WO2014142036A1 - ガスバリアフィルム、ガスバリアフィルムの製造方法、及び、有機エレクトロルミネッセンス素子 - Google Patents

ガスバリアフィルム、ガスバリアフィルムの製造方法、及び、有機エレクトロルミネッセンス素子 Download PDF

Info

Publication number
WO2014142036A1
WO2014142036A1 PCT/JP2014/056065 JP2014056065W WO2014142036A1 WO 2014142036 A1 WO2014142036 A1 WO 2014142036A1 JP 2014056065 W JP2014056065 W JP 2014056065W WO 2014142036 A1 WO2014142036 A1 WO 2014142036A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
vapor deposition
deposition layer
film
gas barrier
Prior art date
Application number
PCT/JP2014/056065
Other languages
English (en)
French (fr)
Inventor
井 宏元
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to JP2015505446A priority Critical patent/JPWO2014142036A1/ja
Priority to CN201480012546.7A priority patent/CN105026141A/zh
Priority to US14/772,251 priority patent/US9640780B2/en
Publication of WO2014142036A1 publication Critical patent/WO2014142036A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/844Encapsulations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/28Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
    • B32B27/283Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42 comprising polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/401Oxides containing silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/48Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating by irradiation, e.g. photolysis, radiolysis, particle radiation
    • C23C16/482Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating by irradiation, e.g. photolysis, radiolysis, particle radiation using incoherent light, UV to IR, e.g. lamps
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/56After-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/24Organic non-macromolecular coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/422Luminescent, fluorescent, phosphorescent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/724Permeability to gases, adsorption
    • B32B2307/7242Non-permeable
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/80Composition varying spatially, e.g. having a spatial gradient

