WO2007123006A1 - ガスバリアフィルム、有機エレクトロルミネッセンス用樹脂基材、それを用いた有機エレクトロルミネッセンス素子及びガスバリアフィルムの製造方法 - Google Patents

ガスバリアフィルム、有機エレクトロルミネッセンス用樹脂基材、それを用いた有機エレクトロルミネッセンス素子及びガスバリアフィルムの製造方法 Download PDF

Info

Publication number
WO2007123006A1
WO2007123006A1 PCT/JP2007/057752 JP2007057752W WO2007123006A1 WO 2007123006 A1 WO2007123006 A1 WO 2007123006A1 JP 2007057752 W JP2007057752 W JP 2007057752W WO 2007123006 A1 WO2007123006 A1 WO 2007123006A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
gas
gas barrier
organic
layer
Prior art date
Application number
PCT/JP2007/057752
Other languages
English (en)
French (fr)
Inventor
Kazuhiro Fukuda
Koji Ozaki
Hiromoto Ii
Hiroaki Arita
Issei Suzuki
Original Assignee
Konica Minolta Holdings, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Holdings, Inc. filed Critical Konica Minolta Holdings, Inc.
Priority to US12/297,562 priority Critical patent/US20090167164A1/en
Priority to EP07741188A priority patent/EP2011639A4/en
Priority to JP2008512062A priority patent/JP5163491B2/ja
Publication of WO2007123006A1 publication Critical patent/WO2007123006A1/ja

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/81Anodes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D1/00Coating compositions, e.g. paints, varnishes or lacquers, based on inorganic substances
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/842Containers
    • H10K50/8423Metallic sealing arrangements
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/844Encapsulations
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/87Passivation; Containers; Encapsulations
    • H10K59/871Self-supporting sealing arrangements
    • H10K59/8721Metallic sealing arrangements
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/87Passivation; Containers; Encapsulations
    • H10K59/873Encapsulations

