CN110890190A - 一种异方性粘结磁粉及其制备方法 - Google Patents

一种异方性粘结磁粉及其制备方法 Download PDF

Info

Publication number
CN110890190A
CN110890190A CN201911076249.XA CN201911076249A CN110890190A CN 110890190 A CN110890190 A CN 110890190A CN 201911076249 A CN201911076249 A CN 201911076249A CN 110890190 A CN110890190 A CN 110890190A
Authority
CN
China
Prior art keywords
temperature
hydride
hydrogen
magnetic powder
rare earth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201911076249.XA
Other languages
English (en)
Inventor
罗阳
王仲凯
杨远飞
王子龙
于敦波
廖一帆
谢佳君
胡州
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Grirem Advanced Materials Co Ltd
Guoke Re Advanced Materials Co Ltd
Original Assignee
Grirem Advanced Materials Co Ltd
Guoke Re Advanced Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Grirem Advanced Materials Co Ltd, Guoke Re Advanced Materials Co Ltd filed Critical Grirem Advanced Materials Co Ltd
Priority to CN201911076249.XA priority Critical patent/CN110890190A/zh
Publication of CN110890190A publication Critical patent/CN110890190A/zh
Priority to KR1020200141964A priority patent/KR102391355B1/ko
Priority to JP2020182569A priority patent/JP7026192B6/ja
Priority to DE102020128949.9A priority patent/DE102020128949B4/de
Priority to ZA2020/06868A priority patent/ZA202006868B/en
Priority to US17/090,699 priority patent/US20210130939A1/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/14Treatment of metallic powder
    • B22F1/142Thermal or thermo-mechanical treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/023Hydrogen absorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • C22C33/0257Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements
    • C22C33/0264Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements the maximum content of each alloying element not exceeding 5%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0573Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes obtained by reduction or by hydrogen decrepitation or embrittlement
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0578Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together bonded together
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/06Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • B22F2009/041Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling by mechanical alloying, e.g. blending, milling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2201/00Treatment under specific atmosphere
    • B22F2201/01Reducing atmosphere
    • B22F2201/013Hydrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2201/00Treatment under specific atmosphere
    • B22F2201/20Use of vacuum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/35Iron
    • B22F2301/355Rare Earth - Fe intermetallic alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C2202/00Physical properties
    • C22C2202/02Magnetic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/0293Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets diffusion of rare earth elements, e.g. Tb, Dy or Ho, into permanent magnets

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

一种异方性粘结磁粉及其制备方法,该异方性粘结磁粉的通式为R1R2TB,其中R1为含Nd或PrNd的稀土元素,R2为La、Ce的一种或两种,T为过渡族元素,B为硼;该制备方法包括母合金熔炼制备铸锭、制备稀土氢化物R1TBHX、制备氢化物扩散源R1R2THx、混合、热处理、高真空脱氢的步骤,最终得到该异方性粘结磁粉。本发明采用La、Ce氢化物作为扩散源,能够节约成本,可在较低的脱氢温度下除去扩散源中的氢,避免高温下的晶粒长大,保证产品质量。