Definitions

  • the present invention relates to a gas barrier film, a method for producing the gas barrier film, and an organic electroluminescence device using the gas barrier film.
  • An organic electroluminescence element (so-called organic EL element) using electroluminescence (hereinafter referred to as EL) of an organic material is a thin-film type completely solid element capable of emitting light at a low voltage of several V to several tens V. It has many excellent features such as high brightness, high luminous efficiency, thinness, and light weight. For this reason, in recent years, OLEDs on resin substrates having thin and light barrier films have attracted attention as backlights for various displays, display boards such as signboards and emergency lights, and surface light emitters such as illumination light sources.
  • a barrier film suitable for an organic EL element due to high barrier properties and smoothness has been proposed (for example, see Patent Document 1).
  • the barrier film is formed by a vapor deposition method.
  • a deposited film such as a vapor deposition method has a limit in improving the smoothness, and a technique for further improving the smoothness is expected.
  • Patent Document 3 a technique has been proposed that achieves both high barrier properties and smoothness by subjecting a vapor deposition type barrier film to excimer treatment and further forming a polysilazane layer (see, for example, Patent Document 3).
  • the method described in Patent Document 3 has a problem that the adhesion strength between the deposited film and the polysilazane layer is lowered in the manufacturing process of the organic EL element, and the bending characteristics of the organic EL element are deteriorated.
  • the gas barrier property is high, and when applied to an organic electroluminescence element, the reliability of the organic electroluminescence element can be improved, and the use of this gas barrier film improves the reliability. There is a need for an organic electroluminescent device capable of satisfying the requirements.
  • the present invention provides a highly reliable gas barrier film and a highly reliable organic electroluminescence element.
  • the gas barrier film of the present invention contains a base material and at least one element selected from carbon (C), nitrogen (N), and oxygen (O), and is continuous from the surface in the thickness direction.
  • a silicon compound vapor-deposited layer having a composition change and surface-treated, and a polysilazane modified layer are provided.
  • the method for producing a gas barrier film of the present invention includes, on a substrate, at least one element selected from carbon (C), nitrogen (N), and oxygen (O), and from the surface to the thickness direction.
  • the organic electroluminescence device of the present invention includes the gas barrier film, a pair of electrodes, and an organic functional layer having at least one light emitting layer between the electrodes.
  • the vapor deposition layer has a continuous composition change from the surface toward the thickness direction, so that the surface treatment of the vapor deposition layer becomes good. Adhesiveness with the polysilazane modified layer is improved. For this reason, the reliability of a gas barrier film improves. Moreover, a highly reliable organic electroluminescent element can be comprised by using this gas barrier film.
  • a highly reliable gas barrier film and a highly reliable organic electroluminescence element can be provided.
  • FIG. 3 is a diagram showing an element distribution curve of a sample 101.
  • 4 is a diagram showing an element distribution curve of a sample 104.
  • Embodiment of Gas Barrier Film (First Embodiment)> [Configuration of gas barrier film] Specific embodiments of the gas barrier film of the present invention will be described.
  • FIG. 1 the schematic block diagram (sectional drawing) of the gas barrier film of 1st Embodiment is shown.
  • the gas barrier film 10 includes a base material 11, a silicon compound deposition layer 12, and a polysilazane modified layer 13.
  • light transmittance means that the light transmittance in wavelength 550nm is 50% or more.
  • a vapor deposition layer 12 of a silicon compound containing at least one element selected from C, N, and O is formed on a substrate 11.
  • the polysilazane modified layer 13 is formed on the vapor deposition layer 12 of this silicon compound.
  • the silicon compound constituting the vapor deposition layer 12 includes at least one element selected from carbon (C), nitrogen (N), and oxygen (O). And the vapor deposition layer 12 has a continuous composition change toward the thickness direction from the surface, when the elemental ratio of at least 1 or more types of elements chosen from these C, N, and O changes.
  • the vapor deposition layer 12 is subjected to surface treatment on the silicon compound before the polysilazane modified layer 13 is formed on the surface (surface) side on which the polysilazane modified layer 13 is formed.
  • the polysilazane modified layer 13 is a layer subjected to a modification treatment after applying and drying a liquid containing a silazane compound.
  • the configuration of the gas barrier film 10 will be described in detail.
  • the substrate 11 applied to the gas barrier film 10 is not particularly limited as long as it is a flexible substrate capable of giving the gas barrier film 10 flexibility.
  • An example of the flexible base material is a transparent resin film.
  • polyesters such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN), polyethylene, polypropylene, cellophane, cellulose diacetate, cellulose triacetate (TAC), cellulose acetate butyrate, cellulose acetate propionate ( CAP), cellulose esters such as cellulose acetate phthalate, cellulose nitrate or derivatives thereof, polyvinylidene chloride, polyvinyl alcohol, polyethylene vinyl alcohol, syndiotactic polystyrene, polycarbonate, norbornene resin, polymethylpentene, polyether ketone, polyimide , Polyethersulfone (PES), polyphenylene sulfide, polysulfones Cycloolefin resins such as polyetherimide, polyetherketoneimide, polyamide, fluororesin, nylon, polymethylmethacrylate, acrylic or polyarylates, Arton (trade name, manufactured by JSR) or Appel (
  • films of polyethylene terephthalate (PET), polybutylene terephthalate, polyethylene naphthalate (PEN), polycarbonate (PC), etc. are preferably used in terms of cost and availability. Further, in terms of optical transparency, heat resistance, and adhesion to the vapor deposition layer 12 and the polysilazane modified layer 13, a heat resistant transparent film having a basic skeleton of silsesquioxane having an organic-inorganic hybrid structure is preferably used. .
  • the thickness of the substrate 11 is preferably about 5 to 500 ⁇ m, more preferably 25 to 250 ⁇ m. Moreover, it is preferable that the base material 11 has a light transmittance. When the base material 11 has optical transparency, the gas barrier film 10 having optical transparency can be obtained. And this light permeable gas barrier film 10 can be used suitably as transparent substrates and sealing films, such as an organic EL element and a solar cell.
  • a vapor deposition layer 12 is provided on the base material 11.
  • the vapor deposition layer 12 is comprised from the silicon compound formed by the vapor deposition method. This silicon compound contains at least one element selected from carbon (C), nitrogen (N), and oxygen (O). Moreover, the vapor deposition layer 12 has a continuous composition change toward the thickness direction from the surface. Further, the surface of the vapor deposition layer 12 is modified, and a hydrophilic modification portion is formed on the surface of the silicon compound constituting the vapor deposition layer 12.
  • composition The silicon compound constituting the vapor deposition layer 12 has a characteristic that the composition changes in an inclined manner in the depth direction (thickness direction) from the surface. This composition change may be linear or curved, and may be substantially continuous.
  • the change in the composition of the silicon compound is defined from the change in the element ratio of any element constituting the silicon compound.
  • the composition change amount of the silicon compound is defined from the change amount of the ratio of carbon element or oxygen element. That is, the composition change of the silicon compound is defined by the change in the ratio of any one element selected from C, N, and O contained in the silicon compound.
  • the compositional change of the silicon compound is defined.
  • the silicon compound of the vapor deposition layer 12 indicates that any element selected from C, N, and O, or the total element ratio of any element, changes continuously from the surface in the thickness direction. The composition changes continuously.
  • “Substantially continuous composition change” means that a distribution curve of an arbitrary element selected from C, N, and O described later does not include a portion where the atomic ratio of the element changes discontinuously. Specifically, the distance (x, unit: nm) from the surface of the vapor deposition layer 12 calculated from the etching rate and etching time, and the atomic ratio (C, unit: at%) of an arbitrary element such as carbon , [(DC / dx) ⁇ 0.5].
  • the composition of the silicon compound is preferably changed by 5% or more, more preferably 10% or more, in a region 30 nm deep from the surface. In particular, in a region 15 nm deep from the surface, it is preferably changed by 5% or more, more preferably 10% or more.
  • the region where the composition of the silicon compound changes in the depth direction is a region where the surface treatment described later takes effect.
  • composition change of the silicon compound may be such that the element ratio of at least one element selected from C, N, and O increases continuously from the surface toward the thickness direction, or the element The ratio may continuously decrease from the surface toward the thickness direction.
  • the vapor deposition layer 12 has a surface (surface) in contact with the polysilazane modified layer 13 modified by surface treatment. This surface treatment is performed in order to improve the adhesion with the polysilazane modified layer 13. For this reason, the surface treatment of the vapor deposition layer 12 needs to be performed before the polysilazane modified layer 13 is formed.
  • a surface treatment method that can be performed at a low temperature. For example, treatment using plasma, ozone, and ultraviolet rays is preferable.
  • the surface treatment forms hydrophilic groups such as hydroxyl groups (OH), acyl groups (COH), carboxyl groups (COOH) on the surface of the vapor deposition layer 12. Due to the hydrophilic group, the wettability of the polysilazane coating solution when the polysilazane modified layer 13 formed on the vapor deposition layer 12 is formed is improved. For this reason, formation of the polysilazane modified layer 13 becomes easy. Further, the adhesion between the vapor deposition layer 12 and the polysilazane modified layer 13 is improved by physical or chemical interaction (van der Waals force or hydrogen bond) between the hydroxyl group (OH) or the like and the polysilazane.
  • VUV vacuum ultraviolet light
  • Si—C silicon-carbon bond
  • Si—O silicon-oxygen bond
  • a hydrophilic group such as a hydroxyl group (OH), an acyl group (COH), or a carboxyl group (COOH) is formed on the surface of the vapor deposition layer by a bond between the atom decomposed from the silicon compound and the generated active oxygen.
  • the silicon compound constituting the vapor deposition layer 12 has the above-described continuous composition change in the depth direction from the surface, the modification of the silicon compound by the surface treatment easily proceeds in the depth direction from the surface. This is presumably due to the following reasons.
  • the silicon compound modification treatment will be described by using the silicon-carbon bond (Si—C) of the silicon compound and the carbon element ratio, which are easily cut by the excimer light.
  • composition change of the silicon compound continuously increases in the thickness direction is configured such that the element ratio of carbon is high in concentration on the surface of the vapor deposition layer 12 and decreases in the thickness direction.
  • the excimer light transmission is more effective at deeper positions where the carbon element ratio is continuously reduced. That is, since penetration to a deep position is effective, the modification treatment at a deep position of the silicon compound is likely to proceed.
  • composition change of the silicon compound continuously decreases in the thickness direction is configured such that the element ratio of carbon is small on the surface and increases in the thickness direction.
  • excimer light absorption is more effective at deeper positions where the carbon element ratio is continuously higher than the absorption at the surface where the carbon element ratio is low. That is, excimer light irradiation from the surface in the depth direction is effective. Since absorption at a deep position becomes effective, the modification treatment at a deep position of the silicon compound is likely to proceed.
  • the composition when the composition is uniform in the thickness direction, that is, when the carbon element ratio is uniform in the thickness direction, the absorption of the excimer light absorbed by Si—C is large. Furthermore, since the active oxygen generated by the excimer light irradiation is consumed by the silicon compound immediately below, the reforming process is difficult to proceed in the depth direction. In addition, when the composition change is non-uniform, there are locally high density portions and low density portions in the depth direction. If the carbon element ratio is locally high, the absorption of excimer light concentrates at this high portion. For this reason, the reforming is concentrated in the portion where the element ratio is high, and the reforming in the surrounding portion is difficult to proceed.
  • Plasma treatment As the plasma treatment used for the surface treatment of the silicon compound, a known method can be used, but atmospheric pressure plasma treatment is preferable.
  • nitrogen gas and / or Group 18 atom of the periodic table specifically helium, neon, argon, krypton, xenon, radon, etc. are used as the discharge gas.
  • nitrogen, helium, and argon are preferably used, and nitrogen is particularly preferable because of low cost.
  • the atmospheric pressure plasma is formed by forming two or more electric fields having different frequencies in the discharge space, and includes a first high-frequency electric field and a second high-frequency electric field. It is preferable to form an electric field superimposed with the electric field.
  • the frequency ⁇ 2 of the second high-frequency electric field is higher than the frequency ⁇ 1 of the first high-frequency electric field, the strength V1 of the first high-frequency electric field, the strength V2 of the second high-frequency electric field,
  • the relationship with the intensity IV of the discharge start electric field is V1 ⁇ IV> V2 or V1> IV ⁇ V2
  • the output density of the second high-frequency electric field is 1 W / cm 2 or more.
  • a discharge gas having a high discharge start electric field strength such as nitrogen gas can start discharge, maintain a high density and stable plasma state, and perform high-performance thin film formation. Can do.
  • the discharge start electric field strength IV (1/2 Vp-p) is about 3.7 kV / mm. Therefore, in the above relationship, the first applied electric field strength is , By applying V1 ⁇ 3.7 kV / mm, the nitrogen gas can be excited into a plasma state.
  • the electric field waveform may be a continuous wave or a pulse wave.
  • the lower limit is preferably about 1 kHz.
  • the frequency of the second power source 800 kHz or more can be preferably used.
  • the upper limit is preferably about 200 MHz.
  • a dense and good quality thin film can be formed by increasing the plasma density by the frequency and the high power density.
  • UV irradiation treatment As a method for surface treatment of the silicon compound, treatment by ultraviolet irradiation is also preferable.
  • Ozone and active oxygen atoms generated by ultraviolet rays (synonymous with ultraviolet light) have high oxidation ability, and it is possible to produce silicon oxide films or silicon oxynitride films that have high density and insulation at low temperatures. It is.
  • This UV irradiation heats the substrate, and O2 and H2O contributing to ceramicization (silica conversion), the UV absorber, and the silicon compound itself are excited and activated, so that the surface of the silicon compound becomes hydrophilic.
  • any commonly used ultraviolet ray generator can be used.
  • ultraviolet rays generally refers to electromagnetic waves having a wavelength of 10 to 400 nm, but in the case of ultraviolet irradiation treatment other than the vacuum ultraviolet ray (10 to 200 nm) irradiation treatment described later, it is preferably 210. Use ultraviolet rays of up to 350 nm.
  • UV irradiation For UV irradiation, set the irradiation intensity and irradiation time within a range where the substrate carrying the irradiated coating film is not damaged.
  • a lamp of 2 kW (80 W / cm ⁇ 25 cm) is used, and the strength of the base material surface is 20 to 300 mW / cm 2, preferably 50 to 200 mW / cm 2. In this way, the distance between the substrate and the lamp can be set and irradiation can be performed for 0.1 seconds to 10 minutes.
  • the substrate temperature during the ultraviolet irradiation treatment is 150 ° C. or more, the substrate is damaged in the case of a plastic film, such as deformation of the substrate and deterioration of strength.
  • a highly heat-resistant film such as polyimide or a base material such as metal, processing at a higher temperature is possible. Therefore, there is no general upper limit to the substrate temperature at the time of ultraviolet irradiation, and it can be appropriately set by those skilled in the art depending on the type of substrate.
  • Examples of such ultraviolet ray generation methods include metal halide lamps, high-pressure mercury lamps, low-pressure mercury lamps, xenon arc lamps, carbon arc lamps, and excimer lamps (single wavelengths of 172 nm, 222 nm, and 308 nm, for example, USHIO INC. )), UV light laser and the like, but not particularly limited.
  • the ultraviolet rays from the generation source may be reflected on the reflecting plate and then applied to the coating film. desirable.
  • UV irradiation is applicable to both batch processing and continuous processing, and can be appropriately selected depending on the shape of the substrate to be coated.
  • a substrate eg, silicon wafer
  • the ultraviolet baking furnace itself is generally known, and for example, it is possible to use those manufactured by I-Graphics Co., Ltd.
  • the substrate having a polysilazane coating film on the surface is a long film
  • the substrate is modified by continuously irradiating ultraviolet rays in a drying zone equipped with the ultraviolet ray generation source as described above while being conveyed. Quality processing can be performed.
  • the time required for ultraviolet irradiation is generally 0.1 seconds to 10 minutes, preferably 0.5 seconds to 3 minutes, although it depends on the composition and concentration of the substrate to be applied and the coating composition.
  • a more preferable method for the surface treatment of the silicon compound is treatment by irradiation with vacuum ultraviolet rays.
  • the treatment by vacuum ultraviolet irradiation uses light energy of 100 to 200 nm, preferably light energy with a wavelength of 100 to 180 nm, which is larger than the interatomic bonding force in the silicon compound, and the bonding of atoms is only a photon called a photon process.
  • the surface treatment is performed at a relatively low temperature by causing an oxidation reaction with active oxygen or ozone to proceed while cutting directly.
  • a rare gas excimer lamp is preferably used as a vacuum ultraviolet light source.
  • the temperature of the object can be kept low. Furthermore, since no time is required for starting and restarting, instantaneous lighting and blinking are possible.
  • Dielectric barrier discharge is a lightning generated in a gas space by arranging a gas space between both electrodes via a dielectric (transparent quartz in the case of an excimer lamp) and applying a high frequency high voltage of several tens of kHz to the electrode. This is a very thin discharge called micro discharge similar to.
  • the micro discharge streamer reaches the tube wall (dielectric)
  • the electric charge accumulates on the dielectric surface, and the micro discharge disappears.
  • the dielectric barrier discharge is a discharge in which micro discharges are spread over the entire tube wall and are repeatedly generated and extinguished. For this reason, flickering of light that can be seen with the naked eye occurs.
  • a very high temperature streamer reaches a pipe wall directly locally, there is a possibility that deterioration of the pipe wall may be accelerated.
  • Electrodeless electric field discharge by capacitive coupling, also called RF discharge.
  • the lamp and electrodes and their arrangement may be basically the same as for dielectric barrier discharge, but the high frequency applied between the two electrodes is lit at several MHz. Since the electrodeless field discharge can provide a spatially and temporally uniform discharge in this way, a long-life lamp without flickering can be obtained.
  • Synthetic quartz windows are not only expensive consumables, but also cause light loss.
  • the outer diameter of the double-cylindrical lamp is about 25 mm, the difference in distance to the irradiation surface cannot be ignored directly below the lamp axis and on the side of the lamp, resulting in a large difference in illumination. Therefore, even if the lamps are arranged in close contact, a uniform illuminance distribution cannot be obtained. If the irradiation device is provided with a synthetic quartz window, the distance in the oxygen atmosphere can be made uniform, and a uniform illuminance distribution can be obtained.
  • the biggest feature of the capillary excimer lamp is its simple structure.
  • the quartz tube is closed at both ends, and only gas for excimer light emission is sealed inside. Therefore, a very inexpensive light source can be provided.
  • ⁇ Double cylindrical lamps are processed to close by connecting both ends of the inner and outer tubes, so they are more likely to break during handling and transportation than thin tube lamps. Further, the outer diameter of the tube of the thin tube lamp is about 6 to 12 mm, and if it is too thick, a high voltage is required for starting.
  • the discharge mode can be either dielectric barrier discharge or electrodeless field discharge.
  • the electrode may have a flat surface in contact with the lamp, but if the shape is matched to the curved surface of the lamp, the lamp can be firmly fixed, and the discharge is more stable when the electrode is in close contact with the lamp. Also, if the curved surface is made into a mirror surface with aluminum, it also becomes a light reflector.
  • the Xe excimer lamp emits ultraviolet light having a short wavelength of 172 nm at a single wavelength and thus has excellent luminous efficiency. Since this light has a large oxygen absorption coefficient, radical oxygen atomic species and ozone can be generated at a high concentration with a small amount of oxygen. In addition, it is known that the energy of light having a short wavelength of 172 nm for dissociating the bonds of organic substances has high ability. Due to the high energy of this active oxygen, ozone and ultraviolet radiation, the silicon compound can be modified in a short time.
  • Excimer lamps can be lit with low power input because of their high light generation efficiency.
  • light with a long wavelength that causes a temperature increase due to light is not emitted, and energy of a single wavelength is irradiated in the ultraviolet region, so that an increase in the surface temperature of the object to be fired is suppressed.
  • it is suitable for flexible film materials such as PET that are easily affected by heat.
  • the vapor deposition layer 12 is composed of a silicon compound containing at least one element selected from C, N, and O, and has a structure in which the content of C, N, and O changes continuously. And the vapor deposition layer 12 is the ratio (atomic ratio) of the distance from the surface of the vapor deposition layer 12 in the film thickness direction (interface on the polysilazane modified layer 13 side) and the atomic weight of each element (silicon, carbon, nitrogen or oxygen). ) And the distribution curve of each element showing the relationship.
  • the atomic ratio of each element is represented by the ratio [(Si, O, C, N) / (Si + O + C + N)] of silicon, carbon, nitrogen, or oxygen to the total amount of each element of silicon, carbon, nitrogen, and oxygen.
  • the silicon distribution curve, the carbon distribution curve, the nitrogen distribution curve, and the oxygen distribution curve are the atomic ratio of silicon, the atomic ratio of oxygen, the atomic ratio of carbon, and the atomic ratio of nitrogen at a distance from the surface of the deposited layer 12, respectively. Indicates.
  • a distribution curve showing the relationship between the distance from the surface of the vapor deposition layer 12 in the film thickness direction (interface on the polysilazane modified layer 13 side) and the ratio of the total atomic weight of oxygen and carbon (atomic ratio) is expressed as oxygen.
  • the carbon distribution curve is expressed as oxygen.
  • the refractive index distribution of the vapor deposition layer 12 can be controlled by the amount of carbon and oxygen in the thickness direction of the vapor deposition layer 12.
  • FIG. 2 an example of the silicon distribution curve of the vapor deposition layer 12, an oxygen distribution curve, a carbon distribution curve, and a nitrogen distribution curve is shown.
  • 3 shows an enlarged carbon distribution curve from the silicon distribution curve, oxygen distribution curve, carbon distribution curve, and nitrogen distribution curve shown in FIG. 2 and 3, the horizontal axis represents the distance [nm] from the surface of the vapor deposition layer 12 in the film thickness direction.
  • the vertical axis represents the atomic ratio [at%] of silicon, oxygen, carbon, or nitrogen with respect to the total amount of each element of silicon, oxygen, and carbon.
  • the detail of the measuring method of a silicon distribution curve, an oxygen distribution curve, a carbon distribution curve, and a nitrogen distribution curve is mentioned later.
  • the atomic ratio of silicon, oxygen, carbon, and nitrogen changes depending on the distance from the surface of the vapor deposition layer 12.
  • the atomic ratio varies greatly depending on the distance from the surface of the vapor deposition layer 12, and each distribution curve has a plurality of extreme values.
  • the oxygen distribution curve and the carbon distribution curve are correlated, and the oxygen atomic ratio decreases at a distance where the carbon atomic ratio is large, and the oxygen atomic ratio increases at a distance where the carbon atomic ratio is small.
  • the composition change of the silicon compound is defined by the change in the distribution curve of any one element selected from C, N, and O contained in the silicon compound. For this reason, since the composition of the silicon compound constituting the vapor deposition layer 12 changes in an inclined manner in the thickness direction, the distribution curve of any one element selected from C, N, and O contained in the silicon compound is also present. , Has a continuously gradient composition change.
  • the silicon compound constituting the vapor deposition layer 12 is preferably such that the distribution curve (atomic ratio) of an arbitrary element contained in the silicon compound is changed by 5% or more in a region 30 nm deep from the surface, More preferably, it has changed by 10% or more. In particular, in a region 15 nm deep from the surface, it is preferably changed by 5% or more, more preferably 10% or more.
  • the vapor deposition layer 12 has a refractive index distribution depending on the composition change in the thickness direction because the composition changes in an inclined manner in the thickness direction.
  • the vapor deposition layer 12 preferably has one or more extreme values in the refractive index distribution.
  • FIG. 4 shows a refractive index distribution curve of the vapor deposition layer 12.
  • the horizontal axis indicates the distance [nm] from the surface of the vapor deposition layer 12 in the film thickness direction.
  • the vertical axis represents the refractive index of the vapor deposition layer 12.
  • the refractive index of the vapor deposition layer 12 shown in FIG. 4 is a measured value of the distance from the surface of the vapor deposition layer 12 in the film thickness direction and the refractive index of the vapor deposition layer 12 with respect to visible light at this distance.
  • the refractive index distribution of the vapor deposition layer 12 can be measured using a known method, for example, a spectroscopic ellipsometer (ELC-300 manufactured by JASCO Corporation) or the like.
  • the refractive index of the vapor deposition layer 12 also increases at a position where the atomic ratio of carbon increases.
  • the refractive index of the vapor deposition layer 12 changes according to the atomic ratio of carbon. That is, the refractive index distribution curve of the vapor deposition layer 12 can be controlled by adjusting the distribution of the atomic ratio of carbon in the film thickness direction in the vapor deposition layer 12.
  • the refractive index distribution curve of the vapor deposition layer 12 is controlled by controlling the oxygen atomic ratio and the distribution curve. Can do.
  • the vapor deposition layer 12 having an extreme value in the refractive index distribution, reflection and interference occurring at the interface of the substrate 11 can be suppressed. For this reason, the light which permeate
  • the vapor deposition layer 12 further has an atomic ratio of silicon, oxygen and carbon, or a distribution curve of each element that satisfies the following conditions (i) to (iii): preferable.
  • the carbon distribution curve has at least one local maximum and local minimum.
  • the gas barrier film 10 preferably has a vapor deposition layer 12 that satisfies all of the above conditions (i) to (iii). Further, two or more vapor deposition layers 12 that satisfy all of the above conditions (i) to (iii) may be provided. When two or more vapor deposition layers 12 are provided, the materials of the plurality of vapor deposition layers may be the same or different. When two or more vapor deposition layers 12 are provided, the vapor deposition layer 12 may be formed on one surface of the base material 11, or may be formed on both surfaces of the base material 11.
  • the refractive index of the deposited layer 12 can be controlled by the atomic ratio of carbon or oxygen as shown in the correlation shown in FIGS. For this reason, the refractive index of the vapor deposition layer 12 can be adjusted to a preferable range by the above conditions (i) to (iii).
  • the vapor deposition layer 12 preferably has at least one extreme value in the carbon distribution curve.
  • the carbon distribution curve has at least two extreme values, and it is even more preferable that the carbon distribution curve has at least three extreme values.
  • the carbon distribution curve has at least one maximum value and one minimum value.
  • the carbon distribution curve does not have an extreme value, the light distribution of the obtained vapor deposition layer 12 becomes insufficient. For this reason, it becomes difficult to eliminate the light angle dependency of the gas barrier film 10.
  • the vapor deposition layer 12 has three or more extreme values, one extreme value of the carbon distribution curve and another extreme value adjacent to the extreme value are a film from the surface of the vapor deposition layer 12.
  • the difference in the distance in the thickness direction is preferably 200 nm or less, and more preferably 100 nm or less.
  • the extreme value of the distribution curve is the maximum or minimum value of the atomic ratio of the element to the distance from the surface of the vapor deposition layer 12 in the film thickness direction of the vapor deposition layer 12, or the refractive index corresponding to the value. It is a measured value of the distribution curve.
  • the maximum value of the distribution curve of each element is a point where the value of the atomic ratio of the element changes from increase to decrease when the distance from the surface of the vapor deposition layer 12 is changed.
  • the atomic ratio value of the element at a position where the distance from the surface of the vapor deposition layer 12 is further changed by 20 nm is reduced by 3 at% or more.
  • the minimum value of the distribution curve of each element is a point where the value of the atomic ratio of the element changes from decrease to increase when the distance from the surface of the vapor deposition layer 12 is changed.
  • the value of the atomic ratio of the element at a position where the distance from the surface of the vapor deposition layer 12 is further changed by 20 nm is increased by 3 at% or more.
  • the absolute value of the difference between the maximum value and the minimum value of the atomic ratio of carbon is preferably 5 at% or more.
  • the absolute value of the difference between the maximum value and the minimum value of the atomic ratio of carbon is more preferably 6 at% or more, and further preferably 7 at% or more.
  • the vapor deposition layer 12 preferably has an oxygen distribution curve having at least one extreme value.
  • the vapor deposition layer 12 more preferably has an oxygen distribution curve having at least two extreme values, and more preferably at least three extreme values.
  • the oxygen distribution curve has at least one maximum value and one minimum value.
  • the oxygen distribution curve does not have an extreme value, the light distribution of the obtained vapor deposition layer 12 becomes insufficient. For this reason, it becomes difficult to eliminate the light angle dependency of the gas barrier film 10. Further, when the vapor deposition layer 12 has three or more extreme values, one extreme value of the oxygen distribution curve and another extreme value adjacent to the extreme value are a film from the surface of the vapor deposition layer 12.
  • the difference in the distance in the thickness direction is preferably 200 nm or less, and more preferably 100 nm or less.
  • the absolute value of the difference between the maximum value and the minimum value of the oxygen atomic ratio is preferably 5 at% or more. Moreover, in such a vapor deposition layer 12, the absolute value of the difference between the maximum value and the minimum value of the oxygen atomic ratio is more preferably 6 at% or more, and further preferably 7 at% or more. When the difference between the maximum value and the minimum value of the atomic ratio of oxygen is less than the above range, the light distribution is insufficient from the refractive index distribution curve of the obtained vapor deposition layer 12.
  • the vapor deposition layer 12 preferably has an absolute value of the difference between the maximum value and the minimum value of the atomic ratio of silicon in the silicon distribution curve of less than 5 at%. Moreover, in such a vapor deposition layer 12, the absolute value of the difference between the maximum value and the minimum value of the atomic ratio of silicon is more preferably less than 4 at%, and further preferably less than 3 at%. When the difference between the maximum value and the minimum value of the atomic ratio of silicon is not less than the above range, the light distribution is insufficient from the refractive index distribution curve of the obtained vapor deposition layer 12.
  • Total amount of oxygen and carbon oxygen carbon distribution curve
  • the vapor deposition layer 12 preferably has an absolute value of the difference between the maximum value and the minimum value of the total atomic ratio of oxygen and carbon in the oxygen-carbon distribution curve of less than 5 at%, more preferably less than 4 at%. Particularly preferably, it is less than 3 at%.
  • XPS depth profile The silicon distribution curve, oxygen distribution curve, carbon distribution curve, oxygen carbon distribution curve, and nitrogen distribution curve described above are measured by X-ray photoelectron spectroscopy (XPS) and rare gas ion sputtering such as argon. By using together, it can be created by so-called XPS depth profile measurement in which surface composition analysis is sequentially performed while exposing the inside of the sample.
  • XPS depth profile measurement A distribution curve obtained by XPS depth profile measurement can be created, for example, with the vertical axis as the atomic ratio (unit: at%) of each element and the horizontal axis as the etching time (sputtering time).
  • the etching time is generally correlated with the distance from the surface in the film thickness direction of the deposited layer 12. For this reason, when measuring the XPS depth profile, the distance from the surface of the vapor deposition layer 12 calculated from the relationship between the etching rate and the etching time is adopted as the “distance from the surface of the vapor deposition layer 12 in the film thickness direction”. be able to.
  • a rare gas ion sputtering method using argon (Ar +) as an etching ion species is adopted, and an etching rate (etching rate) is set to 0.05 nm / sec (converted value of SiO2 thermal oxide film). Is preferred.
  • the vapor deposition layer 12 is substantially in the film surface direction (direction parallel to the surface of the vapor deposition layer 12) from the viewpoint of forming a layer having a uniform and excellent light distribution on the entire film surface.
  • the fact that the vapor deposition layer 12 is substantially uniform in the film surface direction means that the number of extreme values of the distribution curves of the elements at the respective measurement locations is the same at any two locations on the film surface of the vapor deposition layer 12, and The absolute value of the difference between the maximum value and the minimum value of the carbon atomic ratio in the distribution curve is the same as each other, or the difference between the maximum value and the minimum value is within 5 at%.
  • the silicon distribution curve, oxygen distribution curve, and carbon distribution curve in the region where the silicon atomic ratio, the oxygen atomic ratio, and the carbon atomic ratio are 90% or more of the film thickness of the deposited layer 12, It is preferable to satisfy the conditions represented.
  • the atomic ratio of the silicon atom content to the total amount of silicon atoms, oxygen atoms and carbon atoms in the vapor deposition layer 12 is preferably 25 to 45 at%, and preferably 30 to 40 at%. Is more preferable.
  • the atomic ratio of the oxygen atom content to the total amount of silicon atoms, oxygen atoms, and carbon atoms in the vapor deposition layer 12 is preferably 33 to 67 at%, and more preferably 45 to 67 at%. . Further, the atomic ratio of the carbon atom content to the total amount of silicon atoms, oxygen atoms and carbon atoms in the vapor deposition layer 12 is preferably 3 to 33 at%, more preferably 3 to 25 at%. .
  • the thickness of the vapor deposition layer 12 is preferably in the range of 5 to 3000 nm, more preferably in the range of 10 to 2000 nm, and particularly preferably in the range of 100 to 1000 nm.
  • the thickness of the vapor deposition layer 12 is out of the above range, the light distribution of the vapor deposition layer 12 becomes insufficient.
  • the total thickness of the vapor deposition layer 12 is in the range of 10 to 10,000 nm, preferably in the range of 10 to 5000 nm, and in the range of 100 to 3000 nm. More preferably, it is in the range of 200 to 2000 nm.
  • the vapor deposition layer 12 may be provided with a primer coat layer, a heat-sealable resin layer, an adhesive layer, etc. between the base material 11.
  • a primer coat layer can be formed using the well-known primer coat agent which can improve the adhesiveness of the base material 11 and the vapor deposition layer 12.
  • FIG. Moreover, a heat-sealable resin layer can be suitably formed using well-known heat-sealable resin.
  • the adhesive layer can be appropriately formed using a known adhesive, and the plurality of vapor deposition layers 12 may be adhered by such an adhesive layer.
  • the vapor deposition layer 12 is preferably a layer formed by a plasma chemical vapor deposition (plasma CVD, PECVD) method.
  • a plasma chemical vapor deposition method in which the substrate 11 is disposed on a pair of film forming rolls, and plasma is generated by discharging between the pair of film forming rolls. More preferably, the layer is formed by the method.
  • the plasma enhanced chemical vapor deposition method may be a plasma chemical vapor deposition method using a Penning discharge plasma method.
  • plasma When plasma is generated in the plasma chemical vapor deposition method, it is preferable to generate a plasma discharge in a space between a plurality of film forming rolls. In particular, it is more preferable to use a pair of film forming rolls, dispose the base material 11 on each of the pair of film forming rolls, and generate plasma by discharging between the pair of film forming rolls.
  • the base material 11 is arranged on a pair of film forming rolls, and a film is formed on the base material 11 existing on one film forming roll by discharging between the film forming rolls. it can. At the same time, it is possible to form a film on the substrate 11 on the other film forming roll. For this reason, the film formation rate can be doubled and a thin film can be produced efficiently. Furthermore, a film having the same structure can be formed on each substrate 11 on a pair of film forming rolls.
  • a film forming gas containing an organosilicon compound and oxygen is preferably used.
  • the oxygen content in the film forming gas is preferably less than or equal to the theoretical oxygen amount necessary for complete oxidation of the entire amount of the organosilicon compound in the film forming gas.
  • the vapor deposition layer 12 is preferably a layer formed by a continuous film formation process.
  • the vapor deposition layer 12 is preferably formed on the surface of the substrate 11 in a roll-to-roll manner from the viewpoint of productivity.
  • the apparatus capable of producing the vapor deposition layer 12 by the plasma chemical vapor deposition method is not particularly limited. However, the apparatus includes at least a pair of film forming rolls and a plasma power source, and can discharge between the film forming rolls. It is preferable that the device is.
  • FIG. 5 is a schematic diagram illustrating an example of a manufacturing apparatus suitable for manufacturing the vapor deposition layer 12.