Definitions

  • GAS BARRIER FILM ORGANIC ELECTROLUMINUM LENS RESIN SUBSTRATE, ORGANIC ELECTRIC ELECTROLUMINESCENT ELEMENT USING THE SAME, AND METHOD FOR PRODUCING GAS BARRIER FILM
  • the present invention relates to a transparent gas barrier film used for a plastic substrate of an organic electoluminescence device, a resin base material for organic electroluminescence using the gas barrier film, and an organic electoluminescence device and a gas nore film. It relates to the manufacturing method.
  • a gas barrier film in which a metal oxide thin film such as an aluminum oxide, an magnesium oxide, or a silicon oxide is formed on the surface of a plastic substrate or film needs to block various gases such as water vapor and oxygen. It is widely used for packaging of products to be used, packaging for preventing the deterioration of food, industrial products and pharmaceuticals. In addition to packaging applications, it is used in liquid crystal display elements, solar cells, organic-electrical-luminescence (hereinafter also referred to as organic EL) substrates, and the like.
  • organic EL organic-electrical-luminescence
  • transparent substrates which are being applied to liquid crystal display elements, organic EL elements, etc.
  • film base materials such as transparent plastics are beginning to be used instead of glass substrates that are heavy and easily broken.
  • JP-A-2-251429 and JP-A-6-124785 disclose an example in which a polymer film is used as a substrate of an organic electroluminescence element.
  • film substrates such as transparent plastics are gas-nore compared to glass.
  • inferiority For example, when used as a substrate for an organic electoluminescence device, if the gas barrier property of the base material is inferior, water vapor or air permeates and deteriorates the organic film, which is a factor that impairs light emission characteristics or durability.
  • a polymer substrate when used as a substrate for an electronic device, oxygen permeates through the polymer substrate and penetrates and diffuses in the electronic device, degrading the device, or in the electronic device. This causes a problem that the required vacuum cannot be maintained.
  • Gasnolia films used in packaging materials for liquid crystal display elements include those obtained by vapor-depositing silicon dioxide on plastic films (see Patent Document 1) and those deposited on aluminum oxide (see Patent Document 2).
  • the current situation is that V has a water vapor barrier property of about 2 gZm 2 'day or an oxygen permeability of about 2 mlZm 2 ⁇ day ⁇ atm!
  • gas nolia having a structure in which a dense ceramic layer and a polymer layer having flexibility and relieving an external impact are alternately laminated.
  • Patent Document 3 Since the ceramic layer and the polymer layer generally have different compositions, the adhesion at each contact interface portion deteriorates, which may cause quality deterioration such as film peeling. In particular, this deterioration of adhesion appears remarkably in severe environments such as high temperature and high humidity or when irradiated with ultraviolet rays over a long period of time, and immediate improvement is required.
  • Non-Patent Document 1 When an organic layer is provided on the upper side of the layer and a transparent conductive film is provided directly thereon, a high-quality transparent conductive film cannot be obtained due to gas components emitted from the organic layer.
  • the ceramic film is not simply a ceramic film. It has been found that the film must have a high density and be resistant to cracking and the like, and the resin film used as a base material must have certain properties.
  • an organic EL light emitting device formed on these substrates it is necessary to provide a transparent electrode on these barrier films.
  • a surface light emitting device that requires a relatively large area such as a backlight or illumination is required to have low resistance, excellent transparency, and higher surface smoothness.
  • the surface smoothness is required to be 1 nm or less for the center line average roughness and 1 Onm or less for the bottom Z peak.
  • the surface smoothness of the base material such as a resin film carrier, and no matter how smooth the resin film is, If smoothness is lost due to the problem, it will be completely meaningless.
  • Patent Document 1 Japanese Patent Publication No. 53-12953
  • Patent Document 2 JP-A-58-217344
  • Patent Document 3 U.S. Pat.No. 6,268,695
  • Non-Patent Document 1 Thin Solid Films 308-309 (1997) 19-25
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide a gas noria film capable of achieving both high barrier performance and surface smoothness, and a resin group for an organic electoluminescence using the same. It is in providing the manufacturing method of a material, an organic electoluminescence device, and a gas noria film.
  • a resin substrate for organic electoluminescence wherein a transparent conductive thin film is formed on the gas barrier film described in any one of 1 to 5 above.
  • a phosphorescent light emitting organic electroluminescent material and a metal film serving as a cathode are coated on the organic electroluminescent luminescent resin base material described in 6 above, and a reinforced resin foil-coated metal foil is further formed.
  • An organic electoluminescence device characterized by being adhered and sealed with an adhesive.
  • the resin-laminated metal foil is characterized in that the side of the metal foil that does not contact the cathode is laminated with a resin, and the surface that contacts the opposite cathode is coated with a ceramic film.
  • a gas containing a thin film forming gas is supplied to the discharge space at atmospheric pressure or a pressure near the ceramic film, and a high frequency electric field is applied to the discharge space to excite the gas, thereby Formed by a thin film formation method in which a thin film is formed on a substrate by exposure to the excited gas,
  • the gas barrier performance of the gas barrier film was measured by a method according to JIS K 7129-1992, and the water vapor permeability at 25 ⁇ 0.5 ° C and 90 ⁇ 2% RH was l X 10 _4 g Z (m 2, characterized in that 'at 24h) or less, and the measured oxygen permeability by the method based on JIS K 7126- 1987 is 1 X 10- 4 mlZ (m 2 ' is less than 24h 'atm) 10.
  • the substance constituting the ceramic film is at least one selected from silicon oxide, silicon oxynitride, silicon nitride, and an oxyaluminum force, or a mixture thereof.
  • a gas-noria film that uses a polymerizable inorganic compound and can achieve both high barrier performance and surface smoothness, a resin substrate for organic-electral luminescence, and an organic-electral luminescent device using the same We were able to provide a method for manufacturing a gas noria film
  • FIG. 1 is a diagram showing the relationship between the residual stress and the degree of vacuum of a silicon oxide film formed by a vacuum evaporation method.
  • FIG. 2 is a schematic view showing an example of a jet-type atmospheric pressure plasma discharge treatment apparatus useful for the present invention.
  • FIG. 3 is a schematic view showing an example of an atmospheric pressure plasma discharge treatment apparatus of a method for treating a substrate between counter electrodes useful for the present invention.
  • FIG. 4 is a perspective view showing an example of a structure of a conductive metallic base material of the roll rotating electrode shown in FIG. 3 and a dielectric material coated thereon.
  • FIG. FIG. 5 is a perspective view showing an example of the structure of a conductive metallic base material of a rectangular tube electrode and a dielectric material coated thereon.
  • FIG. 6 is a schematic view showing a layer structure of a gas noria film of the present invention.
  • FIG. 7 is a schematic cross-sectional view of an organic EL device sealed with a gas barrier film of the present invention.
  • FIG. 8 is a schematic view showing an example of a display device constituted by an organic EL element cover.
  • FIG. 9 is a schematic diagram of display unit A.
  • FIG. 10 is a schematic diagram of a pixel.
  • FIG. 11 is a schematic diagram of a passive matrix display device.
  • a gas noble film having at least one layer of a ceramic film and a coating film in this order on a resin film is formed by coating a coating solution containing a polymerizable inorganic compound, and the residual stress of the ceramic film is 0. OlMPa or more and 20 MPa or less.
  • the present invention has been achieved.
  • gas nore film of the present invention a dense ceramic film having a small residual stress is coated on a resin film substrate, and a conventional ceramic film is not repeatedly laminated on the resin film substrate.
  • a gas noria film having high gas noria performance can be obtained.
  • the gas nore film of the present invention is a laminated film having at least one ceramic film on a resin film.
  • the ceramic film has a residual (internal) stress of 0. OlMPa or more in terms of compressive stress. 20MPa or less.
  • the gas barrier film of the present invention in particular, the water vapor transmission rate, in the case of an organic EL display, even if it is very small, a dark spot that grows is generated, and the display life of the display becomes extremely short.
  • gas nore ability JIS K 7129- 1992 The water vapor permeability measured at 25 ⁇ 0.5 ° C and 90 ⁇ 2% RH is 1 X IO— 4 g / (m 2 '24h) or less and measured in accordance with JIS K 7126—1987.
  • the oxygen permeability measured by the method should be less than 1 X 10— 4 1! 117 (111 2 '2411'& ⁇ 1).
  • the ceramic film according to the present invention is not particularly limited as long as the ceramic film according to the present invention has the above-described residual stress and prevents permeation of oxygen and water vapor, but the ceramic film according to the present invention is not particularly limited.
  • Specific examples of the material constituting the (layer) include acid-silicon, acid-aluminum, silicon oxynitride, silicon oxynitride, magnesium oxide, and zinc oxide, which are preferably inorganic acids.
  • ceramic films such as indium oxide and tin oxide.
  • the residual stress of the ceramic film formed on these resin films is compressive stress, and is not less than 0. OlMPa and not more than 20 MPa.
  • a resin film having a ceramic film formed by a vapor deposition method, a CVD method, a sol-gel method, etc. when left under a certain condition, causes a positive curl and a negative curl to have a film quality of the base film and the ceramic film. It occurs because of the relationship. This curl is caused by the stress generated in the ceramic film, and the larger the curl (plus curl), the greater the compressive stress.
  • the internal stress in the ceramic film is measured by the following method.
  • a ceramic film having the same composition and thickness as the measurement film was formed on a quartz substrate having a width of 10 mm, a length of 50 mm, and a thickness of 0.1 mm to a thickness of 1 ⁇ m by the same method.
  • the curl generated in the sample can be obtained by measuring the thin film physical property evaluation apparatus MH4000 manufactured by NEC Sanei with the concave portion of the sample facing upward.
  • a positive curl in which the film side contracts with respect to the substrate due to a compressive stress is expressed as a positive stress.
  • a negative curl is generated due to a tensile stress, it is expressed as a negative stress.
  • this stress value needs to be 20 MPa or less, and is in the range of 0.01 MPa or more and 20 MPa or less.
  • the residual stress of the resin film on which the silicon oxide film is formed can be adjusted, for example, by adjusting the degree of vacuum when the silicon oxide film is formed by a vacuum deposition method.
  • FIG. 1 shows an example of acid deposition on a quartz substrate having a width of 10 mm, a length of 50 mm, and a thickness of 0.1 mm by vacuum deposition.
  • the relationship between the degree of vacuum in the chamber when the silicon nitride film is formed to 1 ⁇ m and the residual (internal) stress measured by the above method for the silicon oxide film to be formed is shown.
  • Laminated films with residual stresses greater than 0 and up to about 20 MPa are preferred! When the stress is too small, there may be partial tensile stress, and the film is cracked or cracked and immediately becomes a durable film, and when it is too large, it becomes an easily cracked film.
  • a dense and high barrier performance film is difficult to form on a ceramic film formed by a wet method using a sol-gel method or the like.
  • the method for producing a ceramic film to be a gas noria layer is not particularly limited, but in the present invention, a sputtering method, an ion assist method, a plasma CVD method described later, atmospheric pressure or It is preferable that the plasma CVD method is applied under a pressure near atmospheric pressure.
  • the method using atmospheric pressure plasma CVD does not require a decompression chamber, and does not require high-speed film formation. This is a preferable and highly productive film forming method.
  • By forming the gas noria layer by plasma CVD it becomes possible to form a film relatively uniformly (0.01-20 MPa) having uniform and surface smoothness and very low internal stress (0.01-20 MPa). Because.
  • the thickness of these ceramic films in the present invention varies depending on the type and configuration of the material used, and is preferably within a range of force l to 2000 nm selected as appropriate.
  • the thickness force of the gas barrier film is 1 nm or more, a uniform film can be obtained, and gas barrier properties can be obtained.
  • the thickness of the gas barrier film is 2000 nm or less, the gas barrier film can be kept flexible, and resistance to external factors such as bending and pulling can be imparted to the gas noria film after film formation. it can.
  • the thickness is not more than the above range, film defects increase and sufficient moisture resistance cannot be obtained. Theoretically, the greater the thickness, the higher the moisture resistance. However, if the thickness is too large, the internal stress becomes unnecessarily large, and cracks and immediate moisture resistance cannot be obtained.
  • the ceramic film serving as the gas barrier layer is transparent. Since the gas nolia layer is transparent, the gas noria film can be made transparent, and can be used for applications such as transparent substrates of organic EL elements. It is the power to become.
  • the light transmittance of the gas noor film for example, when the wavelength of the measurement light is 55 Onm, a transmittance of 80% or more is preferable, and 90% or more is more preferable.
  • the gas noble layer obtained by the plasma CVD method, or the plasma CVD method under atmospheric pressure or a pressure near atmospheric pressure is a raw material (also called a raw material), an organometallic compound, decomposition gas, decomposition temperature, input power, etc.
  • a raw material also called a raw material
  • organometallic compound such as metal carbides, metal nitrides, metal oxides, metal sulfides, etc., and mixtures thereof (metal oxynitrides, metal nitride carbides, etc.) can be created separately. Is preferable.
  • silicon oxide is generated.
  • zinc compound is used as a raw material compound and carbon dioxide is used as the cracked gas, zinc sulfate is produced. This is because highly active charged particles and active radicals exist in the plasma space at a high density, so that multistage chemical reactions are promoted very rapidly in the plasma space, and the elements present in the plasma space are heated. This is because it is converted into a mechanically stable compound in a very short time.
  • the inorganic raw material may be in the state of gas, liquid, or solid at normal temperature and pressure as long as it contains a typical or transition metal element.
  • gas it can be introduced into the discharge space as it is, but in the case of liquid or solid, it is vaporized by means such as heating, publishing, decompression, or ultrasonic irradiation.
  • organic solvents such as methanol, ethanol, and n-xan, and mixed solvents thereof can be used as solvents that can be diluted with a solvent. Since these diluted solvents are decomposed into molecular and atomic forms during the plasma discharge treatment, the influence can be almost ignored.
  • organometallic compounds examples include
  • silicon compound examples include silane, tetramethoxysilane, tetraethoxysilane (TEOS), tetra n propoxy silane, tetraisopropoxy silane, tetra n butoxy silane, tetra t butoxy silane, dimethylenoresi methoxy silane, and dimethyl oleger.
  • titanium compounds include titanium methoxide, titanium ethoxide, titanium isopropoxide, titanium tetraisoporooxide, titanium n-butoxide, titanium diisopropoxide (bis 2, 4 pentanedionate). ), Titanium diisopropoxide (bis 2,4 ethyl acetoacetate), titanium di-n-butoxide (bis 1,2,4 pentanedionate), titanium acetyl cetate, butyl titanate dimer, etc. .
  • zirconium compound examples include zirconium n-propoxide, zirconium n-butoxide, zirconium t-butoxide, zirconium tri-n-butoxide acetyl acetate, zirconium di-n-butoxide bisacetylacetylate, zirconium acetate
  • zirconium acetate examples include cetonate, zirconium acetate, and zirconium hexafluoropentane dionate.
  • Examples of the aluminum compound include aluminum ethoxide, aluminum triisopropoxide, aluminum isopropoxide, aluminum n-butoxide, aluminum s-butoxide, aluminum t-butoxide, aluminum acetylethyltonate, and triethyldialuminum trioxide. -s-butoxide and the like.
  • Examples of the boron compound include diborane, tetraborane, boron fluoride, boron chloride, bromide. Boron, borane-jetyl ether complex, borane THF complex, borane dimethylsulfide complex, boron trifluoride jetyl ether complex, triethylborane, trimethoxyborane, triethoxyborane, tri (isopropoxy) borane, borazole, trimethylborazole, Examples include triethylborazole and triisopropylborazole.
  • Examples of the tin compound include tetraethyltin, tetramethyltin, diacetyltinacetate, tetrabutyltin, tetraoctyltin, tetraethoxytin, methyltriethoxytin, dimethylcetoxytin, triisopropylethoxytin, Jetyl tin, dimethyl tin, diisopropyl tin, dibutyl tin, methoxy tin, dimethoxy tin, diisopropoxy tin, dibutoxy tin, tin dibutyrate, tin diacetate, ethyl tin caseate, ethoxy tin caseate, Examples of tin halides such as dimethyltin diacetate toner, tin hydrogen compounds, etc. include tin dichloride, tetrasalt bismuth tin, and the like.
  • organometallic compounds for example, antimony ethoxide, arsenic triethoxide, norlium 2, 2, 6, 6-tetramethylheptanedionate, beryllium acetylacetate, bismuth hexaful.
  • Olopentanedionate dimethylcadmium, calcium 2, 2, 6, 6-tetramethylheptanedionate, chromium trifluoropentanedionate, cobalt acetylacetonate, copper hexafluoropentane Zionate, Magnesium Hexafluoropentanedionate-dimethyl ether complex, Gallium ethoxide, Tetraethoxygermane, Tetramethoxygermane, Hafnium t-Buxoxide, Hafnium ethoxide, Indium acetylethylacetonate, Indium 2, 6 Dimethylamino heptane dionate, Hue mouth , Lanthanum isopropoxide, lead acetate, tetraethyl lead, neodymium acetyl cetate, platinum hexafluoropentane dionate, trimethyl cyclopentadium platinum, rhodium dicar
  • the decomposition gas for decomposing a raw material gas containing these metals to obtain an inorganic compound for example, hydrogen gas, methane gas, acetylene gas, carbon monoxide gas, carbon dioxide Elementary gas, nitrogen gas, ammonia gas, nitrous oxide gas, nitrogen oxide gas, nitrogen dioxide gas, oxygen gas, water vapor, fluorine gas, hydrogen fluoride, trifluoroalcohol, trifluorotoluene, hydrogen sulfide, sulfur dioxide, nitrogen Examples thereof include carbon sulfide and chlorine gas.
  • metal carbides, metal nitrides, metal oxides, metal halides, and metal sulfides can be obtained by appropriately selecting a source gas containing a metal element and a decomposition gas.
  • a discharge gas that tends to be in a plasma state is mainly mixed with these reactive gases, and the gas is sent to a plasma discharge generator.
  • nitrogen gas and Z or an 18th group atom of the periodic table specifically, helium, neon, argon, krypton, xenon, radon and the like are used. Of these, nitrogen, helium, and argon are preferably used, and nitrogen is particularly preferred because of its low cost.
  • the discharge gas and the reactive gas are mixed and supplied to a plasma discharge generator (plasma generator) as a mixed gas to form a film.
  • a plasma discharge generator plasma generator
  • the ratio of the discharge gas and the reactive gas varies depending on the properties of the film to be obtained.
  • the reactive gas is supplied with the ratio of the discharge gas to 50% or more of the entire mixed gas.
  • the inorganic compound contained in the ceramic film according to the present invention is, for example, a combination of the above-described organosilicon compound and oxygen gas or nitrogen gas in a predetermined ratio, so that at least O atoms and N atoms are at least.
  • a film containing S source elements can be obtained.
  • various inorganic thin films can be formed by using the source gas as described above together with the discharge gas.
  • coating film a coating layer (hereinafter referred to as coating film) provided on the opposite side of the ceramic film to the ceramic film. Since the coating film of the present invention has a smooth film function, It is preferred to be the top layer of a film.
  • the polymerizable inorganic compound according to the present invention may be photopolymerizable or thermopolymerizable, but is preferably photopolymerizable. As a polymerizable inorganic compound, it reacts with SiO sol
  • the compound is a compound formed from a difunctional organic key compound, or at least one compound selected from an alumina sol and a reactive organic aluminum compound.
  • JP-A-7-126552, JP-A-7-188582, The compounds described in JP-A-8-48935, JP-A-8-100136, JP-A-9-220791, JP-A-9-272169 and the like are preferably used.
  • the inorganic compound that can be preferably used in the present invention is a SiO sol and a reactive organic silicon compound
  • a liquid surface is used to form a smooth surface layer as a SiO gel film.
  • R ′ and R ′′ each represent an alkyl group having 1 to 10 carbon atoms, and may be the same or different.
  • R + s is 4, and r and s are integers.
  • Ethyl ketone isopropyl alcohol, methanol, ethanol, methyl isobutyl ketone, ethyl acetate, butyl acetate, and other alcohols, ketones, esters, halogenated hydrocarbons, aromatic hydrocarbons such as toluene, xylene, or mixtures thereof are listed.
  • the concentration of SiO sol is 0.1 mass% or less
  • the formed sol film can sufficiently exhibit the desired characteristics, while if it is 10% by mass or less, a transparent homogeneous film can be formed.
  • an organic or inorganic binder can be used in combination as long as it is within the above-described solid content range.
  • the solution is filled with more water than necessary for hydrolysis, at a temperature of 15 to 35 ° C, preferably 22 to 28 ° C, 0.5 to: L0 hours, preferably 2 to 5 Stir for hours.
  • a catalyst As these catalysts, acids such as hydrochloric acid, nitric acid, sulfuric acid or acetic acid are preferable. These acids can be added as an aqueous solution of about 0.001 to 20.0 mol ZL, preferably about 0.005 to 5.0 mol ZL, and the water in the aqueous solution can be used as water for hydrolysis. .
  • the reactive organosilicon compound is used in combination with the SiO.
  • SiO sol has good wettability to the substrate
  • the reactive organic key compound includes a plurality of groups (active energy ray-reactive groups) that are reactively crosslinked by heat or ionizing radiation, for example, a polymerizable double Organic reactive compounds having a linking group and a molecular weight of 3000 or less are preferred.
  • groups active energy ray-reactive groups
  • Such reactive organocatheter compounds include one-end bull functional polysilane, both-end bull functional polysilane, one-end bull functional polysiloxane, both-end vinyl functional polysiloxane, or vinyl functionality obtained by reacting these compounds.
  • Polysilane also Is a vinyl functional polysiloxane, etc.
  • X, x1, x2, y1, y2, y3, and y4 are 1 to 100 in degree of polymerization (addition number).
  • Various additives can be added to the sol solution.
  • a curing agent that accelerates film formation is used, and examples of these curing agents include organic acid solutions such as acetic acid and formic acid of organic acid metal salts such as sodium acetate and lithium acetate.
  • the concentration of the organic solvent solution is about 0.01 to 0.1% by mass, and the amount added to the sol solution is about 0.1 to about 0.1 to about 100 parts by mass of SiO2 present in the sol solution. A range of about 1 part by mass is preferred.
  • the finally obtained gel film (coating film) is used as a surface smoothing layer of the barrier film.
  • the size of the sol Preferably it is 5 nm or less, more desirably 3 nm or less.
  • the epoxy-based active energy linear reactive compound of the present invention contained in a surface smooth layer containing at least one substance selected from compounds formed from the sol and a reactive organic compound. explain.
  • the surface smooth layer which is a coating film having a very thin film thickness, has insufficient hardness, and the layer surface is vulnerable to scratches or scratches.
  • an active energy line irradiation crosslinkable ethylenically unsaturated compound that easily forms a cured film is generally contained in the layer. Since this film is easily affected by oxygen in the air and has a thin compressive force, it is difficult to obtain a very strong film by this method in which the polymerization of the ethylenically unsaturated compound is easily inhibited.
  • the hardness is insufficient, and the coating film is weak against scratches and scratches. Therefore, an epoxy-based active energy ray-reactive compound is contained, and active energy rays are added. By irradiating, it is preferable to form a coating film that is strong against scratches and scratches with high hardness.
  • Epoxy-based active energy ray reactive compounds are not susceptible to oxygen inhibition, so they polymerize quickly and form a high hardness and tough film even when the film thickness is as thin as 50 to 200 nm. It is an excellent active energy ray reactive compound.
  • the epoxy-based active energy ray-reactive compound applicable to the present invention contains 2 A compound having at least one epoxy group and capable of releasing cationic polymerization as a starting material by irradiation with active energy rays.
  • Diglycidyl ether of dibasic acid such as diglycidyl oxalate, diglycidyl adipate, diglycidyl tetrahydrophthalate, diglycidino hexahydrophthalate, diglycidyl phthalate, etc.
  • (G) Diglycidyl ether of glycol for example, ethylene glycol diglycidyl ether, diethylene glycol diglycidyl ether, propylene glycol diglycidyl ester ether, polyethylene glycol diglycidyl ether, polypropylene glycol Diglycidyl ether, copoly (ethylene glycol propylene glycol) diglycidyl ether, 1,4 butanediol diglycidyl ether, 1,6 hexanediol diglycidyl ether, etc.
  • (L) Glycidyl ethers of polyhydric alcohols such as glycerin triglycidyl ether, trimethylolpropane triglycidyl ether, pentaerythritol diglycidyl ether, pentaerythritol triglycidyl ether, pentaerythritol tetradalysidyl ether, dalcose triglycidyl ether, etc.
  • a photopolymerization initiator or photosensitizer for cationically polymerizing an epoxy-based active energy ray-reactive compound is a compound capable of releasing a cationic polymerization initiator by irradiation with active energy rays. And particularly preferably a group of double salts which release a leucine acid capable of initiating cationic polymerization upon irradiation.
  • the coating film (smoothing film) according to the present invention is characterized in that a coating liquid containing the polymerizable inorganic compound is formed by a coating method.
  • the coating method for forming the coating film according to the present invention is not particularly limited as long as it is a method that can stably form a coating solution in a homogeneous thin film, for example, a dip coating method, a blade coating method, Etatru at the position not supported by air knife coating method, wire bar coating method, gravure coating method, reverse coating method, reverse roll coating method, etatrusion coating method, slide coating method, curtain coating method, back roll, etc.
  • the John coat method can be mentioned.
  • the surface roughness of the surface opposite to the ceramic film is preferably 1 nm or less in terms of the center line average roughness.
  • the substrate is not particularly limited as long as it is a film formed of an organic material capable of holding the above-described gas-noble layer having barrier properties.
  • the resin film base material is preferably transparent. Since the base material is transparent and the layer formed on the base material is also transparent, it becomes possible to make a transparent gas noorie film, so it becomes possible to make a transparent substrate such as an organic EL element. It is.
  • the resin film substrate using the above-described resin or the like may be an unstretched film or a stretched film.
  • the resin film substrate used in the present invention can be produced by a conventionally known general method.
  • the resin used as a material is melted by an extruder,
  • the unstretched base material can be processed in the direction of the base material (vertical axis) by known methods such as -axial stretching, tenter-type sequential biaxial stretching, tenter-type simultaneous biaxial stretching, and tubular-type simultaneous biaxial stretching.
  • a stretched substrate can be produced by stretching in the direction perpendicular to the flow direction of the substrate (horizontal axis). The draw ratio in this case can be appropriately selected according to the resin used as the raw material of the base material, but 2 to 10 times in the vertical axis direction and in the horizontal axis direction is preferred! /, Respectively.
  • surface treatment such as corona treatment, flame treatment, plasma treatment, glow discharge treatment, roughening treatment, chemical treatment, etc. is performed before forming the deposited film. May be performed.
  • an anchor coat agent layer may be formed on the surface of the resin film substrate according to the present invention for the purpose of improving the adhesion to the ceramic film.
  • the anchor coating agent used in this anchor coating agent layer include polyester resin, isocyanate resin, urethane resin, acrylic resin, ethylene bull alcohol resin, bull modified resin, epoxy resin, modified resin. 1 or 2 or more types of basic styrene resin, modified silicon resin, and alkyl titanate can be used.
  • these anchor coating agents conventionally known additives can also be carved.
  • the anchor coating agent is coated on a substrate by a known method such as roll coating, gravure coating, knife coating, dip coating, spray coating, etc., and the solvent, diluent, etc. are removed by drying. Can be coated.
  • the application amount of the anchor coating agent is preferably about 0.1 to 5 gZm 2 (dry state).
  • the resin film substrate As the resin film substrate, a long product rolled up in a roll shape is convenient.
  • the thickness of the base material varies depending on the application of the gas barrier film to be obtained and cannot be specified unconditionally. However, when the gas barrier film is used as a packaging application, it is not particularly restricted and is suitable as a packaging material. It is preferable to be within 400 m, especially 6-30 m.
  • the resin film substrate used in the present invention has a film thickness of a Finolem shape.
  • the plasma CVD method near atmospheric pressure does not need to be reduced in pressure compared to the plasma CVD method under vacuum, and the plasma density is high and the productivity is high.
  • the mean free path of gas is very short, so an extremely flat film can be obtained.
  • Such a flat film has good optical properties and gas noria properties.
  • a thin film having a stable performance can be obtained with a dense film density when the ceramic film is formed on the resin film.
  • the residual stress is compressive stress, and a ceramic film in the range of 0. OlMPa or more and 20 MPa or less can be stably obtained.
  • the ceramic film according to the present invention supplies a gas containing a thin film-forming gas to the discharge space under atmospheric pressure or a pressure in the vicinity thereof, and the discharge space
  • the method is characterized in that the gas is excited by applying a high-frequency electric field, and a thin film is formed on the substrate by exposing the substrate to the excited gas.
  • the source gas containing the metal and the decomposition gas are appropriately selected from the gas supply means, and mainly for these reactive gases.
  • the ceramic film can be obtained by mixing the discharge gas and feeding the gas into the plasma discharge generator, which is likely to be in a plasma state.
  • nitrogen gas and Z or the 18th group atom of the periodic table specifically helium, neon, argon, krypton, xenon, radon, etc. are used as described above. Of these, nitrogen, helium, and argon are preferably used, and nitrogen is particularly preferred because of its low cost.
  • FIG. 2 shows a jet-type atmospheric pressure plasma discharge processing apparatus, which is not shown in FIG. 2 in addition to the electric field applying means having two power sources (shown in FIG. 3 described later). However, this is an apparatus having gas supply means and electrode temperature adjustment means.
  • the plasma discharge treatment apparatus 10 has a counter electrode composed of a first electrode 11 and a second electrode 12, and the first power source 21 is connected to the first electrode 11 between the counter electrodes.
  • First high-frequency electric field of electric field strength V and current I is applied, and second power source 22 is connected to second electrode 12.
  • the second high frequency electric field of frequency ⁇ , electric field strength V, and current I is applied.
  • the first power supply 21 can apply higher high-frequency electric field strength (V> V) than the second power supply 22.
  • the first frequency ⁇ of the first power source 21 is lower than the second frequency ⁇ of the second power source 22.
  • a first filter 23 is installed between the first electrode 11 and the first power source 21, and the first power source 2 1 force facilitates the passage of current to the first electrode 11, and the second power source It is designed so that the current from the second power source 22 to the first power source 21 passes through the current from the ground 22.
  • a second filter 24 is installed between the second electrode 12 and the second power source 22 to facilitate passage of current from the second power source 22 to the second electrode. Designed to ground the current from 21 and make it difficult to pass the current from the first power supply 21 to the second power supply!
  • a gas G from the gas supply means as shown in Fig. 3 to be described later is introduced between the opposing electrodes (discharge space) 13 between the first electrode 11 and the second electrode 12 so that the first electrode 11 and 2nd electrode 12 An electric field is applied to generate a discharge, and while the gas G is in a plasma state, the gas G is blown out in the form of a jet to the lower side of the counter electrode (the lower side of the paper), and the processing space created by the lower surface of the counter electrode and the substrate F is blocked.
  • the medium heats or cools the electrode through the pipe from the electrode temperature adjusting means as shown in FIG.
  • the temperature control medium an insulating material such as distilled water or oil is preferably used.
  • FIG. 3 is a schematic diagram showing an example of an atmospheric pressure plasma discharge treatment apparatus of a method for treating a substrate between counter electrodes useful for the present invention.
  • the atmospheric pressure plasma discharge treatment apparatus includes at least a plasma discharge treatment apparatus.
  • electric field applying means 40 having two power sources, gas supplying means 50, electrode temperature adjusting means 6
  • FIG. 3 shows a plasma discharge treatment of the substrate F between the opposed electrodes (discharge space) 32 between the roll rotating electrode (first electrode) 35 and the square tube fixed electrode group (second electrode) 36. It forms a thin film
  • a first filter 43 is disposed between the roll rotating electrode (first electrode) 35 and the first power supply 41, and the first filter 43 is configured to supply current from the first power supply 41 to the first electrode. It is designed to facilitate passage, ground the current from the second power source 42, and pass the current from the second power source 42 to the first power source.
  • a second filter 44 is installed between the square tube type fixed electrode group (second electrode) 36 and the second power source 42, and the second filter 44 is connected from the second power source 42 to the second electrode. It is designed to make it easy to pass the current, ground the current from the first power supply 41, and pass the current from the first power supply 41 to the second power supply!
  • the roll rotating electrode 35 may be the second electrode, and the square tube fixed electrode group 36 may be the first electrode.
  • the first power source is connected to the first electrode, and the second power source is connected to the second electrode.
  • the first power supply applies higher frequency field strength (V> V) than the second power supply
  • the frequency has the ability to satisfy ⁇ ⁇ .
  • the current is preferably I and I.
  • the current I of the first high frequency electric field is preferably
  • the current I of the second high-frequency electric field is preferably 10 mAZcm 2 to 100 mAZcm 2 ,
  • it is 20 mAZcm 2 to 1 OOmAZcm 2 .
  • the gas G generated by the gas generator 51 of the gas supply means 50 is introduced into the plasma discharge treatment container 31 through the air supply port 52 while controlling the flow rate.
  • the material F is unwound and the force that is conveyed by unwinding the original rolling force as shown in the figure, or the material is conveyed from the previous stage, and accompanied by the guide roll 64 to the substrate with the -roll 65
  • the air, etc. is cut off and transferred to and from the square tube fixed electrode group 36 while winding while being in contact with the roll rotation electrode 35, and the roll rotation electrode (first electrode) 35 and the square tube fixed electrode group (Second electrode)
  • An electric field is applied from both the electrode 36 and discharge plasma is generated between the counter electrodes (discharge space) 32.
  • the base material F forms a thin film by the plasma state gas while being wound while being in contact with the roll rotating electrode 35.
  • the base material F passes through the -roll roll 66 and the guide roll 67 and is taken up by a winder (not shown) or transferred to the next process.
  • Discharged treated exhaust gas G ' is discharged from the exhaust port 53.
  • the roll rotating electrode (first electrode) 35 and the square tube fixed electrode group (second electrode) 36 In order to heat or cool the medium, the medium whose temperature is adjusted by the electrode temperature adjusting means 60 is sent to both electrodes via the pipe 61 by the liquid feed pump P, and the temperature is adjusted from the inside of the electrode.
  • Reference numerals 68 and 69 denote partition plates that partition the plasma discharge processing vessel 31 from the outside.
  • FIG. 4 is a perspective view showing an example of the structure of the conductive metallic base material of the roll rotating electrode shown in FIG. 3 and the dielectric material coated thereon.
  • a roll electrode 35a is obtained by covering a conductive metallic base material 35A and a dielectric 35B thereon.
  • the temperature adjustment medium water or silicon oil
  • FIG. 5 is a perspective view showing an example of the structure of the conductive metallic base material of the rectangular tube electrode and the dielectric material coated thereon.
  • a rectangular tube electrode 36a has a coating of a dielectric 36B similar to that of FIG. 4 on a conductive metallic base material 36A, and the structure of the electrode is a metallic pipe. It becomes a jacket that allows temperature adjustment during discharge.
  • the number of the rectangular tube-shaped fixed electrodes is set in plural along the circumference larger than the circumference of the roll electrode, and the discharge area of the electrodes faces the roll rotating electrode 35. It is expressed as the sum of the area of the full-width cylindrical fixed electrode surface.
  • the rectangular tube electrode 36a shown in FIG. 5 may be a cylindrical electrode. However, the rectangular tube electrode has an effect of expanding the discharge range (discharge area) as compared with the cylindrical electrode. Is preferably used.
  • the roll electrode 35a and the rectangular tube electrode 36a are formed by spraying ceramics as dielectrics 35B and 36B on conductive metallic base materials 35A and 36A, respectively, and then forming inorganic compounds. Sealing treatment is performed using a sealing material.
  • the ceramic dielectric is only required to cover about 1 mm in one piece.
  • alumina or silicon nitride is preferably used. Of these, alumina is particularly preferred because it is easy to process.
  • the dielectric layer may be a lining treatment dielectric provided with an inorganic material by lining.
  • the conductive metallic base materials 35A and 36A include titanium metal or titanium alloy, silver, platinum, stainless steel, aluminum, iron, and other metals, or a combination of iron and ceramics. Force that can mention a composite material or a composite material of aluminum and ceramics Titanium metal or a titanium alloy is particularly preferable for the reasons described later.
  • the distance between the electrodes of the first electrode and the second electrode facing each other is such that when a dielectric is provided on one of the electrodes, the surface of the dielectric and the surface of the conductive metal base material of the other electrode Say the shortest distance. When dielectrics are provided on both electrodes, this is the shortest distance between the dielectric surfaces.
  • the distance between the electrodes is determined in consideration of the thickness of the dielectric provided on the conductive metal base material, the magnitude of the applied electric field strength, the purpose of using the plasma, etc. From the viewpoint of carrying out the above, 0.1 to 20 mm is preferable, and 0.2 to 2 mm is particularly preferable.
  • the plasma discharge treatment vessel 31 may be made of metal as long as it can be insulated from the force electrode in which a treatment vessel made of Pyrex (registered trademark) glass is preferably used.
  • a treatment vessel made of Pyrex (registered trademark) glass is preferably used.
  • polyimide resin or the like may be attached to the inner surface of an aluminum or stainless steel frame, and the metal frame may be ceramic sprayed to achieve insulation.
  • the second power supply (high frequency power supply) Applied power supply symbol Manufacturer Frequency Product name
  • an electrode capable of maintaining a uniform and stable discharge state by applying such an electric field in an atmospheric pressure plasma discharge treatment apparatus.
  • the second electrode (the second high-frequency electric field) supplies LWZcm 2 or more power (power density), a plasma by exciting a discharge gas It is generated and energy is given to the film forming gas to form a thin film.
  • the upper limit value of the power supplied to the second electrode is preferably 50 WZcm 2 , more preferably 20 W / cm 2 .
  • the lower limit is preferably 1.2 WZcm 2 .
  • the discharge area (cm 2 ) refers to the area in the range where discharge occurs in the electrode.
  • the output density is improved while maintaining the uniformity of the second high-frequency electric field. It can be made. As a result, a further uniform high-density plasma can be generated, and a further improvement in film quality and improvement in film quality can be achieved. Preferably it is 5 WZcm 2 or more.
  • the upper limit value of the power supplied to the first electrode is preferably 50 W / cm 2 .
  • the waveform of the high-frequency electric field is not particularly limited.
  • a continuous sine wave continuous oscillation mode called continuous mode
  • an intermittent oscillation mode called ON / OFF that is intermittently called pulse mode. Either of them can be used, but at least the second electrode side (second high frequency)
  • continuous sine waves are preferred because they provide a finer and better quality film.
  • the electrode used in such a method for forming a thin film by atmospheric pressure plasma must be able to withstand severe conditions in terms of structure and performance.
  • Such electrodes include gold It is preferable that the dielectric base material is coated with a dielectric.
  • the difference in linear thermal expansion coefficient between the metallic base material and the dielectric is 1 X 10 — Combinations with a temperature of 5 Z ° C or less.
  • the linear thermal expansion coefficient is a well-known physical property value of a material.
  • a combination of a conductive metallic base material and a dielectric whose difference in linear thermal expansion coefficient is within this range is as follows:
  • Metallic base material is pure titanium or titanium alloy, and dielectric is ceramic sprayed coating
  • Metal base material is pure titanium or titanium alloy, dielectric is glass lining
  • Metal base material is stainless steel, dielectric is glass lining
  • Metal base material is a composite material of ceramics and iron, and dielectric is ceramic sprayed coating
  • Metallic base material is a composite material of ceramics and iron, and dielectric is glass lining
  • Metal base material is a composite material of ceramic and aluminum, and dielectric is ceramic sprayed coating
  • the metal base material is a composite material of ceramics and aluminum, and the dielectric is glass lining. From the viewpoint of the difference in linear thermal expansion coefficient, the above-mentioned items 1 or 2 and items 5 to 8 are preferred, and the term 1 is particularly preferred.
  • titanium or a titanium alloy is particularly useful as the metallic base material from the above characteristics.
  • titanium or titanium alloy as the metal base material, by using the above dielectric material, it can withstand long-term use under harsh conditions where there is no deterioration of the electrode in use, especially cracking, peeling, or falling off. be able to.
  • the atmospheric pressure plasma discharge treatment apparatus applicable to the present invention is described in, for example, JP-A-2004-68143, 2003-49272, International Patent No. 02Z4 8428, etc. in addition to the above description. And an atmospheric pressure plasma discharge treatment apparatus. [0156] Next, the gas barrier film according to the present invention will be described.
  • Fig. 6 is a schematic diagram showing the layer structure of the transparent gas barrier film of the present invention.
  • the gas barrier film 1 of the present invention is a smooth film formed by coating a coating film containing a single layer of a ceramic film 3 and a polymerizable inorganic compound on a resin film substrate, for example, polyethylene terephthalate. It has H (coating film).
  • a resin film substrate for example, polyethylene terephthalate.
  • the gas noria film of the present invention two or more ceramic layers may be laminated.
  • the gas nolia film 2 includes a resin film base Y, at least two layers of ceramic films 3, and two ceramic films. It is also possible to have a stress relaxation layer 4 containing a polymer having a lower elastic modulus than the ceramic film located between them and a smoothing film H containing a polymerizable inorganic compound thereon.
  • the ceramic film according to the present invention has a dense structure and has high hardness, it is preferable that such a stress relaxation layer is provided between the layers to be laminated in the case of lamination.
  • the stress relaxation layer has the function of relaxing the stress generated in the ceramic layer and preventing the occurrence of cracks and defects in the inorganic ceramic film.
  • the polymer layer according to the present invention is a thin film mainly composed of an inorganic polymer, an organic polymer, an organic-inorganic hybrid polymer, etc., and has a film thickness of about 5 to 500 nm, relative to the above gas barrier layer. It is a layer with a low general hardness and has an average carbon content of 5% or more, and is also called a stress relaxation layer.
  • the inorganic polymer applicable in the present invention is a film having an inorganic skeleton as a main structure and containing an organic component, and includes a polymer obtained by polymerizing an organometallic compound.
  • These inorganic polymers are not particularly limited, and for example, silicon compounds such as silicon and polysilazane, titanium compounds, aluminum compounds, boron compounds, phosphorus compounds, and tin compounds can be used.
  • the key compound that can be used in the present invention is not particularly limited, but preferred are tetramethylsilane, trimethylmethoxysilane, dimethyldimethoxysilane, methyltrimethoxysilane, trimethylethoxysilane, and dimethylgerm.
  • organic polymer a polymerizable ethylenically unsaturated bond-containing compound having an ethylenically unsaturated bond in the molecule is preferable among known forces capable of using a known polymerizable organic compound.
  • polyfunctional oligomers can be used.
  • These polymerizable ethylenic double bond-containing compounds are not particularly limited, but preferred examples include 2-ethylhexyl acrylate, 2-hydroxypropyl acrylate, glycerol acrylate. rate, tetrahydrofurfuryl Atari rate Fuenokishechiru Atari rate, Roh loose phenoxy Chez chill Atari rate, tetrahydrofurfuryl O key shell chill Atari rate, hexa glue de Atari rate to tetrahydrofurfuryl O alkoxy, 1, 3 Jiokisan alcohol ⁇ one Monofunctional acrylates such as catecholate, 1,3 dixolane atrelate, etc.
  • Prebolimers can also be used in the same manner as described above.
  • One or two or more kinds of prepolymers may be used in combination, or may be used in admixture with the above-mentioned monomer and soot or oligomer.
  • Examples of the prepolymer include adipic acid, trimellitic acid, maleic acid, phthalic acid, terephthalic acid, hymic acid, malonic acid, succinic acid, glutaric acid, itaconic acid, pyromellitic acid, fumaric acid, and glutaric acid.
  • the organic polymer applicable to the polymer layer can be easily formed by using a plasma-polymerizable organic substance as the thin film-forming gas.
  • the plasma polymerizable organic material include hydrocarbons, vinyl compounds, halogen-containing compounds, and nitrogen-containing compounds.
  • the organic polymer layer is preferably provided on the substrate side from the ceramic layer.
  • hydrocarbons examples include ethane, ethylene, methane, acetylene, cyclohexane, benzene, xylene, phenol acetylene, naphthalene, propylene, camphor, menthol, toluene, isobutylene, and the like.
  • Examples of the bur compound include acrylic acid, methyl acrylate, and ethyl acrylate.
  • Methyl methacrylate Methyl methacrylate, aryl methacrylate, acrylamide, styrene, (X-methylstyrene, butylpyridine, butyl acetate, butylmethyl ether, and the like.
  • halogen-containing compound examples include tetrafluoromethane, tetrafluoroethylene, and hexafluoropropylene.
  • examples of the nitrogen-containing compound include pyridine, arylamine, butyramine, attarylonitrile, acetonitrile, benzo-tolyl, meta-tali-tolyl, and aminobenzene.
  • examples of the organic-inorganic hybrid polymer include a film in which an inorganic (organic) substance is dispersed in an organic (inorganic) polymer, and a film having both an inorganic skeleton and an organic skeleton as a main structure. it can.
  • the organic-inorganic hybrid polymer that can be applied to the present invention is not particularly limited, but preferably, a combination of the above-described inorganic polymer and organic polymer can be used.
  • the gas barrier film of the present invention can be used as various sealing materials and films.
  • the gas-nore film of the present invention can also be used for display elements, for example, organic EL elements.
  • the gas nolia film of the present invention is transparent, and thus this gas force film can be used as a base material so that this side force can be extracted. That is, a transparent conductive thin film such as ITO can be provided as a transparent electrode on this gas nore film to form a resin substrate for an organic electoluminescence element.
  • An ITO transparent conductive film provided on a substrate is used as an anode, an organic EL material layer including a light emitting layer is provided thereon, and a cathode made of a metal film is further formed to form an organic EL element.
