WO2011027815A1 - 有機el素子封止部材 - Google Patents

有機el素子封止部材 Download PDF

Info

Publication number
WO2011027815A1
WO2011027815A1 PCT/JP2010/065010 JP2010065010W WO2011027815A1 WO 2011027815 A1 WO2011027815 A1 WO 2011027815A1 JP 2010065010 W JP2010065010 W JP 2010065010W WO 2011027815 A1 WO2011027815 A1 WO 2011027815A1
Authority
WO
WIPO (PCT)
Prior art keywords
organic
sealing member
resin composition
curable resin
element sealing
Prior art date
Application number
PCT/JP2010/065010
Other languages
English (en)
French (fr)
Inventor
荒井 佳英
宏政 北澤
堀江 賢一
Original Assignee
株式会社スリーボンド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社スリーボンド filed Critical 株式会社スリーボンド
Priority to US13/393,904 priority Critical patent/US20120207991A1/en
Priority to EP10813763.9A priority patent/EP2475223A4/en
Priority to JP2011529931A priority patent/JPWO2011027815A1/ja
Priority to CN201080039707.3A priority patent/CN102640564B/zh
Publication of WO2011027815A1 publication Critical patent/WO2011027815A1/ja
Priority to US14/174,231 priority patent/US20140167021A1/en

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/841Self-supporting sealing arrangements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/20Layered products comprising a layer of metal comprising aluminium or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/34Layered products comprising a layer of synthetic resin comprising polyamides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/68Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the catalysts used
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details
    • H05B33/04Sealing arrangements, e.g. against humidity
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/842Containers
    • H10K50/8423Metallic sealing arrangements
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/844Encapsulations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24942Structurally defined web or sheet [e.g., overall dimension, etc.] including components having same physical characteristic in differing degree
    • Y10T428/2495Thickness [relative or absolute]
    • Y10T428/24967Absolute thicknesses specified
    • Y10T428/24975No layer or component greater than 5 mils thick
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/26Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension
    • Y10T428/263Coating layer not in excess of 5 mils thick or equivalent