  • the manufacturing apparatus 30 shown in FIG. 5 includes a delivery roll 31, transport rolls 32, 33, 34, 35, film formation rolls 36, 37, a gas supply pipe 38, a plasma generation power source 39, and a film formation roll 36. And 37, and magnetic field generators 41 and 42 installed inside 37, and a winding roll 43.
  • a delivery roll 31 transport rolls 32, 33, 34, 35, film formation rolls 36, 37, a gas supply pipe 38, a plasma generation power source 39, and a film formation roll 36.
  • And 37, and magnetic field generators 41 and 42 installed inside 37, and a winding roll 43.
  • at least film forming rolls 36 and 37, a gas supply pipe 38, a plasma generation power source 39, and magnetic field generation apparatuses 41 and 42 are disposed in a vacuum chamber (not shown).
  • the vacuum chamber is connected to a vacuum pump (not shown), and the pressure in the vacuum chamber can be adjusted by the vacuum pump.
  • each film forming roll is connected to the plasma generation power source 39 so that the pair of film forming rolls (the film forming roll 36 and the film forming roll 37) can function as a pair of counter electrodes. It is connected. For this reason, in the manufacturing apparatus 30, it is possible to discharge to the space between the film forming roll 36 and the film forming roll 37 by supplying power from the plasma generating power source 39. Plasma can be generated in the space between the film forming roll 37.
  • the material and design of the film forming roll 36 and the film forming roll 37 may be changed so that they can be used as electrodes.
  • the pair of film forming rolls (film forming rolls 36 and 37) are preferably arranged so that the central axes are substantially parallel on the same plane.
  • the film forming rate can be doubled and a film having the same structure can be formed. For this reason, it is possible to at least double the extreme value in the carbon distribution curve.
  • the manufacturing apparatus 30 it is possible to form the vapor deposition layer 12 on the surface of the film 40 by the CVD method, while depositing a film component on the surface of the film 40 on the film forming roll 36, and further, Since the film component can be deposited on the surface of the film 40 also on the film forming roll 37, the vapor deposition layer 12 can be efficiently formed on the surface of the film 40.
  • the film forming roll 36 and the film forming roll 37 magnetic field generators 41 and 42 fixed so as not to rotate even when the film forming roll rotates are provided, respectively. Furthermore, as the film forming roll 36 and the film forming roll 37, known rolls can be used. As the film forming rolls 36 and 37, it is preferable to use rolls having the same diameter from the viewpoint of forming a thin film more efficiently. The diameters of the film forming rolls 36 and 37 are preferably in the range of 5 to 100 cm from the viewpoint of discharge conditions, chamber space, and the like.
  • the film 40 is arrange
  • a pair of film-forming roll The film-forming roll 36 and the film-forming roll 37
  • the vapor deposition layer 12 can be formed. That is, according to the manufacturing apparatus 30, the film component can be deposited on the surface of the film 40 on the film forming roll 36 and further the film component can be deposited on the film forming roll 37 by the CVD method. It becomes possible to form the vapor deposition layer 12 on the surface of the film 40 efficiently.
  • the winding roll 43 is not particularly limited as long as the film 40 on which the vapor deposition layer 12 is formed can be wound, and a known roll can be used.
  • the gas supply pipe 38 a pipe capable of supplying or discharging the raw material gas at a predetermined speed can be used.
  • the plasma generation power source 39 a power source of a known plasma generation apparatus can be used.
  • the plasma generating power source 39 supplies power to the film forming rolls 36 and 37 connected thereto, and enables the film forming rolls 36 and 37 to be used as counter electrodes for discharging.
  • the plasma generating power source 39 it is preferable to use an AC power source or the like capable of alternately reversing the polarity of the film forming roll, because it is possible to perform plasma CVD more efficiently.
  • the power source 39 for plasma generation that can make the applied power 100 W to 10 kW and the AC frequency 50 Hz to 500 kHz. It is more preferable to use As the magnetic field generators 41 and 42, known magnetic field generators can be used. Furthermore, as the film 40, in addition to the base material 11 applicable to the gas barrier film 10, the base material 11 on which the vapor deposition layer 12 is formed in advance can be used. As described above, by using the base material 11 on which the vapor deposition layer 12 is formed in advance as the film 40, it is possible to increase the thickness of the vapor deposition layer 12.
  • the vapor deposition layer 12 can be manufactured by adjusting. That is, by using the manufacturing apparatus 30 shown in FIG.
  • a film forming gas (raw material gas or the like) between the pair of film forming rolls (film forming rolls 36 and 37) while supplying it into the vacuum chamber
  • the film forming gas (raw material gas or the like) is decomposed by plasma, and the vapor deposition layer 12 is formed on the surface of the film 40 on the film forming roll 36 and the surface of the film 40 on the film forming roll 37 by the plasma CVD method.
  • the film 40 is conveyed by the delivery roll 31 and the film formation roll 36, respectively, so that the vapor deposition layer 12 is formed on the surface of the film 40 by a roll-to-roll continuous film formation process. It is formed.
  • the source gas in the film forming gas used for forming the vapor deposition layer 12 can be appropriately selected and used according to the material of the vapor deposition layer 12 to be formed.
  • the source gas for example, an organosilicon compound containing silicon can be used.
  • organosilicon compounds include hexamethyldisiloxane, 1,1,3,3-tetramethyldisiloxane, vinyltrimethylsilane, methyltrimethylsilane, hexamethyldisilane, methylsilane, dimethylsilane, trimethylsilane, diethylsilane, propyl
  • organosilicon compounds include silane, phenylsilane, vinyltriethoxysilane, vinyltrimethoxysilane, tetramethoxysilane, tetraethoxysilane, phenyltrimethoxysilane, methyltriethoxysilane, and octamethylcyclotetrasiloxane.
  • organosilicon compounds hexamethyldisiloxane and 1,1,3,3-tetramethyldisiloxane should be used from the viewpoint of handling in film formation and characteristics such as light distribution of the obtained vapor deposition layer 12. Is preferred. Moreover, these organosilicon compounds can be used individually by 1 type or in combination of 2 or more types.
  • a reactive gas may be used in addition to the source gas.
  • a gas that reacts with the raw material gas to become an inorganic compound such as an oxide or a nitride can be appropriately selected and used.
  • a reaction gas for forming an oxide for example, oxygen or ozone can be used.
  • a reactive gas for forming nitride nitrogen and ammonia can be used, for example. These reaction gases can be used singly or in combination of two or more. For example, when forming an oxynitride, the reaction gas for forming an oxide and a nitride are formed. Can be used in combination with the reaction gas for
  • a carrier gas may be used as necessary in order to supply the source gas into the vacuum chamber.
  • a discharge gas may be used as necessary in order to generate plasma discharge.
  • a known gas can be used.
  • a rare gas such as helium, argon, neon, or xenon, or hydrogen can be used.
  • the ratio of the source gas and the reactive gas is the amount of the reactive gas that is theoretically necessary to completely react the raw material gas and the reactive gas. It is preferable not to make the ratio of the reaction gas excessively higher than the ratio of. If the ratio of the reaction gas is excessive, the light distribution of the vapor deposition layer 12 cannot be obtained sufficiently.
  • the film-forming gas contains an organosilicon compound and oxygen, the amount is preferably less than the theoretical oxygen amount necessary for complete oxidation of the entire amount of the organosilicon compound in the film-forming gas.
  • the amount of oxygen required to completely oxidize 1 mol of hexamethyldisiloxane is 12 mol.
  • the amount of oxygen needs to be less than 12 moles of the stoichiometric ratio with respect to 1 mole of hexamethyldisiloxane.
  • the molar amount (flow rate) of the reactive gas oxygen is the raw material. Even if the molar amount (flow rate) is 12 times the molar amount (flow rate) of hexamethyldisiloxane, the reaction cannot actually proceed completely. That is, it is considered that the reaction is completed only when the oxygen content is supplied in a large excess compared to the stoichiometric ratio.
  • the molar amount (flow rate) of oxygen may be about 20 times or more the molar amount (flow rate) of hexamethyldisiloxane as a raw material.
  • the molar amount (flow rate) of oxygen with respect to the molar amount (flow rate) of the raw material hexamethyldisiloxane is preferably 12 times or less (more preferably 10 times or less) which is the stoichiometric ratio.
  • the lower limit of the molar amount (flow rate) of oxygen relative to the molar amount (flow rate) of hexamethyldisiloxane in the film forming gas is more than 0.1 times the molar amount (flow rate) of hexamethyldisiloxane.
  • the amount is more than 0.5 times.
  • the pressure (degree of vacuum) in the vacuum chamber can be appropriately adjusted according to the type of the raw material gas, but is preferably in the range of 0.5 Pa to 100 Pa.
  • the electric power applied to the electrode drum connected to the plasma generating power source 39 in order to discharge between the film forming rolls 36 and 37 depends on the type of source gas, the pressure in the vacuum chamber, and the like. Can be adjusted accordingly. For example, a range of 0.1 to 10 kW is preferable. If the applied power is less than the lower limit, particles tend to be easily generated. On the other hand, when the upper limit is exceeded, the amount of heat generated during film formation increases, the temperature of the substrate surface during film formation rises, and the substrate 11 loses heat and wrinkles occur during film formation. In this example, the electrode drum is installed on the film forming rolls 36 and 37.
  • the transport speed (line speed) of the film 40 can be adjusted as appropriate according to the type of source gas, the pressure in the vacuum chamber, and the like, but is preferably in the range of 0.25 to 100 m / min. A range of 5 to 20 m / min is more preferable. If the line speed is less than the lower limit, wrinkles due to heat tend to occur in the film, whereas if it exceeds the upper limit, the thickness of the deposited layer 12 formed tends to be thin.
  • a smooth layer may be formed between the substrate 11 and the vapor deposition layer 12.
  • the smooth layer is provided in order to flatten the rough surface of the substrate 11 on which protrusions and the like exist, or to fill the unevenness and pinholes generated in the vapor deposition layer 12 with the protrusions on the substrate 11 and flatten them.
  • Such a smooth layer is basically formed by curing a photosensitive resin.
  • Examples of the photosensitive resin used for forming the smooth layer include a resin composition containing an acrylate compound having a radical-reactive unsaturated compound, a resin composition containing an acrylate compound and a mercapto compound having a thiol group, epoxy acrylate, Examples thereof include resin compositions in which polyfunctional acrylate monomers such as urethane acrylate, polyester acrylate, polyether acrylate, polyethylene glycol acrylate, and glycerol methacrylate are dissolved. It is also possible to use an arbitrary mixture of the above resin compositions, and any photosensitive resin containing a reactive monomer having one or more photopolymerizable unsaturated bonds in the molecule can be used. There are no particular restrictions.
  • Examples of reactive monomers having at least one photopolymerizable unsaturated bond in the molecule include methyl acrylate, ethyl acrylate, n-propyl acrylate, isopropyl acrylate, n-butyl acrylate, isobutyl acrylate, tert-butyl acrylate, and n-pentyl.
  • the photosensitive resin composition contains a photopolymerization initiator.
  • the photopolymerization initiator include benzophenone, methyl o-benzoylbenzoate, 4,4-bis (dimethylamine) benzophenone, 4,4-bis (diethylamine) benzophenone, ⁇ -amino acetophenone, 4,4-dichloro Benzophenone, 4-benzoyl-4-methyldiphenyl ketone, dibenzyl ketone, fluorenone, 2,2-diethoxyacetophenone, 2,2-dimethoxy-2-phenylacetophenone, 2-hydroxy-2-methylpropiophenone, p- tert-butyldichloroacetophenone, thioxanthone, 2-methylthioxanthone, 2-chlorothioxanthone, 2-isopropylthioxanthone, diethylthioxanthone, benzyldimethyl ketal, benzylmeth
  • the smooth layer is not particularly limited, but is preferably formed by a wet coating method such as a spin coating method, a spray method, a blade coating method, or a dip method, or a dry coating method such as an evaporation method.
  • a wet coating method such as a spin coating method, a spray method, a blade coating method, or a dip method
  • a dry coating method such as an evaporation method.
  • additives such as an antioxidant, an ultraviolet absorber, and a plasticizer can be added to the above-described photosensitive resin as necessary.
  • an appropriate resin or additive may be used in order to improve the film formability and prevent the generation of pinholes in the film.
  • the solvent used includes alcohols such as methanol, ethanol, n-propanol, isopropanol, ethylene glycol, and propylene glycol; Terpenes such as ⁇ - or ⁇ -terpineol, etc., ketones such as acetone, methyl ethyl ketone, cyclohexanone, N-methyl-2-pyrrolidone, diethyl ketone, 2-heptanone, 4-heptanone, toluene, xylene, tetramethylbenzene, etc.
  • alcohols such as methanol, ethanol, n-propanol, isopropanol, ethylene glycol, and propylene glycol
  • Terpenes such as ⁇ - or ⁇ -terpineol, etc.
  • ketones such as acetone, methyl ethyl ketone, cyclohexanone, N-methyl-2-pyrrolidone, diethyl ketone,
  • the smoothness of the smooth layer is a value expressed by the surface roughness specified by JIS B 0601, and the maximum cross-sectional height Rt (p) is preferably 10 nm or more and 30 nm or less.
  • the coating property may be impaired when the coating means comes into contact with the surface of the smooth layer in the step of applying a silicon compound described later by a coating method such as a wire bar or a wireless bar.
  • a coating method such as a wire bar or a wireless bar.
  • the surface roughness is a roughness related to the amplitude of fine irregularities measured using an AFM (atomic force microscope). This surface roughness is calculated from the cross-sectional curve of the unevenness measured continuously by measuring a number of times within several tens of ⁇ m with a detector having a stylus having a minimum tip radius of AFM.
  • the smooth layer may contain an additive.
  • the additive contained in the smooth layer is preferably reactive silica particles in which a photosensitive group having photopolymerization reactivity is introduced on the surface of the photosensitive resin (hereinafter also simply referred to as “reactive silica particles”).
  • examples of the photopolymerizable photosensitive group include polymerizable unsaturated groups represented by a (meth) acryloyloxy group.
  • the photosensitive resin preferably contains a compound capable of undergoing a photopolymerization reaction with the photosensitive group introduced on the surface of the reactive silica particles, for example, an unsaturated organic compound having a polymerizable unsaturated group.
  • the photosensitive resin may have a solid content adjusted by mixing a general-purpose diluent solvent with reactive silica particles or an unsaturated organic compound having a polymerizable unsaturated group.
  • the average particle diameter of the reactive silica particles is preferably 0.001 to 0.1 ⁇ m.
  • a smooth layer having both optical properties such as light distribution and hard coat properties when used in combination with a matting agent composed of inorganic particles having an average particle size of 1 to 10 ⁇ m described later. It becomes easy to form.
  • the average particle size is preferably in the range of 0.001 to 0.01 ⁇ m.
  • the smooth layer preferably contains the above inorganic particles in a mass ratio of 20% to 60%. By adding 20% or more, the adhesion between the substrate 11 and the vapor deposition layer 12 is improved. On the other hand, if it exceeds 60%, the film may be bent or cracks may occur when heat treatment is performed, or optical properties such as transparency and refractive index of the deposited layer 12 may be affected.
  • a hydrolyzable silyl group is hydrolyzed to form a silyloxy group between the silica particles and chemically bonded to the polymerizable unsaturated group modified hydrolyzable.
  • Silane can be used.
  • the hydrolyzable silyl group include a carboxylylated silyl group such as an alkoxylyl group and an acetoxysilyl group, a halogenated silyl group such as a chlorosilyl group, an aminosilyl group, an oximesilyl group, and a hydridosilyl group.
  • Examples of the polymerizable unsaturated group include acryloyloxy group, methacryloyloxy group, vinyl group, propenyl group, butadienyl group, styryl group, ethynyl group, cinnamoyl group, malate group, and acrylamide group.
  • the thickness of the smooth layer is preferably 1 to 10 ⁇ m, more preferably 2 to 7 ⁇ m. By setting it to 1 ⁇ m or more, the smoothness of the base material 11 having a smooth layer becomes sufficient. Moreover, by making it 10 ⁇ m or less, it becomes easy to adjust the balance of optical characteristics, and it is possible to easily suppress curling when a smooth layer is provided only on one surface of the substrate 11.
  • the smooth layer may contain a matting agent as another additive.
  • a matting agent inorganic particles having an average particle diameter of about 0.1 to 5 ⁇ m are preferable.
  • inorganic particles one or more of silica, alumina, talc, clay, calcium carbonate, magnesium carbonate, barium sulfate, aluminum hydroxide, titanium dioxide, zirconium oxide and the like can be used in combination. .
  • the matting agent composed of inorganic particles is 2 parts by mass or more, preferably 4 parts by mass or more, more preferably 6 parts by mass or more and 20 parts by mass or less, preferably 18 parts per 100 parts by mass of the solid content of the smooth layer. It is preferable that they are mixed in a proportion of not more than part by mass, more preferably not more than 16 parts by mass.
  • the vapor deposition layer 12 can be provided with a bleed-out prevention layer.
  • the bleed-out prevention layer suppresses the phenomenon that when the film-like substrate 11 having a smooth layer is heated, unreacted oligomers and the like move from the substrate 11 to the surface and contaminate the surface of the substrate 11. In order to do so, it is provided on the opposite surface of the substrate having a smooth layer.
  • the bleed-out prevention layer may basically have the same configuration as the smooth layer as long as it has this function.
  • an unsaturated organic compound having a polymerizable unsaturated group can be used as the bleed-out prevention layer.
  • the unsaturated organic compound include a polyunsaturated organic compound having two or more polymerizable unsaturated groups in the molecule, or a unit price unsaturated organic compound having one polymerizable unsaturated group in the molecule. Is preferably used.
  • the polyunsaturated organic compound for example, ethylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, glycerol di (meth) acrylate, glycerol tri (meth) acrylate, 1,4-butanediol di- (Meth) acrylate, 1,6-hexanediol di (meth) acrylate, neopentyl glycol di (meth) acrylate, trimethylolpropane tri (meth) acrylate, dicyclopentanyl di (meth) acrylate, pentaerythritol tri (meth) ) Acrylate, pentaerythritol tetra (meth) acrylate, dipentaerythritol hexa (meth) acrylate, dipentaerythritol monohydroxypenta (meth) acrylate, ditrimethylolpro Ntetora (
  • Examples of monounsaturated organic compounds include methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, isodecyl (meth) acrylate, and lauryl.
  • the bleed-out prevention layer may contain a thermoplastic resin, a thermosetting resin, an ionizing radiation curable resin, a photopolymerization initiator, and the like.
  • thermoplastic resin include cellulose derivatives such as acetylcellulose, nitrocellulose, acetylbutylcellulose, ethylcellulose, and methylcellulose, vinyl acetate and copolymers thereof, vinyl chloride and copolymers thereof, vinylidene chloride and copolymers thereof, and the like.
  • Acetal resins such as vinyl resins, polyvinyl formal, polyvinyl butyral, acrylic resins and copolymers thereof, acrylic resins such as methacrylic resins and copolymers thereof, polystyrene resins, polyamide resins, linear polyester resins, polycarbonate resins, etc. Is mentioned.
  • thermosetting resin examples include thermosetting urethane resin composed of acrylic polyol and isocyanate prepolymer, phenol resin, urea melamine resin, epoxy resin, unsaturated polyester resin, and silicon resin.
  • ionizing radiation curable resins are cured by irradiating ionizing radiation (ultraviolet rays or electron beams) to ionizing radiation curable paints in which one or more of photopolymerizable prepolymers or photopolymerizable monomers are mixed.
  • the photopolymerizable prepolymer is particularly preferably an acrylic prepolymer having two or more acryloyl groups in one molecule and having a three-dimensional network structure by crosslinking and curing.
  • the acrylic prepolymer urethane acrylate, polyester acrylate, epoxy acrylate, melamine acrylate and the like can be used.
  • the photopolymerizable monomer the above polyunsaturated organic compounds can be used.
  • photopolymerization initiators include acetophenone, benzophenone, Michler ketone, benzoin, benzylmethyl ketal, benzoin benzoate, hydroxycyclohexyl phenyl ketone, 2-methyl-1- (4- (methylthio) phenyl) -2- (4-morpholinyl). ) -1-propane, ⁇ -acyloxime ester, thioxanthone and the like.
  • the bleed-out prevention layer is prepared by blending a matting agent and other necessary components, and then preparing a coating solution with a diluting solvent as necessary, and applying the coating solution to the substrate surface by a conventionally known coating method. It can be formed by irradiating the liquid with ionizing radiation and curing it.
  • ionizing radiation ultraviolet rays in a wavelength region of 100 to 400 nm, preferably 200 to 400 nm, emitted from an ultrahigh pressure mercury lamp, a high pressure mercury lamp, a low pressure mercury lamp, a carbon arc, a metal halide lamp, or the like are irradiated.
  • an electron beam having a wavelength region of 100 nm or less emitted from a scanning type or curtain type electron beam accelerator is irradiated.
  • the thickness of the bleed-out prevention layer is preferably 1 to 10 ⁇ m, and particularly preferably 2 to 7 ⁇ m. Heat resistance can be sufficiently achieved by setting the thickness to 1 ⁇ m or more. Moreover, by setting it as 10 micrometers or less, while becoming easy to adjust the balance of an optical characteristic, the curling at the time of providing the smooth layer in one surface of the base material 11 can be suppressed.
  • the polysilazane modified layer 13 is a layer provided for smoothing the unevenness of the surface of the vapor deposition layer 12, and is a light-transmitting layer formed on the vapor deposition layer 12.
  • the polysilazane modified layer 13 is preferably a layer formed by subjecting a coating film of a polysilazane-containing liquid to a modification treatment. This modified layer is mainly formed from a silicon oxide or a silicon oxynitride compound.
  • a layer containing a silicon oxide or a silicon oxynitride compound is formed by applying a modification treatment after applying a coating liquid containing at least one polysilazane compound on a substrate.
  • the method of forming is mentioned.
  • the supply of silicon oxide or silicon oxynitride compound for forming the polysilazane modified layer 13 of silicon oxide or silicon oxynitride compound is a gas as in CVD (Chemical Vapor Deposition).
  • CVD Chemical Vapor Deposition
  • foreign substances called unnecessary particles are generated in the gas phase simultaneously with the step of depositing the source material having increased reactivity in the gas phase on the surface of the substrate. As these generated particles accumulate, the smoothness of the surface decreases.
  • the coating method it is possible to suppress the generation of these particles by preventing the raw material from being present in the gas phase reaction space. For this reason, a smooth surface can be formed by using a coating method.
  • the coating film of the polysilazane-containing liquid is formed by applying a coating liquid containing a polysilazane compound in at least one layer on the substrate.
  • any appropriate method can be adopted as a coating method.
  • a coating method includes a spin coating method, a roll coating method, a flow coating method, an ink jet method, a spray coating method, a printing method, a dip coating method, a casting film forming method, a bar coating method, and a gravure printing method.
  • the coating thickness can be appropriately set according to the purpose.
  • the coating thickness can be set so that the thickness after drying is preferably about 1 nm to 100 ⁇ m, more preferably about 10 nm to 10 ⁇ m, and most preferably about 10 nm to 1 ⁇ m.
  • Polysilazane is a polymer having a silicon-nitrogen bond, and is a ceramic precursor inorganic polymer such as SiO 2, Si 3 N 4 made of Si—N, Si—H, N—H, or the like, and an intermediate solid solution SiOxNy of both. Polysilazane is represented by the following general formula (I).
  • each of R1, R2, and R3 independently represents a hydrogen atom, an alkyl group, an alkenyl group, a cycloalkyl group, an aryl group, an alkylsilyl group, an alkylamino group, an alkoxy group, or the like.
  • Perhydropolysilazane in which all of R 1, R 2, and R 3 are hydrogen atoms is particularly preferable from the viewpoint of denseness as a barrier film to be obtained.
  • the organopolysilazane in which the hydrogen part bonded to Si is partially substituted with an alkyl group or the like has an alkyl group such as a methyl group, so that the adhesion to the base substrate is improved and the polysilazane is hard and brittle.
  • the ceramic film can be provided with toughness, and there is an advantage that generation of cracks can be suppressed even when the (average) film thickness is increased.
  • Perhydropolysilazane is presumed to have a linear structure and a ring structure centered on 6- and 8-membered rings. Its molecular weight is about 600 to 2000 (polystyrene conversion) in terms of number average molecular weight (Mn), is a liquid or solid substance, and varies depending on the molecular weight. These are marketed in a solution state dissolved in an organic solvent, and the commercially available product can be used as it is as a polysilazane-containing coating solution.
  • polysilazane which is ceramicized at a low temperature silicon alkoxide-added polysilazane obtained by reacting silicon alkoxide with polysilazane represented by the above general formula (I) (Japanese Patent Laid-Open No. 5-23827), glycidol is reacted.
  • Glycidol-added polysilazane Japanese Patent Laid-Open No. 6-122852
  • alcohol-added polysilazane obtained by reacting alcohol
  • metal carboxylate obtained by reacting metal carboxylate Addition polysilazane (JP-A-6-299118), acetylacetonate complex-added polysilazane obtained by reacting a metal-containing acetylacetonate complex (JP-A-6-306329), metal obtained by adding metal fine particles Polysilaza added with fine particles (JP-A-7-196986 publication), and the like.
  • organic solvent for preparing a liquid containing polysilazane examples include hydrocarbon solvents such as aliphatic hydrocarbons, alicyclic hydrocarbons, and aromatic hydrocarbons, halogenated hydrocarbon solvents, aliphatic ethers, and fats.
  • Ethers such as cyclic ethers can be used.
  • Specific examples include hydrocarbons such as pentane, hexane, cyclohexane, toluene, xylene, solvesso and turben, halogen hydrocarbons such as methylene chloride and trichloroethane, and ethers such as dibutyl ether, dioxane and tetrahydrofuran.
  • solvents may be selected according to purposes such as the solubility of polysilazane and the evaporation rate of the solvent, and a plurality of solvents may be mixed. Note that alcohol-based or water-containing solvents are not preferable because they easily react with polysilazane.
  • the polysilazane concentration in the polysilazane-containing coating solution is about 0.2 to 35% by mass, although it varies depending on the target silica film thickness and the pot life of the coating solution.
  • the organic polysilazane may be a derivative in which a hydrogen part bonded to Si is partially substituted with an alkyl group or the like.
  • an alkyl group especially a methyl group having the smallest molecular weight, the adhesion to the base material can be improved, and the hard and brittle silica film can be toughened, and even if the film thickness is increased, cracks are not generated. Occurrence is suppressed.
  • an amine or metal catalyst can be added.
  • Specific examples include Aquamica NAX120-20, NN110, NN310, NN320, NL110A, NL120A, NL150A, NP110, NP140, and SP140 manufactured by AZ Electronic Materials Co., Ltd.
  • the coating film of the polysilazane-containing liquid preferably has moisture removed before or during the modification treatment. Therefore, it is preferable to divide into the 1st process of the objective which removes the solvent in a polysilazane coating film, and the 2nd process of the objective which removes the water
  • the drying conditions for mainly removing the solvent can be appropriately determined by a method such as heat treatment, but the conditions may be such that moisture is removed at this time.
  • the heat treatment temperature is preferably high from the viewpoint of rapid treatment, but the temperature and treatment time are determined in consideration of thermal damage to the resin substrate.
  • the heat treatment temperature can be set to 200 ° C. or less.
  • the treatment time is preferably set to a short time so that the solvent is removed and the thermal damage to the substrate is reduced. If the heat treatment temperature is 200 ° C. or less, the treatment time can be set within 30 minutes.
  • the second step is a step for removing moisture in the polysilazane coating film, and the method for removing moisture is preferably in a form maintained in a low humidity environment. Since the humidity in the low humidity environment varies depending on the temperature, a preferable form of the relationship between the temperature and the humidity is indicated by the definition of the dew point temperature.
  • a preferable dew point temperature is 4 degrees or less (temperature 25 degrees / humidity 25%), a more preferable dew point temperature is ⁇ 8 degrees (temperature 25 degrees / humidity 10%) or less, and a more preferable dew point temperature is ⁇ 31 degrees (temperature 25 degrees / temperature).
  • the humidity is 1%) or less, and the maintained time varies depending on the film thickness of the polysilazane modified layer 13.
  • the preferable dew point temperature is ⁇ 8 degrees or less, and the maintaining time is 5 minutes or more.
  • the pressure in the vacuum drying can be selected from normal pressure to 0.1 MPa.
  • the dew point of the second step is 4 degrees or less.
  • the treatment time can be selected from 5 minutes to 120 minutes to remove moisture.
  • the first process and the second process can be distinguished by changing the dew point, and can be classified by changing the dew point of the process environment by 10 degrees or more.
  • the polysilazane modified layer 13 is preferably subjected to a modification treatment while maintaining its state even after moisture is removed in the second step.
  • the water content of the polysilazane modified layer 13 can be detected by the following analysis method.
  • Headspace-gas chromatograph / mass spectrometry instrument HP6890GC / HP5973MSD Oven: 40 ° C. (2 min), then heated to 150 ° C. at a rate of 10 ° C./min
  • Detector: SIM m / z 18 HS condition: 190 ° C, 30min
  • the water content in the polysilazane modified layer is defined as a value obtained by dividing the water content obtained by the above analysis method by the volume of the polysilazane modified layer 13, and is preferably 0 in a state where moisture is removed by the second step. .1% or less. A more preferable moisture content is 0.01% or less (below the detection limit). This is a preferred mode for promoting the dehydration reaction of polysilazane converted to silanol by removing water before or during the modification treatment.
  • Modification process For the modification treatment, a known method based on the conversion reaction of polysilazane can be selected. Production of a silicon oxide film or a silicon oxynitride film by a substitution reaction of a silazane compound requires a high temperature of 450 ° C. or more, and is difficult to adapt to a flexible substrate such as plastic. For adaptation to plastic substrates, a conversion reaction using plasma, ozone, or ultraviolet light that can be converted at a lower temperature is preferable. Specifically, a method similar to the method used for the surface treatment of the vapor deposition layer 12 described above can be applied. For application to a resin film substrate, a conversion reaction using plasma, ozone, or ultraviolet light that can be converted at a lower temperature is preferable. In particular, a modification treatment by vacuum ultraviolet irradiation using a rare gas excimer lamp is preferable.
  • the surface roughness (Ra) of the surface of the polysilazane modified layer 13 is 2 nm or less, more preferably 1 nm or less.
  • the surface roughness (Ra) of the polysilazane modified layer 13 can be measured by the following method.
  • the surface roughness (Ra) of the surface of the polysilazane modified layer 13 is, for example, a condition in which, when a polysilazane coating film is formed by coating, the solvent and moisture are uniformly removed after coating the coating liquid constituting the polysilazane coating film. It becomes possible to make it 2 nm or less by making it dry. Furthermore, the surface roughness (Ra) of the surface of the polysilazane modified layer 13 can be reduced to 2 nm or less by optimizing the concentration and viscosity of the coating solution, the coating speed, and selecting the leveling agent.
  • the surface roughness is calculated from an uneven sectional curve continuously measured with an AFM (Atomic Force Microscope), for example, DI3100 manufactured by Digital Instruments, with a detector having a stylus with a minimum tip radius. This is a roughness related to the amplitude of fine irregularities measured by a stylus many times in a section whose measurement direction is several tens of ⁇ m.
  • AFM Atomic Force Microscope
  • the vapor deposition layer 12 is made of a silicon compound having an inclined composition change, the reforming process can easily proceed in the thickness direction from the surface during the reforming process. For this reason, the surface treatment of the vapor deposition layer 12 can be performed sufficiently and uniformly, and a sufficient hydrophilic group can be formed on the surface of the vapor deposition layer 12.
  • gas Barrier Film Manufacturing Method (Second Embodiment)> Next, the manufacturing method of the gas barrier film 10 is demonstrated.
  • the gas barrier film 10 can be produced by using the formation method of each configuration described in the embodiment of the gas barrier film 10 described above.
  • the base material 11 is prepared.
  • the base material 11 can be appropriately selected from the above resin films.
  • the vapor deposition layer 12 is formed on the base material 11.
  • the vapor deposition layer 12 is formed by vapor deposition using a source gas containing a silicon compound together with at least one element selected from carbon (C), nitrogen (N), and oxygen (O).
  • a source gas containing a silicon compound together with at least one element selected from carbon (C), nitrogen (N), and oxygen (O).
  • the silicon compound having an inclined composition change by controlling the supply amount of the source gas containing at least one element selected from carbon (C), nitrogen (N), and oxygen (O) To deposit.
  • a surface treatment is performed on the formed vapor deposition layer 12 to modify the silicon compound.
  • This surface treatment can be performed using plasma, ozone, and ultraviolet rays. In particular, treatment with vacuum ultraviolet irradiation using a rare gas excimer lamp is preferable.
  • the surface of the vapor deposition layer 12 made of a silicon compound is made hydrophilic.
  • the polysilazane modified layer 13 is formed on the vapor deposition layer 12 after the surface treatment.
  • the polysilazane modified layer 13 is formed by the step of applying the polysilazane-containing liquid, the step of removing the solvent and moisture in the coating film, and the step of modifying the polysilazane coating film.
  • the polysilazane-containing liquid is applied onto the vapor deposition layer 12.
  • the vapor deposition layer 12 is surface-treated, the wettability of the polysilazane-containing liquid is improved.
  • the polysilazane-containing coating film is modified.
  • the same method as the surface treatment of the vapor deposition layer 12 may be used, or a different method may be used.
  • treatment by vacuum ultraviolet irradiation using a rare gas excimer lamp is performed.
  • the substrate 11 contains at least one element selected from carbon (C), nitrogen (N), and oxygen (O), and is continuous from the surface in the thickness direction.
  • the gas barrier film 10 which consists of the vapor deposition layer 12 of the silicon compound which has a composition change and is surface-treated, and the polysilazane modified layer 13 formed on the vapor deposition layer 12 can be manufactured.
  • Embodiment of Organic Electroluminescence Element (Third Embodiment)> [Configuration of organic electroluminescence element]
  • an organic electroluminescence element hereinafter referred to as an organic EL element
  • FIG. 6 the schematic block diagram (sectional drawing) of the organic EL element of this embodiment is shown.
  • the organic EL element 20 includes a base material 11, a vapor deposition layer 12, a polysilazane modified layer 13, a first electrode 24, an organic functional layer 25, a second electrode 26, a sealing resin layer 27, and A sealing member 28 is provided.
  • the base material 11, the vapor deposition layer 12, and the polysilazane modified layer 13 have the same configuration as the gas barrier film 10 of the first embodiment described above.
  • the organic EL element 20 shown in FIG. 6 has a configuration in which a first electrode 24 serving as an anode, an organic functional layer 25 including a light emitting layer, and a second electrode 26 serving as a cathode are stacked on the gas barrier film 10. . Furthermore, the first electrode 24, the organic functional layer 25, and the second electrode 26 are solid-sealed by the gas barrier film 10, the sealing resin layer 27, and the sealing member 28.
  • the first electrode 24 used as an anode is configured as a translucent electrode. In such a configuration, only a portion where the organic functional layer 25 is sandwiched between the first electrode 24 and the second electrode 26 becomes a light emitting region in the organic EL element 20.
  • the organic EL element 20 is configured as a bottom emission type in which generated light (hereinafter referred to as emitted light h) is extracted from at least the substrate 11 side.
  • the organic EL element 20 has a sealing member 28 attached on one surface of the substrate 11 via a sealing resin layer 27 that covers the first electrode 24, the organic functional layer 25, and the second electrode 26. By being combined, it is solid-sealed.
  • a plurality of uncured resin materials are provided on either the bonding surface of the sealing member 28 or the polysilazane modified layer 13 and the second electrode 26 of the substrate 11. The base material 11 and the sealing member 28 are pressed and integrated with each other in a heated state with the resin material interposed therebetween.
  • translucency means that the light transmittance in wavelength 550nm is 50% or more.
  • the vapor deposition layer 12 is a silicon compound containing at least one element selected from carbon (C), nitrogen (N), and oxygen (O), formed by a vapor deposition method. Moreover, the silicon compound which comprises the vapor deposition layer 12 has the characteristics in which a composition changes in an inclined shape in the depth direction (thickness direction) from the surface. Further, the surface of the vapor deposition layer 12 is subjected to a modification treatment for improving the adhesion with the polysilazane modified layer 13.
  • the polysilazane modified layer 13 is preferably a layer containing a silicon oxide or silicon oxynitride compound by performing a modification treatment after applying a coating solution containing a polysilazane compound film.
  • the first electrode 24 is a substantial anode.
  • the organic EL element 20 is a bottom emission type element that passes through the first electrode 24 and extracts light from the substrate 11 side. For this reason, the 1st electrode 24 needs to be formed with a translucent conductive layer.
  • the first electrode 24 is, for example, a layer composed mainly of silver and is composed of silver or an alloy composed mainly of silver.
  • Examples of the method for forming the first electrode 24 include a method using a wet process such as a coating method, an inkjet method, a coating method, a dip method, a vapor deposition method (resistance heating, EB method, etc.), a sputtering method, a CVD method, and the like. And a method using the dry process. Of these, the vapor deposition method is preferably applied.
  • the alloy mainly composed of silver (Ag) constituting the first electrode 24 is silver magnesium (AgMg), silver copper (AgCu), silver palladium (AgPd), silver palladium copper (AgPdCu), silver indium (AgIn). ) And the like.
  • the first electrode 24 as described above may have a configuration in which silver or an alloy layer mainly composed of silver is divided into a plurality of layers as necessary.
  • the first electrode 24 preferably has a thickness in the range of 4 to 12 nm.
  • a thickness of 12 nm or less is preferable because the absorption component and reflection component of the layer are kept low and the light transmittance of the translucent electrode is maintained. Further, when the thickness is 4 nm or more, the conductivity of the layer is also ensured.
  • the first electrode 24 as described above may be covered with a protective film at the top, or may be laminated with another conductive layer.