  • the organic EL element layer can be sealed by stacking another sealing material (although it may be the same), adhering the gas noble film substrate and the surrounding area, and encapsulating the element. It is possible to seal the influence of the gas such as on the element.
  • the resin base material for organic electoluminescence is obtained by forming a transparent conductive film on the ceramic film of the gas-nolia film thus formed.
  • the transparent conductive film is a conductive film that becomes an anode when an organic EL element is formed.
  • the transparent conductive film can be formed by using a vacuum deposition method, a sputtering method, or the like, or by a coating method such as a sol-gel method using a metal alkoxide such as indium or tin. 10- 4 ⁇ 'cm order of excellent conductivity force indium can be obtained ITO film having a metal alkoxide such as tin, the organometallic compound in the same manner as described above using such as an alkyl metal, an atmospheric pressure plasma CVD It is preferable to form by a method.
  • a DC magnetron sputtering apparatus is used to provide an excellent conductivity of 10 ⁇ • cm order in specific resistance value.
  • the ability to obtain an ITO film with properties In the manufacturing method (PVD method), a target substance is deposited on a substrate in the gas phase to grow a film. Since a vacuum vessel is used, the equipment is large and expensive, and the use efficiency of raw materials is poor. Productivity is low. Moreover, it was difficult to form a film with a large area. Furthermore, in order to obtain a low resistance product, it is necessary to heat to 150 to 300 ° C. during film formation, and it is difficult to form a low resistance transparent conductive film on a resin film.
  • the gas used in forming the transparent conductive film varies depending on the type of the transparent conductive film provided on the substrate, but basically, an inert gas and a plasma state for forming the transparent conductive film are used.
  • This is a mixed gas of reactive gas.
  • the inert gas is a group 18 element of the periodic table, specifically helium, neon, argon, krypton, xenon, radon, nitrogen gas, and the like, but argon or helium is particularly preferable.
  • a plurality of reactive gases can be used in the present invention, but at least one kind contains a component that is in a plasma state in the discharge space and forms a transparent conductive film.
  • organometallic compound is used preferably.
  • the type of organometallic compound is not limited, but organometallic compounds having oxygen in the molecule are preferred, and organometallic compounds such as ⁇ -diketone metal complexes, metal alkoxides, and alkyl metals are preferably used.
  • indium hexafluoropentane dionate indium methyl (trimethyl) acetyl acetate, indium acetyl cetate, indium isoporopoxide, indium trifluoropentane diate, tris (2, 2, 6, 6— Tetramethinole 3,5 heptanedionate)
  • di ⁇ -Butinolebis (2,4 pentanedionate) tin Gee ⁇ -Butinoresiacetoxytin, di-Butyldiacetoxytin, tetraisopropoxy Tin, tetrabutoxytin, zinc cetyl acetate and the like can be mentioned.
  • indium acetylethylacetonate tris (2, 2, 6, 6-tetramethinole 3, 5-heptanedionate) indium, zinc acetinol acetonate, di-n —Ptyldiacetoxytin.
  • organometallic compounds are generally commercially available.
  • indium acetyl etherate can be easily obtained from Tokyo Chemical Industry Co., Ltd.
  • these molecules contain at least one oxygen atom.
  • a doping gas that is used to improve conductivity can be used.
  • the reactive gas used for doping include aluminum isopropoxide, nickel acetyl cetate, manganese acetyl cetate, boron isopropoxide, n-butoxy antimony, tri-n-butyl antimony, Di-n-butynolebis (2,4-pentanedionate) tin, di-n-butinoresidacetoxin, di-t-butyldiacetoxytin, tetraisopropoxytin, tetrabutoxytin, tetrabutyltin, zinc acetyl Examples thereof include caseinate, propylene hexafluoride, cyclobutane octafluoride, and methane tetrafluoride.
  • the amount of water mixed in the reaction gas is preferably in the range of 0.0001 to 10% in the mixed gas of the reactive gas and the inert gas. More preferably, it is in the range of 0.001 to 1%.
  • an oxidizing gas such as oxygen, a reducing gas such as hydrogen, and the like, nitrogen monoxide, nitrogen dioxide Carbon monoxide, carbon dioxide and carbon dioxide can also be used as appropriate.
  • the amount ratio between the reactive gas used as the main component of the transparent conductive film and the reactive gas used in a small amount for doping differs depending on the type of the transparent conductive film to be formed.
  • the reactive gas is adjusted so that the In: Sn atomic ratio of the obtained ITO film is in the range of 100: 0.1 to L00: 15. Adjust the amount. The adjustment is preferably in the range of 100: 0.5 to 100: 10.
  • the atomic ratio of In: Sn can be obtained by XPS measurement.
  • the FTO film In a transparent conductive film (referred to as FTO film) obtained by doping fluorine with acid tin, the FTO film has a Sn: F atomic ratio in the range of 100: 0.01 to L00: 50. The amount ratio of the reactive gas is adjusted so that The atomic ratio of Sn: F can be determined by XPS measurement.
  • Sn: F atomic ratio in the range of 100: 0.01 to L00: 50.
  • the amount ratio of the reactive gas is adjusted so that The atomic ratio of Sn: F can be determined by XPS measurement.
  • In O—ZnO amorphous transparent conductive film In:
  • the quantity ratio of the reactive gas is adjusted so that the atomic ratio of Zn is in the range of 100: 50 to L00: 5.
  • the atomic ratio of In: Zn can be determined by XPS measurement.
  • the reactive gas is small for the purpose of doping with the reactive gas as the main component of the transparent conductive film.
  • a key is introduced in addition to the main metal element constituting the transparent conductive film and the metal element to be doped.
  • a reactive gas is added as a reactive gas in order to adjust the resistance value of the transparent conductive film.
  • organometallic compounds particularly organometallic compounds such as ⁇ -diketone metal complexes, metal alkoxides, and alkyl metals are preferably used. Specifically, the following can be mentioned.
  • Tetramethoxysilane as a key compound
  • Tetraethoxysilane Tetraethoxysilane, tetra-iso-propoxysilane, tetra-n-propoxysilane, tetra-n-butoxysilane, tetra-sec-butoxysilane, tetra-tert-butoxysilane, methyltrimethoxysilane, methyltriethoxysilane, methyltri Propoxy silane, methytributoxy silane, dimethyl dimethoxy silane, dimethyl ethoxy silane, dimethyl ethoxy silane, dimethino methoxy silane, dimethino les propoxy silane, dimethino levoxy silane, methino resin methoxy silane, methino lesoxy silane, hexino Retrimethoxysilane and the like.
  • tetraethoxysilane is preferable in terms of stability and vapor pressure.
  • the thickness of the transparent conductive film is preferably in the range of 0.1 nm to 1000 nm.
  • the heat treatment temperature is preferably in the range of 50 to 300 ° C.
  • the range is preferably from 100 to 200 ° C.
  • the atmosphere for heating is not particularly limited. It can be appropriately selected from an air atmosphere, a reducing atmosphere containing a reducing gas such as hydrogen, an oxidizing atmosphere containing an oxidizing gas such as oxygen, or a vacuum or an inert gas atmosphere.
  • the concentration of the reducing gas and the oxidizing gas is preferably 0.01 to 5%, more preferably 0.1 to 3%.
  • the transparent conductive film obtained by the transparent conductive film forming method uses an organometallic compound as a reactive gas, and therefore may contain a trace amount of carbon.
  • the carbon content is preferably 0 to 5.0 atom concentration. Particularly preferred is a range of 0.01 to 3 atomic number concentration.
  • the ceramic film or the transparent conductive film is formed under a pressure in the vicinity of atmospheric pressure, but the temperature of the substrate at that time is not particularly limited. When glass is used as the substrate, it is preferably 300 ° C or lower, and when a polymer resin substrate described later is used, it is preferably 200 ° C or lower.
  • One feature of the organic electoluminescence device of the present invention is that the gas nore film of the present invention having a ceramic film and a coating film is used as a substrate.
  • a transparent conductive film is further formed on the ceramic film and the coating film, and this is used as an anode, and an organic EL material layer for calibrating the organic EL element is formed thereon. Then, it is laminated with a metal layer serving as a cathode, and another gas-nore film is further laminated thereon as a sealing film for sealing.
  • sealing film As another sealing material (sealing film) to be used, a gas barrier film having a ceramic layer having a dense structure according to the present invention and a coating layer containing a polymerizable inorganic compound can be used.
  • known gas-nore films used for packaging materials such as those obtained by vapor-depositing silicon oxide or acid aluminum on plastic films, dense ceramic layers, and flexibility
  • a gas-nore film or the like having a structure in which impact-reducing polymer layers are alternately laminated and a coating layer is provided as a smooth film on the uppermost portion can be used as a sealing film.
  • the metal foil laminated with resin cannot be used as a gas-nozzle film on the light extraction side, but it is a low-cost, low moisture-permeable, sealing material that is intended for light extraction. However, it is preferable as a sealing film (when transparency is not required).
  • the metal foil is formed by rolling or the like, unlike a metal thin film formed by sputtering or vapor deposition or a conductive film formed from a fluid electrode material such as conductive paste. Refers to a metal foil or film.
  • the metal foil is not particularly limited to the type of metal, for example, copper (Cu) foil, aluminum (A1) foil, gold (Au) foil, brass foil, nickel (Ni) foil, titanium (Ti) foil, Copper alloy foil, stainless steel Examples include foil, tin (Sn) foil, and high nickel alloy foil. Of these various metal foils, A1 foil is particularly preferred.
  • the thickness of the metal foil is preferably 6 to 50 ⁇ m. If the thickness is 6 ⁇ m or more, the occurrence of pinholes during use can be prevented regardless of the material used for the metal foil, and the required barrier properties (moisture permeability, oxygen permeability) can be maintained. Moreover, if it is 50 / zm or less, the optimum economic efficiency can be maintained depending on the material used for the metal foil, the organic EL element can be prevented from becoming excessively thick, and the merit of the film can be fully exhibited.
  • polyethylene-based resin polypropylene-based resin, polyethylene-terephthalate-based resin, polyamide-based resin, ethylene-butalcohol copolymer resin, ethylene-acetate copolymer resin, acrylonitrile-butadiene copolymer system
  • examples include rosin, cellophane-based rosin, vinylon-based rosin, and salty-redene-based rosin.
  • the resin such as polypropylene resin and nylon resin may be stretched and further coated with a salty vinylidene resin.
  • polyethylene-based rosin can be used at low density or high density.
  • nylon (Ny), nylon (KNy) coated with vinylidene chloride (PVDC), unstretched polypropylene (CPP), stretched polypropylene (OPP), and PVDC were coated.
  • Polypropylene (KOP), polyethylene terephthalate (PET), PVDC-coated cellophane (KPT), polyethylene butyl alcohol copolymer (EVAL), low density polyethylene (LDPE), high density polyethylene (HDPE), linear low density polyethylene (L LDPE) is preferably used.
  • thermoplastic films a multilayer film made by co-extrusion with a different kind of film, a multilayer film laminated by changing the stretching angle, and the like can be used as needed. Furthermore, it is naturally possible to combine the density and molecular weight distribution of the film used to obtain the required physical properties of the packaging material.
  • the thickness of the polymer film cannot be specified, but 3-400 ⁇ m is preferred 10-200
  • / z m is more preferable, and 10 to 50 / ⁇ ⁇ is more preferable.
  • a method of coating (laminating) a polymer film on one side of a metal foil it is generally used.
  • the laminating machine currently used can be used.
  • Adhesives such as polyurethane, polyester, epoxy, and acrylic can be used as the adhesive.
  • a curing agent may be used in combination.
  • a dry laminating method, a hot melt lamination method, and an ethaust lamination method can also be used, but a dry laminating method is preferred.
  • Films in which one side of a metal foil is coated with a polymer film are commercially available for packaging materials.
  • adhesive layer Z aluminum film 9 ⁇ m Z polyethylene terephthalate (PET) 38 ⁇ m dry laminate film (two-reaction urethane adhesive with an adhesive layer thickness of 1.5 m) is available This can be used to seal the cathode side of the organic EL element.
  • a film for sealing in a film in which one side of a metal foil is coated with a polymer film, it is preferable to use a ceramic film formed on the metal foil opposite to the polymer film.
  • the preferred film thickness of the ceramic film according to the present invention as the ceramic film is in the range of 1 to 2000 nm, and is similarly formed by the atmospheric pressure plasma method or the like.
  • the film thickness is preferably 300 m or less.
  • a transparent conductive film is formed on a resin film (gas-nore film) having the ceramic film and the coating film of the present invention, and each layer of the organic EL element is formed on the prepared resin substrate for organic electroluminescence.
  • the organic electroluminescence device can be sealed using the sealing film so as to cover the cathode surface with the sealing film in an environment purged with an inert gas. .
  • inert gases in addition to N, a force in which rare gases such as He and Ar are preferably used He and Ar
  • the ratio of water vapor and oxygen in the gas which is also preferred as a rare gas mixed with, is preferably lppm or less. Preservation is improved by sealing in an environment purged with an inert gas.
  • a ceramic film is formed on the metal foil that is not on the laminated resin film surface. It is preferable to bond this ceramic film surface to the cathode of the organic EL device.
  • conduction may occur partially and the accompanying electrical decoration may occur, which may cause dark spots.
  • a resin film that can be fused with a commonly used impulse sealer such as ethylene acetate butyl copolymer (EVA) or polypropylene (PP) film.
  • EVA ethylene acetate butyl copolymer
  • PP polypropylene
  • the dry laminating method is excellent in terms of workability.
  • This method generally uses a curable adhesive layer of about 1.0 to 2.5 m.
  • the amount of adhesive applied should preferably be 3-5 ⁇ m in dry film thickness. Prefer to adjust to.
  • Hot melt lamination is a method in which a hot melt adhesive is melted and an adhesive layer is applied to a substrate, but the thickness of the adhesive layer is generally set within a wide range of 1 to 50 m. It is.
  • Commonly used base resins for hot melt adhesives include EVA, EEA, polyethylene, butyl rubber, etc., and rosin, xylene resin, terpene resin, styrene resin, etc. as a tackifier, wax Etc. are added as plasticizers.
  • Etrusion lamination is a method in which hot melted resin is coated on a substrate with a die, and the thickness of the resin layer can generally be set in a wide range of 10 to 50 m.
  • FIG. 7 after each layer of the organic EL element is formed on the gas noble film of the present invention, sealing is performed by further bonding the resin laminated aluminum foil with an oxide silicon film and the gas noble film. A schematic cross-sectional view of the organic EL device is shown.
  • FIG. 7 the ceramic including the coating film according to the present invention formed on the resin film base Y is shown.
  • An anode (ITO) 4 each organic EL layer 5 including a light emitting layer, and a cathode (for example, aluminum) 6 are formed on the gas-noria film having the mimic film 3 to form an organic EL element.
  • another sealing film S is stacked on the cathode, and the organic EL element including the organic EL material layer is sealed by adhering the periphery of the base film.
  • a ceramic film 3 including a coating film according to the present invention is formed on a metal (aluminum) foil 7, and a resin layer 8 is laminated on the opposite side of the metal foil. The ceramic film 3 side is bonded so as to be in contact with the cathode.
  • the arrow indicates the light extraction direction.
  • a water-absorbing substance is disposed in the sealing space in the sealing structure, or a layer that absorbs water vapor such as a water-absorbing layer is formed in the structure. May be provided.
  • each layer (component layer) of the organic EL material constituting the organic EL element will be described.
  • the organic EL element an element having a phosphorescent emission type light emitting layer containing a phosphorescent dopant in the light emitting layer is used. High luminous efficiency is preferred.
  • Anode ⁇ Anode buffer layer ⁇ Hole transport layer ⁇ Light emitting layer ⁇ Hole blocking layer ⁇ Electron transport layer ⁇ Cathode buffer layer ⁇ Cathode
  • an electrode material made of a metal, an alloy, an electrically conductive compound or a mixture thereof having a high work function (4 eV or more) is preferably used.
  • This Specific examples of such electrode materials include metals such as Au, and conductive transparent materials such as Cul, indium tinoxide (ITO), SnO, and ZnO. IDIXO (In O—ZnO) etc.
  • these electrode materials can be formed into a thin film by vapor deposition or sputtering, and a pattern of the desired shape can be formed by a single photolithography method. m or more), a pattern may be formed through a mask of a desired shape during the deposition or sputtering of the electrode material.
  • the transmittance is larger than 10%, and the sheet resistance as the anode is preferably several hundred ⁇ Z or less.
  • the film thickness is a force depending on the material. Usually 10 to: L000 nm, preferably 10 to 20 Onm.
  • a cathode having a work function (4 eV or less) metal referred to as an electron injecting metal
  • an alloy referred to as an electrically conductive compound
  • a mixture thereof is used.
  • electrode materials include sodium, sodium monopotassium alloy, magnesium, lithium, magnesium Z copper mixture, magnesium Z silver mixture, magnesium Z aluminum mixture, magnesium Z indium mixture, aluminum Z acid aluminum UM (Al 2 O 3) mixture, indium, lithium
  • the cathode can be produced by forming a thin film of these electrode materials by a method such as vapor deposition or sputtering. Also, the sheet resistance as a cathode is several hundred ⁇ / mouth or less, and the preferred film thickness is usually ⁇ ! ⁇ 5 ⁇ m, preferably selected in the range of 50 to 200 nm. In addition, since the emitted light is transmitted, it is convenient that either the anode or the cathode of the organic EL element is transparent or semi-transparent to improve the emission luminance.
  • a transparent or translucent cathode can be manufactured by forming a conductive transparent material thereon, and by applying this, an element in which both the anode and the cathode are transmissive can be manufactured. .
  • the injection layer is provided as necessary, and includes an electron injection layer and a hole injection layer, and as described above, exists between the anode and the light emitting layer or hole transport layer and between the cathode and the light emitting layer or electron transport layer. Hey.
  • An injection layer is a layer provided between an electrode and an organic layer in order to reduce driving voltage or improve light emission luminance.
  • the organic EL element and its forefront of industrialization June 30, 1998) (Published by ES Co., Ltd.) ”, Chapter 2“ Chapter 2 Electrode Materials ”(pages 123-166) in detail, the hole injection layer (anode buffer layer) and electron injection layer (cathode buffer layer) There is.
  • anode buffer layer (hole injection layer) The details of the anode buffer layer (hole injection layer) are also described in JP-A-9-45479, JP-A-9260062, JP-A-8-288069 and the like.
  • cathode buffer layer (electron injection layer) The details of the cathode buffer layer (electron injection layer) are also described in JP-A-6-325871, JP-A-9-17574, JP-A-10-74586, and the like. Specifically, strontium Metal buffer layer typified by aluminum, etc. Alkali metal compound buffer layer typified by lithium fluoride, alkaline earth metal compound buffer layer typified by magnesium fluoride, acid salt typified by acid aluminum One thing buffer is one example.
  • the buffer layer (injection layer) is preferably a very thin film, although the film thickness is preferably in the range of 0.1 nm to 5 m, although it depends on the desired material.
  • the blocking layer is provided as necessary. It is what For example, it is described in JP-A-11 204258, 11-204359, and “Organic EL device and the forefront of its industrialization” (published by NTS Corporation on November 30, 1998). There is a hole blocking layer.
  • the hole blocking layer has a function of an electron transport layer in a broad sense, and has a hole blocking material force that has a function of transporting electrons and has a very small ability to transport holes, and transports electrons. By blocking holes, the recombination probability of electrons and holes can be improved. Moreover, the structure of the electron carrying layer mentioned later can be used as a hole-blocking layer based on this invention as needed.
  • the electron blocking layer has a function of a hole transport layer in a broad sense, and has a function of transporting holes while having a material force with extremely small ability to transport electrons, thereby transporting holes.
  • the probability of recombination of electrons and holes can be improved.
  • the structure of the positive hole transport layer mentioned later can be used as an electron blocking layer as needed.
  • the light emitting layer according to the present invention is a layer that emits light by recombination of electrons and holes injected from an electrode, an electron transport layer, or a hole transport layer, and the light emitting portion is within the layer of the light emitting layer. It may be the interface between the light emitting layer and the adjacent layer.
  • the light-emitting layer of the organic EL device of the present invention preferably contains the following host compound and dopant compound. Thereby, the luminous efficiency can be further increased.
  • Luminescent dopants are roughly classified into two types: fluorescent dopants that emit fluorescence and phosphorescent dopants that emit phosphorescence.
  • Representative examples of the former include coumarin dyes, pyran dyes, cinine dyes, croconium dyes, squalium dyes, oxobenzanthracene dyes, fluorescein dyes, rhodamines. And dyes such as a dye, a pyrylium dye, a perylene dye, a stilbene dye, a polythiophene dye, or a rare earth complex phosphor.
  • a typical example of the latter is preferably a complex compound containing a metal of Group 8, Group 9, or Group 10 of the periodic table of elements, and more preferably an iridium compound, Sumium compounds, and most preferred are iridium compounds. Specifically, these compounds are described in the following patent publications. [0234] International Publication No. 00Z70655 Pamphlet K JP 2002-280178, 2001-181616, 2002-280179, 2001-181617, 2002
  • the luminescent dopant a plurality of kinds of compounds may be mixed and used.
  • the light-emitting host (simply referred to as “host”! Means the compound with the highest mixing ratio (mass) in the light-emitting layer composed of two or more types of compounds.
  • One pant compound also simply referred to as dopant) ".
  • compound B is a host compound.
  • Compound C is a host compound.
  • the luminescent host used in the present invention is not particularly limited in terms of structure, but is typically a force rubazole derivative, triarylamine derivative, aromatic borane derivative, nitrogen-containing bicyclic compound, thiophene.
  • carboline derivatives diaza force rubazole derivatives and the like are preferably used.
  • the light-emitting host used in the present invention may be a low-molecular compound or a high-molecular compound having a repeating unit, and may be a low-molecular compound having a polymerizable group such as a vinyl group or an epoxy group (evaporation polymerizable light-emitting). (Host) But ...
  • a compound having a hole transporting ability and an electron transporting ability and preventing emission from being increased in wavelength and having a high Tg (glass transition temperature) is preferable.
  • a plurality of known host compounds may be used in combination.
  • a plurality of dopant compounds it is possible to mix different light emissions, thereby obtaining an arbitrary emission color.
  • White light emission is possible by adjusting the type of phosphorescent compound and the amount of doping, and it can also be applied to lighting and knocklights.
  • the light-emitting layer can be formed by depositing the above compound by a known thin film method such as a vacuum deposition method, a spin coating method, a casting method, an LB method, or an inkjet method.
  • the thickness of the light emitting layer is not particularly limited, but is usually selected in the range of 511111 to 5111, preferably 5 to 200 nm.
  • This light emitting layer may have a single layer structure in which these phosphorescent compounds and host compounds have one or more kinds of force, or may have a laminated structure composed of a plurality of layers having the same composition or different compositions. ⁇ .
  • the hole transport layer is a hole transport material having a function of transporting holes.
  • a hole injection layer and an electron blocking layer are also included in the hole transport layer.
  • the hole transport layer can be provided as a single layer or a plurality of layers.
  • the hole transport material has either injection or transport of holes and / or a barrier property of electrons, and may be either organic or inorganic.
  • Examples include stilbene derivatives, silazane derivatives, aniline copolymers, and conductive polymer oligomers, particularly thiophene oligomers. It is.
  • aromatic tertiary amine compounds and styrylamine compounds include N, N, N ', N'-tetraphenyl-1,4'-daminophenol; N, N' —Diphenyl N, N '— Bis (3-methylphenol) 1 [1, 1' — Biphenyl] 1, 4, 4 '— Diamine (TPD); 2, 2 Bis (4 di-p-tolylaminophenol 1, 1-bis (4 di-l-tri-laminophenol) cyclohexane; N, N, N ', N' —tetra-l-tolyl-1,4,4'-diaminobiphenyl; 1 Bis (4 di-p-triaminophenol) 4 Phenol mouth hexane; Bis (4-dimethylamino 2-methylphenol) phenylmethane; Bis (4-di-p-triaminophenol) phenylmethane; N, N ' —Diphenyl N, N
  • 5,061,569 for example, 4,4′bis [N- (1-naphthyl) N phenol-amino] Bifuran (NPD), three triphenylamine units described in JP-A-4 308688 are connected in a starburst type 4, 4 ', A "—Tris [? ⁇ — (3— Methylphenol) N phenolamine] triphenylamine (MTD ATA) and the like.
  • a polymer material in which these materials are introduced into a polymer chain or these materials as a polymer main chain can also be used.
  • Inorganic compounds such as P-type-Si and p-type-SiC can also be used as the hole injection material and hole transport material.
  • the hole transport layer is formed by thin-filming the hole transport material by a known method such as a vacuum deposition method, a spin coating method, a casting method, a printing method including an inkjet method, or an LB method. In Can be formed.
  • the film thickness of the hole transport layer is not particularly limited, but usually
  • the thickness is about 5 nm to 5 ⁇ m, preferably 5 to 200 nm.
  • the hole transport layer may have a single layer structure that can be one or more of the above materials.
  • a hole transport layer having a high p property doped with impurities may be used.
  • Examples thereof are JP-A-4-297076, JP-A-2000-196140, JP-A-2001-102175,
  • the electron transport layer is a material force having a function of transporting electrons, and in a broad sense, an electron injection layer and a hole blocking layer are also included in the electron transport layer.
  • An electron transport layer may be provided as a single layer or multiple layers.
  • any material can be selected from conventionally known compounds as long as it has a function of transmitting electrons injected from the electrode to the light-emitting layer.
  • Examples include fluorene derivatives, diphenylquinone derivatives, thiopyran dioxide oxide derivatives, strength rubodiimides, fluorenylidenemethane derivatives, anthraquinodimethane and anthrone derivatives, oxadiazole derivatives, and the like.
  • a thiadiazole derivative in which the oxygen atom of the oxaziazole ring is substituted with a sulfur atom, and a quinoxaline derivative having a quinoxaline ring known as an electron withdrawing group can also be used as an electron transport material.
  • a polymer material in which these materials are introduced into a polymer chain or these materials are used as a polymer main chain can also be used.
  • metal complexes of 8 quinolinol derivatives such as tris (8 quinolinol) aluminum (Alq), tris (5,7-dichloro-1-8-quinolinol) aluminum, tris (5,7-dibromo 1 8quinolinol) aluminum, tris (2methyl 8-quinolinol) aluminum, tris (5-methyl 8-quinolinol) aluminum, bis (8-quinolinol) zinc (Zn q), etc.
  • Metal complexes in which is replaced with In, Mg, Cu, Ca, Sn, Ga or Pb can also be used as electron transport materials.
  • metal free or metal phthalocyanine, or the terminal of them is an alkyl group or sulfonic acid group Those that are substituted with the above can be preferably used as the electron transporting material.
  • the distyrylvirazine derivative exemplified as the material of the light emitting layer can also be used as an electron transport material, and, like the hole injection layer and the hole transport layer, n-type—Si, n-type—SiC, etc. These inorganic semiconductors can also be used as electron transport materials.
  • the electron transport layer is obtained by thin-filming the electron transport material by a known method such as a vacuum deposition method, a spin coating method, a casting method, a printing method including an inkjet method, or an LB method. Can be formed. Although there is no restriction
  • the electron transport layer may be a single layer structure having one or more of the above materials.
  • an n-type electron transport layer doped with impurities can be used. Examples thereof include those described in JP-A-4-297076, JP-A-2000-196140, JP-A-2001-102175, Appl. Phys., 95, 5773 (2004), etc. .
  • the external extraction efficiency of light emission at room temperature is preferably 1% or more, more preferably 5% or more.
  • the external extraction quantum efficiency (%) the number of photons emitted to the outside of the organic EL element Z is the number of electrons X 100 flowing into the organic EL element.
  • a hue improvement filter such as a color filter may be used in combination, or a color conversion filter that converts light emitted from an organic EL element into multiple colors using a phosphor may be used in combination.
  • the ⁇ max of light emission of the organic EL element is preferably 480 nm or less.
  • anode Z hole injection layer As an example of the organic EL element, an anode Z hole injection layer, a Z hole transport layer, a Z light emitting layer, a Z electron transport layer, a Z electron injection layer, and a method for producing an organic EL element having a Z cathode power will be described.
  • a desired electrode material for example, a thin film having physical properties for an anode is deposited on a substrate (the gas barrier film of the present invention) so that the film thickness is 1 ⁇ m or less, preferably 10 to 200 nm.
  • the anode is formed by notching or plasma CVD.
  • a hole injection layer, a hole transport layer, a light emitting layer, and an electron transport layer, which are organic EL element materials, are formed thereon.
  • an organic compound thin film of an electron injection layer and a hole blocking layer is formed.
  • a thin film that also has a material force for the cathode is formed thereon by a method such as vapor deposition or sputtering so that the film thickness is 1 ⁇ m or less, preferably in the range of 50 to 200 nm.
  • the desired organic EL device can be obtained by forming the cathode more and forming a cathode.
  • the organic EL element is preferably manufactured from the hole injection layer to the cathode consistently by a single evacuation, but it may be taken out halfway and subjected to different film formation methods. At that time, it is necessary to consider that the work is performed in a dry inert gas atmosphere.
  • the order of preparation may be reversed, and the cathode, the electron injection layer, the electron transport layer, the light emitting layer, the hole transport layer, the hole injection layer, and the anode can be formed in this order.
  • a DC voltage is applied to the multi-color display device thus obtained, light emission can be observed by applying a voltage of about 2 to 40 V with the anode as + and the cathode as one polarity.
  • An alternating voltage can also be applied.
  • the alternating current waveform to be applied may be arbitrary.
  • a display device using the organic EL element of the present invention can be used as a display device, a display, and various light sources. Display devices and displays can be displayed in full color by using three types of organic EL elements: blue, red, and green.
  • Examples of the display device and display include a television, a computer, a mopile device, an AV device, a character broadcast display, and an information display in a car.
  • the driving method when used as a display device for reproducing moving images which may be used as a display device for reproducing still images or moving images, may be either a simple matrix (passive matrix) method or an active matrix method.
  • the lighting device using the organic EL element of the present invention includes household lighting, interior lighting, backlights for watches and liquid crystals, billboard advertisements, traffic lights, light sources for optical storage media, light sources for electrophotographic copying machines, optical communication Examples include, but are not limited to, a light source for a processing machine and a light source for an optical sensor.
  • the organic EL device of the present invention may be used as an organic EL device having a resonator structure.
  • the organic EL elements having such a resonator structure can be used for light sources of optical storage media, light sources of electrophotographic copying machines, light sources of optical communication processors, light sources of optical sensors, etc. It is not limited. In addition, it can be used for the above applications by causing laser oscillation.
  • a gas nore film in which a ceramic film having a residual stress in a predetermined range is provided on the resin film having high gas noreality according to the present invention does not need to be laminated with a multilayer ceramic film as a gas nore layer.
  • the organic EL element of the present invention may be used as a kind of lamp such as an illumination or exposure light source, a projection device that projects an image, or a type that directly recognizes a still image or a moving image. It may be used as a display device (display).
  • the drive method may be either a simple matrix (passive matrix) method or an active matrix method.
  • a full-color display device can be manufactured by using three or more organic EL elements of the present invention having different emission colors.
  • FIG. 8 is a schematic diagram showing an example of a display device configured with organic EL element power.
  • Organic FIG. 3 is a schematic diagram of a display such as a mobile phone that displays image information by light emission of an EL element.
  • the display 101 includes a display unit A having a plurality of pixels, a control unit B that performs image scanning of the display unit A based on image information, and the like.
  • the control unit B is electrically connected to the display unit A, and sends a scanning signal and an image data signal to each of a plurality of pixels based on image information from the outside. Sequentially emit light according to the image data signal, scan the image, and display the image information on the display unit A.
  • FIG. 9 is a schematic diagram of the display unit A.
  • the display portion A includes a wiring portion including a plurality of scanning lines 5 and data lines 106, a plurality of pixels 103, and the like on a substrate.
  • the main members of the display unit A will be described below.
  • FIG. 9 shows a case where the light power emitted from the pixel 103 is extracted in the direction of the white arrow (downward).
  • the scanning lines 105 and the plurality of data lines 106 in the wiring portion are each made of a conductive material, and the scanning lines 105 and the data lines 106 are orthogonal to each other in a grid pattern and are connected to the pixels 103 at orthogonal positions ( Details are not shown).
  • the pixel 103 When a scanning signal is applied from the scanning line 105, the pixel 103 receives an image data signal from the data line 106 and emits light according to the received image data.
  • Full color display is possible by appropriately arranging pixels in the red region, the green region, and the blue region on the same substrate.
  • FIG. 10 is a schematic diagram of a pixel.
  • the pixel includes an organic EL element 110, a switching transistor 111, a driving transistor 112, a capacitor 113, and the like.
  • a full color display can be performed by using red, green, and blue light emitting organic EL elements as the organic EL elements 110 for a plurality of pixels and arranging them on the same substrate.
  • an image data signal is applied from the control unit B to the drain of the switching transistor 111 via the data line 106.
  • a scanning signal is applied from the control unit B to the gate of the switching transistor 111 via the scanning line 105, the switching transistor The driving of the star 111 is turned on, and the image data signal applied to the drain is transmitted to the capacitor 113 and the gate of the driving transistor 112.
  • the capacitor 113 is charged according to the potential of the image data signal, and the drive of the drive transistor 12 is turned on.
  • the drive transistor 112 has a drain connected to the power supply line 107 and a source connected to the electrode of the organic EL element 110.
  • the drive transistor 112 is connected to the organic EL element 110 from the power supply line 107 according to the potential of the image data signal applied to the gate. Current is supplied.
  • the driving of the switching transistor 111 is turned off. However, even if the driving of the switching transistor 111 is turned off, the capacitor 113 holds the charged potential of the image data signal. Therefore, the driving of the driving transistor 112 is kept on, and the next scanning signal is applied. The organic EL element 110 continues to emit light until it is seen. When a scanning signal is next applied by sequential scanning, the driving transistor 112 is driven according to the potential of the next image data signal synchronized with the scanning signal, and the organic EL element 110 emits light.
  • the organic EL element 110 emits light by providing a switching transistor 111 and a drive transistor 112, which are active elements, for each of the organic EL elements 110 of each of the plurality of pixels.
  • the element 110 emits light.
  • Such a light emission method is called an active matrix method.
  • the light emission of the organic EL element 110 may be light emission of a plurality of gradations by a multi-value image data signal having a plurality of gradation potentials, or a predetermined light emission by a binary image data signal.
  • the amount can be on or off.
  • the potential of the capacitor 113 may be maintained until the next scanning signal is applied, or may be discharged immediately before the next scanning signal is applied.
  • FIG. 11 is a schematic diagram of a display device using a passive matrix method.
  • the plurality of scanning lines 105 and the plurality of image data lines 106 are opposed to each other with the pixel 103 interposed therebetween. It is provided in the shape.
  • the pixel 103 connected to the applied scanning line 105 emits light according to the image data signal.
  • the pixel 103 has no active element, and the manufacturing cost can be reduced.
  • the organic EL material according to the present invention can also be applied to an organic EL element that emits substantially white light as a lighting device.
  • a plurality of light emitting colors are simultaneously emitted by a plurality of light emitting materials to obtain white light emission by color mixing.
  • the combination of multiple emission colors may include three emission maximum wavelengths of the three primary colors of blue, green, and blue, or a complementary color relationship such as blue and yellow, blue green and orange, etc. 2 It may be one containing two emission maximum wavelengths.
  • a combination of light emitting materials for obtaining a plurality of emission colors includes a combination of a plurality of phosphorescent or fluorescent light emitting materials (light emitting dopants), a light emitting material that emits fluorescent light or phosphorescent light, and Any combination of a dye material that emits light from the light emitting material as excitation light may be used, but in the white organic EL device according to the present invention, a method of combining a plurality of light emitting dopants is preferable.
  • the layer structure of the organic EL device for obtaining a plurality of emission colors includes a method in which a plurality of emission dopants exist in one emission layer, a plurality of emission layers, and each emission layer includes Examples include a method in which dopants having different emission wavelengths are present, and a method in which minute pixels that emit light at different wavelengths are formed in a matrix.
  • patterning may be performed by a metal mask ink jet printing method or the like as needed during film formation.
  • patterning only the electrode may be patterned, the electrode and the light emitting layer may be patterned, or the entire element layer may be patterned.
  • the light emitting material used for the light emitting layer is not particularly limited.
  • the platinum complex according to the present invention is adapted so as to conform to the wavelength range corresponding to the CF (color filter) characteristics. You can also select any of the known luminescent materials and combine them to make them white!
  • the white light-emitting organic EL element can be used as a display device or display.
  • various light emitting light sources and lighting devices household lighting, interior lighting, and as a kind of lamp such as exposure light source, it is also useful for display devices such as backlights of liquid crystal display devices.
  • backlights for watches, signboard advertisements, traffic lights, light sources for optical storage media, light sources for electronic photocopiers, light sources for optical communication processors, light sources for optical sensors, and display devices are required. And a wide range of uses such as general household appliances.
  • the following thin films were formed by the atmospheric pressure plasma CVD method using the roll electrode type discharge treatment apparatus shown in FIG.
  • the roll electrode type discharge treatment apparatus a plurality of rod-shaped electrodes opposed to the roll electrode were installed in parallel to the film transport direction, and raw materials and electric power were supplied to each electrode part to form each thin film.
  • the dielectric was coated with lmm on one side of the ceramic sprayed one with both electrodes facing each other.
  • the electrode gap after coating was set to lmm.
  • the metal base material coated with a dielectric has a stainless steel jacket specification that has a cooling function with cooling water. During discharge, the electrode temperature was controlled with cooling water.
  • the power source used here was a high frequency power source (80 kHz) manufactured by Applied Electric, and a high frequency power source (13. 56 MHz) manufactured by Pearl Industrial.
  • Adhesion layer Z ceramic layer Z protection layer Gas barrier film 1 was produced by forming each of them under the conditions shown in FIG. The thickness of each thin film is 50 nm for the adhesion layer, 30 nm for the ceramic layer, and 40 Onm for the protection layer. The substrate holding temperature during film formation was 120 ° C.
  • N gas Reaction gas 1 5% of oxygen gas to total gas
  • Reaction gas 2 Tetraethoxysilane (hereinafter abbreviated as TEOS) is 0.1% of the total gas.
  • Low-frequency side power supply 80 kHz lOWZcm 2
  • this ceramic film was deposited to a thickness of 1 ⁇ m on a quartz glass with a thickness of 100 m, a width of 10 mm, and a length of 50 mm, and then remained in the thin film physical property evaluation system MH4000 manufactured by NEC Sanei.
  • the residual stress was measured and found to be 0.8 MPa.
  • Reaction gas 1 1% of hydrogen gas with respect to the total gas
  • Reaction gas 2 0.5% of TEOS to all gases
  • High frequency side source power a 13. 56MHz 5WZcm 2
  • Reaction gas 1 1% of hydrogen gas with respect to the total gas
  • Reaction gas 2 0.5% of TEOS to all gases
  • High frequency side source power a 13. 56MHz 5WZcm 2
  • a coating solution having the following composition as a coating film is applied onto the protective layer using a bar coater, dried at 80 ° C for 5 minutes, and then a high-pressure mercury lamp. (80W) was used to cure by irradiating with ultraviolet rays of 400 mj / cm 2 to produce a gas barrier film 2.
  • the film thickness after curing of the surface coating layer was adjusted to be lOOnm.
  • SiO sol (Snowtex (IPA-ST, manufactured by Nissan Chemical Industries) 6 parts by mass
  • Trimethylolpropane triglycidyl ether active energy ray reactive compound 1 part by mass
  • Silicone oil (SH200, manufactured by Toray 'Dowcoung' Silicone)
  • Barrier film 3 was prepared by forming an organic polymer film as a coating film on the protective layer according to the following forming method using the above gas noor film 1.
  • Resistance heating terminal sets the barrier film 1 in the vacuum chamber of the film forming apparatus fitted with a high pressure mercury UV lamp in a vacuum deposition machine having a, was evacuated to 1 X 10- 4 Pa order, the organic deposition source resistance Heating was started and an organic layer of lOOnm was deposited.
  • the composition of the organic layer deposited here is 100 parts by weight of 100 parts by weight of neopentyl dallicol-modified trimethylolpropane diatalylate (KAYARAD R-604: Nippon Kayaku Co., Ltd.), which is a diatalylate having a cyclic ether structure.
  • a polymerization initiator (Irgacure 651: Ciba 'Specialty' manufactured by Chemicals) added with 1 part by mass was used. After the deposition, to cure the UV irradiation at the integrated light quantity of 500mjZcm 2.
  • a barrier film 4 was produced by using the above gas noor film 1 and forming an inorganic thermal polymerization film as a coating film on the protective layer according to the following forming method.
  • the reaction solution 1 was prepared by dissolving with stirring. Acid boiling NH as a halogen ion source
  • reaction liquid 2 was prepared so that it might become mole Zkg.
  • the reaction solution 1 and the reaction solution 2 prepared as described above were mixed at a mass ratio of 3: 1 and stirred for 10 minutes, and then ⁇ of the mixture solution was adjusted to 5.0 ( The solution was adjusted to methyl red + bromocresol green ethanol solution as an indicator), aged for 3 hours, hydrolyzed and dehydrated to give a coating solution.
  • the SiO concentration in the coating solution is 10% and the carbon content is 40%.
  • This mixed solution was applied onto the protective layer of the NORA film 1 and heat-cured to form a lOOnm thin film.
  • the heating temperature was 150 ° C for 3 hours.
  • a noria film 5 was produced in the same manner as in the gas nolia film 2 except that only the ceramic layer was produced by the following production method.
  • a ceramic layer was formed under the following conditions using a plasma CVD apparatus manufactured by Samcone, MODEL PD-270STP.
  • Anti-gas TEOS 5sccm (Standard cubic centimeter per minute) Power: 13. 100MHz at 56MHz
  • the residual stress of the ceramic layer of the NORA film 5 was 80 MPa when measured by the same method as the residual stress measurement method of the ceramic layer of the gas barrier film 1.
  • a transparent conductive film (ITO film) was produced on each of the produced gas noor films by the following method.
  • an electrode having a parallel plate type was used, and each gas noor film was placed between the electrodes, and a mixed gas was introduced to form a thin film.
  • a ground electrode a 200 mm x 200 mm x 2 mm stainless steel plate was coated with a high-density, high-adhesion alumina sprayed film, and then tetramethoxysilane was added to the acetate. After coating and drying the solution diluted with water, it is cured by ultraviolet irradiation and sealed, and the dielectric surface coated in this way is polished and smoothed, and the electrode is processed so that the maximum surface roughness Rmax is Was used.
  • the application electrode an electrode in which a dielectric was coated on a hollow square pure titanium pipe under the same conditions as the ground electrode was used. A plurality of application electrodes were prepared and provided to face the ground electrode to form a discharge space.
  • a power source used for plasma generation a high frequency power source CF-5000-13M manufactured by Pearl Industry Co., Ltd. was used, and a power of 5 WZcm 2 was supplied at a frequency of 13.56 MHz.
  • a mixed gas having the following composition is allowed to flow between the electrodes to form a plasma state, and each of the above gas noble films is subjected to atmospheric pressure plasma treatment, and a tin-doped indium oxide (ITO) film is formed on the protective layer or coating film.
  • ITO indium oxide
  • Discharge gas helium 98.5 volume 0/0
  • Reactive gas 1 Oxygen 0.25% by volume
  • Reactive gas 2 Indium ⁇ cetyl ⁇ Seto diisocyanate 1.2 volume 0/0
  • Reactive gas 3 Dibutyltin diacetate 0.05% by volume
  • Each gas barrier film 100 mm X 100 mm on which the ITO film was formed was used as a substrate, and after patterning, the gas barrier film substrate provided with the ITO transparent electrode was ultrasonically cleaned with isopropyl alcohol and dried nitrogen. Dry with gas.
  • This transparent support substrate is fixed to the substrate holder of a commercially available vacuum evaporation system. Meanwhile, 200 mg of ⁇ NPD is placed in a molybdenum resistance heating boat, and 200 mg of CBP as a host compound is placed in another molybdenum resistance heating boat, and another molybdenum is heated.
  • BCP bathocuproine
  • the heated boat containing BCP And a hole blocking layer having a thickness of lOnm was provided by vapor deposition on the light emitting layer at a deposition rate of 0. InmZ seconds. On top of that, energize the heated boat containing Alq and
  • the substrate temperature at the time of vapor deposition was room temperature.
  • a round electrode type electric discharge treatment device shown in Fig. 3 was used to form a ceramic layer on one side of a 30 m thick aluminum foil and polypropylene laminated on the other side.
  • a plasma discharge treatment is performed using a ceramic (SiO 2) film under the following conditions:
  • a sealing film was formed with a thickness of Onm.
  • Reaction gas 1 5% of oxygen gas to total gas
  • Reaction gas 2 Tetraethoxysilane (TEOS) 0.1% of total gas
  • Low frequency side power supply 80kHz lOWZcm 2
  • High frequency side power supply 13.56MHz lOWZcm 2
  • an epoxy adhesive is used to form the sealing film on the surface on which the SiO film is provided and on the cathode surface of the organic EL element, and on the gas barrier.
  • the oxygen transmission rate was measured according to the method specified in JIS K 7126B.
  • the center length average roughness Ra and the maximum height Rmax specified in JIS-B-0601 are measured in a non-contact manner when measured at a reference length of 2.5mm specified in JIS-B-0601 and a cutoff value of 0.8mm.
  • the measurement was performed using a three-dimensional micro surface profile measurement system (Veeco WYKO).
  • Each of the organic EL devices fabricated above was continuously lit at a constant current of 2.5 mAZcm 2 at room temperature, and the time ( ⁇ 1/2 ) required to reach half the initial luminance was measured. was used as a measure of lifetime.
  • the organic EL device using the gas-insoluble film coated with the polymerizable inorganic material of the present invention has a longer life with no dark spots compared to the comparative example. was gotten.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Optics & Photonics (AREA)
  • Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Electroluminescent Light Sources (AREA)
  • Laminated Bodies (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