Definitions

  • the present invention relates to a sealing member used for sealing an organic EL (electroluminescence) element that emits light with high luminance when an electric field is applied, and more particularly, to protect an organic EL element from moisture, oxygen, and the like. It is related with the organic EL element sealing member which has a curable resin composition layer which coat
  • An organic EL element is a polycrystalline semiconductor device, and can emit light with high brightness at a low voltage. Further, since it is easy to reduce the thickness and weight, it is expected to be used for a thin flat display device such as a thin TV. However, organic EL elements are extremely weak against moisture and oxygen. Therefore, peeling at the interface between the metal electrode and the organic EL layer, high resistance due to oxidation of the metal electrode, and alteration of the organic matter itself may occur. Due to these causes, the organic EL element does not emit light, or has a drawback that the luminance is lowered even if it emits light.
  • Patent Document 1 a method of molding an organic EL element with an acrylic resin
  • Patent Document 2 a sealing layer made of metal oxide, metal fluoride or metal sulfide is provided on the surface opposite to the substrate of the organic EL element, or airtight on the surface opposite to the substrate
  • Patent Document 3 a method of sealing an organic EL element to be airtight by adhering a conductive plate, for example, a glass plate or a foil, or using these together (Patent Document 3), an electric insulating property on the outer surface of the organic EL element
  • a shield layer made of one selected from the group consisting of an electrically insulating glass, an electrically insulating polymer, and an electrically insulating airtight fluid is provided outside the protective layer.
  • Patent Document 4 A method of sealing a mechanical EL element (Patent Document 4), holding an organic EL element in an inert liquid compound composed of fluorinated carbon, and minimizing Joule heat generated when a current flows between electrodes , A method for improving the element lifetime (Patent Document 5), and after providing a protective layer made of an electrically insulating inorganic compound on the outer surface of the organic EL element, an electrically insulating glass, A method of sealing an organic EL element by providing a shield layer made of one selected from the group consisting of molecules and an electrically insulating hermetic fluid (Patent Document 6), wherein the organic EL element is made of an inert substance, preferably In addition, a method for achieving high durability by encapsulating in silicone oil or liquid paraffin (Patent Document 7) has been proposed.
  • Patent Document 10 a method of protecting an organic EL element from the influence of moisture by adding a hygroscopic agent to a sealing resin and laminating the same on the organic EL element.
  • Patent Document 11 a moisture absorbent such as barium oxide or calcium oxide is added to the photocured epoxy layer, separately from the sealing layer.
  • Patent Documents 8 and 9 An organic EL element sealing method using a resin film obtained by dry laminating a metal foil has been proposed (Patent Documents 8 and 9).
  • the curable resin used for adhesion is a thermoplastic resin such as a general ethylene-vinyl acetate copolymer, and the temperature of the adhesion process is as high as 150 ° C. Sufficient adhesive strength could not be obtained because the thermoplastic resin was difficult to wet the substrate.
  • the composition containing such a curable resin cannot follow the unevenness of the organic EL element, resulting in the generation of bubbles and dark spots.
  • Patent Document 12 As a sealant used for directly sealing IC and LSI chips, a paste composition composed of a thermoplastic resin, an epoxy resin, a coupling agent, silicon dioxide powder and an organic solvent is described (Patent Document 12). ). However, the invention focuses on stress relaxation (elasticity) of the cured product. Moreover, although there is description in this patent document that the paste composition is excellent in moisture resistance, there is no description about the amount of water contained in the paste composition. Further, when a two-component curable epoxy resin is used, additional equipment is required for blending and mixing. In addition, it takes time and effort, and there is a problem in workability because there is a limitation on the usable time.
  • Patent Document 13 describes a resin composition containing, as a curing agent, a reaction product of a styrene / maleic anhydride copolymer polymer with primary amines and secondary amines.
  • the resin composition is applied to the surface of the base material, and then cured by heating to be used as a transparent protective film.
  • Patent Documents 14 and 15 describe a sealing epoxy resin composition in which imidazole is used in combination with an acid anhydride curing agent as a curing accelerator.
  • the composition has a high curing temperature and damage to the organic EL device increases, it cannot be used for sealing the organic EL device.
  • Patent Documents 16 and 17 disclose an adhesive film or a thermosetting resin using imidazole as a curing agent or a curing accelerator. Since these all have a high curing temperature and damage to the organic EL element increases, they cannot be used for sealing the organic EL element.
  • Patent Document 18 discloses an adhesive composition containing a liquid imidazole compound. However, this composition cannot ensure thermal stability when it is formed into a sheet.
  • Patent Document 19 discloses an epoxy resin composition containing an epoxy resin, a phenoxy resin, and a curing agent in predetermined amounts. The patent document does not mention the flow start temperature, the amount of moisture, and the amount of outgas generated, and the composition is not suitable for sealing the entire surface of the organic EL device.
  • Patent Document 20 discloses a method in which a photo-curing sealing material is spot-applied to the entire bonded surface at equal intervals, and sealing is performed while alignment and gap adjustment are performed.
  • this sealing method it is very difficult to control the uniform thickness after bonding, and air bubbles cannot be avoided.
  • the photocurable sealing material has a low viscosity that enables point application, in order to suppress the spread of the photocurable sealing material at the time of bonding, a high-damage dam is formed around the substrate. It is necessary to use wood.
  • the low-viscosity sealing material is concerned about adverse effects such as generation of dark spots.
  • Patent Document 21 discloses a photosensitive composition comprising an epoxy compound having two or more epoxy groups, a predetermined polynuclear phenol compound, and an energy ray-sensitive cationic polymerization initiator.
  • the sealing structure is a conventional hollow sealing structure, and reliability cannot be ensured unless a desiccant is used. Moreover, since it is hollow, optical loss is inevitable.
  • Patent Document 22 discloses a sealing agent for organic EL elements that is formed from a flexible polymer composition and disposed between a light emitting surface of a light emitting element and a sealing member. However, it is difficult to ensure high reliability when simply arranging and not bonding in this way.
  • Patent Document 23 fills a back substrate, an organic electroluminescence unit having a first electrode, an organic film, and a second electrode, and an internal space in which the organic electroluminescence unit is accommodated by being coupled to the back substrate.
  • An organic EL device comprising a sealing layer containing a nanocomposite composed of a layered inorganic material, a polymer, and a curing agent is disclosed.
  • the sealing layer including the nanocomposite composed of the layered inorganic substance, the polymer, and the curing agent fills the internal space and acts as a desiccant.
  • the reliability is ensured by using a desiccant that can be applied instead of the conventional desiccant. Therefore, the sealing layer does not have a function of adhering the upper and lower substrates, and therefore, a sealing material or a filler that fills the gap between the upper and lower substrates is required separately from the sealing layer.
  • a barrier film is regarded as useful as a sealing material for an organic EL element used as a lighting device.
  • a two-component thermosetting epoxy resin is used as the curable resin composition constituting this barrier film (Patent Document 25).
  • such a two-component thermosetting epoxy resin has a problem in that it needs to be quantitatively mixed at the time of coating and has a limited usable time.
  • various problems due to being a liquid material for example, it is difficult to form a uniform curable resin composition when coating on a large area substrate, and a curable resin composition is applied. In this case, there is a problem that it takes time to move the nozzle for coating the necessary part with the coating robot, and there remains a problem in continuous production.
  • Patent Document 26 discloses an organic EL element sealing member having a structure in which a curable resin composition is previously arranged on a film serving as a base material in order to enable production by a roll-to-roll method. Proposed.
  • a curable resin composition is applied on a relatively thick film such as PET, productivity is poor in the roll-to-roll method.
  • the inorganic film layer is sandwiched between curable resin composition layers made of an epoxy resin, a complicated process is required for production, which is not realistic.
  • JP-A-3-37991 Japanese Patent Laid-Open No. 3-2619101 JP-A-4-212284 JP-A-5-36475 JP-A-4-363890 JP-A-5-89959 Japanese Patent Laid-Open No. 5-129080 JP 2001-237065 A JP 2007-109422 A JP 2007-284475 A JP 2001-237064 A Japanese Patent Laid-Open No.
  • the present invention solves the above-mentioned problems of the prior art. That is, the present invention is capable of sealing without adversely affecting the organic EL element, thereby reliably suppressing the generation and growth of dark spots and maintaining stable light emission characteristics over a long period of time.
  • the organic EL element sealing member which can produce an organic EL element more cheaply by improving productivity can be provided.
  • the present invention has created an organic EL element sealing member having the following constitution. That is, the present invention provides an organic EL in which a curable resin composition layer is disposed on a barrier film obtained by superposing one or more metal thin layers on a plastic film, preferably 1 to 5 layers, more preferably 1 to 3 layers.
  • An element sealing member wherein the curable resin composition layer has a thickness of 5 to 100 ⁇ m, and the curable resin composition exhibits non-flowability at 25 ° C. in an uncured state and is heated.
  • An organic EL element sealing member that exhibits fluidity in a range of 40 to 80 ° C.
  • the metal thin layer is selected from the group consisting of aluminum, magnesium, zinc, copper, gold, silver, platinum, tungsten, manganese, titanium, cobalt, nickel, and chromium.
  • 1 or more types of resin containing 1 or more types of metals and the said plastic film is chosen from the group which consists of polyethylene terephthalate, polyvinyl alcohol, polyethylene naphthalate, polyamide, polyolefin, polycarbonate, polyether sulfone, and polyarylate Including.
  • the organic EL element sealing member of the present invention can be applied to a flexible organic EL element suitable for use in an image display device such as a display, particularly in a lighting device.
  • a more preferred embodiment is an organic EL element sealing member in which the plastic film has a thickness of 1 to 50 ⁇ m and the thin metal layer has a thickness of 1 to 50 ⁇ m.
  • the curable resin composition layer is made of a curable resin composition containing the following components.
  • A a compound having at least one glycidyl group in one molecule and having a weight average molecular weight of 200 to 2,000
  • B A phenoxy resin having at least one glycidyl group in one molecule and a weight average molecular weight of 20,000 to 100,000, wherein the preferred blending amount of component (B) is A) 25 to 100 parts by mass with respect to 100 parts by mass of the component,
  • (c-1) a compound that generates an acid by irradiation with energy rays, and / or (c-2) a thermal latent curing agent that is activated by heating.
  • the component (c-1) is 0.1 to 5.0 parts by mass and / or the component (c-2) is 0.1 to 20 parts per 100 parts by mass of the total amount of the component A) and the component (B).
  • Part by mass (D) Glycidyl group-containing silane coupling agent, wherein the preferred blending amount of component (D) is 0.1 to 10 parts by mass with respect to 100 parts by mass in total of component (A) and component (B) .
  • the curable resin composition is preferably a sheet-like curable resin composition previously formed into a sheet shape, and the curable resin composition is uncured.
  • the viscosity at that time is preferably 20,000 Pa ⁇ s or more at 25 ° C. and 5,000 Pa ⁇ s or less at 70 ° C.
  • the present invention relates to an invention in which the organic EL element sealed by the organic EL element sealing member is for a lighting device.
  • the outgas generation amount of the cured product when left at 120 ° C. for 15 minutes is 2,000 ⁇ g / cm. 2 or less
  • the shrinkage rate when the curable resin composition is cured is 3% or less
  • the thermal shrinkage in the longitudinal direction when the plastic film is heated at 150 ° C. for 30 minutes It is particularly preferable that the ratio (MD) is 1% or less and the thermal contraction rate (TD) in the width direction is 0.5% or less.
  • the organic EL element sealing member of the present invention can be applied to an organic EL element used for various applications, but is particularly preferable for sealing an organic EL element used for a lighting device.
  • organic EL lighting which has been studied as a lighting device, is considered useful because of its characteristic that the element itself emits light on a surface and can be formed into an arbitrary shape by using a flexible substrate.
  • organic EL elements used in lighting devices are required to have durability applicable to various usage environments, flexibility applicable to various parts, productivity suitable for mass production, and the like. When the organic EL element sealing member of the present invention is used, these problems can be solved.
  • the organic EL element sealing member of the present invention is a film having flexibility, it is suitable for sealing a flexible organic EL element, and since it is a film, production by a roll-to-roll method is possible. Since it is easy, it contributes to the improvement of productivity.
  • the organic EL device which solves the said subject can be formed.
  • an organic EL device comprising a transparent electrode, a hole and electron injection layer, a hole and electron transport layer, a light emitting layer, and a back electrode is formed on a flexible plastic film substrate. Sealing is performed by bonding the organic EL element sealing member while applying pressure.
  • the organic EL element sealed using the organic EL element sealing member of the present invention is manufactured as follows. First, a transparent electrode is formed to a thickness of about 0.1 ⁇ m on a plastic film substrate. The transparent electrode is formed by vacuum deposition, sputtering, or the like. Subsequently, a hole transport layer and an organic EL layer are sequentially formed on the transparent electrode with a thickness of 0.05 ⁇ m. Further, a back electrode is formed on the organic EL layer with a thickness of 0.1 to 0.3 ⁇ m to form an organic EL element.
  • film formation by vacuum deposition crystal grains may grow and the smoothness of the film surface may be reduced, and when applied to a thin film EL, it may cause a dielectric breakdown film and non-uniform light emission.
  • film formation by sputtering has good film surface smoothness, which is preferable when a thin film device is laminated thereon.
  • the organic EL element sealing member of the present invention is bonded to the back electrode side of the organic EL element thus obtained using a roll laminator or a vacuum laminator.
  • the organic EL element sealing member is preferably bonded by a roll laminator.
  • the sealing member provided with the resin composition layer containing the photocurable curing agent (c-1) is completely cured by irradiation with an active energy ray such as ultraviolet rays.
  • an active energy ray such as ultraviolet rays.
  • the sealing member provided with the resin composition layer containing the thermosetting curing agent (c-2) the curing is completed by heating. Further, in a sealing member having a resin composition layer containing both a photocurable curing agent (c-1) and a thermosetting curing agent (c-2), it is cured by heating after irradiation with active energy rays. And harden completely.
  • the organic EL element in which the organic EL element is protected with an inorganic film in advance and the organic EL element sealing member of the present invention can be bonded together.
  • the inorganic film include silicon oxide, silicon nitride, and silicon oxynitride.
  • a sealing member provided with a resin composition layer containing a photocurable curing agent (c-1)
  • the curing reaction of the composition is promoted by ultraviolet irradiation in advance, and in the process, the sealing member is made organic. It is also possible to overlap with the EL element. In this case, after baking may be performed at 50 to 100 ° C. for complete curing thereafter.
  • the plastic film used for the organic EL element sealing member of the present invention preferably has a thickness in the range of 1 to 50 ⁇ m, more preferably 10 to 30 ⁇ m, in order to minimize warpage in the sealing process. . If it is less than the above lower limit, the reliability of the gas barrier performance is poor, and if it exceeds the above upper limit, flexibility decreases after lamination.
  • the material is preferably at least one resin selected from polyethylene terephthalate (PET), polyvinyl alcohol (PVA), polyethylene naphthalate, polyamide, polyolefin, polycarbonate, polyethersulfone and polyarylate.
  • PET is particularly preferable from the viewpoints of gas barrier properties, economic efficiency, adhesiveness of the curable resin composition, and the like.
  • the heat shrinkage rate (MD) in the longitudinal direction is 1% or less and the heat shrinkage rate (TD) in the width direction is 0.5% or less when heated at 150 ° C. for 30 minutes.
  • MD longitudinal shrinkage S 160 and MD
  • TD represents a width direction of shrinkage S 160.
  • the metal thin layer used for the barrier film is preferably a metal thin layer containing one or more metals selected from aluminum, magnesium, zinc, copper, gold, silver, platinum, tungsten, manganese, titanium, cobalt, nickel, and chromium. .
  • aluminum with low occurrence frequency of pinholes is more preferable.
  • the layer thickness is preferably 1 to 50 ⁇ m, more preferably 20 to 40 ⁇ m. If it is less than the above lower limit, the reliability of the gas barrier performance is poor, and if it exceeds the above upper limit, there is a problem in flexibility for following the substrate.
  • the curable resin composition layer disposed on the barrier film exhibits non-fluidity at 25 ° C. and exhibits fluidity at 40 to 80 ° C. when heated.
  • non-fluidity means that the value of G ′ (storage elastic modulus) in the viscoelasticity measurement at 25 ° C. is larger than the value of G ′′ (loss elastic modulus).
  • the expression means that the value of G ′ is equal to G ′′ in the viscoelasticity measurement when heat is applied.
  • the thickness is in the range of 5 to 100 ⁇ m, more preferably 10 to 40 ⁇ m. It is desirable to be.
  • the curable resin composition is a cured product having a thickness of 20 ⁇ m, the amount of outgas generation when left at 120 ° C. for 15 minutes is 2,000 ⁇ g / cm 2 or less, and the shrinkage rate upon curing is 3%. It is particularly desirable that the water content of the composition is 1,500 ppm or less.
  • the compound (A) having at least one glycidyl group in the molecule and having a weight average molecular weight of 200 to 2,000 is preferably a low molecular weight bisphenol A type epoxy resin.
  • epoxy resins such as low molecular weight bisphenol F type epoxy resin, low molecular weight hydrogenated bisphenol A / F type epoxy resin, and low molecular weight phenol novolac type resin.
  • those having a low chlorine ion content for example, those having hydrolyzable chlorine of 500 ppm or less are more preferable.
  • the number of glycidyl groups is 1 or more, preferably 1 to 10, more preferably 1 to 5, and still more preferably 1 to 3.
  • component (A) for example, Epicron EXA-835LV (trademark, manufactured by Dainippon Ink & Chemicals, Inc.) and jER152 (trademark, manufactured by Japan Epoxy Resin Co., Ltd.) having a low concentration of chlorine ions are preferable.
  • numerator of (A) component the compound which has the unsaturated double bond which can be radically polymerized separately from a glycidyl group can also be used. In that case, a radical polymerization initiator can be appropriately added.
  • the phenoxy resin (B) having at least one glycidyl group in one molecule and a weight average molecular weight of 20,000 to 100,000 is preferably bisphenol A type phenoxy resin, bisphenol F type phenoxy resin, bisphenol.
  • A. Bisphenol F copolymerization type phenoxy resin and the like is preferably bisphenol A type phenoxy resin, bisphenol F type phenoxy resin, bisphenol.
  • a phenoxy resin capable of obtaining high film strength is more preferable when the curable resin composition composition is formed into a sheet shape.
  • the number of glycidyl groups is 1 or more, preferably 1 to 10, more preferably 1 to 5, and still more preferably 1 to 3.
  • component (B) for example, jER1256 (trademark, manufactured by Japan Epoxy Resin Co., Ltd.), YP-70 (trademark, manufactured by Toto Kasei Co., Ltd.) and the like can be preferably used.
