated from each composition of the magnet raw material and the diffusion raw material and their mixing ratio.
- Total amount: Rt, first ratio: (Ce+La)/Rt, and La ratio: La/(Ce+La) are also shown in Table 1B as characteristic amounts of rare earth elements calculated based on the overall composition.
- the second ratio: (Nd+Pr)/Rt shown in Table 1A is a value calculated based on the component composition of the magnet raw material (magnet alloy) before diffusion treatment.
- the second ratio of the magnet powder after the diffusion treatment was calculated as 100-first ratio (%).
- Table 1B also shows the magnetic properties (residual magnetic flux density: Br, coercive force: iHc) of each sample measured by a vibrating sample magnetometer (VSM). The measurement was carried out by filling a capsule with each magnet powder, magnetically oriented (1193 kA/m) in molten paraffin (about 80° C.), and then magnetizing (3580 kA/m). The density of each magnet powder was assumed to be 7.5 g/cm 3 .
- Table 1B also shows the anisotropy rate of each sample calculated based on the composition of rare earth elements and Br shown in Table 1B.
- the anisotropy ratio was defined as the ratio (Br/Bs) of Br to saturation magnetization (Bs) determined from the overall composition of each magnet powder. All the samples had an anisotropy rate of 0.7 or more, and were confirmed to be anisotropic magnet powders.
- rare earth magnet powder is inherently anisotropic, and it is rare for it to be completely isotropic (for example, an anisotropic ratio: 0.5 or less). It can be said that the magnetic powder having the above-mentioned anisotropy rate of 0.7 or more has sufficient anisotropy.
- a magnet powder that does not substantially contain Ga or has a Ga content of 0.35 at% or less, further 0.3 at% or less, can reduce Nd (Pr) and have high magnetism. It is clear from FIG. 1 and Table 1 that the characteristics can be compatible at a high level.
- the magnetic powder of the present invention achieves high magnetic properties while reducing the amount of Nd and Pr used.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Metallurgy (AREA)
- Mechanical Engineering (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Hard Magnetic Materials (AREA)
- Powder Metallurgy (AREA)
- Manufacture Of Metal Powder And Suspensions Thereof (AREA)
- Manufacturing Cores, Coils, And Magnets (AREA)
Abstract
Description
(1)本発明は、希土類元素とホウ素と遷移金属元素を含む磁石粒子からなる希土類異方性磁石粉末であって、該希土類元素は、Ceおよび/またはLaである第1希土類元素と、Ndおよび/またはPrである第2希土類元素とを含み、該希土類元素の全量(Rt)に対する該第1希土類元素の合計量(R1)の原子数の割合である第1比率(R1/Rt)が5~57%であると共に、該第1希土類元素の合計量(R1)に対するLaの原子数の割合であるLa比率(La/R1)が0~35%であり、該磁石粒子は、その全体を100at%としてGaの含有量が0.35at%以下である希土類異方性磁石粉末である。
本発明は磁石粉末の製造方法としても把握される。例えば、本発明は、R2の相当量をR1で代替した磁石合金(母合金)に水素処理を施して、上述した磁石粉末を得る製造方法でもよい。
本発明は、上述した磁石粉末を用いたボンド磁石またはその製造方法としても把握される。ボンド磁石は、例えば、磁石粉末と、粉末粒子を固結する樹脂とからなる。ボンド磁石は、例えば、射出成形方法、圧縮成形方法、トラスファー成形方法等により得られる。
(1)本明細書でいう「希土類元素」(「R」ともいう。)には、少なくとも、第1希土類元素(R1:CeとLaの一種以上)と、第2希土類元素(R2: NdとPrの一種以上)とが含まれる。R1およびR2以外の希土類元素(R3)がRに含まれてもよい。R3は、Y、ランタノイドまたはアクチノイドに含まれる一種以上であるが、例えば、Sm、Gd、Tb、Dy等である。R3の合計は、磁石粒子全体に対して、例えば、3at%以下、2at%以下さらには1at%以下である。Rは、主相の他、粒界相の生成にも寄与する。
磁石粉末は磁石粒子が集合してなる。磁石粒子は、正方晶化合物である微細なR2TM14B1型結晶(主相)が集合してなる。各結晶粒界には、各結晶粒の周囲を包囲するように粒界相が存在している。
主相を構成する正方晶化合物自体の組成は、化学量論的にいうと、R:11.8at%、B:5.9at%、残部がTMである。磁石粒子は、粒界相を含むため、その全体(100at%)に対する希土類元素の全量(Rt)は、例えば、12~18at%、12.5~16.5at%さらには13~15at%である。また磁石粒子全体に対してBは、例えば、5.5~8at%さらには6~7at%である。RおよびB以外の残部は、遷移金属元素(TM)の他、典型金属元素(Al等)、典型非金属元素(C、O等)、不純物等である。
磁石粒子は、さらに、Rtに対する第1希土類元素の合計量(R1)の原子数の割合である第1比率(R1/Rt)が、例えば、5~57%、10~52%、15~48%、20~46%、25~44%さらには30~40%であるとよい。第1比率が過大になると磁気特性が低下する。第1比率は小さくても高磁気特性が得られるが、第1比率が過小であると、R2の使用量削減(省R2化)が不十分となる。
磁石粒子は、さらに、R1(=Ce+La)に対するLaの原子数の割合であるLa比率(La/R1)が、例えば、0~35%、0.1~30%、0.3~25%、1~20%、3~10%さらには4~6%であるとよい。La比率が過大になると磁気特性が低下する。La比率は小さくても(さらには零でも)高磁気特性が得られる。但し、Ceと共に希土類鉱物中に多く含まれるLaを有効活用するために、La比率は0%超が好ましい。
磁石粒子は、Gaを実質的に含まない(Gaレス)ほど、高磁気特性を発現すると考えられる。Gaが不純物として含まれる場合も考慮して、磁石粒子全体(100at%)に対するGa含有量は、敢えていえば、例えば、0.35at%以下(0~0.35at%)、0.3at%以下、0.2at%以下さらには0.15at%以下でもよい。
磁石粒子(磁石原料、母合金等も同様)は、特性改善に有効な改質元素を含み得る。改質元素として、Cu、Al、Si、Ti、V、Cr、Ni、Zn、Ga、Zr、Nb、Mo、Mn、Sn、Hf、Ta、W、Dy、Tb、Co等がある。
磁石粒子は、例えば、主相を構成するR2TM14B1型結晶のサイズ(平均結晶粒径)が0.05~1μmさらには0.1~0.8μmである。平均結晶粒径は、例えば、JIS G 0551中の結晶粒の平均直径dの求め方に準拠して求まる。
磁石粉末(磁石原料)は、例えば、磁石合金(母合金)に水素処理(HDDR)を施して得られる。本明細書でいうHDDRには、特に断らない限り、改良型であるd―HDDR等も含まれる。
HDDRは、大別すると、不均化工程(HD:Hydrogenation-Disproportionation)と再結合工程(DR:Desorption-Recombination)からなる。不均化工程は、処理炉に入れた磁石合金を所定の水素雰囲気に曝し、吸水素した磁石合金に不均化反応を生じさせる工程である。不均化工程は、例えば、水素分圧:5~100kPaさらには10~50kPa、雰囲気温度:700~900℃さらには725~875℃、処理時間:0.5~5時間さらには1~3時間でなされる。なお、磁石合金の形態は問わないが、通常、粒状または小さい塊状である。
HDDRは、HD工程またはDR工程の全部または一部を、次のような各工程としたd-HDDR(dynamic-Hydrogenation-Disproportionation-Desorption-Recombination)としてなされてもよい。
低温水素化工程は、不均化反応を生じる温度以下(例えば、室温~300℃さらには室温~100℃)の水素雰囲気に処理炉内の磁石合金を保持する工程である。本工程により、磁石合金は水素を予め吸蔵した状態となり、後続の高温水素化工程(不均化工程に相当)による不均化反応が緩やかに進行する。これにより、順組織変態の反応速度制御が容易となる。このときの水素分圧は、例えば30~100kPa程度とするとよい。なお、本明細書でいう水素雰囲気は、水素と不活性ガスとの混合ガス雰囲気でも良い(以下同様)。
高温水素化工程は、水素分圧が10~60kPaで750~860℃の水素雰囲気に、磁石合金(または低温水素化工程後の磁石合金)を保持する工程である。本工程により磁石合金は不均化反応(順変態反応)を生じて、三相分解組織(αFe相、RH2相、Fe2B相)となる。
制御排気工程は、水素分圧が0.5~6kPaで750~850℃の水素雰囲気中に磁石合金(または高温水素化工程後の磁石合金)を保持する工程である。本工程により磁石合金は、脱水素に伴う再結合反応(逆変態反応)を生じる。これにより三相分解組織は、RH2相から水素が除去されると共にFe2B相の結晶方位が転写した微細なR2TM14B1型結晶の水素化物(RFeBHX)となる。本工程中の再結合反応は、比較的高い水素分圧下でなされるため緩やかに進行する。なお、高温水素化工程と制御排気工程を略同温度で行えば、水素分圧の変更のみで高温水素化工程から制御排気工程に移行できる。
強制排気工程は、例えば、750~850℃で1Pa以下の真空雰囲気で行われるとよい。本工程により、磁石合金中に残留した水素が除去され、脱水素が完了する。こうして希土類異方性磁石(または磁石原料)が得られる。
拡散処理により、R2TM14B1型結晶の表面または結晶粒界に非磁性相が形成され、磁石粒子の保磁力の向上が図られる。
磁石粉末は種々の用途に利用される。その代表例としてボンド磁石がある。ボンド磁石は、主に希土類磁石粉末と結着材(例えばバインダ樹脂)からなる。バインダ樹脂は、熱硬化性樹脂でも熱可塑性樹脂でもよい。ボンド磁石は、例えば、圧縮成形、射出成形、トラスファー成形等により形成される。希土類異方性磁石粉末は、配向磁場中で成形されることにより、本来の高磁気特性を発現し得る。
表1Aおよび表1B(両者を併せて「表1図」という。)に示す試料1~13および試料C1~C3を、水素処理(d-HDDR)および拡散処理を行って製作した。詳細は次の通りである。
表1Aに示す磁石原料(磁石粉末)と拡散原料を用意した。
粉末状の磁石合金(12.5g)を入れた処理炉内を真空排気した後、その処理炉内の水素分圧と温度を制御してd-HDDR処理を行った。具体的には、高温水素化工程(800~840℃×20kPa×4時間)により、磁石合金に不均化反応(順変態反応)を生じさせた(不均化工程)。
磁石原料と拡散原料を不活性ガス雰囲気中で混合して、粉末状の混合原料を得た(混合工程)。表1Aに示した混合割合は、混合原料全体(100質量%)に対する各拡散原料の質量割合である。混合原料を10-1Paの真空雰囲気中で800℃×1時間加熱した後(拡散工程)、真空状態を保持したまま炉冷して室温付近まで冷却した(冷却工程)。
試料振動型磁力計(VSM:Vibrating Sample Magnetometer )により測定した各試料の磁気特性(残留磁束密度:Br、保磁力:iHc)を表1Bに併せて示した。測定は、各磁石粉末をカプセルに詰め、溶融パラフィン(約80℃)中で磁場配向(1193kA/m)させた後、着磁(3580kA/m)して行った。各磁石粉末の密度は7.5g/cm3と仮定した。
Bs=0.98{1.6(Nd+Pr)+1.38(La)+1.17(Ce)}/Rt
(1)Gaの影響
略同組成である試料7、試料13、試料C1に基づいて、磁気特性とGa含有量の関係を図1に示した。
表1Bに示した試料1~13と試料C3を比較すると明らかなように、Rt(希土類元素の全量)に対するR1(Ce+La)の含有割合(第1比率)が過大(例えば58%以上さらには59%以上)になると、Gaを含まなくても磁気特性が大きく低下することが明らかとなった。
表1Bに示した試料1~13と試料C2を比較すると明らかなように、R1(Ce+Laの合計量)に対するLaの含有割合(La比率)も過大(例えば37%以上さらには39%以上)になると、同様に、Gaを含まなくても磁気特性が大きく低下することも明らかとなった。
Claims (8)
- 希土類元素とホウ素と遷移金属元素を含む磁石粒子からなる希土類異方性磁石粉末であって、
該希土類元素は、Ceおよび/またはLaである第1希土類元素と、Ndおよび/またはPrである第2希土類元素とを含み、
該希土類元素の全量(Rt)に対する該第1希土類元素の合計量(R1)の原子数の割合である第1比率(R1/Rt)が5~57%であると共に、
該第1希土類元素の合計量(R1)に対するLaの原子数の割合であるLa比率(La/R1)が0~35%であり、
該磁石粒子は、その全体を100at%としてGaの含有量が0.35at%以下である希土類異方性磁石粉末。 - 前記磁石粒子は、その全体を100at%としてCuを0.1~3.0at%含む請求項1に記載の希土類異方性磁石粉末。
- 前記磁石粒子は、その全体を100at%としてAlを0.2~3at%含む請求項1または2に記載の希土類異方性磁石粉末。
- 前記磁石粒子は、その全体を100at%としてNbを0.05~0.7at%含む請求項1~3のいずれかに記載の希土類異方性磁石粉末。
- 前記磁石粒子は、その全体を100at%として、前記希土類元素の全量(Rt)が12~18at%
である請求項1~4のいずれかに記載の希土類異方性磁石粉末。 - 前記磁石粒子は、R2TM14B1型結晶(R:希土類元素、TM:遷移金属元素)からなる主相と、該主相の周囲にある粒界相とからなる請求項1~5のいずれかに記載の希土類異方性磁石粉末。
- R2TM14B1型結晶からなる主相を有する磁石原料と粒界相の原料となる拡散原料とを混合した混合原料を加熱する拡散工程とを備え、
請求項1~6のいずれかに記載の希土類異方性磁石粉末が得られる製造方法。 - 前記磁石原料は、母合金に吸水素させて不均化反応を生じさせる不均化工程と、
該不均化工程後の母合金から脱水素して再結合させる再結合工程と、
を経て得られる請求項7に記載の希土類異方性磁石粉末の製造方法。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202280020851.5A CN116964695A (zh) | 2021-03-26 | 2022-03-03 | 稀土类各向异性磁铁粉末及其制造方法 |
EP22774993.4A EP4316695A4 (en) | 2021-03-26 | 2022-03-03 | ANISOTROPIC MAGNETIC POWDER BASED ON RARE EARTHS AND PROCESS FOR ITS PRODUCTION |
US18/279,529 US20240153680A1 (en) | 2021-03-26 | 2022-03-03 | Rare-earth anisotropic magnet powder, and method for producing same |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021053077A JP7401479B2 (ja) | 2021-03-26 | 2021-03-26 | 希土類異方性磁石粉末およびその製造方法 |
JP2021-053077 | 2021-03-26 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022202197A1 true WO2022202197A1 (ja) | 2022-09-29 |
Family
ID=83396900
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2022/009195 WO2022202197A1 (ja) | 2021-03-26 | 2022-03-03 | 希土類異方性磁石粉末およびその製造方法 |
Country Status (5)
Country | Link |
---|---|
US (1) | US20240153680A1 (ja) |
EP (1) | EP4316695A4 (ja) |
JP (1) | JP7401479B2 (ja) |
CN (1) | CN116964695A (ja) |
WO (1) | WO2022202197A1 (ja) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011070847A1 (ja) | 2009-12-09 | 2011-06-16 | 愛知製鋼株式会社 | 希土類異方性磁石粉末およびその製造方法とボンド磁石 |
JP2016115774A (ja) | 2014-12-12 | 2016-06-23 | トヨタ自動車株式会社 | 希土類磁石粉末及びその製造方法 |
JP2018186134A (ja) * | 2017-04-24 | 2018-11-22 | ミネベアミツミ株式会社 | Re−t−b系磁石粉末、等方性バルク磁石および等方性バルク磁石の製造方法 |
JP2019179796A (ja) * | 2018-03-30 | 2019-10-17 | トヨタ自動車株式会社 | 希土類磁石及びその製造方法 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104715876B (zh) * | 2013-12-11 | 2019-05-10 | 北京中科三环高技术股份有限公司 | 一种混合稀土烧结永磁体及其制备方法 |
CN105845303A (zh) * | 2016-01-08 | 2016-08-10 | 宁波宏垒磁业有限公司 | 一种高性能烧结钕铁硼磁体的制备方法 |
JP7108545B2 (ja) * | 2016-01-28 | 2022-07-28 | ノヴェオン マグネティックス,インク. | 焼結磁性合金及びそれから誘導される組成物の粒界工学 |
CN107275025B (zh) * | 2016-04-08 | 2019-04-02 | 沈阳中北通磁科技股份有限公司 | 一种含铈钕铁硼磁钢及制造方法 |
JP7252105B2 (ja) * | 2019-09-10 | 2023-04-04 | トヨタ自動車株式会社 | 希土類磁石及びその製造方法 |
-
2021
- 2021-03-26 JP JP2021053077A patent/JP7401479B2/ja active Active
-
2022
- 2022-03-03 US US18/279,529 patent/US20240153680A1/en active Pending
- 2022-03-03 EP EP22774993.4A patent/EP4316695A4/en active Pending
- 2022-03-03 WO PCT/JP2022/009195 patent/WO2022202197A1/ja active Application Filing
- 2022-03-03 CN CN202280020851.5A patent/CN116964695A/zh active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011070847A1 (ja) | 2009-12-09 | 2011-06-16 | 愛知製鋼株式会社 | 希土類異方性磁石粉末およびその製造方法とボンド磁石 |
JP2016115774A (ja) | 2014-12-12 | 2016-06-23 | トヨタ自動車株式会社 | 希土類磁石粉末及びその製造方法 |
JP2018186134A (ja) * | 2017-04-24 | 2018-11-22 | ミネベアミツミ株式会社 | Re−t−b系磁石粉末、等方性バルク磁石および等方性バルク磁石の製造方法 |
JP2019179796A (ja) * | 2018-03-30 | 2019-10-17 | トヨタ自動車株式会社 | 希土類磁石及びその製造方法 |
Non-Patent Citations (1)
Title |
---|
See also references of EP4316695A4 |
Also Published As
Publication number | Publication date |
---|---|
EP4316695A1 (en) | 2024-02-07 |
JP7401479B2 (ja) | 2023-12-19 |
EP4316695A4 (en) | 2024-09-25 |
CN116964695A (zh) | 2023-10-27 |
JP2022150462A (ja) | 2022-10-07 |
US20240153680A1 (en) | 2024-05-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Hirosawa et al. | High‐coercivity iron‐rich rare‐earth permanent magnet material based on (Fe, Co) 3B‐Nd‐M (M= Al, Si, Cu, Ga, Ag, Au) | |
Zhu et al. | Influence of Ce content on the rectangularity of demagnetization curves and magnetic properties of Re-Fe-B magnets sintered by double main phase alloy method | |
JP5527434B2 (ja) | 磁性体 | |
JPH0510807B2 (ja) | ||
JP6142792B2 (ja) | 希土類磁石 | |
JP2015119132A (ja) | 希土類磁石 | |
WO2003085683A1 (fr) | Aimant agglomere anisotrope de terre rare composite, compose pour un aimant agglomere anisotrope de terre rare composite, et procede de preparation de ce dernier | |
JP2008060241A (ja) | 高抵抗希土類系永久磁石 | |
JP2000096102A (ja) | 耐熱希土類合金異方性磁石粉末 | |
KR100204256B1 (ko) | 자기적 이방성 및 내식성이 우수한 희토류-에프이-비 계영구자석분말 및 접합자석 | |
JP7244476B2 (ja) | 希土類異方性ボンド磁性粉の作製方法 | |
JP2015119131A (ja) | 希土類磁石 | |
JP2015128118A (ja) | 希土類磁石の製造方法 | |
JP6919788B2 (ja) | 希土類焼結磁石 | |
WO2022202197A1 (ja) | 希土類異方性磁石粉末およびその製造方法 | |
Yin et al. | Preparation and magnetic properties of anisotropic Nd2Fe14B/Sm2Co17 hybrid-bonded magnets | |
JPS6077960A (ja) | 永久磁石材料の製造方法 | |
JPH0678582B2 (ja) | 永久磁石材料 | |
KR102712342B1 (ko) | Mn-Bi-Sb계 자성체 및 이의 제조방법 | |
WO2017191790A1 (ja) | 希土類永久磁石及びその製造方法 | |
JP3645312B2 (ja) | 磁性材料と製造法 | |
JPH03170643A (ja) | 永久磁石用合金 | |
JPH045739B2 (ja) | ||
JPS59163803A (ja) | 永久磁石用合金 | |
JPS6247455A (ja) | 高性能永久磁石材料 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22774993 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 18279529 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: 202280020851.5 Country of ref document: CN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2022774993 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2022774993 Country of ref document: EP Effective date: 20231026 |