 本発明は、重合性無機化合物を用い、高いバリア性能と表面平滑性を両立できるガスバリアフィルムと、それを用いた有機エレクトロルミネッセンス用樹脂基材、有機エレクトロルミネッセンス素子とガスバリアフィルムの製造方法を提供する。このガスバリアフィルムは、樹脂フィルム上に、少なくとも1層のセラミック膜と、重合性無機化合物を含有する塗布液をコーティングして形成された塗布層を、この順序で有し、該セラミック膜の残留応力が、0.01MPa以上、20MPa以下であることを特徴とする。

Description

ガスバリアフィルム、有機エレクト口ルミネッセンス用樹脂基材、それを用レ た有機エレクト口ルミネッセンス素子及びガスバリアフィルムの製造方法
技術分野
[0001] 本発明は、有機エレクト口ルミネッセンス素子のプラスチック基板に用いられる透明 なガスバリアフィルム及びそのガスバリアフィルムを用いた有機エレクト口ルミネッセン ス用榭脂基材、および有機エレクト口ルミネッセンス素子とガスノ リアフィルムの製造 方法に関するものである。
背景技術
[0002] 従来、プラスチック基板やフィルムの表面に酸ィ匕アルミニウム、酸ィ匕マグネシウム、 酸化珪素等の金属酸化物の薄膜を形成したガスバリア性フィルムは、水蒸気や酸素 等の各種ガスの遮断を必要とする物品の包装、食品や工業用品及び医薬品等の変 質を防止するための包装用途に広く用いられている。また、包装用途以外にも液晶 表示素子、太陽電池、有機エレクト口ルミネッセンス (以下、有機 ELともいう)基板等 で使用されている。
[0003] この様な分野における包装材料としてはアルミ箔等が広く用いられている力 使用 後の廃棄処理が問題となっているほか、基本的には不透明であり、外から内容物を 確認することができないという課題を抱えており、更に、ディスプレイ材料では透明性 が求められており、全く適用することができない。
[0004] 特に、液晶表示素子、有機 EL素子などへの応用が進んでいる透明基材には、近 年、軽量化、大型化という要求に加え、長期間にわたる信頼性や形状の自由度が高 いこと、曲面表示が可能であること等の高度な要求に対し、重く割れやすく大面積化 が困難なガラス基板に代り透明プラスチック等のフィルム基材が採用され始めている 。例えば、特開平 2— 251429号公報ゃ特開平 6— 124785号公報には、有機エレ タトロルミネッセンス素子の基板として、高分子フィルムを用いた例が開示されて 、る
[0005] し力しながら、透明プラスチック等のフィルム基材は、ガラスに比較するとガスノ リア 性が劣るという問題がある。例えば、有機エレクト口ルミネッセンス素子の基板として用 いた場合、基材のガスバリア性が劣ると、水蒸気や空気が浸透して有機膜を劣化さ せ、発光特性あるいは耐久性等を損なう要因となる。また、電子デバイス用基板とし て高分子基板を用いた場合には、酸素が高分子基板を透過して電子デバイス内〖こ 浸透、拡散し、デバイスを劣化させてしまうことや、電子デバイス内で求められる真空 度を維持できないといった問題を引き起こす。
[0006] この様な問題を解決するため、フィルム基板上に金属酸ィ匕物薄膜を形成してガス ノリア性フィルム基材とすることが知られている。包装材ゃ液晶表示素子に使用され るガスノリア性フィルムとしてはプラスチックフィルム上に酸ィ匕珪素を蒸着したもの(特 許文献 1参照)や酸化アルミニウムを蒸着したもの (特許文献 2参照)が知られており、 V、ずれも 2gZm2' day程度の水蒸気バリア性、あるいは 2mlZm2 · day · atm程度の 酸素透過性を有するにすぎな!、のが現状である。
[0007] 近年では、更なるガスノ リア性が要求される有機 ELディスプレイや、液晶ディスプ レイの大型化、高精細ディスプレイ等の開発により、フィルム基板へのガスノリア性能 について水蒸気透過度として 1 X 10— 3g/m2' day程度まで要求が上がってきている
[0008] これら高い水蒸気遮断性の要望に応える方法の 1つとして、緻密なセラミック層と、 柔軟性を有し、外部からの衝撃を緩和するポリマー層とを交互に繰り返し積層した構 成のガスノリア性フィルムが提案されている(特許文献 3参照)。し力しながら、セラミツ ク層とポリマー層とでは、一般に組成が異なるため、それぞれの接触界面部での密 着性が劣化し、膜剥離等の品質劣化を引き起こすことがある。特に、この密着性の劣 化は、高温高湿等の過酷な環境下や紫外線の照射を長期間にわたり受けた際に顕 著に現れ、早急な改良が求められている。また、ノ リアフィルムの最上層として、柔軟 性を有する有機ポリマー層を設けることにより、表面の平滑性を向上させることができ るが(非特許文献 1参照)、このように、セラミックのノ リア層の上側に有機層を設け、 更にその上に直接透明導電膜を設けると、その有機層から発せられるガス成分により 、良質な透明導電膜が得られない。
[0009] また、セラミック膜についても、単にセラミックの膜であればよいというものではなぐ 密度が高ぐまた、割れ等を起しにくい膜でなければならず、また、基材となる榭脂フ イルムにも一定の性質が要求されることが判ってきた。
[0010] また、一方、これら基板上に形成される有機 EL発光デバイスにおいては、これらバ リアフィルム上に透明電極を設ける必要がある。特にバックライトや照明といった比較 的大きな面積を必要とする面発光素子では、低抵抗かつ透明性に優れ、更に高い 表面平滑性が要求される。
[0011] 特に、表面平滑性としては、中心線平均粗さで lnm以下、ボトム Zピークで lOnm 以下が必要とされる。そしてこれらの表面平滑性を達成するには、基材である榭脂フ イルムカゝら表面平滑性を達成する必要があり、また榭脂フィルムを如何に平滑ィ匕して も、その後のノリア力卩ェで平滑性を損なうと、全く意味のないこととなる。
[0012] また、蒸着ゃスパッタ及び CVDでは、一般に下地を平滑化すれば、そこそこの平 滑性が得られるが、比較的大きな面積で突起を全くゼロにするのは、困難である。 特許文献 1:特公昭 53— 12953号公報
特許文献 2:特開昭 58— 217344号公報
特許文献 3 :米国特許第 6, 268, 695号明細書
非特許文献 1 : Thin Solid Films 308- 309 (1997) 19- 25
発明の開示
発明が解決しょうとする課題
[0013] 本発明は、上記課題に鑑みなされたものであり、その目的は、高いバリア性能と表 面平滑性を両立できるガスノリアフィルムと、それを用いた有機エレクト口ルミネッセン ス用榭脂基材、有機エレクト口ルミネッセンス素子とガスノリアフィルムの製造方法を 提供することにある。
課題を解決するための手段
[0014] 本発明の上記目的は、以下の構成により達成される。
[0015] 1.榭脂フィルム上に、少なくとも 1層のセラミック膜と、重合性無機化合物を含有す る塗布液をコーティングして形成された塗布層を、この順序で有し、該セラミック膜の 残留応力が、 0. OlMPa以上、 20MPa以下であることを特徴とするガスバリアフィル ム。 [0016] 2.前記塗布層が、最上部に位置することを特徴とする前記 1に記載のガスバリアフ イノレム。
[0017] 3.前記セラミック膜を構成する物質が、酸化珪素、酸化窒化珪素、窒化珪素及び 酸ィ匕アルミニウム力も選ばれる少なくとも 1種、またはそれらの混合であることを特徴と する前記 1または 2に記載のガスバリアフィルム。
[0018] 4.前記重合性無機化合物が、シリカゾルまたはアルミナゾルであることを特徴とす る前記 1乃至 3のいずれ力 1項に記載のガスバリアフィルム。
[0019] 5.前記塗布層の表面粗さが、中心線平均粗さで lnm以下であることを特徴とする 前記 1乃至 4のいずれ力 1項に記載のガスバリアフィルム。
[0020] 6.前記 1乃至 5のいずれか 1項に記載のガスバリアフィルムの上に、透明導電性薄 膜が形成されていることを特徴とする有機エレクト口ルミネッセンス用榭脂基材。
[0021] 7.前記 6に記載の有機エレクト口ルミネッセンス用榭脂基材の上に、燐光発光有機 エレクト口ルミネッセンス材料及び陰極となる金属膜をコーティングし、更に榭脂ラミネ ート済み金属箔を接着剤で貼り付け封止したことを特徴とする有機エレクト口ルミネッ センス素子。
[0022] 8.前記榭脂ラミネート済み金属箔は、金属箔の陰極と接しない側が樹脂でラミネー トされており、逆の陰極と接する面がセラミック膜でコーティングされていることを特徴 とする前記 7に記載の有機エレクト口ルミネッセンス素子。
[0023] 9.榭脂フィルム上に、少なくとも 1層のセラミック膜と、塗布層とを、この順序で有す るガスバリアフィルムの製造方法にぉ 、て、
該セラミック膜を、大気圧もしくはその近傍の圧力下で、放電空間に薄膜形成ガス を含有するガスを供給し、該放電空間に高周波電界を印加することにより該ガスを励 起し、基材を該励起したガスに晒すことにより基材上に薄膜を形成する薄膜形成方 法により形成し、
該塗布層を、重合性無機化合物を含有する塗布液をコーティングして形成すること を特徴とするガスノ リアフィルムの製造方法。
[0024] 10.前記ガスバリアフィルムのガスノリア性能が、 JIS K 7129— 1992に準拠し た方法で測定された 25±0. 5°C、 90± 2%RHにおける水蒸気透過度が l X 10_4g Z (m2' 24h)以下で、かつ JIS K 7126— 1987に準拠した方法で測定された酸素 透過度が 1 X 10—4mlZ (m2' 24h' atm)以下であることを特徴とする前記 9に記載の ガスノリアフィルムの製造方法。
[0025] 11.前記塗布層が、最上部に位置することを特徴とする前記 9または 10に記載の ガスノリアフィルムの製造方法。
[0026] 12.前記セラミック膜の残留応力力 0. OlMPa以上、 20MPa以下であることを特 徴とする前記 9乃至 11のいずれか 1項に記載のガスバリアフィルムの製造方法。
[0027] 13.前記セラミック膜を構成する物質が、酸化珪素、酸化窒化珪素、窒化珪素及び 酸ィ匕アルミニウム力も選ばれる少なくとも 1種、またはそれらの混合であることを特徴と する前記 9乃至 12のいずれ力 1項に記載のガスバリアフィルムの製造方法。
[0028] 14.前記重合性無機化合物が、シリカゾルまたはアルミナゾルであることを特徴と する前記 9乃至 13のいずれ力 1項に記載のガスバリアフィルムの製造方法。
[0029] 15.前記塗布層の表面粗さが、中心線平均粗さで lnm以下であることを特徴とす る前記 9乃至 14のいずれ力 1項に記載のガスバリアフィルムの製造方法。
発明の効果
[0030] 本発明により、重合性無機化合物を用い、高いバリア性能と表面平滑性を両立でき るガスノ リアフィルムと、それを用いた有機エレクト口ルミネッセンス用榭脂基材、有機 エレクト口ルミネッセンス素子とガスノリアフィルムの製造方法を提供することができた
図面の簡単な説明
[0031] [図 1]真空蒸着法により形成した酸化珪素膜の残留応力と真空度との関係を示す図 である。
[図 2]本発明に有用なジェット方式の大気圧プラズマ放電処理装置の一例を示した 概略図である。
[図 3]本発明に有用な対向電極間で基材を処理する方式の大気圧プラズマ放電処 理装置の一例を示す概略図である。
[図 4]図 3に示したロール回転電極の導電性の金属質母材とその上に被覆されてい る誘電体の構造の一例を示す斜視図である。 [図 5]角筒型電極の導電性の金属質母材とその上に被覆されている誘電体の構造の 一例を示す斜視図である。
[図 6]本発明のガスノリアフィルムの層構成を示す模式図である。
[図 7]本発明のガスバリアフィルムを用いて封止された有機 EL素子の断面概略図で ある。
[図 8]有機 EL素子カゝら構成される表示装置の一例を示した模式図である。
[図 9]表示部 Aの模式図である。
[図 10]画素の模式図である。
[図 11]パッシブマトリックス方式による表示装置の模式図である。
符号の説明
1, 2 ガスバリアフィルム
3 セラミック膜
H 平滑化膜
Y 榭脂フィルム基材
10, 30 プラズマ放電処理装置
11 第 1電極
12 第 2電極
14 処理位置
21, 41 第 1電源
22, 42 第 2電源
32 放電空間(対向電極間)
35 ロール回転電極(第 1電極)
35a ローノレ電極
35A 金属質母材
35B, 36B 誘電体
36 角筒型固定電極群 (第 2電極)
36a 角筒型電極
36A 金属質母材 40 電界印加手段
50 ガス供給手段
52 給気口
53 排気口
F 基材
G ガス
G° プラズマ状態のガス
発明を実施するための最良の形態
[0033] 以下、本発明を実施するための最良の形態について詳細に説明する。
[0034] 本発明者は、上記課題に鑑み鋭意検討を行った結果、榭脂フィルム上に、少なくと も 1層のセラミック膜と塗布膜とをこの順序で有するガスノ リアフィルムにおいて、該塗 布膜は重合性無機化合物を含有する塗布液をコーティングして形成され、前記セラミ ック膜の残留応力は 0. OlMPa以上、 20MPa以下であることを特徴とするガスノ リア フィルムにより、高いバリア性能と表面平滑性を両立できるガスノ リアフィルムを実現 できることを見出し、本発明に至った次第である。
[0035] 以下、本発明の詳細について説明する。
[0036] 《ガスバリアフィルム》
本発明のガスノ リアフィルムは、榭脂フィルム基材上に、残留応力の小さい緻密な セラミック膜がコーティングされており、従来のようなセラミック膜を繰り返し榭脂フィル ム基材上に積層しなくとも、高 、ガスノ リア性能を有するガスノ リアフィルムが得られ る。
[0037] 本発明のガスノ リアフィルムは、榭脂フィルム上に少なくとも 1層のセラミック膜を有 する積層フィルムであって、このセラミック膜としては、残留(内部)応力が圧縮応力で 0. OlMPa以上、 20MPa以下である。この様な緻密な膜を形成することで、耐久性 の高 ヽ、ガスノ リア性に優れたガスノ リアフィルムが得られる。
[0038] 本発明のガスバリアフィルム、特に、水蒸気透過度としては、有機 ELディスプレイ用 途の場合、極わずかであっても、成長するダークスポットが発生し、ディスプレイの表 示寿命が極端に短くなる場合があるため、ガスノ リア性能力 JIS K 7129- 1992 に準拠した方法で測定された 25±0. 5°C、 90± 2%RHにおける水蒸気透過度が 1 X IO— 4g/ (m2' 24h)以下で、 JIS K 7126— 1987に準拠した方法で測定された 酸素透過度が 1 X 10—41!117 (1112' 2411' &^1)以下でぁることが好ましぃ。
[0039] (セラミック膜)
本発明に係るセラミック膜は、前記の残留応力を有し、酸素及び水蒸気の透過を阻 止する膜であれば、その組成等は特に限定されるものではないが、本発明に係るセ ラミック膜 (層)を構成する材料としては、具体的には無機酸ィ匕物が好ましぐ酸ィ匕珪 素、酸ィ匕アルミニウム、酸化窒化珪素、酸ィ匕窒化アルミニウム、酸化マグネシウム、酸 化亜鉛、酸化インジウム、酸化スズ等のセラミック膜を挙げることができる。
[0040] また、これらの榭脂フィルム上に形成したセラミック膜の残留応力は圧縮応力で、 0 . OlMPa以上、 20MPa以下である。
[0041] 例えば、蒸着法、 CVD法、ゾルゲル法等により形成したセラミック膜を有する榭脂 フィルムは、一定条件に放置したとき、プラスカール、マイナスカールをその基材フィ ルムとセラミック膜の膜質との関係で生じる。このカールは、前記セラミック膜中に発 生する応力によって、生じるもので、カールの大きいもの(プラスカール)ほど、圧縮応 力が大き 、と 、うことができる。
[0042] セラミック膜中の内部応力の測定は、以下の方法により測定する。
[0043] 即ち、測定膜と同じ組成、厚みのセラミック膜を、幅 10mm、長さ 50mm、厚み 0. 1 mmの石英基板上に同じ方法により厚み 1 μ mとなるよう製膜し、作製したサンプルに 生じるカールをサンプルの凹部を上に向けて、 NEC三栄社製の薄膜物性評価装置 MH4000にて測定して得ることができる。一般に、圧縮応力により基材に対し膜側が 縮むプラスカールの場合、プラスの応力とし、逆に、引っ張り応力によりマイナスカー ルを生じる場合、マイナスの応力と表現する。
[0044] 本発明において、この応力値としては 20MPa以下にあることが必要であり 0. 01M Pa以上、 20MPa以下の範囲である。
[0045] 酸ィ匕珪素膜を形成した榭脂フィルムの残留応力は、例えば、真空蒸着法により酸 化珪素膜を作製するときに、真空度を調整することで、調整できる。
[0046] 図 1は幅 10mm、長さ 50mm、厚み 0. 1mmの石英基板上に、真空蒸着法により酸 化珪素膜を 1 μ m形成したときのチャンバ一の真空度と、形成される酸化珪素膜の前 記の方法により測定した残留(内部)応力との関係を示す。 0よりも大きぐ 20MPa程 度までの残留応力をもつ積層フィルムが好まし!/、。応力が小さすぎるときには部分的 に引っ張り応力になっている場合もあり、膜にひびや、亀裂が入りやすぐ耐久性の な ヽ膜となり、大きすぎる場合には割れ易 ヽ膜となる。
[0047] 例えば、ゾルゲル法等を用いた湿式法を用いて形成されたセラミック膜にぉ 、ては 、緻密でバリア性能の高い膜は形成しにくい。
[0048] 本発明において、ガスノリア層となるセラミック膜の製造方法は、特に限定されるも のではないが、本発明においては、スパッタリング法、イオンアシスト法、後述するプ ラズマ CVD法、大気圧または大気圧近傍の圧力下でのプラズマ CVD法等を適用し て形成されたものであることが好ましぐ特に、大気圧プラズマ CVDによる方法は、減 圧チャンバ一等が不要で、高速製膜ができ生産性の高い製膜方法であり、好ましい 。上記ガスノリア層をプラズマ CVDにより形成することで、均一かつ表面の平滑性を 有し、更に内部応力も非常に少ない(前記 0. 01〜20MPa)膜を比較的容易に形成 することが可能となるからである。
[0049] 本発明におけるこれらのセラミック膜の厚さは、用いられる材料の種類、構成により 最適条件が異なり、適宜選択される力 l〜2000nmの範囲内であることが好ましい
[0050] ガスバリア膜の厚さ力 lnm以上であれば、均一な膜が得られ、ガスに対するバリ ァ性を得ることができる。また、ガスバリア膜の厚さが 2000nm以下であれば、ガスバ リアフィルムにフレキシビリティを保持させることができ、成膜後に折り曲げ、引っ張り 等の外的要因に対する耐性を、ガスノリア性フィルムに付与することができる。
[0051] また、厚みが上記の範囲以下であると膜欠陥が多くなり、充分な防湿性が得られな い。また、厚みが大きい方が理論的には防湿性は高いが、余り大きいと内部応力が 不必要に大きくなり、割れやすぐ防湿性が得られない。
[0052] また、本発明においては、上記ガスバリア層となるセラミック膜が、透明であることが 好ましい。上記ガスノリア層が透明であることにより、ガスノリアフィルムを透明なもの とすることが可能となり、有機 EL素子の透明基板等の用途にも使用することが可能と なる力もである。ガスノ リアフィルムの光透過率としては、例えば、測定光の波長を 55 Onmとしたとき透過率が 80%以上のものが好ましぐ 90%以上が更に好ましい。
[0053] プラズマ CVD法、大気圧または大気圧近傍の圧力下でのプラズマ CVD法により 得られるガスノ リア層は、原材料 (原料ともいう)である有機金属化合物、分解ガス、 分解温度、投入電力などの条件を選ぶことで、金属炭化物、金属窒化物、金属酸ィ匕 物、金属硫ィ匕物等のセラミック膜を、またこれらの混合物 (金属酸窒化物、金属窒化 炭化物など)も作り分けることができるため好ましい。
[0054] 例えば、珪素化合物を原料化合物として用い、分解ガスに酸素を用いれば、珪素 酸化物が生成する。また、亜鉛化合物を原料化合物として用い、分解ガスに二硫ィ匕 炭素を用いれば、硫ィ匕亜鉛が生成する。これはプラズマ空間内では非常に活性な荷 電粒子、活性ラジカルが高密度で存在するため、プラズマ空間内では多段階の化学 反応が非常に高速に促進され、プラズマ空間内に存在する元素は熱力学的に安定 な化合物へと非常な短時間で変換されるためである。
[0055] このような無機物の原料としては、典型または遷移金属元素を有していれば、常温 常圧下で気体、液体、固体いずれの状態であっても構わない。気体の場合にはその まま放電空間に導入できるが、液体、固体の場合は、加熱、パブリング、減圧、超音 波照射等の手段により気化させて使用する。又、溶媒によって希釈して使用してもよ ぐ溶媒は、メタノール,エタノール, n キサンなどの有機溶媒及びこれらの混合 溶媒が使用できる。尚、これらの希釈溶媒は、プラズマ放電処理中において、分子状 、原子状に分解されるため、影響は殆ど無視することができる。
[0056] このような有機金属化合物としては、
ケィ素化合物としては、例えば、シラン、テトラメトキシシラン、テトラエトキシシラン (T EOS)、テトラ n プロボキシシラン、テトライソプロボキシシラン、テトラ n ブトキシシ ラン、テトラ t ブトキシシラン、ジメチノレジメトキシシラン、ジメチノレジェトキシシラン、 ジェチルジメトキシシラン、ジフエ二ルジメトキシシラン、メチルトリエトキシシラン、ェチ ルトリメトキシシラン、フエ-ルトリエトキシシラン、(3, 3, 3—トリフルォロプロピル)トリ メトキシシラン、へキサメチルジシロキサン、ビス(ジメチルァミノ)ジメチルシラン、ビス( ジメチルァミノ)メチルビ-ルシラン、ビス(ェチルァミノ)ジメチルシラン、 N, O ビス( トリメチルシリル)ァセトアミド、ビス(トリメチルシリル)カルポジイミド、ジェチルァミノトリ メチルシラン、ジメチルアミノジメチルシラン、へキサメチルジシラザン、へキサメチル シクロトリシラザン、ヘプタメチルジシラザン、ノナメチルトリシラザン、オタタメチルシク ロテトラシラザン、テトラキスジメチルアミノシラン、テトライソシアナ一トシラン、テトラメ チルジシラザン、トリス(ジメチルァミノ)シラン、トリエトキシフルォロシラン、ァリルジメ チルシラン、ァリルトリメチルシラン、ベンジルトリメチルシラン、ビス(トリメチルシリル) アセチレン、 1, 4 ビストリメチルシリル一 1, 3 ブタジイン、ジ一 t—ブチルシラン、 1 , 3—ジシラブタン、ビス(トリメチルシリル)メタン、シクロペンタジェ-ルトリメチルシラ ン、フエ二ルジメチルシラン、フエニルトリメチルシラン、プロパルギルトリメチルシラン、 テトラメチルシラン、トリメチルシリルアセチレン、 1— (トリメチルシリル)一 1—プロピン
、へキサメチルジシラン、オタタメチルシクロテトラシロキサン、テトラメチルシクロテトラ シロキサン、へキサメチルシクロテトラシロキサン、 Mシリケート 51等が挙げられる。
[0057] チタンィ匕合物としては、例えば、チタンメトキシド、チタンエトキシド、チタンイソプロ ポキシド、チタンテトライソポロポキシド、チタン n—ブトキシド、チタンジイソプロポキシ ド(ビス 2, 4 ペンタンジォネート)、チタンジイソプロボキシド(ビス 2, 4 ェチ ルァセトアセテート)、チタンジ一 n—ブトキシド(ビス一 2, 4 ペンタンジォネート)、 チタンァセチルァセトネート、ブチルチタネートダイマー等が挙げられる。
[0058] ジルコニウム化合物としては、例えば、ジルコニウム n—プロポキシド、ジルコニウム n—ブトキシド、ジルコニウム t—ブトキシド、ジルコニウムトリ— n—ブトキシドアセチル ァセトネート、ジルコニウムジー n ブトキシドビスァセチルァセトネート、ジルコニウム ァセチルァセトネート、ジルコニウムアセテート、ジルコニウムへキサフルォロペンタン ジォネート等が挙げられる。
[0059] アルミニウム化合物としては、例えば、アルミニウムエトキシド、アルミニウムトリイソプ ロポキシド、アルミニウムイソプロポキシド、アルミニウム n—ブトキシド、アルミニウム s —ブトキシド、アルミニウム t—ブトキシド、アルミニウムァセチルァセトナート、トリェチ ルジアルミニウムトリ - s -ブトキシド等が挙げられる。
[0060] 硼素化合物としては、例えば、ジボラン、テトラボラン、フッ化硼素、塩化硼素、臭化 硼素、ボランージェチルエーテル錯体、ボラン THF錯体、ボラン ジメチルスルフ イド錯体、三フッ化硼素ジェチルエーテル錯体、トリェチルボラン、トリメトキシボラン、 トリエトキシボラン、トリ(イソプロポキシ)ボラン、ボラゾール、トリメチルボラゾール、トリ ェチルボラゾール、トリイソプロピルボラゾール、等が挙げられる。
[0061] 錫化合物としては、例えば、テトラエチル錫、テトラメチル錫、二酢酸ジー n プチ ル錫、テトラブチル錫、テトラオクチル錫、テトラエトキシ錫、メチルトリエトキシ錫、ジェ チルジェトキシ錫、トリイソプロピルエトキシ錫、ジェチル錫、ジメチル錫、ジイソプロピ ル錫、ジブチル錫、ジェトキシ錫、ジメトキシ錫、ジイソプロポキシ錫、ジブトキシ錫、 錫ジブチラート、錫ジァセトァセトナート、ェチル錫ァセトァセトナート、エトキシ錫ァセ トァセトナート、ジメチル錫ジァセトァセトナート等、錫水素化合物等、ハロゲン化錫と しては、二塩化錫、四塩ィ匕錫等が挙げられる。
[0062] また、その他の有機金属化合物としては、例えば、アンチモンエトキシド、ヒ素トリエ トキシド、ノ リウム 2, 2, 6, 6—テトラメチルヘプタンジォネート、ベリリウムァセチルァ セトナート、ビスマスへキサフルォロペンタンジォネート、ジメチルカドミウム、カルシゥ ム 2, 2, 6, 6—テトラメチルヘプタンジォネート、クロムトリフルォロペンタンジォネート 、コバルトァセチルァセトナート、銅へキサフルォロペンタンジォネート、マグネシウム へキサフルォロペンタンジォネートージメチルエーテル錯体、ガリウムエトキシド、テト ラエトキシゲルマン、テトラメトキシゲルマン、ハフニウム t ブドキシド、ハフニウムエト キシド、インジウムァセチルァセトナート、インジウム 2, 6 ジメチルァミノヘプタンジ ォネート、フエ口セン、ランタンイソプロポキシド、酢酸鉛、テトラエチル鉛、ネオジゥム ァセチルァセトナート、白金へキサフルォロペンタンジォネート、トリメチルシクロペン タジェ-ル白金、ロジウムジカルボ-ルァセチルァセトナート、ストロンチウム 2, 2, 6 , 6—テトラメチルヘプタンジォネート、タンタルメトキシド、タンタルトリフルォロェトキ シド、テルルエトキシド、タングステンエトキシド、バナジウムトリイソプロポキシドォキシ ド、マグネシウムへキサフルォロアセチルァセトナート、亜鉛ァセチルァセトナート、ジ ェチル亜鉛、などが挙げられる。
[0063] また、これらの金属を含む原料ガスを分解して無機化合物を得るための分解ガスと しては、例えば、水素ガス、メタンガス、アセチレンガス、一酸ィ匕炭素ガス、二酸化炭 素ガス、窒素ガス、アンモニアガス、亜酸化窒素ガス、酸化窒素ガス、二酸化窒素ガ ス、酸素ガス、水蒸気、フッ素ガス、フッ化水素、トリフルォロアルコール、トリフルォロ トルエン、硫化水素、二酸化硫黄、二硫化炭素、塩素ガスなどが挙げられる。
[0064] 金属元素を含む原料ガスと、分解ガスを適宜選択することで、各種の金属炭化物、 金属窒化物、金属酸化物、金属ハロゲン化物、金属硫ィ匕物を得ることができる。
[0065] これらの反応性ガスに対して、主にプラズマ状態になりやすい放電ガスを混合し、 プラズマ放電発生装置にガスを送りこむ。
[0066] このような放電ガスとしては、窒素ガスおよび Zまたは周期表の第 18属原子、具体 的には、ヘリウム、ネオン、アルゴン、クリプトン、キセノン、ラドン等が用いられる。これ らの中でも窒素、ヘリウム、アルゴンが好ましく用いられ、特に窒素がコストも安く好ま しい。
[0067] 上記放電ガスと反応性ガスを混合し、混合ガスとしてプラズマ放電発生装置 (ブラズ マ発生装置)に供給することで膜形成を行う。放電ガスと反応性ガスの割合は、得よう とする膜の性質によって異なる力 混合ガス全体に対し、放電ガスの割合を 50%以 上として反応性ガスを供給する。
[0068] 本発明に係るガスノ リア層として用いるセラミック膜においては、セラミック膜が含有 する無機化合物が、 SiO C (x= l. 5〜2. 0、 y=0〜0. 5)または、 SiO、 SiNまた
x y x y は SiO N (x= l〜2、y=0. 1〜1)であることが好ましぐ特にガスバリア性、水分の 透過性、光線透過性及び後述する大気圧プラズマ CVD適性の観点から、 SiOであ ることが好ましい。
[0069] 本発明に係るセラミック膜が含有する無機化合物は、例えば、上記有機珪素化合 物に、更に酸素ガスや窒素ガスを所定割合で組み合わせて、 O原子と N原子の少な くとも 、ずれかと、 S源子とを含む膜を得ることができる。
[0070] 以上のように、上記のような原料ガスを放電ガスと共に使用することにより様々な無 機薄膜を形成することができる。
[0071] (重合性無機化合物を含む塗布液でコーティングして形成した塗布膜)
次に、該セラミック膜に対し、榭脂フィルムとは反対側に設ける塗布層(以下、塗布 膜)について説明する。本発明の塗布膜は、平滑ィ匕膜の機能を有するため、ガスバリ ァフィルムの最上層であることが好まし 、。
[0072] はじめに、塗布膜の形成に用いる重合性無機化合物について説明する。
[0073] 本発明に係る重合性無機化合物は、光重合性であっても、熱重合性であってもよ いが、光重合性であることが好ましい。重合性無機化合物としては、 SiOゾルと反応
2 性有機ケィ素化合物から形成される化合物、またはアルミナゾルと反応性有機アルミ 化合物から選ばれる少なくとも 1つの化合物であることが好ましぐ特に、特開平 7— 1 26552号、同 7— 188582号、同 8— 48935号、同 8— 100136号、同 9— 220791 号、同 9— 272169号公報等に記載されて 、る化合物が好ましく用いられる。
[0074] 本発明に好ましく使用し得る無機化合物は、 SiOゾルと反応性有機ケィ素化合物
2
カゝら形成される化合物であって、 SiOゾルと反応性有機ケィ素化合物とを含むゾル
2
液を用い、 SiOゲル膜として表面平滑層が形成されるものである。 SiOゾルは、ケィ
2 2
素アルコキシドを塗布に適した有機溶媒に溶解し、一定量の水を添加して加水分解 を行って調製される。
[0075] SiOゾルの形成に使用するケィ素アルコキシドの好ま 、例を下記一般式 (I)に示
2
す。
[0076] 一般式 (I)
(R' ) Si (OR〃 )
r s
ここで、 R' 、R" は炭素原子数 1〜10のアルキル基を表し、それぞれ同一であつ ても異なっていてもよい。 r+sは 4であり、 r及び sはそれぞれ整数である。具体的には 、テトラメトキシシラン、テトラエトキシシラン、テトライソプロピ才キシシラン、テトラー n —プロピオキシシラン、テトラ— n—ブトキシシラン、テトラ— sec ブトキシシラン、テト ラー t ブトキシシラン、テトラペンタエトキシシラン、テトラペンタイソプロピオキシシラ ン、テトラペンター n プロピオキシシラン、テトラペンター n ブトキシシラン、テトラべ ンタ一 sec ブトキシシラン、テトラペンタ一 t—ブトキシシラン、メチルトリメトキシシラン 、メチルトリエトキシシラン、メチルトリプロピオキシシラン、メチルトリブトキシシラン、ジ メチノレジメキメトキシシラン、ジメチノレジェトキシシラン、ジメチノレメトキシシラン、ジメチ ルエトキシシラン、ジメチルプロピオキシシラン、ジメチルブトキシシラン、メチルジメト キシシラン、メチルジェトキシシラン、へキシルトリメトキシシラン等が挙げられる。 [0077] 上記アルキルケィ素アルコキシドまたはケィ素アルコキシドを適当な溶媒中に溶解 しすることにより SiOゾルとすることができる。使用する溶媒としては、例えば、メチル
2
ェチルケトン、イソプロピルアルコール、メタノール、エタノール、メチルイソブチルケト ン、酢酸ェチル、酢酸ブチル、等のアルコール、ケトン、エステル類、ハロゲン化炭化 水素、トルエン、キシレン、等の芳香族炭化水素、あるいはこれらの混合物が挙げら れる。アルキルケィ素アルコキシドまたはケィ素アルコキシドを、それらが 100%加水 分解及び縮合したとして生じる SiO換算で、濃度を 0. 1質量%以上、好ましくは 0. 1
2
〜10質量%になるように上記溶媒中に溶解する。 SiOゾルの濃度が 0. 1質量%以
2
上であれば、形成されるゾル膜が所望の特性が充分に発揮でき、一方、 10質量%以 下であれば、透明な均質膜を形成することができる。また、本発明においては、上記 の固形分範囲内であるならば、有機物や無機物バインダーを併用することも可能で ある。
[0078] この溶液に加水分解に必要な量以上の水をカ卩え、 15〜35°C、好ましくは 22〜28 °Cの温度で、 0. 5〜: L0時間、好ましくは 2〜5時間撹拌を行う。上記加水分解におい て、触媒を用いることが好ましぐこれらの触媒としては、塩酸、硝酸、硫酸または酢 酸等の酸が好ましい。これらの酸を約 0. 001〜20. 0モル ZL、好ましくは 0. 005〜 5. 0モル ZL程度の水溶液として加え、該水溶液中の水分を加水分解用の水分とす ることがでさる。
[0079] 本発明においては、反応性有機ケィ素化合物を併用することによって、 SiOとも架
2 橋によって結合され強い膜を形成し、得られた SiOゾルは、無色透明な液体であり、
2
ポットライフが約 1ヶ月の安定な溶液である。 SiOゾルは、基材に対して濡れ性がよく
2
、塗布性に優れている。
[0080] 反応性有機ケィ素化合物は、前記の反応性有機ケィ素化合物の他に、熱または電 離放射線によって反応架橋する複数の基 (活性エネルギー線反応性基)、例えば、 重合性二重結合基を有する分子量 3000以下の有機反応性化合物が好ましいもの である。このような反応性有機ケィ素化合物は、片末端ビュル官能性ポリシラン、両 末端ビュル官能性ポリシラン、片末端ビュル官能ポリシロキサン、両末端ビニル官能 ポリシロキサン、あるいはこれらの化合物を反応させたビニル官能性ポリシラン、また はビニル官能性ポリシロキサン等、下記に示す化合物、
[化 1]
Figure imgf000018_0001
Figure imgf000018_0002
Figure imgf000018_0003
Figure imgf000018_0004
ここで X,x1,x2,y1,y2,y3,y4は重合度 (付加数)で 1〜100である。 その他に、ビュルトリメトキシシラン、ビュルトリ(;3—メトキシ一エトキシ)シラン、ジビ 二口キジメトキシシラン、 - (3, 4—エポキシシクロへキシル)一ェチルトリアルコキ シシラン、アタリロイルォキシェチルトリエトキシシラン、グリシジルォキシェチルトリエト キシシラン、 γ ァクリロイルォキシ一 n—プロピルトリ一 n プロビルシラン、 γ —メタ クリロイルォキシ プロピルトリ プロビルシラン、ジ(γ—アタリロイルォキシ —η—プロピル)ジ η—プロビルシラン、アタリロイルォキシジメトキシェチルシラン等 を挙げることができる。 [0083] 以上の如き反応性有機ケィ素化合物は、 SiOゾル(固形分) 100質量部あたり約 0
2
. 1〜50質量部の割合で使用することができることが好ましい。
[0084] 上記ゾル溶液には、各種の添加剤を添加する事ができる。添加剤としては、製膜を 促進する硬化剤が用いられ、これらの硬化剤としては、酢酸ナトリウム、酢酸リチウム 等の有機酸金属塩の酢酸、ギ酸等の有機酸溶液が挙げられる。該有機溶媒溶液の 濃度は約 0. 01〜0. 1質量%程度であり、ゾル溶液に対する添加量は、ゾル溶液中 に存在する SiO2100質量部に対して上記有機酸塩として約 0. 1〜1質量部程度の 範囲が好ましい。
[0085] 更に、最終的に得られるゲル膜 (塗布膜)は、バリアフィルムの表面平滑ィ匕層として 使用する。その平滑性を上げる為には、ゾルのサイズをより小さくすることが望ましく。 好ましくは 5nm以下、更に望ましくは、 3nm以下が望ましい。
[0086] 次に、上記ゾルと反応性有機化合物から形成される化合物から選ばれる少なくとも 一つの物質を含有する表面平滑層に含有される本発明のエポキシ系活性エネルギ 一線反応性ィ匕合物について説明する。
[0087] 膜厚が非常に薄い塗布膜である表面平滑層は、硬度が不足し、層表面が擦り傷あ るいは引つ搔き傷に弱い。このような場合、一般的には、硬化膜を形成し易い活性ェ ネルギ一線照射架橋性のエチレン性不飽和化合物を層に含有させることが一般に 行われるが、架橋性のエチレン性不飽和化合物は空気中の酸素の影響を受け易く、 し力も膜厚が薄いため、エチレン性不飽和化合物の重合が阻害され易ぐこの方法 ではあまり強靭な膜を得ることが出来ない。
[0088] 本発明に係る塗布膜の形成においては、硬度が不足し、擦り傷や引つ搔き傷に弱 いので、エポキシ系活性エネルギー線反応性ィ匕合物を含有させ、活性エネルギー線 を照射することによって、硬度が高ぐ擦り傷、引つ搔き傷に対して強靭な塗布膜を形 成させることが好ましい。エポキシ系活性エネルギー線反応性ィ匕合物は、酸素の阻 害を受け難いため、迅速に重合し、膜厚が 50〜200nm程度という薄さでも高硬度で 、かつ強靭な皮膜を形成することができる、優れた活性エネルギー線反応性ィ匕合物 である。