  • Component (B) is preferably added in an amount of 25 to 100 parts by weight, more preferably 30 to 70 parts by weight per 100 parts by weight of component (A).
  • it is less than the above lower limit, a film cannot be formed when formed into a sheet, and when it exceeds the above upper limit, the film becomes hard and brittle when formed on a sheet, and workability in the bonding step is deteriorated.
  • the crosslink density becomes low, the reliability as a product cannot be maintained.
  • the compound (C) (c-1) that is activated by energy ray irradiation and generates an acid used in the present invention is a salt that generates a cation active species by so-called light irradiation.
  • Examples thereof include onium salts such as aromatic diazonium salts, aromatic halonium salts, and aromatic sulfonium salts.
  • SP-151, SP-170, SP-171, SP-150, PP-33 all are trademarks, manufactured by Asahi Denka Co., Ltd.
  • Irgacure-261, CG-24-61 all are trademarks)
  • UVI-6974, UVI-6970, UVI-6990, UVI-6950 all are trademarks, manufactured by Union Carbide
  • BBI-103, MPI-103, TPS-103, DTS-103, NAT- 103, NDS-103 all are trademarks, manufactured by Midori Chemical Co., Ltd.
  • CI-2064, CI-2639, CI-2624, CI-2481 all are trademarks, manufactured by Nippon Soda Co., Ltd.
  • RHODORSIL PHOTOINITIATOR 2074 trademark, Rhône-Poulenc product
  • CD-1012 Trademark, Sartoma) Product
  • FC-509
  • thermosetting epoxy resin a known curing agent for a thermosetting epoxy resin can be used.
  • it is solid at room temperature and has a melting point or decomposition temperature of 80 ° C. or higher. Latent imidazole compounds are particularly preferred.
  • the component (C) functions as a curing agent for the components (A) and (B).
  • the amount of component (C) to be added is 0.1 to 0.1 in (c-1) with respect to 100 parts by mass of component (A) and component (B) in consideration of storage stability, curability and transmittance. 5 parts by mass is preferable, and 0.3 to 3 parts by mass is more preferable.
  • the amount is preferably 0.1 to 20 parts by mass, and more preferably 0.5 to 5 parts by mass.
  • the addition amount when the addition amount is less than the above lower limit, the components (A) and (B) cannot be sufficiently cured, and when the addition amount exceeds the above upper limit, coloring becomes intense, , The stability as a composition is deteriorated.
  • the glycidyl group-containing silane coupling agent (D) of the present invention good adhesion can be imparted to the adherend without coloring the composition. Further, the glycidyl group-containing silane coupling agent (D) is well compatible with the components (A) and (B), does not cause separation from the composition, and further, when the composition is processed into a sheet shape There is no oozing.
  • Examples of the component (D) of the present invention include 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropylmethyldimethoxysilane, 3-glycidoxypropylmethyldimethoxysilane, 2- (3,4-epoxy) And silane coupling agents such as (cyclohexyl) ethyltrimethoxysilane. These silane coupling agents may be used in combination of two or more.
  • 3-glycidoxypropyltrimethoxysilane KBM-403 (trademark), manufactured by Shin-Etsu Chemical Co., Ltd.
  • KBM-403 Japanese Patent Application Laid
  • Shin-Etsu Chemical Co., Ltd. has good compatibility with the component (A) and the component (B) and has excellent stability. This is particularly preferable.
  • the amount of component (D) added is preferably 0.1 to 10 parts by mass with respect to 100 parts by mass as a total of components (A) and (B). More preferably, it is 0.3 to 3 parts by mass. If it is less than the above lower limit, adhesiveness cannot be exhibited, and if it exceeds the above upper limit, outgas is generated, which may adversely affect the organic EL element. As the adverse effect, for example, the activity of the dye molecules constituting the organic EL element is reduced by the reaction with the outgas, and the element portion where the activity is reduced appears as a dark spot. Further, the dark spot grows and the area of the light emitting portion is reduced, so that it finally becomes a serious defect as an illumination or display device.
  • the amount of outgas derived from the curable resin composition in the sealing member that causes such a problem is an amount exceeding 2,000 ⁇ g / cm 2 .
  • the curable resin composition of the present invention is a plastic which is prepared by using a coating machine or the like so that a solution obtained by dissolving the above-described components (A) to (D) in an organic solvent such as methyl ethyl ketone or toluene is used. It is applied to the thin metal layer side of the barrier film formed by laminating the thin metal layer on the film. After that, the organic solvent is volatilized and solid sheet form (film form, tape form) at room temperature (about 25 ° C) ) Of the organic EL element sealing member.
  • the curable resin composition can be applied in advance to a PET film or the like by the same method as described above and prepared as a sheet of the curable resin composition.
  • the sheet may be wound through a release paper or the like.
  • the curable resin composition of the present invention when prepared in the form of a sheet, when performing the pasting with the barrier film, labor saving by a roll-to-roll method, that is, formation of a uniform film thickness, coating It is possible to omit the coating process by the apparatus and improve the yield. Furthermore, since it can stick without mixing bubbles due to the property of being in the form of a sheet, it is possible to achieve both productivity and reliability.
  • the curable resin composition of the present invention exhibits fluidity in the range of 40 to 80 ° C.
  • the heat-fluidized curable resin composition can be smoothly filled into the irregularities on the element surface, and bubbles can be eliminated. If this flow temperature is less than 40 ° C., the flowability of the curable resin composition may be too high during thermal transfer, resulting in poor workability. In addition, the sheet shape is not maintained. On the other hand, if it exceeds 80 ° C., the fluidity at the time of thermal transfer is deteriorated and bubbles are likely to be contained, and the organic EL element may be adversely affected because it is heated more than necessary.
  • the viscosity of the curable resin composition is preferably 20,000 Pa ⁇ s or more, and preferably 150,000 Pa ⁇ s or less.
  • the viscosity of the curable resin composition at 70 ° C. is 5,000 Pa ⁇ s or less, preferably 500 Pa ⁇ s or more. desirable. Long-term storage at low temperatures is possible by forming it in a solid state at room temperature. Moreover, it is preferable to store with a desiccant such as silica gel in order to keep the moisture content below a certain level.
  • the organic EL element sealing member of the present invention has a moisture permeability of 60 ° C. and a humidity of 95% in an atmosphere of 0.1 g / m 2 ⁇ 24 hours or less, and further its heat
  • the conductivity can be 0.5 kW / h or more.
  • Epicron EXA-835LV Bisphenol A type and F type mixed epoxy resin having two glycidyl groups in one molecule (low chlorine type, weight average molecular weight of 300) (Mixture of epoxy resins existing in the range of ⁇ 350), manufactured by Dainippon Ink & Chemicals, Inc.) (In Table 1, abbreviated as “EXA835LV”.)
  • jER152 (trademark): a phenol novolac type epoxy resin having two glycidyl groups in one molecule (weight average molecular weight: about 530, manufactured by Japan Epoxy Resins Co., Ltd.)
  • jER1001 Solid bisphenol-type epoxy resin having two glycidyl groups in one molecule (weight average molecular weight: about 900, manufactured by Japan Epoxy Resin Co., Ltd.)
  • jER1010 (comparative component): a solid bisphenol type epoxy resin having two glycidy
  • Component (B) and its comparative component YP-70 phenoxy resin having two glycidyl groups in one molecule (weight average molecular weight: about 50,000, manufactured by Tohto Kasei Co., Ltd.)
  • jER1256 trademark
  • phenoxy resin having two glycidyl groups in one molecule weight average molecular weight: about 50,000, manufactured by Japan Epoxy Resin Co., Ltd.
  • Epofriend CT310 (comparative component): styrene-butadiene copolymer having a glycidyl group (weight average molecular weight: about 50,000 to 150,000, manufactured by Daicel Chemical Industries, Ltd.) (in Table 1, “CT310 Abbreviated.)
  • (C) Component (c-1) Adekaoptomer SP-170 (trademark): 4,4-bis ⁇ di ( ⁇ -hydroxyethoxy) phenylsulfonyl ⁇ phenyl sulfide-bis-hexafluoroantimonate (manufactured by Asahi Denka Co., Ltd.) Abbreviated as “-170”.)
  • a thin film was formed from the curable resin composition on a polyethylene terephthalate (PET) film that had been subjected to a release treatment in advance using a coating machine. Next, the solvent was removed by heating at 80 ° C. for 3 minutes. Next, the thin film was cut into a size of 200 mm in length and 250 mm in width along with the PET film, and then the PET film was peeled off to obtain a thin film having a thickness of 20 ⁇ m . The obtained thin film was folded six times in total in the horizontal and vertical directions so as to have a thickness of 1.0 mm or more.
  • PET polyethylene terephthalate
  • a stainless steel plate having a thickness of 1.0 mm is placed on the entire periphery of the sample folded in this way to serve as a spacer, and depressurized while depressurizing using a vacuum laminator to obtain a thickness of 1.0 mm.
  • a test piece for viscosity measurement was obtained.
  • the apparatus used for the viscosity measurement was a viscoelasticity measuring apparatus DAR-100 (trademark) manufactured by Reologica, and the measurement was performed at 25 ° C. and 70 ° C.
  • a thin film having a thickness of 20 ⁇ m was obtained in the same manner as the above viscosity measurement. Five thin films were stacked so that the thickness was about 100 ⁇ m, and then this was deaerated using a vacuum laminator to obtain a test piece.
  • the apparatus used for the flow start temperature measurement was a viscoelasticity measurement apparatus DAR-100 manufactured by Reologica, and the measurement was performed by heating the sample from 10 ° C. to 150 ° C. at a temperature increase rate of 4 ° C./min.
  • the flow start temperature was a temperature at which the measured value of G ′ (storage elastic modulus) in the viscoelasticity measuring device became equal to the measured value of G ′′ (loss elastic modulus).
  • a thin film having a thickness of 20 ⁇ m was obtained in the same manner as the above viscosity measurement. About 5 mg of the thin film was sampled while maintaining the thin film state and weighed to prepare a sample. The sample was obtained by a dynamic space method in which a double shot pyrolyzer [P2020iD (trademark) manufactured by Frontier Laboratories Inc.] and a gas chromatograph / mass spectrometer (GC-MS) [6890N / 5597inert (trademark manufactured by Agilent Technologies)] were combined.
  • GC-MS gas chromatograph / mass spectrometer
  • the total amount of outgas generated is determined by using n-decane as a standard substance.
  • the outgas amount ( ⁇ g / cm 2 ) refers to the weight of gas generated per unit area of the thin film used as a sample, and is a value calculated as follows. First, the gas weight generated from about 5 mg of the sample was measured as described above, and this was converted to the generated gas weight ( ⁇ g / g) per 1 g of the sample. Next, a sample of 1 cm ⁇ 1 cm was cut out from the thin film having a thickness of 20 ⁇ m obtained as described above and weighed, and the sample weight per 1 cm 2 (g / cm 2 ) was measured. The product of these values, that is, [generated gas weight ( ⁇ g / g)] ⁇ [sample weight per 1 cm 2 (g / cm 2 )] was defined as the outgas amount ( ⁇ g / cm 2 ).
  • Curing shrinkage rate measurement After obtaining a sample having a thickness of 1.0 mm in the same manner as the above viscosity measurement, the sample was cut into a length of 2.0 mm and a width of 2.0 mm to obtain a test piece for curing shrinkage rate measurement. The test piece was weighed in air and distilled water. Let each weighed value be W1 and W2. Next, for the test pieces prepared from Formulation Examples 1 to 4 and Comparative Formulation Examples 1 to 5 using the thermal latent curing agent (c-2) as the component (C), these test pieces were kept at 100 ° C. for 3 hours. Cured by heating.
  • the test piece was irradiated with ultraviolet rays under the condition of 6,000 mJ / cm 2 , This was cured by heating at 80 ° C. for 1 hour with a heater. Each test piece thus cured was again weighed in air and distilled water. Let each weighed value be W3 and W4. Here, all weighings were carried out up to 1 mg.
  • Examples 1 to 8 and Comparative Examples 1 to 7 In Examples and Comparative Examples, as shown in Tables 2 and 3, the curable resin compositions of Formulation Examples 1 and 5 shown in Table 1 and Comparative Formulation Examples 1 to 5 were used. From these curable resin compositions, a thin film was formed using a coating machine on a polyethylene terephthalate (PET) film that had been subjected to a release treatment in advance, and each of the thicknesses ( ⁇ m) shown in Tables 2 and 3 was used. A sheet-like curable composition was prepared.
  • PET polyethylene terephthalate
  • each sheet-like curable composition prepared as described above is applied to the thin metal layer side of the barrier film by a roll-to-roll method using a roll laminator (MC film dry film laminator).
  • the organic EL element sealing member was produced by sticking and then peeling off the PET film of the sheet-like curable composition.
  • the barrier film was produced by vapor-depositing aluminum.
  • a transparent electrode is formed to a thickness of 0.1 ⁇ m on a PET film by sputtering, and a hole transport layer and an organic EL layer are sequentially formed to a thickness of 0.05 ⁇ m thereon, and then an organic EL An organic EL element for evaluation was produced by forming a back electrode with a thickness of 0.2 ⁇ m on the layer.
  • the sheet-like curable composition of the organic EL element sealing member thus prepared is disposed so as to be in contact with the back electrode of the organic EL element, and the organic EL element is encapsulated on the organic EL element.
  • the member was affixed using a roll laminator. Subsequently, this was heat-pressed using a vacuum laminator.
  • the sheet-like curable composition heat-pressed on the organic EL element was irradiated with ultraviolet rays under the condition of 6,000 mJ / cm 2 , and then heated at 80 ° C. for 1 hour with a heater.
  • the sheet-like curable composition that has been thermocompression bonded to the organic EL element is heated at 100 ° C. for 3 hours to be cured, thereby sealing the organic EL element. Stopped.
  • the water vapor transmission rate measuring device [Lyssy Co., L80-5000 (TM) using a temperature 60 ° C., measured moisture permeability under conditions of humidity of 95% Rh did.
  • the detection limit of the water vapor transmission rate measuring apparatus used for the measurement is 0.1 g / m 2 ⁇ day.
  • Warpage ⁇ br/> organic EL device sealing member of the substrate as an indicator of toughness that is required when used as a lighting member, were evaluated warping of the substrate.
  • the warpage of the substrate was evaluated as follows. First, it arrange
  • Example 5 the organic EL element sealing member bonded to the alkali glass was irradiated with ultraviolet rays under the condition of 6,000 mJ / cm 2 , and then this was heated with a heater at 80 ° C. for 1 hour.
  • the organic EL element sealing member bonded to alkali glass is cured by heating at 100 ° C. for 3 hours to cure the organic EL element sealing member. Cured and bonded.
  • the alkali glass was allowed to stand on a horizontal surface, and the displacements of the end portions before and after the adhesion of the organic EL element sealing member were measured. The displacement values were all within 1.0 mm. A value in the range of 2 mm was indicated by ⁇ , and a value exceeding 1.0 mm was indicated by ⁇ . Here, ⁇ and ⁇ were accepted, and x was rejected.
  • the productivity required for producing the organic EL element sealing member as a lighting member was evaluated.
  • the productivity is set so that the sheet-like curable composition of the organic EL element sealing member is in contact with the PET film surface, and the temperature of the organic EL element sealing member and the PET film having a thickness of 125 ⁇ m is measured using a roll laminator.
  • the evaluation was carried out by bonding together at 80 ° C., a pressure of 0.1 MPa, and a roll speed of 0.3 m / min, and observing the bonded surface.
  • Those with no bubbles or exfoliation or peeling on the bonding surface are indicated by ⁇ , those with very slight bubbles, extruding or peeling are indicated by ⁇ , and those with bubbles or extruding or peeling are indicated by ⁇ . .
  • ⁇ and ⁇ were accepted, and x was rejected.
  • Light emission luminance unevenness The sealing uniformity of the organic EL element after sealing was evaluated using the light emission luminance unevenness as an index.
  • the degree of light emission luminance unevenness was evaluated based on the temperature distribution in the light emitting surface using infrared thermography [AVSTE, FVS-7000E (trademark)].
  • AVSTE, FVS-7000E trademark
  • the in-plane maximum temperature difference is within 15 ° C.
  • the one exceeding 15 ° C. and below 30 ° C.
  • What exceeded 30 degreeC was shown by x.
  • ⁇ and ⁇ were accepted, and x was rejected.
  • Luminescence degradation The post-sealing organic EL device was evaluated for changes in luminescence characteristics as an index of reliability as a sealing member.
  • the change in the light emission characteristics was evaluated by changing the drive voltage before and after the organic EL element after sealing was allowed to stand in an atmosphere of 85 ° C.-85% RH for 500 hours.
  • the change rate of the drive voltage was within 10%, and the case where it exceeded 10% and was within 20% was indicated with ⁇ .
  • a value exceeding 20% was indicated by x.
  • ⁇ and ⁇ were accepted, and x was rejected.
  • Examples 1-4 and 6-8 use the curable resin composition of Formulation Example 1.
  • aluminum foil and copper foil are used as the thin metal layer, respectively. Regardless of the type of metal contained in the thin metal layer, all showed good results.
  • Example 3 uses polyvinyl alcohol (PVA) as a plastic film. Compared with Example 1 using polyethylene terephthalate (PET), the substrate warped somewhat, but the effect of the present invention was not impaired.
  • PET polyethylene terephthalate
  • Example 4 the thickness of the sheet-like curable composition is increased. Productivity slightly decreased.
  • Example 6 the thickness of the thin metal layer was increased. Although the warpage and productivity of the substrate were somewhat deteriorated, the effects of the present invention were not impaired.
  • Example 7 aluminum, which is a thin metal layer, was applied to a plastic film by vapor deposition. Although the moisture permeability is somewhat high and the light emission deterioration and the light emission luminance unevenness are somewhat deteriorated, none of them impairs the effect of the present invention. In Example 8, the thickness of the PET film is increased. The warpage of the substrate was only a little worse. Further, Example 5 uses the curable working composition of Formulation Example 5. As in Example 1, good results were shown.
  • Comparative Example 1 is obtained by significantly increasing the thickness of the sheet-like curable composition as compared with Example 1.
  • the warpage of the substrate increased and the productivity deteriorated.
  • Comparative Example 2 contrary to Comparative Example 1, the thickness of the sheet-like curable composition is significantly reduced.
  • the warpage of the substrate was large, and the luminance unevenness was remarkable.
  • Comparative Example 3 uses the curable resin composition of Comparative Formulation Example 1. Luminous deterioration was remarkable.
  • Comparative Example 4 uses the curable resin composition of Comparative Formulation Example 2. The emission deterioration was remarkable and the emission luminance unevenness was severe.
  • Comparative Example 5 uses the curable resin composition of Comparative Formulation Example 3. There was no problem in the characteristics of the organic EL element after sealing.
  • the curable resin composition has a low viscosity at 25 ° C. of the uncured composition, it has a large surface tack when used as an organic EL device sealing member. Therefore, at the time of positioning when bonding it to the organic EL element, a part of the curable composition sticks to the organic EL element, and the curable composition is partially lost from the surface of the organic EL sealing member. There was a problem.
  • Comparative Example 6 uses the curable resin composition of Comparative Formulation Example 4. There was no problem in the characteristics of the organic EL element after sealing. However, since the flow starting temperature of the curable resin composition exceeds 80 ° C., a relatively high temperature is required for bonding to the organic EL element.
  • Comparative Example 7 uses the curable resin composition of Comparative Formulation Example 5.
  • the generation of dark spots was observed from the initial stage of standing in a predetermined atmosphere in the evaluation of the light emission deterioration of the organic EL element after sealing, and it was confirmed that this increased with time. This is considered to be because the amount of outgas of the curable resin composition of Comparative Formulation Example 5 is very large.
  • the curable resin composition of Comparative Formulation Example 5 has a high curing shrinkage rate, the warpage of the substrate is large, and therefore, peeling from the adhesion end surface of the organic EL element and the sealing member is recognized, and adhesion reliability is confirmed. There was a sex problem.
  • the organic EL element sealing member of the present invention can be preferably used for sealing an organic EL element, particularly for sealing an organic EL element used for illumination.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)
  • Sealing Material Composition (AREA)
  • Epoxy Resins (AREA)