  • the protective film and the conductive layer have light transmittance so that the light transmittance of the organic EL element 20 is not impaired.
  • FIG. For example, an improvement in the characteristics of the first electrode 24 or a base layer for facilitating the formation may be formed.
  • the first electrode 24 may have a configuration other than that containing silver as a main component.
  • various transparent conductive material thin films such as other metals and alloys, ITO, zinc oxide, tin oxide and the like may be used.
  • the second electrode 26 is an electrode layer that functions as a cathode for supplying electrons to the organic functional layer 25, and a metal, an alloy, an organic or inorganic conductive compound, and a mixture thereof are used. Specifically, gold, aluminum, silver, magnesium, lithium, magnesium / copper mixture, magnesium / silver mixture, magnesium / aluminum mixture, magnesium / indium mixture, indium, lithium / aluminum mixture, rare earth metal, ITO, ZnO, TiO2 And oxide semiconductors such as SnO 2.
  • the second electrode 26 can be formed of these conductive materials by a method such as vapor deposition or sputtering.
  • the sheet resistance as the second electrode 26 is several hundred ⁇ / sq. The following is preferable, and the thickness is usually selected in the range of 5 nm to 5 ⁇ m, preferably 5 nm to 200 nm.
  • the organic EL element 20 is a double-sided light emitting type that also takes out the emitted light h from the second electrode 26 side, a conductive material having a good light transmission property is selected from the above-described conductive materials, and the second is selected.
  • the electrode 26 is configured.
  • the organic functional layer 25 has a configuration in which [hole injection layer 25a / hole transport layer 25b / light emitting layer 25c / electron transport layer 25d / electron injection layer 25e] is laminated in this order on the first electrode 24 which is an anode. As an example, it is necessary to have at least the light emitting layer 25c formed using an organic material.
  • the hole injection layer 25a and the hole transport layer 25b may be provided as a hole transport / injection layer having a hole transport property and a hole injection property.
  • the electron transport layer 25d and the electron injection layer 25e may be provided as a single layer having electron transport properties and electron injection properties.
  • the electron injection layer 25e may be composed of an inorganic material.
  • the organic functional layer 25 may be laminated with a hole blocking layer, an electron blocking layer, or the like as necessary.
  • the light emitting layer 25c has each color light emitting layer for generating light emission in each wavelength region, and each of these color light emitting layers is laminated through a non-light emitting intermediate layer to form a light emitting layer unit. Also good.
  • the intermediate layer may function as a hole blocking layer and an electron blocking layer.
  • the light emitting layer 25c contains, for example, a phosphorescent light emitting compound as a light emitting material.
  • the light emitting layer 25c is a layer that emits light by recombination of electrons injected from the electrode or the electron transport layer 25d and holes injected from the hole transport layer 25b, and the light emitting portion is the light emitting layer 25c. Even within the layer, it may be an interface with an adjacent layer in the light emitting layer 25c.
  • the configuration of the light emitting layer 25c is not particularly limited as long as the included light emitting material satisfies the light emission requirements. Moreover, there may be a plurality of layers having the same emission spectrum and emission maximum wavelength. In this case, it is preferable to have a non-light emitting intermediate layer (not shown) between the light emitting layers 25c.
  • the total thickness of the light emitting layer 25c is preferably in the range of 1 to 100 nm, and more preferably 1 to 30 nm because it can be driven at a lower voltage.
  • the sum total of the thickness of the light emitting layer 25c is a thickness also including the said intermediate
  • the thickness of each light emitting layer is preferably adjusted to a range of 1 to 50 nm, and more preferably adjusted to a range of 1 to 20 nm.
  • the plurality of stacked light emitting layers correspond to the respective emission colors of blue, green, and red, there is no particular limitation on the relationship between the thicknesses of the blue, green, and red light emitting layers.
  • the light emitting layer 25c as described above can be formed of a light emitting material or a host compound, which will be described later, by a known thin film forming method such as a vacuum deposition method, a spin coating method, a casting method, an LB method, or an ink jet method.
  • a known thin film forming method such as a vacuum deposition method, a spin coating method, a casting method, an LB method, or an ink jet method.
  • the light emitting layer 25c may be a mixture of a plurality of light emitting materials, or a phosphorescent light emitting material and a fluorescent light emitting material (also referred to as a fluorescent dopant or a fluorescent compound) may be mixed and used in the same light emitting layer 25c.
  • the structure of the light emitting layer 25c preferably includes a host compound (also referred to as a light emitting host) and a light emitting material (also referred to as a light emitting dopant compound or a guest material) and emits light from the light emitting material.
  • a host compound also referred to as a light emitting host
  • a light emitting material also referred to as a light emitting dopant compound or a guest material
  • the host compound contained in the light emitting layer 25c As the host compound contained in the light emitting layer 25c, a compound having a phosphorescence quantum yield of phosphorescence emission at room temperature (25 ° C.) of less than 0.1 is preferable. Furthermore, the compound whose phosphorescence quantum yield is less than 0.01 is preferable.
  • the host compound preferably has a volume ratio in the layer of 50% or more among the compounds contained in the light emitting layer 25c.
  • the host compound a known host compound may be used alone, or a plurality of types may be used. By using a plurality of types of host compounds, the movement of charges can be adjusted, and the organic EL element 20 can be made highly efficient. In addition, by using a plurality of kinds of light emitting materials described later, it is possible to mix different light emission, thereby obtaining an arbitrary light emission color.
  • the host compound used may be a conventionally known low molecular compound, a high molecular compound having a repeating unit, or a low molecular compound having a polymerizable group such as a vinyl group or an epoxy group (evaporation polymerizable light emitting host). .
  • Tg glass transition temperature
  • the host compound applicable to the organic electroluminescence device include compounds H1 to H79 described in paragraphs [0163] to [0178] of JP2013-4245A.
  • the compounds H1 to H79 described in paragraphs [0163] to [0178] of JP2013-4245 are incorporated in the present specification.
  • Luminescent material examples of the light-emitting material that can be used for the organic electroluminescence element of the present embodiment include phosphorescent compounds (also referred to as phosphorescent compounds and phosphorescent materials).
  • a phosphorescent compound is a compound in which light emission from an excited triplet is observed. Specifically, a phosphorescent compound emits phosphorescence at room temperature (25 ° C.), and a phosphorescence quantum yield of 0.01 at 25 ° C. Although defined as the above compounds, the preferred phosphorescence quantum yield is 0.1 or more.
  • the phosphorescent quantum yield can be measured by the method described in Spectroscopic II, page 398 (1992 edition, Maruzen) of Experimental Chemistry Course 4 of the 4th edition. Although the phosphorescence quantum yield in a solution can be measured using various solvents, when the phosphorescent compound is used in this example, the phosphorescence quantum yield (0.01 or more) is achieved in any solvent. It only has to be done.
  • phosphorescent compounds There are two types of light emission principles of phosphorescent compounds. One is that recombination of carriers occurs on the host compound to which carriers are transported to generate an excited state of the host compound, and this energy is transferred to the phosphorescent compound to obtain light emission from the phosphorescent compound.
  • the other is a carrier trap type in which the phosphorescent compound becomes a carrier trap, and carriers are recombined on the phosphorescent compound to emit light from the phosphorescent compound. In either case, it is a condition that the excited state energy of the phosphorescent compound is lower than the excited state energy of the host compound.
  • the phosphorescent compound can be appropriately selected from known materials used for the light emitting layer of a general organic electroluminescence device, but preferably contains a metal of group 8 to 10 in the periodic table of elements. It is a complex compound. More preferred are iridium compounds, osmium compounds, platinum compounds (platinum complex compounds), and rare earth complexes, and most preferred are iridium compounds.
  • At least one light emitting layer 25c may contain two or more kinds of phosphorescent compounds, and the concentration ratio of the phosphorescent compounds in the light emitting layer 25c is the same as that of the light emitting layer 25c. It may change in the thickness direction.
  • the phosphorescent compound is preferably 0.1% by volume or more and less than 30% by volume with respect to the total amount of the light emitting layer 25c.
  • Examples of the phosphorescent compound applicable to the organic electroluminescence device include those represented by general formulas (4), (5), and (6) described in paragraphs [0185] to [0235] of JP2013-4245A.
  • Preferred examples include the compounds represented and exemplary compounds.
  • Ir-46, Ir-47, and Ir-48 are shown below.
  • Compounds represented by general formula (4), general formula (5) and general formula (6) described in paragraphs [0185] to [0235] of JP2013-4245A and exemplified compounds (Pt-1 to Pt) -3, Os-1, Ir-1 to Ir-45) are incorporated herein.
  • these phosphorescent compounds are contained as a light emitting dopant in the light emitting layer 25c of the organic EL element 20, organic functions other than the light emitting layer 25c are included. It may be contained in the layer.
  • the phosphorescent compound can be appropriately selected from known compounds used for the light emitting layer 25c of the organic EL element 20.
  • the phosphorescent compound applied to the organic electroluminescence device of the present embodiment is preferably a complex compound containing a group 8-10 metal in the periodic table of elements, more preferably an iridium compound, an osmium compound, or Platinum compounds (platinum complex compounds) and rare earth complexes, and most preferred are iridium compounds.
  • phosphorescent compounds are, for example, OrganicOrLetters magazine vol.3 No.16 2579-2581 (2001), Inorganic Chemistry, Vol.30, No.8 1685-1687. (1991), J. Am. Chem. Soc., 123 4304 (2001), Inorganic Chemistry, Vol. 40, No. 7, 704 1704-1711 (2001), Inorganic Chemistry, Vol. 41 No. 12 3055-3066 (2002), New Journal of ⁇ Chemistry., 26261171 (2002), European Journal of Organic Chemistry, Vol.4 695-709 (2004), further described in these documents Can be synthesized by applying a method such as the reference.
  • Fluorescent materials include coumarin dyes, pyran dyes, cyanine dyes, croconium dyes, squalium dyes, oxobenzanthracene dyes, fluorescein dyes, rhodamine dyes, pyrylium dyes, perylene dyes, stilbene dyes Examples thereof include dyes, polythiophene dyes, and rare earth complex phosphors.
  • injection layer hole injection layer, electron injection layer
  • the injection layer is a layer provided between the electrode and the light emitting layer 25c in order to lower the driving voltage and improve the light emission luminance.
  • the injection layer can be provided as necessary.
  • the hole injection layer 25a is disposed between the anode and the light emitting layer 25c or the hole transport layer 25b, and the electron injection layer 25e is disposed between the cathode and the light emitting layer 25c or the electron transport layer 25d.
  • JP-A-9-45479 JP-A-9-260062, JP-A-8-288069, and the like.
  • Specific examples include phthalocyanine represented by copper phthalocyanine.
  • examples thereof include a layer, an oxide layer typified by vanadium oxide, an amorphous carbon layer, and a polymer layer using a conductive polymer such as polyaniline (emeraldine) or polythiophene.
  • the details of the electron injection layer 25e are described in JP-A-6-325871, JP-A-9-17574, JP-A-10-74586, and the like, and specifically represented by strontium, aluminum, and the like.
  • Examples thereof include a metal layer, an alkali metal halide layer typified by potassium fluoride, an alkaline earth metal compound layer typified by magnesium fluoride, and an oxide layer typified by molybdenum oxide.
  • the electron injection layer 25e is desirably a very thin layer, and its thickness is preferably in the range of 1 nm to 10 ⁇ m, although it depends on the material.
  • the hole transport layer 25b is made of a hole transport material having a function of transporting holes, and in a broad sense, the hole injection layer 25a and the electron blocking layer are also included in the hole transport layer 25b.
  • the hole transport layer 25b can be provided as a single layer or a plurality of layers.
  • the hole transport material has any of hole injection or transport and electron barrier properties, and may be either organic or inorganic.
  • triazole derivatives oxadiazole derivatives, imidazole derivatives, polyarylalkane derivatives, pyrazoline derivatives and pyrazolone derivatives, phenylenediamine derivatives, arylamine derivatives, amino-substituted chalcone derivatives, oxazole derivatives, styrylanthracene derivatives, fluorenone derivatives, hydrazone derivatives
  • Examples thereof include stilbene derivatives, silazane derivatives, aniline copolymers, and conductive polymer oligomers, particularly thiophene oligomers.
  • hole transport material those described above can be used, but it is preferable to use a porphyrin compound, an aromatic tertiary amine compound and a styrylamine compound, particularly an aromatic tertiary amine compound.
  • aromatic tertiary amine compounds and styrylamine compounds include N, N, N ′, N′-tetraphenyl-4,4′-diaminophenyl; N, N′-diphenyl-N, N′— Bis (3-methylphenyl)-[1,1′-biphenyl] -4,4′-diamine (TPD); 2,2-bis (4-di-p-tolylaminophenyl) propane; 1,1-bis (4-di-p-tolylaminophenyl) cyclohexane; N, N, N ′, N′-tetra-p-tolyl-4,4′-diaminobiphenyl; 1,1-bis (4-di-p-tolyl) Aminophenyl) -4-phenylcyclohexane; bis (4-dimethylamino-2-methylphenyl) phenylmethane; bis (4-di-p-tolylaminoph
  • a polymer material in which these materials are introduced into a polymer chain or these materials are used as a polymer main chain can also be used.
  • inorganic compounds such as p-type-Si and p-type-SiC can also be used as the hole injection material and the hole transport material.
  • p-type hole transport materials as described in JP-A-11-251067, J. Huang et al., Applied Physics Letters, 80 (2002), p. 139 can be used. . These materials are preferably used because a highly efficient light-emitting element can be obtained.
  • the hole transport layer 25b is formed by thinning the hole transport material by a known method such as a vacuum deposition method, a spin coating method, a casting method, a printing method including an inkjet method, or an LB method. be able to.
  • the thickness of the hole transport layer 25b is not particularly limited, but is usually about 5 nm to 5 ⁇ m, preferably 5 to 200 nm.
  • the hole transport layer 25b may have a single layer structure made of one or more of the above materials.
  • the electron transport layer 25d is made of a material having a function of transporting electrons. In a broad sense, the electron transport layer 25e and a hole blocking layer (not shown) are also included in the electron transport layer 25d.
  • the electron transport layer 25d can be provided as a single layer structure or a stacked structure of a plurality of layers.
  • an electron transport material (also serving as a hole blocking material) constituting the layer portion adjacent to the light emitting layer 25c in the electron transport layer 25d having a single layer structure and the electron transport layer 25d having a multilayer structure
  • electrons injected from the cathode are used. What is necessary is just to have the function to transmit to the light emitting layer 25c.
  • Such a material can be arbitrarily selected from conventionally known compounds. Examples include nitro-substituted fluorene derivatives, diphenylquinone derivatives, thiopyran dioxide derivatives, carbodiimides, fluorenylidenemethane derivatives, anthraquinodimethane, anthrone derivatives, and oxadiazole derivatives.
  • a thiadiazole derivative in which the oxygen atom of the oxadiazole ring is substituted with a sulfur atom, and a quinoxaline derivative having a quinoxaline ring known as an electron withdrawing group are also used as the material for the electron transport layer 25d.
  • a polymer material in which these materials are introduced into a polymer chain or these materials are used as a polymer main chain can also be used.
  • metal complexes of 8-quinolinol derivatives such as tris (8-quinolinol) aluminum (Alq3), tris (5,7-dichloro-8-quinolinol) aluminum, tris (5,7-dibromo-8-quinolinol) aluminum Tris (2-methyl-8-quinolinol) aluminum, tris (5-methyl-8-quinolinol) aluminum, bis (8-quinolinol) zinc (Znq), and the like, and the central metals of these metal complexes are In, Mg, A metal complex replaced with Cu, Ca, Sn, Ga, or Pb can also be used as the material of the electron transport layer 25d.
  • metal-free or metal phthalocyanine or the terminal thereof is substituted with an alkyl group or a sulfonic acid group, it can be preferably used as a material for the electron transport layer 25d.
  • a distyrylpyrazine derivative exemplified also as a material of the light emitting layer 25c can be used as a material of the electron transport layer 25d.
  • n-type-Si, n-type An inorganic semiconductor such as -SiC can also be used as the material of the electron transport layer 25d.
  • the electron transport layer 25d can be formed by thinning the above material by a known method such as a vacuum deposition method, a spin coating method, a casting method, a printing method including an ink jet method, or an LB method.
  • the thickness of the electron transport layer 25d is not particularly limited, but is usually about 5 nm to 5 ⁇ m, preferably 5 to 200 nm.
  • the electron transport layer 25d may have a single layer structure composed of one or more of the above materials.
  • the electron transport layer 25d can be doped with impurities to increase the n property. Examples thereof include JP-A-4-297076, JP-A-10-270172, JP-A-2000-196140, 2001-102175, J. Appl. Phys., 95, 5773 (2004), etc. What has been described. Further, the electron transport layer 25d preferably contains potassium, a potassium compound, or the like. As the potassium compound, for example, potassium fluoride can be used. Thus, when the n property of the electron transport layer 25d is increased, an element with lower power consumption can be manufactured.
  • Examples of the material (electron transporting compound) of the electron transport layer 25d include, for example, General Formula (1), General Formula (2), and Paragraphs [0057] to [0148] of JP2013-4245A,
  • the compound represented by the general formula (3) is preferably used, and Exemplified Compounds 1-111 can be used. Further, as other exemplary compounds, compounds 112 to 134 are shown below.
  • the compounds represented by general formula (1), general formula (2), and general formula (3) described in paragraphs [0057] to [0148] of JP2013-4245 are incorporated in the present specification.
  • Blocking layer hole blocking layer, electron blocking layer
  • the blocking layer is provided as necessary in addition to the basic constituent layer of the organic compound thin film. For example, it is described in JP-A Nos. 11-204258 and 11-204359, and “Organic EL elements and the forefront of industrialization (published by NTT Corporation on November 30, 1998)” on page 237. There is a hole blocking (hole blocking) layer.
  • the hole blocking layer has a function of the electron transport layer 25d in a broad sense.
  • the hole blocking layer is made of a hole blocking material that has a function of transporting electrons but has a very small ability to transport holes, and recombines electrons and holes by blocking holes while transporting electrons. Probability can be improved.
  • the structure of the electron carrying layer 25d mentioned later can be used as a hole-blocking layer as needed.
  • the hole blocking layer is preferably provided adjacent to the light emitting layer 25c.
  • the electron blocking layer has the function of the hole transport layer 25b in a broad sense.
  • the electron blocking layer is made of a material that has a function of transporting holes but has a very small ability to transport electrons, and improves the probability of recombination of electrons and holes by blocking electrons while transporting holes. be able to.
  • the structure of the positive hole transport layer 25b mentioned later can be used as an electron blocking layer as needed.
  • the thickness of the blocking layer is preferably 3 to 100 nm, and more preferably 5 to 30 nm.
  • the sealing member 28 covers the organic EL element 20, and the plate-like (film-like) sealing member 28 is fixed to the substrate 11 side by the sealing resin layer 27.
  • the sealing member 28 is provided in a state of covering at least the organic functional layer 25 and is provided in a state of exposing the terminal portions (not shown) of the organic EL element 20 and the second electrode 26.
  • an electrode may be provided on the sealing member 28 so that the organic EL element 20 of the organic EL element 20 and the terminal portion of the second electrode 26 are electrically connected to this electrode.
  • the plate-like (film-like) sealing member 28 include a glass substrate and a polymer substrate, and these substrate materials may be used in the form of a thinner film.
  • the glass substrate include soda-lime glass, barium / strontium-containing glass, lead glass, aluminosilicate glass, borosilicate glass, barium borosilicate glass, and quartz.
  • the polymer substrate include polycarbonate, acrylic, polyethylene terephthalate, polyether sulfide, and polysulfone.
  • a polymer substrate in the form of a thin film can be preferably used as the sealing member 28.
  • the polymer substrate in the form of a film has an oxygen permeability measured by a method according to JIS-K-7126-1987 of 1 ⁇ 10 ⁇ 3 ml / (m 2 ⁇ 24 h ⁇ atm) or less, and JIS-K-7129.
  • the water vapor permeability (25 ⁇ 0.5 ° C., relative humidity (90 ⁇ 2)% RH) measured by a method according to 1992 is 1 ⁇ 10 ⁇ 3 g / (m 2 ⁇ 24 h) or less. preferable.
  • the above-described substrate material may be processed into a concave plate shape and used as the sealing member 28.
  • the above-described substrate member is subjected to processing such as sand blasting or chemical etching to form a concave shape.
  • the present invention is not limited to this, and a metal material may be used.
  • the metal material include one or more metals or alloys selected from the group consisting of stainless steel, iron, copper, aluminum, magnesium, nickel, zinc, chromium, titanium, molybdenum, silicon, germanium, and tantalum.
  • the sealing resin layer 27 for fixing the sealing member 28 to the base material 11 side is used for sealing the organic EL element 20 sandwiched between the sealing member 28 and the base material 11.
  • a structure in which the organic EL element formed on the substrate 11 is covered with a sealing material is exemplified as a solid-sealed structure.
  • the sealing resin layer 27 is, for example, a photocurable or thermosetting adhesive having a reactive vinyl group of an acrylic acid-based oligomer or a methacrylic acid-based oligomer, or an epoxy-based thermosetting or chemical curing property. Examples thereof include (two-component mixed) adhesives, hot-melt type polyamides, polyesters, polyolefins, and cationic curing type ultraviolet curable epoxy resins.
  • the sealing resin layer 27 With a thermosetting adhesive. Moreover, as a form of the sealing resin layer 27, it is preferable to use a thermosetting adhesive processed into a sheet shape. When a sheet-like thermosetting adhesive is used, the adhesive exhibits non-fluidity at room temperature (about 25 ° C.) and exhibits fluidity at a temperature in the range of 50 to 130 ° C. when heated. (Sealant) is used.
  • thermosetting adhesive any adhesive can be used. From the viewpoint of improving the adhesion with the sealing member 28 adjacent to the sealing resin layer 27, the base material 11, and the like, a suitable thermosetting adhesive is appropriately selected.
  • the thermosetting adhesive it is possible to use a resin mainly composed of a compound having an ethylenic double bond at the molecular end or side chain and a thermal polymerization initiator. More specifically, a thermosetting adhesive made of an epoxy resin, an acrylic resin, or the like can be used.
  • a fusion type thermosetting adhesive according to the bonding apparatus and hardening processing apparatus which are used at the manufacturing process of the organic EL element 20, you may use a fusion type thermosetting adhesive.
  • what mixed 2 or more types of above-mentioned adhesives may be used as an adhesive agent, and the adhesive agent provided with both thermosetting and ultraviolet-curing property may be used.
  • the organic EL element 20 described above includes silicon, oxygen, and carbon formed by the above-described plasma CVD method, and includes a vapor deposition layer in which the distribution curve of each element satisfies the above conditions (i) to (iii). Thereby, the adhesiveness of a base material and a sealing member can be improved.
  • the said vapor deposition layer is formed from the inorganic film containing silicon, oxygen, and carbon, and has the characteristic which is excellent in thermal diffusivity. In particular, the inclusion of carbon is considered to improve the thermal conductivity as compared with an inorganic film made only of silicon and oxygen.
  • the vapor deposition layer dissipates heat applied to the organic EL element, so that the flexible substrate Can alleviate heat damage.
  • the polysilazane modified layer on the base material By providing the polysilazane modified layer on the base material, it is possible to proceed with the curing treatment of the sealing resin layer even in an organic EL element that tends to have low adhesion between the sealing resin layer and the base material in the past. Adhesion between the sealing resin layer and the substrate can be increased. In other words, the organic EL element can be peeled off even in a configuration in which a polysilazane modified layer is formed in order to alleviate irregularities on the surface of the substrate and the vapor deposition layer, prevent defects due to short-circuiting of the electrode, etc. Can be prevented.
  • a substrate, a vapor deposition layer, and a polysilazane modified layer are provided, and an element composed of a first electrode, an organic functional layer, and a second electrode is provided thereon, and this element is solid-sealed.
  • a bottom emission type organic electroluminescence element is described.
  • the organic electroluminescence element in which the element is provided on the base material, the vapor deposition layer, and the polysilazane modified layer is not limited to the bottom emission type, for example, a top emission type configuration in which light is extracted from the second electrode side, It is good also as a double-sided light emission type
  • the organic electroluminescence element is a top emission type, a transparent material may be used for the second electrode, and the emitted light h may be extracted from the second electrode side. Further, if the organic electroluminescence element is a double-sided light emitting type, a transparent material may be used for the second electrode, and the emitted light h may be extracted from both sides.
  • organic electroluminescent elements Since the organic electroluminescent elements having the above-described configurations are surface light emitters as described above, they can be used as various light emission sources.
  • lighting devices such as home lighting and interior lighting, backlights for clocks and liquid crystals, lighting for billboard advertisements, light sources for traffic lights, light sources for optical storage media, light sources for electrophotographic copying machines, light sources for optical communication processors, Examples include a light source of an optical sensor.
  • it can be effectively used as a backlight of a liquid crystal display device combined with a color filter and an illumination light source.
  • the organic electroluminescence element of each embodiment may be used as a kind of lamp for illumination or an exposure light source, a projection device that projects an image, and a still image or a moving image is directly visually recognized. It may be used as a type of display device (display). In this case, with the recent increase in the size of lighting devices and displays, the light emitting surface may be enlarged by so-called tiling, in which light emitting panels provided with organic electroluminescence elements are joined together in a plane.
  • the drive method when used as a display device for moving image reproduction may be either a simple matrix (passive matrix) method or an active matrix method.
  • a color or full-color display device can be manufactured by using two or more kinds of organic electroluminescence elements having different emission colors.
  • Each organic EL element of Samples 101 to 108 was fabricated such that the area of the light emitting region was 5 cm ⁇ 5 cm. Table 1 below shows the configuration of each layer in each organic EL element of Samples 101 to 108.
  • the base material was mounted on the vapor deposition layer manufacturing apparatus shown in FIG. 5 described above, and the vapor deposition layer was formed to a thickness of 300 nm on the base material under the following film formation conditions (plasma CVD conditions).
  • Supply gas (HMDSO) supply 100 sccm (Standard Cubic Centimeter per Minute)
  • Supply amount of oxygen gas (O2) 500 sccm Degree of vacuum in the vacuum chamber: 3Pa
  • Frequency of power source for plasma generation 80 kHz
  • Film transport speed 0.5 m / min
  • the formed vapor deposition layer is fixed on the operation stage of an excimer irradiation apparatus MECL-M-1-200 (manufactured by M.D. Com) and subjected to surface treatment under the following processing conditions to form silicon constituting the vapor deposition layer.
  • the compound was modified. Irradiation wavelength: 172 nm
  • Lamp filled gas Xe Excimer lamp light intensity: 130 mW / cm 2 (172 nm)
  • Distance between sample and light source 1mm
  • Oxygen concentration in the irradiation device 1.0%
  • Excimer lamp irradiation time 1 second
  • a polysilazane modified layer was formed on the deposited layer on which the surface treatment was performed.
  • a polysilazane-containing liquid a 10% by mass dibutyl ether solution of perhydropolysilazane (Aquamica NN120-10, non-catalytic type, manufactured by AZ Electronic Materials Co., Ltd.) was prepared.
  • a polysilazane-containing liquid is applied onto the substrate with a wireless bar so that the average film thickness after drying is 300 nm, and is treated for 1 minute in an atmosphere of temperature 85 ° C. and humidity 55% RH. Dried. Further, it was kept in an atmosphere of a temperature of 25 ° C. and a humidity of 10% RH (dew point temperature ⁇ 8 ° C.) for 10 minutes to perform a dehumidification treatment to form a polysilazane coating film.
  • the base material on which the polysilazane coating film is formed is fixed on the operation stage of the excimer irradiation device MECL-M-1-200 (manufactured by M.D. Com) and modified under the following modification treatment conditions.
  • the treatment was performed to form a polysilazane modified layer.
  • Irradiation wavelength 172 nm
  • Lamp filled gas Xe Excimer lamp light intensity: 130 mW / cm 2 (172 nm)
  • Distance between sample and light source 1mm
  • Excimer lamp irradiation time 5 seconds
  • the base material on which the polysilazane modified layer is formed is fixed to a base material holder of a commercially available vacuum deposition apparatus, and the compound 118 is put in a resistance heating boat made of tungsten, and the base material holder and the heating boat are vacuumed. It attached in the 1st vacuum chamber of the vapor deposition apparatus. Moreover, silver (Ag) was put into the resistance heating boat made from tungsten, and it attached in the 2nd vacuum chamber of a vacuum evaporation system.
  • the heating boat containing the compound 118 was energized and heated, and the deposition rate was 0.1 nm / second to 0.2 nm / second.
  • the base layer of the first electrode was provided with a thickness of 10 nm.
  • the base material formed up to the underlayer was transferred to the second vacuum chamber while being vacuumed, and the pressure in the second vacuum chamber was reduced to 4 ⁇ 10 ⁇ 4 Pa, and then the heating boat containing silver was energized and heated.
  • a first electrode made of silver having a thickness of 8 nm was formed at a deposition rate of 0.1 nm / second to 0.2 nm / second.
  • Compound A-1 and Compound A-2 each had a concentration of 0.2% by weight without depending on the film thickness.
  • the compound H-1 was co-deposited to a thickness of 70 nm by changing the deposition rate depending on the location so that it was 64.6 wt% to 94.6 wt%.
  • the light emitting layer was formed.
  • Compound ET-1 was deposited to a thickness of 30 nm to form an electron transport layer, and potassium fluoride (KF) was further formed to a thickness of 2 nm.
  • KF potassium fluoride
  • aluminum 110nm was vapor-deposited and the 2nd electrode was formed.
  • Compound 118, Compound HT-1, Compounds A-1 to A-3, Compound H-1, and Compound ET-1 are the compounds shown below.
  • the sample was placed in a decompression device, and the laminated base material and the sealing member were pressed and held for 5 minutes under a decompression condition of 0.1 MPa at 90 ° C. Subsequently, the sample was returned to an atmospheric pressure environment and further heated at 120 ° C. for 30 minutes to cure the adhesive.
  • the sealing process is performed under atmospheric pressure and in a nitrogen atmosphere with a moisture content of 1 ppm or less, in accordance with JIS B 9920, with a measured cleanliness of class 100, a dew point temperature of ⁇ 80 ° C. or less, and an oxygen concentration of 0.8 ppm or less. At atmospheric pressure.
  • the description regarding formation of the lead-out wiring from the 1st electrode and the 2nd electricity is omitted.
  • an organic EL element of Sample 102 was produced in the same manner as Sample 101, except that an ITO electrode was formed by sputtering to a thickness of 100 nm.
  • the base material was mounted on the vapor deposition layer manufacturing apparatus shown in FIG. 5 described above, and a vapor deposition layer having a thickness of 300 nm was formed on the base material under the following film forming conditions (plasma CVD conditions).
  • Supply amount of oxygen gas (O2) 500 sccm Degree of vacuum in the vacuum chamber: 3Pa
  • Film transport speed 0.5 m / min
  • the formed vapor deposition layer is fixed on the operation stage of an excimer irradiation apparatus MECL-M-1-200 (manufactured by M.D. Com) and subjected to surface treatment under the following conditions to form a silicon compound constituting the vapor deposition layer
  • the reforming treatment was performed.
  • Irradiation wavelength 172 nm
  • Lamp filled gas Xe Excimer lamp light intensity: 130 mW / cm 2 (172 nm)
  • Distance between sample and light source 1mm
  • Oxygen concentration in the irradiation device 1.0%
  • Excimer lamp irradiation time 3 seconds
  • the substrate is mounted on a commercially available roll-to-roll atmospheric pressure plasma discharge treatment apparatus, and the following deposition conditions (atmospheric pressure plasma CVD: AGP), the first vapor deposition layer, the second vapor deposition layer, A vapor deposition layer having a three-layer structure composed of the third vapor deposition layer was formed.
  • the thickness of the 1st vapor deposition layer, the 2nd vapor deposition layer, and the 3rd vapor deposition layer was produced with a total of 160 nm of 100 nm, 30 nm, and 30 nm, respectively.
  • N2 gas Reaction gas 1 1% of hydrogen gas with respect to the total gas Reaction gas 2: 0.5% TEOS (tetraethoxysilane) with respect to the total gas Film formation conditions;
  • 1st electrode side Power supply type Applied Electronics 80kHz Frequency: 80kHz Output density: 8W / cm2 Electrode temperature: 115 ° C
  • Second electrode side Power supply type Pearl Industrial 13.56MHz CF-5000-13M Frequency: 13.56MHz Output density: 10W / cm2 Electrode temperature: 95 ° C
  • N2 gas Reaction gas 1 5% of oxygen gas to the total gas Reaction gas 2: TEOS is 0.1% of the total gas Film formation conditions;
  • 1st electrode side Power supply type HEIDEN Laboratory 100kHz (continuous mode) PHF-6k Frequency: 100kHz Output density: 10W / cm2 Electrode temperature: 120 ° C
  • Second electrode side Power supply type Pearl Industrial 13.56MHz CF-5000-13M Frequency: 13.56MHz Output density: 10W / cm2 Electrode temperature: 95 ° C
  • Table 1 shows the configurations of the organic EL elements of Samples 101 to 108.
  • Luminescence efficiency Using a spectral radiance meter CS-1000 (manufactured by Konica Minolta Sensing), the front luminance and luminance angle dependency of the organic EL elements of Samples 101 to 108 were measured, and the power efficiency at the front luminance of 1000 cd / m 2 was evaluated. In addition, the electrode efficiency was evaluated by comparing and comparing the power efficiency of the sample 101 with a relative value of 100, and classifying and evaluating the following five levels. 5: 110 or more 4: 91-109 3: 80-90 2: 80 or less 1: 70 or less
  • Rectification ratio rank 5 Rectification ratio of 10000 or more (level at which driving is very stable) 4: Rectification ratio of 1000 or more and less than 10,000 (level of stable driving) 3: Rectification ratio of 500 or more and less than 1000 (slightly inferior, but at a level where there is no practical problem) 2: Rectification ratio of 100 or more and less than 500 (inferior level with practical problems) 1: Rectification ratio of less than 100 (very inferior, practically problematic level)
  • All dark spots generated on the 0th day have a size (0.1 mm or less) that cannot be easily observed by visual observation, luminance unevenness is not observed, and the non-light-emitting area is 0% of the total light-emitting area after 120 days.
  • the generated dark spot maintained a size (0.1 mm or less) that cannot be easily observed visually.
  • the dark spots that occurred on the 3rd day were all in a size (0.1 mm or less) that could not be easily observed visually, and after 120 days, the non-light emitting area exceeded 2% of the total light emitting area.
  • Table 2 shows the evaluation results of the organic EL elements of the samples 101 to 108.
  • composition change (Composition change)
  • the composition change of the silicon compound constituting the vapor deposition layer is represented by the change in the atomic ratio of carbon. From the results shown in FIGS. 7 and 8, the sample 101 has a thickness of 30 nm from the surface and a composition change of 3% or more. The sample 107 is 15 nm thick from the surface and has a composition change of 10% or more.
  • sample 102 and the sample 103 formed by the same manufacturing method as the sample 101 have a composition change of 3% with a thickness of 30 nm from the surface.
  • Samples 105 to 107 formed by the same manufacturing method as sample 104 have a thickness of 15 nm from the surface and a composition change of 10%.
  • the sample 108 had a thickness of 30 nm from the surface and a composition change of 1% or less. That is, the sample 108 is formed by an atmospheric pressure plasma CVD method so that the composition of each layer constituting the vapor deposition layer is uniform, and three layers of this uniform composition are stacked. Therefore, the vapor deposition layer of the sample 108 does not have a continuous composition change of the silicon compound, unlike the vapor deposition layers of the samples 101 to 107.
  • each characteristic evaluation In the samples 101 to 103 in which the composition of the vapor deposition layer is changed by 3% or more from the surface with a thickness of 30 nm, the luminous efficiency of the sample 101 in which the first electrode is formed of Ag is the highest.
  • the sample 101 and the sample 102 subjected to the surface treatment by excimer treatment have a smaller contact angle after the surface treatment than the sample 103 obtained by performing the surface treatment by UV treatment.
  • a decrease in the contact angle indicates that the surface of the deposited layer is hydrophilic. From this result, it is understood that the storage stability of the organic EL element is improved by increasing the hydrophilicity of the surface of the vapor deposition layer.
  • the characteristics of the sample 105 having a long surface treatment time are improved.
  • the surface treatment is performed with more energy. For this reason, it is thought that the preservation
  • the characteristics of the sample 104 having a large composition change on the surface of the vapor deposition layer are improved. From this result, it can be seen that, due to the large composition change of the surface of the vapor deposition layer, even when the surface treatment conditions are the same, the modification treatment of the vapor deposition layer proceeds and the characteristics are improved.
  • the underlayer and the first electrode are formed directly on the vapor deposition layer. Since the deposited layer has a rough plane, leakage characteristics and storage stability are deteriorated as compared with the sample 104. Further, in the sample 107 in which the surface treatment is not performed, the adhesiveness between the vapor deposition layer and the polysilazane modified layer is low, so that the storage stability is lowered as compared with the sample 104. In the sample 108 in which the vapor deposition layer has no composition change, like the sample 107, since the adhesion between the vapor deposition layer and the polysilazane modified layer is low, the leak characteristics and the storage stability are lower than those in the sample 104. .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Plasma & Fusion (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)
  • Laminated Bodies (AREA)