[0089] 本発明に適用可能なエポキシ系活性エネルギー線反応性ィ匕合物は、分子内に 2 個以上のエポキシ基を有する化合物で、活性エネルギー線照射によりカチオン重合 を開始物質として放出することが可能な化合物である。
本発明に有用なエポキシ系活性エネルギー線反応性ィ匕合物としては、
(ィ)ビスフエノール Aのグリシジルエーテル(この化合物はェピクロルヒドリンとビスフ ヱノール Aとの反応により得られ、重合度の異なる混合物として得られる)、
(口)ビスフエノール A等のフエノール性 OHを 2個有する化合物に、ェピクロルヒドリ ン、エチレンオキサイド及び Zまたはプロピレンオキサイドを反応させ末端にグリシジ ルエーテル基を有する化合物、
(ハ) 4, 4' —メチレンビスフエノールのグリシジルエーテル、
(二)ノボラック榭脂あるいはレゾール榭脂のフ ノールフオルムアルデヒド榭脂のェ ポキシィ匕合物、
(ホ)脂環式エポキシドを有する化合物、例えば、ビス(3, 4—エポキシシクロへキシ ルメチル)ォキザレート、ビス(3, 4—エポキシシクロへキシルメチル)アジペート、ビス (3, 4 エポキシ 6—シクロへキシノレメチノレ)アジペート、ビス(3, 4—エポキシシク 口へキシル)メチルピメレート、 3, 4 エポキシシクロへキシルメチルー 3, 4—ェポキ シシクロへキサンカルボキシレート、 3, 4 エポキシ 1ーメチルシクロへキシルメチ ルー 3' , 4' エポキシシクロへキサンカルボキシレート、 3, 4 エポキシ 1ーメ チルーシクロへキシルメチルー 3' , 4' —エポキシ一!/ ーメチルシクロへキサン力 ルボキシレート、 3, 4 エポキシー6—メチルーシクロへキシルメチルー 3' , 4' エポキシ 6' —メチノレー!/ ーシクロへキサン力ノレボキシレート、 2—(3, 4 ェポ キシシクロへキシノレ 5, , 5' —スピロ 3,, , 4,, —エポキシ)シクロへキサンーメ タージォキサン等、
(へ) 2塩基酸のジグリシジルエーテル、例えば、ジグリシジルォキザレート、ジグリシ ジルアジペート、ジグリシジルテトラヒドロフタレート、ジグリシジノレへキサヒドロフタレー ト、ジグリシジルフタレート等、
(ト)グリコールのジグリシジルエーテル、例えば、エチレングリコールジグリシジルェ 一テル、ジエチレングリコールジグリシジルエーテル、プロピレングリコールジグリシジ ノレエーテノレ、ポリエチレングリコールジグリシジルエーテル、ポリプロピレングリコール ジグリシジルエーテル、コポリ(エチレングリコール プロピレングリコール)ジグリシジ ルエーテル、 1, 4 ブタンジオールジグリシジルエーテル、 1, 6 へキサンジオール ジグリシジルエーテル等、
(チ)ポリマー酸のグリシジルエステル、例えば、ポリアクリル酸ポリグリシジルエステ
Figure imgf000021_0001
(リ)多価アルコールのグリシジルエーテル、例えば、グリセリントリグリシジルエーテ ル、トリメチロールプロパントリグリシジルエーテル、ペンタエリスリトールジグリシジル エーテル、ペンタエリスリトールトリグリシジルエーテル、ペンタエリスリトールテトラダリ シジルエーテル、ダルコーズトリグリジルエーテル等、
上記のエポキシィ匕合物を活性エネルギー線により硬化する場合、より硬度を上げる ためには、(チ)ある 、は(リ)の多官能のエポキシ基を有する化合物を混合して用い ると効果的である。
[0091] エポキシ系活性エネルギー線反応性ィ匕合物をカチオン重合させる光重合開始剤ま たは光増感剤は、活性エネルギー線照射によりカチオン重合開始物質を放出するこ とが可能な化合物であり、特に好ましくは、照射によりカチオン重合開始能のあるルイ ス酸を放出するォ -ゥム塩の一群の複塩である。
[0092] 本発明のガスノ リアフィルムにおいては、本発明に係る塗布膜 (平滑化膜)は、上 記重合性無機化合物を含む塗布液をコーティング法により形成することを特徴の一 つとする。
[0093] 本発明に係る塗布膜を形成するコーティング法としては、特に制限はなぐ塗布液 を均質の薄膜状に安定して形成できる方法であれば良ぐ例えば、ディップコート法 、ブレードコート法、エアーナイフコート法、ワイヤーバーコート法、グラビアコート法、 リバースコート法、リバースロールコート法、エタストルージョンコート法、スライドコート 法、カーテンコート法、及びバックロール等で支持されていない位置でのエタストルー ジョンコート法を挙げることができる。
[0094] また、塗布膜の 2つある表面のうち、セラミック膜とは反対側、すなわちガスノ リアフ イルム上側の表面の表面粗さが、中心線平均粗さで lnm以下であることが好ましい。
[0095] 中心線平均粗さ(Ra)を lnm以下というレベルまで平滑化を行う為には、レべリング を促進させることが望ましぐ表面張力としては 30mNZm以下、粘度としては 3mPa •sec以下が望ましい。
[0096] (榭脂フィルム)
次 、で、本発明の透明なガスノ リアフィルムで用いられる榭脂フィルム (基材とも ヽ う)について説明する。
[0097] 基材は、上述したバリア性を有するガスノ リア層を保持することができる有機材料で 形成された膜であれば特に限定されるものではない。
[0098] また、榭脂フィルム基材は透明であることが好ま 、。基材が透明であり、基材上に 形成する層も透明であることにより、透明なガスノ リアフィルムとすることが可能となる ため、有機 EL素子等の透明基板とすることも可能となるからである。
[0099] また、上記に挙げた榭脂等を用いた榭脂フィルム基材は、未延伸フィルムでもよぐ 延伸フィルムでもよい。
[0100] 本発明に用いられる榭脂フィルム基材は、従来公知の一般的な方法により製造す ることが可能である。例えば、材料となる榭脂を押し出し機により溶融し、環状ダイや
Tダイにより押し出して急冷することにより、実質的に無定形で配向して 、な 、未延伸 の基材を製造することができる。また、未延伸の基材をー軸延伸、テンター式逐次二 軸延伸、テンター式同時二軸延伸、チューブラー式同時二軸延伸などの公知の方 法により、基材の流れ (縦軸)方向、または基材の流れ方向と直角(横軸)方向に延伸 することにより延伸基材を製造することができる。この場合の延伸倍率は、基材の原 料となる樹脂に合わせて適宜選択することできるが、縦軸方向および横軸方向にそ れぞれ 2〜 10倍が好まし!/、。
[0101] また、本発明に係る榭脂フィルム基材においては、蒸着膜を形成する前にコロナ処 理、火炎処理、プラズマ処理、グロ一放電処理、粗面化処理、薬品処理などの表面 処理を行ってもよい。
[0102] 更に、本発明に係る榭脂フィルム基材表面には、セラミック膜との密着性の向上を 目的としてアンカーコート剤層を形成してもよい。このアンカーコート剤層に用いられ るアンカーコート剤としては、ポリエステル榭脂、イソシァネート榭脂、ウレタン榭脂、 アクリル榭脂、エチレンビュルアルコール榭脂、ビュル変性榭脂、エポキシ榭脂、変 性スチレン榭脂、変性シリコン榭脂、およびアルキルチタネート等を、 1または 2種以 上併せて使用することができる。これらのアンカーコート剤には、従来公知の添加剤 をカロえることもできる。そして、上記のアンカーコート剤は、ロールコート、グラビアコー ト、ナイフコート、ディップコート、スプレーコート等の公知の方法により基材上にコー ティングし、溶剤、希釈剤等を乾燥除去することによりアンカーコーティングすることが できる。上記のアンカーコート剤の塗布量としては、 0. l〜5gZm2 (乾燥状態)程度 が好ましい。
[0103] 榭脂フィルム基材は、ロール状に巻き上げられた長尺品が便利である。基材の厚さ は、得られるガスバリアフィルムの用途によって異なるので一概には規定できないが、 ガスバリアフィルムを包装用途とする場合には、特に制限を受けるものではなぐ包装 材料としての適性から、 3〜400 m、中でも 6〜30 mの範囲内とすることが好まし い。
[0104] また、本発明に用いられる榭脂フィルム基材は、フイノレム形状のものの膜厚としては
10〜: LOOO /z m力 S好まし <、ょり好まし<【ま50〜500 111、更に好まし < ίま 80〜200 μ m、で teる。
[0105] 《大気圧プラズマ CVD法》
次いで、本発明のガスノ リアフィルムの製造方法において、本発明に係るセラミック 膜の形成に好適に用いることのできる大気圧プラズマ CVD法について、詳細に説明 する。
[0106] CVD法 (化学的気相成長法)は、揮発 '昇華した有機金属化合物が高温の基材表 面に付着し、熱により分解反応が起き、熱的に安定な無機物の薄膜が生成されると いうものであり、このような通常の CVD法 (熱 CVD法とも称する)では、通常 500°C以 上の基板温度が必要であるため、プラスチック基材への製膜には使用することが難し いが 一方、プラズマ CVD法は、基材近傍の空間に電界を印加し、プラズマ状態と なった気体が存在する空間 (プラズマ空間)を発生させ、揮発 '昇華した有機金属化 合物がこのプラズマ空間に導入されて分解反応が起きた後に基材上に吹きつけられ ることにより、無機物の薄膜を形成するというものである。プラズマ空間内では、数% の高い割合の気体力 Sイオンと電子に電離しており、ガスの温度は低く保たれるものの 、電子温度は非常な高温のため、この高温の電子、あるいは低温ではあるがイオン- ラジカルなどの励起状態のガスと接するために無機膜の原料である有機金属化合物 は低温でも分解することができる。したがって、無機物を製膜する基材についても低 温ィ匕することができ、榭脂フィルム基材上へも十分製膜することが可能な製膜方法で ある。
[0107] しかしながら、プラズマ CVD法においては、ガスに電界を印加して電離させ、プラ ズマ状態とする必要があるため、通常は、 0. 101kPa〜10. lkPa程度の減圧空間 で製膜していたため、大面積のフィルムを製膜する際には設備が大きく操作が複雑 であり、生産性の課題を抱えている方法である。
[0108] これに対し、大気圧近傍でのプラズマ CVD法では、真空下のプラズマ CVD法に比 ベ、減圧にする必要がなく生産性が高いだけでなぐプラズマ密度が高密度であるた めに製膜速度が速ぐ更には CVD法の通常の条件に比較して、大気圧下という高圧 力条件では、ガスの平均自由工程が非常に短いため、極めて平坦な膜が得られ、そ のような平坦な膜は、光学特性、ガスノリア性共に良好である。以上のことから、本発 明においては、大気圧プラズマ CVD法を適用すること力 真空下のプラズマ CVD法 よりも好まし ヽ。
[0109] またこの方法によれば、榭脂フィルム上に前記セラミック膜を形成させたときの膜密 度が緻密であり、安定した性能を有する薄膜が得られる。また残留応力が圧縮応力 で、 0. OlMPa以上、 20MPa以下という範囲のセラミック膜が安定に得られることが 特徴である。
[0110] 本発明のガスノリアフィルムの製造方法において、本発明に係るセラミック膜が、大 気圧もしくはその近傍の圧力下で、放電空間に薄膜形成ガスを含有するガスを供給 し、該放電空間に高周波電界を印加することにより該ガスを励起し、基材を該励起し たガスに晒すことにより基材上に薄膜を形成する薄膜形成方法により形成することを 特徴とする。
[Oil 1] 以下、大気圧或!、は大気圧近傍でのプラズマ CVD法を用いた本発明に係るガス バリア膜の製造方法にっ 、て述べる。
[0112] 先ず本発明のガスノリアフィルムの製造において使用されるプラズマ製膜装置の一 例について、図 2〜図 5に基づいて説明する。図中、符号 Fは基材の一例としての長 尺フィルムである。
[0113] 図 2または図 3等に述べるプラズマ放電処理装置においては、ガス供給手段から、 前記金属を含む原料ガス、分解ガスを適宜選択して、またこれらの反応性ガスに対し て、主にプラズマ状態になりやす 、放電ガスを混合してプラズマ放電発生装置にガ スを送りこむことで前記セラミック膜を得ることができる。
[0114] 放電ガスとしては、前記のように窒素ガスおよび Zまたは周期表の第 18属原子、具 体的には、ヘリウム、ネオン、アルゴン、クリプトン、キセノン、ラドン等が用いられる。こ れらの中でも窒素、ヘリウム、アルゴンが好ましく用いられ、特に窒素がコストも安く好 ましい。
[0115] 図 2はジェット方式の大気圧プラズマ放電処理装置であり、プラズマ放電処理装置 、二つの電源を有する電界印加手段の他に、図 2では図示してない(後述の図 3に図 示してある)が、ガス供給手段、電極温度調節手段を有している装置である。
[0116] プラズマ放電処理装置 10は、第 1電極 11と第 2電極 12から構成されている対向電 極を有しており、該対向電極間に、第 1電極 11へは第 1電源 21からの周波数 ω
1、電 界強度 V、電流 Iの第 1の高周波電界が印加され、また第 2電極 12へは第 2電源 22
1 1
からの周波数 ω、電界強度 V、電流 Iの第 2の高周波電界が印加されるようになつ
2 2 2
ている。第 1電源 21は第 2電源 22より高い高周波電界強度 (V >V )を印加出来、ま
1 2
た第 1電源 21の第 1の周波数 ωは第 2電源 22の第 2の周波数 ωより低い周波数を
1 2
印加できる。
[0117] 第 1電極 11と第 1電源 21との間には、第 1フィルタ 23が設置されており、第 1電源 2 1力 第 1電極 11への電流を通過しやすくし、第 2電源 22からの電流をアースして、 第 2電源 22から第 1電源 21への電流が通過しに《なるように設計されている。
[0118] また、第 2電極 12と第 2電源 22との間には、第 2フィルター 24が設置されており、第 2電源 22から第 2電極への電流を通過しやすくし、第 1電源 21からの電流をアースし て、第 1電源 21から第 2電源への電流を通過しにくくするように設計されて!、る。
[0119] 第 1電極 11と第 2電極 12との対向電極間(放電空間) 13に、後述の図 3に図示して あるようなガス供給手段カゝらガス Gを導入し、第 1電極 11と第 2電極 12から高周波電 界を印加して放電を発生させ、ガス Gをプラズマ状態にしながら対向電極の下側 (紙 面下側)にジェット状に吹き出させて、対向電極下面と基材 Fとで作る処理空間をブラ ズマ状態のガス G° で満たし、図示してない基材の元巻き(アンワインダー)から巻き ほぐされて搬送して来る力、あるいは前工程力も搬送して来る基材 Fの上に、処理位 置 14付近で薄膜を形成させる。薄膜形成中、後述の図 3に図示してあるような電極 温度調節手段から媒体が配管を通って電極を加熱または冷却する。プラズマ放電処 理の際の基材の温度によっては、得られる薄膜の物性や組成等は変化することがあ り、これに対して適宜制御することが望ましい。温度調節の媒体としては、蒸留水、油 等の絶縁性材料が好ましく用いられる。プラズマ放電処理の際、幅手方向あるいは 長手方向での基材の温度ムラができるだけ生じないように電極の内部の温度を均等 に調節することが望まれる。
[0120] ジェット方式の大気圧プラズマ放電処理装置を複数基接して直列に並べて同時に 同じプラズマ状態のガスを放電させることができるので、何回も処理され高速で処理 することもできる。また各装置が異なったプラズマ状態のガスをジェット噴射すれば、 異なった層の積層薄膜を形成することもできる。
[0121] 図 3は、本発明に有用な対向電極間で基材を処理する方式の大気圧プラズマ放電 処理装置の一例を示す概略図である。
[0122] 本発明に係る大気圧プラズマ放電処理装置は、少なくとも、プラズマ放電処理装置
30、二つの電源を有する電界印加手段 40、ガス供給手段 50、電極温度調節手段 6
0を有して!/、る装置である。
[0123] 図 3は、ロール回転電極 (第 1電極) 35と角筒型固定電極群 (第 2電極) 36との対向 電極間 (放電空間) 32で、基材 Fをプラズマ放電処理して薄膜を形成するものである
[0124] ロール回転電極 (第 1電極) 35と角筒型固定電極群 (第 2電極) 36との間の放電空 間(対向電極間) 32に、ロール回転電極 (第 1電極) 35には第 1電源 41から周波数 ω、電界強度 V、電流 Iの第 1の高周波電界を、また角筒型固定電極群 (第 2電極)
1 1 1
36には第 2電源 42から周波数 ω、電界強度 V、電流 Iの第 2の高周波電界をかけ
2 2 2
るようになっている。 [0125] ロール回転電極 (第 1電極) 35と第 1電源 41との間には、第 1フィルタ 43が設置され ており、第 1フィルタ 43は第 1電源 41から第 1電極への電流を通過しやすくし、第 2電 源 42からの電流をアースして、第 2電源 42から第 1電源への電流を通過しに《する ように設計されている。また、角筒型固定電極群 (第 2電極) 36と第 2電源 42との間に は、第 2フィルタ 44が設置されており、第 2フィルター 44は、第 2電源 42から第 2電極 への電流を通過しやすくし、第 1電源 41からの電流をアースして、第 1電源 41から第 2電源への電流を通過しに《するように設計されて!、る。
[0126] なお、本発明においては、ロール回転電極 35を第 2電極、また角筒型固定電極群 36を第 1電極としてもよい。何れにしろ第 1電極には第 1電源力 また第 2電極には第 2電源が接続される。第 1電源は第 2電源より高い高周波電界強度 (V >V )を印加
1 2 することが好ましい。また、周波数は ω < ωとなる能力を有している。
1 2
[0127] また、電流は Iく Iとなることが好ましい。第 1の高周波電界の電流 Iは、好ましくは
1 2 1
0. 3mAZcm2〜20mAZcm2、更に好ましくは 1. OmAZcm2〜20mAZcm2であ る。また、第 2の高周波電界の電流 Iは、好ましくは 10mAZcm2〜100mAZcm2
2
更に好ましくは 20mAZcm2〜 1 OOmAZcm2である。
[0128] ガス供給手段 50のガス発生装置 51で発生させたガス Gは、流量を制御して給気口 52よりプラズマ放電処理容器 31内に導入する。
[0129] 基材 Fを、図示されて ヽな ヽ元卷き力も巻きほぐして搬送されて来る力 または前ェ 程から搬送されて来て、ガイドロール 64を経て-ップロール 65で基材に同伴されて 来る空気等を遮断し、ロール回転電極 35に接触したまま巻き回しながら角筒型固定 電極群 36との間に移送し、ロール回転電極 (第 1電極) 35と角筒型固定電極群 (第 2 電極) 36との両方から電界をかけ、対向電極間(放電空間) 32で放電プラズマを発 生させる。
[0130] 基材 Fはロール回転電極 35に接触したまま巻き回されながらプラズマ状態のガスに より薄膜を形成する。基材 Fは、 -ップロール 66、ガイドロール 67を経て、図示してな い巻き取り機で巻き取るか、次工程に移送する。
[0131] 放電処理済みの処理排ガス G' は排気口 53より排出する。
[0132] 薄膜形成中、ロール回転電極 (第 1電極) 35及び角筒型固定電極群 (第 2電極) 36 を加熱または冷却するために、電極温度調節手段 60で温度を調節した媒体を、送 液ポンプ Pで配管 61を経て両電極に送り、電極内側から温度を調節する。なお、 68 及び 69はプラズマ放電処理容器 31と外界とを仕切る仕切板である。
[0133] 図 4は、図 3に示したロール回転電極の導電性の金属質母材とその上に被覆され て 、る誘電体の構造の一例を示す斜視図である。
[0134] 図 4において、ロール電極 35aは導電性の金属質母材 35Aとその上に誘電体 35B が被覆されたものである。プラズマ放電処理中の電極表面温度を制御するため、温 度調節用の媒体 (水もしくはシリコンオイル等)が循環できる構造となっている。
[0135] 図 5は、角筒型電極の導電性の金属質母材とその上に被覆されている誘電体の構 造の一例を示す斜視図である。
[0136] 図 5において、角筒型電極 36aは、導電性の金属質母材 36Aに対し、図 4同様の 誘電体 36Bの被覆を有しており、該電極の構造は金属質のパイプになっていて、そ れがジャケットとなり、放電中の温度調節が行えるようになつている。
[0137] なお、角筒型固定電極の数は、上記ロール電極の円周より大きな円周上に沿って 複数本設置されており、該電極の放電面積はロール回転電極 35に対向している全 角筒型固定電極面の面積の和で表される。
[0138] 図 5に示した角筒型電極 36aは、円筒型電極でもよいが、角筒型電極は円筒型電 極に比べて、放電範囲 (放電面積)を広げる効果があるので、本発明に好ましく用い られる。
[0139] 図 4及び図 5において、ロール電極 35a及び角筒型電極 36aは、それぞれ導電性 の金属質母材 35A及び 36Aの上に誘電体 35B及び 36Bとしてのセラミックスを溶射 後、無機化合物の封孔材料を用いて封孔処理したものである。セラミックス誘電体は 片肉で lmm程度被覆あればよい。溶射に用いるセラミックス材としては、アルミナ '窒 化珪素等が好ましく用いられる力 この中でもアルミナが加工し易いので、特に好まし く用いられる。また、誘電体層が、ライニングにより無機材料を設けたライニング処理 誘電体であってもよい。
[0140] 導電性の金属質母材 35A及び 36Aとしては、チタン金属またはチタン合金、銀、 白金、ステンレススティール、アルミニウム、鉄等の金属等や、鉄とセラミックスとの複 合材料またはアルミニウムとセラミックスとの複合材料を挙げることができる力 後述の 理由からはチタン金属またはチタン合金が特に好ましい。
[0141] 対向する第 1電極および第 2の電極の電極間距離は、電極の一方に誘電体を設け た場合、該誘電体表面と、もう一方の電極の導電性金属質母材表面との最短距離の ことを言う。双方の電極に誘電体を設けた場合、誘電体表面同士の距離の最短距離 を言う。電極間距離は、導電性の金属質母材に設けた誘電体の厚さ、印加電界強度 の大きさ、プラズマを利用する目的等を考慮して決定されるが、いずれの場合も均一 な放電を行う観点から 0. l〜20mmが好ましぐ特に好ましくは 0. 2〜2mmである。
[0142] 本発明に有用な導電性の金属質母材及び誘電体につ!、ての詳細につ 、ては後 述する。
[0143] プラズマ放電処理容器 31はパイレックス (登録商標)ガラス製の処理容器等が好ま しく用いられる力 電極との絶縁がとれれば金属製を用いることも可能である。例えば 、アルミニウムまたは、ステンレススティールのフレームの内面にポリイミド榭脂等を張 り付けても良ぐ該金属フレームにセラミックス溶射を行い絶縁性をとつてもよい。図 2 にお 、て、平行した両電極の両側面 (基材面近くまで)を上記のような材質の物で覆 うことが好ましい。
[0144] 本発明に係る大気圧プラズマ放電処理装置に設置する第 1電源 (高周波電源)とし ては、
印加電源記号 メーカー 周波数
A1 神鋼電機 3kHz SPG3-4500
A2 神鋼電機 5kHz SPG5-4500
A3 春日電機 15kHz AGI-023
A4 神鋼電機 50kHz SPG50-4500
A5 ハイデン研究所 100kHz水 PHF— 6k
A6 パール工業 200kHz CF- 2000 - 200k
A7 パール工業 400kHz CF- 2000 -400k
等の市販のものを挙げることが出来、何れも使用することができる。
また、第 2電源 (高周波電源)としては、 印加電源記号 メーカー 周波数 製品名
B1 ノール工業 800kHz CF- 2000 -800k
B2 パール工業 2MHz CF- 2000- 2M
B3 ノール工業 13. 56MHz CF— 5000— 13M
B4 ノール工業 27MHz CF- 2000- 27M
B5 ノール工業 150MHz CF- 2000- 150M
等の市販のものを挙げることが出来、何れも好ましく使用できる。
[0146] なお、上記電源のうち、 *印はハイデン研究所インパルス高周波電源 (連続モード で 100kHz)である。それ以外は連続サイン波のみ印加可能な高周波電源である。
[0147] 本発明にお 、ては、このような電界を印加して、均一で安定な放電状態を保つこと ができる電極を大気圧プラズマ放電処理装置に採用することが好ましい。
[0148] 本発明において、対向する電極間に印加する電力は、第 2電極 (第 2の高周波電 界)に lWZcm2以上の電力(出力密度)を供給し、放電ガスを励起してプラズマを発 生させ、エネルギーを薄膜形成ガスに与え、薄膜を形成する。第 2電極に供給する電 力の上限値としては、好ましくは 50WZcm2、より好ましくは 20W/cm2である。下限 値は、好ましくは 1. 2WZcm2である。なお、放電面積(cm2)は、電極において放電 が起こる範囲の面積のことを指す。
[0149] また、第 1電極 (第 1の高周波電界)にも、 lWZcm2以上の電力(出力密度)を供給 することにより、第 2の高周波電界の均一性を維持したまま、出力密度を向上させるこ とができる。これにより、更なる均一高密度プラズマを生成でき、更なる製膜速度の向 上と膜質の向上が両立できる。好ましくは 5WZcm2以上である。第 1電極に供給する 電力の上限値は、好ましくは 50W/cm2である。
[0150] ここで高周波電界の波形としては、特に限定されない。連続モードと呼ばれる連続 サイン波状の連続発振モードと、パルスモードと呼ばれる ONZOFFを断続的に行う 断続発振モード等があり、そのどちらを採用してもよいが、少なくとも第 2電極側 (第 2 の高周波電界)は連続サイン波の方がより緻密で良質な膜が得られるので好まし 、。
[0151] このような大気圧プラズマによる薄膜形成法に使用する電極は、構造的にも、性能 的にも過酷な条件に耐えられるものでなければならない。このような電極としては、金 属質母材上に誘電体を被覆したものであることが好ましい。
[0152] 本発明に使用する誘電体被覆電極にお!ヽては、様々な金属質母材と誘電体との 間に特性が合うものが好ましぐその一つの特性として、金属質母材と誘電体との線 熱膨張係数の差が 1 X 10—5Z°C以下となる組み合わせのものである。好ましくは 8 X 10— 6Z°C以下、更に好ましくは 5 X 10— 6Z°C以下、更に好ましくは 2 X 10— 6Z°C以下 である。なお、線熱膨張係数とは、周知の材料特有の物性値である。
[0153] 線熱膨張係数の差が、この範囲にある導電性の金属質母材と誘電体との組み合わ せとしては、
1:金属質母材が純チタンまたはチタン合金で、誘電体がセラミックス溶射被膜
2:金属質母材が純チタンまたはチタン合金で、誘電体がガラスライニング
3:金属質母材力 Sステンレススティールで、誘電体がセラミックス溶射被膜
4:金属質母材がステンレススティールで、誘電体がガラスライニング
5:金属質母材がセラミックスおよび鉄の複合材料で、誘電体がセラミックス溶射被 膜
6:金属質母材がセラミックスおよび鉄の複合材料で、誘電体がガラスライニング
7:金属質母材がセラミックスおよびアルミの複合材料で、誘電体がセラミックス溶射 皮膜
8:金属質母材がセラミックスおよびアルミの複合材料で、誘電体がガラスライニング 等がある。線熱膨張係数の差という観点では、上記 1項または 2項および 5〜8項が 好ましぐ特に 1項が好ましい。
[0154] 本発明において、金属質母材は、上記の特性からはチタンまたはチタン合金が特 に有用である。金属質母材をチタンまたはチタン合金とすることにより、誘電体を上記 とすることにより、使用中の電極の劣化、特にひび割れ、剥がれ、脱落等がなぐ過酷 な条件での長時間の使用に耐えることができる。
[0155] 本発明に適用できる大気圧プラズマ放電処理装置としては、上記説明し以外に、 例えば、特開 2004— 68143号公報、同 2003— 49272号公報、国際特許第 02Z4 8428号パンフレット等に記載されている大気圧プラズマ放電処理装置を挙げること ができる。 [0156] 次!、で本発明に係るガスバリアフィルムにつ 、て説明する。
[0157] 図 6は、本発明の透明なガスバリアフィルムの層構成を示す模式図である。
[0158] 本発明のガスバリアフィルム 1は、榭脂フィルム基材丫、例えば、ポリエチレンテレフ タレート上に一層のセラミック膜 3及び重合性無機化合物を含む塗布液をコーティン グして形成した平滑ィ匕膜 H (塗布膜)を有している。また、本発明のガスノ リアフィル ムは、セラミック層を二つ以上積層されていてもよぐガスノ リアフィルム 2は、榭脂フィ ルム基材 Yと、少なくとも 2層のセラミック膜 3と 2つのセラミック膜間に位置するセラミツ ク膜より弾性率の低いポリマーを含む応力緩和層 4を有し、その上に重合性無機化 合物を含む平滑化膜 Hを有して ヽてもよ ヽ。本発明に係るセラミック膜は緻密な構造 を有し、硬度が高いため積層する場合、この様な応力緩和層を間に配し、複数の層 に分けることが好ましい。応力緩和層は、セラミック層に発生する応力を緩和し無機 セラミック膜の割れや欠陥の発生を防止する作用を有する。
[0159] 次いで、ここで用いられるポリマー層について説明する。
[0160] 本発明に係るポリマー層とは、無機ポリマー、有機ポリマー、有機無機ハイブリッド ポリマー等を主成分とする薄膜で、その膜厚は、概ね 5〜500nmで、前述のガスバリ ァ層に対し相対的な硬度が低い層で、層中の平均炭素含有量が 5%以上のもので あり、応力緩和層とも呼ばれる。
[0161] 本発明で適用できる無機ポリマーは、無機骨格を主構造とし、かつ有機成分を含 有する膜であり、有機金属化合物を重合したものも含む。
[0162] これら無機ポリマーとしては、特に限定は無いが、例えば、シリコンやポリシラザンな どのケィ素化合物や、チタン化合物、アルミニウム化合物、硼素化合物、燐化合物、 錫化合物を用いることができる。
[0163] 本発明で用いることのできるケィ素化合物としては、特に限定はないが、好ましいも のとして、テトラメチルシラン、トリメチルメトキシシラン、ジメチルジメトキシシラン、メチ ルトリメトキシシラン、トリメチルエトキシシラン、ジメチルジェトキシシラン、メチルトリエ トキシシラン、テトラメトキシシラン、テトラメトキシシラン、へキサメチノレジシロキサン、 へキサメチルジシラザン、 1, 1—ジメチル一 1—シラシクロブタン、トリメチルビニルシ ラン、メトキシジメチルビニルシラン、トリメトキシビュルシラン、ェチルトリメトキシシラン 、ジメチノレジビニノレシラン、ジメチノレエトキシェチニノレシラン、ジァセトキシジメチノレシ ラン、ジメトキシメチル— 3, 3, 3—トリフルォロプロビルシラン、 3, 3, 3—トリフルォロ プロピルトリメトキシシラン、ァリールトリメトキシシラン、エトキシジメチルビニルシラン、 ァリールアミノトリメトキシシラン、 N—メチル N トリメチルシリルァセトアミド、 3—ァ ミノプロピルトリメトキシシラン、メチルトリビニルシラン、ジァセトキシメチルビ二ルシラ ン、メチルトリァセトキシシラン、ァリールォキシジメチルビ-ルシラン、ジェチルビ-ル シラン、ブチルトリメトキシシラン、 3—ァミノプロピルジメチルエトキシシラン、テトラビ二 ルシラン、トリァセトキシビニルシラン、テトラァセトキシシラン、 3—トリフルォロアセトキ シプロピノレトリメトキシシラン、ジァリーノレジメトキシシラン、ブチノレジメトキシビニノレシラ ン、トリメチル 3—ビニルチオプロビルシラン、フエニルトリメチルシラン、ジメトキシメ チルフエニルシラン、フエニルトリメトキシシラン、 3—アタリロキシプロピルジメトキシメ チルシラン、 3—アタリロキシプロピルトリメトキシシラン、ジメチルイソペンチ口キシビ二 ルシラン、 2 ァリールォキシェチルチオメトキシトリメチルシラン、 3 グリシドキシプ 口ピルトリメトキシシラン、 3—ァリールァミノプロピルトリメトキシシラン、へキシルトリメト キシシラン、ヘプタデカフルォロデシルトリメトキシシラン、ジメチルェチキシフエ-ル シラン、ベンゾイロキシトリメチルシラン、 3—メタクリロキシプロピルジメトキシメチルシ ラン、 3—メタクリロキシプロピルトリメトキシシラン、 3—イソシァネートプロピルトリェトキ シシラン、ジメチノレエトキシー 3—グリシドキシプロピノレシラン、ジブトキシジメチノレシラ ン、 3—ブチルァミノプロピルトリメチルシラン、 3—ジメチルァミノプロピルジェトキシメ チルシラン、 2— (2—アミノエチルチオェチル)トリエトキシシラン、ビス(ブチルァミノ) ジメチルシラン、ジビニルメチルフエニルシラン、ジァセトキシメチルフエニルシラン、 ジメチル一 p トリルビニルシラン、 p—スチリルトリメトキシシラン、ジェチルメチルフエ ニルシラン、ベンジルジメチルエトキシシラン、ジエトキシメチルフエニルシラン、デシ ルメチルジメトキシシラン、ジェトキシー 3—グリシドキシプロピルメチルシラン、ォクチ 口キシトリメチルシラン、フエニルトリビニルシラン、テトラァリールォキシシラン、ドデシ ルトリメチルシラン、ジァリールメチルフエニルシラン、ジフエ二ルメチルビニルシラン、 ジフエニルエトキシメチルシラン、ジァセトキシジフエニルシラン、ジベンジルジメチル シラン、ジァリールジフエ-ルシラン、ォクタデシルトリメチルシラン、メチルォクタデシ ルジメチルシラン、ドコシルメチルジメチルシラン、 1, 3 ジビニルー 1, 1, 3, 3—テト ラメチルジシロキサン、 1, 3 ジビュル 1, 1, 3, 3—テトラメチルジシラザン、 1, 4 —ビス(ジメチルビ-ルシリル)ベンゼン、 1, 3 ビス(3 ァセトキシプロピル)テトラメ チルジシロキサン、 1, 3, 5 トリメチル—1, 3, 5 トリビュルシクロトリシロキサン、 1 , 3, 5 トリス(3, 3, 3 トリフルォロプロピル)— 1, 3, 5 トリメチルシクロトリシロキ サン、オタタメチルシクロテトラシロキサン、 1, 3, 5, 7—テトラエトキシー 1, 3, 5, 7— テトラメチルシクロテトラシロキサン、デカメチルシクロペンタシロキサン等を挙げるこが できる。
[0164] また、有機ポリマーとしては、公知の重合性有機化合物を用いることができる力 そ の中でも、分子内にエチレン性不飽和結合を有する重合可能なエチレン性不飽和 結合含有化合物が好ましぐまた、一般的なラジカル重合性のモノマー類、光、熱、 紫外線等により硬化する榭脂に一般的に用いられる分子内に付加重合可能なェチ レン性二重結合を複数有する多官能モノマー類や多官能オリゴマー類を用いること ができる。
[0165] これらの重合可能なエチレン性二重結合含有ィ匕合物に特に限定は無いが、好まし いものとして、例えば、 2—ェチルへキシルアタリレート、 2—ヒドロキシプロピルアタリ レート、グリセロールアタリレート、テトラヒドロフルフリルアタリレート、フエノキシェチル アタリレート、ノユルフェノキシェチルアタリレート、テトラヒドロフルフリルォキシェチル アタリレート、テトラヒドロフルフリルォキシへキサノリドアタリレート、 1, 3 ジォキサン アルコールの ε一力プロラタトン付カ卩物のアタリレート、 1, 3 ジォキソランアタリレー ト等の単官能アクリル酸エステル類、或いはこれらのアタリレートをメタタリレート、イタ コネート、クロトネート、マレエートに代えたメタクリル酸、ィタコン酸、クロトン酸、マレイ ン酸エステル、例えば、エチレングリコールジアタリレート、トリエチレンダルコールジ アタリレート、ペンタエリスリトールジアタリレート、ハイド口キノンジアタリレート、レゾル シンジアタリレート、へキサンジオールジアタリレート、ネオペンチルグリコールジアタリ レート、トリプロピレングリコールジアタリレート、ヒドロキシピバリン酸ネオペンチルグリ コーノレのジアタリレート、ネオペンチルグリコーノレアジペートのジアタリレート、ヒドロキ シピバリン酸ネオペンチルグリコールの ε—力プロラタトン付カ卩物のジアタリレート、 2 - (2—ヒドロキシ一 1, 1—ジメチルェチル) 5 ヒドロキシメチル一 5 ェチル 1, 3—ジォキサンジアタリレート、トリシクロデカンジメチロールアタリレート、トリシクロデカ ンジメチロールアタリレートの ε—力プロラタトン付カ卩物、 1, 6 へキサンジオールの ジグリシジルエーテルのジアタリレート等の 2官能アクリル酸エステル類、或いはこれ らのアタリレートをメタタリレート、イタコネート、クロトネート、マレエートに代えたメタタリ ル酸、ィタコン酸、クロトン酸、マレイン酸エステル、例えばトリメチロールプロパントリ アタリレート、ジトリメチロールプロパンテトラアタリレート、トリメチロールェタントリアタリ レート、ペンタエリスリトールトリアタリレート、ペンタエリスリトールテトラアタリレート、ジ ペンタエリスリトールテトラアタリレート、ジペンタエリスリトールペンタアタリレート、ジぺ ンタエリスリトールへキサアタリレート、ジペンタエリスリトールへキサアタリレートの ε 力プロラタトン付加物、ピロガロールトリアタリレート、プロピオン酸 'ジペンタエリスリト ールトリアタリレート、プロピオン酸 'ジペンタエリスリトールテトラアタリレート、ヒドロキ シピバリルアルデヒド変性ジメチロールプロパントリアタリレート等の多官能アクリル酸 エステル酸、或いはこれらのアタリレートをメタタリレート、イタコネート、クロトネート、マ レエートに代えたメタクリル酸、ィタコン酸、クロトン酸、マレイン酸エステル等を挙げる ことができる。