Abstract

本発明は、有機EL素子、特に照明装置用の有機EL素子に対し、長期間にわたって安定な発光特性を維持することができるばかりではなく、より安価に有機EL素子を生産することができる有機EL素子封止部材を提供する。上記の課題を解決するため、本発明ではプラスチックフィルムに金属薄層を1層以上重ね合わせたバリアフィルム上に、硬化性樹脂組成物層を配した有機EL素子封止部材であって、前記硬化性樹脂組成物層の厚みが5~100μmであり、かつ、前記硬化性樹脂組成物が、未硬化状態において、25℃で非流動性を示し、加熱すると40~80℃の範囲で流動性を発現することを特徴とする有機EL素子封止部材を用いた。

Description

有機EL素子封止部材
本発明は、電界の印加によって高輝度発光する有機EL(エレクトロルミネッセンス)素子の封止に使用する封止部材に関し、さらに詳しくは、有機EL素子を水分、酸素等から保護するために有機EL素子の全面を被覆するものである、硬化性樹脂組成物層を有した有機EL素子封止部材に関する。
有機EL素子は多結晶の半導体デバイスであり、低電圧で高輝度の発光が得られることから、液晶のバックライトなどに使用されている。また、薄型化及び軽量化が容易であることから、例えば、薄型テレビのような薄型平面表示装置用として期待されている。しかしながら、有機EL素子は水分、酸素にきわめて弱い。従って、金属電極と有機EL層との界面における剥離、金属電極の酸化による高抵抗化、及び、有機物自体の変質が生ずることがある。そして、これらの原因により、有機EL素子が発光しなくなるか、又は、発光してもその輝度が低下してしまうという欠点があった。また、有機EL素子を使用した装置を薄型化するために、有機EL素子を封止するための封止部材の基板を薄くする方法が検討されている。該方法として、例えば、ガラス及び金属基板に代えて、バリア性のプラスチックフィルムを使用することが考えられているが、プラスチックフィルムでは十分なバリア性が得られてないのが現状である。また、プラスチックフィルムを有機EL素子基板に接着して封止する方法自体にも問題があった。
これらの問題を解決するために、有機EL素子をアクリル樹脂でモールドする方法(特許文献1)、有機EL素子を気密ケース内に配置しかつ該気密ケース内に五酸化二リンを封入して外気から遮断する方法(特許文献2)、有機EL素子の基板とは反対の面に金属酸化物、金属弗化物若しくは金属硫化物から成る封止層を設け、又は、基板とは反対の面に気密性の板、例えば、ガラス板若しくは箔を接着し、又は、これらを併用することにより、有機EL素子を密封して気密にする方法(特許文献3)、有機EL素子の外表面に電気絶縁性高分子化合物から成る保護層を設けた後、この保護層の外側に、電気絶縁性ガラス、電気絶縁性高分子及び電気絶縁性気密流体より成る群から選択される1つから成るシールド層を設けることにより、有機EL素子を封止する方法(特許文献4)、有機EL素子を弗素化炭素から成る不活性液状化合物中に保持して、電極間に電流を流す際に発生するジュール熱を極力抑えることにより、素子寿命を向上させる方法(特許文献5)、有機EL素子の外表面に電気絶縁性無機化合物から成る保護層を設けた後、この保護層の外側に、電気絶縁性ガラス、電気絶縁性高分子及び電気絶縁性気密流体より成る群から選択される1つから成るシールド層を設けることにより、有機EL素子を封止する方法(特許文献6)、有機EL素子を、不活性物質、好ましくは、シリコーンオイル又は流動パラフィン中に封じ込めることにより、高耐久性を達成する方法(特許文献7)等が提案されている。また、近年、封止樹脂中に吸湿剤を添加して、これを有機EL素子上に積層することにより、水分による影響から有機EL素子を保護する方法も提案されている(特許文献10)。この他にも、有機EL素子への水分による悪影響を排除するため、封止層とは別に、光硬化エポキシ層に酸化バリウム又は酸化カルシウムなどの吸湿剤を添加した防湿層を設けることも提案されている(特許文献11)。
しかしながら、上記従来の有機EL素子の封止方法はいずれも満足できるものではなかった。例えば、吸湿剤とともに気密構造内に有機EL素子を封じ込めるだけでは、ダークスポットの発生及び成長を抑制できなかった。また、有機EL素子を、弗素化炭素又はシリコーンオイル中に保存する方法では、液体を封入する工程を経ることで封止工程が煩雑になるのみならず、ダークスポットの増加も完全には防げず、むしろ液体が陰極と有機層の界面に侵入して陰極の剥離を助長すると言う問題もあった。封止樹脂中に吸湿剤を添加する方法では、封止前の樹脂自体に吸湿のおそれが生じることから取り扱い性が悪く、また、吸湿により樹脂自体が膨張し剥離を生じてしまうことがあった。
金属箔をドライラミネートした樹脂フィルムを用いた有機EL素子の封止方法が提案されている(特許文献8,特許文献9)。しかし、接着に用いる硬化性樹脂が、一般的なエチレン-酢酸ビニル共重合体のような熱可塑性樹脂であること、また、接着工程の温度が150℃という高温であること等のために、該熱可塑性樹脂が基材にぬれ難いことから十分な接着力が得られなかった。更に、このような硬化性樹脂を含む組成物は、有機EL素子の凹凸に追従できず、その結果として、気泡の発生及びダークスポットの発生の原因となっていた。
IC及びLSIのチップを直接封止するために使用する封止剤として、熱可塑性樹脂、エポキシ樹脂、カップリング剤、二酸化珪素粉末及び有機溶剤からなるペースト組成物が記載されている(特許文献12)。しかしながら、該発明は硬化物の応力緩和性(弾力性)に重点が置かれている。また、該特許文献中には、ペースト組成物が耐湿性に優れるとの記載はあるものの、ペースト組成物に含まれる水分量についてはなんら記載されていない。更に、2液硬化型エポキシ樹脂を用いた際には、配合及び混合のために別途設備が必要となる。加えて、その作業に手間がかかり、そのうえ、可使時間の制限もあることから、作業性にも問題があった。
特許文献13には、硬化剤として、スチレン・無水マレイン酸共重合物ポリマーと、第1級アミン類及び第2級アミン類との反応生成物を含有する樹脂組成物が記載されている。ここで、該樹脂組成物は、基材表面に塗布され、そして、加熱硬化されて、透明な保護膜として使用される。しかしながら、スチレンを含有することから有機EL素子の封止に使用するには適していない。特許文献14及び15には、酸無水物系硬化剤に硬化促進剤としてイミダゾールを併用する封止用エポキシ樹脂組成物が記載されている。しかし、該組成物は硬化温度が高く、有機EL素子へのダメージが大きくなることから、有機EL素子の封止には使用できない。
特許文献16及び17には、イミダゾールを硬化剤又は硬化促進剤として使用した接着フィルム又は熱硬化性樹脂が開示されている。これらはいずれも硬化温度が高く、有機EL素子へのダメージが大きくなることから、有機EL素子の封止には使用できない。また、特許文献18には、液状のイミダゾール化合物が配合された接着剤組成物が開示されている。しかし、この組成物では、シート状に成形する際に熱安定性を確保できない。更に、特許文献19には、エポキシ樹脂とフェノキシ樹脂と硬化剤とを所定の配合量で含むエポキシ樹脂組成物が開示されている。該特許文献には、流動開始温度、水分量及びアウトガス発生量に言及がなく、かつ該組成物は、有機EL素子の全面を封止するには適していない。
更に、液状樹脂を用いた封止においては、いずれも有機EL素子と封止基板とを貼りあわせる工程における気泡の発生が大きな問題であった。表示部全面に気泡が発生しないように貼りあわせることは非常に困難であり、そして、気泡が混入すると素子の寿命を低下させる。加えて、マザー基板から面取りを行うに際して、有機EL素子と封止基板との貼りあわせに液状樹脂を用いると、両者を貼りあわせない部分にはマスキングが必要となることから、作業性の低下と言う問題も生じていた。
一方、特許文献20には、貼りあわせ面全体に光硬化性封止材を等間隔で点塗布し、アライメント及びギャップ調製をしながら封止する方法が開示されている。この封止方法においては、貼りあわせ後の均一な厚みの制御が非常に難しく、かつ、気泡の混入が避けられない。また、該光硬化性封止材は、点塗布が可能なほど低粘度である故、貼りあわせ時の該光硬化性封止材の広がりを抑制するために、基板の周囲に粘度の高いダム材を使用する必要がある。また、低粘度の封止材はダークスポットの発生などの悪影響が懸念される。
特許文献21には、エポキシ基を2個以上有するエポキシ化合物、所定の多核フェノール化合物、及びエネルギー線感受性カチオン重合開始剤から成る感光性組成物が開示されている。しかし、その封止構造は、従来の中空型の封止構造であり、乾燥剤を使用しなければ信頼性が確保できない。また、中空であるため光学的な損失も避けられない。特許文献22には、柔軟性重合体組成物から形成され、かつ発光素子の発光面と封止部材との間に配設される有機EL素子用封止剤が開示されている。しかし、このように単に配設するのみで接着されない場合には、高い信頼性の確保は困難である。また、特許文献23には、背面基板と、第1電極、有機膜及び第2電極を持つ有機電界発光部と、前記背面基板と結合して前記有機電界発光部が収容された内部空間を充填する、層状無機物、高分子及び硬化剤から成るナノ複合体を含む封止層とを具備する有機EL素子が開示されている。ここで、層状無機物、高分子および硬化剤から成るナノ複合体を含む封止層は、内部空間を充填すると共に、乾燥剤として作用するものである。そして、従来の貼り付けるタイプの乾燥剤ではなく、塗布可能なタイプの乾燥剤にして信頼性を確保しているのである。そのため、該封止層は上下基板を接着する機能を有しておらず、従って、封止層とは別に上下基板の隙間を埋める封止材又は充填材が必要となる。
近年、例えば、特許文献24に記載されているように、有機EL素子を照明に使用することが検討されている。照明として用いられる有機EL素子においては、従来、基板はガラス又は金属缶を用いた中空構造であったため、デバイス厚の低減及び耐衝撃性の向上が容易ではなかった。更には、発光時の発熱による輝度の均一性、及び、耐久性等に問題があった。従って、照明装置として用いられる有機EL素子には、様々な使用環境における耐久性、各種部位への適用可能性、大量生産のための生産性等が求められている。
照明装置として用いられる有機EL素子の封止材料として、バリアフィルムが有用視されている。特許文献25記載の発明においては、このバリアフィルムを構成する硬化性樹脂組成物として、2液型の熱硬化性エポキシ樹脂が使用されている(特許文献25)。しかし、このような2液型の熱硬化性エポキシ樹脂では、塗工時に定量して混合する必要があると共に、可使時間に制限があるという問題がある。更に、液状材料であることによる種々の問題、例えば、大面積の基材上に塗工する際に均一な硬化性樹脂組成物を形成することが困難であること、硬化性樹脂組成物を塗布する際に塗布ロボットで必要な部位に塗工するためのノズルの移動に時間を要するという問題があり、連続生産をする上では課題が残る。
これを解決する目的で、特許文献26には、ロールトゥロール法による生産を可能とするため、予め基材となるフィルム上に硬化性樹脂組成物を配した構造の有機EL素子封止部材が提案されている。しかしながら、この発明においても、硬化性樹脂組成物を、比較的厚みのあるPETなどのフィルム上に塗布したものであるため、ロールトゥロール法では生産性が悪い。また、エポキシ樹脂からなる硬化性樹脂組成物層で無機膜層をサンドイッチする構造となっているために、製造に煩雑な工程を要するものであり現実的なものではなかった。
特開平3-37991号公報 特開平3-261091号公報 特開平4-212284号公報 特開平5-36475号公報 特開平4-363890号公報 特開平5-89959号公報 特開平5-129080号公報 特開2001-237065号公報 特開2007-109422号公報 特開2007-284475号公報 特開2001-237064号公報 特開平11-274377号公報 特開平9-176413号公報 特開平9-235357号公報 特開平10-135255号公報 特開2004-59718号公報 特開2004-210901号公報 特開2004-115650号公報 特開2004-292594号公報 特開2008-59945号公報 WO05/019299号公報 特開2005-129520号公報 特開2005-216856号公報 特開2004-234868号公報 特開2004-47381号公報 WO2006/104078号公報
上述したように有機EL素子のダークスポットによる劣化が十分に改善されず、発光特性が不安定なことは、ファクシミリ、複写機、液晶ディスプレイのバックライト等の光源としては重大な欠陥となり、また、照明及びフラットパネルディスプレイなどの表示素子としても望ましくない。さらに照明用途として用いるに際して、より安価、高い信頼性で連続生産する必要があるため、生産性の向上には特に重視する必要があり、これらを実現するための技術が期待されていた。本発明は上記従来技術の問題を解決するものである。すなわち、本発明は、有機EL素子に悪影響を及ぼすことなく封止し得ることにより、ダークスポットの発生及び成長を確実に抑制して、長期間にわたって安定な発光特性を維持することができるばかりではなく、生産性を向上し得ることにより、より安価に有機EL素子を生産することができる有機EL素子封止部材を提供するものである。
上記の課題を解決するため、本発明では以下の構成の有機EL素子封止部材を創出するに至った。すなわち、本発明は、プラスチックフィルムに金属薄層を1層以上、好ましくは1~5層、より好ましくは1~3層重ね合わせたバリアフィルム上に、硬化性樹脂組成物層を配した有機EL素子封止部材であって、前記硬化性樹脂組成物層の厚みが5~100μmであり、かつ、前記硬化性樹脂組成物が、未硬化状態において、25℃で非流動性を示し、加熱すると40~80℃の範囲で流動性を発現することを特徴とする有機EL素子封止部材である。
前記有機EL素子封止部材の好ましい態様としては、前記金属薄層が、アルミニウム、マグネシウム、亜鉛、銅、金、銀、白金、タングステン、マンガン、チタン、コバルト、ニッケル及びクロムより成る群から選ばれる1種以上の金属を含み、かつ、前記プラスチックフィルムが、ポリエチレンテレフタレート、ポリビニルアルコール、ポリエチレンナフタレート、ポリアミド、ポリオレフィン、ポリカーボネート、ポリエーテルサルフォン及びポリアリレートより成る群から選ばれる1種以上の樹脂を含む。これら金属薄層とプラスチックフィルムから成る積層フィルムを用いることで、軽量であり、かつ酸素及び水分の透過性の低いバリア層を形成することができ、照明装置用途、及び、例えば、携帯電話、テレビ等のディスプレイのような画像表示装置用途、とりわけ、照明装置用途に好適なフレキシブルな有機EL素子に、本発明の有機EL素子封止部材を適用することができる。さらに好適な態様として、前記プラスチックフィルムの厚みが1~50μmであり、かつ前記金属薄層の厚みが1~50μmである有機EL素子封止部材が挙げられる。
本発明の有機EL素子封止部材の特に好ましい態様として、前記硬化性樹脂組成物層が、以下の成分を含む硬化性樹脂組成物より成る有機EL素子封止部材が挙げられる。
(A)1分子中に少なくとも1個以上のグリシジル基を有し、かつ重量平均分子量が200~2,000である化合物、
(B)1分子中に少なくとも1個以上のグリシジル基を有し、かつ重量平均分子量が20,000~100,000であるフェノキシ樹脂、ここで、(B)成分の好ましい配合量は、前記(A)成分100質量部に対して25~100質量部である、
(C)(c-1)エネルギー線照射により活性化し、酸を発生する化合物、および/または(c-2)加熱により活性化する熱潜在性硬化剤、ここで、好ましい配合量は、前記(A)成分及び(B)成分の合計100質量部に対して、(c-1)成分が0.1~5.0質量部、および/または、(c-2)成分が0.1~20質量部である、
(D)グリシジル基含有シランカップリング剤、ここで、(D)成分の好ましい配合量は、(A)成分及び(B)成分の合計100質量部に対して0.1~10質量部である。
また、本発明の有機EL素子封止部材において、前記硬化性樹脂組成物は、予めシート状に形成されたシート状硬化性樹脂組成物であることが望ましく、該硬化性樹脂組成物の未硬化時における粘度が、25℃において20,000Pa・s以上であり、かつ70℃において5,000Pa・s以下であることが好ましい。シート状にすることで、液状の硬化性樹脂組成物における問題点、すなわち有機EL素子封止部材と有機EL素子の貼り合せ接着時の作業性が改善される。さらに本発明は、前記シート状硬化性樹脂組成物をロールトゥロール工法により、前記プラスチックフィルムと金属薄層よりなるバリアフィルムに貼着してなる有機EL素子封止部材にも関する。