Description

一种异方性粘结磁粉及其制备方法
技术领域
本发明涉及磁性材料技术领域,具体而言,涉及一种异方性粘结磁粉及其制备方法。
背景技术
由异方性粘结磁粉RTB加工而成的磁体作为目前综合性能最佳的永磁性材料在工业上取得广泛应用,其中R表示稀土元素,T表示过渡族元素,B 表示硼。但是,RTB类稀土磁体对于温度变化敏感,它的居里温度低,热稳定性差,一旦达到高温,矫顽力就会迅速降低。异方性磁体矫顽力低,不能满足汽车电机等对温度热稳定性要求高的应用领域,因此需要预先制造高矫顽力的磁粉,进一步加工得到高矫顽力的磁体,使得磁体在室温下的高矫顽力足以抵抗高温工作环境下热退磁问题。
中国专利CN1345073A公开了一种各向异性磁粉的制造方法,扩散源使用含Tb或Dy的氢化物且RFeBHX中的稀土元素为Nd或Pr时,扩散源本身含氢,且重稀土元素Tb或Dy等需要更高的脱氢温度才能除去扩散源中的氢,虽然扩散热处理后进行了高温脱氢工序,但该步骤去除的主要是RFeBHX中的氢而非扩散源中的氢,此时若去想除扩散源中的氢则需要更高的扩散热处理温度,此时高温使得晶粒长大,最终影响产品质量和性能。另外,Tb或Dy的原子粒径比较小,扩散时较为容易的进入内部,即扩散为内部和晶界同时发生的过程,但是主相内部引入过多的扩散源元素,使得主相结构被破坏,最终影响产品质量和性能。
中国专利CN107424694A公开了一种稀土类各向异性磁铁粉末及其制造方法和粘结磁铁,当扩散源中的稀土元素R2与含Nd的原始粉中的R’为Nd 或Pr时,原始粉和扩散源使用氢化物为例,加入Cu的扩散源的熔点更高,其他成分相同,加入Cu的扩散源熔点接近680℃,在进行扩散热处理步骤时,晶界扩散为液态的扩散源晶界相包围固态的原始粉主相,扩散源熔点高,因此提高了晶界扩散工作温度,使得高温下晶粒长大,影响产品质量和性能。
发明内容
为了解决上述问题,本发明提供了一种异方性粘结磁粉及其制备方法,该方法降低了晶界扩散工作温度、减小了晶粒长大程度,在提高异方性磁体的矫顽力的同时减小磁能积和剩余磁通量损失。
为了实现以上目的,本发明拟采用以下方案:
本发明的第一方面提供了一种异方性粘结磁粉,所述异方性粘结磁粉的通式为R1R2TB,其中R1为含Nd或PrNd的稀土元素,R2为La、Ce的一种或两种,T为过渡族元素,B为硼;
所述R1R2TB异方性粘结磁粉各组分质量分数组成如下,其中Nd为28%~ 34.5%,Pr含量≤5%,B含量为0.8%~1.2%,La和Ce的质量总和占总体质量的比例≤0.1%,T为余量:
使用R1R2T的氢化物R1R2THx作为稀土元素的扩散源,对NdTB或PrNdTB 的氢化物R1TBHx在400~700℃工作温度做晶界扩散,经HDDR的高温脱氢步骤得到所述异方性粘结磁粉。
进一步的,所述R2元素在晶界相中的含量与主相中的含量之比大于3。
进一步的,所述异方性粘结磁粉中包括以2:14:1为晶界结构的R1TB 主相以及包围主相的晶界相。
本发明的第二方面提供了一种异方性粘结磁粉的制备方法,包括如下步骤,
母合金熔炼分别形成固体铸锭R1TB和R1R2T;
将所述固体铸锭R1TB放入HDDR炉中,进行吸氢、高温氢化、排氢的步骤,制备得到稀土氢化物R1TBHX
对所述固体铸锭R1R2T进行氢处理,氢处理温度小于500℃,制备得到氢化物扩散源R1R2THx
混合所述稀土氢化物R1TBHX和扩散源R1R2THx
对混合后的稀土氢化物R1TBHX和扩散源R1R2THx进行热处理;
高真空脱氢得到所述异方性粘结磁粉。
进一步的,所述母合金熔炼分别形成固体铸锭R1TB和R1R2T的步骤包括:
将一定配比的原料合金,用真空感应炉在氩气的气氛中熔炼,高温融化并浇铸原料于厚度为30~35mm的模具中,金属液体在模具中经过快速水冷后成型得到铸锭;
将所述铸锭放入真空热处理炉,高真空环境中,在1000℃~1100℃的温度下保温20小时;
充入氩气至-0.01MPa,恒压状态下进行快速风冷,降至室温出炉。
进一步的,将所述固体铸锭R1TB放入HDDR炉中,进行吸氢、高温氢化、排氢的步骤,制备得到稀土氢化物R1TBHX的步骤包括:
将固体铸锭R1TB放入HDDR炉中,真空状态下升温至300℃,然后在该温度下充入氢气保持气体压力为95~100kPa,300℃保温1~2小时,完成吸氢处理;
抽真空至30~35kPa,升温至790℃,在该温度和压力下维持180~200 分钟,完成高温氢化处理;
充入氢气至50~70kPa同时升温至820℃,保温30分钟;
抽真空至0.1~4kPa,保温20分钟,完成排氢步骤。
进一步的,对所述固体铸锭R1R2T进行氢处理,氢处理温度小于500℃,制备得到氢化物扩散源R1R2THx的步骤包括:
将所述固体铸锭R1R2T粗破碎后放入气固反炉中,真空状态下升温至 300~500℃,在该温度下充入氢气,保持气体压力为95~100kPa,保温80 分钟,吸氢分解;
抽真空同时冷却至室温,得到氢化物扩散源R1R2THx
进一步的,混合所述稀土氢化物R1TBHX和扩散源R1R2THx的步骤包括:
使用混料机在Ar和N2的混合气氛中混合15~30分钟。
进一步的,所述对混合后稀土氢化物R1TBHX和扩散源R1R2THx进行热处理的步骤包括:
热处理气氛优先选择Ar和N2的混合气氛,将稀土氢化物R1TBHx和扩散源 R2TBHx的混合粉在400~700℃真空状态下,保温0.5~2小时完成热处理工序。
进一步的,所述高真空脱氢得到所述异方性粘结磁粉的步骤包括:在温度为600~850℃维持气压在0.1Pa以下,持续抽真空60~80分钟,优选的,在600~700℃时高真空脱氢和上步扩散热处理同步进行;
然后快速冷却至室温。
综上所述,本发明提供了一种异方性粘结磁粉及其制备方法,该异方性粘结磁粉的通式为R1R2TB,其中R1为含Nd或PrNd的稀土元素,R2为La、Ce 的一种或两种,T为过渡族元素,B为硼;该制备方法包括母合金熔炼制备铸锭、制备稀土氢化物R1TBHX、制备氢化物扩散源R1R2THx、混合、热处理、高真空脱氢的步骤,最终得到该异方性粘结磁粉。本发明采用La、Ce氢化物作为扩散源,可在较低的脱氢温度下除去扩散源中的氢,避免高温下的晶粒长大,保证产品质量。
本发明的上述技术方案具有如下有益的技术效果:
(1)采用La、Ce元素代替现有技术中的Tb、Dy元素,能够节约成本,保护重稀土资源;
(2)扩散源使用La、Ce氢化物且RFeBHX中的稀土元素为Nd或Pr时,此时La、Ce相对于Nd或Pr在较低脱氢温度即可除去扩散源中的氢,扩散热处理和高温脱氢工序在较低的温度进行,该脱氢温度能去除的RFeBHX中的氢也能去除扩散源中的氢,不需要更高的扩散热处理温度,避免高温下的晶粒长大,在提升矫顽力的同时减小磁能积和剩余磁通量损失。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚明了,下面结合具体实施方式,对本发明进一步详细说明。应该理解,这些描述只是示例性的,而并非要限制本发明的范围。此外,在以下说明中,省略了对公知结构和技术的描述,以避免不必要地混淆本发明的概念。
本发明的第一方面提供了一种R1R2TB稀土异方性粘结磁粉,其中R1表示含Nd或PrNd的稀土元素,R2表示La、Ce的一种或两种,T表示过渡族元素, B表示硼。形成R2晶界相包围R1主相的壳层结构,主相体积和晶界相体积之比介于10至30之间。采用La、Ce元素代替现有技术中的Tb、Dy元素,能够节约成本,保护重稀土资源。使用R1R2T的氢化物R1R2THx作为稀土元素的扩散源,对于扩散源R1R2T来说,本发明用La或Ce替代Tb或Dy作为R2元素,R2相对于R1熔点低,低温下即可形成部分液相扩散源包围固相主相的反应。对NdTB或PrNdTB的氢化物R1TBHx类磁体粉末在400~700℃工作温度做晶界扩散,经HDDR的高温脱氢步骤,得到一种稀土异方性粘结磁粉,该稀土异方性粘结磁粉成分为R1R2TB组成。该异方性粘结磁粉的颗粒中包括以2: 14:1为晶界结构的R1TB主相以及包围主相的晶界相。
其中,在R1R2THX中,Nd的质量分数为70%-80%,Pr的质量分数为≤5%, La的质量分数为≤0.05%,Ce的质量分数为≤0.05%,H的质量分数为≤0.1%, T为余量;在R1TBHX中,Nd的质量分数为28%-29.5%,Pr的质量分数为≤5%, B含量为0.9%-1.2%,H质量分数为≤0.1%,T为余量;R1R2THX添加比例为:设R1TBHX质量为100%,则R1R2THX的质量为0.1%~10%。
进一步的,所述R2在扩散过程中大部分为晶粒外的扩散,少数为晶粒内的扩散,故晶界相中的含量与主相中含量之比大于3。优选地,所述R2元素在晶界相中的含量与主相中的含量之比大于3小于10。对于扩散源R1R2T来说,本发明用La或Ce替代Tb或Dy作为R2元素,此时发生的扩散反应基本集中在晶界相,而非内部的反应。La或Ce在扩散过程中大部分为晶粒外的扩散,少数为晶粒内的扩散,所以晶界相中的含量与主相中含量之比大于3。良好的扩散过程可以大幅提升矫顽力。但若过量的添加了扩散源,一方面会大幅降低磁能积和剩磁,另一方面,主相中La或Ce增加,不可避免的破坏了的最终导致主相产物不纯。因此,优选将R2元素在晶界相中的含量与主相中的含量之比设置为大于3小于10。
本发明的第二方面提供了一种稀土异方性粘结磁粉R1R2TB制备方法,所述制备方法包括:
步骤一、母合金熔炼分别形成固体铸锭R1TB和R1R2T,以前者R1TB为例:
将一定配比的原料合金,用真空感应炉在高纯氩气的气氛中熔炼,高温融化并浇铸原料于厚度为30~35mm的模具中,金属液体在模具中经过快速水冷后成型得到铸锭。将所述铸锭放入真空热处理炉,高真空环境中,在 1000℃~1100℃保温20小时,充入氩气至-0.01MPa,恒压状态下进行快速风冷,降至室温出炉,此时产物为固体铸锭R1TB,不具备异方性。
用上述相同的方法制备固体铸锭R1R2T。
步骤二、制备主成分为稀土氢化物R1TBHx异方性粉。将固体铸锭R1TB放入HDDR炉中,进行吸氢、高温氢化、排氢的步骤,制备得到稀土氢化物R1TBHX
具体的,将上述铸锭R1TB放入HDDR炉中,真空状态下升温至300℃,然后在该温度下充入氢气保持气体压力为95~100kPa,300℃保温1~2小时,完成吸氢分解步骤。
然后抽真空至30~35kPa,升温至790℃,在该温度和压力下维持180~ 200分钟,完成高温氢化工序。
接着充入氢气至50~70kPa,同时升温至820℃,保温30分钟。
最后抽真空至0.1~4kPa,保温20分钟,完成第一排气工序。此时因为没有完成高温脱氢工序所以并非完整的HDDR步骤。
该反应过程R1TB晶体间结构吸氢因膨胀系数不同会发生断裂,形成平均晶粒尺寸为300nm相结构为2:14:1的细粉。高温氢化工序发生歧化分解反应,R1TB主相结构分解成R1H2+Fe2B+Fe三相组织,并产生了沿主相C轴方向的晶体结构,使得产物具有异方性。第一排气工序去除了三相中R1H2的氢,同时Fe2B相晶体取向转化为多晶体再化合氢化物R1TBHx,因未经过高温脱氢工序,和完整HDDR步骤的产物R1TB不同。
步骤三、制备得到主成分为R1R2THx的扩散源的步骤,所述扩散源采用氢处理方法制备,氢处理温度小于500℃。
具体的,氢处理:将固体铸锭R1R2T粗破碎后放入气固反炉中,真空状态下升温至300~500℃,在该温度下充入氢气,保持气体压力为95~100kPa,保温80分钟,吸氢分解,抽真空同时冷却至室温,得到氢化物R1R2THx扩散源。
当扩散源使用La、Ce氢化物替代Tb、Dy的氢化物且RFeBHX中的稀土元素为Nd或Pr时,此时La、Ce相对于Nd或Pr在较低脱氢温度即可除去扩散源中的氢,扩散热处理后进行高温脱氢工序,该脱氢温度能去除的RFeBHX中的氢也能去除扩散源中的氢,不需要更高的扩散热处理温度,避免高温下的晶粒长大,保证产品质量和性能。
步骤四、混合原粉即稀土氢化物和扩散源,得到混合粉。具体的,使用混料机在Ar和N2的混合气氛中混合粉15~30分钟。
步骤五、将混合粉进行热处理。所述热处理的步骤中,热处理气氛优先选择Ar和N2的混合气氛。即将稀土氢化物R1TBHx和扩散源R2TBHx的混合粉在 400~700℃真空状态下,保温0.5~2小时完成热处理工序。
步骤六、高真空脱氢得到异方性粘结磁粉。具体的,在温度为600~850℃维持气压在0.1Pa以下,持续抽真空60~80分钟;然后快速冷却至室温。该步骤可以在热处理之后进行,也可在相对较低温度时与扩散热处理同时发生,即在600~700℃时扩散热处理和高真空脱氢同步进行。
补充实施例。
实施例一:A1-B1~B3
一:R1TB和R1R2T铸锭原料制造
按照表一和表二组成称取原料合金,这里以合金全体作为100%质量表示,各元素以质量分数wt%表示。用真空感应炉在高纯氩气的气氛中熔炼,高温融化并浇铸原料于厚度为30~35mm的模具中,金属液体在模具中经过快速水冷后成型得到铸锭。
将所述铸锭放入真空热处理炉,真空环境中,在1000℃~1100℃保温20 小时,充入氩气至-0.01MPa,恒压状态下进行快速风冷,降至室温出炉,此时产物为固体铸锭R1TB,将铸锭粗破碎厚至平均粒径20~35mm的小块。
这里的铸锭也可以用SC铸片法制备的带材替换。
表一
Figure RE-GDA0002365436670000081
表二
Figure RE-GDA0002365436670000082
二:R1TBHX和R1R2THX的制备
将固体铸锭或SC法制备的铁片R1TB放入HDDR炉中,真空状态下升温至 300℃,然后在该温度下充入氢气保持气体压力为95~100kPa,300℃保温1~ 2小时,完成吸氢分解步骤。控制氢压为30~35kPa,继续升温至790℃,在该温度和压力下维持180~200分钟,接着充入氢气至50~70kPa,继续升温至820℃,保温30分钟,完成高温氢化工序。抽真空至0.1~4kPa,保温20 分钟,完成第一排气工序得到R1TBHX
扩散源采用氢处理的方法,小于500℃制备。将固体铸锭或SC片R1R2T 放入气固反炉中,真空状态下升温至300~500℃,在该温度下充入氢气,保持气体压力为95~100kPa,保温80分钟,吸氢分解,抽真空同时冷却至室温,得到粒径在300um以下的氢化物R1R2THx扩散源,该粉末经过研磨得到小于80um的R1R2THx细粉。
三:混合工序
R1TBHX和R1R2THX细粉混合的步骤。
四:扩散热处理
将混合粉在400~700℃10-2Pa真空状态下热处理
五:高真空脱氢
将热处理后粉在600~850℃,10-4Pa真空状态下热处理
实施例二:A1-B4~B6,方法同实施例1
实施例三:A1或A2-B7,方法同实施例1
Figure RE-GDA0002365436670000101
Figure RE-GDA0002365436670000111
由上表可知,加入含La或Ce的扩散源使得扩散反应更容易进行,在 400℃即可发生良好的扩散反应,磁粉矫顽力大幅提升,La和Ce质量分数各为0.01%时,矫顽力达到1406kA/m,而不含La或Ce的扩散反应在低温时扩散后矫顽力仅为1052kA/m。此外,相对于使用含Dy氢化物的扩散源,含La或 Ce氢化物的扩散源低温时更容易地脱氢,本实验600℃在较低温度发生扩散反应同时进行脱氢反应,该脱氢温度能去除的RFeBHX中的氢也能去除扩散源中的氢,不需要更高的扩散热处理温度,避免高温下的晶粒长大,表现为矫顽力性能提升。
综上所述,本发明提供了一种异方性粘结磁粉及其制备方法,该异方性粘结磁粉的通式为R1R2TB,其中R1为含Nd或PrNd的稀土元素,R2为La、Ce 的一种或两种,T为过渡族元素,B为硼;该制备方法包括母合金熔炼制备铸锭、制备稀土氢化物R1TBHX、制备氢化物扩散源R1R2THx、混合、热处理、高真空脱氢的步骤,最终得到该异方性粘结磁粉。本发明采用La、Ce氢化物作为扩散源,能够节约成本,可在较低的脱氢温度下除去扩散源中的氢,避免高温下的晶粒长大,保证产品质量。
应当理解的是,本发明的上述具体实施方式仅仅用于示例性说明或解释本发明的原理,而不构成对本发明的限制。因此,在不偏离本发明的精神和范围的情况下所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。此外,本发明所附权利要求旨在涵盖落入所附权利要求范围和边界、或者这种范围和边界的等同形式内的全部变化和修改例。

Claims (10)

1.一种异方性粘结磁粉,其特征在于,所述异方性粘结磁粉的通式为R1R2TB,其中R1为含Nd或PrNd的稀土元素,R2为La、Ce的一种或两种,T为过渡族元素,B为硼;
所述R1R2TB异方性粘结磁粉各组分质量分数组成如下,其中Nd为28%~34.5%,Pr含量≤5%,B含量为0.8%~1.2%,La和Ce的质量总和占总体质量的比例≤0.1%,T为余量:
使用R1R2T的氢化物R1R2THx作为稀土元素的扩散源,对NdTB或PrNdTB的氢化物R1TBHx在400~700℃工作温度做晶界扩散,经HDDR的高温脱氢步骤得到所述异方性粘结磁粉。
2.根据权利要求1所述的异方性粘结磁粉,其特征在于,所述R2元素在晶界相中的含量与主相中的含量之比大于3。
3.根据权利要求1所述的异方性粘结磁粉,其特征在于,所述异方性粘结磁粉中包括以2:14:1为晶界结构的R1TB主相以及包围主相的晶界相。
4.根据权利要求1~3任一项所述的一种异方性粘结磁粉的制备方法,其特征在于,包括如下步骤:
母合金熔炼分别形成固体铸锭R1TB和R1R2T;
将所述固体铸锭R1TB放入HDDR炉中,进行吸氢、高温氢化、排氢的步骤,制备得到稀土氢化物R1TBHX
对所述固体铸锭R1R2T进行氢处理,氢处理温度小于500℃,制备得到氢化物扩散源R1R2THx
混合所述稀土氢化物R1TBHX和扩散源R1R2THx
对混合后的稀土氢化物R1TBHX和扩散源R1R2THx进行热处理;
高真空脱氢得到所述异方性粘结磁粉。
5.根据权利要求4所述的方法,其特征在于,所述母合金熔炼分别形成固体铸锭R1TB和R1R2T的步骤包括:
将一定配比的原料合金,用真空感应炉在氩气的气氛中熔炼,高温融化并浇铸原料于厚度为30~35mm的模具中,金属液体在模具中经过快速水冷后成型得到铸锭;
将所述铸锭放入真空热处理炉,高真空环境中,在1000℃~1100℃的温度下保温20小时;
充入氩气至-0.01MPa,恒压状态下进行快速风冷,降至室温出炉。
6.根据权利要求4所述的方法,其特征在于,将所述固体铸锭R1TB放入HDDR炉中,进行吸氢、高温氢化、排氢的步骤,制备得到稀土氢化物R1TBHX的步骤包括:
将固体铸锭R1TB放入HDDR炉中,真空状态下升温至300℃,然后在该温度下充入氢气保持气体压力为95~100kPa,300℃保温1~2小时,完成吸氢处理;
抽真空至30~35kPa,升温至790℃,在该温度和压力下维持180~200分钟,完成高温氢化处理;
充入氢气至50~70kPa同时升温至820℃,保温30分钟;
抽真空至0.1~4kPa,保温20分钟,完成排氢步骤。
7.根据权利要求4所述的方法,其特征在于,对所述固体铸锭R1R2T进行氢处理,氢处理温度小于500℃,制备得到氢化物扩散源R1R2THx的步骤包括:
将所述固体铸锭R1R2T粗破碎后放入气固反炉中,真空状态下升温至300~500℃,在该温度下充入氢气,保持气体压力为95~100kPa,保温80分钟,吸氢分解;
抽真空同时冷却至室温,得到氢化物扩散源R1R2THx
8.根据权利要求4所述的方法,其特征在于,混合所述稀土氢化物R1TBHX和扩散源R1R2THx的步骤包括:
使用混料机在Ar和N2的混合气氛中混合15~30分钟。
9.根据权利要求4所述的方法,其特征在于,所述对混合后稀土氢化物R1TBHX和扩散源R1R2THx进行热处理的步骤包括:
热处理气氛优先选择Ar和N2的混合气氛,将稀土氢化物R1TBHx和扩散源R2TBHx的混合粉在400~700℃真空状态下,保温0.5~2小时完成热处理工序。
10.根据权利要求4所述的方法,其特征在于,所述高真空脱氢得到所述异方性粘结磁粉的步骤包括:
在温度为600~850℃维持气压在0.1Pa以下,持续抽真空60~80分钟;优选的,在600~700℃时扩散热处理和高真空脱氢同步进行。
然后快速冷却至室温。
CN201911076249.XA 2019-11-06 2019-11-06 一种异方性粘结磁粉及其制备方法 Pending CN110890190A (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN201911076249.XA CN110890190A (zh) 2019-11-06 2019-11-06 一种异方性粘结磁粉及其制备方法
KR1020200141964A KR102391355B1 (ko) 2019-11-06 2020-10-29 이방성 본드 자석 분말 및 그 제조 방법
JP2020182569A JP7026192B6 (ja) 2019-11-06 2020-10-30 異方性ボンド磁性粉及びその作製方法
DE102020128949.9A DE102020128949B4 (de) 2019-11-06 2020-11-03 Verfahren zur herstellung eines anisotropen magnetpulvers
ZA2020/06868A ZA202006868B (en) 2019-11-06 2020-11-04 An anisotropic bonded magnetic powder and a preparation method thereof
US17/090,699 US20210130939A1 (en) 2019-11-06 2020-11-05 Anisotropic Bonded Magnetic Powder and a Preparation Method Thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911076249.XA CN110890190A (zh) 2019-11-06 2019-11-06 一种异方性粘结磁粉及其制备方法

Publications (1)

Publication Number Publication Date
CN110890190A true CN110890190A (zh) 2020-03-17

Family

ID=69746949

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911076249.XA Pending CN110890190A (zh) 2019-11-06 2019-11-06 一种异方性粘结磁粉及其制备方法

Country Status (6)

Country Link
US (1) US20210130939A1 (zh)
JP (1) JP7026192B6 (zh)
KR (1) KR102391355B1 (zh)
CN (1) CN110890190A (zh)
DE (1) DE102020128949B4 (zh)
ZA (1) ZA202006868B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115036127A (zh) * 2022-07-04 2022-09-09 赣州鑫舟永磁材料有限公司 一种稀土永磁材料高磁能积的改善方法及其制备工艺

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE152853T1 (de) * 1994-03-30 1997-05-15 Yasunori Takahashi Dauermagnetmaterial, dessen herstellungsverfahren und dauermagnet
CN1345073A (zh) * 2000-09-20 2002-04-17 爱知制钢株式会社 各向异性磁粉的制造方法和各向异性磁粉的原料粉及塑胶磁石
WO2004003245A1 (ja) * 2002-06-28 2004-01-08 Aichi Steel Corporation ボンド磁石用合金、等方性磁石粉末および異方性磁石粉末とそれらの製造方法並びにボンド磁石
CN1701396A (zh) * 2003-01-16 2005-11-23 爱知制钢株式会社 各向异性磁铁粉末的制造方法
CN108987016A (zh) * 2018-07-13 2018-12-11 杭州电子科技大学 一种纳米晶钕铁硼磁体的制备工艺
CN109741930A (zh) * 2019-01-23 2019-05-10 青岛华旗科技有限公司 一种高均匀性晶界扩散系统及稀土磁体制备方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011070847A1 (ja) * 2009-12-09 2011-06-16 愛知製鋼株式会社 希土類異方性磁石粉末およびその製造方法とボンド磁石
JP6992634B2 (ja) * 2018-03-22 2022-02-03 Tdk株式会社 R-t-b系永久磁石

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE152853T1 (de) * 1994-03-30 1997-05-15 Yasunori Takahashi Dauermagnetmaterial, dessen herstellungsverfahren und dauermagnet
CN1345073A (zh) * 2000-09-20 2002-04-17 爱知制钢株式会社 各向异性磁粉的制造方法和各向异性磁粉的原料粉及塑胶磁石
WO2004003245A1 (ja) * 2002-06-28 2004-01-08 Aichi Steel Corporation ボンド磁石用合金、等方性磁石粉末および異方性磁石粉末とそれらの製造方法並びにボンド磁石
CN1701396A (zh) * 2003-01-16 2005-11-23 爱知制钢株式会社 各向异性磁铁粉末的制造方法
CN108987016A (zh) * 2018-07-13 2018-12-11 杭州电子科技大学 一种纳米晶钕铁硼磁体的制备工艺
CN109741930A (zh) * 2019-01-23 2019-05-10 青岛华旗科技有限公司 一种高均匀性晶界扩散系统及稀土磁体制备方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115036127A (zh) * 2022-07-04 2022-09-09 赣州鑫舟永磁材料有限公司 一种稀土永磁材料高磁能积的改善方法及其制备工艺

Also Published As

Publication number Publication date
JP7026192B2 (ja) 2022-02-25
DE102020128949A1 (de) 2021-05-06
JP7026192B6 (ja) 2022-06-07
KR102391355B1 (ko) 2022-05-06
US20210130939A1 (en) 2021-05-06
JP2021075787A (ja) 2021-05-20
KR20210054991A (ko) 2021-05-14
DE102020128949B4 (de) 2023-08-03
ZA202006868B (en) 2021-09-29

Similar Documents

Publication Publication Date Title
EP3029689B1 (en) Method for increasing coercive force of magnets
CN111243806A (zh) 一种高性能烧结钕铁硼磁体的制备方法
JP7253071B2 (ja) R-t-b系永久磁石材料、製造方法、並びに応用
GB2357089A (en) Production method of anisotropic rare earth magnet powder
JP3250551B2 (ja) 異方性希土類磁石粉末の製造方法
CN110931197B (zh) 一种用于高丰度稀土永磁体的扩散源
CN108063045A (zh) 一种无重稀土钕铁硼永磁材料及其制备方法
CN109732046B (zh) 一种烧结钕铁硼磁体及其制备方法
CN111968819A (zh) 一种低重稀土高性能烧结钕铁硼磁体及其制备方法
WO2021031724A1 (zh) 一种钕铁硼永磁材料及其原料组合物、制备方法和应用
CN111378907A (zh) 一种提高钕铁硼永磁材料矫顽力的辅助合金及应用方法
CN111613403A (zh) 钕铁硼磁体材料、原料组合物及其制备方法和应用
CN114334416A (zh) 一种固液相分离扩散工艺制备高性能钕铁硼磁体的方法
CN108806910B (zh) 提高钕铁硼磁性材料矫顽力的方法
TWI750964B (zh) R-t-b系永磁材料、原料組合物、製備方法、應用
CN107464684B (zh) 烧结磁体的处理方法
CN110890190A (zh) 一种异方性粘结磁粉及其制备方法
CN108346508B (zh) 一种纳米晶复相钕铁硼永磁体织构化增强的制备方法
CN105761925A (zh) 一种钬铁镓共晶掺杂制备高性能钕铁硼磁体的方法
JPWO2004003245A1 (ja) ボンド磁石用合金、等方性磁石粉末および異方性磁石粉末とそれらの製造方法並びにボンド磁石
CN108597707B (zh) 一种含Ce烧结磁体及制备方法
CN109594023B (zh) 一种短流程Ce-Fe基烧结永磁体及其制备方法
CN111477446A (zh) 一种钕铁硼系烧结磁体及其制备方法
CN103343250A (zh) 一种分步掺杂提高Sm5Co19合金矫顽力的方法
CN114914048A (zh) 一种高剩磁高矫顽力无重稀土烧结钕铁硼磁体及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
CB02 Change of applicant information
CB02 Change of applicant information

Address after: 100088, 2, Xinjie street, Xicheng District, Beijing

Applicant after: GRIREM ADVANCED MATERIALS Co.,Ltd.

Applicant after: Youyan Rare Earth High Tech Co.,Ltd.

Address before: 100088, 2, Xinjie street, Xicheng District, Beijing

Applicant before: GRIREM ADVANCED MATERIALS Co.,Ltd.

Applicant before: GUOKE RE ADVANCED MATERIALS Co.,Ltd.

RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20200317