[0166] また、プレボリマーも上記同様に使用することができる。プレボリマーは、 1種又は 2 種以上を併用してもよいし、上述の単量体及び Ζ又はオリゴマーと混合して用いても よい。
[0167] プレポリマーとしては、例えばアジピン酸、トリメリット酸、マレイン酸、フタル酸、テレ フタル酸、ハイミック酸、マロン酸、こはく酸、グルタール酸、ィタコン酸、ピロメリット酸 、フマル酸、グルタール酸、ピメリン酸、セバシン酸、ドデカン酸、テトラヒドロフタル酸 等の多塩基酸と、エチレングリコール、プロピレンダルコール、ジエチレングリコール、 プロピレンオキサイド、 1, 4 ブタンジオール、トリエチレングリコール、テトラエチレン グリコール、ポリエチレングリコール、グリセリン、トリメチロールプロパン、ペンタエリス リトール、ソルビトール、 1, 6 へキサンジオール、 1, 2, 6 へキサントリオール等の 多価アルコールの結合で得られるポリエステルに (メタ)アクリル酸を導入したポリエス テルアタリレート類、例えば、ビスフエノール A ·ェピクロルヒドリン'(メタ)アクリル酸、フ エノールノボラック ·ェピクロルヒドリン'(メタ)アクリル酸のようにエポキシ榭脂に (メタ) アクリル酸を導入したエポキシアタリレート類、例えば、エチレングリコール 'アジピン 酸'トリレンジイソシァネート · 2—ヒドロキシェチルアタリレート、ポリエチレングリコール 'トリレンジイソシァネート · 2—ヒドロキシェチルアタリレート、ヒドロキシェチルフタリル メタタリレート ·キシレンジイソシァネート、 l t 2—ポリブタジエングリコール 'トリレンジィ ソシァネート · 2—ヒドロキシェチルアタリレート、トリメチロールプロパン 'プロピレングリ コール'トリレンジイソシァネート · 2—ヒドロキシェチルアタリレートのように、ウレタン榭 脂に (メタ)アクリル酸を導入したウレタンアタリレート、例えば、ポリシロキサンアタリレ ート、ポリシロキサン'ジイソシァネート · 2—ヒドロキシェチルアタリレート等のシリコー ン榭脂アタリレート類、その他、油変性アルキッド榭脂に (メタ)アタリロイル基を導入し たアルキッド変性アタリレート類、スピラン榭脂アタリレート類等のプレボリマーが挙 げられる。
[0168] また、本発明において、ポリマー層に適用可能な有機ポリマーとしては、薄膜形成 性ガスとしてプラズマ重合可能な有機物を用いることでも容易に形成できる。プラズ マ重合可能な有機物としては、炭化水素、ビニル化合物、含ハロゲンィ匕合物、含窒 素化合物を挙げることができる。ただし、有機ポリマー層は、セラミック層より基材側に 設けることが好ましい。
[0169] 炭化水素としては、例えば、ェタン、エチレン、メタン、アセチレン、シクロへキサン、 ベンゼン、キシレン、フエ-ルアセチレン、ナフタレン、プロピレン、カンフォー、メント ール、トルエン、イソブチレン等を挙げることができる。
[0170] ビュル化合物としては、例えば、アクリル酸、メチルアタリレート、ェチルアタリレート
、メチルメタタリレート、ァリルメタタリレート、アクリルアミド、スチレン、 (Xーメチルスチ レン、ビュルピリジン、酢酸ビュル、ビュルメチルエーテル等を挙げることができる。
[0171] 含ハロゲン化合物としては、四フッ化メタン、四フッ化工チレン、六フッ化プロピレン
、フロロアルキルメタタリレート等を挙げることができる。
[0172] 含窒素化合物としては、例えば、ピリジン、ァリルァミン、ブチルァミン、アタリロニトリ ル、ァセトニトリル、ベンゾ-トリル、メタタリ口-トリル、ァミノベンゼン等を挙げることが できる。 [0173] 本発明において、有機無機ハイブリッドポリマーとしては、有機 (無機)ポリマーに無 機 (有機)物を分散させた膜や、無機骨格と有機骨格をともに主構造とする膜を挙げ ることができる。本発明に適用できる有機無機ハイブリッドポリマーは、特に限定は無 いが、好ましくは、前述した無機ポリマーと有機ポリマーを適宜組み合わせたものを 用!/、ることができる。
[0174] 本発明のガスバリアフィルムは、種々の封止用材料、フィルムとして用いることがで きる。
[0175] 本発明のガスノ リアフィルムは、また表示素子、例えば、有機 EL素子に用いること ができる。有機 EL素子に用いる際に、本発明のガスノ リアフィルムは透明であるため 、このガスノ リアフィルムを基材として用いてこの側力も光取り出しを行うように構成で きる。即ち、このガスノ リアフィルム上に、例えば、 ITO等の透明導電性薄膜を透明 電極として設け、有機エレクト口ルミネッセンス素子用榭脂基材を構成することができ る。そして、基材上に設けられた ITO透明導電膜を陽極としてこの上に発光層を含む 有機 EL材料層を設け、更に金属膜からなる陰極を形成して有機 EL素子を形成し、 この上に別の封止材料を(同じでもよいが)重ねて前記ガスノ リアフィルム基材と周囲 を接着、素子を封じ込めることで有機 EL素子層を封止することができ、これにより外 気の湿気や酸素等のガスによる素子への影響を封じることができる。
[0176] 有機エレクト口ルミネッセンス用榭脂基材はこの様にして形成されたガスノ リアフィ ルムのセラミック膜上に、透明導電性膜を形成することによって得られる。透明導電 膜は有機 EL素子を形成したとき陽極となる導電膜である。
[0177] 透明導電膜の形成は、真空蒸着法やスパッタリング法等を用いることにより、また、 インジウム、スズ等の金属アルコキシド等を用いたゾルゲル法等塗布法によっても製 造でき、比抵抗値で 10— 4 Ω 'cmオーダーの優れた導電性を有する ITO膜を得ること ができる力 インジウム、スズ等の金属アルコキシド、アルキル金属等の有機金属化 合物を用いて前記同様に、大気圧プラズマ CVD法により形成することが好ましい。
[0178] し力しながら、前記の大気圧プラズマ放電処理装置により形成されることは好ましく 、例えば工業的には、 DCマグネトロンスパッタリング装置を用いて比抵抗値で 10 Ω • cmオーダーの優れた導電性を有する ITO膜を得ることができる力 これらの物理的 製作法 (PVD法)では気相中で目的物質を基板に堆積させて膜を成長させるもので あり、真空容器を使用するため装置が大が力りで高価なうえ原料の使用効率が悪ぐ 生産性が低い。また大面積の成膜も困難であった。更に、低抵抗品を得るためには 製膜時に 150〜300°Cに加熱する必要があり、榭脂フィルムへの低抵抗な透明導電 膜の製膜は困難である。
[0179] 透明導電膜の形成において使用するガスは、基材上に設ける透明導電膜の種類 によって異なるが、基本的には、不活性ガスと、透明導電膜を形成するためにプラズ マ状態となる反応性ガスの混合ガスである。ここで不活性ガスとは、周期表の第 18属 元素、具体的には、ヘリウム、ネオン、アルゴン、クリプトン、キセノン、ラドン更には窒 素ガス等前期と同様であるが、アルゴンまたはヘリウムが特に好ましく用いられる。本 発明で用いる反応性ガスは複数用いことが可能であるが、少なくとも 1種類は、放電 空間でプラズマ状態となり、透明導電膜を形成する成分を含有するものである。この ような反応性ガスとしては特に制限はないが、有機金属化合物が好ましく用いられる 。有機金属化合物の種類は問わないが、分子内に酸素を有する有機金属化合物が 好ましぐ特に、 βジケトン金属錯体、金属アルコキシド、アルキル金属等の有機金属 化合物が好ましく用いられる。より好ましくは、例えば、インジウムへキサフルォロペン タンジォネート、インジウムメチル(トリメチル)ァセチルアセテート、インジウムァセチ ルァセトナート、インジウムイソポロポキシド、インジウムトリフルォロペンタンジォネート 、トリス(2, 2, 6, 6—テトラメチノレ 3, 5 ヘプタンジォネート)インジウム、ジ η—ブ チノレビス(2, 4 ペンタンジォネート)スズ、ジー η—ブチノレジァセトキシスズ、ジー t ブチルジァセトキシスズ、テトライソプロポキシスズ、テトラブトキシスズ、ジンクァセ チルァセトナート等を挙げることができる。
[0180] この中で特に好ましいのは、インジウムァセチルァセトナート、トリス(2, 2, 6, 6—テ トラメチノレ 3, 5—ヘプタンジォネート)インジウム、ジンクァセチノレアセトナート、ジ n —プチルジァセトキシスズである。これらの有機金属化合物は一般に市販されており 、例えば、インジウムァセチルァセトナートであれば東京化成工業 (株)から容易に入 手することができる。
[0181] 導電膜の形成においては、これら分子内に少なくとも 1つ以上の酸素原子を含有す る有機金属化合物のほかに導電性を向上させるために行われるドーピング用のガス を用いることができる。ドーピングに用いられる反応性ガスとしては、例えば、アルミ- ゥムイソプロポキシド、ニッケルァセチルァセトナート、マンガンァセチルァセトナート、 ボロンイソプロポキシド、 n—ブトキシアンチモン、トリー n—ブチルアンチモン、ジ—n ーブチノレビス(2, 4 ペンタンジォネート)スズ、ジ n—ブチノレジァセトキシスズ、ジ t ブチルジァセトキシスズ、テトライソプロポキシスズ、テトラブトキシスズ、テトラブ チルスズ、ジンクァセチルァセトナート、 6フッ化プロピレン、 8フッ化シクロブタン、 4フ ッ化メタン等を挙げることができる。
[0182] また、透明導電膜の構成元素を含む反応ガスの他に水を反応ガスとして用いること で、高 ヽ電導性と大きなエッチング速度を有する透明導電膜の製造が可能である。 反応ガス中に混入する水の量は反応性ガスと不活性ガスの混合気体中 0. 0001か ら 10%の範囲にあることが好ましい。より好ましくは 0. 001から 1%の範囲にあること が好ましい。
[0183] 反応ガスとしては透明導電膜を構成する元素を含む有機金属化合物及び水の他、 酸素などの酸化性を有するガス、水素などの還元性を有するガスその他、一酸化窒 素、二酸化窒素、一酸化炭素、二酸ィ匕炭素などを適宜用いることも可能である。
[0184] 透明導電膜主成分として用いられる反応性ガスとドーピングを目的に少量用いられ る反応性ガスの量比は、成膜する透明導電膜の種類により異なる。例えば、酸化イン ジゥムに錫をドーピングして得られる ITO膜においては得られる ITO膜の In: Snの原 子数比が 100 : 0. 1〜: L00 : 15の範囲になるように反応性ガス量を調整する。好まし くは、 100 : 0. 5〜100 : 10の範囲になるよう調整する。 In: Snの原子数比は XPS測 定により求めることができる。酸ィ匕錫にフッ素をドーピングして得られる透明導電膜 (F TO膜という)においては、得られた FTO膜の Sn:Fの原子数比が 100 : 0. 01〜: L00 : 50の範囲になるよう反応性ガスの量比を調整する。 Sn:Fの原子数比は XPS測定 により求めることができる。 In O—ZnO系アモルファス透明導電膜においては、 In:
2 3
Znの原子数比が 100 : 50〜: L00 : 5の範囲になるよう反応性ガスの量比を調整する。 In: Znの原子数比は XPS測定で求めることができる。
[0185] 更に、反応性ガスには透明導電膜主成分となる反応性ガスとドーピングを目的に少 量用いられる反応性ガスがある。更に、本発明においては透明導電膜を構成する主 たる金属元素、ドーピングとなる金属元素の他、ケィ素を導入する。ケィ素の導入方 法には制限はないが、透明導電膜を形成する際、反応ガスとして透明導電膜の抵抗 値を調整する為に反応性ガスを追加することも可能である。透明導電膜の抵抗値を 調整する為に用いる反応性ガスとしては、有機金属化合物、特に βジケトン金属錯 体、金属アルコキシド、アルキル金属等の有機金属化合物が好ましく用いられる。具 体的には以下のものをあげることができる。ケィ素化合物としてはテトラメトキシシラン
、テトラエトキシシラン、テトラー iso—プロポキシシラン、テトラー n—プロポキシシラン 、テトラ一 n—ブトキシシラン、テトラ一 sec—ブトキシシラン、テトラ一 tert—ブトキシシ ラン、メチルトリメトキシシラン、メチルトリエトキシシラン、メチルトリプロポキシシラン、メ チルトリブトキシシラン、ジメチルジメトキシシラン、ジメチルジェトキシシラン、ジメチル エトキシシラン、ジメチノレメトキシシラン、ジメチノレプロポキシシラン、ジメチノレブトキシ シラン、メチノレジメトキシシラン、メチノレジェトキシシラン、へキシノレトリメトキシシラン等 が挙げられる。この中でもテトラエトキシシランが安定性、蒸気圧の点で好ましい。
[0186] 透明導電膜の膜厚としては、 0. lnm〜1000nmの範囲が好ましい。
[0187] 透明導電膜の場合、大気圧近傍の圧力下で形成された後、熱を加え、透明導電膜 の特性を調整することも可能である。この熱処理によっても膜中の水素の量を変える 事ができる。熱処理の温度としては 50〜300°Cの範囲が好ましい。好ましくは 100力 ら 200°Cの範囲である。加熱の雰囲気も特に制限はない。空気雰囲気、水素などの 還元性ガスを含む還元雰囲気、酸素などの酸化性ガスを含有するような酸化雰囲気 、あるいは真空、不活性ガス雰囲気下のうちから適宜選択することが可能である。還 元、酸化雰囲気をとる場合、還元性ガス、酸化性ガスを希ガスや窒素などの不活性 ガスで希釈して用いることが好ましい。このような場合、還元性ガス、酸ィ匕性ガスの濃 度は 0. 01から 5%が好ましぐより好ましくは 0. 1から 3%である。
[0188] また、本発明において、透明導電膜の形成方法によって得られる透明導電膜は、 反応性ガスとして有機金属化合物を用いるため、微量の炭素を含有する場合がある 。その場合の炭素含有量は、 0〜5. 0原子数濃度であることが好ましい。特に好まし くは 0. 01〜3原子数濃度の範囲内にあることが好ま 、。 [0189] 本発明においては、大気圧近傍の圧力下で前記セラミック膜、また透明導電膜を 形成するが、その際の基材の温度は特に制限はない。基材としてガラスを用いる場 合は 300°C以下、後述する高分子榭脂基材を用いる場合は 200°C以下が好ましい。
[0190] 次 、で、本発明のガスノ リアフィルム、またこれに透明導電膜が形成された有機ェ レクト口ルミネッセンス素子用榭脂基材を用いた有機エレクト口ルミネッセンス素子に ついて説明する。
[0191] 〔封止フィルムとその製造方法〕
本発明の有機エレクト口ルミネッセンス素子は、セラミック膜及び塗布膜を有する本 発明のガスノ リアフィルムを基板として用いることが特徴の一つである。
[0192] 本発明のセラミック膜を有するガスノ リアフィルムにおいて、セラミック膜及び塗布膜 上に、更に透明導電膜を形成し、これを陽極としてこの上に、有機 EL素子を校正す る有機 EL材料層、陰極となる金属層と積層し、この上に更にもう一つのガスノ リアフ イルムを封止フィルムとして、重ね接着することで封止する。
[0193] 用いられるもう一つの封止材料 (封止フィルム)としては、本発明に係る緻密な構造 を有するセラミック層及び重合性無機化合物を含む塗布層を有するガスバリアフィル ムを用いることができる。また、例えば、包装材等に使用される公知のガスノ リア性フ イルム、例えば、プラスチックフィルム上に酸ィ匕珪素や、酸ィ匕アルミニウムを蒸着した もの、緻密なセラミック層と、柔軟性を有する衝撃緩和ポリマー層を交互に積層し、最 上部に平滑ィ匕膜として塗布層を設けた構成のガスノ リア性フィルム等を封止フィルム として用いることができる。また特に、榭脂ラミネート (ポリマー膜)された金属箔は、光 取りだし側のガスノ リアフィルムとして用いることはできな 、が、低コストで更に透湿性 の低 、封止材料であり光取り出しを意図しな 、 (透明性を要求されな 、)場合封止フ イルムとして好ましい。
[0194] 本発明にお ヽて、金属箔とはスパッタゃ蒸着等で形成された金属薄膜や、導電性 ペースト等の流動性電極材料から形成された導電膜と異なり、圧延等で形成された 金属の箔またはフィルムを指す。
[0195] 金属箔としては、金属の種類に特に限定はなぐ例えば銅 (Cu)箔、アルミニウム( A1)箔、金 (Au)箔、黄銅箔、ニッケル (Ni)箔、チタン (Ti)箔、銅合金箔、ステンレス 箔、スズ (Sn)箔、高ニッケル合金箔等が挙げられる。これらの各種の金属箔の中で 特に好ま 、金属箔としては A1箔が挙げられる。
[0196] 金属箔の厚さは 6〜50 μ mが好ましい。 6 μ m以上であれば、金属箔に用いる材料 にかかわらず使用時のピンホールの発生を防止でき、必要とするバリア性 (透湿度、 酸素透過率)を維持することができる。また、 50 /z m以下であれば、金属箔に用いる 材料によっては最適の経済性を維持でき、有機 EL素子が過度に厚くなることを抑制 でき、フィルムのメリットを十分に発揮することができる。
[0197] 榭脂フィルム (ポリマー膜)がラミネートされた金属箔において榭脂フィルムとしては 、機能性包装材料の新展開 (株式会社 東レリサーチセンター)に記載の各種材料 を使用することが可能であり、例えばポリエチレン系榭脂、ポリプロピレン系榭脂、ポリ エチレンテレフタレート系榭脂、ポリアミド系榭脂、エチレン ビュルアルコール共重 合体系榭脂、エチレン—酢酸ビュル共重合体系榭脂、アクリロニトリル—ブタジエン 共重合体系榭脂、セロハン系榭脂、ビニロン系榭脂、塩ィ匕ビ -リデン系榭脂等が挙 げられる。ポリプロピレン系榭脂、ナイロン系榭脂等の榭脂は、延伸されていてもよく 、更に塩ィ匕ビ -リデン系榭脂をコートされていてもよい。また、ポリエチレン系榭脂は、 低密度あるいは高密度のものも用いることができる。
[0198] 上記の高分子材料の中で、ナイロン (Ny)、塩化ビ-リデン(PVDC)をコートしたナ ィロン(KNy)、無延伸ポリプロピレン(CPP)、延伸ポリプロピレン(OPP)、 PVDCを コートしたポリプロピレン(KOP)、ポリエチレンテレフタレート(PET)、 PVDCをコート したセロハン (KPT)、ポリエチレン ビュルアルコール共重合体(ェバール)、低密 度ポリエチレン (LDPE)、高密度ポリエチレン (HDPE)、線状低密度ポリエチレン (L LDPE)を用いることが好ましい。また、これら熱可塑性フィルムは、必要に応じて異 種フィルムと共押し出しで作った多層フィルム、延伸角度を変えて張り合わせ積層し た多層フィルム等も当然使用できる。更に必要とする包装材料の物性を得るために 使用するフィルムの密度、分子量分布を組み合わせて作ることも当然可能である。
[0199] ポリマー膜の厚さは、一概には規定できないが、 3-400 μ mが好ましぐ 10-200
/z mがより好ましく、 10〜50 /ζ πιが更に好ましい。
[0200] 金属箔の片面にポリマー膜をコーティング (ラミネート)する方法としては、一般に使 用されているラミネート機を使用することができる。接着剤としてはポリウレタン系、ポリ エステル系、エポキシ系、アクリル系等の接着剤を用いることができる。必要に応じて 硬化剤を併用してもよい。ドライラミネート方式、ホットメルトラミネーシヨン法やエタスト ルージョンラミネート法も使用できるがドライラミネート方式が好ましい。
[0201] 金属箔の片面がポリマー膜でコーティングされたフィルムは、包装材用に市販され ている。例えば、接着剤層 Zアルミフィルム 9 μ mZポリエチレンテレフタレート(PET ) 38 μ mの構成のドライラミネートフィルム (接着剤層としては 2液反応型のウレタン系 接着剤、厚みは 1. 5 m)が入手でき、これを用いて有機 EL素子の陰極側の封止を 行うことができる。
[0202] また、封止用のフィルムとしては、金属箔の片面がポリマー膜でコーティングされた フィルムにおいて、ポリマー膜と反対側の金属箔上に、セラミック膜を形成し用いるこ とが好ましい。セラミック膜としては本発明に係るセラミック膜が好ましぐ膜厚としては 、 l〜2000nmの範囲内であり、前記大気圧プラズマ法等により同様に形成される。
[0203] 後述するが、 2つのフィルムの封止方法としては、例えば、一般に使用されるインパ ルスシーラー熱融着性の榭脂層をラミネートして、インパルスシーラーで融着させ、封 止する方法が好ましぐこの場合、ガスノ リアフィルム同士の封止は、フィルム膜厚が 300 μ mを超えると封止作業時のフィルムの取り扱い性が悪化するのとインパルスシ 一ラー等による熱融着が困難となるため膜厚としては 300 m以下が望ましい。
[0204] 〔有機 EL素子の封止〕
本発明では、本発明のセラミック膜及び塗布膜を有する榭脂フィルム (ガスノ リアフ イルム)上に透明導電膜を形成し、作製した有機エレクト口ルミネッセンス用榭脂基材 上に、有機 EL素子各層を形成した後、上記封止フィルムを用いて、不活性ガスによ りパージされた環境下で、上記封止フィルムで陰極面を覆うようにして、有機エレクト 口ルミネッセンス素子を封止することができる。
[0205] 不活性ガスとしては、 Nの他、 He、 Ar等の希ガスが好ましく用いられる力 Heと Ar
2
を混合した希ガスも好ましぐ気体中に占める水蒸気や酸素の割合は、 lppm以下で あることが好ましい。不活性ガスによりパージされた環境下で封止することにより、保 存性が改良される。 [0206] また、榭脂フィルム (ポリマー膜)がラミネートされた金属箔を用いて、有機 EL素子 を封止するにあたっては、ラミネートされた樹脂フィルム面ではなぐ金属箔上にセラ ミック膜を形成し、このセラミック膜面を有機 EL素子の陰極に貼り合わせることが好ま しい。封止フィルムのポリマー膜面を有機 EL素子の陰極に貼り合わせると、部分的 に導通が発生したり、それに伴う電飾が発生し、これによつてダークスポットが発生す ることがある。
[0207] 封止フィルムを有機 EL素子の陰極に貼り合わせる封止方法としては、一般に使用 されるインパルスシーラーで融着可能な榭脂フィルム、例えばエチレン酢酸ビュルコ ポリマー(EVA)やポリプロピレン(PP)フィルム、ポリエチレン(PE)フィルム等の熱融 着性フィルムを積層して、インパルスシーラーで融着させ封止する方法がある。
[0208] 接着方法としてはドライラミネート方式が作業性の面で優れて 、る。この方法は一般 には 1. 0〜2. 5 m程度の硬化性の接着剤層を使用する。ただし接着剤の塗設量 が多すぎる場合には、トンネル、浸み出し、縮緬皺等が発生することがあるため、好ま しくは接着剤量を乾燥膜厚で 3〜5 μ mになるように調節することが好ま 、。
[0209] ホットメルトラミネーシヨンとはホットメルト接着剤を溶融し基材に接着層を塗設する 方法であるが、接着剤層の厚さは一般に 1〜50 mと広い範囲で設定可能な方法 である。一般に使用されるホットメルト接着剤のベースレジンとしては、 EVA、 EEA、 ポリエチレン、ブチルラバー等が使用され、ロジン、キシレン榭脂、テルペン系榭脂、 スチレン系榭脂等が粘着付与剤として、ワックス等が可塑剤として添加される。
[0210] エタストルージョンラミネート法とは高温で溶融した榭脂をダイスにより基材上に塗 設する方法であり、榭脂層の厚さは一般に 10〜50 mと広い範囲で設定可能であ る。
[0211] エタストルージョンラミネートに使用される榭脂としては一般に、 LDPE、 EVA、 PP 等が使用される。
[0212] 図 7に、本発明のガスノ リアフィルム上に有機 EL素子各層が形成されたのち、更に 酸ィ匕珪素膜付き榭脂ラミネートアルミ箔と前記ガスノ リアフィルムが接着されることで 封止された有機 EL素子の断面概略図を示す。
[0213] 図 7にお ヽて、榭脂フィルム基材 Y上に形成された本発明に係る塗布膜を含むセラ ミック膜 3を有するガスノ リアフィルム上には、この上に陽極 (ITO) 4、発光層を含む 有機 EL各層 5、陰極 (例えばアルミニウム) 6がそれぞれ形成され有機 EL素子を形 成している。更に陰極上には別の封止フィルム Sが重ねられ、基材フィルム周囲を接 着することで有機 EL材料層を含む有機 EL素子は封止された構造となって ヽる。封 止フィルム Sは、本発明に係る塗布膜を含むセラミック膜 3が金属(アルミ)箔 7の上に 形成されており、又金属箔の反対側には、榭脂層 8がラミネートされており、セラミック 膜 3側を陰極に接するように接着されている。尚、矢印は光の取り出し方向を示す。
[0214] また、この様な封止構造を形成するにあたっては、封止構造中、封止空間に吸水 性の物質を配置したり、また、構造中に吸水層等の水蒸気を吸収する層を設けてもよ い。
[0215] 次 、で、有機 EL素子を構成する有機 EL材料各層 (構成層)につ 、て説明する。
[0216] また、有機 EL素子層の詳細についても後述するが、本発明において、有機 EL素 子としては発光層にリン光性ドーパントを含有するリン光発光タイプの発光層を有す る素子が発光効率が高く好まし 、。
[0217] 〔有機 EL素子〕
次に、本発明に係る有機 EL素子の構成層について詳細に説明する。本発明にお いて、有機 EL素子の層構成の好ましい具体例を以下に示すが、本発明はこれらに 限定されない。
[0218] (1)陽極 Ζ発光層 Ζ電子輸送層 Ζ陰極
(2)陽極 Ζ正孔輸送層 Ζ発光層 Ζ電子輸送層 Ζ陰極
(3)陽極 Ζ正孔輸送層 Ζ発光層 Ζ正孔阻止層 Ζ電子輸送層 Ζ陰極
(4)陽極 Ζ正孔輸送層 Ζ発光層 Ζ正孔阻止層 Ζ電子輸送層 Ζ陰極バッファ一層 Ζ陰極
(5)陽極 Ζ陽極バッファ一層 Ζ正孔輸送層 Ζ発光層 Ζ正孔阻止層 Ζ電子輸送層 Ζ陰極バッファ一層 Ζ陰極
(陽極)
有機 EL素子における陽極としては、仕事関数の大きい (4eV以上)金属、合金、電 気伝導性化合物及びこれらの混合物を電極物質とするものが好ましく用いられる。こ のような電極物質の具体例としては Au等の金属、 Cul、インジウムチンォキシド (ITO ) , SnO、 ZnO等の導電性透明材料が挙げられる。また、 IDIXO (In O— ZnO)等
2 2 3 非晶質で透明導電膜を作製可能な材料を用いてもょ ヽ。陽極はこれらの電極物質を 蒸着やスパッタリング等の方法により、薄膜を形成させ、フォトリソグラフィ一法で所望 の形状のパターンを形成してもよぐあるいはパターン精度をあまり必要としない場合 は(100 μ m以上程度)、上記電極物質の蒸着やスパッタリング時に所望の形状のマ スクを介してパターンを形成してもよい。この陽極より発光を取り出す場合には、透過 率を 10%より大きくすることが望ましぐまた陽極としてのシート抵抗は数百 Ω Zロ以 下が好ましい。更に膜厚は材料にもよる力 通常 10〜: L000nm、好ましくは 10〜20 Onmの範囲で選ばれる。
[0219] (陰極)
一方、陰極としては、仕事関数の小さい (4eV以下)金属 (電子注入性金属と称する )、合金、電気伝導性化合物及びこれらの混合物を電極物質とするものが用いられる 。このような電極物質の具体例としては、ナトリウム、ナトリウム一カリウム合金、マグネ シゥム、リチウム、マグネシウム Z銅混合物、マグネシウム Z銀混合物、マグネシウム Zアルミニウム混合物、マグネシウム Zインジウム混合物、アルミニウム Z酸ィ匕アルミ -ゥム (Al O )混合物、インジウム、リチウム
2 3 Zアルミニウム混合物、希土類金属等が 挙げられる。これらの中で、電子注入性及び酸ィ匕等に対する耐久性の点から、電子 注入性金属とこれより仕事関数の値が大きく安定な金属である第二金属との混合物 、例えば、マグネシウム Z銀混合物、マグネシウム Zアルミニウム混合物、マグネシゥ ム Zインジウム混合物、アルミニウム Z酸ィ匕アルミニウム (Ai o )混合物、リチウム
2 3 Z アルミニウム混合物、アルミニウム等が好適である。陰極はこれらの電極物質を蒸着 やスパッタリング等の方法により薄膜を形成させることにより、作製することができる。 また、陰極としてのシート抵抗は数百 Ω /口以下が好ましぐ膜厚は通常 ΙΟηπ!〜 5 μ m、好ましくは 50〜200nmの範囲で選ばれる。なお、発光した光を透過させるた め、有機 EL素子の陽極または陰極のいずれか一方力 透明または半透明であれば 発光輝度が向上し好都合である。
[0220] また、陰極に上記金属を l〜20nmの膜厚で作製した後に、陽極の説明で挙げた 導電性透明材料をその上に作製することで、透明または半透明の陰極を作製するこ とができ、これを応用することで陽極と陰極の両方が透過性を有する素子を作製する ことができる。
[0221] 次に、本発明の有機 EL素子の構成層として用いられる、注入層、阻止層、電子輸 送層等について説明する。
[0222] (注入層:電子注入層、正孔注入層)
注入層は必要に応じて設け、電子注入層と正孔注入層があり、上記の如く陽極と 発光層または正孔輸送層の間、及び陰極と発光層または電子輸送層との間に存在 させてちょい。
[0223] 注入層とは、駆動電圧低下や発光輝度向上のために電極と有機層間に設けられる 層のことで、「有機 EL素子とその工業化最前線( 1998年 11月 30日ェヌ'ティー ·ェ ス社発行)」の第 2編第 2章「電極材料」(123〜166頁)に詳細に記載されており、正 孔注入層(陽極バッファ一層)と電子注入層(陰極バッファ一層)とがある。
[0224] 陽極バッファ一層(正孔注入層)は、特開平 9— 45479号公報、同 9 260062号 公報、同 8— 288069号公報等にもその詳細が記載されており、具体例として、銅フ タロシアニンに代表されるフタロシアニンバッファ一層、酸ィ匕バナジウムに代表される 酸化物バッファ一層、アモルファスカーボンバッファ一層、ポリア-リン(ェメラルディ ン)やポリチォフェン等の導電性高分子を用いた高分子バッファ一層等が挙げられる
[0225] 陰極バッファ一層(電子注入層)は、特開平 6— 325871号公報、同 9 17574号 公報、同 10— 74586号公報等にもその詳細が記載されており、具体的にはストロン チウムゃアルミニウム等に代表される金属バッファ一層、フッ化リチウムに代表される アルカリ金属化合物バッファ一層、フッ化マグネシウムに代表されるアルカリ土類金 属化合物バッファ一層、酸ィヒアルミニウムに代表される酸ィヒ物バッファ一層等が挙げ られる。上記バッファ一層(注入層)はごく薄い膜であることが望ましぐ素材にもよる がその膜厚は 0. lnm〜5 mの範囲が好ましい。
[0226] (阻止層:正孔阻止層、電子阻止層)
阻止層は、上記の如ぐ有機化合物薄膜の基本構成層の他に必要に応じて設けら れるものである。例えば、特開平 11 204258号公報、同 11— 204359号公報、及 び「有機 EL素子とその工業化最前線( 1998年 11月 30日ェヌ'ティー ·エス社発行) 」の 237頁等に記載されて 、る正孔阻止(ホールブロック)層がある。
[0227] 正孔阻止層とは広い意味では電子輸送層の機能を有し、電子を輸送する機能を有 しつつ正孔を輸送する能力が著しく小さい正孔阻止材料力 なり、電子を輸送しつ つ正孔を阻止することで電子と正孔の再結合確率を向上させることができる。また、 後述する電子輸送層の構成を必要に応じて、本発明に係る正孔阻止層として用いる ことができる。
[0228] 一方、電子阻止層とは広い意味では正孔輸送層の機能を有し、正孔を輸送する機 能を有しつつ電子を輸送する能力が著しく小さい材料力 なり、正孔を輸送しつつ電 子を阻止することで電子と正孔の再結合確率を向上させることができる。また、後述 する正孔輸送層の構成を必要に応じて電子阻止層として用いることができる。
[0229] (発光層)
本発明に係る発光層は、電極または電子輸送層、正孔輸送層カゝら注入されてくる 電子及び正孔が再結合して発光する層であり、発光する部分は発光層の層内であつ ても発光層と隣接層との界面であってもよ 、。
[0230] 本発明の有機 EL素子の発光層には、以下に示すホストイ匕合物とドーパント化合物 が含有されることが好ましい。これにより、より一層発光効率を高くすることができる。
[0231] 発光ドーパントは、大きく分けて、蛍光を発光する蛍光性ドーパントとリン光を発光 するリン光性ドーパントの 2種類がある。
[0232] 前者 (蛍光性ドーパント)の代表例としては、クマリン系色素、ピラン系色素、シ了ニ ン系色素、クロコニゥム系色素、スクァリウム系色素、ォキソベンツアントラセン系色素 、フルォレセイン系色素、ローダミン系色素、ピリリウム系色素、ペリレン系色素、スチ ルベン系色素、ポリチォフェン系色素、または希土類錯体系蛍光体等が挙げられる。
[0233] 後者 (リン光性ドーパント)の代表例としては、好ましくは元素の周期表で 8属、 9属、 10属の金属を含有する錯体系化合物であり、更に好ましくは、イリジウム化合物、ォ スミゥム化合物であり、中でも最も好ましいのはイリジウム化合物である。具体的には 以下の特許公報に記載されて 、る化合物である。 [0234] 国際公開第 00Z70655号パンフレツ K特開 2002— 280178号公報、同 2001— 181616号公報、同 2002— 280179号公報、同 2001— 181617号公報、同 2002
— 280180号公報、同 2001— 247859号公報、同 2002— 299060号公報、同 20 01— 313178号公報、同 2002— 302671号公報、同 2001— 345183号公報、同 2002— 324679号公報、国際公開第 02,15645号パンフレット、特開 2002— 33 2291号公報、同 2002— 50484号公報、同 2002— 332292号公報、同 2002— 8 3684号公報、特表 2002— 540572号公報、特開 2002— 117978号公報、同 200 2— 338588号公報、同 2002— 170684号公報、同 2002— 352960号公報、国際 公開第 01Z93642号パンフレツ卜、特開 2002— 50483号公報、同 2002— 10047 6号公報、同 2002— 173674号公報、同 2002— 359082号公報、同 2002— 175 884号公報、同 2002— 363552号公報、同 2002— 184582号公報、同 2003— 7 469号公報、特表 2002— 525808号公報、特開 2003— 7471号公報、特表 2002
— 525833号公報、特開 2003— 31366号公報、同 2002— 226495号公報、同 20 02— 234894号公報、同 2002— 235076号公報、同 2002— 241751号公報、同 2001— 319779号公報、同 2001— 319780号公報、同 2002— 62824号公報、 同 2002— 100474号公報、同 2002— 203679号公報、同 2002— 343572号公報
、同 2002— 203678号公報等。
[0235] その具体例の一部を下記に示す。
[0236] [化 2]
Figure imgf000050_0001
[0237] [化 3]
Figure imgf000051_0001
9一 J|
Figure imgf000051_0002
6
Figure imgf000052_0001
Figure imgf000052_0002
Figure imgf000052_0003
Figure imgf000052_0004
[0239] 発光ドーパントは複数種の化合物を混合して用いてもよい。
[0240] 〈発光ホスト〉
発光ホスト(単にホストとも!、う)とは、 2種以上の化合物で構成される発光層中にて 混合比 (質量)の最も多い化合物のことを意味し、それ以外の化合物については「ド 一パント化合物(単に、ドーパントともいう)」という。例えば、発光層をィ匕合物 A、化合 物 Bという 2種で構成し、その混合比が A: B= 10 : 90であれば化合物 Aがドーパント 化合物であり、化合物 Bがホストイ匕合物である。更に、発光層をィ匕合物 A、化合物 B、 化合物 Cの 3種力 構成し、その混合比が八^ :じ= 5 : 10 : 85でぁれば、化合物 A、 化合物 Bがドーパント化合物であり、化合物 Cがホストイ匕合物である。
[0241] 本発明に用いられる発光ホストとしては、構造的には特に制限はないが、代表的に は力ルバゾール誘導体、トリアリールァミン誘導体、芳香族ボラン誘導体、含窒素複 素環化合物、チォフェン誘導体、フラン誘導体、オリゴァリーレンィ匕合物等の基本骨 格を有するもの、または、カルボリン誘導体やジァザ力ルバゾール誘導体 (ここで、ジ ァザカルバゾール誘導体とは、カルボリン誘導体のカルボリン環を構成する炭化水素 環の少なくとも一つの炭素原子が窒素原子で置換されているものを表す。)等が挙げ られる。
[0242] 中でもカルボリン誘導体、ジァザ力ルバゾール誘導体等が好ましく用いられる。
[0243] 以下に、カルボリン誘導体、ジァザ力ルバゾール誘導体等の具体例を挙げる力 本 発明はこれらに限定されない。
[0244] [化 5]
Figure imgf000054_0001
ZS..SO//.OOZdf/I3d 29 900CZl/Z,00Z ΟΛ\