加えて、本発明は、前記有機EL素子封止部材により封止される有機EL素子が照明装置用である発明に関する。
前記有機EL素子封止部材を構成する硬化性樹脂組成物を20μmの厚さの硬化物としたとき、120℃にて15分間放置した際の該硬化物のアウトガス発生量が2,000μg/cm以下であり、加えて、該硬化性樹脂組成物の硬化時の収縮率が3%以下であること、及び、前記プラスチックフィルムの150℃での30分間の加熱時における、長手方向の熱収縮率(MD)が1%以下でありかつ幅方向の熱収縮率(TD)が0.5%以下であることの全てを満たすことが特に好ましい。
本発明の有機EL素子封止部材は、各種用途に用いられる有機EL素子に適用できるが、特に照明装置用途に用いられる有機EL素子の封止に好ましい。近年、照明装置として研究が進められている有機EL照明は、素子自体が面で発光するものであり、フレキシブル基板を用いることで任意の形状にすることができるという特性から有用視されている。前述の通り、照明装置に用いられる有機EL素子には、様々な使用環境に適用可能な耐久性、各種部位に適用可能なフレキシブル性、大量生産に適した生産性等が求められている。本発明の有機EL素子封止部材を用いると、これら課題を解決することができる。すなわち、貼着面全体を封止することにより、ダークスポットの発生及び成長に由来する有機EL素子の発光特性劣化を抑制し得るだけではなく、有機EL素子を封止部材で封止した後にデバイス全体の構造を頑強なものとし、その結果、耐久性が向上する。また、本発明の有機EL素子封止部材は可撓性を有したフィルム状であるため、フレキシブルな有機EL素子の封止に適しており、さらにフィルム状であるためロールトゥロール工法による生産が容易であることから、生産性の向上にも寄与する。
本発明の有機EL素子封止部材を用いることにより、前記課題を解決する有機ELデバイスを形成することができる。例えば、フレキシブルなプラスチックフィルム基板上に、透明電極、正孔及び電子注入層、正孔及び電子輸送層、発光層、並びに、背面電極から成る有機EL素子を形成し、その上に、本発明の有機EL素子封止部材を加圧しながら貼りあわせることにより封止する。
より詳細には、本発明の有機EL素子封止部材を用いて封止した有機EL素子は、次のようにして製造される。まず、プラスチックフィルム基板上に、透明電極を約0.1μmの厚みで成膜する。透明電極の成膜は、真空蒸着及びスパッタリング等により実施される。続いて、透明電極の上に正孔輸送層及び有機EL層を夫々0.05μm厚みで順次成膜する。更に、有機EL層の上に背面電極を0.1~0.3μmの厚みで成膜して、有機EL素子を形成する。ここで、真空蒸着による成膜では、結晶粒が成長して膜表面の平滑度を低下させることがあり、薄膜ELに適用するに際しては、絶縁破壊膜及び不均一発光の原因となることがある。一方、スパッタリングによる成膜では、膜表面の平滑性がよく、その上に薄膜デバイスを積層する際に好ましい。
このようにして得られた有機EL素子の背面電極側に、本発明の有機EL素子封止部材を、ロールラミネーター又は真空ラミネーター等を使用して貼り合わせる。本発明においては、生産性等の観点から、有機EL素子封止部材の貼り合わせはロールラミネーターにより行うことが好ましい。その後、光硬化性の硬化剤(c-1)を含む樹脂組成物層を備える封止部材では、紫外線などの活性エネルギー線を照射して完全に硬化させる。ここで、硬化を促進するために活性エネルギー線の照射後に70℃~100℃でアフターベーキングすることが好ましい。一方、熱硬化性の硬化剤(c-2)を含む樹脂組成物層を備える封止部材では、加熱を行って硬化を完了させる。また、光硬化性の硬化剤(c-1)と熱硬化性の硬化剤(c-2)との両者を含む樹脂組成物層を備える封止部材では、活性エネルギー線照射後、加熱硬化して完全硬化する。有機EL素子の信頼性を向上させる目的で、あらかじめ有機EL素子を無機膜で保護した状態の有機EL素子と、本発明の有機EL素子封止部材とを貼り合わせることも可能である。ここで、無機膜としては、酸化シリコン、窒化シリコン、酸化窒化シリコンなどが挙げられる。また、光硬化性の硬化剤(c-1)を含む樹脂組成物層を備える封止部材では、あらかじめ紫外線照射にて組成物の硬化反応を促進し、その過程で、該封止部材を有機EL素子と重ね合わせることも可能である。この場合、その後に完全に硬化させるため50~100℃でアフターベーキングを行っても良い。
本発明の有機EL素子封止部材に用いるプラスチックフィルムは、封止工程での反りを最小限に抑えるため、その厚みが1~50μmの範囲であることが好ましく、より好ましくは10~30μmである。上記下限未満であるとガスバリア性能の信頼性に乏しく、上記上限を超えると積層後に可撓性が低下する。また、材質は、ポリエチレンテレフタレート(PET)、ポリビニルアルコール(PVA)、ポリエチレンナフタレート、ポリアミド、ポリオレフィン、ポリカーボネート、ポリエーテルサルフォン及びポリアリレートから選ばれる1種以上の樹脂が好適である。このうち、ガスバリア性、経済性、硬化性樹脂組成物の接着性等の観点からPETが特に好ましい。さらに150℃での30分間の加熱時における、長手方向の熱収縮率(MD)が1%以下であり、幅方向の熱収縮率(TD)が0.5%以下であることが特に望ましい。ここで、MDとは長手方向の収縮率S160を指し、TDとは幅方向の収縮率S160を指す。
バリアフィルムに用いる金属薄層としては、アルミニウム、マグネシウム、亜鉛、銅、金、銀、白金、タングステン、マンガン、チタン、コバルト、ニッケル及びクロムから選ばれる1種以上の金属を含む金属薄層が好ましい。このうち、ピンホールの発生頻度の低いアルミニウムがより好ましい。層厚は1~50μmであることが好ましく、より好ましくは20~40μmである。上記下限未満であるとガスバリア性能の信頼性に乏しく、上記上限を超えると基材に追従するための柔軟性に問題が出る。
バリアフィルム上に配した硬化性樹脂組成物層は、25℃では非流動性を示し、かつ加熱すると40~80℃で流動性を発現するものである。ここで、非流動性とは、25℃での粘弾性測定におけるG’(貯蔵弾性率)の値が、G”(損失弾性率)の値よりも大きいことを意味する。また、流動性の発現とは熱を加えていった際の粘弾性測定において、前記G’の値がG”と等しくなった状態のことを示す。該硬化性樹脂組成物層が素子の凹凸に追従し、またギャップを埋めることにより信頼性の高い接着を行えるようにするため、その厚さは5~100μmの範囲、より好ましくは10~40μmであることが望ましい。上記下限未満であると形成された有機EL素子の凹凸に追従することが困難となる。一方、上記上限を超えると塗膜の均一な硬化が困難となり、その結果、発光が不均質になるという弊害が生じる。また、硬化性樹脂組成物を20μmの厚さの硬化物としたとき、120℃×15分放置した際のアウトガス発生量が2,000μg/cm以下であり、硬化時の収縮率が3%以下であり、さらには組成物の水分量が1,500ppm以下であることが特に望ましい。
本発明の硬化性樹脂組成物において、分子中に少なくとも1個のグリシジル基を有し、重量平均分子量が200~2,000の化合物(A)としては、好ましくは、低分子量ビスフェノールA型エポキシ樹脂、低分子量ビスフェノールF型エポキシ樹脂、低分子量水素化ビスフェノールA/F型エポキシ樹脂、低分子量フェノールノボラック型樹脂などのエポキシ系樹脂が挙げられる。これらの中でも塩素イオン含有量が少ないもの、例えば、加水分解性塩素が500ppm以下であるものがより好ましい。また、グリシジル基の数は、1個以上、好ましくは1~10個、より好ましくは1~5個、更に好ましくは1~3個である。(A)成分としては、例えば、含有する塩素イオン濃度が少ないエピクロンEXA-835LV(商標、大日本インキ化学工業株式会社製)及びjER152(商標、ジャパンエポキシレジン株式会社製)が好ましい。また、(A)成分の分子中には、グリシジル基とは別にラジカル重合可能な不飽和二重結合を有する化合物を用いることもできる。その場合には、適宜、ラジカル重合開始剤を加えることができる。
1分子中に少なくとも1個のグリシジル基を有し、重量平均分子量が20,000~100,000のフェノキシ樹脂(B)としては、好ましくは、ビスフェノールA型フェノキシ樹脂、ビスフェノールF型フェノキシ樹脂、ビスフェノールA・ビスフェノールF共重合型フェノキシ樹脂などが挙げられる。これらの中でも硬化性樹脂組成物組成物をシート状に形成する際に、高い膜強度が得られるフェノキシ樹脂がより好ましい。また、グリシジル基の数は、1個以上、好ましくは1~10個、より好ましくは1~5個、更に好ましくは1~3個である。(B)成分としては、例えば、jER1256(商標、ジャパンエポキシレジン株式会社製)、YP-70(商標、東都化成株式会社製)などが好ましく使用できる。(B)成分の添加量は、(A)成分100質量部に対して、25~100質量部添加することが好ましく、更に好ましくは30質量部~70質量部である。上記下限未満であるとシート状に形成した際に膜が形成できず、上記上限を超えるとシートに形成した際に膜が硬く脆くなり、貼り合わせ工程での作業性が悪くなる。また架橋密度が低くなるために、製品としての信頼性を保つことができない。
本発明に用いられる(C)(c-1)エネルギー線照射により活性化し、酸を発生する化合物は、所謂光照射によってカチオン活性種を発生する塩である。例えば、芳香族ジアゾニウム塩、芳香族ハロニウム塩、芳香族スルホウニウム塩等のオニウム塩類等が挙げられる。市販品として、例えば、SP-151、SP-170、SP-171、SP-150、PP-33(いずれも商標、株式会社旭電化製)、イルガキュア-261、CG-24-61(いずれも商標、チバガイギー社製)、UVI-6974、UVI-6970、UVI-6990、UVI-6950(いずれも商標、ユニオンカーバイド社製)、BBI-103、MPI-103、TPS-103、DTS-103、NAT-103、NDS-103(いずれも商標、ミドリ化学株式会社製)、CI-2064、CI-2639、CI-2624、CI-2481(いずれも商標、日本曹達株式会社製)、RHODORSIL PHOTOINITIATOR 2074(商標、ローヌ・プーラン社製品)、CD-1012(商標、サートマー社製品)、FC-509(商標、3M社製品)、SI-60L、SI-80L、ドSI-100L(いずれも商標、三新化学工業株式会社製)、IBPF、IBCF、TS-01、TS-02(いずれも商標、株式会社三和ケミカル製)、UVE1014(商標、ゼネラルエレクトロニクス社製)等が挙げられる。
一方、(c-2)加熱により活性化する熱潜在性硬化剤としては、公知の加熱硬化型エポキシ樹脂用の硬化剤を使用することができる。本発明においては(A)及び(B)成分との相溶性、安定性の良好さ、着色性の低さなどの観点から、常温で固体であり、かつ融点もしくは分解温度が80度以上である潜在性イミダゾール化合物が特に好ましい。例えば、2-メチルイミダゾール、2-ヘプタデシルイミダゾール、2-フェニルイミダゾール、2-フェニルー4-メチルイミダゾール、1-シアノエチル-2-フェニルイミダゾール、1-シアノエチル-2-ウンデシルイミダゾリウムトリメリテイト、1-シアノエチル-2-フェニルイミダゾリウムトリメリテイト、2,4-ジアミノー6-[2’-メチルイミダゾリル-(1’)]-エチル-s-トリアジン、2,4-ジアミノ-6-[2’-ウンデシルイミダゾリル-(1’)]-エチル-s-トリアジン、2,4-ジアミノ-6-[2’-エチル-4’-メチルイミダゾリル-(1’)]-エチル-s-トリアジン、2,4-ジアミノ-6-[2’-メチルイミダゾリル-(1’)]-エチル-s-トリアジンイソシアヌル酸付加物、2-フェニルイミダゾールイソシアヌル酸付加物、2-メチルイミダゾールイソシアヌル酸付加物、2-フェニル-4,5-ジヒドロキシメチルイミダゾール、2-フェニル-4-メチル-5-ヒドロキシメチルイミダゾール、2-メチルイミダゾリン、2-フェニルイミダゾリン、2,3-ジヒドロ-1H-ピロロ[1,2-a]ベンズイミダゾール等が好ましい。
ここで、(C)成分は、(A)および(B)成分の硬化剤として機能する。(C)成分の添加量は、保存性、硬化性、透過率を考慮して、(A)成分及び(B)成分の合計100質量部に対して、(c-1)では0.1~5質量部が好ましく、より好適には0.3~3質量部である。(c-2)では0.1~20質量部が好ましく、より好適には0.5~5質量部である。特に(c-2)においては、添加量が上記下限未満であると、(A)及び(B)成分を十分に硬化させることができず、また、上記上限を超えると着色が激しくなり、また、組成物としての安定性が悪くなる。
本発明のグリシジル基含有シランカップリング剤(D)によれば、組成物を着色することなく、被着体に対し良好な接着性を付与することができる。さらに該グリシジル基含有シランカップリング剤(D)は、(A)及び(B)成分と良好に相溶し、組成物中からの分離を起こさず、さらに組成物をシート状に加工した際に滲出することもない。本発明の(D)成分としては、例えば、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルメチルジメトキシシラン、3-グリシドキシプロピルメチルジメトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン等のシランカップリング剤等が挙げられる。これらのシランカップリング剤は2種類以上を混合して使用しても良い。これらの中でも、3-グリシドキシプロピルトリメトキシシラン(KBM-403(商標)、信越化学工業株式会社製)が、(A)成分や(B)成分との相性が良く、安定性に優れているため特に好ましい。この(D)成分の添加量は、(A)及び(B)成分の合計100質量部に対して、0.1~10質量部であることが好ましい。さらに好ましくは0.3~3質量部である。上記下限未満であると接着性を発揮することができず、上記上限を超えるとアウトガスが発生してしまい、有機EL素子に悪影響を及ぼす可能性がある。該悪影響としては、例えば、アウトガスとの反応により有機EL素子を構成する色素分子の活性が低下し、活性が低下した素子部はダークスポットとして現れる。さらにこのダークスポットは成長して、発光部分の面積が低減していくことにより最終的には照明、表示デバイスとして重大な欠陥となってしまう。このような問題を引き起こす、封止部材中の硬化性樹脂組成物由来のアウトガス量は、2,000μg/cmを越える量である。
本発明の硬化性樹脂組成物は、上述した(A)~(D)成分をメチルエチルケトン又はトルエンなどの有機溶媒に溶解した溶液を、塗工機等を用いて一定の厚みになるように、プラスチックフィルムに金属薄層を積層してなるバリアフィルムの金属薄層側に塗工し、然る後、有機溶媒を揮発させて、常温(約25℃)で固形のシート状(フィルム状、テープ状)の有機EL素子封止部材に成形する。本発明においては、前記硬化性樹脂組成物を上記と同様の手法にて、予め、PETフィルムなどに塗工し、硬化性樹脂組成物のシートとして用意することができる。その際は離型紙などを介して該シートを巻装してもよい。本発明の硬化性樹脂組成物は前記シート状にして用意しておくことで、前記バリアフィルムと貼着を行う際に、ロールトゥロール工法による省力化、すなわち均一な膜厚の形成、塗工装置による塗工工程の省略、歩留まりの向上などを図ることができる。さらにシート状であることの特性により気泡を混入することなく貼着を行うことができるため、生産性と信頼性の両立を実現できる。
本発明の硬化性樹脂組成物は、40~80℃の範囲で流動性を発現するものである。このことにより、有機EL素子を封止する際に、加熱流動化した硬化性樹脂組成物を素子表面の凹凸に円滑に充填することができ、気泡を排除することができる。この流動温度が40℃未満では、熱転写の際に硬化性樹脂組成物の流動性が大き過ぎて作業性が悪くなることがあり、加えてシート形状が保持されない。一方、80℃を超えると熱転写の際の流動性が悪くなるため気泡を含みやすくなることがあり、また、必要以上に加熱してしまうため有機EL素子に悪影響を与えてしまう可能性がある。ここで、前記25℃において固形状であることの目安としては、硬化性樹脂組成物の粘度が、好ましくは20,000Pa・s以上であり、好ましくは150,000Pa・s以下である。また40~80℃の範囲で流動性を発現することの目安として、70℃での硬化性樹脂組成物の粘度が、5,000Pa・s以下であり、好ましくは500Pa・s以上であることが望ましい。常温域で固形状に形成することで低温での長期保管が可能となる。また、含水分を一定以下に保つためにシリカゲル等の乾燥剤とともに保管することが好ましい。
本発明には、さらに本発明の目的を達成可能な限り、その他の成分、例えば保存安定剤、可塑剤、タック調整剤等を添加することも可能である。但し、これらの添加成分中の水分や不純物には注意が必要である。
このような構成とすることで、本発明の有機EL素子封止部材は、その透湿度が60℃、湿度95%の雰囲気中において0.1g/m×24時間以下となり、さらにはその熱伝導率は、0.5kW/h以上となり得る。
以下、実施例にて本発明を詳細に説明するが、本発明は、以下の実施例に制約されるものではない。
[硬化性樹脂組成物の評価]
表1に示す配合の各硬化性樹脂組成物を調製し、各種評価試験に供した。ここで使用した各成分は次の通りである。また、配合割合は、特記なき限り、重量基準である。
(A)成分及びその比較成分
エピクロンEXA-835LV(商標):1分子中に2個のグリシジル基を有するビスフェノールA型及びF型混合エポキシ樹脂(低塩素型、重量平均分子量が300~350の範囲に存在する各エポキシ樹脂の混合物)、大日本インキ化学工業株式会社製)(表1中では、「EXA835LV」と略記する。)
jER152(商標):1分子中に2個のグリシジル基を有するフェノールノボラック型エポキシ樹脂(重量平均分子量:約530、ジャパンエポキシレジン株式会社製)
jER1001(商標):1分子中に2個のグリシジル基を有する固形ビスフェノール型エポキシ樹脂(重量平均分子量:約900、ジャパンエポキシレジン株式会社製)
jER1010(商標)(比較成分):1分子中に2個のグリシジル基を有する固形ビスフェノール型エポキシ樹脂(重量平均分子量:約5,500、ジャパンエポキシレジン株式会社製)
(B)成分及びその比較成分
YP-70(商標):1分子中に2個のグリシジル基を有するフェノキシ樹脂(重量平均分子量:約50,000、東都化成株式会社製)
jER1256(商標):1分子中に2個のグリシジル基を有するフェノキシ樹脂(重量平均分子量:約50,000、ジャパンエポキシレジン株式会社製)
エポフレンドCT310(商標)(比較成分):グリシジル基を有するスチレン-ブタジエン共重合体(重量平均分子量:約50,000~150,000、ダイセル化学工業株式会社製)(表1中では、「CT310」と略記する。)
(C)成分
(c-1)
アデカオプトマーSP-170(商標):4,4-ビス{ジ(β-ヒドロキシエトキシ)フェニルスルフォニル}フェニルスルフィド-ビス-ヘキサフルオロアンチモネート(株式会社旭電化製)(表1中では、「SP-170」と略記する。)
(c-2)
2PZ-CNS-PW(商標):1-シアノエチル-2-フェニルイミダゾリウムトリメリテイト(四国化成工業株式会社製)
(D)成分
KBM403(商標):3-グリシドキシプロピルトリメトキシシラン(信越化学工業株式会社製)
表1に示した各種評価(特性)試験は下記の通りに実施した。
粘度測定(未硬化時)
表1に示した各配合割合を用いて、配合例1~5及び比較配合例1~5の各硬化性樹脂組成物を調製した。調製方法は次の通りである。(A)成分に(C)成分を常温で添加して攪拌し、均一に溶解した[溶液(X)]。別途、溶媒としてのメチルエチルケトンに(B)成分を常温で添加して攪拌し、均一に溶解した[溶液(Y)]。これら溶液(X)及び溶液(Y)と(D)成分とを、常温で攪拌して混合し硬化性樹脂組成物を得た。
該硬化性樹脂組成物から、予め離型処理を施したポリエチレンテレフタレート(PET)フィルム上に、塗工機を用いて薄膜を成形した。次いで、80℃で3分間加熱して溶媒を除去し、次に、PETフィルムごと薄膜を縦200mm×横250mmの寸法に切断し、次いで、PETフィルムを剥離して、厚み20μmの薄膜を得た。得た薄膜を横縦交互に合計6回折り畳み、1.0mm以上の厚みになるようにした。次いで、このようにして折り畳んだ試料の全周辺部に厚さ1.0mmのステンレス鋼板を置いてスペーサーとし、真空ラミネーターを用いて減圧しながらプレスを行い脱気し、厚み1.0mmにすることにより粘度測定用試験片とした。
粘度測定に使用した装置は、Reologica社製粘弾性測定装置DAR-100(商標)であり、測定は、25℃及び70℃において実施した
流動開始温度測定
上記の粘度測定と同一にして厚み20μmの薄膜を得た。該薄膜を、厚みが約100μmとなるように5枚重ね、次いで、これを真空ラミネーターを用いて脱気して試験片とした。流動開始温度測定に使用した装置は、Reologica社製粘弾性測定装置DAR-100であり、測定は、試料を昇温速度4℃/分で10℃から150℃まで加熱することにより実施した。ここで、流動開始温度とは、前記粘弾性測定装置におけるG’(貯蔵弾性率)の測定値が、G”(損失弾性率)の測定値と等しくなった時の温度とした。
アウトガス量測定
上記の粘度測定と同一にして厚み20μmの薄膜を得た。該薄膜から約5mgを、薄膜状態を維持したまま採取し秤量して試料とした。ダブルショットパイロライザー[フロンティア・ラボ社製P2020iD(商標)]およびガスクロマトグラフ/質量分析計(GC-MS)[アジレント・テクノロジー社製6890N/5973inert(商標)]を組み合わせたダイナミックスペース法により、該試料を120℃で15分間加熱した際に発生するアウトガス量(単位:μg/cm)を測定した。発生したアウトガス総量は、n-デカンを標準物質として定量したものである。ここで、アウトガス量(μg/cm)とは、試料として使用した薄膜の単位面積当たりに発生したガス重量を言い、以下のようにして算出した値である。まず、上記のようにして試料約5mgから発生したガス重量を実測し、これを試料1g当たりの発生ガス重量(μg/g)に換算した。次いで、上記のようにして得た厚み20μmの薄膜から1cm×1cmの試料を切り出して秤量し、1cm当たりの試料重量(g/cm)を実測した。そして、これらの値の積、即ち、[発生ガス重量(μg/g)]×[1cm当たりの試料重量(g/cm)]をアウトガス量(μg/cm)とした。
硬化収縮率測定
上記の粘度測定と同一にして厚み1.0mmの試料を得た後、縦2.0mm×横2.0mmに切断して硬化収縮率測定用試験片とした。該試験片を空気中及び蒸留水中で秤量した。夫々の秤量値をW1及びW2とする。次いで、(C)成分として熱潜在性硬化剤(c-2)を使用した配合例1~4及び比較配合例1~5から作製した試験片に関しては、これらの試験片を100℃で3時間加熱することにより硬化した。また、(C)成分として光酸発生化合物(c-1)を使用した配合例5から作製した試験片に関しては、該試験片に紫外線を6,000mJ/cmの条件で照射し、次いで、これを加熱機により80℃で1時間加熱して硬化した。このようにして硬化した各試験片を、再度、空気中及び蒸留水中で秤量した。夫々の秤量値をW3及びW4とする。ここで、全ての秤量は、1mg単位まで実施した。硬化収縮率(ΔV)は下記式により算出したものである。
ΔV(%)=[(W3-W4)-(W1-W2)]×100/(W1-W2)
上記の結果を、下記の表1に記載する。
Figure JPOXMLDOC01-appb-T000001
(実施例1~8及び比較例1~7)
実施例及び比較例においては、表2及び3に示すように、表1に示した配合例1及び5、並びに、比較配合例1~5の各硬化性樹脂組成物を使用した。これらの硬化性樹脂組成物から、予め離型処理を施したポリエチレンテレフタレート(PET)フィルム上に、塗工機を用いて薄膜を成形し、表2及び3に示した厚み(μm)を有する各シート状硬化性組成物を作製した。
一方、表2及び3に示した厚み(μm)の各プラスチックフィルム上に、同じく表2及び3に示した厚み(μm)の各金属薄層を重ね合わせてバリアフィルムを作製した。次いで、該バリアフィルムの金属薄層側に、上記のようにして作製した各シート状硬化性組成物を、ロールラミネーター(エム・シー・ケー社製ドライフィルムラミネーター)を使用するロールトゥロール工法により貼着し、次いで、シート状硬化性組成物のPETフィルムを剥離することにより、有機EL素子封止部材を作製した。実施例7については、アルミニウムを蒸着することによりバリアフィルムを作製した。
別途、PETフィルム上に、スパッタリングにより、透明電極を厚み0.1μmで成膜し、その上に、正孔輸送層及び有機EL層を夫々厚み0.05μmで順次成膜し、次いで、有機EL層の上に、背面電極を0.2μmの厚みで成膜することにより、評価用の有機EL素子を作製した。
次いで、このようにして作製した有機EL素子封止部材のシート状硬化性組成物が、有機EL素子の背面電極と接するように配置して、有機EL素子上に、上記の有機EL素子封止部材を、ロールラミネーターを使用して貼付した。次いで、これを、真空ラミネーターを使用して加熱圧着した。次いで、実施例5においては、有機EL素子に加熱圧着したシート状硬化性組成物に、紫外線を6,000mJ/cmの条件で照射し、次いで、これを加熱機により80℃で1時間加熱して硬化することにより、他の実施例及び比較例においては、有機EL素子に加熱圧着したシート状硬化性組成物を、100℃で3時間加熱して硬化することにより、有機EL素子を封止した。
上記の有機EL素子封止部材及び封止後の有機EL素子を試験片として、下記の特性を評価した。
透湿性
有機EL素子封止部材について、水蒸気透過率測定装置[Lyssy社製、L80-5000(商標)]を用い、温度60℃、湿度95%Rhの条件下で透湿度を測定した。ここで、測定に用いた水蒸気透過率測定装置の検出限界は、0.1g/m・dayである。
基板の反り
有機EL素子封止部材について、これを照明部材として用いる際に必要とされる強靱性の指標として、基板の反りを評価した。基板の反りは、下記のようにして評価した。まず、有機EL素子封止部材のシート状硬化性組成物がアルカリガラス面に接するように配置して、有機EL素子封止部材を、ロールラミネーターを用いて、温度80℃、圧力0.1MPa、ロール速度0.3m/分の条件で、厚さ0.7mm×縦300mm×横350mmのアルカリガラスに貼り合わせた。次いで、実施例5においては、アルカリガラスに貼り合わせた有機EL素子封止部材に、紫外線を6,000mJ/cmの条件で照射し、次いで、これを加熱機により80℃で1時間加熱して硬化することにより、他の実施例及び比較例においては、アルカリガラスに貼り合わせた有機EL素子封止部材を、100℃で3時間加熱して硬化することにより、有機EL素子封止部材を硬化し接着させた。次いで、アルカリガラスを水平面に静置し、有機EL素子封止部材の接着前後の端部の変位を測定し、変位の値が全て1.0mm以内であったものを○で示し、1mm±0.2mmの範囲であったものをΔで示し、1.0mmを超えるものを×で示した。ここで、○及びΔを合格とし、×を不合格とした。
生産性
有機EL素子封止部材について、これを照明部材として生産する際に必要とされる生産性の評価を行った。生産性は、有機EL素子封止部材のシート状硬化性組成物がPETフィルム面に接するように配置して、有機EL素子封止部材と厚み125μmのPETフィルムとを、ロールラミネーターを用いて温度80℃、圧力0.1MPa、ロール速度0.3m/分の条件で貼り合わせて、接着面の観察を行うことにより評価した。接着面に気泡、樹脂のはみ出し、剥がれがないものを○で示し、ごく僅か気泡、はみ出し又は剥がれの認められたものをΔで示し、気泡、樹脂のはみ出し、剥がれがあるものを×で示した。ここで、○及びΔを合格とし、×を不合格とした。
発光輝度ムラ
封止後有機EL素子の封止の均一性を、発光輝度ムラを指標として評価した。発光輝度ムラの程度は、赤外線サーモグラフィ[Apiste社製、FVS-7000E(商標)]を用いて発光面内の温度分布により評価した。封止後有機EL素子に5Vの電圧を印加した際、面内の最大温度差が15℃以内であったものを○で示し、15℃を超え30℃以下であったものを△で示し、30℃を超えたものを×で示した。ここで、○及びΔを合格とし、×を不合格とした。
発光劣化
封止後有機EL素子について、封止部材としての信頼性の指標として、発光特性の変化を評価した。発光特性の変化は、封止後有機EL素子を85℃-85%RHの雰囲気下に500時間静置し、その前後での駆動電圧の変化により評価した。封止後有機EL素子に0.1mAの電流を加えた際に駆動電圧の変化率が10%以内であったものを○で示し、10%を超え20%以内であったものを△で示し、20%を超えたものを×で示した。ここで、○及びΔを合格とし、×を不合格とした。
上記の結果を表2及び3に示した。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
*1:封止後有機EL素子の特性に問題はなかったが、有機EL素子封止部材を有機EL素子に貼り合わせるときの位置決めの際に、硬化性組成物の一部が有機EL素子に貼り付き、有機EL封止部材の表面から硬化性組成物が部分的に欠損するという問題があった。
*2:封止後有機EL素子の特性に問題はなかったが、有機EL素子に貼り合わせる際に比較的高温を要し、有機EL素子にダメージを与えるという問題があった
実施例1~4及び6~8は、配合例1の硬化性樹脂組成物を使用したものである。実施例1及び2は、夫々、金属薄層として、アルミニウム箔及び銅箔を使用したものである。金属薄層に含まれる金属の種類の関わらず、いずれも良好な結果を示した。実施例3は、プラスチックフィルムとしてポリビニルアルコール(PVA)を使用したものである。ポリエチレンテレフタレート(PET)を使用した実施例1と比較して、基板の反りが多少生じたが、本発明の効果を損なうものではなかった。実施例4は、シート状硬化性組成物の厚みを大きくしたものである。多少生産性が低下した。実施例6は、金属薄層の厚みを増加させたものである。基板の反り及び生産性が多少悪化したが、本発明の効果を損なうものではなかった。実施例7は、金属薄層であるアルミニウムを蒸着によりプラスチックフィルムに施与したものである。透湿性が多少高くなり、かつ発光劣化及び発光輝度ムラが多少悪化したが、いずれも本発明の効果を損なうものではなかった。実施例8は、PETフィルムの厚みを厚くしたものである。基板の反りが多少悪化したに過ぎなかった。また、実施例5は、配合例5の硬化性実施組成物を使用したものである。実施例1と同様に良好な結果を示した。
一方、比較例1は、実施例1に対して、シート状硬化性組成物の厚みを著しく大きくしたものである。基板の反りが大きくなり、かつ生産性が悪化した。比較例2は、比較例1とは反対に、シート状硬化性組成物の厚みを著しく小さくしたものである。基板の反りが大きくなり、かつ発光輝度ムラが著しかった。比較例3は、比較配合例1の硬化性樹脂組成物を使用したものである。発光劣化が著しかった。比較例4は、比較配合例2の硬化性樹脂組成物を使用したものである。発光劣化が著しく、かつ発光輝度ムラも激しかった。比較例5は、比較配合例3の硬化性樹脂組成物を使用したものである。封止後有機EL素子の特性に問題はなかった。しかし、該硬化性樹脂組成物は、未硬化組成物の25℃での粘度が低いために、有機EL素子封止部材としたときに表面タックが大きい。従って、それを有機EL素子に貼り合わせるときの位置決めの際に、硬化性組成物の一部が有機EL素子に貼り付き、有機EL封止部材の表面から硬化性組成物が部分的に欠損するという問題があった。比較例6は、比較配合例4の硬化性樹脂組成物を使用したものである。封止後有機EL素子の特性に問題はなかった。しかし、該硬化性樹脂組成物の流動開始温度が80℃を越えている故に、有機EL素子に貼り合わせる際に比較的高温を要する。従って、有機EL素子にダメージを与えるという問題があった。また、比較例7は、比較配合例5の硬化性樹脂組成物を使用したものである。封止後有機EL素子の発光劣化の評価における所定雰囲気下での静置の初期からダークスポットの発生が認められ、かつこれが経時的に拡大していくのが確認された。これは、比較配合例5の硬化性樹脂組成物のアウトガス量が非常に多いことによるものと考えられる。更に、比較配合例5の硬化性樹脂組成物は硬化収縮率が大きいことから、基板の反りが大きくなり、それ故、有機EL素子と封止部材の接着端面からの剥離が認められ、接着信頼性の問題があった。
本発明の有機EL素子封止部材は、有機EL素子の封止、特に照明用途に用いる有機EL素子の封止に好ましく用いることができる。

