JP2654952B2 - 希土類永久磁石材料およびその製造方法 - Google Patents

希土類永久磁石材料およびその製造方法

Info

Publication number
JP2654952B2
JP2654952B2 JP26823587A JP26823587A JP2654952B2 JP 2654952 B2 JP2654952 B2 JP 2654952B2 JP 26823587 A JP26823587 A JP 26823587A JP 26823587 A JP26823587 A JP 26823587A JP 2654952 B2 JP2654952 B2 JP 2654952B2
Authority
JP
Japan
Prior art keywords
rare earth
phase
permanent magnet
magnet
sintering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP26823587A
Other languages
English (en)
Other versions
JPH01111843A (ja
Inventor
努 大塚
浩 大柳
浩 百谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TOOKIN KK
Original Assignee
TOOKIN KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TOOKIN KK filed Critical TOOKIN KK
Priority to JP26823587A priority Critical patent/JP2654952B2/ja
Publication of JPH01111843A publication Critical patent/JPH01111843A/ja
Application granted granted Critical
Publication of JP2654952B2 publication Critical patent/JP2654952B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はR2T14B金属化合物を主成分とするR−T−B
系永久磁石に関し,特に焼結体の加工性及び加工コスト
の改善及び耐酸化性に優れた希土類永久磁石に関する。
〔従来の技術〕
Nd・Fe・Bで代表されるR−Fe−B系磁石は,従来よ
り普及してきているSm−Co系合金永久磁石に比べ高い磁
石特性を有し,かつ,資源的に豊富な,Nd・Feを主成分
としているため,その用途は拡大してきており,Sm・Co
系永久磁石の代替も進行しつつある。
これら希土類永久磁石は,その用途に応じて,様々な
形状が製造され,また,その磁場配向方向も様々であ
り,中には,リングのラジアル方向へ磁場配向したもの
もあり,さらにはこのラジアル方向へパルス着磁による
多極ラジアル配向品も,特に最近その用途が拡大してき
ている。
現在,市販されているSm・Co系永久磁石では,上記の
様々な形状及びラジアル配向された製品を製造するに当
り何ら問題がなく量産されている。
〔発明が解決しようとする問題点〕
しかし,Nd・Fe・B系の磁石を製造する場合,大きな
問題がありコスト高となっている。それはSm・Co系にお
いては,焼結による圧粉体の収縮率は,全方向に対して
等方的であるが,Nd・Fe・B系ではその収縮率に磁場配
向方向をその直角方向でかなり大きな差があり,一般
に,磁場配向方向の収縮率に対する磁場配向方向に垂直
方向の収縮率は約60%である。
それ故,圧粉体にてリング状のラジアル配向品を焼結
すると焼結体は楕円の形状となり,目的とする円形状の
製品が得られないという問題がある。
この対策としてブロック焼結体より切り出したりある
いは,あらかじめ目的の寸法より大きな楕円形状の焼結
体を作製し,センタレス加工を施すという加工コストが
高く,また加工屑が多量に生ずる方策をとっていた。
また,焼結時の収縮率等を考慮した上で,あらかじめ
金型の形状を楕円形にしておいて,目的とする円形状の
焼結体を得ようとする方策も取られているが焼結時の収
縮率は,成形体の圧粉密度等にも変形するため,圧粉密
度の異なる成形体を作製するためには異なる寸法の金型
を使用しなければならずコスト高となり好ましくない。
しかも,ラジアル多極型の成形体を焼結する場合は焼
結過程においてこの焼結時の収縮率の差により焼結体に
割れが生ずるため事実上,製造することが極めて困難で
あった。
さらに,このR・Fe・B系の永久磁石では,もう一点
大きな問題点を有している。すなわち,大気中にて極め
て酸化し易いR・Fe固溶体相が,本系磁石の金属組織中
に存在するため,磁気回路等の装置に組込んだ場合に,S
m・Co系磁石に比べ磁石の酸化による特性劣化及びバラ
ツキが大きく,また磁石より発生する酸化物の飛散等に
よる周辺部品への汚染を引き起こすという欠点を有す
る。この耐食性の改善に関する文献として特開昭60−54
406号(J.P.A)や同60−63903号等が挙げられる。
これらの文献では,磁石体表面にメッキ,化成皮膜等
の耐酸化性皮膜を形成し,その耐食性向上を図ることを
目的としている。
しかし,これらの耐酸化性皮膜は,その工程中におい
て,多量の水及び水溶液を使用するため,処理工程中に
磁石のNd・Fe固溶体相が酸化することになり皮膜形成後
も内部において酸化が進行し,ふくれ又は皮膜の剥離等
を生ずるため耐食性を改善することはできない。
また,水を使用しない方法として,エポキシ等の耐酸
化性樹脂coating又は最近普及してきたスパッタ,蒸
着,イオンプレーティング等の方法によるAl,Ni等の金
属皮膜を形成させ耐食性改善を図る乾式メッキ等の方法
もある。しかしながら,これらの水を未使用のコーティ
ングにおいても長期使用による皮膜の劣化,使用中又
は,製品検査,及び装置への組み込み作業等の取り扱い
時に微少な,カケ等により磁石体表面が,大気と接した
場合,この部分より磁石組織中のNd・Fe固溶体相が,時
間と共に著しく酸化し,磁石内部全体に広がっていくた
め耐食性改善の方策としては適していない。
以上述べたように,いずれの従来の耐食性改善方法に
おいても磁石中に極めて酸化し易いNd・Fe固溶体相が存
在するため上記した各方策が有する本来の耐食性を本系
磁石に付寄することは極めて困難であった。
すなわち,本系磁石においてはこのNd・Fe固溶体相の
耐食性を根本的に改善しなければ充分な耐食性を得るこ
とは不可能である。
尚,この対策として,本系磁石合金にNi,Cu,Sm,Pd等
の元素を添加することにより本系磁石合金の耐食性を向
上させ先に述べた各種耐食性皮膜を本系磁石にcoating
することにより上記欠点を解決することも可能である
が,従来の方法では,磁石合金インゴット製作時にこれ
ら元素を添加して得られる合金インゴットを粉砕・成形
・焼結するため,本系磁石の磁性相であるNd2Fe14B相へ
もこれら元素が一様に拡散してしまい磁石特性を著しく
劣化させてしまうため,対策としては適していない。
そこで,本発明の技術的課題は,これら2点の問題点
を解決するものであり,従来のNd・Fe・B系磁石よりも
加工コストの低減できる焼結磁石及び耐食性に優れた希
土類永久磁石を提供することにある。
〔問題点を解決するための手段〕
本発明によれば,R・Fe・Bを主成分とするR・T・B
系合金磁石(ここでRはYを含む希土類元素,Tは遷移金
属を示す。)を粉末冶金法にて製造する方法において,R
2Fe14B磁性化合物の粉末にR(Cu1-xFex),R(Cu
1-yTyの一種又は2種(ここで,0≦x・y≦0.2)の
化合物を主成分とする合金粉末を混合・成形した粉末成
形体を焼結することにより,R(Cu1-xTx),R(Cu1-yTy
の一種又は二種の化合物にてR2Fe14B磁性相が包まれ
た希土類永久磁石が得られる。
この得られた焼結磁石は,焼結時の収縮率において,
磁場配向方向の収縮率に対する磁場配向方向に垂直な方
向の収縮率の比が80%以上であるため,従来のNd・Fe・
B系磁石に比べ格段に焼結時の収縮率の方向性が緩和さ
れている。それ故,通常のSm・Co系で用いていた金型に
よりラジアル配向及びラジアルの多極型成形体を作製
し,その圧粉体を通常のNd・Fe・B磁石と同様に焼結し
ても,焼結体の変形が著しく改善され,又焼結時の収縮
率の差による焼結体の割れも発生しないため,従来のNd
・Fe・B系磁石に比べ,加工コストが改善されしかも従
来では製造困難とされたラジアル方向への多極配向品の
製造も可能となる。
また,さらに本系磁石ではNd・Fe固溶体相をより耐食
性に優れたR(Cu1-xFex),R(Cu1-yFeyの一種又は
二種にて代替しているため,焼結体の耐酸化性が著しく
向上する。それ故,通常のNi,Cr等の耐酸化性メッキ,
樹脂coating等の有する本来の耐食性を本系磁石に付与
することが可能となり工業上極めて有益である。ここで
本発明における希土類永久磁石において,そのマトリッ
クを形成するR(Cu1-xFex),R(Cu1-yFey相の一種
又は二種において,0<x・y≦0.2としたのは,0.2以上
では本発明の目的とするR(CuFe),R(CuFe)相では
なく他の相となったり,また過剰のFeは焼結体中にFe相
として残留し,磁石特性を著しく劣化させるため,0<x
・y≦0.2とする必要がある。尚、RCu,R(Cu1-yFey
の内の一種又は二種の化合物の場合には、上記同様の理
由によりy≦0.2とする必要がある。
また,本系磁石において,圧粉体の焼結時における磁
場配向方向の収縮率に対する磁場配向方向と垂直の方向
の収縮率の比を80%以上としたのは,80%より小さい領
域では,焼結体の変形が著しく加工コストの低減ができ
ずまた収縮率の差による焼結体の割れ等を生ずるため,
本発明の目的に沿わないためである。
〔実施例〕
以下,本発明の実施例を図面を参照して説明する。
<実施例−1> 純度95%以上のNd・Fe・Bを用い,Ar雰囲気中にて高
周波加熱により,28Nd・1.0B・Febal(wt%)の組成を有
するNd2Fe14B相を主相とするingotを得た。このingotを
粗粉砕し,得られた粗粉末をI材とした。
次に,上記と同等のNd・Fe・Cu・Bを用いて,61.3Nd
・37.7Cu・1.0B,61.5Nd・35.7Cu・1.7Fe・1.0B,61.6Nd
・34.1Cu・3.3Fe・1.0B,61.8Nd,32.2Cu・5.0Fe・1.0B,6
1.9Nd・30.4Cu・6.7Fe・1.0B,62Nd・28.6Cu・8.4Fe・1.
0B(いずれもwt%,Fe/Cuの比はおのおの0/1,0.05/0.95,
0.1/0.9,0.15/0.85,0.2/0.8,0.25/0.75)の組成を有す
る6種類の粗粉末(II材)を得た。
そして,秤量はI材は85wt%とし残部15wt%はII材の
1種とし6種類の混合秤量した粗粉末を得た。
次に,これら粗粉末をおのおのボールミルを用い平均
粒径約4μmに湿式粉砕し,微粉末を得た。次に得られ
た微粉末を20KOeの磁界中1.0ton/cm2で成形し,圧粉体
を得た。これら圧粉体を1000〜1150℃で,0〜4hrAr中焼
結した。そして得られた焼結体を500〜900℃で1〜5hr
加熱した後急冷した。
第1図にこれら焼結体の中で,最も高い磁石特性を示
す。第1図より,II材のNd・Cu・Fe・B粉末のFe/Cuの比
が0/1〜0.2/0.8の間では高い磁石特性を示すことがわか
る。
<実施例−2> 実施例−1で得られたI材に実施例−1で得られたII
材の中で,61.3Nd・37.7Cu・1.0Bの組成を有する粉末を1
5wt%添加し混合した。
この粉末を実施例−1と同様にして微粉末を得た。
次にこの微粉末を15KOeの磁界中にて,ラジアル配向
となるようφ20×10の円柱状の成形体を得た。また同粉
末を100KOeのパルス着磁中6極のラジアル多極型のφ20
×φ12×10の寸法を有する成形体を得た。
次に実施例−1の比較材である32Nd・1.0B・Febalの
組成を有する微粉末を用いて,上記と同様の寸法のラジ
アル配向を有する成形体,及び6極の多極型ラジアル配
向を有する成形体を得た。
そしてこれら圧粉体を1100℃で2時間Ar中焼結した。
これら焼結体に対し,その収縮率測定及び外観の観察
を行った。
その結果を第1表に示す。
第1表より本発明による磁石焼結体は,配向方向とそ
の垂直方向での収縮率の差も小さく焼結体の変形も小さ
い。また多極型ラジアル配向品においては比較例は,焼
結体に割れが生じているが,本発明による焼結体磁石
は,割れと生じておらずまた,焼結体の変形も小さかっ
た。
すなわち本発明による永久磁石は,加工しろが小さい
ため加工コストが低減でき,しかも従来のNd・Fe・B系
磁石では製造困難とされた多極型ラジアル配向品の製造
も極めて容易であることがわかる。
<実施例−3> 実施例−1で得られた焼結体に対し,Cu下地メッキを
施した電解Niメッキ,及び有色クロメート処理を施し
た。また比較例として,32Nd・1.0B Te balの組成を有す
るingotの実施例−1と同様に高周波溶解により得た。
次に実施例−1と同様に粗粉砕,微粉砕・磁場中成
形,焼結,熱処理を施して焼結体を得た。そしてこの焼
結体に上記と同様の表面処理を施し,比較材とした。こ
れら表面処理の膜厚を測定したところ2〜25μmであっ
た。
これら各試験片を,60℃×90%の恒温恒湿試験を300hr
加えた。
その結果を第2表に示す。
第2表より,本発明の磁石は,従来のNd・Fe・B系磁
石に比べ著しく耐食性に優れていることがわかる。
〔発明の効果〕
以上の説明のとおり,Nd2Fe14Bを主相とする粉末に,Nd
(Cu1-xFex)又はNd(Cu1-yFey(ただし,0≦x,y≦
0.2)の一種以上の相を主相とする粉末を混合し,従来
通りの粉末治金法により製造された焼結体磁石は,Nd(C
u1-xFex),又はNd(Cu1-yFey相の一種以上の相の
一種以上の相をマトリックス中に,Nd2Fe14B相が分散し
た組織を有している。
この焼結体磁石は磁石特性に優れているだけでなく,
焼結時の収縮率に関し,従来のNd・Fe・B系磁石に比べ
磁場配向方向とその直角方向の収縮率の差が著しく小さ
いため,ラジアル配向品等の収縮率の差による変形を小
さくでき加工しろを小さくでき加工コストの低減が実現
できる。また従来のNd・Fe・Bでは,製造困難とされて
いた多極型ラジアル配向品についても本系磁石では,製
造が容易となる。また本系磁石は,従来のNd・Fe・B系
磁石に比べ耐食性が著しく向上しているため,Ni等の耐
酸化性メッキ,化成被膜,耐酸化性樹脂coating等の有
する本来の耐食性を付寄することが可能となる。
以上Nd・Fe・B系についてのみ述べたが,Yを含めた希
土類元素(R)・Fe・B系合金についても同様の効果が
期待できることは容易に推察できるところである。
【図面の簡単な説明】
第1図は本発明の第1の実施例におけるNd(Cu1-xFex
B(x=0〜0.25)の粉末を混合して得られた焼結体の
Feの置換量と,磁石特性の関係を示したものである。

Claims (5)

    (57)【特許請求の範囲】
  1. 【請求項1】R2Fe14B金属間化合物(ここでRは,Yを含
    む希土類元素)を含むR・Fe・Cu・B系永久磁石におい
    て,RCu,R(Cu1-yFeyの内の一種又は二種の化合物
    (ここでy≦0.2)のマトリックス中に上記R2Fe14B相が
    分散してなることを特徴とする希土類永久磁石。
  2. 【請求項2】R2Fe14B金属間化合物(ここでRは,Yを含
    む希土類元素)を含むR・Fe・Cu・B系永久磁石におい
    て,R(Cu1-xFex),R(Cu1-yFeyの内の一種又は二種
    の化合物(ここで0<x,y≦0.2)のマトリックス中に上
    記R2Fe14B相が分散してなることを特徴とする希土類永
    久磁石。
  3. 【請求項3】特許請求の範囲第一項又は第二項記載の希
    土類永久磁石において,圧粉体の磁場配向方向の焼結収
    縮率に対する磁場配向方向と垂直方向との焼結収縮率の
    比が,80%以上であることを特徴とする希土久磁石材
    料。
  4. 【請求項4】R2Fe14B金属間化合物(ここでRは,Yを含
    む希土類元素を示す)にRCu,R(Cu1-yFey相の一相
    又は二相の化合物(ここでは,y≦0.2)を主成分とする
    合金粉末を混合して混合粉末を形成する混合工程と,該
    混合粉末を磁場中成形して,液相焼結する焼結工程とを
    有することを特徴とする希土類永久磁石材料の製造方
    法。
  5. 【請求項5】R2Fe14B金属間化合物(ここでRは,Yを含
    む希土類元素を示す)にR(Cu1-xFex),R(Cu1-yFey
    相の一相又は二相の化合物(ここでは,0<x,y≦0.2)
    を主成分とする合金粉末を混合して混合粉末を形成する
    混合工程と,該混合粉末を磁場中成形して,液相焼結す
    る焼結工程とを有することを特徴とする希土類永久磁石
    材料の製造方法。
JP26823587A 1987-10-26 1987-10-26 希土類永久磁石材料およびその製造方法 Expired - Lifetime JP2654952B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26823587A JP2654952B2 (ja) 1987-10-26 1987-10-26 希土類永久磁石材料およびその製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26823587A JP2654952B2 (ja) 1987-10-26 1987-10-26 希土類永久磁石材料およびその製造方法

Publications (2)

Publication Number Publication Date
JPH01111843A JPH01111843A (ja) 1989-04-28
JP2654952B2 true JP2654952B2 (ja) 1997-09-17

Family

ID=17455782

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26823587A Expired - Lifetime JP2654952B2 (ja) 1987-10-26 1987-10-26 希土類永久磁石材料およびその製造方法

Country Status (1)

Country Link
JP (1) JP2654952B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105195734A (zh) * 2015-11-12 2015-12-30 苏州萨伯工业设计有限公司 在废旧磁钢中添加液相钇制备稀土永磁材料的方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030134499A1 (en) 2002-01-15 2003-07-17 International Business Machines Corporation Bilayer HDP CVD / PE CVD cap in advanced BEOL interconnect structures and method thereof
US7138717B2 (en) 2004-12-01 2006-11-21 International Business Machines Corporation HDP-based ILD capping layer
US20120299675A1 (en) * 2009-12-09 2012-11-29 Aichi Steel Corporation Anisotropic rare earth magnet and method for producing the same
CN107424694A (zh) * 2009-12-09 2017-12-01 爱知制钢株式会社 稀土类各向异性磁铁粉末及其制造方法和粘结磁铁

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105195734A (zh) * 2015-11-12 2015-12-30 苏州萨伯工业设计有限公司 在废旧磁钢中添加液相钇制备稀土永磁材料的方法

Also Published As

Publication number Publication date
JPH01111843A (ja) 1989-04-28

Similar Documents

Publication Publication Date Title
JP4162884B2 (ja) 耐食性希土類磁石
JP3781095B2 (ja) 耐食性希土類磁石の製造方法
JPS6325904A (ja) 永久磁石およびその製造方法並びに永久磁石製造用組成物
JP2654952B2 (ja) 希土類永久磁石材料およびその製造方法
US5447578A (en) Corrosion-resistant rare earth metal-transition metal series magnets and method of producing the same
JP2546989B2 (ja) 耐酸化性に優れた永久磁石
JP2001230107A (ja) 耐食性希土類磁石
JP4552161B2 (ja) 耐食性のすぐれた超小型磁石
JPH01251704A (ja) 耐酸化性に優れた希土類永久磁石
JP2546988B2 (ja) 耐酸化性に優れた永久磁石
JP2700643B2 (ja) 耐酸化性に優れた希土類永久磁石の製造方法
Ormerod Powder metallurgy of rare earth permanent magnets
JP3234448B2 (ja) 高耐蝕性永久磁石の製造方法
JPS59219453A (ja) 永久磁石材料の製造方法
JP2803727B2 (ja) 永久磁石の製造方法
KR100204344B1 (ko) 자기적 이방성 및 내식성이 우수한 희토류-철-코발트-붕소계 영구자석분말 및 접합자석
JPH01155603A (ja) 耐酸化性希土類永久磁石の製造方法
JPH01105502A (ja) 耐酸化性に優れた希土類永久磁石及びその製造方法
JPS6386502A (ja) 希土類磁石とその製造方法
JPH0644526B2 (ja) 希土類磁石の製造方法
JPH04206805A (ja) 磁気特性および耐食性の優れた希土類元素―Fe―B系磁石の製造方法
JPH02117103A (ja) 耐酸化性に優れた希土類永久磁石及びその製造方法
JP2987705B2 (ja) 耐酸化性に優れた希土類永久磁石
SU1057991A1 (ru) Способ изготовлени посто нных спеченных магнитов на основе сплавов кобальта с редкоземельными металлами
JP3010856B2 (ja) 永久磁石およびその製造方法