Figure imgf000055_0001
[0246] また、本発明に用いられる発光ホストは低分子化合物でも、繰り返し単位をもつ高 分子化合物でもよぐビニル基やエポキシ基のような重合性基を有する低分子化合 物 (蒸着重合性発光ホスト)でも 、 、。
[0247] 発光ホストとしては、正孔輸送能、電子輸送能を有しつつ、かつ、発光の長波長化 を防ぎ、高 Tg (ガラス転移温度)である化合物が好ま 、。
発光ホストの具体例としては、以下の文献に記載されている化合物が好適である。例 えば、特開 2001— 257076号公報、同 2002— 308855号公報、同 2001— 31317 9号公報、同 2002— 319491号公報、同 2001— 357977号公報、同 2002— 334 786号公報、同 2002— 8860号公報、同 2002— 334787号公報、同 2002— 158 71号公報、同 2002— 334788号公報、同 2002— 43056号公報、同 2002— 334 789号公報、同 2002— 75645号公報、同 2002— 338579号公報、同 2002— 10 5445号公報、同 2002— 343568号公報、同 2002— 141173号公報、同 2002— 352957号公報、同 2002— 203683号公報、同 2002— 363227号公報、同 2002
— 231453号公報、同 2003— 3165号公報、同 2002— 234888号公報、同 2003
— 27048号公報、同 2002— 255934号公報、同 2002— 260861号公報、同 200 2— 280183号公報、同 2002— 299060号公報、同 2002— 302516号公報、同 2 002— 305083号公報、同 2002— 305084号公報、同 2002— 308837号公報等
[0248] 更に公知のホストイ匕合物を複数種併用して用いてもよい。また、ドーパント化合物を 複数種用いることで、異なる発光を混ぜることが可能となり、これにより任意の発光色 を得ることができる。リン光性化合物の種類、ドープ量を調整することで白色発光が 可能であり、照明、ノ ックライトへの応用もできる。
[0249] 本発明の有機 EL素子の発光する色は、「新編色彩科学ノ、ンドブック」 (日本色彩学 会編、東京大学出版会、 1985)の 108頁の図 4. 16において、分光放射輝度計 CS - 1000 (コ-力ミノルタセンシング社製)で測定した結果を CIE色度座標に当てはめ たときの色で決定される。
[0250] 発光層は上記化合物を、例えば、真空蒸着法、スピンコート法、キャスト法、 LB法、 インクジェット法等の公知の薄膜ィ匕法により成膜して形成することができる。発光層と しての膜厚は特に制限はないが、通常は511111〜5 111、好ましくは 5〜200nmの範 囲で選ばれる。この発光層はこれらのリン光性化合物やホスト化合物が 1種または 2 種以上力もなる一層構造であってもよいし、あるいは同一組成または異種組成の複 数層からなる積層構造であってもよ ヽ。
[0251] (正孔輸送層)
正孔輸送層とは正孔を輸送する機能を有する正孔輸送材料力 なり、広い意味で 正孔注入層、電子阻止層も正孔輸送層に含まれる。正孔輸送層は単層または複数 層設けることができる。
[0252] 正孔輸送材料としては、正孔の注入または輸送、電子の障壁性の!/、ずれかを有す るものであり、有機物、無機物のいずれであってもよい。例えば、トリァゾール誘導体 、ォキサジァゾール誘導体、イミダゾール誘導体、ポリアリールアルカン誘導体、ビラ ゾリン誘導体及びピラゾロン誘導体、フ -レンジァミン誘導体、ァリールァミン誘導 体、ァミノ置換カルコン誘導体、ォキサゾール誘導体、スチリルアントラセン誘導体、 フルォレノン誘導体、ヒドラゾン誘導体、スチルベン誘導体、シラザン誘導体、ァニリ ン系共重合体、また導電性高分子オリゴマー、特にチォフェンオリゴマー等が挙げら れる。
[0253] 正孔輸送材料としては上記のものを使用することができる力 ボルフイリンィ匕合物、 芳香族第 3級ァミン化合物及びスチリルアミン化合物、特に芳香族第 3級アミンィ匕合 物を用いることが好ましい。
[0254] 芳香族第 3級アミンィ匕合物及びスチリルアミンィ匕合物の代表例としては、 N, N, N ' , N' —テトラフエニル一 4, 4' —ジァミノフエ-ル; N, N' —ジフエ-ル一 N, N ' —ビス(3—メチルフエ-ル)一〔1, 1' —ビフエ-ル〕一 4, 4' —ジァミン(TPD) ; 2, 2 ビス(4 ジ一 p トリルァミノフエ-ル)プロパン; 1, 1—ビス(4 ジ一 p トリ ルァミノフエ-ル)シクロへキサン; N, N, N' , N' —テトラ一 p トリル一 4, 4' - ジアミノビフエ-ル; 1 , 1 ビス(4 ジ一 p トリルァミノフエ-ル) 4 フエ-ルシク 口へキサン;ビス(4 -ジメチルァミノ 2 メチルフエ-ル)フエニルメタン;ビス(4 -ジ —p トリルァミノフエ-ル)フエ-ルメタン; N, N' —ジフエ-ル一 N, N' —ジ(4— メトキシフエ-ル) 4, 4' ージアミノビフエニル; N, N, N' , N' —テトラフエ-ル —4, 4' ージアミノジフエ-ルエーテル; 4, 4' ビス(ジフエ-ルァミノ)クオ一ドリフ ェ -ル; N, N, N トリ(p トリル)ァミン; 4— (ジ— p トリルァミノ)— 4' —〔4— (ジ —p トリルァミノ)スチリル〕スチルベン; 4— N, N ジフエ-ルァミノ—(2 ジフエ- ルビ-ル)ベンゼン; 3—メトキシ一 4' — N, N ジフエニルアミノスチルベンゼン; N フエ-ルカルバゾール、更には米国特許第 5, 061 , 569号明細書に記載されて いる 2個の縮合芳香族環を分子内に有するもの、例えば、 4, 4' ビス〔N—(1ーナ フチル) N フエ-ルァミノ〕ビフヱ-ル(NPD)、特開平 4 308688号公報に記 載されているトリフエ-ルァミンユニットが 3つスターバースト型に連結された 4, 4' , A" —トリス〔?^— (3—メチルフエ-ル) N フエ-ルァミノ〕トリフエ-ルァミン(MTD ATA)等が挙げられる。
[0255] 更にこれらの材料を高分子鎖に導入した、またはこれらの材料を高分子の主鎖とし た高分子材料を用いることもできる。また、 P型— Si、 p型— SiC等の無機化合物も正 孔注入材料、正孔輸送材料として使用することができる。
[0256] 正孔輸送層は上記正孔輸送材料を、例えば、真空蒸着法、スピンコート法、キャス ト法、インクジェット法を含む印刷法、 LB法等の公知の方法により、薄膜ィ匕することに より形成することができる。正孔輸送層の膜厚については特に制限はないが、通常は
5nm〜5 μ m程度、好ましくは 5〜200nmである。この正孔輸送層は上記材料の 1 種または 2種以上力もなる一層構造であってもよ 、。
[0257] また、不純物をドープした p性の高い正孔輸送層を用いることもできる。その例とし ては、特開平 4— 297076号、特開 2000— 196140号、特開 2001— 102175号、
. Appl. Phys. , 95, 5773 (2004)等に記載されたもの力 S挙げ、られる。
[0258] (電子輸送層)
電子輸送層とは電子を輸送する機能を有する材料力 なり、広い意味で電子注入 層、正孔阻止層も電子輸送層に含まれる。電子輸送層は単層または複数層設けるこ とがでさる。
[0259] 従来、単層の電子輸送層、及び複数層とする場合は発光層に対して陰極側に隣 接する電子輸送層に用いられる電子輸送材料 (正孔阻止材料を兼ねる)としては、陰 極より注入された電子を発光層に伝達する機能を有していればよぐその材料として は従来公知の化合物の中から任意のものを選択して用いることができ、例えば、 -ト 口置換フルオレン誘導体、ジフヱ-ルキノン誘導体、チォピランジオキシド誘導体、力 ルボジイミド、フレオレニリデンメタン誘導体、アントラキノジメタン及びアントロン誘導 体、ォキサジァゾール誘導体等が挙げられる。更に、上記ォキサジァゾール誘導体 にお 、て、ォキサジァゾール環の酸素原子を硫黄原子に置換したチアジアゾール誘 導体、電子吸引基として知られているキノキサリン環を有するキノキサリン誘導体も、 電子輸送材料として用いることができる。更にこれらの材料を高分子鎖に導入した、 またはこれらの材料を高分子の主鎖とした高分子材料を用いることもできる。
[0260] また、 8 キノリノール誘導体の金属錯体、例えば、トリス(8 キノリノール)アルミ- ゥム(Alq)、トリス(5, 7—ジクロロ一 8—キノリノール)アルミニウム、トリス(5, 7—ジブ ロモ一 8 キノリノール)アルミニウム、トリス(2 メチル 8 -キノリノール)アルミ-ゥ ム、トリス(5—メチル 8—キノリノール)アルミニウム、ビス(8—キノリノール)亜鉛(Zn q)等、及びこれらの金属錯体の中心金属が In、 Mg、 Cu、 Ca、 Sn、 Gaまたは Pbに 置き替わった金属錯体も、電子輸送材料として用いることができる。その他、メタルフ リーもしくはメタルフタロシアニン、またはそれらの末端がアルキル基ゃスルホン酸基 等で置換されているものも、電子輸送材料として好ましく用いることができる。また、発 光層の材料として例示したジスチリルビラジン誘導体も、電子輸送材料として用いる ことができるし、正孔注入層、正孔輸送層と同様に、 n型— Si、 n型— SiC等の無機半 導体も電子輸送材料として用いることができる。
[0261] 電子輸送層は上記電子輸送材料を、例えば、真空蒸着法、スピンコート法、キャス ト法、インクジェット法を含む印刷法、 LB法等の公知の方法により、薄膜ィ匕することに より形成することができる。電子輸送層の膜厚については特に制限はないが、通常は 5nm〜5 μ m程度、好ましくは 5〜200nmである。電子輸送層は上記材料の 1種ま たは 2種以上力もなる一層構造であってもよ 、。
[0262] また、不純物をドープした n性の高い電子輸送層を用いることもできる。その例とし ては、特開平 4— 297076号、特開 2000— 196140号、特開 2001— 102175号、 . Appl. Phys. , 95, 5773 (2004)等に記載されたもの力 S挙げ、られる。
[0263] 本発明の有機 EL素子においては、発光の室温における外部取り出し効率は 1% 以上であることが好ましぐより好ましくは 5%以上である。ここに、外部取り出し量子 効率 (%) =有機 EL素子外部に発光した光子数 Z有機 EL素子に流した電子数 X 1 00である。
[0264] また、カラーフィルタ一等の色相改良フィルタ一等を併用しても、有機 EL素子から の発光色を蛍光体を用いて多色へ変換する色変換フィルターを併用してもよ ヽ。色 変換フィルターを用いる場合においては、有機 EL素子の発光の λ maxは 480nm以 下が好ましい。
[0265] (有機 EL素子の作製方法)
有機 EL素子の作製方法について以下に詳しく説明する。
有機 EL素子の一例として、陽極 Z正孔注入層 Z正孔輸送層 Z発光層 Z電子輸送 層 Z電子注入層 Z陰極力もなる有機 EL素子の作製法について説明する。
[0266] まず基体 (本発明のガスバリアフィルム)上に所望の電極物質、例えば、陽極用物 質力もなる薄膜を 1 μ m以下、好ましくは 10〜200nmの膜厚になるように、蒸着ゃス ノ ッタリング、又前記プラズマ CVD等の方法により形成させ、陽極を作製する。次に 、この上に有機 EL素子材料である正孔注入層、正孔輸送層、発光層、電子輸送層 、電子注入層、正孔阻止層の有機化合物薄膜を形成させる。
[0267] この有機化合物薄膜の薄膜ィ匕の方法としては、前記の如く蒸着法、ウエットプロセス
(スピンコート法、キャスト法、インクジェット法、印刷法)等があるが、均質な膜が得ら れやすぐかつピンホールが生成しにくい等の点から、真空蒸着法、スピンコート法、 インクジェット法、印刷法が特に好ましい。更に層毎に異なる成膜法を適用してもよい 。成膜に蒸着法を採用する場合、その蒸着条件は使用する化合物の種類等により異 なるが、一般にボート加熱温度 50〜450°C、真空度 1 X 10一6〜 1 X 10—2Pa、蒸着速 度 0. 01〜50nmZ秒、基板温度— 50〜300。C、膜厚 0. lnm~5 μ m,好ましくは 5〜200nmの範囲で適宜選ぶことが望まし!/、。
[0268] これらの層を形成後、その上に陰極用物質力もなる薄膜を、 1 μ m以下好ましくは 5 0〜200nmの範囲の膜厚になるように、例えば、蒸着やスパッタリング等の方法によ り形成させ、陰極を設けることにより所望の有機 EL素子が得られる。この有機 EL素 子の作製は、一回の真空引きで一貫して正孔注入層から陰極まで作製するのが好ま しいが、途中で取り出して異なる成膜法を施しても構わない。その際、作業を乾燥不 活性ガス雰囲気下で行う等の配慮が必要となる。
[0269] また作製順序を逆にして、陰極、電子注入層、電子輸送層、発光層、正孔輸送層、 正孔注入層、陽極の順に作製することも可能である。このようにして得られた多色の 表示装置に、直流電圧を印加する場合には、陽極を +、陰極を一の極性として電圧 2〜40V程度を印加すると、発光が観測できる。また、交流電圧を印加することもでき る。なお、印加する交流の波形は任意でよい。
[0270] 本発明の有機 EL素子を用いた表示装置は、表示デバイス、ディスプレイ、各種発 光光源として用いることができる。表示デバイス、ディスプレイにおいて、青、赤、緑発 光の 3種の有機 EL素子を用いることにより、フルカラーの表示が可能となる。
[0271] 表示デバイス、ディスプレイとしてはテレビ、ノ ソコン、モパイル機器、 AV機器、文 字放送表示、自動車内の情報表示等が挙げられる。特に静止画像や動画像を再生 する表示装置として使用してもよぐ動画再生用の表示装置として使用する場合の駆 動方式は単純マトリックス (パッシブマトリックス)方式でもアクティブマトリックス方式で もどちらでもよい。 [0272] 本発明の有機 EL素子を用いた照明装置は家庭用照明、車内照明、時計や液晶 用のバックライト、看板広告、信号機、光記憶媒体の光源、電子写真複写機の光源、 光通信処理機の光源、光センサーの光源等が挙げられるがこれに限定するものでは ない。
[0273] また、本発明の有機 EL素子に共振器構造を持たせた有機 EL素子として用いても よい。このような共振器構造を有した有機 EL素子の使用目的としては、光記憶媒体 の光源、電子写真複写機の光源、光通信処理機の光源、光センサーの光源等が挙 げられる力 これらに限定されない。また、レーザ発振をさせることにより、上記用途に 使用してちょい。
[0274] 本発明に係るガスノ リア性の高い榭脂フィルム上に、残留応力が所定範囲にある セラミック膜を設けたガスノ リアフィルムは、ガスノ リア層として多層のセラミック膜を積 層する必要がなぐ生産性に優れており、また、発光層力 の光の取り出しを向上さ せるための光の回折又は拡散させる凹凸形状を表面に有するように容易に加ェする こともができる生産性の高いガスバリアフィルムである。
[0275] 〔表示装置〕
本発明の有機 EL素子は、照明用や露光光源のような 1種のランプとして使用しても よいし、画像を投影するタイプのプロジェクシヨン装置や、静止画像や動画像を直接 視認するタイプの表示装置 (ディスプレイ)として使用してもよい。動画再生用の表示 装置として使用する場合の駆動方式は単純マトリックス (パッシブマトリックス)方式で もアクティブマトリックス方式でもどちらでもよい。または、異なる発光色を有する本発 明の有機 EL素子を 3種以上使用することにより、フルカラー表示装置を作製すること が可能である。または、一色の発光色、例えば、白色発光をカラーフィルターを用い て BGRにし、フルカラー化することも可能である。更に有機 ELの発光色を色変換フィ ルターを用いて他色に変換しフルカラー化することも可能であるが、その場合、有機 EL発光の λ maxは 480nm以下であることが好ましい。
[0276] 本発明の有機 EL素子力 構成される表示装置の一例を図面に基づいて説明する
[0277] 図 8は、有機 EL素子力 構成される表示装置の一例を示した模式図である。有機 EL素子の発光により画像情報の表示を行う、例えば、携帯電話等のディスプレイの 模式図である。
[0278] ディスプレイ 101は、複数の画素を有する表示部 A、画像情報に基づいて表示部 A の画像走査を行う制御部 B等からなる。
[0279] 制御部 Bは、表示部 Aと電気的に接続され、複数の画素それぞれに外部からの画 像情報に基づいて走査信号と画像データ信号を送り、走査信号により走査線毎の画 素が画像データ信号に応じて順次発光して画像走査を行って画像情報を表示部 A に表示する。
[0280] 図 9は、表示部 Aの模式図である。
[0281] 表示部 Aは基板上に、複数の走査線 5及びデータ線 106を含む配線部と、複数の 画素 103等とを有する。表示部 Aの主要な部材の説明を以下に行う。図 9においては 、画素 103の発光した光力 白矢印方向(下方向)へ取り出される場合を示している。
[0282] 配線部の走査線 105及び複数のデータ線 106は、各々導電材料からなり、走査線 105とデータ線 106は格子状に直交して、直交する位置で画素 103に接続している( 詳細は図示せず)。
[0283] 画素 103は、走査線 105から走査信号が印加されると、データ線 106から画像デー タ信号を受け取り、受け取った画像データに応じて発光する。発光の色が赤領域の 画素、緑領域の画素、青領域の画素を、適宜、同一基板上に並置することによって、 フルカラー表示が可能となる。
[0284] 次に、画素の発光プロセスを説明する。
[0285] 図 10は、画素の模式図である。
[0286] 画素は、有機 EL素子 110、スイッチングトランジスタ 111、駆動トランジスタ 112、コ ンデンサ 113等を備えている。複数の画素に有機 EL素子 110として、赤色、緑色、 青色発光の有機 EL素子を用い、これらを同一基板上に並置することでフルカラー表 示を行うことができる。
[0287] 図 10において、制御部 Bからデータ線 106を介してスイッチングトランジスタ 111の ドレインに画像データ信号が印加される。そして、制御部 Bから走査線 105を介してス イッチングトランジスタ 111のゲートに走査信号が印加されると、スイッチングトランジ スタ 111の駆動がオンし、ドレインに印加された画像データ信号がコンデンサ 113と 駆動トランジスタ 112のゲートに伝達される。
[0288] 画像データ信号の伝達により、コンデンサ 113が画像データ信号の電位に応じて 充電されるとともに、駆動トランジスタ 12の駆動がオンする。駆動トランジスタ 112は、 ドレインが電源ライン 107に接続され、ソースが有機 EL素子 110の電極に接続され ており、ゲートに印加された画像データ信号の電位に応じて電源ライン 107から有機 EL素子 110に電流が供給される。
[0289] 制御部 Bの順次走査により走査信号が次の走査線 105に移ると、スイッチングトラン ジスタ 111の駆動がオフする。しかし、スイッチングトランジスタ 111の駆動がオフして もコンデンサ 113は充電された画像データ信号の電位を保持するので、駆動トランジ スタ 112の駆動はオン状態が保たれて、次の走査信号の印加が行われるまで有機 E L素子 110の発光が継続する。順次走査により次に走査信号が印加されたとき、走 查信号に同期した次の画像データ信号の電位に応じて駆動トランジスタ 112が駆動 して有機 EL素子 110が発光する。
[0290] すなわち、有機 EL素子 110の発光は、複数の画素それぞれの有機 EL素子 110に 対して、アクティブ素子であるスイッチングトランジスタ 111と駆動トランジスタ 112を設 けて、複数の画素 103それぞれの有機 EL素子 110で発光を行っている。このような 発光方法をアクティブマトリックス方式と呼んで 、る。
[0291] ここで、有機 EL素子 110の発光は、複数の階調電位を持つ多値の画像データ信 号による複数の階調の発光でもよ 、し、 2値の画像データ信号による所定の発光量 のオン、オフでもよい。
[0292] また、コンデンサ 113の電位の保持は、次の走査信号の印加まで継続して保持して もよ 、し、次の走査信号が印加される直前に放電させてもょ 、。
[0293] 本発明にお 、ては、上述したアクティブマトリックス方式に限らず、走査信号が走査 されたときのみデータ信号に応じて有機 EL素子を発光させるパッシブマトリックス方 式の発光駆動でもよい。
[0294] 図 11は、パッシブマトリックス方式による表示装置の模式図である。図 11にお 、て
、複数の走査線 105と複数の画像データ線 106が画素 103を挟んで対向して格子 状に設けられている。
[0295] 順次走査により走査線 105の走査信号が印加されたとき、印加された走査線 105 に接続している画素 103が画像データ信号に応じて発光する。ノッシブマトリックス 方式では画素 103にアクティブ素子がなく、製造コストの低減が計れる。
[0296] 〔照明装置〕
本発明に係る有機 EL材料は、また、照明装置として、実質白色の発光を生じる有 機 EL素子に適用できる。複数の発光材料により複数の発光色を同時に発光させて 混色により白色発光を得る。複数の発光色の組み合わせとしては、青色、緑色、青色 の 3原色の 3つの発光極大波長を含有させたものでもよいし、青色と黄色、青緑と橙 色等の補色の関係を利用した 2つの発光極大波長を含有したものでもよい。
[0297] また、複数の発光色を得るための発光材料の組み合わせは、複数のリン光または 蛍光を発光する材料 (発光ドーパント)を、複数組み合わせたもの、蛍光またはリン光 を発光する発光材料と、該発光材料からの光を励起光として発光する色素材料とを 組み合わせたもののいずれでもよいが、本発明に係る白色有機 EL素子においては 、発光ドーパントを複数組み合わせる方式が好ましい。
[0298] 複数の発光色を得るための有機 EL素子の層構成としては、複数の発光ドーパント を、一つの発光層中に複数存在させる方法、複数の発光層を有し、各発光層中に発 光波長の異なるドーパントをそれぞれ存在させる方法、異なる波長に発光する微小 画素をマトリックス状に形成する方法等が挙げられる。
[0299] 本発明に係る白色有機 EL素子においては、必要に応じ成膜時にメタルマスクゃィ ンクジェットプリンティング法等でパター-ングを施してもよ 、。パターユングする場合 は、電極のみをパターユングしてもいいし、電極と発光層をパターユングしてもいいし 、素子全層をパターユングしてもいい。
[0300] 発光層に用いる発光材料としては特に制限はなぐ例えば液晶表示素子における ノ ックライトであれば、 CF (カラーフィルター)特性に対応した波長範囲に適合するよ うに、本発明に係る白金錯体、また公知の発光材料の中から任意のものを選択して 組み合わせて白色化すればよ!、。
[0301] このように、白色発光有機 EL素子は、前記表示デバイス、ディスプレイにカ卩えて、 各種発光光源、照明装置として、家庭用照明、車内照明、また、露光光源のような 1 種のランプとして、液晶表示装置のバックライト等、表示装置にも有用に用いられる。
[0302] その他、時計等のバックライト、看板広告、信号機、光記憶媒体等の光源、電子写 真複写機の光源、光通信処理機の光源、光センサーの光源等、更には表示装置を 必要とする一般の家庭用電気器具等広い範囲の用途が挙げられる。
実施例
[0303] 以下、実施例を挙げて本発明を具体的に説明するが、本発明はこれらに限定され るものではない。なお、実施例において「部」あるいは「%」の表示を用いる力 特に 断りがない限り「質量部」ある!/、は「質量%」を表す。
[0304] 《ガスバリアフィルムの作製》
〔ガスバリアフィルム 1の作製〕
図 3に示すロール電極型放電処理装置を用いて、大気圧プラズマ CVD法により下 記の各薄膜を形成した。ロール電極型放電処理装置において、ロール電極に対向 する棒状電極を複数個フィルムの搬送方向に対し平行に設置し、各電極部に原料 及び電力を投入し、各薄膜を形成した。
[0305] ここで誘電体は対向する電極共に、セラミック溶射加工のものに片肉で lmm被覆し た。また、被覆後の電極間隙は、 lmmに設定した。また誘電体を被覆した金属母材 は、冷却水による冷却機能を有するステンレス製ジャケット仕様であり、放電中は冷 却水による電極温度コントロールを行いながら実施した。ここで使用する電源は、応 用電機製高周波電源 (80kHz)、パール工業製高周波電源(13. 56MHz)を使用し た。
[0306] 榭脂フィルム基材としては、 100 m厚みの PENフィルム上にアクリル系クリアハー ドコートを 5 m両面に設けたフィルムを用いて、その両面に密着層 Zセラミック層 Z プロテクト層の順に、以下に示す条件で、それぞれ形成し、ガスバリアフィルム 1を作 製した。各薄膜の膜厚は、密着層が 50nm、セラミック層が 30nm、プロテクト層が 40 Onmである。また、製膜時の基材保持温度は、 120°Cとした。
[0307] 〈セラミック層〉
放電ガス: Nガス 反応ガス 1:酸素ガスを全ガスに対し 5%
反応ガス 2 :テトラエトキシシラン (以下、 TEOSと略記する)を全ガスに対し 0. 1% 低周波側電源電力: 80kHzを lOWZcm2
高周波側電源電力: 13. 56MHzを lOWZcm2
〈残留応力の測定〉
尚、同条件で、厚さ 100 m、巾 10mm、長さ 50mmの石英硝子上に、このセラミツ ク膜を 1 μ m厚みで製膜した後、 NEC三栄社製薄膜物性評価装置 MH4000にて残 留応力を測定したところ、 0. 8MPaであった。
〈密着層〉
放電ガス: Nガス
2
反応ガス 1:水素ガスを全ガスに対し 1%
反応ガス 2 :TEOSを全ガスに対し 0. 5%
低周波側電源電力: 80kHzを lOWZcm2
高周波側電源電力: 13. 56MHzを 5WZcm2
〈プロテクト層〉
放電ガス: Nガス
2
反応ガス 1:水素ガスを全ガスに対し 1%
反応ガス 2 :TEOSを全ガスに対し 0. 5%
低周波側電源電力: 80kHzを lOWZcm2
高周波側電源電力: 13. 56MHzを 5WZcm2
〔ガスバリアフィルム 2の作製〕
上記ガスノ リアフィルム 1を用い、プロテクト層上に、塗布膜として下記の組成力もな る塗布液を、バーコ一ターを用いて塗布し、 80°Cで 5分間乾燥させた後、高圧水銀ラ ンプ(80W)を用いて、紫外線を 400mj/cm2照射して硬化させ、ガスバリアフィルム 2を作製した。表面塗布層の硬化後の膜厚は、 lOOnmとなるように調整した。
〈塗布液の調製〉
SiOゾル (スノーテックス (IPA— ST、 日産化学 (株)製)) 6質量部
2
トリメチルロールプロパントリグリシジルエーテル (活性エネルギー線反応性ィ匕合物) 1質量部
4, 4' -ビス (ジ( β—ヒドロキシエトキシ)フエ-ルスルフォ -ォ)フエニルスルフイド ビス一へキサフルォロアンチモネート (UV開始剤) 0. 03質量部 シクロへキサノン 600質量言
シリコンオイル(SH200、東レ 'ダウコーユング 'シリコーン (株)製)
0. 05質量部
〔ガスバリアフィルム 3の作製〕
上記ガスノ リアフィルム 1を用い、プロテクト層上に塗布膜として下記の形成方法に 従って有機重合膜を形成し、バリアフィルム 3を作製した。
[0309] 〈有機重合膜の形成方法〉
抵抗加熱端子を備えた真空蒸着機内に高圧水銀 UVランプを取り付けた製膜装置 の真空槽内にバリアフィルム 1をセットし、 1 X 10— 4Paオーダーまで真空吸引した後、 有機蒸着源の抵抗加熱を開始し、 lOOnmの有機層を蒸着した。ここで蒸着した有機 層の組成は、環状エーテル構造を有するジアタリレートであるネオペンチルダリコー ル変性トリメチロールプロパンジアタリレート(KAYARAD R— 604 :日本化薬 (株) 製) 100質量部に、光重合開始剤 (ィルガキュア一 651:チバ 'スペシャルティ 'ケミカ ルズ製)を 1質量部添加したものを用いた。蒸着後、 UV照射を 500mjZcm2の積算 光量で硬化した。
[0310] 〔ガスバリアフィルム 4の作製〕
上記ガスノ リアフィルム 1を用い、プロテクト層上に塗布膜として下記の形成方法に 従って無機の熱重合膜を形成して、バリアフィルム 4を作製した。
[0311] 〈無機の熱重合膜形成方法〉
亜鉛プロボキシド Zn (OPr)を質量で 5 : 1 (溶媒)の割合で、水 +メタノール +エタノ
2
ール +イソプロパノール = 1 : 1 : 1 :4の割合力もなる混合溶媒に混合し、この混合物 に、更に、トリエトキシボラン B (OEt)を 0. 2モル Zkgの割合で添加して、 10分間攪
3
拌溶解して反応液 1を調製した。ハロゲンイオン源として酸性沸ィ匕アンモ-ゥム NH
4
F'HFを用い、上記反応液 1と同一の混合溶媒との合計質量に対する F—濃度を 0. 1 モル Zkgとなるように反応液 2を調製した。上記のようにして調製した反応液 1と反応 液 2とを質量比 3 : 1の割合で混合して 10分間攪拌した後、塩酸とアンモニア水を用 いて、混合液の ρΗを 5. 0 (指示薬としてメチルレッド +ブロモクレゾールグリーンのェ タノール溶液を使用)に調整し、 3時間熟成し加水分解、脱水縮合させてコーティン グ液とした。コーティング液中の SiO濃度は 10%であり、炭素含有量は 40%であつ
2
た。
[0312] この混合液をノ リアフィルム 1のプロテクト層上に塗布し、加熱硬化を行い、 lOOnm の薄膜を形成した。加熱温度は 150°Cで 3時間行った。
[0313] 〔ガスバリアフィルム 5の作製〕
上記ガスノ リアフィルム 2において、セラミック層のみを下記製造方法とした以外は、 同様にしてノ リアフィルム 5を作製した。
《セラミック層の形成》
サムコネ土製プラズマ CVD装置 MODEL PD— 270STPを用いて以下の条件でセ ラミック層を形成した。
[0314] 酸素圧力: 39. 9Pa
反心ガス: TEOS 5sccm (Standard cubic centimeter per minute) 電力: 13. 56MHzで 100W
基材保持温度: 120°C
尚、ノ リアフィルム 5のセラミック層の残留応力は、ガスバリアフィルム 1のセラミック 層の残留応力測定法と同様の方法で測定したところ、 80MPaであった。
[0315] 《透明導電膜の作製》
次に、上記作製した各ガスノ リアフィルム上に、以下の方法により透明導電膜 (ITO 膜)を作製した。
[0316] 〈透明導電膜の形成〉
プラズマ放電装置としては、電極が平行平板型のものを用い、この電極間に上記各 ガスノ リアフィルムを載置し、かつ混合ガスを導入して薄膜形成を行った。
[0317] なお、アース(接地)電極としては、 200mm X 200mm X 2mmのステンレス板に高 密度、高密着性のアルミナ溶射膜を被覆し、その後、テトラメトキシシランを酢酸ェチ ルで希釈した溶液を塗布乾燥後、紫外線照射により硬化させ封孔処理を行い、この ようにして被覆した誘電体表面を研磨、平滑にして、最大表面粗さ Rmaxが と なるように加工した電極を用いた。また、印加電極としては、中空の角型の純チタン パイプに対し、アース電極と同様の条件にて誘電体を被覆した電極を用いた。印加 電極を複数作製し、アース電極に対向して設け放電空間を形成した。
[0318] また、プラズマ発生に用いる電源としては、パール工業 (株)製の高周波電源 CF— 5000— 13Mを用い、周波数 13. 56MHzで、 5WZcm2の電力を供給した。
[0319] 電極間に以下の組成の混合ガスを流し、プラズマ状態とし、上記の各ガスノ リアフィ ルムを大気圧プラズマ処理し、プロテクト層または塗布膜上に、錫ドープ酸化インジゥ ム (ITO)膜を lOOnmの厚さで成膜した。
[0320] 放電ガス:ヘリウム 98. 5体積0 /0
反応性ガス 1 :酸素 0. 25体積%
反応性ガス 2 :インジウムァセチルァセトナート 1. 2体積0 /0
反応性ガス 3 :ジブチル錫ジアセテート 0. 05体積%
《有機 EL素子の作製》
上記 ITO膜を形成した各ガスバリアフィルム 100mm X 100mmを基板とし、これに パター-ングを行った後、この ITO透明電極を設けたガスノ リアフィルム基板をイソプ 口ピルアルコールで超音波洗浄し、乾燥窒素ガスで乾燥した。この透明支持基板を 市販の真空蒸着装置の基板ホルダーに固定し、一方、モリブデン製抵抗加熱ボート に α NPDを 200mg入れ、別のモリブデン製抵抗加熱ボートにホスト化合物として CBPを 200mg入れ、別のモリブデン製抵抗加熱ボートにバソキュプロイン(BCP)を 200mg入れ、別のモリブデン製抵抗加熱ボートに Ir—lを lOOmg入れ、更に別のモ リブデン製抵抗加熱ボートに Alqを 200mg入れ、真空蒸着装置に取付けた。
3
[0321] 次 、で、真空槽を 4 X 10— 4Paまで減圧した後、 a—NPDの入った前記加熱ボート に通電して加熱し、蒸着速度 0. InmZ秒で透明支持基板に蒸着し、正孔輸送層を 設けた。更に CBPと Ir 1の入った前記加熱ボートに通電して加熱し、それぞれ蒸着 速度 0. 2nmZ秒、 0. 012nm/秒で前記正孔輸送層上に共蒸着して発光層を設 けた。なお、蒸着時の基板温度は室温であった。更に BCPの入った前記加熱ボート に通電して加熱し、蒸着速度 0. InmZ秒で前記発光層の上に蒸着して膜厚 lOnm の正孔阻止層を設けた。その上に、更に Alqの入った前記加熱ボートに通電してカロ
3
熱し、蒸着速度 0. InmZ秒で前記正孔阻止層の上に蒸着して、更に膜厚 40nmの 電子輸送層を設けた。なお、蒸着時の基板温度は室温であった。
[0322] 引き続き、フッ化リチウム 0. 5nm及びアルミニウム 11 Onmを蒸着して陰極を形成し 、有機 EL素子を作製した。
[0323] [化 7]
Figure imgf000070_0001
[0324] 《封止フィルムの作製》
膜厚 30 mのアルミ箔の片方の面に、ポリプロピレンを膜厚 30 mでラミネートし、 更にその反対側の面に、セラミック層の形成に用いた図 3に示す口ール電極型放電 処理装置を用いてプラズマ放電処理を実施し、以下の条件でセラミック(SiO )膜を 3
2
Onmの厚みで形成し、封止フィルムを作製した。
[0325] 〈セラミック層〉
放電ガス: Nガス
2
反応ガス 1:酸素ガスを全ガスに対し 5%
反応ガス 2:テトラエトキシシラン (TEOS)を全ガスに対し 0. 1%
低周波側電源電力: 80kHzを lOWZcm2 高周波側電源電力: 13. 56MHzを lOWZcm2
窒素ガス (不活性ガス)によりパージされた環境下で、エポキシ系接着剤を用いて、 この封止フィルムの SiO膜を設けた面と有機 EL素子の陰極面に、また前記ガスバリ
2
ァフィルムの有機 EL素子が形成されて 、な 、周囲に貼り付けることで、素子を封止 して有機 ELデバイス 1〜4を作製した(図 7 (a) )。
[0326] 《ガスバリアフィルムの評価》
上記作製したガスバリアフィルム 1〜4について、水蒸気透過度、中心線平均粗さ 及び最大高さを測定した。
[0327] (水蒸気透過率の測定)
JIS K 7129— 1992に準拠した方法で、 25±0. 5。C、 90± 2%RHにおける水 蒸気透過度〔g/ (m2 · 24h)〕を測定した。
(酸素透過率の測定)
酸素透過率は、 JIS K 7126Bで規定の方法に準拠して測定を行った。
[0328] (中心線平均粗さ Ra及び最大高さ Rmaxの測定)
JIS— B— 0601に規定される基準長 2. 5mm、カットオフ値 0. 8mmで測定したとき の中心線平均粗さ Ra及び JIS— B— 0601に規定される最大高さ Rmaxを、非接触 三次元微小表面形状測定システム (Veeco社製 WYKO)を用いて測定した。
[0329] 《有機 EL素子の評価》
作製した各有機 EL素子を用いて発光させ、下記の方法に従ってダークスポット耐 性と発光寿命を測定した。
[0330] (ダークスポット耐性)
上記作製した各有機 EL素子を 60°C、 95%RHの高温高湿下で 500時間保存した 後、 50倍の拡大写真を撮影してダークスポットの発生状況を目?見観察した。
[0331] (発光寿命)
上記作製した各有機 EL素子を室温下、 2. 5mAZcm2の定電流条件下による連 続点灯を行い、初期輝度の半分の輝度になるのに要する時間( τ 1/2)を測定し、これ を発行寿命の尺度とした。
[0332] 以上により得られた結果を、表 1に示す。 [表 1]
Figure imgf000072_0001
表 1に記載の結果より明らかなように、本発明の重合性無機物をコーティングしたガ スノ リアフィルムを用いた有機 EL素子は、比較例に対し、ダークスポットの発生が無 ぐ寿命も長いという結果が得られた。