Claims (9)

  1. プラスチックフィルムに金属薄層を1層以上重ね合わせたバリアフィルム上に、硬化性樹脂組成物層を配した有機EL素子封止部材であって、前記硬化性樹脂組成物層の厚みが5~100μmであり、かつ、前記硬化性樹脂組成物が、未硬化状態において、25℃で非流動性を示し、加熱すると40~80℃の範囲で流動性を発現することを特徴とする有機EL素子封止部材。
  2. 前記金属薄層が、アルミニウム、マグネシウム、亜鉛、銅、金、銀、白金、タングステン、マンガン、チタン、コバルト、ニッケル及びクロムより成る群から選ばれる1種以上の金属を含み、かつその厚みが1~50μmであり、及び、前記プラスチックフィルムが、ポリエチレンテレフタレート、ポリビニルアルコール、ポリエチレンナフタレート、ポリアミド、ポリオレフィン、ポリカーボネート、ポリエーテルサルフォン及びポリアリレートより成る群から選ばれる1種以上の樹脂を含み、かつその厚みが1~50μmである、請求項1記載の有機EL素子封止部材。
  3. 前記金属薄層がアルミニウムであり、かつ、前記プラスチックフィルムがポリエチレンテレフタレートである、請求項1又は2記載の有機EL素子封止部材。
  4. 前記硬化性樹脂組成物層が、
    (A)1分子中に少なくとも1個のグリシジル基を有し、かつ重量平均分子量が200~2,000である化合物、
    (B)1分子中に少なくとも1個のグリシジル基を有し、かつ重量平均分子量が20,000~100,000であるフェノキシ樹脂、
    (C)(c-1)エネルギー線照射により活性化し、酸を発生する化合物、および/または(c-2)加熱により活性化する熱潜在性硬化剤、及び
    (D)グリシジル基含有シランカップリング剤
    を含む、請求項1~3のいずれか一つに記載の有機EL素子封止部材。
  5. (A)成分100質量部に対して、(B)成分が25~100質量部であり、かつ、(A)成分及び(B)成分の合計100質量部に対して、(C)(c-1)成分が0.1~5.0質量部、および/または、(c-2)成分が0.1~20質量部であり、(D)成分が0.1~10質量部である、請求項4記載の有機EL素子封止部材。
  6. 前記硬化性樹脂組成物が、予めシート状に形成されたシート状硬化性樹脂組成物であって、該硬化性樹脂組成物の未硬化時における粘度が25℃において20,000Pa・s以上であり、かつ70℃において5,000Pa・s以下である、請求項1~5のいずれか一つに記載の有機EL素子封止部材。
  7. 前記シート状硬化性樹脂組成物を、ロールトゥロール工法によりバリアフィルムに貼着してなる、請求項6に記載の有機EL素子封止部材。
  8. 前記有機EL素子封止部材が、画像表示装置及び照明装置に用いられる有機EL素子を封止するものである、請求項1~7のいずれか一つに記載の有機EL素子封止部材。
  9. 前記硬化性樹脂組成物を20μmの厚さの硬化物としたとき、120℃にて15分間放置した際の該硬化物のアウトガス発生量が2,000μg/cm以下であって、かつ前記硬化性樹脂組成物の硬化時の収縮率が3%以下である、請求項1~8のいずれか一つに記載の有機EL素子封止部材。
PCT/JP2010/065010 2009-09-04 2010-09-02 有機el素子封止部材 WO2011027815A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US13/393,904 US20120207991A1 (en) 2009-09-04 2010-09-02 Organic el element sealing member
EP10813763.9A EP2475223A4 (en) 2009-09-04 2010-09-02 SEAL FOR AN ORGANIC EL ELEMENT
JP2011529931A JPWO2011027815A1 (ja) 2009-09-04 2010-09-02 有機el素子封止部材
CN201080039707.3A CN102640564B (zh) 2009-09-04 2010-09-02 有机el元件密封部件
US14/174,231 US20140167021A1 (en) 2009-09-04 2014-02-06 Organic el element sealing member

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-204259 2009-09-04
JP2009204259 2009-09-04

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US13/393,904 A-371-Of-International US20120207991A1 (en) 2009-09-04 2010-09-02 Organic el element sealing member
US14/174,231 Continuation US20140167021A1 (en) 2009-09-04 2014-02-06 Organic el element sealing member

Publications (1)

Publication Number Publication Date
WO2011027815A1 true WO2011027815A1 (ja) 2011-03-10

Family

ID=43649349

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/065010 WO2011027815A1 (ja) 2009-09-04 2010-09-02 有機el素子封止部材

Country Status (7)

Country Link
US (2) US20120207991A1 (ja)
EP (1) EP2475223A4 (ja)
JP (1) JPWO2011027815A1 (ja)
KR (1) KR20120055720A (ja)
CN (1) CN102640564B (ja)
TW (1) TWI513360B (ja)
WO (1) WO2011027815A1 (ja)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011068772A (ja) * 2009-09-25 2011-04-07 Namics Corp エポキシ樹脂組成物、および、それによる接着フィルム
JP2013200204A (ja) * 2012-03-26 2013-10-03 Mitsubishi Electric Corp 硬化収縮率測定装置および硬化収縮率測定方法
KR101404361B1 (ko) * 2011-11-14 2014-06-09 주식회사 엘지화학 접착 필름 및 이를 이용한 유기전자장치의 봉지 방법
CN104411790A (zh) * 2012-07-05 2015-03-11 三键精密化学有限公司 片状粘合剂以及使用该片状粘合剂的有机el面板
JP2015509041A (ja) * 2011-12-28 2015-03-26 チェイル インダストリーズ インコーポレイテッド ゲッター組成物及びこれを含む有機elディスプレイ装置
JP2015096571A (ja) * 2013-11-15 2015-05-21 日東電工株式会社 光硬化性樹脂組成物およびそれを用いてなる光硬化性樹脂組成物製シート
JP2015524146A (ja) * 2012-05-31 2015-08-20 エルジー・ケム・リミテッド 有機電子装置の製造方法
JP2016521909A (ja) * 2013-05-21 2016-07-25 エルジー・ケム・リミテッド 封止フィルムおよびこれを利用した有機電子装置の封止方法
US9577214B2 (en) 2011-11-14 2017-02-21 Lg Chem, Ltd. Adhesive film and method of encapsulating organic electronic device
US9917144B2 (en) 2014-09-03 2018-03-13 Joled Inc. Display panel and method for manufacturing same
US9917277B2 (en) 2014-04-04 2018-03-13 Joled Inc. Display panel and production method therefor
JP2018507504A (ja) * 2015-02-17 2018-03-15 エルジー・ケム・リミテッド 封止フィルム
JP2019033264A (ja) * 2014-09-26 2019-02-28 東芝ホクト電子株式会社 発光モジュール及び発光モジュールの製造方法
WO2019203123A1 (ja) * 2018-04-20 2019-10-24 積水化学工業株式会社 有機el表示素子用封止剤及びトップエミッション型有機el表示素子
WO2020137783A1 (ja) * 2018-12-28 2020-07-02 Jfeスチール株式会社 フィルムラミネート金属板、フレキシブルデバイス用基板、及び有機elデバイス用基板
WO2021125275A1 (ja) * 2019-12-17 2021-06-24 横浜ゴム株式会社 シーラント材組成物

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012054270A (ja) * 2010-08-31 2012-03-15 Toyoda Gosei Co Ltd 発光装置の製造方法
KR20130139134A (ko) * 2012-06-12 2013-12-20 제일모직주식회사 접착제 조성물, 이를 이용한 편광판, 그 제조 방법 및 이를 포함하는 광학 부재
WO2014017524A1 (ja) * 2012-07-26 2014-01-30 電気化学工業株式会社 樹脂組成物
WO2014042328A1 (ko) * 2012-09-13 2014-03-20 제일모직 주식회사 광경화 조성물, 이를 포함하는 장벽층 및 이를 포함하는 봉지화된 장치
KR20140074090A (ko) * 2012-12-07 2014-06-17 제일모직주식회사 광경화 조성물 및 상기 조성물로 형성된 장벽층을 포함하는 봉지화된 장치
KR20140119583A (ko) * 2013-04-01 2014-10-10 삼성디스플레이 주식회사 유기 발광 표시 장치 및 그 제조 방법
CN103337595B (zh) * 2013-07-04 2016-04-06 上海和辉光电有限公司 柔性封装衬底及其制造方法和使用该衬底的oled封装方法
CN103972422B (zh) * 2014-04-29 2015-04-15 京东方科技集团股份有限公司 有机电致发光器件的封装结构及封装方法、显示装置
KR20220098297A (ko) * 2014-05-20 2022-07-11 세키스이가가쿠 고교가부시키가이샤 유기 일렉트로루미네선스 표시 소자용 밀봉제
CN104835920A (zh) 2015-06-03 2015-08-12 合肥京东方光电科技有限公司 有机发光二极管封装方法以及封装结构
JP2017004642A (ja) * 2015-06-05 2017-01-05 双葉電子工業株式会社 可撓性有機elディバイス
TWI609028B (zh) 2016-05-06 2017-12-21 財團法人工業技術研究院 共聚物與含其之樹脂組合物、封裝膜及封裝結構
KR102223910B1 (ko) * 2017-09-29 2021-03-05 주식회사 엘지화학 유기전자소자 봉지용 조성물
CN111837457A (zh) * 2018-04-20 2020-10-27 积水化学工业株式会社 有机el显示元件用密封剂

Citations (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0337991A (ja) 1989-07-04 1991-02-19 Seiko Epson Corp 発光素子
JPH03261091A (ja) 1990-03-09 1991-11-20 Pioneer Electron Corp 電界発光素子
JPH04212284A (ja) 1990-04-27 1992-08-03 Toppan Printing Co Ltd 有機薄膜el素子
JPH04363890A (ja) 1991-06-10 1992-12-16 Denki Kagaku Kogyo Kk 電界発光装置
JPH0536475A (ja) 1991-07-26 1993-02-12 Idemitsu Kosan Co Ltd 有機el素子の封止方法
JPH0589959A (ja) 1991-09-30 1993-04-09 Idemitsu Kosan Co Ltd 有機el素子の封止方法
JPH05129080A (ja) 1991-11-07 1993-05-25 Konica Corp 有機薄膜エレクトロルミネツセンス素子
JPH09176413A (ja) 1995-12-22 1997-07-08 Nippon Kayaku Co Ltd 樹脂組成物及び透明薄膜形成法
JPH09235357A (ja) 1996-02-29 1997-09-09 Matsushita Electric Works Ltd 封止用液状エポキシ樹脂組成物及び半導体装置
JPH10135255A (ja) 1996-10-30 1998-05-22 Matsushita Electric Works Ltd 電子部品の封止方法、及びそれに用いるエポキシ樹脂組成物
JPH11274377A (ja) 1998-03-24 1999-10-08 Hitachi Chem Co Ltd ペースト組成物及びこれを用いた半導体装置
JP2001237064A (ja) 2000-02-24 2001-08-31 Seiko Instruments Inc 有機el発光素子
JP2001237065A (ja) 2000-02-25 2001-08-31 Toppan Printing Co Ltd 高分子el素子およびその製造方法
JP2003051386A (ja) * 2001-08-06 2003-02-21 Toppan Printing Co Ltd 有機エレクトロルミネッセンス素子
JP2004047381A (ja) 2002-07-15 2004-02-12 Rohm Co Ltd フレキシブル有機エレクトロ・ルミネッセンス素子、その製造方法及び情報表示装置及び照明装置
JP2004059718A (ja) 2002-07-29 2004-02-26 Sumitomo Chem Co Ltd 熱硬化性樹脂組成物、及び該組成物を成形して得られる接着性フィルム
JP2004115650A (ja) 2002-09-26 2004-04-15 Three Bond Co Ltd 接着剤組成物
JP2004210901A (ja) 2002-12-27 2004-07-29 Hitachi Chem Co Ltd 液状エポキシ樹脂組成物及び電子部品装置
JP2004234868A (ja) 2003-01-28 2004-08-19 Matsushita Electric Works Ltd 有機el照明素子
JP2004292594A (ja) 2003-03-26 2004-10-21 Mitsubishi Rayon Co Ltd エポキシ樹脂組成物、プリプレグおよび繊維強化複合材料
WO2005019299A1 (ja) 2003-08-21 2005-03-03 Asahi Kasei Chemicals Corporation 感光性組成物およびその硬化物
JP2005129520A (ja) 2003-10-03 2005-05-19 Jsr Corp 有機el素子用透明封止材
JP2005216856A (ja) 2004-02-02 2005-08-11 Samsung Sdi Co Ltd 有機el素子
WO2006104078A1 (ja) 2005-03-29 2006-10-05 Three Bond Co., Ltd. 有機el素子封止用フィルム及び有機el素子の封止構造体
JP2007109422A (ja) 2005-10-11 2007-04-26 Konica Minolta Holdings Inc 有機エレクトロルミネッセンス素子
JP2007200692A (ja) * 2006-01-26 2007-08-09 Konica Minolta Holdings Inc 有機エレクトロルミネッセンスパネルの製造方法、有機エレクトロルミネッセンスパネル
WO2007123006A1 (ja) * 2006-04-21 2007-11-01 Konica Minolta Holdings, Inc. ガスバリアフィルム、有機エレクトロルミネッセンス用樹脂基材、それを用いた有機エレクトロルミネッセンス素子及びガスバリアフィルムの製造方法
JP2007284475A (ja) 2006-04-12 2007-11-01 Shin Etsu Chem Co Ltd 紫外線硬化型エンドシール材
JP2008059945A (ja) 2006-08-31 2008-03-13 Nagase Chemtex Corp 電子デバイスの製造方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4412048A (en) * 1981-09-11 1983-10-25 Westinghouse Electric Corp. Solventless UV dryable B-stageable epoxy adhesive
US6867539B1 (en) * 2000-07-12 2005-03-15 3M Innovative Properties Company Encapsulated organic electronic devices and method for making same
JP4800247B2 (ja) * 2002-06-17 2011-10-26 積水化学工業株式会社 有機エレクトロルミネッセンス素子封止用接着剤、有機エレクトロルミネッセンス素子封止用粘着テープ、有機エレクトロルミネッセンス素子封止用両面粘着テープ、有機エレクトロルミネッセンス素子の封止方法、及び、有機エレクトロルミネッセンス素子
JP4401657B2 (ja) * 2003-01-10 2010-01-20 株式会社半導体エネルギー研究所 発光装置の製造方法
JP2004259529A (ja) * 2003-02-25 2004-09-16 Fuji Photo Film Co Ltd 有機電界発光素子
JP4816863B2 (ja) * 2004-12-22 2011-11-16 株式会社スリーボンド 有機el素子封止用熱硬化型組成物
JP5288150B2 (ja) * 2005-10-24 2013-09-11 株式会社スリーボンド 有機el素子封止用熱硬化型組成物
KR101376319B1 (ko) * 2007-07-27 2014-03-20 주식회사 동진쎄미켐 디스플레이 소자의 실링방법

Patent Citations (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0337991A (ja) 1989-07-04 1991-02-19 Seiko Epson Corp 発光素子
JPH03261091A (ja) 1990-03-09 1991-11-20 Pioneer Electron Corp 電界発光素子
JPH04212284A (ja) 1990-04-27 1992-08-03 Toppan Printing Co Ltd 有機薄膜el素子
JPH04363890A (ja) 1991-06-10 1992-12-16 Denki Kagaku Kogyo Kk 電界発光装置
JPH0536475A (ja) 1991-07-26 1993-02-12 Idemitsu Kosan Co Ltd 有機el素子の封止方法
JPH0589959A (ja) 1991-09-30 1993-04-09 Idemitsu Kosan Co Ltd 有機el素子の封止方法
JPH05129080A (ja) 1991-11-07 1993-05-25 Konica Corp 有機薄膜エレクトロルミネツセンス素子
JPH09176413A (ja) 1995-12-22 1997-07-08 Nippon Kayaku Co Ltd 樹脂組成物及び透明薄膜形成法
JPH09235357A (ja) 1996-02-29 1997-09-09 Matsushita Electric Works Ltd 封止用液状エポキシ樹脂組成物及び半導体装置
JPH10135255A (ja) 1996-10-30 1998-05-22 Matsushita Electric Works Ltd 電子部品の封止方法、及びそれに用いるエポキシ樹脂組成物
JPH11274377A (ja) 1998-03-24 1999-10-08 Hitachi Chem Co Ltd ペースト組成物及びこれを用いた半導体装置
JP2001237064A (ja) 2000-02-24 2001-08-31 Seiko Instruments Inc 有機el発光素子
JP2001237065A (ja) 2000-02-25 2001-08-31 Toppan Printing Co Ltd 高分子el素子およびその製造方法
JP2003051386A (ja) * 2001-08-06 2003-02-21 Toppan Printing Co Ltd 有機エレクトロルミネッセンス素子
JP2004047381A (ja) 2002-07-15 2004-02-12 Rohm Co Ltd フレキシブル有機エレクトロ・ルミネッセンス素子、その製造方法及び情報表示装置及び照明装置
JP2004059718A (ja) 2002-07-29 2004-02-26 Sumitomo Chem Co Ltd 熱硬化性樹脂組成物、及び該組成物を成形して得られる接着性フィルム
JP2004115650A (ja) 2002-09-26 2004-04-15 Three Bond Co Ltd 接着剤組成物
JP2004210901A (ja) 2002-12-27 2004-07-29 Hitachi Chem Co Ltd 液状エポキシ樹脂組成物及び電子部品装置
JP2004234868A (ja) 2003-01-28 2004-08-19 Matsushita Electric Works Ltd 有機el照明素子
JP2004292594A (ja) 2003-03-26 2004-10-21 Mitsubishi Rayon Co Ltd エポキシ樹脂組成物、プリプレグおよび繊維強化複合材料
WO2005019299A1 (ja) 2003-08-21 2005-03-03 Asahi Kasei Chemicals Corporation 感光性組成物およびその硬化物
JP2005129520A (ja) 2003-10-03 2005-05-19 Jsr Corp 有機el素子用透明封止材
JP2005216856A (ja) 2004-02-02 2005-08-11 Samsung Sdi Co Ltd 有機el素子
WO2006104078A1 (ja) 2005-03-29 2006-10-05 Three Bond Co., Ltd. 有機el素子封止用フィルム及び有機el素子の封止構造体
JP2007109422A (ja) 2005-10-11 2007-04-26 Konica Minolta Holdings Inc 有機エレクトロルミネッセンス素子
JP2007200692A (ja) * 2006-01-26 2007-08-09 Konica Minolta Holdings Inc 有機エレクトロルミネッセンスパネルの製造方法、有機エレクトロルミネッセンスパネル
JP2007284475A (ja) 2006-04-12 2007-11-01 Shin Etsu Chem Co Ltd 紫外線硬化型エンドシール材
WO2007123006A1 (ja) * 2006-04-21 2007-11-01 Konica Minolta Holdings, Inc. ガスバリアフィルム、有機エレクトロルミネッセンス用樹脂基材、それを用いた有機エレクトロルミネッセンス素子及びガスバリアフィルムの製造方法
JP2008059945A (ja) 2006-08-31 2008-03-13 Nagase Chemtex Corp 電子デバイスの製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2475223A4

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011068772A (ja) * 2009-09-25 2011-04-07 Namics Corp エポキシ樹脂組成物、および、それによる接着フィルム
KR101404361B1 (ko) * 2011-11-14 2014-06-09 주식회사 엘지화학 접착 필름 및 이를 이용한 유기전자장치의 봉지 방법
US9577214B2 (en) 2011-11-14 2017-02-21 Lg Chem, Ltd. Adhesive film and method of encapsulating organic electronic device
JP2015509041A (ja) * 2011-12-28 2015-03-26 チェイル インダストリーズ インコーポレイテッド ゲッター組成物及びこれを含む有機elディスプレイ装置
JP2013200204A (ja) * 2012-03-26 2013-10-03 Mitsubishi Electric Corp 硬化収縮率測定装置および硬化収縮率測定方法
JP2015524146A (ja) * 2012-05-31 2015-08-20 エルジー・ケム・リミテッド 有機電子装置の製造方法
CN104411790A (zh) * 2012-07-05 2015-03-11 三键精密化学有限公司 片状粘合剂以及使用该片状粘合剂的有机el面板
US9303192B2 (en) 2012-07-05 2016-04-05 Three Bond Fine Chemical Co., Ltd. Sheet-like adhesive and organic EL panel using the same
US11223028B2 (en) 2013-05-21 2022-01-11 Lg Chem, Ltd. Encapsulation film and method for encapsulating organic electronic device using same
JP2016521909A (ja) * 2013-05-21 2016-07-25 エルジー・ケム・リミテッド 封止フィルムおよびこれを利用した有機電子装置の封止方法
JP2018060807A (ja) * 2013-05-21 2018-04-12 エルジー・ケム・リミテッド 封止フィルムおよびこれを利用した有機電子装置の封止方法
US10522786B2 (en) 2013-05-21 2019-12-31 Lg Chem, Ltd. Organic electronic device having dimension tolerance between encapsulating layer and metal layer less than or equal to 200 microns
US10403850B2 (en) 2013-05-21 2019-09-03 Lg Chem, Ltd. Encapsulation film and method for encapsulating organic electronic device using same
WO2015072350A1 (ja) * 2013-11-15 2015-05-21 日東電工株式会社 光硬化性樹脂組成物およびそれを用いてなる光硬化性樹脂組成物製シート
JP2015096571A (ja) * 2013-11-15 2015-05-21 日東電工株式会社 光硬化性樹脂組成物およびそれを用いてなる光硬化性樹脂組成物製シート
US9917277B2 (en) 2014-04-04 2018-03-13 Joled Inc. Display panel and production method therefor
US9917144B2 (en) 2014-09-03 2018-03-13 Joled Inc. Display panel and method for manufacturing same
JP2019033264A (ja) * 2014-09-26 2019-02-28 東芝ホクト電子株式会社 発光モジュール及び発光モジュールの製造方法
JP2018507504A (ja) * 2015-02-17 2018-03-15 エルジー・ケム・リミテッド 封止フィルム
US10680199B2 (en) 2015-02-17 2020-06-09 Lg Chem, Ltd. Encapsulation film
WO2019203123A1 (ja) * 2018-04-20 2019-10-24 積水化学工業株式会社 有機el表示素子用封止剤及びトップエミッション型有機el表示素子
WO2020137783A1 (ja) * 2018-12-28 2020-07-02 Jfeスチール株式会社 フィルムラミネート金属板、フレキシブルデバイス用基板、及び有機elデバイス用基板
JPWO2020137783A1 (ja) * 2018-12-28 2021-02-18 Jfeスチール株式会社 フィルムラミネート金属板、フレキシブルデバイス用基板、及び有機elデバイス用基板
JP7004071B2 (ja) 2018-12-28 2022-01-21 Jfeスチール株式会社 フィルムラミネート金属板、フレキシブルデバイス用基板、及び有機elデバイス用基板
WO2021125275A1 (ja) * 2019-12-17 2021-06-24 横浜ゴム株式会社 シーラント材組成物

Also Published As

Publication number Publication date
US20140167021A1 (en) 2014-06-19
EP2475223A1 (en) 2012-07-11
EP2475223A4 (en) 2015-09-16
CN102640564B (zh) 2016-01-20
JPWO2011027815A1 (ja) 2013-02-04
US20120207991A1 (en) 2012-08-16
CN102640564A (zh) 2012-08-15
TW201117642A (en) 2011-05-16
KR20120055720A (ko) 2012-05-31
TWI513360B (zh) 2015-12-11

Similar Documents

Publication Publication Date Title
WO2011027815A1 (ja) 有機el素子封止部材
KR101234895B1 (ko) 유기 el 소자 봉지용 열경화형 조성물
JP5201347B2 (ja) 有機el素子封止用光硬化性樹脂組成物
TWI695059B (zh) 電子裝置用密封劑及電子裝置之製造方法
EP2781570B1 (en) Method for manufacturing electronic device
US10050224B2 (en) Optical-device surface-sealing composition, optical-device surface-sealing sheet, display, and display manufacturing method
JP5696038B2 (ja) 封止用組成物および封止用シート
JP6252473B2 (ja) シート状接着剤およびこれを用いた有機elパネル
JP6793230B2 (ja) ディスプレイ用粘着シートおよびこれを含むディスプレイ
WO2013027389A1 (ja) シート状エポキシ樹脂組成物、及びこれを含む封止用シート
TWI407611B (zh) 有機電致發光元件密封用之薄膜及有機電致發光元件之密封結構
JP2022078065A (ja) 有機エレクトロルミネッセンス表示素子用封止剤
JP4816863B2 (ja) 有機el素子封止用熱硬化型組成物
TWI641650B (zh) Organic electroluminescent display element sealant
JP2013157228A (ja) 有機elデバイス、および有機elデバイスの製造方法
JPWO2019189616A1 (ja) 樹脂組成物、封止シート及び封止体
TWI726934B (zh) 有機電激發光顯示元件用密封劑
JP2005302401A (ja) 有機el素子封止材
TW201905027A (zh) 有機el顯示元件用面內密封劑及有機el顯示元件用密封劑組

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080039707.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10813763

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011529931

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13393904

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2010813763

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20127008122

Country of ref document: KR

Kind code of ref document: A