Abstract

 ガスバリアフィルムと、対となる電極と、電極間に少なくとも1層の発光層を有する有機機能層とを備える有機エレクトロルミネッセンス素子を構成する。ガスバリアフィルムは、基材と、炭素(C)、窒素(N)、及び、酸素(O)から選ばれる少なくとも1種以上の元素を含み、表面から厚さ方向に向けて連続的な組成変化を有し、且つ、表面処理されているケイ素化合物の蒸着層と、ポリシラザン改質層とを備える。

Description

ガスバリアフィルム、ガスバリアフィルムの製造方法、及び、有機エレクトロルミネッセンス素子
 本発明は、ガスバリアフィルム、ガスバリアフィルムの製造方法、及び、このガスバリアフィルムを用いた有機エレクトロルミネッセンス素子
に係わる。
 有機材料のエレクトロルミネッセンス(electroluminescence:以下ELと記す)を利用した有機エレクトロルミネッセンス素子(いわゆる有機EL素子)は、数V~数十V程度の低電圧で発光が可能な薄膜型の完全固体素子であり、高輝度、高発光効率、薄型、軽量といった多くの優れた特徴を有する。このため、各種ディスプレイのバックライト、看板や非常灯等の表示板、照明光源等の面発光体として、特に近年では薄型・軽量なバリア膜を有する樹脂基材上のOLEDが注目されている。
 このようなバリア膜への要求に対し、高いバリア性と平滑性により有機EL素子に適したバリア膜が提案されている(例えば、特許文献1参照)。しかし、特許文献1に記載の方法では、蒸着方式でバリア膜が形成されている。蒸着方式のような堆積膜は、平滑性の改良には限界があり、さらなる平滑性の改良技術が臨まれている。
 また、バリア膜の表面に平滑層を導入し、高いバリア性と平滑性の両立ができる技術が提案されている(例えば、特許文献2参照)。しかし、特許文献2に記載の方法では、平滑性が得られるものの、バリア性が十分ではなく、有機EL素子の保存性に課題がある。
 また、蒸着方式のバリア膜にエキシマ処理を施し、さらにポリシラザン層を形成することにより、高いバリア性と平滑性を両立する技術が提案されている(例えば、特許文献3参照)。しかし、特許文献3に記載の方法では、有機EL素子の作製工程において、蒸着膜とポリシラザン層の接着強度が低下し、有機EL素子の折り曲げ特性が劣化する課題がある。
特開2012-084353号公報 特開2008-235165号公報 特開2012-106421号公報
 上述のようにガスバリア性が高く、有機エレクトロルミネッセンス素子に適用した場合に、有機エレクトロルミネッセンス素子の信頼性を向上させることが可能なガスバリアフィルム、及び、このガスバリアフィルムを用いることにより、信頼性の向上が可能な有機エレクトロルミネッセンス素子が求められている。
 上述した問題の解決のため、本発明においては、信頼性の高いガスバリアフィルム、及び、信頼性の高い有機エレクトロルミネッセンス素子を提供するものである。
 本発明のガスバリアフィルムは、基材と、炭素(C)、窒素(N)、及び、酸素(O)から選ばれる少なくとも1種以上の元素を含み、表面から厚さ方向に向けて連続的な組成変化を有し、且つ、表面処理されているケイ素化合物の蒸着層と、ポリシラザン改質層とを備える。
 また、本発明のガスバリアフィルムの製造方法は、基材上に、炭素(C)、窒素(N)、及び、酸素(O)から選ばれる少なくとも1種以上の元素を含み、表面から厚さ方向に向けて連続的な組成変化を有する蒸着層を形成する工程と、蒸着層の表面処理を行う工程と、表面処理後の蒸着層上に、ポリシラザン改質層を形成する工程とを有する。
 また、本発明の有機エレクトロルミネッセンス素子は、上記ガスバリアフィルムと、対となる電極と、電極間に少なくとも1層の発光層を有する有機機能層とを備える。
 本発明のガスバリアフィルム、及び、ガスバリアフィルムの製造方法によれば、蒸着層が、表面から厚さ方向に向けて連続的な組成変化を有していることにより、蒸着層の表面処理が良好となり、ポリシラザン改質層との接着性が向上する。このため、ガスバリアフィルムの信頼性が向上する。
 また、このガスバリアフィルムを用いることにより、信頼性の高い有機エレクトロルミネッセンス素子を構成することができる。
 本発明によれば、信頼性の高いガスバリアフィルム、及び、信頼性の高い有機エレクトロルミネッセンス素子を提供することができる。
第1実施形態のガスバリアフィルムの概略構成を示す図である。 ケイ素分布曲線、酸素分布曲線及び炭素分布曲線を示す図である。 図2に示す炭素分布曲線を拡大した図である。 蒸着層の屈折率分布を示す図である。 蒸着層の製造装置の構成を示す図である。 第3実施形態の有機エレクトロルミネッセンス素子の概略構成を示す図である。 試料101の元素分布曲線を示す図である。 試料104の元素分布曲線を示す図である。
 以下、本発明を実施するための最良の形態の例を説明するが、本発明は以下の例に限定されるものではない。
 なお、説明は以下の順序で行う。
1.ガスバリアフィルムの実施の形態(第1実施形態)
2.ガスバリアフィルムの製造方法(第2実施形態)
3.有機エレクトロルミネッセンス素子の実施形態(第3実施形態)
〈1.ガスバリアフィルムの実施の形態(第1実施形態)〉
[ガスバリアフィルムの構成]
 本発明のガスバリアフィルムの具体的な実施の形態について説明する。
 図1に、第1実施形態のガスバリアフィルムの概略構成図(断面図)を示す。図1に示すように、ガスバリアフィルム10は、基材11、ケイ素化合物の蒸着層12、及び、ポリシラザン改質層13を備える。
 なお、本例のガスバリアフィルム10において、光透過性とは波長550nmでの光透過率が50%以上であることをいう。
 本例のガスバリアフィルム10は、基材11上に、C、N、及び、Oから選ばれる少なくとも1種以上の元素を含むケイ素化合物の蒸着層12上が形成されている。そして、このケイ素化合物の蒸着層12上にポリシラザン改質層13が形成された構成を有する。
 ガスバリアフィルム10において、上記蒸着層12を構成するケイ素化合物は、炭素(C)、窒素(N)、及び、酸素(O)から選ばれる少なくとも1種以上の元素を含む。そして、これらのC、N、及び、Oから選ばれる少なくとも1種以上の元素の元素比率が変化することにより、蒸着層12は、表面から厚さ方向に向けて連続的な組成変化を有する。
 また、蒸着層12は、ポリシラザン改質層13が形成される面(表面)側において、ポリシラザン改質層13を形成する前に、ケイ素化合物に表面処理が行われる。
 本例のガスバリアフィルムにおいて、ポリシラザン改質層13は、シラザン化合物を含む液体を塗布、乾燥した後に改質処理された層である。
 以下、ガスバリアフィルム10の構成について詳細に説明する。
[基材]
 ガスバリアフィルム10に適用される基材11としては、ガスバリアフィルム10にフレキシブル性を与えることが可能な可撓性の基材であれば特に限定されない。可撓性の基材としては、透明樹脂フィルムを挙げることができる。
 樹脂フィルムとしては、例えば、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)等のポリエステル、ポリエチレン、ポリプロピレン、セロファン、セルロースジアセテート、セルローストリアセテート(TAC)、セルロースアセテートブチレート、セルロースアセテートプロピオネート(CAP)、セルロースアセテートフタレート、セルロースナイトレート等のセルロースエステル類又はそれらの誘導体、ポリ塩化ビニリデン、ポリビニルアルコール、ポリエチレンビニルアルコール、シンジオタクティックポリスチレン、ポリカーボネート、ノルボルネン樹脂、ポリメチルペンテン、ポリエーテルケトン、ポリイミド、ポリエーテルスルホン(PES)、ポリフェニレンスルフィド、ポリスルホン類、ポリエーテルイミド、ポリエーテルケトンイミド、ポリアミド、フッ素樹脂、ナイロン、ポリメチルメタクリレート、アクリル又はポリアリレート類、アートン(商品名JSR社製)又はアペル(商品名三井化学社製)といったシクロオレフィン系樹脂等が挙げられる。
 これら樹脂フィルムのうち、コストや入手の容易性の点では、ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート、ポリエチレンナフタレート(PEN)、ポリカーボネート(PC)等のフィルムが好ましく用いられる。また、光学的透明性、耐熱性、蒸着層12やポリシラザン改質層13との密着性の点においては、有機無機ハイブリッド構造を有するシルセスキオキサンを基本骨格とした耐熱透明フィルムが好ましく用いられる。
 この基材11の厚さは5~500μm程度が好ましく、さらに好ましくは25~250μmである。
 また、基材11が光透過性を有することが好ましい。基材11が光透過性を有することにより、光透過性を有するガスバリアフィルム10とすることが可能となる。そして、この光透過性のガスバリアフィルム10を、有機EL素子や太陽電池等の透明基板や封止フィルムとして好適に用いることができる。
[蒸着層]
 基材11上には、蒸着層12が設けられている。蒸着層12は、蒸着法により形成されたケイ素化合物から構成される。このケイ素化合物は、炭素(C)、窒素(N)、及び、酸素(O)から選ばれる少なくとも1種以上の元素を含む。また、蒸着層12は、表面から厚さ方向に向けて連続的な組成変化を有する。さらに、蒸着層12の表面が改質処理され、蒸着層12を構成するケイ素化合物の表面に、親水性の改質部が形成されている。
(組成)
 蒸着層12を構成するケイ素化合物は、表面から深さ方向(厚さ方向)において、傾斜状に組成が変化する特徴を有している。この組成変化は、直線状や曲線状でよく、実質的に連続であればよい。
 ケイ素化合物の組成変化は、ケイ素化合物を構成する任意の元素の元素比率変化から定義される。例えば、ケイ素炭素酸化物においては、炭素元素又は酸素元素の比率の変化量から、ケイ素化合物の組成変化量を定義する。つまり、ケイ素化合物 の組成変化は、ケイ素化合物に含まれるC、N、及び、Oから選ばれる任意の1種の元素比率の変化により定義される。或いは、C、N、及び、Oから選ばれる任意の元素の合計比率、例えば、炭素と酸素の合計比率や、炭素と窒素の合計比率、又は、炭素と窒素と酸素との合計比率の変化により、ケイ素化合物の組成変化が定義される。
 これらのC、N、及び、Oから選ばれる任意の元素、又は、任意の元素の合計の元素比率が、表面から厚さ方向に向けて連続的に変化することを、蒸着層12のケイ素化合物の連続的な組成変化とする。
 組成変化の実質的に連続とは、後述するC、N、及び、Oから選ばれる任意の元素の分布曲線において、元素の原子比が不連続に変化する部分を含まないことを意味する。具体的には、エッチング速度とエッチング時間とから算出される蒸着層12の表面からの距離(x、単位:nm)と、任意の元素例えば炭素の原子比(C、単位:at%)とが、[(dC/dx)≦0.5]で表される条件を満たす。
 ケイ素化合物の組成は、表面から30nm深さの領域において、5%以上変化していることが好ましく、10%以上変化していることがさらに好ましい。特に、表面から15nm深さの領域において、5%以上変化していることが好ましく、10%以上変化していることがさらに好ましい。
 ケイ素化合物が深さ方向で組成変化する領域は、後述する表面処理が効力を発する領域となる。
 また、ケイ素化合物の組成変化は、C、N、及び、Oから選ばれる少なくとも1種以上の元素の元素比率が表面から厚さ方向に向けて連続的に増加していてもよく、或いは、元素比率が表面から厚さ方向に向けて連続的に減少していてもよい。
(表面処理)
 蒸着層12は、ポリシラザン改質層13と接する側の面(表面)が、表面処理により改質されている。この表面処理は、ポリシラザン改質層13との接着性を向上させるために行われる。このため、蒸着層12の表面処理は、ポリシラザン改質層13を形成する前に行う必要がある。
 表面処理方法は、基材11として樹脂フィルムを用いることを考慮し、低温で行うことが可能な方法を選択することが好ましい。例えば、プラズマ、オゾン、及び、紫外線を用いる処理が好ましい。
 表面処理により、蒸着層12の表面にヒドロキシル基(OH)、アシル基(COH)、カルボキシル基(COOH)等の親水基を形成する。この親水基により、蒸着層12上に形成されるポリシラザン改質層13を形成する際のポリシラザンの塗布液の濡れ性が向上する。このため、ポリシラザン改質層13の形成が容易になる。さらに、ヒドロキシル基(OH)等とポリシラザンと物理的又は化学的な相互作用(ファンデルワールス力や水素結合)により、蒸着層12とポリシラザン改質層13との接着性が向上する。
 例えば、Xeエキシマランプによる表面処理では、エキシマランプから光子エネルギーの高い波長172nmの真空紫外光(VUV)が発生する。このVUVが蒸着層12に照射されると、蒸着層12を構成するケイ素化合物のケイ素と炭素との結合(Si-C)や、ケイ素と酸素との結合(Si-O)が、光子エネルギーにより切断される。
 また、VUVが酸素に吸収され、活性酸素とオゾンを生成する。生成されたオゾンは再び分解して、活性酸素を形成する。
 ケイ素化合物から分解された原子と、発生した活性酸素との結合により、ヒドロキシル基(OH)、アシル基(COH)、カルボキシル基(COOH)等の親水基が、蒸着層の表面に形成される。
 蒸着層12を構成するケイ素化合物が、表面から深さ方向に上述の連続的な組成変化を有することにより、表面処理によるケイ素化合物の改質が表面から深さ方向に進みやすい。これは、以下の理由によるものと推測される。
 一例として、上述のエキシマ光で切断されやすい、ケイ素化合物のケイ素と炭素との結合(Si-C)と、炭素の元素比率とを用いて、ケイ素化合物の改質処理を説明する。
 ケイ素化合物の組成変化が厚さ方向に連続的に増加する場合を、炭素の元素比率が蒸着層12の表面の濃度が高く、厚さ方向に減少する構成とする。
 この構成では、炭素の元素比率が高い表面で吸収されるものの、炭素の元素比率が連続的に低くなる深い位置ほど、エキシマ光の透過が効果的となる。つまり、深い位置までの透過が有効となるため、ケイ素化合物の深い位置での改質処理が進みやすい。
 ケイ素化合物の組成変化が厚さ方向に連続的に減少する場合を、炭素の元素比率が表面で小さく、厚さ方向に増加する構成とする。
 この構成では、炭素の元素比率が低い表面での吸収よりも、炭素の元素比率が連続的に高くなる深い位置ほど、エキシマ光の吸収が効果的となる。つまり、表面から深さ方向へのエキシマ光の照射が有効となる。深い位置での吸収が有効となるため、ケイ素化合物の深い位置での改質処理が進みやすい。
 これに対し、厚さ方向に均一な組成、つまり炭素の元素比率が厚さ方向で均一であると、Si-Cに吸収されるエキシマ光の表面での吸収が大きい。さらに、エキシマ光の照射で生成した活性酸素等が、直下のケイ素化合物で消費されるため、深さ方向に改質処理が進みにくい。
 また、組成変化が不均一な場合には、深さ方向で局所的に濃度が高い部分や低い部分が存在する。局所的に炭素の元素比率が高いと、この高い部分でエキシマ光の吸収が集中する。このため、この元素比率が高い部分に改質が集中し、その周囲の部分での改質が進みにくい。局所的に炭素の元素比率が低い部分では、表面からの連鎖的な改質が停止しやすく、深さ方向への改質が進みにくくなる。このように、局所的な元素比率の変化があると、ケイ素化合物の深さ方向への改質処理が進みにくくなる。
(プラズマ処理)
 ケイ素化合物の表面処理に用いるプラズマ処理は、公知の方法を用いることができるが、大気圧プラズマ処理が好ましい。大気圧プラズマ処理の場合は、放電ガスとしては窒素ガス及び/又は周期表の第18属原子、具体的には、ヘリウム、ネオン、アルゴン、クリプトン、キセノン、ラドン等が用いられる。これらの中でも窒素、ヘリウム、アルゴンが好ましく用いられ、特に窒素がコストも安く好ましい。
 プラズマ処理の一例として、大気圧プラズマ処理について説明する。大気圧プラズマは、具体的には、国際公開第2007-026545号に記載される様に、放電空間に異なる周波数の電界を2つ以上形成したもので、第1の高周波電界と第2の高周波電界とを重畳した電界を形成することが好ましい。
 大気圧プラズマ処理は、第1の高周波電界の周波数ω1より第2の高周波電界の周波数ω2が高く、且つ、第1の高周波電界の強さV1と、第2の高周波電界の強さV2と、放電開始電界の強さIVとの関係が、
     V1≧IV>V2 又は V1>IV≧V2
を満たし、第2の高周波電界の出力密度が、1W/cm2以上である。
 この様な放電条件をとることにより、例えば窒素ガスのように放電開始電界強度が高い放電ガスでも、放電を開始し、高密度で安定なプラズマ状態を維持でき、高性能な薄膜形成を行うことができる。
 上記の測定により放電ガスを窒素ガスとした場合、その放電開始電界強度IV(1/2Vp-p)は3.7kV/mm程度であり、従って、上記の関係において、第1の印加電界強度を、V1≧3.7kV/mmとして印加することによって窒素ガスを励起し、プラズマ状態にすることができる。
 ここで、第1電源の周波数としては、200kHz以下を好ましく用いることができる。また、この電界波形としては、連続波でもパルス波でもよい。下限は1kHz程度が望ましい。
 一方、第2電源の周波数としては、800kHz以上を好ましく用いることができる。この第2電源の周波数が高い程、プラズマ密度が高くなり、緻密で良質な薄膜が得られる。上限は200MHz程度が望ましい。
 このような2つの電源から高周波電界を形成することは、第1の高周波電界によって高い放電開始電界強度を有する放電ガスの放電を開始するのに必要であり、また、第2の高周波電界の高い周波数及び高い出力密度によりプラズマ密度を高くして緻密で良質な薄膜を形成することができる。
(紫外線照射処理)
 ケイ素化合物の表面処理の方法としては、紫外線照射による処理も好ましい。紫外線(紫外光と同義)によって生成されるオゾンや活性酸素原子は高い酸化能力を有しており、低温で高い緻密性と絶縁性を有する酸化ケイ素膜又は酸化窒化ケイ素膜を作製することが可能である。
 この紫外線照射により、基材が加熱され、セラミックス化(シリカ転化)に寄与するO2とH2Oや、紫外線吸収剤、ケイ素化合物自身が励起、活性化されるため、ケイ素化合物の表面が親水化する。
 本実施形態に係る方法では、常用されているいずれの紫外線発生装置でも使用することが可能である。
 なお、本例において、「紫外線」とは、一般には、10~400nmの波長を有する電磁波をいうが、後述する真空紫外線(10~200nm)照射処理以外の紫外線照射処理の場合は、好ましくは210~350nmの紫外線を用いる。
 紫外線の照射は、照射される塗膜を担持している基材がダメージを受けない範囲に、照射強度や照射時間を設定する。
 基材としてプラスチックフィルムを用いた場合を例にとると、たとえば2kW(80W/cm×25cm)のランプを用い、基材表面の強度が20~300mW/cm2、好ましくは50~200mW/cm2になるように基材-ランプ間距離を設定し、0.1秒~10分間の照射を行うことができる。
 一般に、紫外線照射処理時の基材温度が150℃以上になると、プラスチックフィルム等の場合には基材の変形や、強度の劣化など、基材が損なわれる。しかしながら、ポリイミド等の耐熱性の高いフィルムや、金属等の基材の場合には、より高温での処理が可能である。従って、この紫外線照射時の基材温度に一般的な上限はなく、基材の種類によって当業者が適宜設定することができる。また、紫外線照射雰囲気に特に制限はなく、空気中で実施すればよい。
 このような紫外線の発生方法としては、例えば、メタルハライドランプ、高圧水銀ランプ、低圧水銀ランプ、キセノンアークランプ、カーボンアークランプ、エキシマランプ(172nm、222nm、308nmの単一波長、例えば、ウシオ電機(株)製)、UV光レーザー等が挙げられるが、特に限定されない。また、発生させた紫外線をケイ素化合物に照射する際には、効率の向上のため均一な照射を達成するためにも、発生源からの紫外線を反射板で反射させてから塗膜に当てることが望ましい。
 紫外線照射は、バッチ処理にも連続処理にも適合可能であり、被塗布基材の形状によって適宜選定することができる。例えば、バッチ処理の場合には、ケイ素化合物を表面に有する基材(例、シリコンウェハー)を上記のような紫外線発生源を具備した紫外線焼成炉で処理することができる。紫外線焼成炉自体は一般に知られており、例えば、アイグラフィクス(株)製を使用することができる。また、ポリシラザン塗膜を表面に有する基材が長尺フィルム状である場合には、これを搬送させながら上記のような紫外線発生源を具備した乾燥ゾーンで連続的に紫外線を照射することにより改質処理を行うことができる。紫外線照射に要する時間は、塗布される基材やコーティング組成物の組成、濃度にもよるが、一般に0.1秒~10分、好ましくは0.5秒~3分である。
(真空紫外線照射処理;エキシマ照射処理)
 さらに好ましいケイ素化合物の表面処理の方法としては、真空紫外線照射による処理が挙げられる。真空紫外線照射による処理は、ケイ素化合物内の原子間結合力より大きい100~200nmの光エネルギーを用い、好ましくは100~180nmの波長の光のエネルギーを用い、原子の結合を光量子プロセスと呼ばれる光子のみの作用により、直接切断しながら活性酸素やオゾンによる酸化反応を進行させることで、比較的低温で、表面処理を行う方法である。
 これに必要な真空紫外光源としては、希ガスエキシマランプが好ましく用いられる。
(エキシマ発光)
 Xe,Kr,Ar,Neなどの希ガスの原子は化学的に結合して分子を作らないため、不活性ガスと呼ばれる。しかし、放電などによりエネルギーを得た希ガスの原子(励起原子)は他の原子と結合して分子を作ることができる。希ガスがキセノンの場合には、
 e+Xe→e+Xe*
 Xe*+Xe+Xe→Xe2*+Xe
となり、励起されたエキシマ分子であるXe2*が基底状態に遷移するときに172nmのエキシマ光を発光する。エキシマランプの特徴としては、放射が一つの波長に集中し、必要な光以外がほとんど放射されないので効率が高いことが挙げられる。
 また、余分な光が放射されないので、対象物の温度を低く保つことができる。さらには始動・再始動に時間を要さないので、瞬時の点灯点滅が可能である。
 エキシマ発光を得るには誘電体バリア放電を用いる方法が知られている。誘電体バリア放電とは、両電極間に誘電体(エキシマランプの場合は透明石英)を介してガス空間を配し、電極に数10kHzの高周波高電圧を印加することによりガス空間に生じる、雷に似た非常に細いmicro dischargeと呼ばれる放電である。micro dischargeのストリーマが管壁(誘電体)に達すると誘電体表面に電荷が溜まるため、micro dischargeは消滅する。このように、誘電体バリア放電とは、micro dischargeが管壁全体に広がり、生成・消滅を繰り返している放電である。このため肉眼でも分かる光のチラツキを生じる。また、非常に温度の高いストリーマが局所的に直接管壁に達するため、管壁の劣化を早める可能性もある。
 効率よくエキシマ発光を得る方法としては、誘電体バリア放電以外に無電極電界放電でも可能である。容量性結合による無電極電界放電で、別名RF放電とも呼ばれる。ランプと電極およびその配置は基本的には誘電体バリア放電と同じでよいが、両極間に印加される高周波は数MHzで点灯される。無電極電界放電はこのように空間的にまた時間的に一様な放電が得られるため、チラツキが無い長寿命のランプが得られる。
 誘電体バリア放電の場合はmicro dischargeが電極間のみで生じるため、放電空間全体で放電を行わせるには外側の電極は外表面全体を覆い、かつ外部に光を取り出すために光を透過するものでなければならない。このため細い金属線を網状にした電極が用いられる。この電極は光を遮らないようにできるだけ細い線が用いられるため、酸素雰囲気中では真空紫外光により発生するオゾンなどにより損傷しやすい。
 これを防ぐためにはランプの周囲、すなわち照射装置内を窒素などの不活性ガスの雰囲気にし、合成石英の窓を設けて照射光を取り出す必要が生じる。合成石英の窓は高価な消耗品であるばかりでなく、光の損失も生じる。
 二重円筒型ランプは外径が25mm程度であるため、ランプ軸の直下とランプ側面では照射面までの距離の差が無視できず、照度に大きな差を生じる。したがって仮にランプを密着して並べても、一様な照度分布が得られない。合成石英の窓を設けた照射装置にすれば酸素雰囲気中の距離を一様にでき、一様な照度分布が得られる。
 無電極電界放電を用いた場合には外部電極を網状にする必要は無い。ランプ外面の一部に外部電極を設けるだけでグロー放電は放電空間全体に広がる。外部電極には通常アルミのブロックで作られた光の反射板を兼ねた電極がランプ背面に使用される。しかし、ランプの外径は誘電体バリア放電の場合と同様に大きいため一様な照度分布にするためには合成石英が必要となる。
 細管エキシマランプの最大の特徴は構造がシンプルなことである。石英管の両端を閉じ、内部にエキシマ発光を行うためのガスを封入しているだけである。したがって、非常に安価な光源を提供できる。
 二重円筒型ランプは内外管の両端を接続して閉じる加工をしているため、細管ランプに比べ取り扱いや輸送で破損しやすい。また、細管ランプの管の外径は6~12mm程度で、あまり太いと始動に高い電圧が必要になる。
 放電の形態は誘電体バリア放電でも無電極電界放電のいずれでも使用できる。電極の形状はランプに接する面が平面であってもよいが、ランプの曲面に合わせた形状にすればランプをしっかり固定できるとともに、電極がランプに密着することにより放電がより安定する。また、アルミで曲面を鏡面にすれば光の反射板にもなる。
 Xeエキシマランプは波長の短い172nmの紫外線を単一波長で放射することから発光効率に優れている。この光は、酸素の吸収係数が大きいため、微量な酸素でラディカルな酸素原子種やオゾンを高濃度で発生することができる。また、有機物の結合を解離させる波長の短い172nmの光のエネルギーは能力が高いことが知られている。この活性酸素やオゾンと紫外線放射が持つ高いエネルギーによって、短時間でケイ素化合物の改質を実現できる。したがって、波長185nm、254nmの発する低圧水銀ランプやプラズマ洗浄と比べて高スループットに伴うプロセス時間の短縮や設備面積の縮小、熱によるダメージを受けやすい有機材料やプラスチック基板などへの照射を可能としている。
 エキシマランプは光の発生効率が高いため低い電力の投入で点灯させることが可能である。また、光による温度上昇の要因となる波長の長い光は発せず、紫外線領域で単一波長のエネルギーを照射するため、解射対象物の表面温度の上昇が抑えられる特徴を持っている。このため、熱の影響を受けやすいとされるPETなどのフレシキブルフィルム材料に適している。
(元素の分布曲線)
 蒸着層12は、C、N及びOから選ばれる少なくとも1種以上の元素含むケイ素化合物から構成され、C、N及びOの含有率が連続的に変化する構造を有する。そして、蒸着層12は、膜厚方向における蒸着層12の表面(ポリシラザン改質層13側の界面)からの距離と、上記各元素(ケイ素、炭素、窒素又は酸素)の原子量の比率(原子比)との関係を示す、各元素の分布曲線に特徴を有している。
 なお、各元素の原子比は、ケイ素、炭素、窒素及び酸素の各元素の合計量に対する、ケイ素、炭素、窒素又は酸素の比率[(Si,O,C,N)/(Si+O+C+N)]で表す。
 ケイ素分布曲線、炭素分布曲線、窒素分布曲線、及び、酸素分布曲線は、蒸着層12の表面からの距離における、ケイ素の原子比、酸素の原子比、炭素の原子比、及び、窒素の原子比を示す。
 また、膜厚方向における蒸着層12の表面(ポリシラザン改質層13側の界面)からの距離と、酸素と炭素との合計の原子量の比率(原子比)との関係を示す分布曲線を、酸素炭素分布曲線とする。
 蒸着層12の屈折率分布は、蒸着層12の厚さ方向の炭素量及び酸素量により制御することができる。
 図2に、蒸着層12のケイ素分布曲線、酸素分布曲線、炭素分布曲線、及び、窒素分布曲線の一例を示す。また、図3に、図2に示すケイ素分布曲線、酸素分布曲線、炭素分布曲線、及び、窒素分布曲線から、炭素分布曲線を拡大して示す。図2及び図3において、横軸は、膜厚方向における蒸着層12の表面からの距離[nm]を示す。また、縦軸は、ケイ素、酸素及び炭素の各元素の合計量に対する、ケイ素、酸素、炭素又は窒素のそれぞれの原子比[at%]を示す。
 なお、ケイ素分布曲線、酸素分布曲線、炭素分布曲線、及び、窒素分布曲線の測定方法の詳細については後述する。
 図2に示すように、蒸着層12の表面からの距離によって、ケイ素、酸素、炭素、及び、窒素の原子比が変化している。特に、酸素及び炭素については、蒸着層12の表面からの距離に応じて原子比の変動が大きく、それぞれの分布曲線が複数の極値を有している。また、酸素の分布曲線と炭素分布曲線とは相関関係にあり、炭素の原子比が大きい距離では酸素の原子比が小さくなり、炭素の原子比が小さい距離では酸素の原子比が大きくなる。
 ケイ素化合物の組成変化は、ケイ素化合物に含まれるC、N、及び、Oから選ばれる任意の1種の元素の分布曲線の変化により定義される。このため、蒸着層12を構成するケイ素化合物が厚さ方向において傾斜状に組成が変化するため、ケイ素化合物に含まれるC、N、及び、Oから選ばれる任意の1種の元素の分布曲線も、連続的に傾斜状の組成変化を有する。
 従って、蒸着層12を構成するケイ素化合物は、上述のケイ素化合物に含まれる任意の元素の分布曲線(原子比)が、表面から30nm深さの領域で5%以上変化していることが好ましく、10%以上変化していることがさらに好ましい。特に、表面から15nm深さの領域において、5%以上変化していることが好ましく、10%以上変化していることがさらに好ましい。
(元素の分布曲線と屈折率分布との関係)
 上述のように、蒸着層12は、厚さ方向において傾斜状に組成が変化するため、厚さ方向において組成変化に依存した屈折率の分布を有す。蒸着層12は、屈折率分布において1つ以上の極値を持つことが好ましい。
 図4に、蒸着層12の屈折率分布曲線を示す。図4において、横軸は、膜厚方向における蒸着層12の表面からの距離[nm]を示す。縦軸は、蒸着層12の屈折率を示す。図4に示す蒸着層12の屈折率は、膜厚方向における蒸着層12の表面からの距離と、この距離における蒸着層12の可視光に対する屈折率の測定値である。蒸着層12の屈折率分布の測定は、公知の方法を用いることができ、例えば分光エリプソメーター(日本分光社製 ELC-300)等を用い行うことができる。
 図3及び図4に示すように、炭素の原子比と蒸着層12の屈折率とには相関関係がある。具体的には、蒸着層12において、炭素の原子比が増加する位置において、蒸着層12の屈折率も増加する。このように、炭素の原子比に応じて、蒸着層12の屈折率が変化する。つまり、蒸着層12において、膜厚方向の炭素の原子比の分布を調整することにより、蒸着層12の屈折率分布曲線を制御することができる。
 また、上述のように炭素の原子比と酸素の原子比とにも相関関係があることから、酸素の原子比及び分布曲線を制御することにより、蒸着層12の屈折率分布曲線を制御することができる。
 屈折率分布に極値を有する蒸着層12を備えることにより、基材11の界面で起こる反射や干渉を抑制することができる。このため、ガスバリアフィルム10を透過する光が、蒸着層12の作用により、全反射や干渉の影響を受けずに出光する。従って、光量が低減せず、ガスバリアフィルム10の光の取り出し効率が向上する。
(各元素の分布曲線の条件)
 蒸着層12は、上述の連続的な組成変化に加えて、さらに、ケイ素、酸素及び炭素の原子比、又は、各元素の分布曲線が、以下(i)~(iii)の条件を満たすことが好ましい。
(i)ケイ素の原子比、酸素の原子比及び炭素の原子比が、蒸着層12の膜厚の90%以上の領域において下記式(1):
(酸素の原子比)>(ケイ素の原子比)>(炭素の原子比)・・・(1)
で表される条件を満たす。
 または、ケイ素の原子比、酸素の原子比及び炭素の原子比が、蒸着層12の膜厚の90%以上の領域において下記式(2):
(炭素の原子比)>(ケイ素の原子比)>(酸素の原子比)・・・(2)
で表される条件を満たす。
(ii)炭素分布曲線が少なくとも1つの極大値と極小値とを有する。
(iii)炭素分布曲線における炭素の原子比の最大値及び最小値の差の絶対値が5at%以上である。
 ガスバリアフィルム10は、上記条件(i)~(iii)を全て満たす蒸着層12を有することが好ましい。また、上記条件(i)~(iii)を全て満たす蒸着層12を、2層以上備えていてもよい。蒸着層12を2層以上備える場合には、複数の蒸着層の材質は、同一であってもよく、異なっていてもよい。蒸着層12を2層以上備える場合には、蒸着層12は基材11の一方の表面上に形成されていてもよく、基材11の両方の表面上に形成されていてもよい。
 蒸着層12の屈折率は、上述の図3,4に示す相関関係のように、炭素又は酸素の原子比により制御することができる。このため、上記条件(i)~(iii)により、蒸着層12の屈折率を好ましい範囲に調整することができる。
(炭素分布曲線)
 蒸着層12は、炭素分布曲線が少なくとも1つの極値を有することが好ましい。このような蒸着層12においては、炭素分布曲線が少なくとも2つの極値を有することがより好ましく、少なくとも3つの極値を有することが特にさらに好ましい。さらに、炭素分布曲線が少なくとも1つの極大値と、1つの極小値とを有することが好ましい。
 炭素分布曲線が極値を有さない場合には、得られる蒸着層12の配光性が不十分となる。このため、ガスバリアフィルム10の光の角度依存性を解消することが困難となる。
 また、蒸着層12が3つ以上の極値を有する場合には、炭素分布曲線の有する1つの極値と、この極値に隣接する他の極値とは、蒸着層12の表面からの膜厚方向の距離の差が、200nm以下であることが好ましく、100nm以下であることがより好ましい。
(極値)
 蒸着層12において、分布曲線の極値とは、蒸着層12の膜厚方向における、蒸着層12の表面からの距離に対する元素の原子比の極大値又は極小値、又はその値に対応した屈折率分布曲線の測定値である。
 蒸着層12において、各元素の分布曲線の極大値とは、蒸着層12の表面からの距離を変化させた場合に、元素の原子比の値が増加から減少に変わる点である。なおかつ、この点から、蒸着層12の表面からの距離を更に20nm変化させた位置の元素の原子比の値が、3at%以上減少する点である。
 蒸着層12において、各元素の分布曲線の極小値とは、蒸着層12の表面からの距離を変化させた場合に元素の原子比の値が減少から増加に変わる点である。なおかつ、この点から、蒸着層12の表面からの距離を更に20nm変化させた位置の元素の原子比の値が、3at%以上増加する点である。
 また、蒸着層12の炭素分布曲線において、炭素の原子比の最大値と最小値との差の絶対値は、5at%以上であることが好ましい。また、このような蒸着層12においては、炭素の原子比の最大値と最小値との差の絶対値が、6at%以上であることがより好ましく、さらに7at%以上であることが好ましい。炭素の原子比の最大値と最小値との差が上記範囲未満では、得られる蒸着層12の屈折率分布曲線における屈折率差が小さくなり、配光性が不十分となる。
 炭素分布量と屈折率は相関があり、上記の好ましい炭素原子の最大値と最小値の絶対値が7at%以上のときに、得られる屈折率の最大値と最小値との差の絶対値は0.2以上になる。
(酸素分布曲線)
 蒸着層12は、酸素分布曲線が少なくとも1つの極値を有することが好ましい。特に、蒸着層12は、酸素分布曲線が少なくとも2つの極値を有することがより好ましく、少なくとも3つの極値を有することがさらに好ましい。さらに、酸素分布曲線が少なくとも1つの極大値と、1つの極小値とを有することが好ましい。
 酸素分布曲線が極値を有さない場合には、得られる蒸着層12の配光性が不十分となる。このため、ガスバリアフィルム10の光の角度依存性を解消することが困難となる。
 また、蒸着層12が3つ以上の極値を有する場合には、酸素分布曲線の有する1つの極値と、この極値に隣接する他の極値とは、蒸着層12の表面からの膜厚方向の距離の差が、200nm以下であることが好ましく、100nm以下であることがより好ましい。
 また、蒸着層12の酸素分布曲線において、酸素の原子比の最大値と最小値との差の絶対値が、5at%以上であることが好ましい。また、このような蒸着層12においては、酸素の原子比の最大値と最小値との差の絶対値が6at%以上であることがより好ましく、さらに7at%以上であることが好ましい。酸素の原子比の最大値と最小値との差が上記範囲未満では、得られる蒸着層12の屈折率分布曲線から、配光性が不十分となる。
(ケイ素分布曲線)
 蒸着層12は、ケイ素分布曲線において、ケイ素の原子比の最大値と最小値との差の絶対値が、5at%未満であることが好ましい。また、このような蒸着層12においては、ケイ素の原子比の最大値と最小値との差の絶対値が4at%未満であることがより好ましく、さらに3at%未満であることが好ましい。ケイ素の原子比の最大値と最小値との差が上記範囲以上では、得られる蒸着層12の屈折率分布曲線から配光性が不十分となる。
(酸素と炭素の合計量:酸素炭素分布曲線)
 また、蒸着層12において、ケイ素原子と酸素原子と炭素原子との合計量に対する、酸素原子と炭素原子との合計量の比率を、酸素炭素分布曲線とする。
 蒸着層12は、酸素炭素分布曲線において、酸素及び炭素の合計原子比の最大値と最小値との差の絶対値が、5at%未満であることが好ましく、4at%未満であることがより好ましく、3at%未満であることが特に好ましい。
 酸素及び炭素の合計原子比の最大値と最小値との差が上記範囲以上では、得られる蒸着層12の屈折率分布曲線から配光性が不十分となる。
(XPSデプスプロファイル)
 上述のケイ素分布曲線、酸素分布曲線、炭素分布曲線、酸素炭素分布曲線、及び、窒素分布曲線は、X線光電子分光法(XPS:Xray Photoelectron Spectroscopy)の測定と、アルゴン等の希ガスイオンスパッタとを併用することにより、試料内部を露出させつつ順次表面組成分析を行う、いわゆるXPSデプスプロファイル測定により作成することができる。XPSデプスプロファイル測定により得られる分布曲線は、例えば、縦軸を各元素の原子比(単位:at%)とし、横軸をエッチング時間(スパッタ時間)として作成することができる。
 なお、横軸をエッチング時間とする元素の分布曲線では、エッチング時間が蒸着層12の膜厚方向における表面からの距離に概ね相関する。このため、XPSデプスプロファイル測定の際に、エッチング速度とエッチング時間との関係から算出される、蒸着層12の表面からの距離を「膜厚方向における蒸着層12の表面からの距離」として採用することができる。
 XPSデプスプロファイル測定には、エッチングイオン種としてアルゴン(Ar+)を用いた希ガスイオンスパッタ法を採用し、エッチング速度(エッチングレート)を0.05nm/sec(SiO2熱酸化膜換算値)とすることが好ましい。
 また、蒸着層12は、膜面全体において均一で且つ優れた配光性を有する層を形成するという観点から、蒸着層12が膜面方向(蒸着層12の表面に平行な方向)において実質的に一様であることが好ましい。蒸着層12が膜面方向において実質的に一様とは、蒸着層12の膜面の任意の2箇所において、それぞれの測定箇所の元素の分布曲線の有する極値の数が同じであり、且つ、分布曲線における炭素の原子比の最大値及び最小値の差の絶対値が互いに同じ、或いは、最大値及び最小値の差が5at%以内であることをいう。
(ケイ素原子比、酸素原子比)
 また、ケイ素分布曲線、酸素分布曲線及び炭素分布曲線において、ケイ素の原子比、酸素の原子比及び炭素の原子比が、蒸着層12の膜厚の90%以上の領域において上記式(1)で表される条件を満たすことが好ましい。この場合には、蒸着層12中におけるケイ素原子、酸素原子及び炭素原子の合計量に対する、ケイ素原子の含有量の原子比率は、25~45at%であることが好ましく、30~40at%であることがより好ましい。
 また、蒸着層12中におけるケイ素原子、酸素原子及び炭素原子の合計量に対する、酸素原子の含有量の原子比率は、33~67at%であることが好ましく、45~67at%であることがより好ましい。
 さらに、蒸着層12中におけるケイ素原子、酸素原子及び炭素原子の合計量に対する、炭素原子の含有量の原子比率は、3~33at%であることが好ましく、3~25at%であることがより好ましい。
(蒸着層の厚さ)
 蒸着層12の厚さは、5~3000nmの範囲であることが好ましく、10~2000nmの範囲であることがより好ましく、100~1000nmの範囲であることが特に好ましい。蒸着層12の厚さが上記範囲を外れると、蒸着層12の配光性が不十分となる。
 また、蒸着層12を複数の層から形成する場合には、蒸着層12の全体の厚さが10~10000nmの範囲であり、10~5000nmの範囲であることが好ましく、100~3000nmの範囲であることがより好ましく、200~2000nmの範囲であることが特に好ましい。
(プライマー層)
 蒸着層12は、基材11との間にプライマーコート層、ヒートシール性樹脂層、接着剤層等を備えていてもよい。プライマーコート層は、基材11と蒸着層12との接着性を向上させることが可能な公知のプライマーコート剤を用いて形成することができる。また、ヒートシール性樹脂層は、適宜公知のヒートシール性樹脂を用いて形成することができる。さらに、接着剤層は、適宜公知の接着剤を用いて形成することができ、このような接着剤層により複数の蒸着層12を接着させてもよい。
[蒸着層の製造方法]
 ガスバリアフィルム10においては、蒸着層12がプラズマ化学気相成長(プラズマCVD,PECVD)法により形成された層であることが好ましい。プラズマ化学気相成長法により形成される蒸着層12としては、基材11を一対の成膜ロール上に配置し、この一対の成膜ロール間に放電してプラズマを発生させるプラズマ化学気相成長法で形成された層であることがより好ましい。プラズマ化学気相成長法はペニング放電プラズマ方式のプラズマ化学気相成長法であってもよい。また、一対の成膜ロール間に放電する際には、一対の成膜ロールの極性を交互に反転させることが好ましい。
 プラズマ化学気相成長法においてプラズマを発生させる際には、複数の成膜ロールの間の空間にプラズマ放電を発生させることが好ましい。特に、一対の成膜ロールを用い、この一対の成膜ロールのそれぞれに基材11を配置して、一対の成膜ロール間に放電してプラズマを発生させることがより好ましい。
 このようにして、一対の成膜ロール上に基材11を配置して、この成膜ロール間に放電することにより、一方の成膜ロール上に存在する基材11上に成膜することができる。同時に、もう一方の成膜ロール上の基材11上にも成膜することが可能である。このため、成膜レートを倍にでき、効率よく薄膜を製造できる。さらに、一対の成膜ロール上のそれぞれの基材11上に、同じ構造の膜を形成できる。
 また、上記プラズマ化学気相成長法には有機ケイ素化合物と酸素とを含む成膜ガスを用いることが好ましい。成膜ガス中の酸素の含有量は、成膜ガス中の有機ケイ素化合物の全量を完全酸化するのに必要な理論酸素量以下であることが好ましい。
 蒸着層12は、連続的な成膜プロセスにより形成された層であることが好ましい。
(蒸着層の製造装置)
 蒸着層12は、上述のように生産性の観点からロールツーロール方式で基材11の表面上に形成されることが好ましい。プラズマ化学気相成長法により蒸着層12を製造できる装置としては、特に制限されないが、少なくとも一対の成膜ロールと、プラズマ電源とを備え、且つ、成膜ロール間において放電することが可能な構成となっている装置であることが好ましい。
 例えば、図5に示す製造装置30を用いた場合には、プラズマ化学気相成長法を利用しながらロールツーロール方式で製造することも可能となる。以下、図5を参照しながら、蒸着層12の製造方法について説明する。なお、図5は、蒸着層12の製造に好適な製造装置の一例を示す模式図である。
 図5に示す製造装置30は、送り出しロール31と、搬送ロール32、33、34、35と、成膜ロール36、37と、ガス供給管38と、プラズマ発生用電源39と、成膜ロール36及び37の内部に設置された磁場発生装置41、42と、巻取りロール43とを備えている。また、製造装置30においては、少なくとも成膜ロール36、37と、ガス供給管38と、プラズマ発生用電源39と、磁場発生装置41、42とが図示しない真空チャンバー内に配置されている。更に、製造装置30において真空チャンバーは、図示を省略した真空ポンプに接続されており、かかる真空ポンプにより真空チャンバー内の圧力を調整することが可能となっている。
 製造装置30においては、一対の成膜ロール(成膜ロール36と成膜ロール37)を一対の対向電極として機能させることが可能となるように、各成膜ロールがそれぞれプラズマ発生用電源39に接続されている。このため、製造装置30においては、プラズマ発生用電源39から電力を供給することにより、成膜ロール36と成膜ロール37との間の空間に放電することが可能であり、成膜ロール36と成膜ロール37との間の空間にプラズマを発生させることができる。なお、成膜ロール36と成膜ロール37を電極として利用する場合には、電極としても利用可能なように成膜ロール36と成膜ロール37との材質や設計を変更すればよい。また、製造装置30においては、一対の成膜ロール(成膜ロール36及び37)は、中心軸が同一平面上において略平行となるようにして配置することが好ましい。このようにして、一対の成膜ロール(成膜ロール36及び37)を配置することにより、成膜レートを倍にでき、なおかつ、同じ構造の膜を成膜できる。このため、炭素分布曲線における極値を少なくとも倍増させることが可能となる。そして、製造装置30によれば、CVD法によりフィルム40の表面上に蒸着層12を形成することが可能であり、成膜ロール36上においてフィルム40の表面上に膜成分を堆積させつつ、更に成膜ロール37上においてもフィルム40の表面上に膜成分を堆積させることもできるため、フィルム40の表面上に蒸着層12を効率よく形成することができる。
 また、成膜ロール36及び成膜ロール37の内部には、成膜ロールが回転しても、回転しないように固定された磁場発生装置41及び42がそれぞれ設けられている。
 さらに、成膜ロール36及び成膜ロール37としては、公知のロールを用いることができる。成膜ロール36及び37としては、より効率よく薄膜を形成するという観点から、同一の直径のロールを使うことが好ましい。また、成膜ロール36及び37の直径としては、放電条件、チャンバーのスペース等の観点から、5~100cmの範囲とすることが好ましい。
 また、製造装置30においては、フィルム40の表面がそれぞれ対向するように、一対の成膜ロール(成膜ロール36と成膜ロール37)上に、フィルム40が配置されている。このようにフィルム40を配置することにより、成膜ロール36と成膜ロール37との間に放電を行ってプラズマを発生させる際に、一対の成膜ロール間に存在するフィルム40のそれぞれの表面に、同時に蒸着層12を成膜することが可能となる。すなわち、製造装置30によれば、CVD法により、成膜ロール36上にてフィルム40の表面上に膜成分を堆積させ、更に成膜ロール37上にて膜成分を堆積させることができるため、フィルム40の表面上に蒸着層12を効率よく形成することが可能となる。
 また、製造装置30に用いる送り出しロール31及び搬送ロール32、33、34、35としては公知のロールを用いることができる。また、巻取りロール43としても、蒸着層12を形成したフィルム40を巻き取ることが可能であればよく、特に制限されず、公知のロールを用いることができる。
 また、ガス供給管38としては原料ガス等を所定の速度で供給又は排出することが可能な配管を用いることができる。さらに、プラズマ発生用電源39としては、公知のプラズマ発生装置の電源を用いることができる。プラズマ発生用電源39は、これに接続された成膜ロール36、37に電力を供給して、成膜ロール36、37を放電のための対向電極としての利用を可能にする。プラズマ発生用電源39としては、より効率よくプラズマCVDを実施することが可能となることから、成膜ロールの極性を交互に反転させることが可能な交流電源等を利用することが好ましい。また、より効率よくプラズマCVDを実施することが可能となることから、印加電力を100W~10kWとすることができ、且つ、交流の周波数を50Hz~500kHzとすることが可能なプラズマ発生用電源39を用いることがより好ましい。また、磁場発生装置41、42としては、公知の磁場発生装置を用いることができる。さらに、フィルム40としては、上述のガスバリアフィルム10に適用可能な基材11の他に、蒸着層12を予め形成させた基材11を用いることができる。このように、フィルム40として蒸着層12を予め形成させた基材11を用いることにより、蒸着層12の厚みを厚くすることも可能である。
 上述のように、図5に示す製造装置30を用いて、例えば、原料ガスの種類、プラズマ発生装置の電極ドラムの電力、真空チャンバー内の圧力、成膜ロールの直径、並びに、フィルムの搬送速度を調整することにより、蒸着層12を製造することができる。すなわち、図5に示す製造装置30を用いて、成膜ガス(原料ガス等)を真空チャンバー内に供給しつつ、一対の成膜ロール(成膜ロール36及び37)間に放電することにより、成膜ガス(原料ガス等)がプラズマによって分解され、成膜ロール36上のフィルム40の表面上並びに成膜ロール37上のフィルム40の表面上に、蒸着層12がプラズマCVD法により形成される。なお、成膜に際しては、フィルム40が送り出しロール31や成膜ロール36等により、それぞれ搬送されることにより、ロールツーロール方式の連続的な成膜プロセスによりフィルム40の表面上に蒸着層12が形成される。
(原料ガス)
 蒸着層12の形成に用いる成膜ガス中の原料ガスとしては、形成する蒸着層12の材質に応じて適宜選択して使用することができる。原料ガスとしては、例えばケイ素を含有する有機ケイ素化合物を用いることができる。有機ケイ素化合物としては、例えば、ヘキサメチルジシロキサン、1,1,3,3-テトラメチルジシロキサン、ビニルトリメチルシラン、メチルトリメチルシラン、ヘキサメチルジシラン、メチルシラン、ジメチルシラン、トリメチルシラン、ジエチルシラン、プロピルシラン、フェニルシラン、ビニルトリエトキシシラン、ビニルトリメトキシシラン、テトラメトキシシラン、テトラエトキシシラン、フェニルトリメトキシシラン、メチルトリエトキシシラン、オクタメチルシクロテトラシロキサン等が挙げられる。これらの有機ケイ素化合物の中でも、成膜での取り扱い及び得られる蒸着層12の配光性等の特性の観点から、ヘキサメチルジシロキサン、1,1,3,3-テトラメチルジシロキサンを用いることが好ましい。また、これらの有機ケイ素化合物は、1種を単独で又は2種以上を組み合わせて使用することができる。
 また、成膜ガスとしては、原料ガスの他に反応ガスを用いてもよい。このような反応ガスとしては、原料ガスと反応して酸化物、窒化物等の無機化合物となるガスを適宜選択して使用することができる。酸化物を形成するための反応ガスとしては、例えば、酸素、オゾンを用いることができる。また、窒化物を形成するための反応ガスとしては、例えば、窒素、アンモニアを用いることができる。これらの反応ガスは、1種を単独で又は2種以上を組み合わせて使用することができ、例えば酸窒化物を形成する場合には、酸化物を形成するための反応ガスと窒化物を形成するための反応ガスとを組み合わせて使用することができる。
 成膜ガスとしては、原料ガスを真空チャンバー内に供給するために、必要に応じてキャリアガスを用いてもよい。さらに、成膜ガスとしては、プラズマ放電を発生させるために、必要に応じて放電用ガスを用いてもよい。キャリアガス及び放電用ガスとしては、公知のガスを使用することができ、例えば、ヘリウム、アルゴン、ネオン、キセノン等の希ガス、水素を用いることができる。
 成膜ガスが、原料ガスと反応ガスとを含有する場合には、原料ガスと反応ガスとの比率を、原料ガスと反応ガスとを完全に反応させるために理論上必要となる反応ガスの量の比率よりも、反応ガスの比率を過剰にし過ぎないことが好ましい。反応ガスの比率を過剰にし過ぎてしまうと、蒸着層12の配光性が十分に得られなくなってしまう。また、成膜ガスが有機ケイ素化合物と酸素とを含有する場合には、成膜ガス中の有機ケイ素化合物の全量を完全酸化するのに必要な理論酸素量以下であることが好ましい。
 以下、一例として、原料ガスにヘキサメチルジシロキサン(有機ケイ素化合物:HMDSO:(CH3)6Si2O:)、反応ガスに酸素(O2)を用いる場合について説明する。
 原料ガスとしてヘキサメチルジシロキサン、反応ガスとして酸素を含有する成膜ガスをプラズマCVDにより反応させて、ケイ素-酸素系の薄膜を作製する場合、成膜ガスにより下記反応式(1):
 (CH3)6Si2O+12O2→6CO2+9H2O+2SiO2 ・・・(1)
の反応が起こり、二酸化ケイ素が生成される。この反応において、ヘキサメチルジシロキサン1モルを完全酸化するのに必要な酸素量は12モルである。このため、成膜ガス中に、ヘキサメチルジシロキサン1モルに対して、酸素を12モル以上含有させて完全に反応させた場合には、均一な二酸化ケイ素膜が形成されてしまう。このため、原料のガス流量比を、理論比である完全反応の原料比以下の流量に制御して、非完全反応を遂行させる。つまり、ヘキサメチルジシロキサン1モルに対して酸素量を化学量論比の12モルより少ない量にする必要がある。
 なお、実際のプラズマCVDチャンバー内の反応では、原料のヘキサメチルジシロキサンと反応ガスの酸素は、ガス供給部から成膜領域へ供給されるため、反応ガスの酸素のモル量(流量)が原料のヘキサメチルジシロキサンのモル量(流量)の12倍のモル量(流量)であったとしても、現実には完全に反応を進行させることはできない。つまり、酸素の含有量を化学量論比に比して大過剰に供給したときに、初めて反応が完結すると考えられる。例えば、CVDにより完全酸化させて酸化ケイ素を得るために、酸素のモル量(流量)を原料のヘキサメチルジシロキサンのモル量(流量)の20倍以上程度とする場合もある。
 このため、原料のヘキサメチルジシロキサンのモル量(流量)に対する酸素のモル量(流量)は、化学量論比である12倍量以下(より好ましくは、10倍以下)であることが好ましい。このような比でヘキサメチルジシロキサン及び酸素を含有させることにより、完全に酸化されなかったヘキサメチルジシロキサン中の炭素原子や水素原子が蒸着層12中に取り込まれ、所望の蒸着層12を形成することが可能となる。
 なお、成膜ガス中のヘキサメチルジシロキサンのモル量(流量)に対する酸素のモル量(流量)が少なすぎると、酸化されなかった炭素原子や水素原子が蒸着層12中に過剰に取り込まれるため、蒸着層12の透明性が低下する。このため、ガスバリアフィルム10のように、透明性が必要とされるフレキシブル基板には利用できなくなってしまう。このような観点から、成膜ガス中のヘキサメチルジシロキサンのモル量(流量)に対する酸素のモル量(流量)の下限は、ヘキサメチルジシロキサンのモル量(流量)の0.1倍より多い量とすることが好ましく、0.5倍より多い量とすることがより好ましい。
(真空度)
 真空チャンバー内の圧力(真空度)は、原料ガスの種類等に応じて適宜調整することができるが、0.5Pa~100Paの範囲とすることが好ましい。
(成膜ロール)
 上述のプラズマCVD法において、成膜ロール36、37間に放電するために、プラズマ発生用電源39に接続された電極ドラムに印加する電力は、原料ガスの種類や真空チャンバー内の圧力等に応じて適宜調整することができる。例えば、0.1~10kWの範囲とすることが好ましい。印加電力が下限未満ではパーティクルが発生し易くなる傾向にある。他方、上限を超えると成膜時に発生する熱量が多くなり、成膜時の基材表面の温度が上昇してしまい、基材11が熱負けして成膜時に皺が発生してしまう。
 なお、本例において、電極ドラムは、成膜ロール36、37に設置されている。
 フィルム40の搬送速度(ライン速度)は、原料ガスの種類や真空チャンバー内の圧力等に応じて適宜調整することができるが、0.25~100m/minの範囲とすることが好ましく、0.5~20m/minの範囲とすることがより好ましい。ライン速度が下限未満では、フィルムに熱に起因する皺が発生しやすくなる傾向にあり、他方、上限を超えると、形成される蒸着層12の厚みが薄くなる傾向にある。
(平滑層)
 基材11と蒸着層12との間には、平滑層が形成されていてもよい。平滑層は突起等が存在する基材11の粗面を平坦化し、或いは、基材11に存在する突起により、蒸着層12に生じた凹凸やピンホールを埋めて平坦化するために設けられる。このような平滑層は、基本的には感光性樹脂を硬化させて形成される。
 平滑層の形成に用いる感光性樹脂としては、例えば、ラジカル反応性不飽和化合物を有するアクリレート化合物を含有する樹脂組成物、アクリレート化合物とチオール基を有するメルカプト化合物を含有する樹脂組成物、エポキシアクリレート、ウレタンアクリレート、ポリエステルアクリレート、ポリエーテルアクリレート、ポリエチレングリコールアクリレート、グリセロールメタクリレート等の多官能アクリレートモノマーを溶解させた樹脂組成物等が挙げられる。また、上記のような樹脂組成物の任意の混合物を使用することも可能であり、光重合性不飽和結合を分子内に1個以上有する反応性のモノマーを含有している感光性樹脂であれば特に制限はない。
 光重合性不飽和結合を分子内に1個以上有する反応性モノマーとしては、メチルアクリレート、エチルアクリレート、n-プロピルアクリレート、イソプロピルアクリレート、n-ブチルアクリレート、イソブチルアクリレート、tert-ブチルアクリレート、n-ペンチルアクリレート、n-ヘキシルアクリレート、2-エチルヘキシルアクリレート、n-オクチルアクリレート、n-デシルアクリレート、ヒドロキシエチルアクリレート、ヒドロキシプロピルアクリレート、アリルアクリレート、ベンジルアクリレート、ブトキシエチルアクリレート、ブトキシエチレングリコールアクリレート、シクロヘキシルアクリレート、ジシクロペンタニルアクリレート、2-エチルヘキシルアクリレート、グリセロールアクリレート、グリシジルアクリレート、2-ヒドロキシエチルアクリレート、2-ヒドロキシプロピルアクリレート、イソボニルアクリレート、イソデキシルアクリレート、イソオクチルアクリレート、ラウリルアクリレート、2-メトリキエチルアクリレート、メトキシエチレングリコールアクリレート、フェノキシエチルアクリレート、ステアリルアクリレート、エチレングリコールジアクリレート、ジエチレングリコールジアクリレート、1,4-ブタンジオールジアクリレート、1,5-ペンタンジオールジアクリレート、1,6-ヘキサジオールジアクリレート、1,3-プロパンジオールアクリレート、1,4-シクロヘキサンジオールジアクリレート、2,2-ジメチロールプロパンジアクリレート、グリセロールジアクリレート、トリプロピレングリコールジアクリレート、グリセロールトリアクリレート、トリメチロールプロパントリアクリレート、ポリオキシエチルトリメチロールプロパントリアクリレート、ペンタエリスリトールトリアクリレート、ペンタエリスリトールテトラアクリレート、エチレンオキサイド変性ペンタエリスリトールトリアクリレート、エチレンオキサイド変性ペンタエリスリトールテトラアクリレート、プロピオンオキサイド変性ペンタエリスリトールトリアクリレート、プロピオンオキサイド変性ペンタエリスリトールテトラアクリレート、トリエチレングリコールジアクリレート、ポリオキシプロピルトリメチロールプロパントリアクリレート、ブチレングリコールジアクリレート、1,2,4-ブタンジオールトリアクリレート、2,2,4-トリメチル-1,3-ペンタジオールジアクリレート、ジアリルフマレート、1,10-デカンジオールジメチルアクリレート、ペンタエリスリトールヘキサアクリレート、及び、上記のアクリレートをメタクリレートに換えたもの、γ-メタクリロキシプロピルトリメトキシシラン、1-ビニル-2-ピロリドン等が挙げられる。上記の反応性モノマーは、1種又は2種以上の混合物として、或いは、その他の化合物との混合物として使用することができる。
 感光性樹脂組成物は、光重合開始剤を含有する。
 光重合開始剤としては、例えば、ベンゾフェノン、o-ベンゾイル安息香酸メチル、4,4-ビス(ジメチルアミン)ベンゾフェノン、4,4-ビス(ジエチルアミン)ベンゾフェノン、α-アミノ・アセトフェノン、4,4-ジクロロベンゾフェノン、4-ベンゾイル-4-メチルジフェニルケトン、ジベンジルケトン、フルオレノン、2,2-ジエトキシアセトフェノン、2,2-ジメトキシ-2-フェニルアセトフェノン、2-ヒドロキシ-2-メチルプロピオフェノン、p-tert-ブチルジクロロアセトフェノン、チオキサントン、2-メチルチオキサントン、2-クロロチオキサントン、2-イソプロピルチオキサントン、ジエチルチオキサントン、ベンジルジメチルケタール、ベンジルメトキシエチルアセタール、ベンゾインメチルエーテル、ベンゾインブチルエーテル、アントラキノン、2-tert-ブチルアントラキノン、2-アミルアントラキノン、β-クロルアントラキノン、アントロン、ベンズアントロン、ジベンズスベロン、メチレンアントロン、4-アジドベンジルアセトフェノン、2,6-ビス(p-アジドベンジリデン)シクロヘキサン、2,6-ビス(p-アジドベンジリデン)-4-メチルシクロヘキサノン、2-フェニル-1,2-ブタジオン-2-(o-メトキシカルボニル)オキシム、1-フェニル-プロパンジオン-2-(o-エトキシカルボニル)オキシム、1,3-ジフェニル-プロパントリオン-2-(o-エトキシカルボニル)オキシム、1-フェニル-3-エトキシ-プロパントリオン-2-(o-ベンゾイル)オキシム、ミヒラーケトン、2-メチル[4-(メチルチオ)フェニル]-2-モノフォリノ-1-プロパン、2-ベンジル-2-ジメチルアミノ-1-(4-モノフォリノフェニル)-ブタノン-1、ナフタレンスルホニルクロライド、キノリンスルホニルクロライド、n-フェニルチオアクリドン、4,4-アゾビスイソブチロニトリル、ジフェニルジスルフィド、ベンズチアゾールジスルフィド、トリフェニルホスフィン、カンファーキノン、四臭素化炭素、トリブロモフェニルスルホン、過酸化ベンゾイン、エオシン、メチレンブルー等の光還元性の色素とアスコルビン酸、トリエタノールアミン等の還元剤の組み合わせ等が挙げられ、これらの光重合開始剤を1種又は2種以上の組み合わせで使用することができる。
 平滑層は、特に制限はないが、スピンコーティング法、スプレー法、ブレードコーティング法、ディップ法等のウエットコーティング法、或いは、蒸着法等のドライコーティング法により形成することが好ましい。
 平滑層の形成では、上述の感光性樹脂に、必要に応じて、酸化防止剤、紫外線吸収剤、可塑剤等の添加剤を加えることができる。また、平滑層の積層位置に関係なく、いずれの平滑層においても、成膜性向上及び膜のピンホール発生防止等のために適切な樹脂や添加剤を使用してもよい。
 感光性樹脂を溶媒に溶解又は分散させた塗布液を用いて平滑層を形成する際に、使用する溶媒としては、メタノール、エタノール、n-プロパノール、イソプロパノール、エチレングリコール、プロピレングリコール等のアルコール類、α-もしくはβ-テルピネオール等のテルペン類等、アセトン、メチルエチルケトン、シクロヘキサノン、N-メチル-2-ピロリドン、ジエチルケトン、2-ヘプタノン、4-ヘプタノン等のケトン類、トルエン、キシレン、テトラメチルベンゼン等の芳香族炭化水素類、セロソルブ、メチルセロソルブ、エチルセロソルブ、カルビトール、メチルカルビトール、エチルカルビトール、ブチルカルビトール、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、トリエチレングリコールモノメチルエーテル、トリエチレングリコールモノエチルエーテル等のグリコールエーテル類、酢酸エチル、酢酸ブチル、セロソルブアセテート、エチルセロソルブアセテート、ブチルセロソルブアセテート、カルビトールアセテート、エチルカルビトールアセテート、ブチルカルビトールアセテート、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテート、2-メトキシエチルアセテート、シクロヘキシルアセテート、2-エトキシエチルアセテート、3-メトキシブチルアセテート等の酢酸エステル類、ジエチレングリコールジアルキルエーテル、ジプロピレングリコールジアルキルエーテル、3-エトキシプロピオン酸エチル、安息香酸メチル、N,N-ジメチルアセトアミド、N,N-ジメチルホルムアミド等を挙げることができる。
 平滑層の平滑性は、JIS B 0601で規定される表面粗さで表現される値で、最大断面高さRt(p)が、10nm以上、30nm以下であることが好ましい。10nmよりも小さい場合には、ワイヤーバー、ワイヤレスバー等の塗布方式で後述のケイ素化合物を塗布する段階において、平滑層表面に塗工手段が接触する場合に塗布性が損なわれることがある。また、30nmよりも大きい場合には、ケイ素化合物を塗布した後の、凹凸を平滑化することが難しくなる場合がある。
 表面粗さは、AFM(原子間力顕微鏡)を用いて測定された、微細な凹凸の振幅に関する粗さである。この表面粗さは、AFMの極小の先端半径の触針を持つ検出器によって、数十μmの区間内を多数回測定し、この連続測定した凹凸の断面曲線から算出される。
(平滑層への添加剤)
 平滑層には、添加剤が含まれていてもよい。平滑層に含まれる添加剤としては、感光性樹脂の表面に光重合反応性を有する感光性基が導入された反応性シリカ粒子(以下、単に「反応性シリカ粒子」ともいう)が好ましい。
 ここで、光重合性を有する感光性基としては、(メタ)アクリロイルオキシ基に代表される重合性不飽和基等を挙げることができる。感光性樹脂は、この反応性シリカ粒子の表面に導入された感光性基と光重合反応可能な化合物、例えば、重合性不飽和基を有する不飽和有機化合物を含むことが好ましい。また、感光性樹脂は、反応性シリカ粒子や、重合性不飽和基を有する不飽和有機化合物に汎用の希釈溶剤が混合されて、固形分が調整されていてもよい。
 ここで、反応性シリカ粒子の平均粒子径としては、0.001~0.1μmの平均粒子径であることが好ましい。平均粒子径を上記範囲にすることにより、後述する平均粒子径1~10μmの無機粒子からなるマット剤と組合せて用いると、配光性等の光学特性と、ハードコート性とを兼ね備えた平滑層を形成し易くなる。
 なお、上記効果をより得やすくするためには、平均粒子径を0.001~0.01μmの範囲をすることが好ましい。平滑層中には、上述の様な無機粒子を質量比として20%以上60%以下含有することが好ましい。20%以上添加することで、基材11と蒸着層12との密着性が向上する。また、60%を超えると、フィルムを湾曲させたり、加熱処理を行った場合にクラックが生じたり、蒸着層12の透明性や屈折率等の光学的物性に影響を及ぼすことがある。
 なお、本例では、反応性シリカ粒子として、加水分解性シリル基の加水分解反応によってシリカ粒子との間にシリルオキシ基を生成し、化学的に結合している重合性不飽和基修飾加水分解性シランを用いることができる。
 加水分解性シリル基としては、例えば、アルコキシリル基、アセトキシリル基等のカルボキシリレートシリル基、クロロシリル基等のハロゲン化シリル基、アミノシリル基、オキシムシリル基、ヒドリドシリル基等が挙げられる。
 重合性不飽和基としては、アクリロイルオキシ基、メタクリロイルオキシ基、ビニル基、プロペニル基、ブタジエニル基、スチリル基、エチニイル基、シンナモイル基、マレート基、アクリルアミド基等が挙げられる。
 平滑層の厚さは、好ましくは1~10μm、より好ましくは2~7μmである。1μm以上にすることにより、平滑層を有する基材11の平滑性が十分になる。また、10μm以下にすることにより、光学特性のバランスを調整し易くなると共に、平滑層を基材11の一方の面にのみ設けた場合のカールを抑え易くすることができる。
 また、平滑層には、その他の添加剤として、マット剤を含有してもよい。マット剤としては、平均粒子径が0.1~5μm程度の無機粒子が好ましい。
 このような無機粒子としては、シリカ、アルミナ、タルク、クレイ、炭酸カルシウム、炭酸マグネシウム、硫酸バリウム、水酸化アルミニウム、二酸化チタン、酸化ジルコニウム等の1種又は2種以上を併せて使用することができる。
 ここで、無機粒子からなるマット剤は、平滑層の固形分100質量部に対して2質量部以上、好ましくは4質量部以上、より好ましくは6質量部以上、20質量部以下、好ましくは18質量部以下、より好ましくは16質量部以下の割合で混合されていることが好ましい。
(ブリードアウト防止層)
 蒸着層12には、ブリードアウト防止層を設けることができる。ブリードアウト防止層は、平滑層を有するフィルム状の基材11を加熱した際に、基材11中から未反応のオリゴマー等が表面へ移行して、基材11の表面を汚染する現象を抑制するために、平滑層を有する基材の反対面に設けられる。ブリードアウト防止層は、この機能を有していれば、基本的に平滑層と同じ構成をとっても構わない。
 ブリードアウト防止層としては、重合性不飽和基を有する不飽和有機化合物を用いることができる。この不飽和有機化合物としては、分子中に2個以上の重合性不飽和基を有する多価不飽和有機化合物、或いは、分子中に1個の重合性不飽和基を有する単価不飽和有機化合物等を用いることが好ましい。
 ここで、多価不飽和有機化合物としては、例えば、エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、グリセロールジ(メタ)アクリレート、グリセロールトリ(メタ)アクリレート、1,4-ブタンジオールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ジシクロペンタニルジ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、ジペンタエリスリトールモノヒドロキシペンタ(メタ)アクリレート、ジトリメチロールプロパンテトラ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート等が挙げられる。
 また、単価不飽和有機化合物としては、例えばメチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、ブチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、イソデシル(メタ)アクリレート、ラウリル(メタ)アクリレート、ステアリル(メタ)アクリレート、アリル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、メチルシクロヘキシル(メタ)アクリレート、イソボルニル(メタ)アクリレート、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、グリセロール(メタ)アクリレート、グリシジル(メタ)アクリレート、ベンジル(メタ)アクリレート、2-エトキシエチル(メタ)アクリレート、2-(2-エトキシエトキシ)エチル(メタ)アクリレート、ブトキシエチル(メタ)アクリレート、2-メトキシエチル(メタ)アクリレート、メトキシジエチレングリコール(メタ)アクリレート、メトキシトリエチレングリコール(メタ)アクリレート、メトキシポリエチレングリコール(メタ)アクリレート、2-メトキシプロピル(メタ)アクリレート、メトキシジプロピレングリコール(メタ)アクリレート、メトキシトリプロピレングリコール(メタ)アクリレート、メトキシポリプロピレングリコール(メタ)アクリレート、ポリエチレングリコール(メタ)アクリレート、ポリプロピレングリコール(メタ)アクリレート等が挙げられる。
 また、ブリードアウト防止層には、熱可塑性樹脂、熱硬化性樹脂、電離放射線硬化性樹脂、光重合開始剤等を含有させてもよい。
 この熱可塑性樹脂としては、アセチルセルロース、ニトロセルロース、アセチルブチルセルロース、エチルセルロース、メチルセルロース等のセルロース誘導体、酢酸ビニル及びその共重合体、塩化ビニル及びその共重合体、塩化ビニリデン及びその共重合体等のビニル系樹脂、ポリビニルホルマール、ポリビニルブチラール等のアセタール系樹脂、アクリル樹脂及びその共重合体、メタクリル樹脂及びその共重合体等のアクリル系樹脂、ポリスチレン樹脂、ポリアミド樹脂、線状ポリエステル樹脂、ポリカーボネート樹脂等が挙げられる。
 また、熱硬化性樹脂としては、アクリルポリオールとイソシアネートプレポリマーとからなる熱硬化性ウレタン樹脂、フェノール樹脂、尿素メラミン樹脂、エポキシ樹脂、不飽和ポリエステル樹脂、シリコン樹脂等が挙げられる。
 また、電離放射線硬化性樹脂は、光重合性プレポリマー若しくは光重合性モノマー等の1種又は2種以上を混合した電離放射線硬化塗料に、電離放射線(紫外線又は電子線)を照射することで硬化させることができる。ここで光重合性プレポリマーとしては、1分子中に2個以上のアクリロイル基を有し、架橋硬化することにより3次元網目構造となるアクリル系プレポリマーが特に好ましい。アクリル系プレポリマーとしては、ウレタンアクリレート、ポリエステルアクリレート、エポキシアクリレート、メラミンアクリレート等が使用できる。また光重合性モノマーとしては、上記多価不飽和有機化合物等を使用できる。
 また、光重合開始剤としては、アセトフェノン、ベンゾフェノン、ミヒラーケトン、ベンゾイン、ベンジルメチルケタール、ベンゾインベンゾエート、ヒドロキシシクロヘキシルフェニルケトン、2-メチル-1-(4-(メチルチオ)フェニル)-2-(4-モルフォリニル)-1-プロパン、α-アシロキシムエステル、チオキサンソン類等が挙げられる。
 ブリードアウト防止層は、マット剤や他の必要な成分を配合した後、必要に応じて希釈溶剤で塗布液を調製し、この塗布液を基材表面に従来公知の塗布方法によって塗布し、塗布液に電離放射線を照射して硬化させることにより形成することができる。なお、電離放射線としては、超高圧水銀灯、高圧水銀灯、低圧水銀灯、カーボンアーク、メタルハライドランプ等から発せられる100~400nm、好ましくは200~400nmの波長領域の紫外線を照射する。或いは、走査型やカーテン型の電子線加速器から発せられる100nm以下の波長領域の電子線を照射する。
 ブリードアウト防止層の厚さとしては、1~10μmであることが好ましく、特に2~7μmであることが好ましい。1μm以上とすることにより、耐熱性を十分にできる。また、10μm以下とすることにより、光学特性のバランスを調整し易くなると共に、平滑層を基材11の一方の面に設けた場合におけるカールを抑えることができる。
[ポリシラザン改質層]
 ポリシラザン改質層13は、蒸着層12の表面の凹凸を平滑化するために設けられる層であり、蒸着層12上に形成された光透過性の層である。このポリシラザン改質層13は、ポリシラザン含有液の塗布膜に改質処理を施して形成された層であることが好ましい。この改質層は、主にケイ素酸化物又は酸化窒化ケイ素化合物から形成されている。
 ポリシラザン改質層13の形成方法としては、基材上に少なくとも一層のポリシラザン化合物を含有する塗布液を塗布後、改質処理を行うことにより、ケイ素酸化物又は酸化窒化ケイ素化合物を含有する層を形成する方法が挙げられる。
 ケイ素酸化物又は酸化窒化ケイ素化合物のポリシラザン改質層13を形成するためのケイ素酸化物、又は、酸化窒化ケイ素化合物の供給は、CVD法(Chemical Vapor Deposition:化学気相成長法)のようにガスとして供給されるよりも、基材表面に塗布したほうがより均一で、平滑な層を形成することができる。CVD法などの場合は気相で反応性が増した原料物質が基材表面に堆積する工程と同時に、気相中で不必要なパーティクルよばれる異物が生成することが知られている。これらの発生したパーティクルが堆積することで、表面の平滑性が低下する。塗布法では、原料を気相反応空間に存在させないことにより、これらパーティクルの発生を抑制することが可能になる。このため、塗布法を用いることにより平滑な面を形成することができる。
(ポリシラザン含有液の塗布膜)
 ポリシラザン含有液の塗布膜は、基材上に少なくとも1層にポリシラザン化合物を含有する塗布液を塗布することにより形成される。
 塗布方法としては、任意の適切な方法が採用され得る。具体例としては、スピンコート法、ロールコート法、フローコート法、インクジェット法、スプレーコート法、プリント法、ディップコート法、流延成膜法、バーコート法、グラビア印刷法等が挙げられる。塗布厚さは、目的に応じて適切に設定され得る。例えば、塗布厚さは、乾燥後の厚さが好ましくは1nm~100μm程度、さらに好ましくは10nm~10μm程度、最も好ましくは10nm~1μm程度となるように設定され得る。
 「ポリシラザン」とは、ケイ素-窒素結合を持つポリマーで、Si-N、Si-H、N-H等からなるSiO2、Si3N4及び両方の中間固溶体SiOxNy等のセラミック前駆体無機ポリマーである。ポリシラザンは下記一般式(I)で表される。
Figure JPOXMLDOC01-appb-C000001
 フィルム基材を損なわないように塗布するためには、特開平8-112879号公報に記載されているように比較的低温でセラミック化してシリカに変性するものがよい。
 式中、R1、R2、及びR3のそれぞれは、独立に、水素原子、アルキル基、アルケニル基、シクロアルキル基、アリール基、アルキルシリル基、アルキルアミノ基、アルコキシ基などを表す。
 得られるバリア膜としての緻密性の観点からは、R1、R2、及びR3のすべてが水素原子であるパーヒドロポリシラザンが特に好ましい。
 一方、そのSiと結合する水素部分が一部アルキル基等で置換されたオルガノポリシラザンは、メチル基等のアルキル基を有することにより下地基材との接着性が改善され、かつ硬くてもろいポリシラザンによるセラミック膜に靭性を持たせることができ、より(平均)膜厚を厚くした場合でもクラックの発生が抑えられる利点がある。用途に応じて適宜、これらパーヒドロポリシラザンとオルガノポリシラザンを選択してよく、混合して使用することもできる。
 パーヒドロポリシラザンは直鎖構造と6及び8員環を中心とする環構造が存在した構造と推定されている。その分子量は数平均分子量(Mn)で約600~2000程度(ポリスチレン換算)であり、液体又は固体の物質であり、分子量により異なる。これらは有機溶媒に溶解した溶液状態で市販されており、市販品をそのままポリシラザン含有塗布液として使用することができる。
 低温でセラミック化するポリシラザンの別の例としては、上記一般式(I)で示されるポリシラザンにケイ素アルコキシドを反応させて得られるケイ素アルコキシド付加ポリシラザン(特開平5-238827号公報)、グリシドールを反応させて得られるグリシドール付加ポリシラザン(特開平6-122852号公報)、アルコールを反応させて得られるアルコール付加ポリシラザン(特開平6-240208号公報)、金属カルボン酸塩を反応させて得られる金属カルボン酸塩付加ポリシラザン(特開平6-299118号公報)、金属を含むアセチルアセトナート錯体を反応させて得られるアセチルアセトナート錯体付加ポリシラザン(特開平6-306329号公報)、金属微粒子を添加して得られる金属微粒子添加ポリシラザン(特開平7-196986号公報)等が挙げられる。
 ポリシラザンを含有する液体を調製する有機溶媒としては、具体的には、脂肪族炭化水素、脂環式炭化水素、芳香族炭化水素等の炭化水素溶媒、ハロゲン化炭化水素溶媒、脂肪族エーテル、脂環式エーテル等のエーテル類が使用できる。具体的には、ペンタン、ヘキサン、シクロヘキサン、トルエン、キシレン、ソルベッソ、ターベン等の炭化水素、塩化メチレン、トリクロロエタン等のハロゲン炭化水素、ジブチルエーテル、ジオキサン、テトラヒドロフラン等のエーテル類等がある。これらの溶剤は、ポリシラザンの溶解度や溶剤の蒸発速度、等目的にあわせて選択し、複数の溶剤を混合してもよい。なお、アルコール系や水分を含有する溶剤は、ポリシラザンと容易に反応してしまうため好ましくない。
 ポリシラザン含有塗布液中のポリシラザン濃度は目的とするシリカ膜厚や塗布液のポットライフによっても異なるが、0.2~35質量%程度である。
 有機ポリシラザンは、そのSiと結合する水素部分が一部アルキル基等で置換された誘導体であってもよい。アルキル基、特にもっとも分子量の少ないメチル基を有することにより下地基材との接着性が改善され、かつ硬くてもろいシリカ膜に靭性を持たせることができ、より膜厚を厚くした場合でもクラックの発生が抑えられる。
 酸化ケイ素化合物への転化を促進するために、アミンや金属の触媒を添加することもできる。具体的には、AZエレクトロニックマテリアルズ(株)製 アクアミカ NAX120-20、NN110、NN310、NN320、NL110A、NL120A、NL150A、NP110、NP140、SP140などが挙げられる。
(ポリシラザン改質層形成工程)
 ポリシラザン含有液の塗布膜は、改質処理前又は処理中に水分が除去されていることが好ましい。そのために、ポリシラザン塗布膜中の溶媒を取り除く目的の第一工程と、それに続くポリシラザン塗布膜中の水分を取り除く目的の第二工程に分かれていることが好ましい。
 第一工程においては、主に溶媒を取り除くための乾燥条件を、熱処理などの方法で適宜決めることができるが、このときに水分が除去される条件にあってもよい。熱処理温度は迅速処理の観点から高い温度が好ましいが、樹脂基材への熱ダメージを考慮し温度と処理時間を決める。例えば、樹脂基材にガラス転位温度(Tg)が70℃のPET基材を用いる場合には熱処理温度は200℃以下を設定することができる。処理時間は溶媒が除去され、かつ基材への熱ダメージがすくなくなるように短時間に設定することが好ましく、熱処理温度が200℃以下であれば30分以内に設定することができる。
 第二工程は、ポリシラザン塗布膜中の水分を取り除くための工程で、水分を除去する方法としては低湿度環境に維持される形態が好ましい。低湿度環境における湿度は、温度により変化するので温度と湿度の関係は露点温度の規定により好ましい形態が示される。好ましい露点温度は4度以下(温度25度/湿度25%)で、より好ましい露点温度は-8度(温度25度/湿度10%)以下、さらに好ましい露点温度は-31度(温度25度/湿度1%)以下であり、維持される時間はポリシラザン改質層13の膜厚によって適宜変わる。ポリシラザン改質層の厚さが1μm以下の条件においては、好ましい露点温度は-8度以下で、維持される時間は5分以上である。また、水分を取り除きやすくするために減圧乾燥してもよい。減圧乾燥における圧力は常圧~0.1MPaを選ぶことができる。
 第一工程の条件に対する第二工程の好ましい条件としては、例えば第一工程で温度60~150℃、処理時間1分~30分間で溶媒を除去したときには、第二工程の露点は4度以下で処理時間は5分~120分により水分を除去する条件を選ぶことができる。第一工程と第二工程の区分は露点の変化で区別することができ、工程環境の露点の差が10度以上変わることで区分ができる。
 ポリシラザン改質層13は第二工程により水分が取り除かれた後も、その状態を維持されて改質処理されることが好ましい。
(ポリシラザン改質層の含水率)
 ポリシラザン改質層13の含水量は以下の分析方法で検出できる。
 ヘッドスペース-ガスクロマトグラフ/質量分析法
 装置:HP6890GC/HP5973MSD
 オーブン:40℃(2min)、その後、10℃/minの速度で150℃まで昇温
 カラム:DB-624(0.25mmid×30m)
 注入口:230℃
 検出器:SIM m/z=18
 HS条件:190℃・30min
 ポリシラザン改質層中の含水率は、上記の分析方法により得られる含水量からポリシラザン改質層13の体積で除した値と定義され、第二工程により水分が取り除かれた状態において、好ましくは0.1%以下である。さらに好ましい含水率は0.01%以下(検出限界以下)である。
 改質処理前、又は改質中に水分が除去されることでシラノールに転化したポリシラザンの脱水反応を促進するために好ましい形態である。
(改質処理)
 改質処理は、ポリシラザンの転化反応に基づく公知の方法を選ぶことができる。シラザン化合物の置換反応による酸化ケイ素膜又は酸化窒化ケイ素膜の作製には450℃以上の高温が必要であり、プラスチック等のフレキシブル基板においては適応が難しい。プラスチック基板への適応のためには、より低温で転化反応が可能なプラズマやオゾンや紫外線を使う転化反応が好ましい。
 具体的には、上述の蒸着層12の表面処理に用いる方法と、同様の方法を適用することができる。樹脂フィルム基板への適応のためには、より低温で転化反応が可能なプラズマやオゾンや紫外線を使う転化反応が好ましい。特に、希ガスエキシマランプを用いた真空紫外線照射による改質処理が好ましい。
(平滑性:表面粗さRa)
 ポリシラザン改質層13の表面の表面粗さ(Ra)は、2nm以下であり、さらに好ましくは1nm以下である。表面粗さが上記範囲にあることで、有機EL素子用の樹脂基材として使用する際に、凹凸が少ない平滑な膜面による光透過効率の向上と、電極間リーク電流の低減によるエネルギー変換効率が向上するので好ましい。ポリシラザン改質層13の表面粗さ(Ra)は以下の方法で測定することができる。
 ポリシラザン改質層13の表面の表面粗さ(Ra)は、例えば、塗布によりポリシラザン塗布膜を形成する場合、ポリシラザン塗布膜を構成する塗布液を塗布した後に、溶媒や水分を均一に取り除く条件で乾燥させることで、2nm以下とすることが可能になる。さらに、塗布液の濃度及び粘度、塗布速度の最適化、レベリング剤の選択等によりポリシラザン改質層13の表面の表面粗さ(Ra)を2nm以下にすることが可能になる。
(表面粗さ測定の方法;AFM測定)
 表面粗さは、AFM(原子間力顕微鏡)、例えば、Digital Instruments社製DI3100で、極小の先端半径の触針を持つ検出器で連続測定した凹凸の断面曲線から算出され、極小の先端半径の触針により測定方向が数十μmの区間内を多数回測定し、微細な凹凸の振幅に関する粗さである。
[ガスバリアフィルムの効果]
 上述のガスバリアフィルム10は、表面改質処理により、蒸着層12の表面が親水性になる。このため、蒸着層12上に、ポリシラザンを形成する工程において、ポリシラザン含有液の塗布性が向上し、ポリシラザン改質層13と蒸着層12との接着性が向上する。さらに、表面改質処理により蒸着層12表面に形成された親水基により、ポリシラザン改質層13との接着性が向上する。
 また、蒸着層12が、傾斜状の組成変化を有するケイ素化合物から構成されることにより、改質処理する際の表面から厚さ方向に、改質処理が進みやすい。このため、蒸着層12の表面処理を十分に、且つ均一に行うことができ、蒸着層12の表面に十分な親水基を形成することができる。
〈2.ガスバリアフィルムの製造方法(第2実施形態)〉
 次に、ガスバリアフィルム10の製造方法について説明する。ガスバリアフィルム10は、上述のガスバリアフィルム10の実施形態において説明した、各構成の形成方法を用いて作製することができる。
 まず、基材11を準備する。基材11は、上述の樹脂フィルムから適宜選択することができる。
 次に、基材11上に蒸着層12を形成する。蒸着層12は、炭素(C)、窒素(N)、及び、酸素(O)から選ばれる少なくとも1種以上の元素と共に、ケイ素化合物を含む原料ガスを用いて蒸着法により形成する。具体例としては、上述の図5に示す、プラズマCVDロールコーター装置を用いて、ロールツーロール方式で形成することが好ましい。
 このとき、炭素(C)、窒素(N)、及び、酸素(O)から選ばれる少なくとも1種以上の元素を含む原料ガスの供給量を制御することにより、傾斜状の組成変化を有するケイ素化合物を堆積させる。
 次に、形成した蒸着層12の表面処理を行い、ケイ素化合物の改質処理を行う。この表面処理は、プラズマ、オゾン、及び、紫外線を用いて行うことができる。特に、希ガスエキシマランプを用いた、真空紫外線照射による処理が好ましい。この表面処理により、ケイ素化合物からなる蒸着層12の表面を親水性にする。また、処理時間等を適宜調整することにより、表面から15nm以上、好ましくは30nm以上の深さまでケイ素化合物の改質処理を行うことが好ましい。
 次に、表面処理後の蒸着層12上に、ポリシラザン改質層13を形成する。
 ポリシラザン改質層13の形成は、上述のように、ポリシラザン含有液を塗布する工程と、塗布膜中の溶媒及び水分を取り除く工程と、ポリシラザン塗布膜を改質処理する工程とにより行う。
 例えば、パーヒドロポリシラザン等のポリシラザンを用いてポリシラザン含有液を調整した後、このポリシラザン含有液を蒸着層12上に塗布する。このとき、蒸着層12が表面処理されているため、ポリシラザン含有液の濡れ性が良好となる。
 さらに、乾燥処理や低湿度環境下で溶媒や水分を除去した後、ポリシラザン含有塗布膜の改質処理を行う。この改質処理は、上述の蒸着層12の表面処理と同じ方法を用いてもよく、また、異なる方法を用いてもよい。好ましくは、希ガスエキシマランプを用いた、真空紫外線照射による処理を行う。
 以上の工程により、基材11上に、炭素(C)、窒素(N)、及び、酸素(O)から選ばれる少なくとも1種以上の元素を含み、表面から厚さ方向に向けて連続的な組成変化を有し、且つ、表面処理されているケイ素化合物の蒸着層12と、蒸着層12上に形成されたポリシラザン改質層13とからなる、ガスバリアフィルム10を製造することができる。
〈3.有機エレクトロルミネッセンス素子の実施形態(第3実施形態)〉
[有機エレクトロルミネッセンス素子の構成]
 有機エレクトロルミネッセンス素子(以下有機EL素子と記す)の具体的な実施の形態について説明する。
 図6に、本実施形態の有機EL素子の概略構成図(断面図)を示す。図6に示すように、有機EL素子20は、基材11、蒸着層12、ポリシラザン改質層13、第1電極24、有機機能層25、第2電極26、封止樹脂層27、及び、封止部材28を備える。
 図6に示す有機EL素子20において、基材11、蒸着層12、及び、ポリシラザン改質層13は、上述の第1実施形態のガスバリアフィルム10と同じ構成である。
 図6に示す有機EL素子20は、ガスバリアフィルム10上において、アノードとなる第1電極24と、発光層を備える有機機能層25と、カソードとなる第2電極26とが積層された構成である。さらに、ガスバリアフィルム10と封止樹脂層27及び封止部材28とにより、第1電極24、有機機能層25及び第2電極26が、固体封止された構成である。
 また、有機EL素子20は、アノードとして用いられている第1電極24が、透光性の電極として構成されている。このような構成において、第1電極24と第2電極26とで有機機能層25が挟持されている部分のみが、有機EL素子20における発光領域となる。そして、有機EL素子20は、発生させた光(以下、発光光hと記す)を、少なくとも基材11側から取り出すボトムエミッション型として構成されている。
 また、有機EL素子20は、基材11の一方面上に、第1電極24、有機機能層25、及び、第2電極26を覆う封止樹脂層27を介して、封止部材28が貼り合わされることにより、固体封止されている。有機EL素子20の固体封止では、封止部材28の貼合面、又は、基材11のポリシラザン改質層13及び第2電極26上のいずれか一方に、未硬化の樹脂材料を複数箇所に塗布し、この樹脂材料を挟んで基材11と封止部材28とを、加熱した状態で互いに押圧して一体化される。
 以下に、本例の有機EL素子20について、ガスバリアフィルム10、第1電極24及び第2電極26、有機機能層25、封止樹脂層27、封止部材28の順に、詳細な構成を説明する。なお、本例の有機EL素子20において、透光性とは波長550nmでの光透過率が50%以上であることをいう。
[ガスバリアフィルム]
 有機EL素子20において、ガスバリアフィルム10は上述の第1実施形態と同じ構成を適用することができる。
 ガスバリアフィルム10を構成する基材11としては、可撓性の基材、特に透明樹脂フィルムを用いることが好ましい。
 蒸着層12は、蒸着法により形成された、炭素(C)、窒素(N)、及び、酸素(O)から選ばれる少なくとも1種以上の元素を含むケイ素化合物である。また、蒸着層12を構成するケイ素化合物は、表面から深さ方向(厚さ方向)において、傾斜状に組成が変化する特徴を有している。さらに、この蒸着層12の表面は、ポリシラザン改質層13との接着性を向上するための改質処理が行われている。
 ポリシラザン改質層13は、ポリシラザン化合物成膜を含有する塗布液を塗布後、改質処理を行うことにより、ケイ素酸化物又は酸化窒化ケイ素化合物を含有する層であることが好ましい。
[第1電極(アノード側)、第2電極(カソード)]
(第1電極)
 有機EL素子20は、第1電極24が実質的なアノードとなる。有機EL素子20は、第1電極24を透過して基材11側から光を取り出す、ボトミエミッション型の素子である。このため、第1電極24は、透光性の導電層により形成される必要がある。
 第1電極24は、例えば、銀を主成分として構成された層であって、銀又は銀を主成分とした合金を用いて構成された層である。このような第1電極24の形成方法としては、塗布法、インクジェット法、コーティング法、ディップ法等のウェットプロセスを用いる方法や、蒸着法(抵抗加熱、EB法等)、スパッタ法、CVD法等のドライプロセスを用いる方法等が挙げられる。なかでも蒸着法が好ましく適用される。
 第1電極24を構成する銀(Ag)を主成分とする合金は、一例として銀マグネシウム(AgMg)、銀銅(AgCu)、銀パラジウム(AgPd)、銀パラジウム銅(AgPdCu)、銀インジウム(AgIn)等が挙げられる。
 以上のような第1電極24は、銀又は銀を主成分とした合金の層が、必要に応じて複数の層に分けて積層された構成であってもよい。
 さらに、この第1電極24は、厚さが4~12nmの範囲にあることが好ましい。厚さ12nm以下では、層の吸収成分及び反射成分が低く抑えられ、透光性電極の光透過率が維持されるため好ましい。また、厚さが4nm以上であることにより、層の導電性も確保される。
 なお、以上のような、第1電極24は、上部が保護膜で覆われていてもよく、別の導電性層が積層されていてもよい。この場合、有機EL素子20の光透過性を損なうことのないように、保護膜及び導電性層が光透過性を有することが好ましい。
 また、第1電極24の下部、すなわち、ポリシラザン改質層13と第1電極24の間にも、必要に応じた層を設けた構成としてもよい。例えば、第1電極24の特性向上や、形成を容易にするための下地層等を形成してもよい。
 また、第1電極24は、上記銀を主成分とする以外の構成としてもよい。例えば、他の金属や合金、ITO、酸化亜鉛、酸化スズ等の各種の透明導電性物質薄膜を用いてもよい。
(第2電極)
 第2電極26は、有機機能層25に電子を供給するためのカソードとして機能する電極層であり、金属、合金、有機又は無機の導電性化合物、及びこれらの混合物が用いられる。具体的には、金、アルミニウム、銀、マグネシウム、リチウム、マグネシウム/銅混合物、マグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、インジウム、リチウム/アルミニウム混合物、希土類金属、ITO、ZnO、TiO2、SnO2等の酸化物半導体等が挙げられる。
 第2電極26は、これらの導電性材料を蒸着やスパッタリング等の方法により形成することができる。また、第2電極26としてのシート抵抗は、数百Ω/sq.以下が好ましく、厚さは通常5nm~5μm、好ましくは5nm~200nmの範囲で選ばれる。
 なお、この有機EL素子20が、第2電極26側からも発光光hを取り出す両面発光型であれば、上述した導電性材料のうち光透過性の良好な導電性材料を選択して第2電極26を構成する。
[有機機能層]
 有機機能層25は、アノードである第1電極24の上部に[正孔注入層25a/正孔輸送層25b/発光層25c/電子輸送層25d/電子注入層25e]をこの順に積層した構成を例示できるが、このうち少なくとも有機材料を用いて構成された発光層25cを有することが必要である。正孔注入層25a及び正孔輸送層25bは、正孔輸送性と正孔注入性とを有する正孔輸送/注入層として設けられてもよい。電子輸送層25d及び電子注入層25eは、電子輸送性と電子注入性とを有する単一層として設けられてもよい。また、これらの有機機能層25のうち、例えば電子注入層25eは無機材料で構成されている場合もある。
 また、有機機能層25は、これらの層の他にも正孔阻止層や電子阻止層等が必要に応じて必要箇所に積層されていてよい。さらに、発光層25cは、各波長領域の発光光を発生させる各色発光層を有し、これらの各色発光層を、非発光性の中間層を介して積層させて発光層ユニットとして形成されていてもよい。中間層は、正孔阻止層、電子阻止層として機能してもよい。
[発光層]
 発光層25cは、発光材料として例えば燐光発光化合物が含有されている。
 この発光層25cは、電極又は電子輸送層25dから注入された電子と、正孔輸送層25bから注入された正孔とが再結合して発光する層であり、発光する部分は発光層25cの層内であっても発光層25cにおける隣接する層との界面であってもよい。
 このような発光層25cとしては、含まれる発光材料が発光要件を満たしていれば、その構成には特に制限はない。また、同一の発光スペクトルや発光極大波長を有する層が複数層あってもよい。この場合、各発光層25c間には非発光性の中間層(図示せず)を有していることが好ましい。
 発光層25cの厚さの総和は1~100nmの範囲にあることが好ましく、さらに好ましくは、より低い電圧で駆動することができることから1~30nmである。尚、発光層25cの厚さの総和とは、発光層25c間に非発光性の中間層が存在する場合には、当該中間層も含む厚さである。
 複数層を積層した構成の発光層25cの場合、個々の発光層の厚さとしては、1~50nmの範囲に調整することが好ましく、1~20nmの範囲に調整することがより好ましい。積層された複数の発光層が、青、緑、赤のそれぞれの発光色に対応する場合、青、緑、赤の各発光層の厚さの関係については、特に制限はない。
 以上のような発光層25cは、後述する発光材料やホスト化合物を、例えば、真空蒸着法、スピンコート法、キャスト法、LB法、インクジェット法等の公知の薄膜形成方法により形成することができる。
 また発光層25cは、複数の発光材料を混合してもよく、また燐光発光材料と蛍光発光材料(蛍光ドーパント、蛍光性化合物ともいう)を同一発光層25c中に混合して用いてもよい。
 発光層25cの構成として、ホスト化合物(発光ホストともいう)、発光材料(発光ドーパント化合物、ゲスト材料ともいう)を含有し、発光材料より発光させることが好ましい。
(ホスト化合物)
 発光層25cに含有されるホスト化合物としては、室温(25℃)における燐光発光の燐光量子収率が0.1未満の化合物が好ましい。さらに、燐光量子収率が0.01未満である化合物が好ましい。また、ホスト化合物は、発光層25cに含有される化合物の中で、層中での体積比が50%以上であることが好ましい。
 ホスト化合物としては、公知のホスト化合物を単独で用いてもよく、又は複数種用いてもよい。ホスト化合物を複数種用いることで、電荷の移動を調整することが可能であり、有機EL素子20を高効率化することができる。また、後述する発光材料を複数種用いることで、異なる発光を混ぜることが可能となり、これにより任意の発光色を得ることができる。
 用いられるホスト化合物としては、従来公知の低分子化合物でも、繰り返し単位をもつ高分子化合物でもよく、ビニル基やエポキシ基のような重合性基を有する低分子化合物(蒸着重合性発光ホスト)でもよい。
 公知のホスト化合物としては、正孔輸送能、電子輸送能を有しつつ、発光の長波長化を防ぎ、かつ高Tg(ガラス転移温度)化合物が好ましい。ここでいうガラス転移点(Tg)とは、DSC(Differential Scanning Colorimetry:示差走査熱量法)を用いて、JIS-K-7121に準拠した方法により求められる値である。
 有機エレクトロルミネッセンス素子に適用可能なホスト化合物の具体例としては、特開2013-4245の段落[0163]~[0178]に記載の化合物H1~H79を例示することができる。特開2013-4245の段落[0163]~[0178]に記載の化合物H1~H79を本願明細書に組み込む。
 また、その他の公知のホスト化合物の具体例としては、以下の文献に記載されている化合物を用いることもできる。例えば、特開2001-257076号公報、同2002-308855号公報、同2001-313179号公報、同2002-319491号公報、同2001-357977号公報、同2002-334786号公報、同2002-8860号公報、同2002-334787号公報、同2002-15871号公報、同2002-334788号公報、同2002-43056号公報、同2002-334789号公報、同2002-75645号公報、同2002-338579号公報、同2002-105445号公報、同2002-343568号公報、同2002-141173号公報、同2002-352957号公報、同2002-203683号公報、同2002-363227号公報、同2002-231453号公報、同2003-3165号公報、同2002-234888号公報、同2003-27048号公報、同2002-255934号公報、同2002-260861号公報、同2002-280183号公報、同2002-299060号公報、同2002-302516号公報、同2002-305083号公報、同2002-305084号公報、同2002-308837号公報等が挙げられる。
(発光材料)
 本実施形態の有機エレクトロルミネッセンス素子に用いることのできる発光材料としては、燐光発光性化合物(燐光性化合物、燐光発光材料ともいう)が挙げられる。
 燐光発光性化合物とは、励起三重項からの発光が観測される化合物であり、具体的には室温(25℃)にて燐光発光する化合物であり、燐光量子収率が25℃において0.01以上の化合物であると定義されるが、好ましい燐光量子収率は0.1以上である。
 上記燐光量子収率は、第4版実験化学講座7の分光IIの398頁(1992年版、丸善)に記載の方法により測定できる。溶液中での燐光量子収率は種々の溶媒を用いて測定できるが、本例において燐光発光性化合物を用いる場合、任意の溶媒のいずれかにおいて上記燐光量子収率(0.01以上)が達成されればよい。
 燐光発光性化合物の発光の原理としては2種挙げられる。一つは、キャリアが輸送されるホスト化合物上でキャリアの再結合が起こってホスト化合物の励起状態が生成し、このエネルギーを燐光発光性化合物に移動させることで燐光発光性化合物からの発光を得るというエネルギー移動型であり、もう一つは、燐光発光性化合物がキャリアトラップとなり、燐光発光性化合物上でキャリアの再結合が起こり燐光発光性化合物からの発光が得られるというキャリアトラップ型である。いずれの場合においても、燐光発光性化合物の励起状態のエネルギーはホスト化合物の励起状態のエネルギーよりも低いことが条件となる。
 燐光発光性化合物は、一般的な有機エレクトロルミネッセンス素子の発光層に使用される公知のものの中から適宜選択して用いることができるが、好ましくは元素の周期表で8~10族の金属を含有する錯体系化合物である。さらに好ましくはイリジウム化合物、オスミウム化合物、又は白金化合物(白金錯体系化合物)、希土類錯体であり、中でも最も好ましいのはイリジウム化合物である。
 本実施形態の有機エレクトロルミネッセンス素子においては、少なくとも一つの発光層25cに2種以上の燐光発光性化合物を含有していてもよく、発光層25cにおける燐光発光性化合物の濃度比が発光層25cの厚さ方向で変化していてもよい。
 燐光発光性化合物は好ましくは発光層25cの総量に対し0.1体積%以上30体積%未満である。
 有機エレクトロルミネッセンス素子に適用可能な燐光発光性化合物としては、特開2013-4245の段落[0185]~[0235]に記載の一般式(4)、一般式(5)、一般式(6)で表される化合物、及び、例示化合物を好ましく挙げることができる。また、その他の例示化合物として、Ir-46、Ir-47、Ir-48、を以下に示す。特開2013-4245の段落[0185]~[0235]に記載の一般式(4)、一般式(5)、一般式(6)で表される化合物、及び、例示化合物(Pt-1~Pt-3、Os-1、Ir-1~Ir-45)を本願明細書に組み込む。
Figure JPOXMLDOC01-appb-C000002
 尚、これらの燐光発光性化合物(燐光発光性の金属錯体ともいう)は、有機EL素子20の発光層25cに発光ドーパントとして含有されることが好ましい態様であるが、発光層25c以外の有機機能層に含有されていてもよい。
 また、燐光発光性化合物は、有機EL素子20の発光層25cに使用される公知のものの中から適宜選択して用いることができる。
 本実施形態の有機エレクトロルミネッセンス素子に適用される燐光発光性化合物は、好ましくは元素の周期表で8~10族の金属を含有する錯体系化合物であり、さらに好ましくはイリジウム化合物、オスミウム化合物、又は白金化合物(白金錯体系化合物)、希土類錯体であり、中でも最も好ましいのはイリジウム化合物である。
 上記の燐光発光性化合物(燐光発光性金属錯体等ともいう)は、例えば、Organic Letters誌 vol.3 No.16 2579~2581頁(2001)、Inorganic Chemistry,第30巻 第8号 1685~1687頁(1991年)、J.Am.Chem.Soc.,123巻 4304頁(2001年)、Inorganic Chemistry,第40巻第7号 1704~1711頁(2001年)、Inorganic Chemistry,第41巻 第12号 3055~3066頁(2002年)、New Journal of Chemistry.,第26巻 1171頁(2002年)、European Journal of Organic Chemistry,第4巻 695~709頁(2004年)、さらにこれらの文献中に記載の参考文献等の方法を適用することにより合成できる。
(蛍光発光材料)
 蛍光発光材料としては、クマリン系色素、ピラン系色素、シアニン系色素、クロコニウム系色素、スクアリウム系色素、オキソベンツアントラセン系色素、フルオレセイン系色素、ローダミン系色素、ピリリウム系色素、ペリレン系色素、スチルベン系色素、ポリチオフェン系色素、又は希土類錯体系蛍光体等が挙げられる。
[注入層:正孔注入層、電子注入層]
 注入層とは、駆動電圧低下や発光輝度向上のために電極と発光層25cの間に設けられる層のことで、「有機EL素子とその工業化最前線(1998年11月30日エヌ・ティー・エス社発行)」の第2編第2章「電極材料」(123~166頁)に詳細に記載されており、正孔注入層25aと電子注入層25eとがある。
 注入層は、必要に応じて設けることができる。正孔注入層25aであれば、アノードと発光層25c又は正孔輸送層25bの間、電子注入層25eであればカソードと発光層25c又は電子輸送層25dとの間に配置される。
 正孔注入層25aは、特開平9-45479号公報、同9-260062号公報、同8-288069号公報等にもその詳細が記載されており、具体例として、銅フタロシアニンに代表されるフタロシアニン層、酸化バナジウムに代表される酸化物層、アモルファスカーボン層、ポリアニリン(エメラルディン)やポリチオフェン等の導電性高分子を用いた高分子層等が挙げられる。
 電子注入層25eは、特開平6-325871号公報、同9-17574号公報、同10-74586号公報等にもその詳細が記載されており、具体的にはストロンチウムやアルミニウム等に代表される金属層、フッ化カリウムに代表されるアルカリ金属ハライド層、フッ化マグネシウムに代表されるアルカリ土類金属化合物層、酸化モリブデンに代表される酸化物層等が挙げられる。電子注入層25eはごく薄い層であることが望ましく、素材にもよるがその厚さは1nm~10μmの範囲が好ましい。
[正孔輸送層]
 正孔輸送層25bは、正孔を輸送する機能を有する正孔輸送材料からなり、広い意味で正孔注入層25a、電子阻止層も正孔輸送層25bに含まれる。正孔輸送層25bは単層又は複数層設けることができる。
 正孔輸送材料としては、正孔の注入又は輸送、電子の障壁性のいずれかを有するものであり、有機物、無機物のいずれであってもよい。例えば、トリアゾール誘導体、オキサジアゾール誘導体、イミダゾール誘導体、ポリアリールアルカン誘導体、ピラゾリン誘導体及びピラゾロン誘導体、フェニレンジアミン誘導体、アリールアミン誘導体、アミノ置換カルコン誘導体、オキサゾール誘導体、スチリルアントラセン誘導体、フルオレノン誘導体、ヒドラゾン誘導体、スチルベン誘導体、シラザン誘導体、アニリン系共重合体、また、導電性高分子オリゴマー、特にチオフェンオリゴマー等が挙げられる。
 正孔輸送材料としては、上記のものを使用することができるが、ポルフィリン化合物、芳香族第3級アミン化合物及びスチリルアミン化合物、特に芳香族第3級アミン化合物を用いることが好ましい。
 芳香族第3級アミン化合物及びスチリルアミン化合物の代表例としては、N,N,N′,N′-テトラフェニル-4,4′-ジアミノフェニル;N,N′-ジフェニル-N,N′-ビス(3-メチルフェニル)-〔1,1′-ビフェニル〕-4,4′-ジアミン(TPD);2,2-ビス(4-ジ-p-トリルアミノフェニル)プロパン;1,1-ビス(4-ジ-p-トリルアミノフェニル)シクロヘキサン;N,N,N′,N′-テトラ-p-トリル-4,4′-ジアミノビフェニル;1,1-ビス(4-ジ-p-トリルアミノフェニル)-4-フェニルシクロヘキサン;ビス(4-ジメチルアミノ-2-メチルフェニル)フェニルメタン;ビス(4-ジ-p-トリルアミノフェニル)フェニルメタン;N,N′-ジフェニル-N,N′-ジ(4-メトキシフェニル)-4,4′-ジアミノビフェニル;N,N,N′,N′-テトラフェニル-4,4′-ジアミノジフェニルエーテル;4,4′-ビス(ジフェニルアミノ)クオードリフェニル;N,N,N-トリ(p-トリル)アミン;4-(ジ-p-トリルアミノ)-4′-〔4-(ジ-p-トリルアミノ)スチリル〕スチルベン;4-N,N-ジフェニルアミノ-(2-ジフェニルビニル)ベンゼン;3-メトキシ-4′-N,N-ジフェニルアミノスチルベンゼン;N-フェニルカルバゾール、さらには米国特許第5,061,569号明細書に記載されている2個の縮合芳香族環を分子内に有するもの、例えば、4,4′-ビス〔N-(1-ナフチル)-N-フェニルアミノ〕ビフェニル(NPD)、特開平4-308688号公報に記載されているトリフェニルアミンユニットが3つスターバースト型に連結された4,4′,4″-トリス〔N-(3-メチルフェニル)-N-フェニルアミノ〕トリフェニルアミン(MTDATA)等が挙げられる。
 さらにこれらの材料を高分子鎖に導入した、又はこれらの材料を高分子の主鎖とした高分子材料を用いることもできる。また、p型-Si、p型-SiC等の無機化合物も正孔注入材料、正孔輸送材料として使用することができる。
 また、特開平11-251067号公報、J.Huang et.al.,Applied Physics Letters,80(2002),p.139に記載されているような、いわゆるp型正孔輸送材料を用いることもできる。高効率の発光素子が得られることから、これらの材料を用いることが好ましい。
 正孔輸送層25bは、上記正孔輸送材料を、例えば、真空蒸着法、スピンコート法、キャスト法、インクジェット法を含む印刷法、LB法等の公知の方法により、薄膜化することにより形成することができる。正孔輸送層25bの厚さについては特に制限はないが、通常は5nm~5μm程度、好ましくは5~200nmである。この正孔輸送層25bは、上記材料の1種又は2種以上からなる一層構造であってもよい。
 また、正孔輸送層25bの材料に不純物をドープしてp性を高くすることもできる。その例としては、特開平4-297076号公報、特開2000-196140号公報、同2001-102175号公報、J.Appl.Phys.,95,5773(2004)等に記載されたものが挙げられる。
 このように、正孔輸送層25bのp性を高くすると、より低消費電力の素子を作製することができるため好ましい。
[電子輸送層]
 電子輸送層25dは、電子を輸送する機能を有する材料からなり、広い意味で電子注入層25e、正孔阻止層(図示せず)も電子輸送層25dに含まれる。電子輸送層25dは単層構造又は複数層の積層構造として設けることができる。
 単層構造の電子輸送層25d、及び積層構造の電子輸送層25dにおいて発光層25cに隣接する層部分を構成する電子輸送材料(正孔阻止材料を兼ねる)としては、カソードより注入された電子を発光層25cに伝達する機能を有していればよい。このような材料としては従来公知の化合物の中から任意に選択して用いることができる。例えば、ニトロ置換フルオレン誘導体、ジフェニルキノン誘導体、チオピランジオキシド誘導体、カルボジイミド、フレオレニリデンメタン誘導体、アントラキノジメタン、アントロン誘導体及びオキサジアゾール誘導体等が挙げられる。さらに、上記オキサジアゾール誘導体において、オキサジアゾール環の酸素原子を硫黄原子に置換したチアジアゾール誘導体、電子吸引基として知られているキノキサリン環を有するキノキサリン誘導体も、電子輸送層25dの材料として用いることができる。さらにこれらの材料を高分子鎖に導入した、又はこれらの材料を高分子の主鎖とした高分子材料を用いることもできる。
 また、8-キノリノール誘導体の金属錯体、例えば、トリス(8-キノリノール)アルミニウム(Alq3)、トリス(5,7-ジクロロ-8-キノリノール)アルミニウム、トリス(5,7-ジブロモ-8-キノリノール)アルミニウム、トリス(2-メチル-8-キノリノール)アルミニウム、トリス(5-メチル-8-キノリノール)アルミニウム、ビス(8-キノリノール)亜鉛(Znq)等、及びこれらの金属錯体の中心金属がIn、Mg、Cu、Ca、Sn、Ga又はPbに置き替わった金属錯体も、電子輸送層25dの材料として用いることができる。
 その他、メタルフリー若しくはメタルフタロシアニン、又はそれらの末端がアルキル基やスルホン酸基等で置換されていても、電子輸送層25dの材料として好ましく用いることができる。また、発光層25cの材料としても例示されるジスチリルピラジン誘導体も電子輸送層25dの材料として用いることができ、正孔注入層25a、正孔輸送層25bと同様にn型-Si、n型-SiC等の無機半導体も電子輸送層25dの材料として用いることができる。
 電子輸送層25dは、上記材料を、例えば、真空蒸着法、スピンコート法、キャスト法、インクジェット法を含む印刷法、LB法等の公知の方法により、薄膜化することにより形成することができる。電子輸送層25dの厚さについては特に制限はないが、通常は5nm~5μm程度、好ましくは5~200nmである。電子輸送層25dは上記材料の1種又は2種以上からなる一層構造であってもよい。
 また、電子輸送層25dに不純物をドープし、n性を高くすることもできる。その例としては、特開平4-297076号公報、同10-270172号公報、特開2000-196140号公報、同2001-102175号公報、J.Appl.Phys.,95,5773(2004)等に記載されたものが挙げられる。さらに電子輸送層25dには、カリウムやカリウム化合物などを含有させることが好ましい。カリウム化合物としては、例えば、フッ化カリウム等を用いることができる。このように電子輸送層25dのn性を高くすると、より低消費電力の素子を作製することができる。
 また、電子輸送層25dの材料(電子輸送性化合物)としては、例えば、特開2013-4245の段落[0057]~[0148]に記載の一般式(1)、一般式(2)、及び、一般式(3)で表される化合物を用いることが好ましく、例示化合物1~111が用いることができる。また、その他の例示化合物として、化合物112~134を以下に示す。特開2013-4245の段落[0057]~[0148]に記載の一般式(1)、一般式(2)、及び、一般式(3)で表される化合物を、本願明細書に組み込む。
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000005
[阻止層:正孔阻止層、電子阻止層]
 阻止層は、上述のように有機化合物薄膜の基本構成層の他に、必要に応じて設けられる。例えば、特開平11-204258号公報、同11-204359号公報、及び「有機EL素子とその工業化最前線(1998年11月30日エヌ・ティー・エス社発行)」の237頁等に記載されている正孔阻止(ホールブロック)層がある。
 正孔阻止層とは、広い意味では、電子輸送層25dの機能を有する。正孔阻止層は、電子を輸送する機能を有しつつ正孔を輸送する能力が著しく小さい正孔阻止材料からなり、電子を輸送しつつ正孔を阻止することで電子と正孔の再結合確率を向上させることができる。また、後述する電子輸送層25dの構成を必要に応じて、正孔阻止層として用いることができる。正孔阻止層は、発光層25cに隣接して設けられていることが好ましい。
 一方、電子阻止層とは、広い意味では、正孔輸送層25bの機能を有する。電子阻止層は、正孔を輸送する機能を有しつつ電子を輸送する能力が著しく小さい材料からなり、正孔を輸送しつつ電子を阻止することで電子と正孔の再結合確率を向上させることができる。また、後述する正孔輸送層25bの構成を必要に応じて電子阻止層として用いることができる。阻止層の厚さとしては、好ましくは3~100nmであり、さらに好ましくは5~30nmである。
[封止部材]
 封止部材28は、有機EL素子20を覆うものであって、板状(フィルム状)の封止部材28が封止樹脂層27によって基材11側に固定される。この封止部材28は、少なくとも有機機能層25を覆う状態で設けられ、有機EL素子20及び第2電極26の端子部分(図示省略)を露出させる状態で設けられている。また封止部材28に電極を設け、有機EL素子20の有機EL素子20及び第2電極26の端子部分と、この電極とを導通させるように構成されていてもよい。
 板状(フィルム状)の封止部材28としては、具体的には、ガラス基板、ポリマー基板が挙げられ、これらの基板材料をさらに薄型のフィルム状にして用いてもよい。ガラス基板としては、特にソーダ石灰ガラス、バリウム・ストロンチウム含有ガラス、鉛ガラス、アルミノケイ酸ガラス、ホウケイ酸ガラス、バリウムホウケイ酸ガラス、石英等を挙げることができる。また、ポリマー基板としては、ポリカーボネート、アクリル、ポリエチレンテレフタレート、ポリエーテルサルファイド、ポリサルフォン等を挙げることができる。
 なかでも、素子を薄型化できるということから、封止部材28として薄型のフィルム状にしたポリマー基板を好ましく使用することができる。
 さらには、フィルム状としたポリマー基板は、JIS-K-7126-1987に準拠した方法で測定された酸素透過度が1×10-3ml/(m2・24h・atm)以下、JIS-K-7129-1992に準拠した方法で測定された、水蒸気透過度(25±0.5℃、相対湿度(90±2)%RH)が、1×10-3g/(m2・24h)以下であることが好ましい。
 また、以上のような基板材料は、凹板状に加工して封止部材28として用いてもよい。この場合、上述した基板部材に対してサンドブラスト加工、化学エッチング加工等の加工が施され、凹状が形成される。
 また、これに限らず、金属材料を用いてもよい。金属材料としては、ステンレス、鉄、銅、アルミニウム、マグネシウム、ニッケル、亜鉛、クロム、チタン、モリブデン、シリコン、ゲルマニウム及びタンタルからなる群から選ばれる一種以上の金属又は合金が挙げられる。このような金属材料は、薄型のフィルム状にして封止部材28として用いることにより、有機EL素子20が設けられた発光パネル全体を薄型化できる。
[封止樹脂層]
 封止部材28を基材11側に固定するための封止樹脂層27は、封止部材28と基材11とで挟持された有機EL素子20の封止に用いられる。このような基材11上に形成された有機EL素子を封止材料で被覆する構造は固体封止されている構造として例示される。封止樹脂層27は、例えば、アクリル酸系オリゴマー若しくはメタクリル酸系オリゴマーの反応性ビニル基を有する、光硬化性又は熱硬化性の接着剤、或いは、エポキシ系等の熱硬化性又は化学硬化性(二液混合)の接着剤、ホットメルト型のポリアミド、ポリエステル、ポリオレフィン、カチオン硬化タイプの紫外線硬化性エポキシ樹脂による接着剤が挙げられる。
 製造プロセスの簡易性の観点から、封止樹脂層27を、熱硬化性接着剤で形成することが好ましい。また、封止樹脂層27の形態としては、シート状に加工された熱硬化性接着剤を用いることが好ましい。シート状の熱硬化性接着剤を用いる場合には、常温(25℃程度)では非流動性を示し、かつ、加熱すると50~130℃の範囲内の温度で流動性を発現するような接着剤(シール材)を用いる。
 熱硬化性接着剤としては、任意の接着剤を使用することができる。封止樹脂層27と隣接する封止部材28や、基材11等との密着性向上の観点から、好適な熱硬化性接着剤を適宜選択する。例えば、熱硬化性接着剤としては、分子の末端または側鎖にエチレン性二重結合を有する化合物と熱重合開始剤とを主成分とする樹脂等を用いることができる。より具体的には、エポキシ系樹脂、アクリル系樹脂等からなる熱硬化性接着剤を使用することができる。また、有機EL素子20の製造工程で用いる貼合装置および硬化処理装置に応じて、溶融タイプの熱硬化性接着剤を使用してもよい。
 また、接着剤として、上記した接着剤を2種以上混合したものを用いてもよいし、熱硬化性および紫外線硬化性をともに備えた接着剤を用いてもよい。
[有機エレクトロルミネッセンス素子の効果]
 以上説明した有機EL素子20は、上述のプラズマCVD法により形成された、ケイ素、酸素及び炭素を含み、各元素の分布曲線が上記(i)~(iii)の条件を満たす蒸着層を備えることにより、基材と封止部材との密着性を向上させることができる。
 上記蒸着層は、ケイ素、酸素及び炭素を含む無機膜から形成され、熱拡散性に優れる特性を有する。特に、炭素を含むことにより、ケイ素と酸素のみからなる無機膜よりも熱導電率が向上すると考えられる。厚さ方向に炭素含有率の分布を有することから、組成の異なる複数の層が厚さ方向に積層された構成と、類似の特性を有すると推測することができる。つまり、積層された無機膜中に、炭素の含有により熱拡散性に優れた層が介在することにより、この層による面方向への熱拡散性が向上する。このため、蒸着層に熱拡散性に優れる特性が得られると考えられる。
 従って、固体封止時に、封止樹脂層を硬化させるための処理をした際に、樹脂フィルム等の可撓性基材への損傷を抑制することができる。特に、封止樹脂層に熱硬化性樹脂を用いて、硬化処理として長時間の高温処理を行った場合においても、有機EL素子にかかる熱を蒸着層が放散することにより、可撓性基材への熱ダメージを緩和することができる。
 基材上にポリシラザン改質層を備えることにより、従来では封止樹脂層と基材との密着性が低くなりやすい有機EL素子においても、封止樹脂層の硬化処理を進めることができるため、封止樹脂層と基材との密着性を高くすることができる。つまり、基材や蒸着層表面の凹凸を緩和し、電極の短絡等による不良を防ぐためにポリシラザン改質層を形成し、電極を形成する面を平滑化した構成においても、有機EL素子の剥離を防ぐことができる。
 この結果、有機EL素子において、電極の短絡や剥離等を防ぐことができる。従って、上記構成とすることにより、有機EL素子の信頼性を向上させることができる。
 なお、上述の実施形態では、基材、蒸着層、及びポリシラザン改質層を備え、この上に第1電極、有機機能層及び第2電極からなる素子を設け、さらに、この素子を固体封止したボトミエミッション型の有機エレクトロルミネッセンス素子を説明している。このような基材、蒸着層、及びポリシラザン改質層上に素子が設けられる有機エレクトロルミネッセンス素子は、ボトムエミッション型に限られず、例えば、第2電極側から光を取り出すトップエミッション型の構成や、両面から光を取り出す両面発光型の構成としてもよい。有機エレクトロルミネッセンス素子がトップエミッション型であれば、第2電極に透明な材料を用いて、発光光hを第2電極側から取り出す構成としてもよい。また、有機エレクトロルミネッセンス素子が両面発光型であれば、第2電極に透明な材料を用い、発光光hを両面から取り出す構成としてもよい。
[有機エレクトロルミネッセンス素子の用途]
 上述した各構成の有機エレクトロルミネッセンス素子は、上述したように面発光体であるため各種の発光光源として用いることができる。例えば、家庭用照明や車内照明などの照明装置、時計や液晶用のバックライト、看板広告用照明、信号機の光源、光記憶媒体の光源、電子写真複写機の光源、光通信処理機の光源、光センサーの光源等が挙げられる。また、これらの発光光源に限定されず、その他の光源としても用いることができる。
 特に、カラーフィルタと組み合わせた液晶表示装置のバックライト、照明用光源としての用途に有効に用いることができる。
 また、各実施形態例の有機エレクトロルミネッセンス素子は、照明用や露光光源のような一種のランプとして使用してもよいし、画像を投影するタイプのプロジェクション装置や、静止画像や動画像を直接視認するタイプの表示装置(ディスプレイ)として使用してもよい。この場合、近年の照明装置及びディスプレイの大型化にともない、有機エレクトロルミネッセンス素子を設けた発光パネル同士を平面的に接合する、いわゆるタイリングによって発光面を大面積化してもよい。
 動画再生用の表示装置として使用する場合の駆動方式は、単純マトリクス(パッシブマトリクス)方式でもアクティブマトリクス方式でもどちらでもよい。また異なる発光色を有する有機エレクトロルミネッセンス素子を2種以上使用することにより、カラー又はフルカラー表示装置を作製することが可能である。
 以下、実施例に基づいて本発明をより具体的に説明するが、本発明は以下の実施例に限定されるものではない。
[ボトムエミッション型の有機エレクトロルミネッセンス素子の作製]
 試料101~108の各有機EL素子を、発光領域の面積が5cm×5cmとなるように作製した。下記表1には試料101~108の各有機EL素子における各層の構成を示す。
[試料101の有機エレクトロルミネッセンス素子の作製手順]
 試料101の作製において、まず、透明な2軸延伸ポリエチレンナフタレートフィルムの基材上に蒸着層とポリシラザン改質層とを形成し、この上に下記化合物118からなる下地層と、銀からなる導電層を形成して、透光性電極を作製した。さらに、透光性電極上に、有機機能層と、対向電極とを形成した後、封止樹脂層と封止部材により固体封止し、試料101の有機EL素子を作製した。
(蒸着層の形成)
 基材を上述の図5に示す蒸着層の製造装置に装着して、下記成膜条件(プラズマCVD条件)にて、基材上に蒸着層を300nmの厚さで作製した。
 原料ガス(HMDSO)の供給量:100sccm(Standard Cubic Centimeter per Minute)
 酸素ガス(O2)の供給量:500sccm
 真空チャンバー内の真空度:3Pa
 プラズマ発生用電源からの印加電力:1.2kW
 プラズマ発生用電源の周波数:80kHz
 フィルムの搬送速度:0.5m/min
(エキシマランプによる表面処理)
 形成した蒸着層を、エキシマ照射装置MECL-M-1-200(株式会社エム・ディ・コム製)の稼動ステージ上に固定し、下記の処理条件で表面処理を行い、蒸着層を構成するケイ素化合物の改質処理を行った。
 照射波長:172nm
 ランプ封入ガス:Xe
 エキシマランプ光強度:130mW/cm2(172nm)
 試料と光源の距離:1mm
 ステージ加熱温度:70℃
 照射装置内の酸素濃度:1.0%
 エキシマランプ照射時間:1秒
(ポリシラザン改質層の形成)
 次に、表面処理が行われた蒸着層上に、ポリシラザン改質層を形成した。
 まず、ポリシラザン含有液として、パーヒドロポリシラザン(アクアミカ NN120-10、無触媒タイプ、AZエレクトロニックマテリアルズ(株)製)の10質量%ジブチルエーテル溶液を作製した。
 次に、基材上に、ポリシラザン含有液を、ワイヤレスバーにて、乾燥後の平均膜厚が300nmとなるように塗布し、温度85℃、湿度55%RHの雰囲気下で1分間処理して乾燥させた。更に、温度25℃、湿度10%RH(露点温度-8℃)の雰囲気下に10分間保持し、除湿処理を行って、ポリシラザン塗布膜を形成した。
 次に、ポリシラザン塗布膜を形成した基材を、エキシマ照射装置MECL-M-1-200(株式会社エム・ディ・コム製)の稼動ステージ上に固定し、下記の改質処理条件で改質処理を行い、ポリシラザン改質層を形成した。
 照射波長:172nm
 ランプ封入ガス:Xe
 エキシマランプ光強度:130mW/cm2(172nm)
 試料と光源の距離:1mm
 ステージ加熱温度:70℃
 照射装置内の酸素濃度:0.5%
 エキシマランプ照射時間:5秒
(下地層、第1電極の形成)
 次に、ポリシラザン改質層までを形成した基材を、市販の真空蒸着装置の基材ホルダーに固定し、化合物118をタングステン製の抵抗加熱ボートに入れ、これら基材ホルダーと加熱ボートとを真空蒸着装置の第1真空槽内に取り付けた。また、タングステン製の抵抗加熱ボートに銀(Ag)を入れ、真空蒸着装置の第2真空槽内に取り付けた。
 次に、真空蒸着装置の第1真空槽を4×10-4Paまで減圧した後、化合物118の入った加熱ボートに通電して加熱し、蒸着速度0.1nm/秒~0.2nm/秒で第1電極の下地層を厚さ10nmで設けた。
 次に、下地層まで形成した基材を真空のまま第2真空槽に移し、第2真空槽を4×10-4Paまで減圧した後、銀の入った加熱ボートを通電して加熱した。これにより、蒸着速度0.1nm/秒~0.2nm/秒で厚さ8nmの銀からなる第1電極を形成した。
(有機機能層~第2電極)
 引き続き、市販の真空蒸着装置を用い、真空度1×10-4Paまで減圧した後、基材を移動させながら化合物HT-1を、蒸着速度0.1nm/秒で蒸着し、20nmの正孔輸送層(HTL)を設けた。
 次に、化合物A-3(青色発光ドーパント)、化合物A-1(緑色発光ドーパント)、化合物A-2(赤色発光ドーパント)及び化合物H-1(ホスト化合物)を、化合物A-3が膜厚に対し線形に35重量%から5重量%になるように場所により蒸着速度を変化させ、化合物A-1と化合物A-2は膜厚に依存することなく各々0.2重量%の濃度になるように、蒸着速度0.0002nm/秒で、化合物H-1は64.6重量%から94.6重量%になるように場所により蒸着速度を変化させて、厚さ70nmになるよう共蒸着して発光層を形成した。
 その後、化合物ET-1を膜厚30nmに蒸着して電子輸送層を形成し、更にフッ化カリウム(KF)を厚さ2nmで形成した。更に、アルミニウム110nmを蒸着して第2電極を形成した。
 なお、上記化合物118、化合物HT-1、化合物A-1~3、化合物H-1、及び、化合物ET-1は、以下に示す化合物である。
Figure JPOXMLDOC01-appb-C000006
(固体封止)
 次に、封止部材として厚さ25μmのアルミ箔を使用し、このアルミ箔の片面に封止樹脂層として熱硬化型のシート状接着剤(エポキシ系樹脂)を厚さ20μmで貼り付けた封止部材を用いて、第2電極までを作製した試料に重ね合わせた。このとき、第1電極及び第2電極の引き出し電極の端部が外に出るように、封止部材の接着剤形成面と、素子の有機機能層面とを連続的に重ね合わせた。
 次に、試料を減圧装置内に配置し、90℃で0.1MPaの減圧条件下で、重ね合わせた基材と封止部材とに押圧をかけて5分間保持した。続いて、試料を大気圧環境に戻し、さらに120℃で30分間加熱して接着剤を硬化させた。
 上記封止工程は、大気圧下、含水率1ppm以下の窒素雰囲気下で、JIS B 9920に準拠し、測定した清浄度がクラス100で、露点温度が-80℃以下、酸素濃度0.8ppm以下の大気圧で行った。なお、第1電極及び第2電からの引き出し配線等の形成に関する記載は省略してある。
 以上の工程により、試料101の有機EL素子を作製した。
[試料102の有機エレクトロルミネッセンス素子の作製手順]
 第1電極として、ITO電極をスパッタ成膜で100nm形成した以外は、試料101と同様の方法で試料102の有機EL素子を作製した。
[試料103の有機エレクトロルミネッセンス素子の作製手順]
 蒸着層の表面処理条件を、下記条件のUV処理に変更した以外は、試料102と同様の方法で試料103の有機EL素子を作製した。
(UV照射による表面処理)
 形成した蒸着層を、紫外照射装置UVH-0252C(株式会社ウシオ製)の稼動ステージ上に固定した試料を、以下の条件で表面処理を行った。
 UV光強度:2000mW/cm2
 試料と光源の距離:30mm
 ステージ加熱温度:40℃
 照射装置内の酸素濃度:5%
 UV照射時間:180秒
[試料104の有機エレクトロルミネッセンス素子の作製手順]
 蒸着層を形成する条件を、下記条件に変更した以外は、試料101と同様の方法で試料104の有機EL素子を作製した。
(蒸着層の形成)
 基材を上述の図5に示す蒸着層の製造装置に装着して、下記製膜条件(プラズマCVD条件)にて、基材上に蒸着層を300nmの厚さで作製した。
 原料ガス(HMDSO)の供給量:50sccm(Standard Cubic Centimeter per Minute)
 酸素ガス(O2)の供給量:500sccm
 真空チャンバー内の真空度:3Pa
 プラズマ発生用電源からの印加電力:1.2kW
 プラズマ発生用電源の周波数:80kHz
 フィルムの搬送速度:0.5m/min
[試料105の有機エレクトロルミネッセンス素子の作製手順]
 蒸着層の表面処理条件を、下記条件のエキシマ処理に変更した以外は、試料104と同様の方法で試料105の有機EL素子を作製した。
(エキシマランプによる表面処理)
 形成した蒸着層を、エキシマ照射装置MECL-M-1-200(株式会社エム・ディ・コム製)の稼動ステージ上に固定し、下記の条件で表面処理を行い、蒸着層を構成するケイ素化合物の改質処理を行った。
 照射波長:172nm
 ランプ封入ガス:Xe
 エキシマランプ光強度:130mW/cm2(172nm)
 試料と光源の距離:1mm
 ステージ加熱温度:70℃
 照射装置内の酸素濃度:1.0%
 エキシマランプ照射時間:3秒
[試料106の有機エレクトロルミネッセンス素子の作製手順]
 ポリシラザン改質層を形成せずに有機EL素子を形成した以外は、試料104と同様の方法で試料106の有機EL素子を作製した。この素子では、蒸着層上に下地層が形成されている。
[試料107の有機エレクトロルミネッセンス素子の作製手順]
 蒸着層の表面処理を行わなかったことを除き、試料104と同様の方法で試料107の有機EL素子を作製した。この素子では、蒸着法により蒸着層を形成した後、ケイ素化合物に表面処理を行わずに、ポリシラザン改質層を形成した。
[試料108の有機エレクトロルミネッセンス素子の作製手順]
 蒸着層を形成する条件を、下記条件に変更した以外は、試料101と同様の方法で試料108の有機EL素子を作製した。
(蒸着層の形成)
 基材を市販のロールツーロール形態の大気圧プラズマ放電処理装置に装着して、下記成膜条件(大気圧プラズマCVD:AGP)にて、基材上に第1蒸着層、第2蒸着層、第3蒸着層からなる3層構成の蒸着層を形成した。第1蒸着層、第2蒸着層、及び、第3蒸着層の厚みは、それぞれ100nm、30nm、30nmの合計160nmで作製した。
(第1蒸着層の形成)
 放電ガス :N2ガス
 反応ガス1:水素ガスを全ガスに対し1%
 反応ガス2:TEOS(テトラエトキシシラン)を全ガスに対し0.5%
 成膜条件 ;
 第1電極側 電源種類:応用電機製 80kHz
       周波数 :80kHz
       出力密度:8W/cm2
       電極温度:115℃
 第2電極側 電源種類:パール工業製 13.56MHz CF-5000-13M
       周波数 :13.56MHz
       出力密度:10W/cm2
       電極温度:95℃
(第2蒸着層の形成)
 放電ガス :N2ガス
 反応ガス1:酸素ガスを全ガスに対し5%
 反応ガス2:TEOSを全ガスに対し0.1%
 成膜条件 ;
 第1電極側 電源種類:ハイデン研究所 100kHz(連続モード) PHF-6k
       周波数 :100kHz
       出力密度:10W/cm2
       電極温度:120℃
 第2電極側 電源種類:パール工業製 13.56MHz CF-5000-13M
       周波数 :13.56MHz
       出力密度:10W/cm2
       電極温度:95℃
(第3蒸着層の形成)
 放電ガス :N2ガス
 反応ガス1:水素ガスを全ガスに対し1%
 反応ガス2:TEOSを全ガスに対し0.5%
 成膜条件 ;
 第1電極側 電源種類:応用電機製 80kHz
       周波数 :80kHz
       出力密度:8W/cm2
       電極温度:120℃
 第2電極側 電源種類:パール工業製 13.56MHz CF-5000-13M
       周波数 :13.56MHz
       出力密度:10W/cm2
       電極温度:100℃
 表1に、試料101~108の有機EL素子の構成を示す。
Figure JPOXMLDOC01-appb-T000007
[有機エレクトロルミネッセンス素子の評価]
(蒸着層:組成変化)
 試料101、試料104及び試料108の蒸着層について、ケイ素分布曲線、炭素分布曲線、窒素分布曲線、及び、酸素分布曲線を測定した。各元素の分布曲線は、X線光電子分光法と、アルゴン等の希ガスイオンスパッタ法とを併用し、試料内部を露出させつつ順次表面組成分析を行う、XPSデプスプロファイル測定により測定した。
 試料101について測定した分布曲線を図7に示す。また、試料104について測定した分布曲線を図8に示す。
(発光効率)
 分光放射輝度計CS-1000(コニカミノルタセンシング社製)を用いて、試料101~108の有機EL素子の正面輝度及び輝度角度依存性を測定し、正面輝度1000cd/m2における電力効率を評価した。なお、電極効率の評価は、試料101の電力効率を100とする相対値で比較し、下記の5段階に分類、評価した。
5:110以上
4:91~109
3:80~90
2:80以下
1:70以下
(リーク特性)
 有機EL素子を室温下、500μA/cm2流れる順電圧とその逆電圧による電流値を3回測定し、その平均値より整流比を算出した。整流比が高いほどリーク特性に優れていることを表す。評価結果(5段階評価)を表2に示す。
整流比のランク
5:整流比10000以上(非常に安定して駆動している水準)
4:整流比1000以上10000未満(安定に駆動している水準)
3:整流比500以上1000未満(わずかに劣位だが、実技上問題のない水準)
2:整流比100以上500未満(劣位、実技上問題のある水準)
1:整流比100未満(非常に劣位、実技上問題のある水準)
(保存性)
 試料101~108の有機EL素子を60℃、90%RHの環境下で通電を行い、ダークスポットの発生等の発光ムラの状況を、0日から120日までの変化を観察した。観測された各試料の発光ムラを下記の5段階に分類し、評価した。
 5:0日目でダークスポット、輝度ムラは観察されず、120日経過後に非発光領域が全発光面積の0.1%以下で、発生したダークスポットは全て目視では容易に観察できない大きさ(0.1mm径以下)であった。
 4:0日目で発生したダークスポットは、全て目視では容易に観察できない大きさ(0.1mm以下)であり、輝度ムラは観察されず、120日経過後に非発光領域が全発光面積の0.2%以下で、発生したダークスポットは目視では容易に観察できない大きさ(0.1mm以下)を維持した。
 3:0日目で発生したダークスポットは、全て目視では容易に観察できない大きさ(0.1mm以下)であり、120日経過後に非発光領域が全発光面積の2%を超えた。
 2:0日目に目視で判別可能なダークスポット、輝度ムラが観察され、120日経過後に非発光領域が全発光面積の2%を超えた。
 1:0日目に目視で判別可能なダークスポット、輝度ムラの非発光領域が全発光面積の1%を超えて観察され、120日以内に非発光領域が全発光面積の10%を超えた。
 以上の評価結果(5段階評価)を表2に示す。
(折り曲げ保存性)
 試料101~108の有機EL素子のダークスポットについて、屈曲前後のダークスポットの変化を確認するために、あらかじめ、半径10mmの曲率になるように、180度の角度で100回屈曲を繰り返し処理した後に、上記保存性試験と同様の条件で保持した。各試料の発光ムラを、上述の保存性と同様の基準で、5段階に分類、評価した。
 以上の評価結果(5段階評価)を表2に示す。
(水接触角)
 試料101~108の有機EL素子の蒸着層について、表面改質前と表面改質後の表面の水接触角を測定した。接触角は、全自動接触角計DM-901(協和界面科学株式会社製)を用いて、30mm×30mmの面積を3mmおきに計121点測定した。表面改質前と表面改質後とについて、得られた測定値から平均を求め、平均接触角(°)とした。
 また、得られた測定値の平均から、測定値の変動を以下のように分類した。評価結果(5段階評価)を表2に示す。
5:測定値の100点以上が平均値±5%以内に含まれる
4:測定値の100点以上が平均値±10%以内に含まれる
3:測定値の100点以上が平均値±20%以内に含まれる
2:測定値の100点以上が平均値±30%以内に含まれる
1:測定値の100点以上が平均値±40%以内に含まれる
 上記試料101~108の有機EL素子の各評価結果を表2に示す。
Figure JPOXMLDOC01-appb-T000008
[結果]
(組成変化)
 本実施例では、蒸着層を構成するケイ素化合物の組成変化を、炭素の原子比の変化により表している。図7及び図8に示す結果から、試料101は、表面から30nmの厚さで、3%以上の組成変化を有している。試料107は、表面から15nmの厚さで、10%以上の組成変化を有している。
 この結果から、試料101と同様の製法で形成した試料102、試料103は、表面から30nmの厚さで、3%の組成変化を有している。また、試料104と同様の製法で形成した試料105~107は、表面から15nmの厚さで、10%の組成変化を有している。
 また、試料108は、表面から30nmの厚さで、組成変化が1%以下であった。つまり、試料108は、大気圧プラズマCVD法により、蒸着層を構成する各層の組成が均一となるように形成され、この均一な組成の層が、3層積層された構成である。このため、試料108の蒸着層は、試料101~107の蒸着層のような、ケイ素化合物の連続的な組成変化を有していない。
(各特性評価)
 蒸着層の組成が、表面から30nmの厚さで3%以上変化している試料101~103では、第1電極をAgで形成した試料101の発光効率が最も高い。
 また、表面処理を、エキシマ処理で行った試料101、試料102は、表面処理をUV処理で行った試料103よりも、表面処理後の接触角が小さい。接触角の減少は、蒸着層の表面が親水性となっていることを示している。
 この結果から、蒸着層の表面の親水性が高くなることにより、有機EL素子の保存性が向上することがわかる。
 蒸着層の組成が、表面から15nmの厚さで10%以上変化している試料104、試料105では、表面処理時間が長い試料105の特性が向上している。表面処理時間を長くすることにより、より多くのエネルギーで表面処理が行われる。このため、蒸着層の表面の改質が進み、蒸着層の親水性が向上したことにより、保存性が向上したと考えられる。
 また、試料101,102と、試料104とを比較すると、蒸着層の表面の組成変化が大きい試料104の特性が向上している。この結果から、蒸着層の表面の組成変化が大きいことにより、表面処理条件が同じ場合にも、蒸着層の改質処理が進み、特性が向上することがわかる。
 ポリシラザン改質層を備えていない試料106は、蒸着層上に直接、下地層と第1電極とが形成されている。蒸着層は、平面が粗いため、試料104に比べてリーク特性や保存性が低下している。
 また、表面処理が行われていない試料107では、蒸着層とポリシラザン改質層との接着性が低いため、試料104に比べて保存性が低下している。
 蒸着層が組成変化を有していない試料108では、試料107と同様に、蒸着層とポリシラザン改質層との接着性が低いため、試料104に比べてリーク特性や保存性が低下している。
 10・・・ガスバリアフィルム、11・・・基材、12・・・蒸着層、13・・・ポリシラザン改質層、20・・・有機EL素子、24・・・第1電極、25・・・有機機能層、25a・・・正孔注入層、25b・・・正孔輸送層、25c・・・発光層、25d・・・電子輸送層、25e・・・電子注入層、26・・・第2電極、27・・・封止樹脂層、28・・・封止部材、30・・・製造装置、31・・・送り出しロール、32,33,34,35・・・搬送ロール、36,37・・・成膜ロール、38・・・ガス供給管、39・・・プラズマ発生用電源、40・・・フィルム、41,42・・・磁場発生装置、43・・・巻取りロール

Claims (11)

  1.  基材と、
     炭素(C)、窒素(N)、及び、酸素(O)から選ばれる少なくとも1種以上の元素を含み、表面から厚さ方向に向けて連続的な組成変化を有し、且つ、表面処理されているケイ素化合物の蒸着層と、
     ポリシラザン改質層と、を備える、
     ガスバリアフィルム。
  2.  前記蒸着層の組成変化が、表面から深さ30nmの領域において、5%以上である請求項1に記載のガスバリアフィルム。
  3.  前記蒸着層の組成変化が、表面から深さ15nmの領域において、10%以上である請求項1に記載のガスバリアフィルム。
  4.  前記蒸着層が、希ガスエキシマランプを用いた真空紫外線照射により改質されている請求項1に記載のガスバリアフィルム。
  5.  前記蒸着層が、厚さ方向の屈折率分布に少なくとも1つ以上の極値を有する請求項1に記載のガスバリアフィルム。
  6.  基材上に、炭素(C)、窒素(N)、及び、酸素(O)から選ばれる少なくとも1種以上の元素を含み、表面から厚さ方向に向けて連続的な組成変化を有する蒸着層を形成する工程と、
     前記蒸着層の表面処理を行う工程と、
     表面処理後の前記蒸着層上に、ポリシラザン改質層を形成する工程と、を有する
     ガスバリアフィルムの製造方法。
  7.  前記蒸着層の表面処理が、希ガスエキシマランプを用いた真空紫外線照射である請求項6に記載のガスバリアフィルムの製造方法。
  8.  前記ポリシラザン改質層を形成する工程は、前記蒸着層にシラザン化合物を含む塗布液を塗布する工程と、前記シラザン化合物を含む塗布膜を改質処理する工程とを有する請求項6に記載のガスバリアフィルムの製造方法。
  9.  基材と、炭素(C)、窒素(N)、及び、酸素(O)から選ばれる少なくとも1種以上の元素を含み、表面から厚さ方向に向けて連続的な組成変化を有し、且つ、表面処理されているケイ素化合物の蒸着層と、ポリシラザン改質層とを有するガスバリアフィルムと、
     対となる電極と、
     前記電極間に少なくとも1層の発光層を有する有機機能層と、を備える、
     有機エレクトロルミネッセンス素子。
  10.  前記電極の少なくとも一方が、銀を主成分とする請求項9に記載の有機エレクトロルミネッセンス素子。
  11.  前記基材と、前記基材に封止樹脂層で接合された封止部材とによって固体封止されている請求項10に記載の有機エレクトロルミネッセンス素子。
PCT/JP2014/056065 2013-03-11 2014-03-07 ガスバリアフィルム、ガスバリアフィルムの製造方法、及び、有機エレクトロルミネッセンス素子 WO2014142036A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2015505446A JPWO2014142036A1 (ja) 2013-03-11 2014-03-07 ガスバリアフィルム、ガスバリアフィルムの製造方法、及び、有機エレクトロルミネッセンス素子
CN201480012546.7A CN105026141A (zh) 2013-03-11 2014-03-07 气体阻隔膜、气体阻隔膜的制造方法、及有机电致发光元件
US14/772,251 US9640780B2 (en) 2013-03-11 2014-03-07 Gas barrier film, method for producing gas barrier film, and organic electroluminescent element

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013048381 2013-03-11
JP2013-048381 2013-03-11

Publications (1)

Publication Number Publication Date
WO2014142036A1 true WO2014142036A1 (ja) 2014-09-18

Family

ID=51536695

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/056065 WO2014142036A1 (ja) 2013-03-11 2014-03-07 ガスバリアフィルム、ガスバリアフィルムの製造方法、及び、有機エレクトロルミネッセンス素子

Country Status (4)

Country Link
US (1) US9640780B2 (ja)
JP (1) JPWO2014142036A1 (ja)
CN (1) CN105026141A (ja)
WO (1) WO2014142036A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015029795A1 (ja) * 2013-08-30 2015-03-05 コニカミノルタ株式会社 ガスバリア性フィルムの製造方法
KR20150135521A (ko) * 2013-03-29 2015-12-02 린텍 가부시키가이샤 가스 배리어성 적층체, 전자 디바이스용 부재 및 전자 디바이스
JP2016064647A (ja) * 2014-09-08 2016-04-28 住友化学株式会社 積層フィルムおよびフレキシブル電子デバイス
WO2016132901A1 (ja) * 2015-02-19 2016-08-25 コニカミノルタ株式会社 ガスバリアーフィルム及びその製造方法
WO2017104799A1 (ja) * 2015-12-17 2017-06-22 信越化学工業株式会社 サファイア複合基材とその製造方法
JP2020024980A (ja) * 2018-08-06 2020-02-13 日本放送協会 有機薄膜および有機薄膜の製造方法、有機エレクトロルミネッセンス素子およびその製造方法、表示装置、照明装置、有機薄膜太陽電池、薄膜トランジスタ

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102946832B (zh) * 2010-06-18 2015-08-19 花王株式会社 发热器
US9359527B2 (en) * 2013-01-11 2016-06-07 Konica Minolta, Inc. Gas barrier film
JP6111171B2 (ja) * 2013-09-02 2017-04-05 東京エレクトロン株式会社 成膜方法及び成膜装置
US9978812B2 (en) * 2014-01-14 2018-05-22 Sharp Kabushiki Kaisha Organic electroluminescent display panel
JP2016031889A (ja) * 2014-07-30 2016-03-07 株式会社ジャパンディスプレイ 表示装置、及びその製造方法
CN104733647B (zh) * 2015-03-10 2016-08-24 京东方科技集团股份有限公司 薄膜封装方法及薄膜封装结构、显示装置
JP2017182892A (ja) 2016-03-28 2017-10-05 セイコーエプソン株式会社 発光素子、発光装置、及び電子機器
JPWO2018021021A1 (ja) * 2016-07-28 2019-05-09 コニカミノルタ株式会社 ガスバリア性膜、これを用いたガスバリア性フィルム、およびこれらを用いた電子デバイス、ならびにガスバリア性膜の製造方法
KR102008184B1 (ko) * 2016-11-11 2019-08-07 삼성에스디아이 주식회사 유기발광소자 봉지용 조성물 및 이로부터 제조된 유기발광소자 표시장치
KR102230817B1 (ko) * 2017-11-28 2021-03-23 주식회사 엘지화학 배리어 필름
CN111224010B (zh) * 2019-11-05 2022-03-29 武汉华星光电半导体显示技术有限公司 覆盖窗结构及oled显示装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008235165A (ja) * 2007-03-23 2008-10-02 Konica Minolta Holdings Inc 透明導電膜を有するロール状樹脂フィルムの製造方法
JP2009252739A (ja) * 2008-04-10 2009-10-29 Samsung Electronics Co Ltd 傾斜組成封止薄膜およびその製造方法
JP2012084307A (ja) * 2010-10-08 2012-04-26 Sumitomo Chemical Co Ltd 有機el装置
JP2012084353A (ja) * 2010-10-08 2012-04-26 Sumitomo Chemical Co Ltd 有機エレクトロルミネッセンス素子
JP2012106421A (ja) * 2010-11-18 2012-06-07 Konica Minolta Holdings Inc ガスバリアフィルムの製造方法、ガスバリアフィルム及び電子機器
JP2013226758A (ja) * 2012-04-26 2013-11-07 Konica Minolta Inc ガスバリア性フィルムの製造方法
JP2014083691A (ja) * 2012-10-19 2014-05-12 Konica Minolta Inc ガスバリアーフィルム及びガスバリアーフィルムの製造方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3214587B2 (ja) * 1993-12-24 2001-10-02 東洋紡績株式会社 ガスバリアフィルム
EP2011639A4 (en) * 2006-04-21 2012-03-07 Konica Minolta Holdings Inc GASSPERRFILM, HARZBASIS FOR ELECTROLUMINESCENCE DEVICE, THIS USING ELECTROLUMINESCENCE DEVICE AND METHOD FOR PRODUCING A GASPERRFILM
WO2012014653A1 (ja) * 2010-07-27 2012-02-02 コニカミノルタホールディングス株式会社 ガスバリア性フィルム、ガスバリア性フィルムの製造方法及び電子デバイス
WO2012046767A1 (ja) * 2010-10-08 2012-04-12 住友化学株式会社 積層フィルム
JP5880442B2 (ja) * 2010-11-19 2016-03-09 コニカミノルタ株式会社 ガスバリア性フィルム、ガスバリア性フィルムの製造方法及び電子デバイス
EP2650121A4 (en) * 2010-12-06 2014-05-07 Konica Minolta Inc GASPERRFILM, METHOD FOR THE PRODUCTION OF GASPERRFILMS AND ELECTRONIC DEVICE
EP2660041B1 (en) * 2010-12-27 2015-06-17 Konica Minolta, Inc. Gas-barrier film and electronic device
KR101452680B1 (ko) * 2011-06-27 2014-10-22 코니카 미놀타 가부시키가이샤 가스 배리어성 필름, 가스 배리어성 필름의 제조 방법 및 전자 디바이스

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008235165A (ja) * 2007-03-23 2008-10-02 Konica Minolta Holdings Inc 透明導電膜を有するロール状樹脂フィルムの製造方法
JP2009252739A (ja) * 2008-04-10 2009-10-29 Samsung Electronics Co Ltd 傾斜組成封止薄膜およびその製造方法
JP2012084307A (ja) * 2010-10-08 2012-04-26 Sumitomo Chemical Co Ltd 有機el装置
JP2012084353A (ja) * 2010-10-08 2012-04-26 Sumitomo Chemical Co Ltd 有機エレクトロルミネッセンス素子
JP2012106421A (ja) * 2010-11-18 2012-06-07 Konica Minolta Holdings Inc ガスバリアフィルムの製造方法、ガスバリアフィルム及び電子機器
JP2013226758A (ja) * 2012-04-26 2013-11-07 Konica Minolta Inc ガスバリア性フィルムの製造方法
JP2014083691A (ja) * 2012-10-19 2014-05-12 Konica Minolta Inc ガスバリアーフィルム及びガスバリアーフィルムの製造方法

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018171929A (ja) * 2013-03-29 2018-11-08 リンテック株式会社 ガスバリア性積層体、電子デバイス用部材及び電子デバイス
KR20150135521A (ko) * 2013-03-29 2015-12-02 린텍 가부시키가이샤 가스 배리어성 적층체, 전자 디바이스용 부재 및 전자 디바이스
KR102267093B1 (ko) 2013-03-29 2021-06-18 린텍 가부시키가이샤 가스 배리어성 적층체, 전자 디바이스용 부재 및 전자 디바이스
JPWO2014157685A1 (ja) * 2013-03-29 2017-02-16 リンテック株式会社 ガスバリア性積層体、電子デバイス用部材及び電子デバイス
JP2019107906A (ja) * 2013-03-29 2019-07-04 リンテック株式会社 ガスバリア性積層体、電子デバイス用部材及び電子デバイス
WO2015029795A1 (ja) * 2013-08-30 2015-03-05 コニカミノルタ株式会社 ガスバリア性フィルムの製造方法
JP2016064647A (ja) * 2014-09-08 2016-04-28 住友化学株式会社 積層フィルムおよびフレキシブル電子デバイス
JPWO2016132901A1 (ja) * 2015-02-19 2017-11-30 コニカミノルタ株式会社 ガスバリアーフィルム及びその製造方法
WO2016132901A1 (ja) * 2015-02-19 2016-08-25 コニカミノルタ株式会社 ガスバリアーフィルム及びその製造方法
WO2017104799A1 (ja) * 2015-12-17 2017-06-22 信越化学工業株式会社 サファイア複合基材とその製造方法
US11001036B2 (en) 2015-12-17 2021-05-11 Shin-Etsu Chemical Co., Ltd. Sapphire composite base material and method for producing the same
JP2020024980A (ja) * 2018-08-06 2020-02-13 日本放送協会 有機薄膜および有機薄膜の製造方法、有機エレクトロルミネッセンス素子およびその製造方法、表示装置、照明装置、有機薄膜太陽電池、薄膜トランジスタ
JP7108493B2 (ja) 2018-08-06 2022-07-28 日本放送協会 有機薄膜および有機薄膜の製造方法、有機エレクトロルミネッセンス素子およびその製造方法、表示装置、照明装置、有機薄膜太陽電池、薄膜トランジスタ

Also Published As

Publication number Publication date
JPWO2014142036A1 (ja) 2017-02-16
CN105026141A (zh) 2015-11-04
US20160035999A1 (en) 2016-02-04
US9640780B2 (en) 2017-05-02

Similar Documents

Publication Publication Date Title
WO2014142036A1 (ja) ガスバリアフィルム、ガスバリアフィルムの製造方法、及び、有機エレクトロルミネッセンス素子
JP6274199B2 (ja) 有機エレクトロルミネッセンス素子及び照明装置
WO2015083660A1 (ja) 有機エレクトロルミネッセンス素子
US10074825B2 (en) Organic electroluminescent element
US20150303398A1 (en) Translucent electrode, and electronic device
JP5895684B2 (ja) ガスバリア性フィルムの製造方法、および前記ガスバリア性フィルムを用いた電子デバイスの製造方法
WO2016143660A1 (ja) 有機エレクトロルミネッセンス素子
JP5835083B2 (ja) 有機エレクトロニクスデバイス
JP6070411B2 (ja) ガスバリアー性フィルム、ガスバリアー性フィルムの製造方法及び有機エレクトロルミネッセンス素子
WO2017056635A1 (ja) 有機エレクトロルミネッセンス素子
WO2016063869A1 (ja) 光取り出し基板、光取り出し基板の製造方法、有機エレクトロルミネッセンス素子、及び、有機エレクトロルミネッセンス素子の製造方法
JPWO2016208237A1 (ja) ガスバリアフィルム、透明導電部材、及び、有機エレクトロルミネッセンス素子、並びに、ガスバリアフィルムの製造方法、透明導電部材の製造方法、及び、有機エレクトロルミネッセンス素子の製造方法。
JP6424513B2 (ja) 有機エレクトロルミネッセンス素子
WO2014185392A1 (ja) 有機エレクトロルミネッセンス素子
WO2014126063A1 (ja) 有機エレクトロルミネッセンス素子、及び、有機エレクトロルミネッセンス素子の製造方法
WO2014148595A1 (ja) 有機エレクトロルミネッセンス素子及び照明装置
WO2015178245A1 (ja) 有機エレクトロルミネッセンス素子
CN108293279B (zh) 发光装置
JP6477468B2 (ja) 有機エレクトロルミネッセンス素子
JP2016170879A (ja) 有機エレクトロルミネッセンス素子
WO2014208449A1 (ja) 有機エレクトロルミネッセンス素子及びその製造方法
JPWO2015115175A1 (ja) 有機エレクトロルミネッセンス素子及びその製造方法
JP2016054097A (ja) 有機エレクトロルミネッセンス素子、及び、基板
JP2016190442A (ja) ガスバリアフィルム、透明導電部材、及び、有機エレクトロルミネッセンス素子

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480012546.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14764843

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015505446

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14772251

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14764843

Country of ref document: EP

Kind code of ref document: A1