Claims

請求の範囲
[1] 榭脂フィルム上に、少なくとも 1層のセラミック膜と、重合性無機化合物を含有する 塗布液をコーティングして形成された塗布層を、この順序で有し、該セラミック膜の残 留応力が、 0. OlMPa以上、 20MPa以下であることを特徴とするガスバリアフィルム
[2] 前記塗布層が、最上部に位置することを特徴とする請求の範囲第 1項に記載のガ スバリアフィルム。
[3] 前記セラミック膜を構成する物質が、酸化珪素、酸化窒化珪素、窒化珪素及び酸 化アルミニウム力 選ばれる少なくとも 1種、またはそれらの混合であることを特徴とす る請求の範囲第 1項または第 2項に記載のガスバリアフィルム。
[4] 前記重合性無機化合物が、シリカゾルまたはアルミナゾルであることを特徴とする請 求の範囲第 1項乃至第 3項のいずれか 1項に記載のガスバリアフィルム。
[5] 前記塗布層の表面粗さが、中心線平均粗さで lnm以下であることを特徴とする請 求の範囲第 1項乃至第 4項のいずれか 1項に記載のガスバリアフィルム。
[6] 請求の範囲第 1項乃至第 5項のいずれ力 1項に記載のガスバリアフィルムの上に、 透明導電性薄膜が形成されていることを特徴とする有機エレクト口ルミネッセンス用榭 脂基材。
[7] 請求の範囲第 6項に記載の有機エレクト口ルミネッセンス用榭脂基材の上に、燐光 発光有機エレクト口ルミネッセンス材料及び陰極となる金属膜をコーティングし、更に 榭脂ラミネート済み金属箔を接着剤で貼り付け封止したことを特徴とする有機エレ外 ロノレミネッセンス素子。
[8] 前記榭脂ラミネート済み金属箔は、金属箔の陰極と接しな!/、側が榭脂でラミネート されており、逆の陰極と接する面がセラミック膜でコーティングされて 、ることを特徴と する請求の範囲第 7項に記載の有機エレクト口ルミネッセンス素子。
[9] 榭脂フィルム上に、少なくとも 1層のセラミック膜と、塗布層とを、この順序で有するガ スバリアフィルムの製造方法にぉ 、て、
前記セラミック膜を、大気圧もしくはその近傍の圧力下で、放電空間に薄膜形成ガ スを含有するガスを供給し、該放電空間に高周波電界を印加することにより該ガスを 励起し、基材を該励起したガスに晒すことにより基材上に薄膜を形成する薄膜形成 方法により形成し、
前記塗布層を、重合性無機化合物を含有する塗布液をコーティングして形成する ことを特徴とするガスノリアフィルムの製造方法。
[10] 前記ガスバリアフィルムのガスバリア性能が、 JIS K 7129— 1992に準拠した方 法で測定された 25±0. 5°C、 90± 2%RHにおける水蒸気透過度が 1 X 10— 4gZ (m 2' 24h)以下で、かつ JIS K 7126— 1987に準拠した方法で測定された酸素透過 度が 1 X 10—4mlZ (m2' 24h' atm)以下であることを特徴とする請求の範囲第 9項に 記載のガスバリアフィルムの製造方法。
[11] 前記塗布層が、最上部に位置することを特徴とする請求の範囲第 9項または第 10 項に記載のガスバリアフィルムの製造方法。
[12] 前記セラミック膜の残留応力力 0. 01以上、 20MPa以下であることを特徴とする 請求の範囲第 9項乃至第 11項のいずれか 1項に記載のガスバリアフィルムの製造方 法。
[13] 前記セラミック膜を構成する物質が、酸化珪素、酸化窒化珪素、窒化珪素及び酸 化アルミニウム力 選ばれる少なくとも 1種、またはそれらの混合であることを特徴とす る請求の範囲第 9項乃至第 12項のいずれか 1項に記載のガスバリアフィルムの製造 方法。
[14] 前記重合性無機化合物が、シリカゾルまたはアルミナゾルであることを特徴とする請 求の範囲第 9項乃至第 13項のいずれか 1項に記載のガスバリアフィルムの製造方法
[15] 前記塗布層の表面粗さが、中心線平均粗さで lnm以下であることを特徴とする請 求の範囲第 9項乃至第 14項のいずれか 1項に記載のガスバリアフィルムの製造方法
PCT/JP2007/057752 2006-04-21 2007-04-06 ガスバリアフィルム、有機エレクトロルミネッセンス用樹脂基材、それを用いた有機エレクトロルミネッセンス素子及びガスバリアフィルムの製造方法 WO2007123006A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US12/297,562 US20090167164A1 (en) 2006-04-21 2007-04-06 Gas barrier film, resin base for organic electroluminescent device, organic electroluminescent device using the same, and method for producing gas barrier film
EP07741188A EP2011639A4 (en) 2006-04-21 2007-04-06 GASSPERRFILM, HARZBASIS FOR ELECTROLUMINESCENCE DEVICE, THIS USING ELECTROLUMINESCENCE DEVICE AND METHOD FOR PRODUCING A GASPERRFILM
JP2008512062A JP5163491B2 (ja) 2006-04-21 2007-04-06 ガスバリアフィルムの製造方法、有機エレクトロルミネッセンス用樹脂基材、それを用いた有機エレクトロルミネッセンス素子

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-117667 2006-04-21
JP2006117667 2006-04-21

Publications (1)

Publication Number Publication Date
WO2007123006A1 true WO2007123006A1 (ja) 2007-11-01

Family

ID=38624912

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/057752 WO2007123006A1 (ja) 2006-04-21 2007-04-06 ガスバリアフィルム、有機エレクトロルミネッセンス用樹脂基材、それを用いた有機エレクトロルミネッセンス素子及びガスバリアフィルムの製造方法

Country Status (4)

Country Link
US (1) US20090167164A1 (ja)
EP (1) EP2011639A4 (ja)
JP (2) JP5163491B2 (ja)
WO (1) WO2007123006A1 (ja)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009226707A (ja) * 2008-03-21 2009-10-08 Tdk Corp 電子部品
JP2009255040A (ja) * 2008-03-25 2009-11-05 Kyodo Printing Co Ltd フレキシブルガスバリアフィルムおよびその製造方法
EP2128192A1 (en) * 2008-05-29 2009-12-02 Fujifilm Corporation Barrier laminate, gas barrier film and device using the same
WO2010106853A1 (ja) * 2009-03-16 2010-09-23 コニカミノルタホールディングス株式会社 有機エレクトロニクスパネルおよび有機エレクトロニクスパネルの製造方法
WO2011027815A1 (ja) * 2009-09-04 2011-03-10 株式会社スリーボンド 有機el素子封止部材
WO2012067186A1 (ja) * 2010-11-19 2012-05-24 コニカミノルタホールディングス株式会社 ガスバリア性フィルムの製造方法、及びガスバリア性フィルム
JPWO2011027619A1 (ja) * 2009-09-02 2013-02-04 コニカミノルタホールディングス株式会社 バリアフィルム及びその製造方法
JP2013186971A (ja) * 2012-03-06 2013-09-19 Ulvac Japan Ltd 成膜装置、成膜方法
JP2014120445A (ja) * 2012-12-19 2014-06-30 Konica Minolta Inc 有機発光ダイオード素子
JP2016012021A (ja) * 2014-06-27 2016-01-21 富士フイルム株式会社 偏光板保護フィルム、偏光板、画像表示装置、及び偏光板保護フィルムの製造方法
JPWO2014133141A1 (ja) * 2013-02-28 2017-02-02 日本放送協会 有機電界発光素子
WO2018097153A1 (ja) * 2016-11-25 2018-05-31 コニカミノルタ株式会社 発光性膜、有機エレクトロルミネッセンス素子、有機材料組成物及び有機エレクトロルミネッセンス素子の製造方法
WO2018101027A1 (ja) * 2016-11-30 2018-06-07 コニカミノルタ株式会社 ガスバリア性フィルム、及び、ガスバリア性フィルムの成形加工方法
WO2018155452A1 (ja) * 2017-02-21 2018-08-30 株式会社アルバック マスク及び成膜装置
JP2021123068A (ja) * 2020-02-07 2021-08-30 尾池工業株式会社 ガスバリアフィルム

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5088331B2 (ja) * 2009-01-26 2012-12-05 東京エレクトロン株式会社 熱処理装置用の構成部品及び熱処理装置
TW201040299A (en) * 2009-05-05 2010-11-16 Fraunhofer Ges Forschung Layer system having barrier properties and a structured conductive layer, method for producing the same, and use of such a layer system
WO2011003633A1 (en) 2009-07-06 2011-01-13 Alize Pharma Ii Pegylated l-asparaginase
EP2508546A1 (en) * 2009-12-01 2012-10-10 Nagase ChemteX Corporation Epoxy resin composition
JP5692230B2 (ja) * 2010-07-14 2015-04-01 コニカミノルタ株式会社 ガスバリアフィルムの製造方法
JP5862565B2 (ja) * 2010-07-27 2016-02-16 コニカミノルタ株式会社 ガスバリア性フィルム、ガスバリア性フィルムの製造方法及び電子デバイス
EP2660041B1 (en) * 2010-12-27 2015-06-17 Konica Minolta, Inc. Gas-barrier film and electronic device
JP5716752B2 (ja) * 2010-12-27 2015-05-13 コニカミノルタ株式会社 ガスバリアフィルムの製造方法、ガスバリアフィルムおよび電子デバイス
DE102012107797A1 (de) * 2012-08-23 2014-02-27 Osram Opto Semiconductors Gmbh Verfahren zur Herstellung eines Licht emittierenden Halbleiterbauelements und Licht emittierendes Halbleiterbauelement
DE102012220724B4 (de) 2012-11-14 2022-05-25 Pictiva Displays International Limited Optoelektronisches Bauelement
WO2014142036A1 (ja) * 2013-03-11 2014-09-18 コニカミノルタ株式会社 ガスバリアフィルム、ガスバリアフィルムの製造方法、及び、有機エレクトロルミネッセンス素子
JP6346664B2 (ja) 2013-05-21 2018-06-20 エルジー・ケム・リミテッド 有機電子装置
JP5796038B2 (ja) * 2013-06-18 2015-10-21 デクセリアルズ株式会社 蛍光体シート
WO2015005198A1 (ja) * 2013-07-08 2015-01-15 コニカミノルタ株式会社 ガスバリア性フィルムおよび電子デバイス
WO2015038850A2 (en) * 2013-09-12 2015-03-19 Sio2 Medical Products, Inc. Rapid, non-destructive, selective infrared spectrometry analysis of organic coatings on molded articles
KR102107109B1 (ko) * 2013-10-17 2020-05-29 삼성디스플레이 주식회사 유기 발광 장치 및 이의 제조 방법
WO2015061657A1 (en) * 2013-10-24 2015-04-30 Universal Display Corporation Permeation barrier system for substrates and devices and method of making the same
WO2015147221A1 (ja) * 2014-03-27 2015-10-01 コニカミノルタ株式会社 ガスバリア性フィルムおよびガスバリア性フィルムの製造方法
JP6675322B2 (ja) * 2015-02-17 2020-04-01 エルジー・ケム・リミテッド 封止フィルム
TW201726411A (zh) * 2015-08-19 2017-08-01 3M新設資產公司 包括多層障壁總成之複合物品及其製造方法
CN105949831A (zh) * 2016-06-28 2016-09-21 佛山市珀力玛高新材料有限公司 一种热环境下高硬度的陶瓷涂料
CN107037042A (zh) * 2016-10-19 2017-08-11 中国石油化工股份有限公司 一种腐蚀监测涂层
CN109337418A (zh) * 2018-11-09 2019-02-15 北京航星机器制造有限公司 用于超塑成形/扩散连接的阻焊剂、配制方法及使用方法
CN112759963B (zh) * 2021-01-28 2021-12-24 上海宜瓷龙新材料股份有限公司 一种炊具用不粘陶瓷涂料及其制备方法

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5312953A (en) 1976-07-22 1978-02-06 Dainippon Ink & Chem Inc Coloring of polyesters
JPS58217344A (ja) 1983-06-01 1983-12-17 旭化成ポリフレックス株式会社 バリヤ−性プラスチツク積層シ−ト
JPH02251429A (ja) 1989-03-27 1990-10-09 Mitsui Toatsu Chem Inc 透明導電性フィルム
JPH06124785A (ja) 1992-10-08 1994-05-06 Idemitsu Kosan Co Ltd 有機el素子
JPH06158280A (ja) * 1992-11-19 1994-06-07 Toyo Ink Mfg Co Ltd 珪素酸化物系蒸着フィルム
JPH07126552A (ja) 1993-10-29 1995-05-16 Nippon Oil & Fats Co Ltd 含フッ素硬化性塗液及び含フッ素硬化被膜
JPH07188582A (ja) 1993-12-27 1995-07-25 Nippon Oil & Fats Co Ltd 含フッ素硬化性組成物及び反射防止用含フッ素硬化被膜
JPH08100136A (ja) 1994-09-28 1996-04-16 Japan Synthetic Rubber Co Ltd フッ素系塗料
JPH09220791A (ja) 1996-02-16 1997-08-26 Dainippon Printing Co Ltd 反射防止フイルム
JPH09272169A (ja) 1996-04-04 1997-10-21 Nippon Synthetic Chem Ind Co Ltd:The 光学積層体
JP2001191442A (ja) * 2000-01-07 2001-07-17 Mitsubishi Chemicals Corp ガスバリア性に優れた積層構造体
JP2003282243A (ja) * 2002-03-25 2003-10-03 Fuji Photo Film Co Ltd 発光素子
JP2005171304A (ja) * 2003-12-10 2005-06-30 Dainippon Printing Co Ltd バリアフィルムの製造方法
WO2005097484A1 (ja) * 2004-03-31 2005-10-20 Konica Minolta Holdings, Inc. 透明導電性フィルム、透明導電性フィルムの製造方法及び有機エレクトロルミネッセンス素子
JP2006082322A (ja) * 2004-09-15 2006-03-30 Konica Minolta Holdings Inc ディスプレイ用基板フィルムおよび有機エレクトロルミネッセンス素子

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6153365A (ja) * 1984-08-22 1986-03-17 Nippon Soda Co Ltd 酸化ケイ素薄膜形成用組成物
JPS61293232A (ja) * 1985-06-20 1986-12-24 Asahi Optical Co Ltd コ−ティング組成物
JP3624039B2 (ja) * 1994-12-19 2005-02-23 東セロ株式会社 バリヤー性ポリオレフィンフィルム
DE19952040A1 (de) * 1999-10-28 2001-05-03 Inst Neue Mat Gemein Gmbh Substrat mit einem abriebfesten Diffusionssperrschichtsystem
JP2001318207A (ja) * 2000-02-28 2001-11-16 Fuji Photo Film Co Ltd 反射防止フィルムおよび画像表示装置
EP1634697B1 (en) * 2003-05-16 2014-08-27 Toppan Printing Co., Ltd. Transparent gas barrier multilayer film, electroluminescent light-emitting device using same, electroluminescent display, and electrophoretic display panel
JP4589128B2 (ja) * 2004-03-09 2010-12-01 大日本印刷株式会社 湾曲を防止したガスバリアフィルム
JP2005297414A (ja) * 2004-04-14 2005-10-27 Mitsui Chemicals Inc プライマー用組成物及びこれを用いたガスバリア性積層フィルム
JP4629362B2 (ja) * 2004-05-12 2011-02-09 大日本印刷株式会社 バリア性フィルムおよびそれを使用した積層材
JP2006068992A (ja) * 2004-09-01 2006-03-16 Konica Minolta Holdings Inc ガスバリア性フィルム
JP2007090803A (ja) * 2005-09-30 2007-04-12 Fujifilm Corp ガスバリアフィルム、並びに、これを用いた画像表示素子および有機エレクトロルミネッセンス素子

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5312953A (en) 1976-07-22 1978-02-06 Dainippon Ink & Chem Inc Coloring of polyesters
JPS58217344A (ja) 1983-06-01 1983-12-17 旭化成ポリフレックス株式会社 バリヤ−性プラスチツク積層シ−ト
JPH02251429A (ja) 1989-03-27 1990-10-09 Mitsui Toatsu Chem Inc 透明導電性フィルム
JPH06124785A (ja) 1992-10-08 1994-05-06 Idemitsu Kosan Co Ltd 有機el素子
JPH06158280A (ja) * 1992-11-19 1994-06-07 Toyo Ink Mfg Co Ltd 珪素酸化物系蒸着フィルム
JPH07126552A (ja) 1993-10-29 1995-05-16 Nippon Oil & Fats Co Ltd 含フッ素硬化性塗液及び含フッ素硬化被膜
JPH07188582A (ja) 1993-12-27 1995-07-25 Nippon Oil & Fats Co Ltd 含フッ素硬化性組成物及び反射防止用含フッ素硬化被膜
JPH08100136A (ja) 1994-09-28 1996-04-16 Japan Synthetic Rubber Co Ltd フッ素系塗料
JPH09220791A (ja) 1996-02-16 1997-08-26 Dainippon Printing Co Ltd 反射防止フイルム
JPH09272169A (ja) 1996-04-04 1997-10-21 Nippon Synthetic Chem Ind Co Ltd:The 光学積層体
JP2001191442A (ja) * 2000-01-07 2001-07-17 Mitsubishi Chemicals Corp ガスバリア性に優れた積層構造体
JP2003282243A (ja) * 2002-03-25 2003-10-03 Fuji Photo Film Co Ltd 発光素子
JP2005171304A (ja) * 2003-12-10 2005-06-30 Dainippon Printing Co Ltd バリアフィルムの製造方法
WO2005097484A1 (ja) * 2004-03-31 2005-10-20 Konica Minolta Holdings, Inc. 透明導電性フィルム、透明導電性フィルムの製造方法及び有機エレクトロルミネッセンス素子
JP2006082322A (ja) * 2004-09-15 2006-03-30 Konica Minolta Holdings Inc ディスプレイ用基板フィルムおよび有機エレクトロルミネッセンス素子

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2011639A4

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009226707A (ja) * 2008-03-21 2009-10-08 Tdk Corp 電子部品
JP2009255040A (ja) * 2008-03-25 2009-11-05 Kyodo Printing Co Ltd フレキシブルガスバリアフィルムおよびその製造方法
EP2128192A1 (en) * 2008-05-29 2009-12-02 Fujifilm Corporation Barrier laminate, gas barrier film and device using the same
US20090305064A1 (en) * 2008-05-29 2009-12-10 Jiro Tsukahara Barrier laminate, gas barrier film and device using the same
US20110315977A1 (en) * 2009-03-16 2011-12-29 Konica Minolta Holdings, Inc. Organic electronic panel and method for manufacturing organic electronic panel
US8445899B2 (en) 2009-03-16 2013-05-21 Konica Minolta Holdings, Inc. Organic electronic panel and method for manufacturing organic electronic panel
WO2010106853A1 (ja) * 2009-03-16 2010-09-23 コニカミノルタホールディングス株式会社 有機エレクトロニクスパネルおよび有機エレクトロニクスパネルの製造方法
JP5660030B2 (ja) * 2009-03-16 2015-01-28 コニカミノルタ株式会社 有機エレクトロニクスパネルおよび有機エレクトロニクスパネルの製造方法
JPWO2011027619A1 (ja) * 2009-09-02 2013-02-04 コニカミノルタホールディングス株式会社 バリアフィルム及びその製造方法
WO2011027815A1 (ja) * 2009-09-04 2011-03-10 株式会社スリーボンド 有機el素子封止部材
JPWO2011027815A1 (ja) * 2009-09-04 2013-02-04 株式会社スリーボンド 有機el素子封止部材
JP5861644B2 (ja) * 2010-11-19 2016-02-16 コニカミノルタ株式会社 ガスバリア性フィルムの製造方法、及びガスバリア性フィルム
WO2012067186A1 (ja) * 2010-11-19 2012-05-24 コニカミノルタホールディングス株式会社 ガスバリア性フィルムの製造方法、及びガスバリア性フィルム
JP2013186971A (ja) * 2012-03-06 2013-09-19 Ulvac Japan Ltd 成膜装置、成膜方法
JP2014120445A (ja) * 2012-12-19 2014-06-30 Konica Minolta Inc 有機発光ダイオード素子
JPWO2014133141A1 (ja) * 2013-02-28 2017-02-02 日本放送協会 有機電界発光素子
JP2016012021A (ja) * 2014-06-27 2016-01-21 富士フイルム株式会社 偏光板保護フィルム、偏光板、画像表示装置、及び偏光板保護フィルムの製造方法
WO2018097153A1 (ja) * 2016-11-25 2018-05-31 コニカミノルタ株式会社 発光性膜、有機エレクトロルミネッセンス素子、有機材料組成物及び有機エレクトロルミネッセンス素子の製造方法
JPWO2018097153A1 (ja) * 2016-11-25 2019-10-17 コニカミノルタ株式会社 発光性膜、有機エレクトロルミネッセンス素子、有機材料組成物及び有機エレクトロルミネッセンス素子の製造方法
US11302882B2 (en) 2016-11-25 2022-04-12 Merck Patent Gmbh Luminescent film, organic electroluminescent element, organic material composition and method for producing organic electroluminescent element
US11910628B2 (en) 2016-11-25 2024-02-20 Merck Patent Gmbh Luminescent film, organic electroluminescent element, organic material composition and method for producing organic electroluminescent element
WO2018101027A1 (ja) * 2016-11-30 2018-06-07 コニカミノルタ株式会社 ガスバリア性フィルム、及び、ガスバリア性フィルムの成形加工方法
WO2018155452A1 (ja) * 2017-02-21 2018-08-30 株式会社アルバック マスク及び成膜装置
JP2021123068A (ja) * 2020-02-07 2021-08-30 尾池工業株式会社 ガスバリアフィルム

Also Published As

Publication number Publication date
EP2011639A4 (en) 2012-03-07
US20090167164A1 (en) 2009-07-02
JP2013121723A (ja) 2013-06-20
JP5163491B2 (ja) 2013-03-13
EP2011639A1 (en) 2009-01-07
JP5565454B2 (ja) 2014-08-06
JPWO2007123006A1 (ja) 2009-09-03

Similar Documents

Publication Publication Date Title
JP5565454B2 (ja) ガスバリアフィルムの製造方法、有機エレクトロルミネッセンス用樹脂基材、それを用いた有機エレクトロルミネッセンス素子
JP4946860B2 (ja) ガスバリアフィルム及びその製造方法、並びに該ガスバリアフィルムを用いた、有機el素子用樹脂基材、有機el素子
JP6156366B2 (ja) ガスバリア性フィルム、電子デバイス用基板および電子デバイス
JP2006297694A (ja) ガスバリアフィルム、有機エレクトロルミネッセンス用樹脂基材、該樹脂基材を用いた有機エレクトロルミネッセンス素子及びガスバリアフィルムの製造方法
CN104982091B (zh) 有机电致发光元件及照明装置
US9871225B2 (en) Organic electroluminescence element
US8486487B2 (en) Gas barrier film, gas barrier film manufacturing method, resin substrate for organic electroluminescent device using the aforesaid gas barrier film, and organic electroluminescent device using the aforementioned gas barrier film
JP2007277631A (ja) ガスバリア性薄膜積層体の製造方法、ガスバリア性薄膜積層体、ガスバリア性樹脂基材及び有機エレクトロルミネッセンスデバイス
JP2007038529A (ja) ガスバリア性薄膜積層体、ガスバリア性樹脂基材および有機エレクトロルミネッセンスデバイス
JP2008056967A (ja) ガスバリア性樹脂基材および有機エレクトロルミネッセンスデバイス
JP2007190844A (ja) ガスバリア性樹脂基材および有機エレクトロルミネッセンスデバイス
JP2006299145A (ja) ガスバリア性フィルム、ガスバリア性フィルムを用いた有機エレクトロルミネッセンス用樹脂基材および有機エレクトロルミネッセンス素子
JP2007083644A (ja) ガスバリアフィルム、有機エレクトロルミネッセンス用樹脂基材、該樹脂基材を用いた有機エレクトロルミネッセンス素子
JP2007073405A (ja) 有機エレクトロルミネッセンス素子及びそれを用いた表示装置
JP4802576B2 (ja) ガスバリア性樹脂基材、透明導電膜付ガスバリア性樹脂基材および有機エレクトロルミネッセンス素子
WO2019230682A1 (ja) 電子デバイス及びその製造方法
JP2007109422A (ja) 有機エレクトロルミネッセンス素子
JP4835031B2 (ja) ガスバリア性フィルムの製造方法、有機エレクトロルミネッセンス用樹脂基材の製造方法及び有機エレクトロルミネッセンス素子の製造方法
JPWO2016063869A1 (ja) 光取り出し基板、光取り出し基板の製造方法、有機エレクトロルミネッセンス素子、及び、有機エレクトロルミネッセンス素子の製造方法
JP2015147952A (ja) ガスバリア性フィルムの製造方法、ガスバリア性フィルム、電子デバイス、および、有機エレクトロルミネッセンス素子
JP2007073465A (ja) 有機エレクトロルミネッセンス素子、それを用いた表示装置及び照明装置
JP2006305752A (ja) ガスバリア性フィルム、有機エレクトロルミネッセンス用樹脂基材及び有機エレクトロルミネッセンス素子
JP2006294485A (ja) 有機エレクトロルミネッセンス素子、その製造方法及び表示装置
KR20160145141A (ko) 유기 일렉트로 루미네센스 소자
JPWO2014148595A1 (ja) 有機エレクトロルミネッセンス素子及び照明装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07741188

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008512062

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2007741188

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12297562

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE