WO2014142036A1 - ガスバリアフィルム、ガスバリアフィルムの製造方法、及び、有機エレクトロルミネッセンス素子 - Google Patents
ガスバリアフィルム、ガスバリアフィルムの製造方法、及び、有機エレクトロルミネッセンス素子 Download PDFInfo
- Publication number
- WO2014142036A1 WO2014142036A1 PCT/JP2014/056065 JP2014056065W WO2014142036A1 WO 2014142036 A1 WO2014142036 A1 WO 2014142036A1 JP 2014056065 W JP2014056065 W JP 2014056065W WO 2014142036 A1 WO2014142036 A1 WO 2014142036A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- layer
- vapor deposition
- deposition layer
- film
- gas barrier
- Prior art date
Links
- 230000004888 barrier function Effects 0.000 title claims abstract description 87
- 238000004519 manufacturing process Methods 0.000 title claims description 47
- 239000010410 layer Substances 0.000 claims abstract description 580
- 238000007740 vapor deposition Methods 0.000 claims abstract description 243
- 239000007789 gas Substances 0.000 claims abstract description 161
- 229920001709 polysilazane Polymers 0.000 claims abstract description 114
- 239000000463 material Substances 0.000 claims abstract description 110
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 106
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims abstract description 102
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 101
- 239000001301 oxygen Substances 0.000 claims abstract description 100
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 92
- 239000000203 mixture Substances 0.000 claims abstract description 67
- 150000003377 silicon compounds Chemical class 0.000 claims abstract description 66
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims abstract description 64
- 229910052757 nitrogen Inorganic materials 0.000 claims abstract description 51
- 230000008859 change Effects 0.000 claims abstract description 49
- 239000002346 layers by function Substances 0.000 claims abstract description 20
- 238000009826 distribution Methods 0.000 claims description 117
- 150000001875 compounds Chemical class 0.000 claims description 100
- 239000000758 substrate Substances 0.000 claims description 75
- 229920005989 resin Polymers 0.000 claims description 57
- 239000011347 resin Substances 0.000 claims description 57
- 238000000576 coating method Methods 0.000 claims description 51
- 238000007789 sealing Methods 0.000 claims description 51
- 238000004381 surface treatment Methods 0.000 claims description 46
- 239000011248 coating agent Substances 0.000 claims description 39
- 238000005401 electroluminescence Methods 0.000 claims description 38
- 239000007788 liquid Substances 0.000 claims description 19
- 238000000151 deposition Methods 0.000 claims description 16
- 230000008021 deposition Effects 0.000 claims description 14
- 229910052709 silver Inorganic materials 0.000 claims description 14
- 239000004332 silver Substances 0.000 claims description 14
- 239000010408 film Substances 0.000 description 252
- 238000000034 method Methods 0.000 description 116
- -1 polyethylene terephthalate Polymers 0.000 description 67
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 description 58
- 208000028659 discharge Diseases 0.000 description 54
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 48
- 239000002585 base Substances 0.000 description 48
- 229910052710 silicon Inorganic materials 0.000 description 48
- 239000010703 silicon Substances 0.000 description 44
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 38
- 230000015572 biosynthetic process Effects 0.000 description 31
- 230000004048 modification Effects 0.000 description 28
- 238000012986 modification Methods 0.000 description 28
- 238000002347 injection Methods 0.000 description 26
- 239000007924 injection Substances 0.000 description 26
- 230000005525 hole transport Effects 0.000 description 25
- 230000000903 blocking effect Effects 0.000 description 23
- 230000005684 electric field Effects 0.000 description 20
- 239000000853 adhesive Substances 0.000 description 19
- UQEAIHBTYFGYIE-UHFFFAOYSA-N hexamethyldisiloxane Chemical compound C[Si](C)(C)O[Si](C)(C)C UQEAIHBTYFGYIE-UHFFFAOYSA-N 0.000 description 19
- 229910052751 metal Inorganic materials 0.000 description 19
- 239000002184 metal Substances 0.000 description 19
- 239000002904 solvent Substances 0.000 description 19
- 230000008569 process Effects 0.000 description 18
- 230000001070 adhesive effect Effects 0.000 description 17
- 229920001187 thermosetting polymer Polymers 0.000 description 16
- 238000006243 chemical reaction Methods 0.000 description 15
- 238000005229 chemical vapour deposition Methods 0.000 description 15
- 238000010438 heat treatment Methods 0.000 description 15
- 239000002994 raw material Substances 0.000 description 14
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 13
- 239000000975 dye Substances 0.000 description 13
- 238000005268 plasma chemical vapour deposition Methods 0.000 description 13
- 239000012495 reaction gas Substances 0.000 description 13
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 12
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 12
- LYCAIKOWRPUZTN-UHFFFAOYSA-N ethylene glycol Natural products OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 12
- 230000006870 function Effects 0.000 description 12
- 239000000243 solution Substances 0.000 description 12
- 239000010409 thin film Substances 0.000 description 12
- 238000011156 evaluation Methods 0.000 description 11
- 230000003746 surface roughness Effects 0.000 description 11
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 11
- 229910052782 aluminium Inorganic materials 0.000 description 10
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 10
- 238000005530 etching Methods 0.000 description 10
- 230000003287 optical effect Effects 0.000 description 10
- 150000002894 organic compounds Chemical class 0.000 description 10
- 238000012545 processing Methods 0.000 description 10
- 235000012239 silicon dioxide Nutrition 0.000 description 10
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 9
- 238000004833 X-ray photoelectron spectroscopy Methods 0.000 description 9
- 230000007423 decrease Effects 0.000 description 9
- 150000003961 organosilicon compounds Chemical class 0.000 description 9
- 239000002245 particle Substances 0.000 description 9
- 229910052814 silicon oxide Inorganic materials 0.000 description 9
- MTHSVFCYNBDYFN-UHFFFAOYSA-N anhydrous diethylene glycol Natural products OCCOCCO MTHSVFCYNBDYFN-UHFFFAOYSA-N 0.000 description 8
- 238000007599 discharging Methods 0.000 description 8
- 238000005259 measurement Methods 0.000 description 8
- 125000004430 oxygen atom Chemical group O* 0.000 description 8
- 230000002265 prevention Effects 0.000 description 8
- 239000000377 silicon dioxide Substances 0.000 description 8
- 238000003860 storage Methods 0.000 description 8
- 229910052786 argon Inorganic materials 0.000 description 7
- 125000004429 atom Chemical group 0.000 description 7
- 125000004432 carbon atom Chemical group C* 0.000 description 7
- 238000001035 drying Methods 0.000 description 7
- 229920000139 polyethylene terephthalate Polymers 0.000 description 7
- 239000005020 polyethylene terephthalate Substances 0.000 description 7
- 238000006862 quantum yield reaction Methods 0.000 description 7
- 239000010453 quartz Substances 0.000 description 7
- 239000007787 solid Substances 0.000 description 7
- 238000004544 sputter deposition Methods 0.000 description 7
- 238000002834 transmittance Methods 0.000 description 7
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 6
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 6
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 6
- 238000010521 absorption reaction Methods 0.000 description 6
- 239000000654 additive Substances 0.000 description 6
- 125000000217 alkyl group Chemical group 0.000 description 6
- 239000000956 alloy Substances 0.000 description 6
- 229910045601 alloy Inorganic materials 0.000 description 6
- 239000012298 atmosphere Substances 0.000 description 6
- 239000002019 doping agent Substances 0.000 description 6
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 6
- 230000005865 ionizing radiation Effects 0.000 description 6
- 239000011777 magnesium Substances 0.000 description 6
- 229910052749 magnesium Inorganic materials 0.000 description 6
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 6
- 229910052753 mercury Inorganic materials 0.000 description 6
- 239000000178 monomer Substances 0.000 description 6
- 229920000642 polymer Polymers 0.000 description 6
- 238000002407 reforming Methods 0.000 description 6
- 239000002356 single layer Substances 0.000 description 6
- 239000000126 substance Substances 0.000 description 6
- 238000009281 ultraviolet germicidal irradiation Methods 0.000 description 6
- 238000001771 vacuum deposition Methods 0.000 description 6
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 5
- BOTDANWDWHJENH-UHFFFAOYSA-N Tetraethyl orthosilicate Chemical compound CCO[Si](OCC)(OCC)OCC BOTDANWDWHJENH-UHFFFAOYSA-N 0.000 description 5
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 5
- 230000000996 additive effect Effects 0.000 description 5
- 229920001577 copolymer Polymers 0.000 description 5
- 238000010586 diagram Methods 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 239000003999 initiator Substances 0.000 description 5
- 239000010954 inorganic particle Substances 0.000 description 5
- 239000006224 matting agent Substances 0.000 description 5
- 238000007254 oxidation reaction Methods 0.000 description 5
- 238000009832 plasma treatment Methods 0.000 description 5
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 5
- NROKBHXJSPEDAR-UHFFFAOYSA-M potassium fluoride Chemical compound [F-].[K+] NROKBHXJSPEDAR-UHFFFAOYSA-M 0.000 description 5
- 239000011342 resin composition Substances 0.000 description 5
- 238000004528 spin coating Methods 0.000 description 5
- 229910052724 xenon Inorganic materials 0.000 description 5
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 4
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 4
- OBOXTJCIIVUZEN-UHFFFAOYSA-N [C].[O] Chemical compound [C].[O] OBOXTJCIIVUZEN-UHFFFAOYSA-N 0.000 description 4
- QBYJBZPUGVGKQQ-SJJAEHHWSA-N aldrin Chemical compound C1[C@H]2C=C[C@@H]1[C@H]1[C@@](C3(Cl)Cl)(Cl)C(Cl)=C(Cl)[C@@]3(Cl)[C@H]12 QBYJBZPUGVGKQQ-SJJAEHHWSA-N 0.000 description 4
- 238000004458 analytical method Methods 0.000 description 4
- 238000005452 bending Methods 0.000 description 4
- 238000005266 casting Methods 0.000 description 4
- 239000004020 conductor Substances 0.000 description 4
- 229910052802 copper Inorganic materials 0.000 description 4
- 239000010949 copper Substances 0.000 description 4
- 229910001873 dinitrogen Inorganic materials 0.000 description 4
- 239000003822 epoxy resin Substances 0.000 description 4
- 238000001704 evaporation Methods 0.000 description 4
- 229930195733 hydrocarbon Natural products 0.000 description 4
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 4
- 238000005286 illumination Methods 0.000 description 4
- 150000002500 ions Chemical class 0.000 description 4
- 150000002504 iridium compounds Chemical class 0.000 description 4
- 230000001678 irradiating effect Effects 0.000 description 4
- 230000003647 oxidation Effects 0.000 description 4
- 229920000647 polyepoxide Polymers 0.000 description 4
- 229920000728 polyester Polymers 0.000 description 4
- 229920000307 polymer substrate Polymers 0.000 description 4
- 229910052761 rare earth metal Inorganic materials 0.000 description 4
- 150000002910 rare earth metals Chemical class 0.000 description 4
- 125000003808 silyl group Chemical group [H][Si]([H])([H])[*] 0.000 description 4
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 4
- FHNFHKCVQCLJFQ-UHFFFAOYSA-N xenon atom Chemical compound [Xe] FHNFHKCVQCLJFQ-UHFFFAOYSA-N 0.000 description 4
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 3
- SVONRAPFKPVNKG-UHFFFAOYSA-N 2-ethoxyethyl acetate Chemical compound CCOCCOC(C)=O SVONRAPFKPVNKG-UHFFFAOYSA-N 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 3
- 239000004925 Acrylic resin Substances 0.000 description 3
- 229920000178 Acrylic resin Polymers 0.000 description 3
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 3
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 3
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 3
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- VVBLNCFGVYUYGU-UHFFFAOYSA-N Michlers ketone Natural products C1=CC(N(C)C)=CC=C1C(=O)C1=CC=C(N(C)C)C=C1 VVBLNCFGVYUYGU-UHFFFAOYSA-N 0.000 description 3
- 239000002202 Polyethylene glycol Substances 0.000 description 3
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 3
- 239000012790 adhesive layer Substances 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 3
- 239000000969 carrier Substances 0.000 description 3
- 230000001276 controlling effect Effects 0.000 description 3
- 230000002596 correlated effect Effects 0.000 description 3
- 230000006378 damage Effects 0.000 description 3
- ISAOCJYIOMOJEB-UHFFFAOYSA-N desyl alcohol Natural products C=1C=CC=CC=1C(O)C(=O)C1=CC=CC=C1 ISAOCJYIOMOJEB-UHFFFAOYSA-N 0.000 description 3
- 229910001882 dioxygen Inorganic materials 0.000 description 3
- 238000010894 electron beam technology Methods 0.000 description 3
- 230000008020 evaporation Effects 0.000 description 3
- 230000005281 excited state Effects 0.000 description 3
- 239000011521 glass Substances 0.000 description 3
- 230000009477 glass transition Effects 0.000 description 3
- 239000001307 helium Substances 0.000 description 3
- 229910052734 helium Inorganic materials 0.000 description 3
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 3
- 229910052739 hydrogen Inorganic materials 0.000 description 3
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 3
- 229910052738 indium Inorganic materials 0.000 description 3
- 229910010272 inorganic material Inorganic materials 0.000 description 3
- 239000011159 matrix material Substances 0.000 description 3
- 239000007769 metal material Substances 0.000 description 3
- 150000002739 metals Chemical class 0.000 description 3
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 3
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 3
- 229910052754 neon Inorganic materials 0.000 description 3
- 150000004767 nitrides Chemical class 0.000 description 3
- 239000011368 organic material Substances 0.000 description 3
- 150000004866 oxadiazoles Chemical class 0.000 description 3
- 150000002923 oximes Chemical class 0.000 description 3
- 230000000737 periodic effect Effects 0.000 description 3
- 229920003023 plastic Polymers 0.000 description 3
- 239000004033 plastic Substances 0.000 description 3
- 239000004417 polycarbonate Substances 0.000 description 3
- 229920000515 polycarbonate Polymers 0.000 description 3
- 229920001223 polyethylene glycol Polymers 0.000 description 3
- 238000007639 printing Methods 0.000 description 3
- 230000006798 recombination Effects 0.000 description 3
- 238000005215 recombination Methods 0.000 description 3
- PJANXHGTPQOBST-UHFFFAOYSA-N stilbene Chemical compound C=1C=CC=CC=1C=CC1=CC=CC=C1 PJANXHGTPQOBST-UHFFFAOYSA-N 0.000 description 3
- 238000004804 winding Methods 0.000 description 3
- KWEKXPWNFQBJAY-UHFFFAOYSA-N (dimethyl-$l^{3}-silanyl)oxy-dimethylsilicon Chemical compound C[Si](C)O[Si](C)C KWEKXPWNFQBJAY-UHFFFAOYSA-N 0.000 description 2
- POILWHVDKZOXJZ-ARJAWSKDSA-M (z)-4-oxopent-2-en-2-olate Chemical compound C\C([O-])=C\C(C)=O POILWHVDKZOXJZ-ARJAWSKDSA-M 0.000 description 2
- DURPTKYDGMDSBL-UHFFFAOYSA-N 1-butoxybutane Chemical compound CCCCOCCCC DURPTKYDGMDSBL-UHFFFAOYSA-N 0.000 description 2
- LEJBBGNFPAFPKQ-UHFFFAOYSA-N 2-(2-prop-2-enoyloxyethoxy)ethyl prop-2-enoate Chemical compound C=CC(=O)OCCOCCOC(=O)C=C LEJBBGNFPAFPKQ-UHFFFAOYSA-N 0.000 description 2
- GOXQRTZXKQZDDN-UHFFFAOYSA-N 2-Ethylhexyl acrylate Chemical compound CCCCC(CC)COC(=O)C=C GOXQRTZXKQZDDN-UHFFFAOYSA-N 0.000 description 2
- XNWFRZJHXBZDAG-UHFFFAOYSA-N 2-METHOXYETHANOL Chemical compound COCCO XNWFRZJHXBZDAG-UHFFFAOYSA-N 0.000 description 2
- INQDDHNZXOAFFD-UHFFFAOYSA-N 2-[2-(2-prop-2-enoyloxyethoxy)ethoxy]ethyl prop-2-enoate Chemical compound C=CC(=O)OCCOCCOCCOC(=O)C=C INQDDHNZXOAFFD-UHFFFAOYSA-N 0.000 description 2
- TXBCBTDQIULDIA-UHFFFAOYSA-N 2-[[3-hydroxy-2,2-bis(hydroxymethyl)propoxy]methyl]-2-(hydroxymethyl)propane-1,3-diol Chemical compound OCC(CO)(CO)COCC(CO)(CO)CO TXBCBTDQIULDIA-UHFFFAOYSA-N 0.000 description 2
- ZNQVEEAIQZEUHB-UHFFFAOYSA-N 2-ethoxyethanol Chemical compound CCOCCO ZNQVEEAIQZEUHB-UHFFFAOYSA-N 0.000 description 2
- OMIGHNLMNHATMP-UHFFFAOYSA-N 2-hydroxyethyl prop-2-enoate Chemical compound OCCOC(=O)C=C OMIGHNLMNHATMP-UHFFFAOYSA-N 0.000 description 2
- XLLIQLLCWZCATF-UHFFFAOYSA-N 2-methoxyethyl acetate Chemical compound COCCOC(C)=O XLLIQLLCWZCATF-UHFFFAOYSA-N 0.000 description 2
- KUDUQBURMYMBIJ-UHFFFAOYSA-N 2-prop-2-enoyloxyethyl prop-2-enoate Chemical compound C=CC(=O)OCCOC(=O)C=C KUDUQBURMYMBIJ-UHFFFAOYSA-N 0.000 description 2
- QZPSOSOOLFHYRR-UHFFFAOYSA-N 3-hydroxypropyl prop-2-enoate Chemical compound OCCCOC(=O)C=C QZPSOSOOLFHYRR-UHFFFAOYSA-N 0.000 description 2
- OGGKVJMNFFSDEV-UHFFFAOYSA-N 3-methyl-n-[4-[4-(n-(3-methylphenyl)anilino)phenyl]phenyl]-n-phenylaniline Chemical compound CC1=CC=CC(N(C=2C=CC=CC=2)C=2C=CC(=CC=2)C=2C=CC(=CC=2)N(C=2C=CC=CC=2)C=2C=C(C)C=CC=2)=C1 OGGKVJMNFFSDEV-UHFFFAOYSA-N 0.000 description 2
- HCFAJYNVAYBARA-UHFFFAOYSA-N 4-heptanone Chemical compound CCCC(=O)CCC HCFAJYNVAYBARA-UHFFFAOYSA-N 0.000 description 2
- JHWGFJBTMHEZME-UHFFFAOYSA-N 4-prop-2-enoyloxybutyl prop-2-enoate Chemical compound C=CC(=O)OCCCCOC(=O)C=C JHWGFJBTMHEZME-UHFFFAOYSA-N 0.000 description 2
- KWOLFJPFCHCOCG-UHFFFAOYSA-N Acetophenone Chemical compound CC(=O)C1=CC=CC=C1 KWOLFJPFCHCOCG-UHFFFAOYSA-N 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 2
- 229920008347 Cellulose acetate propionate Polymers 0.000 description 2
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 description 2
- GUUVPOWQJOLRAS-UHFFFAOYSA-N Diphenyl disulfide Chemical compound C=1C=CC=CC=1SSC1=CC=CC=C1 GUUVPOWQJOLRAS-UHFFFAOYSA-N 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 2
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 2
- BAPJBEWLBFYGME-UHFFFAOYSA-N Methyl acrylate Chemical compound COC(=O)C=C BAPJBEWLBFYGME-UHFFFAOYSA-N 0.000 description 2
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 239000000020 Nitrocellulose Substances 0.000 description 2
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 2
- OFBQJSOFQDEBGM-UHFFFAOYSA-N Pentane Chemical compound CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 description 2
- 239000004952 Polyamide Substances 0.000 description 2
- 239000004698 Polyethylene Substances 0.000 description 2
- 239000004642 Polyimide Substances 0.000 description 2
- 239000004721 Polyphenylene oxide Substances 0.000 description 2
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 2
- PJANXHGTPQOBST-VAWYXSNFSA-N Stilbene Natural products C=1C=CC=CC=1/C=C/C1=CC=CC=C1 PJANXHGTPQOBST-VAWYXSNFSA-N 0.000 description 2
- 244000028419 Styrax benzoin Species 0.000 description 2
- 235000000126 Styrax benzoin Nutrition 0.000 description 2
- 235000008411 Sumatra benzointree Nutrition 0.000 description 2
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 2
- YTPLMLYBLZKORZ-UHFFFAOYSA-N Thiophene Chemical compound C=1C=CSC=1 YTPLMLYBLZKORZ-UHFFFAOYSA-N 0.000 description 2
- FJWGYAHXMCUOOM-QHOUIDNNSA-N [(2s,3r,4s,5r,6r)-2-[(2r,3r,4s,5r,6s)-4,5-dinitrooxy-2-(nitrooxymethyl)-6-[(2r,3r,4s,5r,6s)-4,5,6-trinitrooxy-2-(nitrooxymethyl)oxan-3-yl]oxyoxan-3-yl]oxy-3,5-dinitrooxy-6-(nitrooxymethyl)oxan-4-yl] nitrate Chemical compound O([C@@H]1O[C@@H]([C@H]([C@H](O[N+]([O-])=O)[C@H]1O[N+]([O-])=O)O[C@H]1[C@@H]([C@@H](O[N+]([O-])=O)[C@H](O[N+]([O-])=O)[C@@H](CO[N+]([O-])=O)O1)O[N+]([O-])=O)CO[N+](=O)[O-])[C@@H]1[C@@H](CO[N+]([O-])=O)O[C@@H](O[N+]([O-])=O)[C@H](O[N+]([O-])=O)[C@H]1O[N+]([O-])=O FJWGYAHXMCUOOM-QHOUIDNNSA-N 0.000 description 2
- HVVWZTWDBSEWIH-UHFFFAOYSA-N [2-(hydroxymethyl)-3-prop-2-enoyloxy-2-(prop-2-enoyloxymethyl)propyl] prop-2-enoate Chemical compound C=CC(=O)OCC(CO)(COC(=O)C=C)COC(=O)C=C HVVWZTWDBSEWIH-UHFFFAOYSA-N 0.000 description 2
- 125000002252 acyl group Chemical group 0.000 description 2
- 229940045985 antineoplastic platinum compound Drugs 0.000 description 2
- 150000004945 aromatic hydrocarbons Chemical class 0.000 description 2
- 125000003118 aryl group Chemical group 0.000 description 2
- 229910052788 barium Inorganic materials 0.000 description 2
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical compound [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 description 2
- TZCXTZWJZNENPQ-UHFFFAOYSA-L barium sulfate Chemical compound [Ba+2].[O-]S([O-])(=O)=O TZCXTZWJZNENPQ-UHFFFAOYSA-L 0.000 description 2
- 229960002130 benzoin Drugs 0.000 description 2
- RWCCWEUUXYIKHB-UHFFFAOYSA-N benzophenone Chemical compound C=1C=CC=CC=1C(=O)C1=CC=CC=C1 RWCCWEUUXYIKHB-UHFFFAOYSA-N 0.000 description 2
- 239000012965 benzophenone Substances 0.000 description 2
- 239000005388 borosilicate glass Substances 0.000 description 2
- WERYXYBDKMZEQL-UHFFFAOYSA-N butane-1,4-diol Chemical compound OCCCCO WERYXYBDKMZEQL-UHFFFAOYSA-N 0.000 description 2
- 150000001721 carbon Chemical group 0.000 description 2
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 2
- 150000007942 carboxylates Chemical class 0.000 description 2
- 239000012159 carrier gas Substances 0.000 description 2
- 229920002678 cellulose Polymers 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 239000003086 colorant Substances 0.000 description 2
- 229920001940 conductive polymer Polymers 0.000 description 2
- ZYGHJZDHTFUPRJ-UHFFFAOYSA-N coumarin Chemical compound C1=CC=C2OC(=O)C=CC2=C1 ZYGHJZDHTFUPRJ-UHFFFAOYSA-N 0.000 description 2
- JHIVVAPYMSGYDF-UHFFFAOYSA-N cyclohexanone Chemical compound O=C1CCCCC1 JHIVVAPYMSGYDF-UHFFFAOYSA-N 0.000 description 2
- 230000006837 decompression Effects 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 125000004386 diacrylate group Chemical group 0.000 description 2
- XXJWXESWEXIICW-UHFFFAOYSA-N diethylene glycol monoethyl ether Chemical compound CCOCCOCCO XXJWXESWEXIICW-UHFFFAOYSA-N 0.000 description 2
- 150000002170 ethers Chemical class 0.000 description 2
- 235000019439 ethyl acetate Nutrition 0.000 description 2
- UHESRSKEBRADOO-UHFFFAOYSA-N ethyl carbamate;prop-2-enoic acid Chemical compound OC(=O)C=C.CCOC(N)=O UHESRSKEBRADOO-UHFFFAOYSA-N 0.000 description 2
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 2
- 238000000605 extraction Methods 0.000 description 2
- 239000010419 fine particle Substances 0.000 description 2
- 239000011888 foil Substances 0.000 description 2
- 235000019382 gum benzoic Nutrition 0.000 description 2
- CATSNJVOTSVZJV-UHFFFAOYSA-N heptan-2-one Chemical compound CCCCCC(C)=O CATSNJVOTSVZJV-UHFFFAOYSA-N 0.000 description 2
- 150000002430 hydrocarbons Chemical class 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 230000001771 impaired effect Effects 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 2
- 239000011261 inert gas Substances 0.000 description 2
- 150000002484 inorganic compounds Chemical class 0.000 description 2
- 229910052743 krypton Inorganic materials 0.000 description 2
- 239000004973 liquid crystal related substance Substances 0.000 description 2
- 229910052744 lithium Inorganic materials 0.000 description 2
- 229910001507 metal halide Inorganic materials 0.000 description 2
- 150000005309 metal halides Chemical class 0.000 description 2
- QPJVMBTYPHYUOC-UHFFFAOYSA-N methyl benzoate Chemical compound COC(=O)C1=CC=CC=C1 QPJVMBTYPHYUOC-UHFFFAOYSA-N 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 125000000896 monocarboxylic acid group Chemical group 0.000 description 2
- GKAOGPIIYCISHV-UHFFFAOYSA-N neon atom Chemical compound [Ne] GKAOGPIIYCISHV-UHFFFAOYSA-N 0.000 description 2
- 229920001220 nitrocellulos Polymers 0.000 description 2
- 239000003960 organic solvent Substances 0.000 description 2
- 150000002908 osmium compounds Chemical class 0.000 description 2
- SWELZOZIOHGSPA-UHFFFAOYSA-N palladium silver Chemical compound [Pd].[Ag] SWELZOZIOHGSPA-UHFFFAOYSA-N 0.000 description 2
- WXZMFSXDPGVJKK-UHFFFAOYSA-N pentaerythritol Chemical compound OCC(CO)(CO)CO WXZMFSXDPGVJKK-UHFFFAOYSA-N 0.000 description 2
- FDPIMTJIUBPUKL-UHFFFAOYSA-N pentan-3-one Chemical compound CCC(=O)CC FDPIMTJIUBPUKL-UHFFFAOYSA-N 0.000 description 2
- 230000035699 permeability Effects 0.000 description 2
- IEQIEDJGQAUEQZ-UHFFFAOYSA-N phthalocyanine Chemical compound N1C(N=C2C3=CC=CC=C3C(N=C3C4=CC=CC=C4C(=N4)N3)=N2)=C(C=CC=C2)C2=C1N=C1C2=CC=CC=C2C4=N1 IEQIEDJGQAUEQZ-UHFFFAOYSA-N 0.000 description 2
- 238000000623 plasma-assisted chemical vapour deposition Methods 0.000 description 2
- 239000002985 plastic film Substances 0.000 description 2
- 229920006255 plastic film Polymers 0.000 description 2
- 229910052697 platinum Inorganic materials 0.000 description 2
- 150000003058 platinum compounds Chemical class 0.000 description 2
- 229920002492 poly(sulfone) Polymers 0.000 description 2
- 229920002647 polyamide Polymers 0.000 description 2
- 229920000570 polyether Polymers 0.000 description 2
- 229920000573 polyethylene Polymers 0.000 description 2
- 239000011112 polyethylene naphthalate Substances 0.000 description 2
- 229920001721 polyimide Polymers 0.000 description 2
- 239000002861 polymer material Substances 0.000 description 2
- 229920001451 polypropylene glycol Polymers 0.000 description 2
- 229920000123 polythiophene Polymers 0.000 description 2
- 150000003112 potassium compounds Chemical class 0.000 description 2
- 239000011698 potassium fluoride Substances 0.000 description 2
- 235000003270 potassium fluoride Nutrition 0.000 description 2
- UOHMMEJUHBCKEE-UHFFFAOYSA-N prehnitene Chemical compound CC1=CC=C(C)C(C)=C1C UOHMMEJUHBCKEE-UHFFFAOYSA-N 0.000 description 2
- 238000004321 preservation Methods 0.000 description 2
- KCTAWXVAICEBSD-UHFFFAOYSA-N prop-2-enoyloxy prop-2-eneperoxoate Chemical compound C=CC(=O)OOOC(=O)C=C KCTAWXVAICEBSD-UHFFFAOYSA-N 0.000 description 2
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 description 2
- 239000001294 propane Substances 0.000 description 2
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 description 2
- 230000001681 protective effect Effects 0.000 description 2
- BBEAQIROQSPTKN-UHFFFAOYSA-N pyrene Chemical compound C1=CC=C2C=CC3=CC=CC4=CC=C1C2=C43 BBEAQIROQSPTKN-UHFFFAOYSA-N 0.000 description 2
- 125000001567 quinoxalinyl group Chemical class N1=C(C=NC2=CC=CC=C12)* 0.000 description 2
- 230000005855 radiation Effects 0.000 description 2
- 230000009257 reactivity Effects 0.000 description 2
- 230000002441 reversible effect Effects 0.000 description 2
- 238000005096 rolling process Methods 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 229910000077 silane Inorganic materials 0.000 description 2
- 241000894007 species Species 0.000 description 2
- 235000021286 stilbenes Nutrition 0.000 description 2
- 229910052712 strontium Inorganic materials 0.000 description 2
- CIOAGBVUUVVLOB-UHFFFAOYSA-N strontium atom Chemical compound [Sr] CIOAGBVUUVVLOB-UHFFFAOYSA-N 0.000 description 2
- 125000005504 styryl group Chemical group 0.000 description 2
- 230000003685 thermal hair damage Effects 0.000 description 2
- 229920005992 thermoplastic resin Polymers 0.000 description 2
- YRHRIQCWCFGUEQ-UHFFFAOYSA-N thioxanthen-9-one Chemical compound C1=CC=C2C(=O)C3=CC=CC=C3SC2=C1 YRHRIQCWCFGUEQ-UHFFFAOYSA-N 0.000 description 2
- 239000012780 transparent material Substances 0.000 description 2
- JLGLQAWTXXGVEM-UHFFFAOYSA-N triethylene glycol monomethyl ether Chemical compound COCCOCCOCCO JLGLQAWTXXGVEM-UHFFFAOYSA-N 0.000 description 2
- RIOQSEWOXXDEQQ-UHFFFAOYSA-N triphenylphosphine Chemical compound C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1 RIOQSEWOXXDEQQ-UHFFFAOYSA-N 0.000 description 2
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 2
- 229910052721 tungsten Inorganic materials 0.000 description 2
- 239000010937 tungsten Substances 0.000 description 2
- 229920002554 vinyl polymer Polymers 0.000 description 2
- 230000037303 wrinkles Effects 0.000 description 2
- 239000008096 xylene Substances 0.000 description 2
- 239000011787 zinc oxide Substances 0.000 description 2
- CNGTXGHYZBQUQS-UHFFFAOYSA-N ((1-(2-methoxyethoxy)ethoxy)methyl)benzene Chemical compound COCCOC(C)OCC1=CC=CC=C1 CNGTXGHYZBQUQS-UHFFFAOYSA-N 0.000 description 1
- DTGKSKDOIYIVQL-WEDXCCLWSA-N (+)-borneol Chemical group C1C[C@@]2(C)[C@@H](O)C[C@@H]1C2(C)C DTGKSKDOIYIVQL-WEDXCCLWSA-N 0.000 description 1
- FGOSBCXOMBLILW-UHFFFAOYSA-N (2-oxo-1,2-diphenylethyl) benzoate Chemical compound C=1C=CC=CC=1C(=O)OC(C=1C=CC=CC=1)C(=O)C1=CC=CC=C1 FGOSBCXOMBLILW-UHFFFAOYSA-N 0.000 description 1
- MLIWQXBKMZNZNF-PWDIZTEBSA-N (2e,6e)-2,6-bis[(4-azidophenyl)methylidene]-4-methylcyclohexan-1-one Chemical compound O=C1\C(=C\C=2C=CC(=CC=2)N=[N+]=[N-])CC(C)C\C1=C/C1=CC=C(N=[N+]=[N-])C=C1 MLIWQXBKMZNZNF-PWDIZTEBSA-N 0.000 description 1
- LNAZSHAWQACDHT-XIYTZBAFSA-N (2r,3r,4s,5r,6s)-4,5-dimethoxy-2-(methoxymethyl)-3-[(2s,3r,4s,5r,6r)-3,4,5-trimethoxy-6-(methoxymethyl)oxan-2-yl]oxy-6-[(2r,3r,4s,5r,6r)-4,5,6-trimethoxy-2-(methoxymethyl)oxan-3-yl]oxyoxane Chemical compound CO[C@@H]1[C@@H](OC)[C@H](OC)[C@@H](COC)O[C@H]1O[C@H]1[C@H](OC)[C@@H](OC)[C@H](O[C@H]2[C@@H]([C@@H](OC)[C@H](OC)O[C@@H]2COC)OC)O[C@@H]1COC LNAZSHAWQACDHT-XIYTZBAFSA-N 0.000 description 1
- LGPAKRMZNPYPMG-UHFFFAOYSA-N (3-hydroxy-2-prop-2-enoyloxypropyl) prop-2-enoate Chemical compound C=CC(=O)OC(CO)COC(=O)C=C LGPAKRMZNPYPMG-UHFFFAOYSA-N 0.000 description 1
- PSGCQDPCAWOCSH-UHFFFAOYSA-N (4,7,7-trimethyl-3-bicyclo[2.2.1]heptanyl) prop-2-enoate Chemical compound C1CC2(C)C(OC(=O)C=C)CC1C2(C)C PSGCQDPCAWOCSH-UHFFFAOYSA-N 0.000 description 1
- OAKFFVBGTSPYEG-UHFFFAOYSA-N (4-prop-2-enoyloxycyclohexyl) prop-2-enoate Chemical compound C=CC(=O)OC1CCC(OC(=O)C=C)CC1 OAKFFVBGTSPYEG-UHFFFAOYSA-N 0.000 description 1
- QGKMIGUHVLGJBR-UHFFFAOYSA-M (4z)-1-(3-methylbutyl)-4-[[1-(3-methylbutyl)quinolin-1-ium-4-yl]methylidene]quinoline;iodide Chemical compound [I-].C12=CC=CC=C2N(CCC(C)C)C=CC1=CC1=CC=[N+](CCC(C)C)C2=CC=CC=C12 QGKMIGUHVLGJBR-UHFFFAOYSA-M 0.000 description 1
- WUOACPNHFRMFPN-SECBINFHSA-N (S)-(-)-alpha-terpineol Chemical compound CC1=CC[C@@H](C(C)(C)O)CC1 WUOACPNHFRMFPN-SECBINFHSA-N 0.000 description 1
- RUJPNZNXGCHGID-UHFFFAOYSA-N (Z)-beta-Terpineol Natural products CC(=C)C1CCC(C)(O)CC1 RUJPNZNXGCHGID-UHFFFAOYSA-N 0.000 description 1
- UWRZIZXBOLBCON-VOTSOKGWSA-N (e)-2-phenylethenamine Chemical class N\C=C\C1=CC=CC=C1 UWRZIZXBOLBCON-VOTSOKGWSA-N 0.000 description 1
- UOCLXMDMGBRAIB-UHFFFAOYSA-N 1,1,1-trichloroethane Chemical compound CC(Cl)(Cl)Cl UOCLXMDMGBRAIB-UHFFFAOYSA-N 0.000 description 1
- SCEFCWXRXJZWHE-UHFFFAOYSA-N 1,2,3-tribromo-4-(2,3,4-tribromophenyl)sulfonylbenzene Chemical compound BrC1=C(Br)C(Br)=CC=C1S(=O)(=O)C1=CC=C(Br)C(Br)=C1Br SCEFCWXRXJZWHE-UHFFFAOYSA-N 0.000 description 1
- MYWOJODOMFBVCB-UHFFFAOYSA-N 1,2,6-trimethylphenanthrene Chemical compound CC1=CC=C2C3=CC(C)=CC=C3C=CC2=C1C MYWOJODOMFBVCB-UHFFFAOYSA-N 0.000 description 1
- GJZFGDYLJLCGHT-UHFFFAOYSA-N 1,2-diethylthioxanthen-9-one Chemical compound C1=CC=C2C(=O)C3=C(CC)C(CC)=CC=C3SC2=C1 GJZFGDYLJLCGHT-UHFFFAOYSA-N 0.000 description 1
- JZLWSRCQCPAUDP-UHFFFAOYSA-N 1,3,5-triazine-2,4,6-triamine;urea Chemical compound NC(N)=O.NC1=NC(N)=NC(N)=N1 JZLWSRCQCPAUDP-UHFFFAOYSA-N 0.000 description 1
- YFKBXYGUSOXJGS-UHFFFAOYSA-N 1,3-Diphenyl-2-propanone Chemical compound C=1C=CC=CC=1CC(=O)CC1=CC=CC=C1 YFKBXYGUSOXJGS-UHFFFAOYSA-N 0.000 description 1
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 description 1
- VNQXSTWCDUXYEZ-UHFFFAOYSA-N 1,7,7-trimethylbicyclo[2.2.1]heptane-2,3-dione Chemical compound C1CC2(C)C(=O)C(=O)C1C2(C)C VNQXSTWCDUXYEZ-UHFFFAOYSA-N 0.000 description 1
- WGYZMNBUZFHYRX-UHFFFAOYSA-N 1-(1-methoxypropan-2-yloxy)propan-2-ol Chemical compound COCC(C)OCC(C)O WGYZMNBUZFHYRX-UHFFFAOYSA-N 0.000 description 1
- QWOZZTWBWQMEPD-UHFFFAOYSA-N 1-(2-ethoxypropoxy)propan-2-ol Chemical compound CCOC(C)COCC(C)O QWOZZTWBWQMEPD-UHFFFAOYSA-N 0.000 description 1
- VMCRQYHCDSXNLW-UHFFFAOYSA-N 1-(4-tert-butylphenyl)-2,2-dichloroethanone Chemical compound CC(C)(C)C1=CC=C(C(=O)C(Cl)Cl)C=C1 VMCRQYHCDSXNLW-UHFFFAOYSA-N 0.000 description 1
- VERMWGQSKPXSPZ-BUHFOSPRSA-N 1-[(e)-2-phenylethenyl]anthracene Chemical class C=1C=CC2=CC3=CC=CC=C3C=C2C=1\C=C\C1=CC=CC=C1 VERMWGQSKPXSPZ-BUHFOSPRSA-N 0.000 description 1
- XUIXZBXRQFZHIT-UHFFFAOYSA-N 1-[1-(1-hydroxypropan-2-yloxy)propan-2-yloxy]-3-methoxypropan-2-ol Chemical compound COCC(O)COC(C)COC(C)CO XUIXZBXRQFZHIT-UHFFFAOYSA-N 0.000 description 1
- KFBUECDOROPEBI-UHFFFAOYSA-N 1-butoxyethane-1,2-diol;prop-2-enoic acid Chemical compound OC(=O)C=C.CCCCOC(O)CO KFBUECDOROPEBI-UHFFFAOYSA-N 0.000 description 1
- JOLQKTGDSGKSKJ-UHFFFAOYSA-N 1-ethoxypropan-2-ol Chemical compound CCOCC(C)O JOLQKTGDSGKSKJ-UHFFFAOYSA-N 0.000 description 1
- LIPRQQHINVWJCH-UHFFFAOYSA-N 1-ethoxypropan-2-yl acetate Chemical compound CCOCC(C)OC(C)=O LIPRQQHINVWJCH-UHFFFAOYSA-N 0.000 description 1
- GKMWWXGSJSEDLF-UHFFFAOYSA-N 1-methoxyethane-1,2-diol;prop-2-enoic acid Chemical compound OC(=O)C=C.COC(O)CO GKMWWXGSJSEDLF-UHFFFAOYSA-N 0.000 description 1
- ARXJGSRGQADJSQ-UHFFFAOYSA-N 1-methoxypropan-2-ol Chemical compound COCC(C)O ARXJGSRGQADJSQ-UHFFFAOYSA-N 0.000 description 1
- SFSLTRCPISPSKB-UHFFFAOYSA-N 10-methylideneanthracen-9-one Chemical compound C1=CC=C2C(=C)C3=CC=CC=C3C(=O)C2=C1 SFSLTRCPISPSKB-UHFFFAOYSA-N 0.000 description 1
- OZAIFHULBGXAKX-UHFFFAOYSA-N 2,2'-azo-bis-isobutyronitrile Substances N#CC(C)(C)N=NC(C)(C)C#N OZAIFHULBGXAKX-UHFFFAOYSA-N 0.000 description 1
- GKZPEYIPJQHPNC-UHFFFAOYSA-N 2,2-bis(hydroxymethyl)propane-1,3-diol prop-2-enoic acid Chemical compound OC(=O)C=C.OC(=O)C=C.OC(=O)C=C.OC(=O)C=C.OC(=O)C=C.OC(=O)C=C.OCC(CO)(CO)CO GKZPEYIPJQHPNC-UHFFFAOYSA-N 0.000 description 1
- PIZHFBODNLEQBL-UHFFFAOYSA-N 2,2-diethoxy-1-phenylethanone Chemical compound CCOC(OCC)C(=O)C1=CC=CC=C1 PIZHFBODNLEQBL-UHFFFAOYSA-N 0.000 description 1
- KWVGIHKZDCUPEU-UHFFFAOYSA-N 2,2-dimethoxy-2-phenylacetophenone Chemical compound C=1C=CC=CC=1C(OC)(OC)C(=O)C1=CC=CC=C1 KWVGIHKZDCUPEU-UHFFFAOYSA-N 0.000 description 1
- MIGVPIXONIAZHK-UHFFFAOYSA-N 2,2-dimethylpropane-1,3-diol;prop-2-enoic acid Chemical compound OC(=O)C=C.OC(=O)C=C.OCC(C)(C)CO MIGVPIXONIAZHK-UHFFFAOYSA-N 0.000 description 1
- SULWTXOWAFVWOY-PHEQNACWSA-N 2,3-bis[(E)-2-phenylethenyl]pyrazine Chemical class C=1C=CC=CC=1/C=C/C1=NC=CN=C1\C=C\C1=CC=CC=C1 SULWTXOWAFVWOY-PHEQNACWSA-N 0.000 description 1
- PUGOMSLRUSTQGV-UHFFFAOYSA-N 2,3-di(prop-2-enoyloxy)propyl prop-2-enoate Chemical compound C=CC(=O)OCC(OC(=O)C=C)COC(=O)C=C PUGOMSLRUSTQGV-UHFFFAOYSA-N 0.000 description 1
- QRIMLDXJAPZHJE-UHFFFAOYSA-N 2,3-dihydroxypropyl 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OCC(O)CO QRIMLDXJAPZHJE-UHFFFAOYSA-N 0.000 description 1
- OWPUOLBODXJOKH-UHFFFAOYSA-N 2,3-dihydroxypropyl prop-2-enoate Chemical compound OCC(O)COC(=O)C=C OWPUOLBODXJOKH-UHFFFAOYSA-N 0.000 description 1
- MVWPVABZQQJTPL-UHFFFAOYSA-N 2,3-diphenylcyclohexa-2,5-diene-1,4-dione Chemical class O=C1C=CC(=O)C(C=2C=CC=CC=2)=C1C1=CC=CC=C1 MVWPVABZQQJTPL-UHFFFAOYSA-N 0.000 description 1
- OAYXUHPQHDHDDZ-UHFFFAOYSA-N 2-(2-butoxyethoxy)ethanol Chemical compound CCCCOCCOCCO OAYXUHPQHDHDDZ-UHFFFAOYSA-N 0.000 description 1
- VXQBJTKSVGFQOL-UHFFFAOYSA-N 2-(2-butoxyethoxy)ethyl acetate Chemical compound CCCCOCCOCCOC(C)=O VXQBJTKSVGFQOL-UHFFFAOYSA-N 0.000 description 1
- FPZWZCWUIYYYBU-UHFFFAOYSA-N 2-(2-ethoxyethoxy)ethyl acetate Chemical compound CCOCCOCCOC(C)=O FPZWZCWUIYYYBU-UHFFFAOYSA-N 0.000 description 1
- YHYCMHWTYHPIQS-UHFFFAOYSA-N 2-(2-hydroxyethoxy)-1-methoxyethanol Chemical compound COC(O)COCCO YHYCMHWTYHPIQS-UHFFFAOYSA-N 0.000 description 1
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 1
- SBASXUCJHJRPEV-UHFFFAOYSA-N 2-(2-methoxyethoxy)ethanol Chemical compound COCCOCCO SBASXUCJHJRPEV-UHFFFAOYSA-N 0.000 description 1
- OEPOKWHJYJXUGD-UHFFFAOYSA-N 2-(3-phenylmethoxyphenyl)-1,3-thiazole-4-carbaldehyde Chemical compound O=CC1=CSC(C=2C=C(OCC=3C=CC=CC=3)C=CC=2)=N1 OEPOKWHJYJXUGD-UHFFFAOYSA-N 0.000 description 1
- WFSMVVDJSNMRAR-UHFFFAOYSA-N 2-[2-(2-ethoxyethoxy)ethoxy]ethanol Chemical compound CCOCCOCCOCCO WFSMVVDJSNMRAR-UHFFFAOYSA-N 0.000 description 1
- LCZVSXRMYJUNFX-UHFFFAOYSA-N 2-[2-(2-hydroxypropoxy)propoxy]propan-1-ol Chemical compound CC(O)COC(C)COC(C)CO LCZVSXRMYJUNFX-UHFFFAOYSA-N 0.000 description 1
- HEQOJEGTZCTHCF-UHFFFAOYSA-N 2-amino-1-phenylethanone Chemical compound NCC(=O)C1=CC=CC=C1 HEQOJEGTZCTHCF-UHFFFAOYSA-N 0.000 description 1
- DZZAHLOABNWIFA-UHFFFAOYSA-N 2-butoxy-1,2-diphenylethanone Chemical compound C=1C=CC=CC=1C(OCCCC)C(=O)C1=CC=CC=C1 DZZAHLOABNWIFA-UHFFFAOYSA-N 0.000 description 1
- NQBXSWAWVZHKBZ-UHFFFAOYSA-N 2-butoxyethyl acetate Chemical compound CCCCOCCOC(C)=O NQBXSWAWVZHKBZ-UHFFFAOYSA-N 0.000 description 1
- PTJDGKYFJYEAOK-UHFFFAOYSA-N 2-butoxyethyl prop-2-enoate Chemical compound CCCCOCCOC(=O)C=C PTJDGKYFJYEAOK-UHFFFAOYSA-N 0.000 description 1
- FPKCTSIVDAWGFA-UHFFFAOYSA-N 2-chloroanthracene-9,10-dione Chemical compound C1=CC=C2C(=O)C3=CC(Cl)=CC=C3C(=O)C2=C1 FPKCTSIVDAWGFA-UHFFFAOYSA-N 0.000 description 1
- ZCDADJXRUCOCJE-UHFFFAOYSA-N 2-chlorothioxanthen-9-one Chemical compound C1=CC=C2C(=O)C3=CC(Cl)=CC=C3SC2=C1 ZCDADJXRUCOCJE-UHFFFAOYSA-N 0.000 description 1
- XMLYCEVDHLAQEL-UHFFFAOYSA-N 2-hydroxy-2-methyl-1-phenylpropan-1-one Chemical compound CC(C)(O)C(=O)C1=CC=CC=C1 XMLYCEVDHLAQEL-UHFFFAOYSA-N 0.000 description 1
- 125000000954 2-hydroxyethyl group Chemical group [H]C([*])([H])C([H])([H])O[H] 0.000 description 1
- GWZMWHWAWHPNHN-UHFFFAOYSA-N 2-hydroxypropyl prop-2-enoate Chemical compound CC(O)COC(=O)C=C GWZMWHWAWHPNHN-UHFFFAOYSA-N 0.000 description 1
- 125000004200 2-methoxyethyl group Chemical group [H]C([H])([H])OC([H])([H])C([H])([H])* 0.000 description 1
- HFCUBKYHMMPGBY-UHFFFAOYSA-N 2-methoxyethyl prop-2-enoate Chemical compound COCCOC(=O)C=C HFCUBKYHMMPGBY-UHFFFAOYSA-N 0.000 description 1
- CFVWNXQPGQOHRJ-UHFFFAOYSA-N 2-methylpropyl prop-2-enoate Chemical compound CC(C)COC(=O)C=C CFVWNXQPGQOHRJ-UHFFFAOYSA-N 0.000 description 1
- MYISVPVWAQRUTL-UHFFFAOYSA-N 2-methylthioxanthen-9-one Chemical compound C1=CC=C2C(=O)C3=CC(C)=CC=C3SC2=C1 MYISVPVWAQRUTL-UHFFFAOYSA-N 0.000 description 1
- HONWGFNQCPRRFM-UHFFFAOYSA-N 2-n-(3-methylphenyl)-1-n,1-n,2-n-triphenylbenzene-1,2-diamine Chemical compound CC1=CC=CC(N(C=2C=CC=CC=2)C=2C(=CC=CC=2)N(C=2C=CC=CC=2)C=2C=CC=CC=2)=C1 HONWGFNQCPRRFM-UHFFFAOYSA-N 0.000 description 1
- UMWZLYTVXQBTTE-UHFFFAOYSA-N 2-pentylanthracene-9,10-dione Chemical compound C1=CC=C2C(=O)C3=CC(CCCCC)=CC=C3C(=O)C2=C1 UMWZLYTVXQBTTE-UHFFFAOYSA-N 0.000 description 1
- RZVINYQDSSQUKO-UHFFFAOYSA-N 2-phenoxyethyl prop-2-enoate Chemical compound C=CC(=O)OCCOC1=CC=CC=C1 RZVINYQDSSQUKO-UHFFFAOYSA-N 0.000 description 1
- KTALPKYXQZGAEG-UHFFFAOYSA-N 2-propan-2-ylthioxanthen-9-one Chemical compound C1=CC=C2C(=O)C3=CC(C(C)C)=CC=C3SC2=C1 KTALPKYXQZGAEG-UHFFFAOYSA-N 0.000 description 1
- 125000003903 2-propenyl group Chemical group [H]C([*])([H])C([H])=C([H])[H] 0.000 description 1
- YTPSFXZMJKMUJE-UHFFFAOYSA-N 2-tert-butylanthracene-9,10-dione Chemical compound C1=CC=C2C(=O)C3=CC(C(C)(C)C)=CC=C3C(=O)C2=C1 YTPSFXZMJKMUJE-UHFFFAOYSA-N 0.000 description 1
- MGADZUXDNSDTHW-UHFFFAOYSA-N 2H-pyran Chemical compound C1OC=CC=C1 MGADZUXDNSDTHW-UHFFFAOYSA-N 0.000 description 1
- RBTBFTRPCNLSDE-UHFFFAOYSA-N 3,7-bis(dimethylamino)phenothiazin-5-ium Chemical compound C1=CC(N(C)C)=CC2=[S+]C3=CC(N(C)C)=CC=C3N=C21 RBTBFTRPCNLSDE-UHFFFAOYSA-N 0.000 description 1
- WWZPKECNXMOJPN-UHFFFAOYSA-N 3-(4-azidophenyl)-1-phenylpropan-1-one Chemical compound C1=CC(N=[N+]=[N-])=CC=C1CCC(=O)C1=CC=CC=C1 WWZPKECNXMOJPN-UHFFFAOYSA-N 0.000 description 1
- QMYGFTJCQFEDST-UHFFFAOYSA-N 3-methoxybutyl acetate Chemical compound COC(C)CCOC(C)=O QMYGFTJCQFEDST-UHFFFAOYSA-N 0.000 description 1
- XDLMVUHYZWKMMD-UHFFFAOYSA-N 3-trimethoxysilylpropyl 2-methylprop-2-enoate Chemical group CO[Si](OC)(OC)CCCOC(=O)C(C)=C XDLMVUHYZWKMMD-UHFFFAOYSA-N 0.000 description 1
- OKISUZLXOYGIFP-UHFFFAOYSA-N 4,4'-dichlorobenzophenone Chemical compound C1=CC(Cl)=CC=C1C(=O)C1=CC=C(Cl)C=C1 OKISUZLXOYGIFP-UHFFFAOYSA-N 0.000 description 1
- AHDTYXOIJHCGKH-UHFFFAOYSA-N 4-[[4-(dimethylamino)-2-methylphenyl]-phenylmethyl]-n,n,3-trimethylaniline Chemical compound CC1=CC(N(C)C)=CC=C1C(C=1C(=CC(=CC=1)N(C)C)C)C1=CC=CC=C1 AHDTYXOIJHCGKH-UHFFFAOYSA-N 0.000 description 1
- ZOKIJILZFXPFTO-UHFFFAOYSA-N 4-methyl-n-[4-[1-[4-(4-methyl-n-(4-methylphenyl)anilino)phenyl]cyclohexyl]phenyl]-n-(4-methylphenyl)aniline Chemical compound C1=CC(C)=CC=C1N(C=1C=CC(=CC=1)C1(CCCCC1)C=1C=CC(=CC=1)N(C=1C=CC(C)=CC=1)C=1C=CC(C)=CC=1)C1=CC=C(C)C=C1 ZOKIJILZFXPFTO-UHFFFAOYSA-N 0.000 description 1
- DUSWRTUHJVJVRY-UHFFFAOYSA-N 4-methyl-n-[4-[2-[4-(4-methyl-n-(4-methylphenyl)anilino)phenyl]propan-2-yl]phenyl]-n-(4-methylphenyl)aniline Chemical compound C1=CC(C)=CC=C1N(C=1C=CC(=CC=1)C(C)(C)C=1C=CC(=CC=1)N(C=1C=CC(C)=CC=1)C=1C=CC(C)=CC=1)C1=CC=C(C)C=C1 DUSWRTUHJVJVRY-UHFFFAOYSA-N 0.000 description 1
- MVIXNQZIMMIGEL-UHFFFAOYSA-N 4-methyl-n-[4-[4-(4-methyl-n-(4-methylphenyl)anilino)phenyl]phenyl]-n-(4-methylphenyl)aniline Chemical group C1=CC(C)=CC=C1N(C=1C=CC(=CC=1)C=1C=CC(=CC=1)N(C=1C=CC(C)=CC=1)C=1C=CC(C)=CC=1)C1=CC=C(C)C=C1 MVIXNQZIMMIGEL-UHFFFAOYSA-N 0.000 description 1
- XIQGFRHAIQHZBD-UHFFFAOYSA-N 4-methyl-n-[4-[[4-(4-methyl-n-(4-methylphenyl)anilino)phenyl]-phenylmethyl]phenyl]-n-(4-methylphenyl)aniline Chemical compound C1=CC(C)=CC=C1N(C=1C=CC(=CC=1)C(C=1C=CC=CC=1)C=1C=CC(=CC=1)N(C=1C=CC(C)=CC=1)C=1C=CC(C)=CC=1)C1=CC=C(C)C=C1 XIQGFRHAIQHZBD-UHFFFAOYSA-N 0.000 description 1
- BMVWCPGVLSILMU-UHFFFAOYSA-N 5,6-dihydrodibenzo[2,1-b:2',1'-f][7]annulen-11-one Chemical compound C1CC2=CC=CC=C2C(=O)C2=CC=CC=C21 BMVWCPGVLSILMU-UHFFFAOYSA-N 0.000 description 1
- XAMCLRBWHRRBCN-UHFFFAOYSA-N 5-prop-2-enoyloxypentyl prop-2-enoate Chemical compound C=CC(=O)OCCCCCOC(=O)C=C XAMCLRBWHRRBCN-UHFFFAOYSA-N 0.000 description 1
- JTHZUSWLNCPZLX-UHFFFAOYSA-N 6-fluoro-3-methyl-2h-indazole Chemical compound FC1=CC=C2C(C)=NNC2=C1 JTHZUSWLNCPZLX-UHFFFAOYSA-N 0.000 description 1
- DXPPIEDUBFUSEZ-UHFFFAOYSA-N 6-methylheptyl prop-2-enoate Chemical compound CC(C)CCCCCOC(=O)C=C DXPPIEDUBFUSEZ-UHFFFAOYSA-N 0.000 description 1
- HUKPVYBUJRAUAG-UHFFFAOYSA-N 7-benzo[a]phenalenone Chemical compound C1=CC(C(=O)C=2C3=CC=CC=2)=C2C3=CC=CC2=C1 HUKPVYBUJRAUAG-UHFFFAOYSA-N 0.000 description 1
- ZYASLTYCYTYKFC-UHFFFAOYSA-N 9-methylidenefluorene Chemical class C1=CC=C2C(=C)C3=CC=CC=C3C2=C1 ZYASLTYCYTYKFC-UHFFFAOYSA-N 0.000 description 1
- VIJYEGDOKCKUOL-UHFFFAOYSA-N 9-phenylcarbazole Chemical compound C1=CC=CC=C1N1C2=CC=CC=C2C2=CC=CC=C21 VIJYEGDOKCKUOL-UHFFFAOYSA-N 0.000 description 1
- HRPVXLWXLXDGHG-UHFFFAOYSA-N Acrylamide Chemical group NC(=O)C=C HRPVXLWXLXDGHG-UHFFFAOYSA-N 0.000 description 1
- 238000006677 Appel reaction Methods 0.000 description 1
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Natural products OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 description 1
- DKPFZGUDAPQIHT-UHFFFAOYSA-N Butyl acetate Natural products CCCCOC(C)=O DKPFZGUDAPQIHT-UHFFFAOYSA-N 0.000 description 1
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- 229920000298 Cellophane Polymers 0.000 description 1
- 229920000623 Cellulose acetate phthalate Polymers 0.000 description 1
- 229920001747 Cellulose diacetate Polymers 0.000 description 1
- 229920002284 Cellulose triacetate Polymers 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- 241000284156 Clerodendrum quadriloculare Species 0.000 description 1
- YYLLIJHXUHJATK-UHFFFAOYSA-N Cyclohexyl acetate Chemical compound CC(=O)OC1CCCCC1 YYLLIJHXUHJATK-UHFFFAOYSA-N 0.000 description 1
- LCGLNKUTAGEVQW-UHFFFAOYSA-N Dimethyl ether Chemical compound COC LCGLNKUTAGEVQW-UHFFFAOYSA-N 0.000 description 1
- 239000004593 Epoxy Substances 0.000 description 1
- IMROMDMJAWUWLK-UHFFFAOYSA-N Ethenol Chemical compound OC=C IMROMDMJAWUWLK-UHFFFAOYSA-N 0.000 description 1
- JIGUQPWFLRLWPJ-UHFFFAOYSA-N Ethyl acrylate Chemical compound CCOC(=O)C=C JIGUQPWFLRLWPJ-UHFFFAOYSA-N 0.000 description 1
- ZZSNKZQZMQGXPY-UHFFFAOYSA-N Ethyl cellulose Chemical compound CCOCC1OC(OC)C(OCC)C(OCC)C1OC1C(O)C(O)C(OC)C(CO)O1 ZZSNKZQZMQGXPY-UHFFFAOYSA-N 0.000 description 1
- 239000001856 Ethyl cellulose Substances 0.000 description 1
- 229910001111 Fine metal Inorganic materials 0.000 description 1
- CTKINSOISVBQLD-UHFFFAOYSA-N Glycidol Chemical compound OCC1CO1 CTKINSOISVBQLD-UHFFFAOYSA-N 0.000 description 1
- 239000004640 Melamine resin Substances 0.000 description 1
- 229920000877 Melamine resin Polymers 0.000 description 1
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 description 1
- NQSMEZJWJJVYOI-UHFFFAOYSA-N Methyl 2-benzoylbenzoate Chemical compound COC(=O)C1=CC=CC=C1C(=O)C1=CC=CC=C1 NQSMEZJWJJVYOI-UHFFFAOYSA-N 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- FXHOOIRPVKKKFG-UHFFFAOYSA-N N,N-Dimethylacetamide Chemical compound CN(C)C(C)=O FXHOOIRPVKKKFG-UHFFFAOYSA-N 0.000 description 1
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 1
- WHNWPMSKXPGLAX-UHFFFAOYSA-N N-Vinyl-2-pyrrolidone Chemical compound C=CN1CCCC1=O WHNWPMSKXPGLAX-UHFFFAOYSA-N 0.000 description 1
- PAYRUJLWNCNPSJ-UHFFFAOYSA-N N-phenyl amine Natural products NC1=CC=CC=C1 PAYRUJLWNCNPSJ-UHFFFAOYSA-N 0.000 description 1
- 239000004677 Nylon Substances 0.000 description 1
- 229920012266 Poly(ether sulfone) PES Polymers 0.000 description 1
- 239000004697 Polyetherimide Substances 0.000 description 1
- 239000004734 Polyphenylene sulfide Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- 229920001328 Polyvinylidene chloride Polymers 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- 102100040160 Rabankyrin-5 Human genes 0.000 description 1
- 101710086049 Rabankyrin-5 Proteins 0.000 description 1
- 229910007991 Si-N Inorganic materials 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- 229910020286 SiOxNy Inorganic materials 0.000 description 1
- 229910006294 Si—N Inorganic materials 0.000 description 1
- 229910006404 SnO 2 Inorganic materials 0.000 description 1
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 1
- 229920010524 Syndiotactic polystyrene Polymers 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- GSEJCLTVZPLZKY-UHFFFAOYSA-N Triethanolamine Chemical compound OCCN(CCO)CCO GSEJCLTVZPLZKY-UHFFFAOYSA-N 0.000 description 1
- ZJCCRDAZUWHFQH-UHFFFAOYSA-N Trimethylolpropane Chemical compound CCC(CO)(CO)CO ZJCCRDAZUWHFQH-UHFFFAOYSA-N 0.000 description 1
- DAKWPKUUDNSNPN-UHFFFAOYSA-N Trimethylolpropane triacrylate Chemical compound C=CC(=O)OCC(CC)(COC(=O)C=C)COC(=O)C=C DAKWPKUUDNSNPN-UHFFFAOYSA-N 0.000 description 1
- 239000007983 Tris buffer Substances 0.000 description 1
- 238000005411 Van der Waals force Methods 0.000 description 1
- XTXRWKRVRITETP-UHFFFAOYSA-N Vinyl acetate Chemical compound CC(=O)OC=C XTXRWKRVRITETP-UHFFFAOYSA-N 0.000 description 1
- BZHJMEDXRYGGRV-UHFFFAOYSA-N Vinyl chloride Chemical compound ClC=C BZHJMEDXRYGGRV-UHFFFAOYSA-N 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- SMEGJBVQLJJKKX-HOTMZDKISA-N [(2R,3S,4S,5R,6R)-5-acetyloxy-3,4,6-trihydroxyoxan-2-yl]methyl acetate Chemical compound CC(=O)OC[C@@H]1[C@H]([C@@H]([C@H]([C@@H](O1)O)OC(=O)C)O)O SMEGJBVQLJJKKX-HOTMZDKISA-N 0.000 description 1
- NNLVGZFZQQXQNW-ADJNRHBOSA-N [(2r,3r,4s,5r,6s)-4,5-diacetyloxy-3-[(2s,3r,4s,5r,6r)-3,4,5-triacetyloxy-6-(acetyloxymethyl)oxan-2-yl]oxy-6-[(2r,3r,4s,5r,6s)-4,5,6-triacetyloxy-2-(acetyloxymethyl)oxan-3-yl]oxyoxan-2-yl]methyl acetate Chemical compound O([C@@H]1O[C@@H]([C@H]([C@H](OC(C)=O)[C@H]1OC(C)=O)O[C@H]1[C@@H]([C@@H](OC(C)=O)[C@H](OC(C)=O)[C@@H](COC(C)=O)O1)OC(C)=O)COC(=O)C)[C@@H]1[C@@H](COC(C)=O)O[C@@H](OC(C)=O)[C@H](OC(C)=O)[C@H]1OC(C)=O NNLVGZFZQQXQNW-ADJNRHBOSA-N 0.000 description 1
- KNSXNCFKSZZHEA-UHFFFAOYSA-N [3-prop-2-enoyloxy-2,2-bis(prop-2-enoyloxymethyl)propyl] prop-2-enoate Chemical class C=CC(=O)OCC(COC(=O)C=C)(COC(=O)C=C)COC(=O)C=C KNSXNCFKSZZHEA-UHFFFAOYSA-N 0.000 description 1
- NEIHULKJZQTQKJ-UHFFFAOYSA-N [Cu].[Ag] Chemical compound [Cu].[Ag] NEIHULKJZQTQKJ-UHFFFAOYSA-N 0.000 description 1
- XHCLAFWTIXFWPH-UHFFFAOYSA-N [O-2].[O-2].[O-2].[O-2].[O-2].[V+5].[V+5] Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[V+5].[V+5] XHCLAFWTIXFWPH-UHFFFAOYSA-N 0.000 description 1
- OBNDGIHQAIXEAO-UHFFFAOYSA-N [O].[Si] Chemical compound [O].[Si] OBNDGIHQAIXEAO-UHFFFAOYSA-N 0.000 description 1
- AUEPDNOBDJYBBK-UHFFFAOYSA-N [Si].[C-]#[O+] Chemical compound [Si].[C-]#[O+] AUEPDNOBDJYBBK-UHFFFAOYSA-N 0.000 description 1
- 239000006096 absorbing agent Substances 0.000 description 1
- 239000011354 acetal resin Substances 0.000 description 1
- 229940081735 acetylcellulose Drugs 0.000 description 1
- 229920006243 acrylic copolymer Polymers 0.000 description 1
- 125000003647 acryloyl group Chemical group O=C([*])C([H])=C([H])[H] 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000006978 adaptation Effects 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 150000001338 aliphatic hydrocarbons Chemical class 0.000 description 1
- 229910001508 alkali metal halide Inorganic materials 0.000 description 1
- 150000008045 alkali metal halides Chemical class 0.000 description 1
- 150000001341 alkaline earth metal compounds Chemical class 0.000 description 1
- 125000003342 alkenyl group Chemical group 0.000 description 1
- 125000003545 alkoxy group Chemical group 0.000 description 1
- 125000003282 alkyl amino group Chemical group 0.000 description 1
- 125000005103 alkyl silyl group Chemical group 0.000 description 1
- OVKDFILSBMEKLT-UHFFFAOYSA-N alpha-Terpineol Natural products CC(=C)C1(O)CCC(C)=CC1 OVKDFILSBMEKLT-UHFFFAOYSA-N 0.000 description 1
- WNROFYMDJYEPJX-UHFFFAOYSA-K aluminium hydroxide Chemical compound [OH-].[OH-].[OH-].[Al+3] WNROFYMDJYEPJX-UHFFFAOYSA-K 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 239000005354 aluminosilicate glass Substances 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 229910003481 amorphous carbon Inorganic materials 0.000 description 1
- PYKYMHQGRFAEBM-UHFFFAOYSA-N anthraquinone Natural products CCC(=O)c1c(O)c2C(=O)C3C(C=CC=C3O)C(=O)c2cc1CC(=O)OC PYKYMHQGRFAEBM-UHFFFAOYSA-N 0.000 description 1
- 150000004056 anthraquinones Chemical class 0.000 description 1
- RJGDLRCDCYRQOQ-UHFFFAOYSA-N anthrone Chemical compound C1=CC=C2C(=O)C3=CC=CC=C3CC2=C1 RJGDLRCDCYRQOQ-UHFFFAOYSA-N 0.000 description 1
- 150000008425 anthrones Chemical class 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 230000003078 antioxidant effect Effects 0.000 description 1
- 235000006708 antioxidants Nutrition 0.000 description 1
- 150000004982 aromatic amines Chemical class 0.000 description 1
- 235000010323 ascorbic acid Nutrition 0.000 description 1
- 229960005070 ascorbic acid Drugs 0.000 description 1
- 239000011668 ascorbic acid Substances 0.000 description 1
- 238000007611 bar coating method Methods 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 125000001797 benzyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])* 0.000 description 1
- GCTPMLUUWLLESL-UHFFFAOYSA-N benzyl prop-2-enoate Chemical compound C=CC(=O)OCC1=CC=CC=C1 GCTPMLUUWLLESL-UHFFFAOYSA-N 0.000 description 1
- 125000000649 benzylidene group Chemical group [H]C(=[*])C1=C([H])C([H])=C([H])C([H])=C1[H] 0.000 description 1
- ZNAAXKXXDQLJIX-UHFFFAOYSA-N bis(2-cyclohexyl-3-hydroxyphenyl)methanone Chemical compound C1CCCCC1C=1C(O)=CC=CC=1C(=O)C1=CC=CC(O)=C1C1CCCCC1 ZNAAXKXXDQLJIX-UHFFFAOYSA-N 0.000 description 1
- ZPOLOEWJWXZUSP-AATRIKPKSA-N bis(prop-2-enyl) (e)-but-2-enedioate Chemical compound C=CCOC(=O)\C=C\C(=O)OCC=C ZPOLOEWJWXZUSP-AATRIKPKSA-N 0.000 description 1
- 230000004397 blinking Effects 0.000 description 1
- 229930006711 bornane-2,3-dione Natural products 0.000 description 1
- 125000006226 butoxyethyl group Chemical group 0.000 description 1
- CQEYYJKEWSMYFG-UHFFFAOYSA-N butyl acrylate Chemical compound CCCCOC(=O)C=C CQEYYJKEWSMYFG-UHFFFAOYSA-N 0.000 description 1
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 229910000019 calcium carbonate Inorganic materials 0.000 description 1
- 150000001718 carbodiimides Chemical class 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 125000002091 cationic group Chemical group 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 229920002301 cellulose acetate Polymers 0.000 description 1
- 229920006217 cellulose acetate butyrate Polymers 0.000 description 1
- 229940081734 cellulose acetate phthalate Drugs 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 229910010293 ceramic material Inorganic materials 0.000 description 1
- 239000012700 ceramic precursor Substances 0.000 description 1
- 238000003486 chemical etching Methods 0.000 description 1
- 239000003638 chemical reducing agent Substances 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- 239000004927 clay Substances 0.000 description 1
- 229910052570 clay Inorganic materials 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 230000003749 cleanliness Effects 0.000 description 1
- 239000008199 coating composition Substances 0.000 description 1
- 229910052681 coesite Inorganic materials 0.000 description 1
- 238000004737 colorimetric analysis Methods 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 150000004696 coordination complex Chemical class 0.000 description 1
- 230000000875 corresponding effect Effects 0.000 description 1
- 229960000956 coumarin Drugs 0.000 description 1
- 235000001671 coumarin Nutrition 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 229910052906 cristobalite Inorganic materials 0.000 description 1
- 238000004132 cross linking Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 150000004292 cyclic ethers Chemical class 0.000 description 1
- 150000001925 cycloalkenes Chemical class 0.000 description 1
- 125000000753 cycloalkyl group Chemical group 0.000 description 1
- 125000000113 cyclohexyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 1
- KBLWLMPSVYBVDK-UHFFFAOYSA-N cyclohexyl prop-2-enoate Chemical compound C=CC(=O)OC1CCCCC1 KBLWLMPSVYBVDK-UHFFFAOYSA-N 0.000 description 1
- FOTKYAAJKYLFFN-UHFFFAOYSA-N decane-1,10-diol Chemical compound OCCCCCCCCCCO FOTKYAAJKYLFFN-UHFFFAOYSA-N 0.000 description 1
- FWLDHHJLVGRRHD-UHFFFAOYSA-N decyl prop-2-enoate Chemical compound CCCCCCCCCCOC(=O)C=C FWLDHHJLVGRRHD-UHFFFAOYSA-N 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000007791 dehumidification Methods 0.000 description 1
- 238000006297 dehydration reaction Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- AFZSMODLJJCVPP-UHFFFAOYSA-N dibenzothiazol-2-yl disulfide Chemical compound C1=CC=C2SC(SSC=3SC4=CC=CC=C4N=3)=NC2=C1 AFZSMODLJJCVPP-UHFFFAOYSA-N 0.000 description 1
- UCXUKTLCVSGCNR-UHFFFAOYSA-N diethylsilane Chemical compound CC[SiH2]CC UCXUKTLCVSGCNR-UHFFFAOYSA-N 0.000 description 1
- 238000007865 diluting Methods 0.000 description 1
- 239000003085 diluting agent Substances 0.000 description 1
- 125000000118 dimethyl group Chemical group [H]C([H])([H])* 0.000 description 1
- UBHZUDXTHNMNLD-UHFFFAOYSA-N dimethylsilane Chemical compound C[SiH2]C UBHZUDXTHNMNLD-UHFFFAOYSA-N 0.000 description 1
- 238000003618 dip coating Methods 0.000 description 1
- UKXCWLFBHULELL-UHFFFAOYSA-N diphenylmethanone;n-ethylethanamine Chemical compound CCNCC.C=1C=CC=CC=1C(=O)C1=CC=CC=C1 UKXCWLFBHULELL-UHFFFAOYSA-N 0.000 description 1
- PVQHOAILLPEZSC-UHFFFAOYSA-N diphenylmethanone;n-methylmethanamine Chemical compound CNC.C=1C=CC=CC=1C(=O)C1=CC=CC=C1 PVQHOAILLPEZSC-UHFFFAOYSA-N 0.000 description 1
- 125000003438 dodecyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 239000007772 electrode material Substances 0.000 description 1
- 125000006575 electron-withdrawing group Chemical group 0.000 description 1
- 229920000775 emeraldine polymer Polymers 0.000 description 1
- 238000000295 emission spectrum Methods 0.000 description 1
- YQGOJNYOYNNSMM-UHFFFAOYSA-N eosin Chemical compound [Na+].OC(=O)C1=CC=CC=C1C1=C2C=C(Br)C(=O)C(Br)=C2OC2=C(Br)C(O)=C(Br)C=C21 YQGOJNYOYNNSMM-UHFFFAOYSA-N 0.000 description 1
- 125000003700 epoxy group Chemical group 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- FWDBOZPQNFPOLF-UHFFFAOYSA-N ethenyl(triethoxy)silane Chemical compound CCO[Si](OCC)(OCC)C=C FWDBOZPQNFPOLF-UHFFFAOYSA-N 0.000 description 1
- NKSJNEHGWDZZQF-UHFFFAOYSA-N ethenyl(trimethoxy)silane Chemical compound CO[Si](OC)(OC)C=C NKSJNEHGWDZZQF-UHFFFAOYSA-N 0.000 description 1
- GCSJLQSCSDMKTP-UHFFFAOYSA-N ethenyl(trimethyl)silane Chemical compound C[Si](C)(C)C=C GCSJLQSCSDMKTP-UHFFFAOYSA-N 0.000 description 1
- BHXIWUJLHYHGSJ-UHFFFAOYSA-N ethyl 3-ethoxypropanoate Chemical compound CCOCCC(=O)OCC BHXIWUJLHYHGSJ-UHFFFAOYSA-N 0.000 description 1
- 229920001249 ethyl cellulose Polymers 0.000 description 1
- 235000019325 ethyl cellulose Nutrition 0.000 description 1
- 125000002534 ethynyl group Chemical group [H]C#C* 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 239000003925 fat Substances 0.000 description 1
- GVEPBJHOBDJJJI-UHFFFAOYSA-N fluoranthrene Natural products C1=CC(C2=CC=CC=C22)=C3C2=CC=CC3=C1 GVEPBJHOBDJJJI-UHFFFAOYSA-N 0.000 description 1
- YLQWCDOCJODRMT-UHFFFAOYSA-N fluoren-9-one Chemical compound C1=CC=C2C(=O)C3=CC=CC=C3C2=C1 YLQWCDOCJODRMT-UHFFFAOYSA-N 0.000 description 1
- 150000008376 fluorenones Chemical class 0.000 description 1
- GNBHRKFJIUUOQI-UHFFFAOYSA-N fluorescein Chemical compound O1C(=O)C2=CC=CC=C2C21C1=CC=C(O)C=C1OC1=CC(O)=CC=C21 GNBHRKFJIUUOQI-UHFFFAOYSA-N 0.000 description 1
- 239000007850 fluorescent dye Substances 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 229910052733 gallium Inorganic materials 0.000 description 1
- 238000010574 gas phase reaction Methods 0.000 description 1
- 229910052732 germanium Inorganic materials 0.000 description 1
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 1
- 125000003055 glycidyl group Chemical group C(C1CO1)* 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 238000007646 gravure printing Methods 0.000 description 1
- 239000004519 grease Substances 0.000 description 1
- 238000009499 grossing Methods 0.000 description 1
- 230000005283 ground state Effects 0.000 description 1
- 150000008282 halocarbons Chemical class 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- LNEPOXFFQSENCJ-UHFFFAOYSA-N haloperidol Chemical compound C1CC(O)(C=2C=CC(Cl)=CC=2)CCN1CCCC(=O)C1=CC=C(F)C=C1 LNEPOXFFQSENCJ-UHFFFAOYSA-N 0.000 description 1
- RBTKNAXYKSUFRK-UHFFFAOYSA-N heliogen blue Chemical compound [Cu].[N-]1C2=C(C=CC=C3)C3=C1N=C([N-]1)C3=CC=CC=C3C1=NC([N-]1)=C(C=CC=C3)C3=C1N=C([N-]1)C3=CC=CC=C3C1=N2 RBTKNAXYKSUFRK-UHFFFAOYSA-N 0.000 description 1
- NEXSMEBSBIABKL-UHFFFAOYSA-N hexamethyldisilane Chemical compound C[Si](C)(C)[Si](C)(C)C NEXSMEBSBIABKL-UHFFFAOYSA-N 0.000 description 1
- XXMIOPMDWAUFGU-UHFFFAOYSA-N hexane-1,6-diol Chemical compound OCCCCCCO XXMIOPMDWAUFGU-UHFFFAOYSA-N 0.000 description 1
- FUZZWVXGSFPDMH-UHFFFAOYSA-M hexanoate Chemical compound CCCCCC([O-])=O FUZZWVXGSFPDMH-UHFFFAOYSA-M 0.000 description 1
- LNMQRPPRQDGUDR-UHFFFAOYSA-N hexyl prop-2-enoate Chemical compound CCCCCCOC(=O)C=C LNMQRPPRQDGUDR-UHFFFAOYSA-N 0.000 description 1
- 229940083761 high-ceiling diuretics pyrazolone derivative Drugs 0.000 description 1
- 239000012943 hotmelt Substances 0.000 description 1
- 150000007857 hydrazones Chemical class 0.000 description 1
- 150000002460 imidazoles Chemical class 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- YZASAXHKAQYPEH-UHFFFAOYSA-N indium silver Chemical compound [Ag].[In] YZASAXHKAQYPEH-UHFFFAOYSA-N 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 239000011147 inorganic material Substances 0.000 description 1
- 229920000592 inorganic polymer Polymers 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 229940079865 intestinal antiinfectives imidazole derivative Drugs 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 239000012948 isocyanate Substances 0.000 description 1
- 150000002513 isocyanates Chemical class 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- DNNSSWSSYDEUBZ-UHFFFAOYSA-N krypton atom Chemical compound [Kr] DNNSSWSSYDEUBZ-UHFFFAOYSA-N 0.000 description 1
- TYQCGQRIZGCHNB-JLAZNSOCSA-N l-ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(O)=C(O)C1=O TYQCGQRIZGCHNB-JLAZNSOCSA-N 0.000 description 1
- PBOSTUDLECTMNL-UHFFFAOYSA-N lauryl acrylate Chemical compound CCCCCCCCCCCCOC(=O)C=C PBOSTUDLECTMNL-UHFFFAOYSA-N 0.000 description 1
- 239000005355 lead glass Substances 0.000 description 1
- 230000031700 light absorption Effects 0.000 description 1
- 238000004020 luminiscence type Methods 0.000 description 1
- ZLNQQNXFFQJAID-UHFFFAOYSA-L magnesium carbonate Chemical compound [Mg+2].[O-]C([O-])=O ZLNQQNXFFQJAID-UHFFFAOYSA-L 0.000 description 1
- 229910000021 magnesium carbonate Inorganic materials 0.000 description 1
- 239000001095 magnesium carbonate Substances 0.000 description 1
- ORUIBWPALBXDOA-UHFFFAOYSA-L magnesium fluoride Chemical compound [F-].[F-].[Mg+2] ORUIBWPALBXDOA-UHFFFAOYSA-L 0.000 description 1
- 229910001635 magnesium fluoride Inorganic materials 0.000 description 1
- SJCKRGFTWFGHGZ-UHFFFAOYSA-N magnesium silver Chemical compound [Mg].[Ag] SJCKRGFTWFGHGZ-UHFFFAOYSA-N 0.000 description 1
- BJEPYKJPYRNKOW-UHFFFAOYSA-L malate(2-) Chemical group [O-]C(=O)C(O)CC([O-])=O BJEPYKJPYRNKOW-UHFFFAOYSA-L 0.000 description 1
- 238000004949 mass spectrometry Methods 0.000 description 1
- CERQOIWHTDAKMF-UHFFFAOYSA-M methacrylate group Chemical group C(C(=C)C)(=O)[O-] CERQOIWHTDAKMF-UHFFFAOYSA-M 0.000 description 1
- 125000005395 methacrylic acid group Chemical group 0.000 description 1
- 229940095102 methyl benzoate Drugs 0.000 description 1
- 229920000609 methyl cellulose Polymers 0.000 description 1
- 239000001923 methylcellulose Substances 0.000 description 1
- UIUXUFNYAYAMOE-UHFFFAOYSA-N methylsilane Chemical compound [SiH3]C UIUXUFNYAYAMOE-UHFFFAOYSA-N 0.000 description 1
- 229960000907 methylthioninium chloride Drugs 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 229910000476 molybdenum oxide Inorganic materials 0.000 description 1
- 125000004573 morpholin-4-yl group Chemical group N1(CCOCC1)* 0.000 description 1
- BBDFECYVDQCSCN-UHFFFAOYSA-N n-(4-methoxyphenyl)-4-[4-(n-(4-methoxyphenyl)anilino)phenyl]-n-phenylaniline Chemical group C1=CC(OC)=CC=C1N(C=1C=CC(=CC=1)C=1C=CC(=CC=1)N(C=1C=CC=CC=1)C=1C=CC(OC)=CC=1)C1=CC=CC=C1 BBDFECYVDQCSCN-UHFFFAOYSA-N 0.000 description 1
- IBHBKWKFFTZAHE-UHFFFAOYSA-N n-[4-[4-(n-naphthalen-1-ylanilino)phenyl]phenyl]-n-phenylnaphthalen-1-amine Chemical group C1=CC=CC=C1N(C=1C2=CC=CC=C2C=CC=1)C1=CC=C(C=2C=CC(=CC=2)N(C=2C=CC=CC=2)C=2C3=CC=CC=C3C=CC=2)C=C1 IBHBKWKFFTZAHE-UHFFFAOYSA-N 0.000 description 1
- 125000000740 n-pentyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- DASJFYAPNPUBGG-UHFFFAOYSA-N naphthalene-1-sulfonyl chloride Chemical compound C1=CC=C2C(S(=O)(=O)Cl)=CC=CC2=C1 DASJFYAPNPUBGG-UHFFFAOYSA-N 0.000 description 1
- SLCVBVWXLSEKPL-UHFFFAOYSA-N neopentyl glycol Chemical compound OCC(C)(C)CO SLCVBVWXLSEKPL-UHFFFAOYSA-N 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- 229910052756 noble gas Inorganic materials 0.000 description 1
- JFNLZVQOOSMTJK-KNVOCYPGSA-N norbornene Chemical compound C1[C@@H]2CC[C@H]1C=C2 JFNLZVQOOSMTJK-KNVOCYPGSA-N 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- HMMGMWAXVFQUOA-UHFFFAOYSA-N octamethylcyclotetrasiloxane Chemical compound C[Si]1(C)O[Si](C)(C)O[Si](C)(C)O[Si](C)(C)O1 HMMGMWAXVFQUOA-UHFFFAOYSA-N 0.000 description 1
- ANISOHQJBAQUQP-UHFFFAOYSA-N octyl prop-2-enoate Chemical compound CCCCCCCCOC(=O)C=C ANISOHQJBAQUQP-UHFFFAOYSA-N 0.000 description 1
- WCPAKWJPBJAGKN-UHFFFAOYSA-N oxadiazole Chemical group C1=CON=N1 WCPAKWJPBJAGKN-UHFFFAOYSA-N 0.000 description 1
- 150000007978 oxazole derivatives Chemical class 0.000 description 1
- PQQKPALAQIIWST-UHFFFAOYSA-N oxomolybdenum Chemical compound [Mo]=O PQQKPALAQIIWST-UHFFFAOYSA-N 0.000 description 1
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 description 1
- GPRIERYVMZVKTC-UHFFFAOYSA-N p-quaterphenyl Chemical group C1=CC=CC=C1C1=CC=C(C=2C=CC(=CC=2)C=2C=CC=CC=2)C=C1 GPRIERYVMZVKTC-UHFFFAOYSA-N 0.000 description 1
- 239000003973 paint Substances 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- ULDDEWDFUNBUCM-UHFFFAOYSA-N pentyl prop-2-enoate Chemical compound CCCCCOC(=O)C=C ULDDEWDFUNBUCM-UHFFFAOYSA-N 0.000 description 1
- PNJWIWWMYCMZRO-UHFFFAOYSA-N pent‐4‐en‐2‐one Natural products CC(=O)CC=C PNJWIWWMYCMZRO-UHFFFAOYSA-N 0.000 description 1
- 239000012466 permeate Substances 0.000 description 1
- 125000002080 perylenyl group Chemical group C1(=CC=C2C=CC=C3C4=CC=CC5=CC=CC(C1=C23)=C45)* 0.000 description 1
- CSHWQDPOILHKBI-UHFFFAOYSA-N peryrene Natural products C1=CC(C2=CC=CC=3C2=C2C=CC=3)=C3C2=CC=CC3=C1 CSHWQDPOILHKBI-UHFFFAOYSA-N 0.000 description 1
- 239000005011 phenolic resin Substances 0.000 description 1
- 150000004986 phenylenediamines Chemical class 0.000 description 1
- PARWUHTVGZSQPD-UHFFFAOYSA-N phenylsilane Chemical compound [SiH3]C1=CC=CC=C1 PARWUHTVGZSQPD-UHFFFAOYSA-N 0.000 description 1
- 239000004014 plasticizer Substances 0.000 description 1
- 229920001643 poly(ether ketone) Polymers 0.000 description 1
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 1
- 229920002037 poly(vinyl butyral) polymer Polymers 0.000 description 1
- 229920006122 polyamide resin Polymers 0.000 description 1
- 229920000767 polyaniline Polymers 0.000 description 1
- 229920001230 polyarylate Polymers 0.000 description 1
- 229920001707 polybutylene terephthalate Polymers 0.000 description 1
- 229920005668 polycarbonate resin Polymers 0.000 description 1
- 239000004431 polycarbonate resin Substances 0.000 description 1
- 229920001225 polyester resin Polymers 0.000 description 1
- 239000004645 polyester resin Substances 0.000 description 1
- 229920001601 polyetherimide Polymers 0.000 description 1
- 229920006290 polyethylene naphthalate film Polymers 0.000 description 1
- 239000003505 polymerization initiator Substances 0.000 description 1
- 239000004926 polymethyl methacrylate Substances 0.000 description 1
- 239000011116 polymethylpentene Substances 0.000 description 1
- 229920000306 polymethylpentene Polymers 0.000 description 1
- 229920005862 polyol Polymers 0.000 description 1
- 229920000098 polyolefin Polymers 0.000 description 1
- 229920006324 polyoxymethylene Polymers 0.000 description 1
- 229920000069 polyphenylene sulfide Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 229920005990 polystyrene resin Polymers 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 239000005033 polyvinylidene chloride Substances 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- QCTJRYGLPAFRMS-UHFFFAOYSA-N prop-2-enoic acid;1,3,5-triazine-2,4,6-triamine Chemical compound OC(=O)C=C.NC1=NC(N)=NC(N)=N1 QCTJRYGLPAFRMS-UHFFFAOYSA-N 0.000 description 1
- QTECDUFMBMSHKR-UHFFFAOYSA-N prop-2-enyl prop-2-enoate Chemical compound C=CCOC(=O)C=C QTECDUFMBMSHKR-UHFFFAOYSA-N 0.000 description 1
- LYBIZMNPXTXVMV-UHFFFAOYSA-N propan-2-yl prop-2-enoate Chemical compound CC(C)OC(=O)C=C LYBIZMNPXTXVMV-UHFFFAOYSA-N 0.000 description 1
- 125000004368 propenyl group Chemical group C(=CC)* 0.000 description 1
- PNXMTCDJUBJHQJ-UHFFFAOYSA-N propyl prop-2-enoate Chemical compound CCCOC(=O)C=C PNXMTCDJUBJHQJ-UHFFFAOYSA-N 0.000 description 1
- LLHKCFNBLRBOGN-UHFFFAOYSA-N propylene glycol methyl ether acetate Chemical compound COCC(C)OC(C)=O LLHKCFNBLRBOGN-UHFFFAOYSA-N 0.000 description 1
- JEXVQSWXXUJEMA-UHFFFAOYSA-N pyrazol-3-one Chemical class O=C1C=CN=N1 JEXVQSWXXUJEMA-UHFFFAOYSA-N 0.000 description 1
- 150000003219 pyrazolines Chemical class 0.000 description 1
- WVIICGIFSIBFOG-UHFFFAOYSA-N pyrylium Chemical compound C1=CC=[O+]C=C1 WVIICGIFSIBFOG-UHFFFAOYSA-N 0.000 description 1
- MCJGNVYPOGVAJF-UHFFFAOYSA-N quinolin-8-ol Chemical class C1=CN=C2C(O)=CC=CC2=C1 MCJGNVYPOGVAJF-UHFFFAOYSA-N 0.000 description 1
- DLJHXMRDIWMMGO-UHFFFAOYSA-N quinolin-8-ol;zinc Chemical compound [Zn].C1=CN=C2C(O)=CC=CC2=C1.C1=CN=C2C(O)=CC=CC2=C1 DLJHXMRDIWMMGO-UHFFFAOYSA-N 0.000 description 1
- VHXJRLYFEJAIAM-UHFFFAOYSA-N quinoline-2-sulfonyl chloride Chemical compound C1=CC=CC2=NC(S(=O)(=O)Cl)=CC=C21 VHXJRLYFEJAIAM-UHFFFAOYSA-N 0.000 description 1
- 150000003254 radicals Chemical class 0.000 description 1
- 229910052704 radon Inorganic materials 0.000 description 1
- SYUHGPGVQRZVTB-UHFFFAOYSA-N radon atom Chemical compound [Rn] SYUHGPGVQRZVTB-UHFFFAOYSA-N 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 239000001022 rhodamine dye Substances 0.000 description 1
- 238000004439 roughness measurement Methods 0.000 description 1
- 238000005488 sandblasting Methods 0.000 description 1
- 239000000565 sealant Substances 0.000 description 1
- 239000003566 sealing material Substances 0.000 description 1
- SCPYDCQAZCOKTP-UHFFFAOYSA-N silanol Chemical compound [SiH3]O SCPYDCQAZCOKTP-UHFFFAOYSA-N 0.000 description 1
- 125000004469 siloxy group Chemical group [SiH3]O* 0.000 description 1
- 239000005361 soda-lime glass Substances 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 238000013112 stability test Methods 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 125000004079 stearyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 229910052682 stishovite Inorganic materials 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 125000000542 sulfonic acid group Chemical group 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 125000004434 sulfur atom Chemical group 0.000 description 1
- QJVXKWHHAMZTBY-GCPOEHJPSA-N syringin Chemical compound COC1=CC(\C=C\CO)=CC(OC)=C1O[C@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 QJVXKWHHAMZTBY-GCPOEHJPSA-N 0.000 description 1
- 229940042055 systemic antimycotics triazole derivative Drugs 0.000 description 1
- 239000000454 talc Substances 0.000 description 1
- 229910052623 talc Inorganic materials 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 1
- 150000003505 terpenes Chemical class 0.000 description 1
- 235000007586 terpenes Nutrition 0.000 description 1
- ISXSCDLOGDJUNJ-UHFFFAOYSA-N tert-butyl prop-2-enoate Chemical compound CC(C)(C)OC(=O)C=C ISXSCDLOGDJUNJ-UHFFFAOYSA-N 0.000 description 1
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 1
- LFQCEHFDDXELDD-UHFFFAOYSA-N tetramethyl orthosilicate Chemical compound CO[Si](OC)(OC)OC LFQCEHFDDXELDD-UHFFFAOYSA-N 0.000 description 1
- CZDYPVPMEAXLPK-UHFFFAOYSA-N tetramethylsilane Chemical compound C[Si](C)(C)C CZDYPVPMEAXLPK-UHFFFAOYSA-N 0.000 description 1
- 238000012719 thermal polymerization Methods 0.000 description 1
- 229920002803 thermoplastic polyurethane Polymers 0.000 description 1
- 150000004867 thiadiazoles Chemical class 0.000 description 1
- 125000003396 thiol group Chemical group [H]S* 0.000 description 1
- 229930192474 thiophene Natural products 0.000 description 1
- IBBLKSWSCDAPIF-UHFFFAOYSA-N thiopyran Chemical compound S1C=CC=C=C1 IBBLKSWSCDAPIF-UHFFFAOYSA-N 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- 239000011135 tin Substances 0.000 description 1
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 1
- 229910001887 tin oxide Inorganic materials 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 239000004408 titanium dioxide Substances 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- TVIVIEFSHFOWTE-UHFFFAOYSA-K tri(quinolin-8-yloxy)alumane Chemical compound [Al+3].C1=CN=C2C([O-])=CC=CC2=C1.C1=CN=C2C([O-])=CC=CC2=C1.C1=CN=C2C([O-])=CC=CC2=C1 TVIVIEFSHFOWTE-UHFFFAOYSA-K 0.000 description 1
- ILJSQTXMGCGYMG-UHFFFAOYSA-N triacetic acid Chemical compound CC(=O)CC(=O)CC(O)=O ILJSQTXMGCGYMG-UHFFFAOYSA-N 0.000 description 1
- 229910052905 tridymite Inorganic materials 0.000 description 1
- CPUDPFPXCZDNGI-UHFFFAOYSA-N triethoxy(methyl)silane Chemical compound CCO[Si](C)(OCC)OCC CPUDPFPXCZDNGI-UHFFFAOYSA-N 0.000 description 1
- ZNOCGWVLWPVKAO-UHFFFAOYSA-N trimethoxy(phenyl)silane Chemical compound CO[Si](OC)(OC)C1=CC=CC=C1 ZNOCGWVLWPVKAO-UHFFFAOYSA-N 0.000 description 1
- PQDJYEQOELDLCP-UHFFFAOYSA-N trimethylsilane Chemical compound C[SiH](C)C PQDJYEQOELDLCP-UHFFFAOYSA-N 0.000 description 1
- 125000006617 triphenylamine group Chemical group 0.000 description 1
- 239000006097 ultraviolet radiation absorber Substances 0.000 description 1
- 229920006337 unsaturated polyester resin Polymers 0.000 description 1
- 238000001291 vacuum drying Methods 0.000 description 1
- 238000007738 vacuum evaporation Methods 0.000 description 1
- 229910001935 vanadium oxide Inorganic materials 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
- 238000011179 visual inspection Methods 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
- 229910001928 zirconium oxide Inorganic materials 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/80—Constructional details
- H10K50/84—Passivation; Containers; Encapsulations
- H10K50/844—Encapsulations
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/28—Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
- B32B27/283—Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42 comprising polysiloxanes
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/22—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
- C23C16/30—Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
- C23C16/40—Oxides
- C23C16/401—Oxides containing silicon
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/48—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating by irradiation, e.g. photolysis, radiolysis, particle radiation
- C23C16/482—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating by irradiation, e.g. photolysis, radiolysis, particle radiation using incoherent light, UV to IR, e.g. lamps
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/50—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/56—After-treatment
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2255/00—Coating on the layer surface
- B32B2255/24—Organic non-macromolecular coating
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/40—Properties of the layers or laminate having particular optical properties
- B32B2307/422—Luminescent, fluorescent, phosphorescent
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/70—Other properties
- B32B2307/724—Permeability to gases, adsorption
- B32B2307/7242—Non-permeable
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K2101/00—Properties of the organic materials covered by group H10K85/00
- H10K2101/80—Composition varying spatially, e.g. having a spatial gradient
Definitions
- the present invention relates to a gas barrier film, a method for producing the gas barrier film, and an organic electroluminescence device using the gas barrier film.
- An organic electroluminescence element (so-called organic EL element) using electroluminescence (hereinafter referred to as EL) of an organic material is a thin-film type completely solid element capable of emitting light at a low voltage of several V to several tens V. It has many excellent features such as high brightness, high luminous efficiency, thinness, and light weight. For this reason, in recent years, OLEDs on resin substrates having thin and light barrier films have attracted attention as backlights for various displays, display boards such as signboards and emergency lights, and surface light emitters such as illumination light sources.
- a barrier film suitable for an organic EL element due to high barrier properties and smoothness has been proposed (for example, see Patent Document 1).
- the barrier film is formed by a vapor deposition method.
- a deposited film such as a vapor deposition method has a limit in improving the smoothness, and a technique for further improving the smoothness is expected.
- Patent Document 3 a technique has been proposed that achieves both high barrier properties and smoothness by subjecting a vapor deposition type barrier film to excimer treatment and further forming a polysilazane layer (see, for example, Patent Document 3).
- the method described in Patent Document 3 has a problem that the adhesion strength between the deposited film and the polysilazane layer is lowered in the manufacturing process of the organic EL element, and the bending characteristics of the organic EL element are deteriorated.
- the gas barrier property is high, and when applied to an organic electroluminescence element, the reliability of the organic electroluminescence element can be improved, and the use of this gas barrier film improves the reliability. There is a need for an organic electroluminescent device capable of satisfying the requirements.
- the present invention provides a highly reliable gas barrier film and a highly reliable organic electroluminescence element.
- the gas barrier film of the present invention contains a base material and at least one element selected from carbon (C), nitrogen (N), and oxygen (O), and is continuous from the surface in the thickness direction.
- a silicon compound vapor-deposited layer having a composition change and surface-treated, and a polysilazane modified layer are provided.
- the method for producing a gas barrier film of the present invention includes, on a substrate, at least one element selected from carbon (C), nitrogen (N), and oxygen (O), and from the surface to the thickness direction.
- the organic electroluminescence device of the present invention includes the gas barrier film, a pair of electrodes, and an organic functional layer having at least one light emitting layer between the electrodes.
- the vapor deposition layer has a continuous composition change from the surface toward the thickness direction, so that the surface treatment of the vapor deposition layer becomes good. Adhesiveness with the polysilazane modified layer is improved. For this reason, the reliability of a gas barrier film improves. Moreover, a highly reliable organic electroluminescent element can be comprised by using this gas barrier film.
- a highly reliable gas barrier film and a highly reliable organic electroluminescence element can be provided.
- FIG. 3 is a diagram showing an element distribution curve of a sample 101.
- 4 is a diagram showing an element distribution curve of a sample 104.
- Embodiment of Gas Barrier Film (First Embodiment)> [Configuration of gas barrier film] Specific embodiments of the gas barrier film of the present invention will be described.
- FIG. 1 the schematic block diagram (sectional drawing) of the gas barrier film of 1st Embodiment is shown.
- the gas barrier film 10 includes a base material 11, a silicon compound deposition layer 12, and a polysilazane modified layer 13.
- light transmittance means that the light transmittance in wavelength 550nm is 50% or more.
- a vapor deposition layer 12 of a silicon compound containing at least one element selected from C, N, and O is formed on a substrate 11.
- the polysilazane modified layer 13 is formed on the vapor deposition layer 12 of this silicon compound.
- the silicon compound constituting the vapor deposition layer 12 includes at least one element selected from carbon (C), nitrogen (N), and oxygen (O). And the vapor deposition layer 12 has a continuous composition change toward the thickness direction from the surface, when the elemental ratio of at least 1 or more types of elements chosen from these C, N, and O changes.
- the vapor deposition layer 12 is subjected to surface treatment on the silicon compound before the polysilazane modified layer 13 is formed on the surface (surface) side on which the polysilazane modified layer 13 is formed.
- the polysilazane modified layer 13 is a layer subjected to a modification treatment after applying and drying a liquid containing a silazane compound.
- the configuration of the gas barrier film 10 will be described in detail.
- the substrate 11 applied to the gas barrier film 10 is not particularly limited as long as it is a flexible substrate capable of giving the gas barrier film 10 flexibility.
- An example of the flexible base material is a transparent resin film.
- polyesters such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN), polyethylene, polypropylene, cellophane, cellulose diacetate, cellulose triacetate (TAC), cellulose acetate butyrate, cellulose acetate propionate ( CAP), cellulose esters such as cellulose acetate phthalate, cellulose nitrate or derivatives thereof, polyvinylidene chloride, polyvinyl alcohol, polyethylene vinyl alcohol, syndiotactic polystyrene, polycarbonate, norbornene resin, polymethylpentene, polyether ketone, polyimide , Polyethersulfone (PES), polyphenylene sulfide, polysulfones Cycloolefin resins such as polyetherimide, polyetherketoneimide, polyamide, fluororesin, nylon, polymethylmethacrylate, acrylic or polyarylates, Arton (trade name, manufactured by JSR) or Appel (
- films of polyethylene terephthalate (PET), polybutylene terephthalate, polyethylene naphthalate (PEN), polycarbonate (PC), etc. are preferably used in terms of cost and availability. Further, in terms of optical transparency, heat resistance, and adhesion to the vapor deposition layer 12 and the polysilazane modified layer 13, a heat resistant transparent film having a basic skeleton of silsesquioxane having an organic-inorganic hybrid structure is preferably used. .
- the thickness of the substrate 11 is preferably about 5 to 500 ⁇ m, more preferably 25 to 250 ⁇ m. Moreover, it is preferable that the base material 11 has a light transmittance. When the base material 11 has optical transparency, the gas barrier film 10 having optical transparency can be obtained. And this light permeable gas barrier film 10 can be used suitably as transparent substrates and sealing films, such as an organic EL element and a solar cell.
- a vapor deposition layer 12 is provided on the base material 11.
- the vapor deposition layer 12 is comprised from the silicon compound formed by the vapor deposition method. This silicon compound contains at least one element selected from carbon (C), nitrogen (N), and oxygen (O). Moreover, the vapor deposition layer 12 has a continuous composition change toward the thickness direction from the surface. Further, the surface of the vapor deposition layer 12 is modified, and a hydrophilic modification portion is formed on the surface of the silicon compound constituting the vapor deposition layer 12.
- composition The silicon compound constituting the vapor deposition layer 12 has a characteristic that the composition changes in an inclined manner in the depth direction (thickness direction) from the surface. This composition change may be linear or curved, and may be substantially continuous.
- the change in the composition of the silicon compound is defined from the change in the element ratio of any element constituting the silicon compound.
- the composition change amount of the silicon compound is defined from the change amount of the ratio of carbon element or oxygen element. That is, the composition change of the silicon compound is defined by the change in the ratio of any one element selected from C, N, and O contained in the silicon compound.
- the compositional change of the silicon compound is defined.
- the silicon compound of the vapor deposition layer 12 indicates that any element selected from C, N, and O, or the total element ratio of any element, changes continuously from the surface in the thickness direction. The composition changes continuously.
- “Substantially continuous composition change” means that a distribution curve of an arbitrary element selected from C, N, and O described later does not include a portion where the atomic ratio of the element changes discontinuously. Specifically, the distance (x, unit: nm) from the surface of the vapor deposition layer 12 calculated from the etching rate and etching time, and the atomic ratio (C, unit: at%) of an arbitrary element such as carbon , [(DC / dx) ⁇ 0.5].
- the composition of the silicon compound is preferably changed by 5% or more, more preferably 10% or more, in a region 30 nm deep from the surface. In particular, in a region 15 nm deep from the surface, it is preferably changed by 5% or more, more preferably 10% or more.
- the region where the composition of the silicon compound changes in the depth direction is a region where the surface treatment described later takes effect.
- composition change of the silicon compound may be such that the element ratio of at least one element selected from C, N, and O increases continuously from the surface toward the thickness direction, or the element The ratio may continuously decrease from the surface toward the thickness direction.
- the vapor deposition layer 12 has a surface (surface) in contact with the polysilazane modified layer 13 modified by surface treatment. This surface treatment is performed in order to improve the adhesion with the polysilazane modified layer 13. For this reason, the surface treatment of the vapor deposition layer 12 needs to be performed before the polysilazane modified layer 13 is formed.
- a surface treatment method that can be performed at a low temperature. For example, treatment using plasma, ozone, and ultraviolet rays is preferable.
- the surface treatment forms hydrophilic groups such as hydroxyl groups (OH), acyl groups (COH), carboxyl groups (COOH) on the surface of the vapor deposition layer 12. Due to the hydrophilic group, the wettability of the polysilazane coating solution when the polysilazane modified layer 13 formed on the vapor deposition layer 12 is formed is improved. For this reason, formation of the polysilazane modified layer 13 becomes easy. Further, the adhesion between the vapor deposition layer 12 and the polysilazane modified layer 13 is improved by physical or chemical interaction (van der Waals force or hydrogen bond) between the hydroxyl group (OH) or the like and the polysilazane.
- VUV vacuum ultraviolet light
- Si—C silicon-carbon bond
- Si—O silicon-oxygen bond
- a hydrophilic group such as a hydroxyl group (OH), an acyl group (COH), or a carboxyl group (COOH) is formed on the surface of the vapor deposition layer by a bond between the atom decomposed from the silicon compound and the generated active oxygen.
- the silicon compound constituting the vapor deposition layer 12 has the above-described continuous composition change in the depth direction from the surface, the modification of the silicon compound by the surface treatment easily proceeds in the depth direction from the surface. This is presumably due to the following reasons.
- the silicon compound modification treatment will be described by using the silicon-carbon bond (Si—C) of the silicon compound and the carbon element ratio, which are easily cut by the excimer light.
- composition change of the silicon compound continuously increases in the thickness direction is configured such that the element ratio of carbon is high in concentration on the surface of the vapor deposition layer 12 and decreases in the thickness direction.
- the excimer light transmission is more effective at deeper positions where the carbon element ratio is continuously reduced. That is, since penetration to a deep position is effective, the modification treatment at a deep position of the silicon compound is likely to proceed.
- composition change of the silicon compound continuously decreases in the thickness direction is configured such that the element ratio of carbon is small on the surface and increases in the thickness direction.
- excimer light absorption is more effective at deeper positions where the carbon element ratio is continuously higher than the absorption at the surface where the carbon element ratio is low. That is, excimer light irradiation from the surface in the depth direction is effective. Since absorption at a deep position becomes effective, the modification treatment at a deep position of the silicon compound is likely to proceed.
- the composition when the composition is uniform in the thickness direction, that is, when the carbon element ratio is uniform in the thickness direction, the absorption of the excimer light absorbed by Si—C is large. Furthermore, since the active oxygen generated by the excimer light irradiation is consumed by the silicon compound immediately below, the reforming process is difficult to proceed in the depth direction. In addition, when the composition change is non-uniform, there are locally high density portions and low density portions in the depth direction. If the carbon element ratio is locally high, the absorption of excimer light concentrates at this high portion. For this reason, the reforming is concentrated in the portion where the element ratio is high, and the reforming in the surrounding portion is difficult to proceed.
- Plasma treatment As the plasma treatment used for the surface treatment of the silicon compound, a known method can be used, but atmospheric pressure plasma treatment is preferable.
- nitrogen gas and / or Group 18 atom of the periodic table specifically helium, neon, argon, krypton, xenon, radon, etc. are used as the discharge gas.
- nitrogen, helium, and argon are preferably used, and nitrogen is particularly preferable because of low cost.
- the atmospheric pressure plasma is formed by forming two or more electric fields having different frequencies in the discharge space, and includes a first high-frequency electric field and a second high-frequency electric field. It is preferable to form an electric field superimposed with the electric field.
- the frequency ⁇ 2 of the second high-frequency electric field is higher than the frequency ⁇ 1 of the first high-frequency electric field, the strength V1 of the first high-frequency electric field, the strength V2 of the second high-frequency electric field,
- the relationship with the intensity IV of the discharge start electric field is V1 ⁇ IV> V2 or V1> IV ⁇ V2
- the output density of the second high-frequency electric field is 1 W / cm 2 or more.
- a discharge gas having a high discharge start electric field strength such as nitrogen gas can start discharge, maintain a high density and stable plasma state, and perform high-performance thin film formation. Can do.
- the discharge start electric field strength IV (1/2 Vp-p) is about 3.7 kV / mm. Therefore, in the above relationship, the first applied electric field strength is , By applying V1 ⁇ 3.7 kV / mm, the nitrogen gas can be excited into a plasma state.
- the electric field waveform may be a continuous wave or a pulse wave.
- the lower limit is preferably about 1 kHz.
- the frequency of the second power source 800 kHz or more can be preferably used.
- the upper limit is preferably about 200 MHz.
- a dense and good quality thin film can be formed by increasing the plasma density by the frequency and the high power density.
- UV irradiation treatment As a method for surface treatment of the silicon compound, treatment by ultraviolet irradiation is also preferable.
- Ozone and active oxygen atoms generated by ultraviolet rays (synonymous with ultraviolet light) have high oxidation ability, and it is possible to produce silicon oxide films or silicon oxynitride films that have high density and insulation at low temperatures. It is.
- This UV irradiation heats the substrate, and O2 and H2O contributing to ceramicization (silica conversion), the UV absorber, and the silicon compound itself are excited and activated, so that the surface of the silicon compound becomes hydrophilic.
- any commonly used ultraviolet ray generator can be used.
- ultraviolet rays generally refers to electromagnetic waves having a wavelength of 10 to 400 nm, but in the case of ultraviolet irradiation treatment other than the vacuum ultraviolet ray (10 to 200 nm) irradiation treatment described later, it is preferably 210. Use ultraviolet rays of up to 350 nm.
- UV irradiation For UV irradiation, set the irradiation intensity and irradiation time within a range where the substrate carrying the irradiated coating film is not damaged.
- a lamp of 2 kW (80 W / cm ⁇ 25 cm) is used, and the strength of the base material surface is 20 to 300 mW / cm 2, preferably 50 to 200 mW / cm 2. In this way, the distance between the substrate and the lamp can be set and irradiation can be performed for 0.1 seconds to 10 minutes.
- the substrate temperature during the ultraviolet irradiation treatment is 150 ° C. or more, the substrate is damaged in the case of a plastic film, such as deformation of the substrate and deterioration of strength.
- a highly heat-resistant film such as polyimide or a base material such as metal, processing at a higher temperature is possible. Therefore, there is no general upper limit to the substrate temperature at the time of ultraviolet irradiation, and it can be appropriately set by those skilled in the art depending on the type of substrate.
- Examples of such ultraviolet ray generation methods include metal halide lamps, high-pressure mercury lamps, low-pressure mercury lamps, xenon arc lamps, carbon arc lamps, and excimer lamps (single wavelengths of 172 nm, 222 nm, and 308 nm, for example, USHIO INC. )), UV light laser and the like, but not particularly limited.
- the ultraviolet rays from the generation source may be reflected on the reflecting plate and then applied to the coating film. desirable.
- UV irradiation is applicable to both batch processing and continuous processing, and can be appropriately selected depending on the shape of the substrate to be coated.
- a substrate eg, silicon wafer
- the ultraviolet baking furnace itself is generally known, and for example, it is possible to use those manufactured by I-Graphics Co., Ltd.
- the substrate having a polysilazane coating film on the surface is a long film
- the substrate is modified by continuously irradiating ultraviolet rays in a drying zone equipped with the ultraviolet ray generation source as described above while being conveyed. Quality processing can be performed.
- the time required for ultraviolet irradiation is generally 0.1 seconds to 10 minutes, preferably 0.5 seconds to 3 minutes, although it depends on the composition and concentration of the substrate to be applied and the coating composition.
- a more preferable method for the surface treatment of the silicon compound is treatment by irradiation with vacuum ultraviolet rays.
- the treatment by vacuum ultraviolet irradiation uses light energy of 100 to 200 nm, preferably light energy with a wavelength of 100 to 180 nm, which is larger than the interatomic bonding force in the silicon compound, and the bonding of atoms is only a photon called a photon process.
- the surface treatment is performed at a relatively low temperature by causing an oxidation reaction with active oxygen or ozone to proceed while cutting directly.
- a rare gas excimer lamp is preferably used as a vacuum ultraviolet light source.
- the temperature of the object can be kept low. Furthermore, since no time is required for starting and restarting, instantaneous lighting and blinking are possible.
- Dielectric barrier discharge is a lightning generated in a gas space by arranging a gas space between both electrodes via a dielectric (transparent quartz in the case of an excimer lamp) and applying a high frequency high voltage of several tens of kHz to the electrode. This is a very thin discharge called micro discharge similar to.
- the micro discharge streamer reaches the tube wall (dielectric)
- the electric charge accumulates on the dielectric surface, and the micro discharge disappears.
- the dielectric barrier discharge is a discharge in which micro discharges are spread over the entire tube wall and are repeatedly generated and extinguished. For this reason, flickering of light that can be seen with the naked eye occurs.
- a very high temperature streamer reaches a pipe wall directly locally, there is a possibility that deterioration of the pipe wall may be accelerated.
- Electrodeless electric field discharge by capacitive coupling, also called RF discharge.
- the lamp and electrodes and their arrangement may be basically the same as for dielectric barrier discharge, but the high frequency applied between the two electrodes is lit at several MHz. Since the electrodeless field discharge can provide a spatially and temporally uniform discharge in this way, a long-life lamp without flickering can be obtained.
- Synthetic quartz windows are not only expensive consumables, but also cause light loss.
- the outer diameter of the double-cylindrical lamp is about 25 mm, the difference in distance to the irradiation surface cannot be ignored directly below the lamp axis and on the side of the lamp, resulting in a large difference in illumination. Therefore, even if the lamps are arranged in close contact, a uniform illuminance distribution cannot be obtained. If the irradiation device is provided with a synthetic quartz window, the distance in the oxygen atmosphere can be made uniform, and a uniform illuminance distribution can be obtained.
- the biggest feature of the capillary excimer lamp is its simple structure.
- the quartz tube is closed at both ends, and only gas for excimer light emission is sealed inside. Therefore, a very inexpensive light source can be provided.
- ⁇ Double cylindrical lamps are processed to close by connecting both ends of the inner and outer tubes, so they are more likely to break during handling and transportation than thin tube lamps. Further, the outer diameter of the tube of the thin tube lamp is about 6 to 12 mm, and if it is too thick, a high voltage is required for starting.
- the discharge mode can be either dielectric barrier discharge or electrodeless field discharge.
- the electrode may have a flat surface in contact with the lamp, but if the shape is matched to the curved surface of the lamp, the lamp can be firmly fixed, and the discharge is more stable when the electrode is in close contact with the lamp. Also, if the curved surface is made into a mirror surface with aluminum, it also becomes a light reflector.
- the Xe excimer lamp emits ultraviolet light having a short wavelength of 172 nm at a single wavelength and thus has excellent luminous efficiency. Since this light has a large oxygen absorption coefficient, radical oxygen atomic species and ozone can be generated at a high concentration with a small amount of oxygen. In addition, it is known that the energy of light having a short wavelength of 172 nm for dissociating the bonds of organic substances has high ability. Due to the high energy of this active oxygen, ozone and ultraviolet radiation, the silicon compound can be modified in a short time.
- Excimer lamps can be lit with low power input because of their high light generation efficiency.
- light with a long wavelength that causes a temperature increase due to light is not emitted, and energy of a single wavelength is irradiated in the ultraviolet region, so that an increase in the surface temperature of the object to be fired is suppressed.
- it is suitable for flexible film materials such as PET that are easily affected by heat.
- the vapor deposition layer 12 is composed of a silicon compound containing at least one element selected from C, N, and O, and has a structure in which the content of C, N, and O changes continuously. And the vapor deposition layer 12 is the ratio (atomic ratio) of the distance from the surface of the vapor deposition layer 12 in the film thickness direction (interface on the polysilazane modified layer 13 side) and the atomic weight of each element (silicon, carbon, nitrogen or oxygen). ) And the distribution curve of each element showing the relationship.
- the atomic ratio of each element is represented by the ratio [(Si, O, C, N) / (Si + O + C + N)] of silicon, carbon, nitrogen, or oxygen to the total amount of each element of silicon, carbon, nitrogen, and oxygen.
- the silicon distribution curve, the carbon distribution curve, the nitrogen distribution curve, and the oxygen distribution curve are the atomic ratio of silicon, the atomic ratio of oxygen, the atomic ratio of carbon, and the atomic ratio of nitrogen at a distance from the surface of the deposited layer 12, respectively. Indicates.
- a distribution curve showing the relationship between the distance from the surface of the vapor deposition layer 12 in the film thickness direction (interface on the polysilazane modified layer 13 side) and the ratio of the total atomic weight of oxygen and carbon (atomic ratio) is expressed as oxygen.
- the carbon distribution curve is expressed as oxygen.
- the refractive index distribution of the vapor deposition layer 12 can be controlled by the amount of carbon and oxygen in the thickness direction of the vapor deposition layer 12.
- FIG. 2 an example of the silicon distribution curve of the vapor deposition layer 12, an oxygen distribution curve, a carbon distribution curve, and a nitrogen distribution curve is shown.
- 3 shows an enlarged carbon distribution curve from the silicon distribution curve, oxygen distribution curve, carbon distribution curve, and nitrogen distribution curve shown in FIG. 2 and 3, the horizontal axis represents the distance [nm] from the surface of the vapor deposition layer 12 in the film thickness direction.
- the vertical axis represents the atomic ratio [at%] of silicon, oxygen, carbon, or nitrogen with respect to the total amount of each element of silicon, oxygen, and carbon.
- the detail of the measuring method of a silicon distribution curve, an oxygen distribution curve, a carbon distribution curve, and a nitrogen distribution curve is mentioned later.
- the atomic ratio of silicon, oxygen, carbon, and nitrogen changes depending on the distance from the surface of the vapor deposition layer 12.
- the atomic ratio varies greatly depending on the distance from the surface of the vapor deposition layer 12, and each distribution curve has a plurality of extreme values.
- the oxygen distribution curve and the carbon distribution curve are correlated, and the oxygen atomic ratio decreases at a distance where the carbon atomic ratio is large, and the oxygen atomic ratio increases at a distance where the carbon atomic ratio is small.
- the composition change of the silicon compound is defined by the change in the distribution curve of any one element selected from C, N, and O contained in the silicon compound. For this reason, since the composition of the silicon compound constituting the vapor deposition layer 12 changes in an inclined manner in the thickness direction, the distribution curve of any one element selected from C, N, and O contained in the silicon compound is also present. , Has a continuously gradient composition change.
- the silicon compound constituting the vapor deposition layer 12 is preferably such that the distribution curve (atomic ratio) of an arbitrary element contained in the silicon compound is changed by 5% or more in a region 30 nm deep from the surface, More preferably, it has changed by 10% or more. In particular, in a region 15 nm deep from the surface, it is preferably changed by 5% or more, more preferably 10% or more.
- the vapor deposition layer 12 has a refractive index distribution depending on the composition change in the thickness direction because the composition changes in an inclined manner in the thickness direction.
- the vapor deposition layer 12 preferably has one or more extreme values in the refractive index distribution.
- FIG. 4 shows a refractive index distribution curve of the vapor deposition layer 12.
- the horizontal axis indicates the distance [nm] from the surface of the vapor deposition layer 12 in the film thickness direction.
- the vertical axis represents the refractive index of the vapor deposition layer 12.
- the refractive index of the vapor deposition layer 12 shown in FIG. 4 is a measured value of the distance from the surface of the vapor deposition layer 12 in the film thickness direction and the refractive index of the vapor deposition layer 12 with respect to visible light at this distance.
- the refractive index distribution of the vapor deposition layer 12 can be measured using a known method, for example, a spectroscopic ellipsometer (ELC-300 manufactured by JASCO Corporation) or the like.
- the refractive index of the vapor deposition layer 12 also increases at a position where the atomic ratio of carbon increases.
- the refractive index of the vapor deposition layer 12 changes according to the atomic ratio of carbon. That is, the refractive index distribution curve of the vapor deposition layer 12 can be controlled by adjusting the distribution of the atomic ratio of carbon in the film thickness direction in the vapor deposition layer 12.
- the refractive index distribution curve of the vapor deposition layer 12 is controlled by controlling the oxygen atomic ratio and the distribution curve. Can do.
- the vapor deposition layer 12 having an extreme value in the refractive index distribution, reflection and interference occurring at the interface of the substrate 11 can be suppressed. For this reason, the light which permeate
- the vapor deposition layer 12 further has an atomic ratio of silicon, oxygen and carbon, or a distribution curve of each element that satisfies the following conditions (i) to (iii): preferable.
- the carbon distribution curve has at least one local maximum and local minimum.
- the gas barrier film 10 preferably has a vapor deposition layer 12 that satisfies all of the above conditions (i) to (iii). Further, two or more vapor deposition layers 12 that satisfy all of the above conditions (i) to (iii) may be provided. When two or more vapor deposition layers 12 are provided, the materials of the plurality of vapor deposition layers may be the same or different. When two or more vapor deposition layers 12 are provided, the vapor deposition layer 12 may be formed on one surface of the base material 11, or may be formed on both surfaces of the base material 11.
- the refractive index of the deposited layer 12 can be controlled by the atomic ratio of carbon or oxygen as shown in the correlation shown in FIGS. For this reason, the refractive index of the vapor deposition layer 12 can be adjusted to a preferable range by the above conditions (i) to (iii).
- the vapor deposition layer 12 preferably has at least one extreme value in the carbon distribution curve.
- the carbon distribution curve has at least two extreme values, and it is even more preferable that the carbon distribution curve has at least three extreme values.
- the carbon distribution curve has at least one maximum value and one minimum value.
- the carbon distribution curve does not have an extreme value, the light distribution of the obtained vapor deposition layer 12 becomes insufficient. For this reason, it becomes difficult to eliminate the light angle dependency of the gas barrier film 10.
- the vapor deposition layer 12 has three or more extreme values, one extreme value of the carbon distribution curve and another extreme value adjacent to the extreme value are a film from the surface of the vapor deposition layer 12.
- the difference in the distance in the thickness direction is preferably 200 nm or less, and more preferably 100 nm or less.
- the extreme value of the distribution curve is the maximum or minimum value of the atomic ratio of the element to the distance from the surface of the vapor deposition layer 12 in the film thickness direction of the vapor deposition layer 12, or the refractive index corresponding to the value. It is a measured value of the distribution curve.
- the maximum value of the distribution curve of each element is a point where the value of the atomic ratio of the element changes from increase to decrease when the distance from the surface of the vapor deposition layer 12 is changed.
- the atomic ratio value of the element at a position where the distance from the surface of the vapor deposition layer 12 is further changed by 20 nm is reduced by 3 at% or more.
- the minimum value of the distribution curve of each element is a point where the value of the atomic ratio of the element changes from decrease to increase when the distance from the surface of the vapor deposition layer 12 is changed.
- the value of the atomic ratio of the element at a position where the distance from the surface of the vapor deposition layer 12 is further changed by 20 nm is increased by 3 at% or more.
- the absolute value of the difference between the maximum value and the minimum value of the atomic ratio of carbon is preferably 5 at% or more.
- the absolute value of the difference between the maximum value and the minimum value of the atomic ratio of carbon is more preferably 6 at% or more, and further preferably 7 at% or more.
- the vapor deposition layer 12 preferably has an oxygen distribution curve having at least one extreme value.
- the vapor deposition layer 12 more preferably has an oxygen distribution curve having at least two extreme values, and more preferably at least three extreme values.
- the oxygen distribution curve has at least one maximum value and one minimum value.
- the oxygen distribution curve does not have an extreme value, the light distribution of the obtained vapor deposition layer 12 becomes insufficient. For this reason, it becomes difficult to eliminate the light angle dependency of the gas barrier film 10. Further, when the vapor deposition layer 12 has three or more extreme values, one extreme value of the oxygen distribution curve and another extreme value adjacent to the extreme value are a film from the surface of the vapor deposition layer 12.
- the difference in the distance in the thickness direction is preferably 200 nm or less, and more preferably 100 nm or less.
- the absolute value of the difference between the maximum value and the minimum value of the oxygen atomic ratio is preferably 5 at% or more. Moreover, in such a vapor deposition layer 12, the absolute value of the difference between the maximum value and the minimum value of the oxygen atomic ratio is more preferably 6 at% or more, and further preferably 7 at% or more. When the difference between the maximum value and the minimum value of the atomic ratio of oxygen is less than the above range, the light distribution is insufficient from the refractive index distribution curve of the obtained vapor deposition layer 12.
- the vapor deposition layer 12 preferably has an absolute value of the difference between the maximum value and the minimum value of the atomic ratio of silicon in the silicon distribution curve of less than 5 at%. Moreover, in such a vapor deposition layer 12, the absolute value of the difference between the maximum value and the minimum value of the atomic ratio of silicon is more preferably less than 4 at%, and further preferably less than 3 at%. When the difference between the maximum value and the minimum value of the atomic ratio of silicon is not less than the above range, the light distribution is insufficient from the refractive index distribution curve of the obtained vapor deposition layer 12.
- Total amount of oxygen and carbon oxygen carbon distribution curve
- the vapor deposition layer 12 preferably has an absolute value of the difference between the maximum value and the minimum value of the total atomic ratio of oxygen and carbon in the oxygen-carbon distribution curve of less than 5 at%, more preferably less than 4 at%. Particularly preferably, it is less than 3 at%.
- XPS depth profile The silicon distribution curve, oxygen distribution curve, carbon distribution curve, oxygen carbon distribution curve, and nitrogen distribution curve described above are measured by X-ray photoelectron spectroscopy (XPS) and rare gas ion sputtering such as argon. By using together, it can be created by so-called XPS depth profile measurement in which surface composition analysis is sequentially performed while exposing the inside of the sample.
- XPS depth profile measurement A distribution curve obtained by XPS depth profile measurement can be created, for example, with the vertical axis as the atomic ratio (unit: at%) of each element and the horizontal axis as the etching time (sputtering time).
- the etching time is generally correlated with the distance from the surface in the film thickness direction of the deposited layer 12. For this reason, when measuring the XPS depth profile, the distance from the surface of the vapor deposition layer 12 calculated from the relationship between the etching rate and the etching time is adopted as the “distance from the surface of the vapor deposition layer 12 in the film thickness direction”. be able to.
- a rare gas ion sputtering method using argon (Ar +) as an etching ion species is adopted, and an etching rate (etching rate) is set to 0.05 nm / sec (converted value of SiO2 thermal oxide film). Is preferred.
- the vapor deposition layer 12 is substantially in the film surface direction (direction parallel to the surface of the vapor deposition layer 12) from the viewpoint of forming a layer having a uniform and excellent light distribution on the entire film surface.
- the fact that the vapor deposition layer 12 is substantially uniform in the film surface direction means that the number of extreme values of the distribution curves of the elements at the respective measurement locations is the same at any two locations on the film surface of the vapor deposition layer 12, and The absolute value of the difference between the maximum value and the minimum value of the carbon atomic ratio in the distribution curve is the same as each other, or the difference between the maximum value and the minimum value is within 5 at%.
- the silicon distribution curve, oxygen distribution curve, and carbon distribution curve in the region where the silicon atomic ratio, the oxygen atomic ratio, and the carbon atomic ratio are 90% or more of the film thickness of the deposited layer 12, It is preferable to satisfy the conditions represented.
- the atomic ratio of the silicon atom content to the total amount of silicon atoms, oxygen atoms and carbon atoms in the vapor deposition layer 12 is preferably 25 to 45 at%, and preferably 30 to 40 at%. Is more preferable.
- the atomic ratio of the oxygen atom content to the total amount of silicon atoms, oxygen atoms, and carbon atoms in the vapor deposition layer 12 is preferably 33 to 67 at%, and more preferably 45 to 67 at%. . Further, the atomic ratio of the carbon atom content to the total amount of silicon atoms, oxygen atoms and carbon atoms in the vapor deposition layer 12 is preferably 3 to 33 at%, more preferably 3 to 25 at%. .
- the thickness of the vapor deposition layer 12 is preferably in the range of 5 to 3000 nm, more preferably in the range of 10 to 2000 nm, and particularly preferably in the range of 100 to 1000 nm.
- the thickness of the vapor deposition layer 12 is out of the above range, the light distribution of the vapor deposition layer 12 becomes insufficient.
- the total thickness of the vapor deposition layer 12 is in the range of 10 to 10,000 nm, preferably in the range of 10 to 5000 nm, and in the range of 100 to 3000 nm. More preferably, it is in the range of 200 to 2000 nm.
- the vapor deposition layer 12 may be provided with a primer coat layer, a heat-sealable resin layer, an adhesive layer, etc. between the base material 11.
- a primer coat layer can be formed using the well-known primer coat agent which can improve the adhesiveness of the base material 11 and the vapor deposition layer 12.
- FIG. Moreover, a heat-sealable resin layer can be suitably formed using well-known heat-sealable resin.
- the adhesive layer can be appropriately formed using a known adhesive, and the plurality of vapor deposition layers 12 may be adhered by such an adhesive layer.
- the vapor deposition layer 12 is preferably a layer formed by a plasma chemical vapor deposition (plasma CVD, PECVD) method.
- a plasma chemical vapor deposition method in which the substrate 11 is disposed on a pair of film forming rolls, and plasma is generated by discharging between the pair of film forming rolls. More preferably, the layer is formed by the method.
- the plasma enhanced chemical vapor deposition method may be a plasma chemical vapor deposition method using a Penning discharge plasma method.
- plasma When plasma is generated in the plasma chemical vapor deposition method, it is preferable to generate a plasma discharge in a space between a plurality of film forming rolls. In particular, it is more preferable to use a pair of film forming rolls, dispose the base material 11 on each of the pair of film forming rolls, and generate plasma by discharging between the pair of film forming rolls.
- the base material 11 is arranged on a pair of film forming rolls, and a film is formed on the base material 11 existing on one film forming roll by discharging between the film forming rolls. it can. At the same time, it is possible to form a film on the substrate 11 on the other film forming roll. For this reason, the film formation rate can be doubled and a thin film can be produced efficiently. Furthermore, a film having the same structure can be formed on each substrate 11 on a pair of film forming rolls.
- a film forming gas containing an organosilicon compound and oxygen is preferably used.
- the oxygen content in the film forming gas is preferably less than or equal to the theoretical oxygen amount necessary for complete oxidation of the entire amount of the organosilicon compound in the film forming gas.
- the vapor deposition layer 12 is preferably a layer formed by a continuous film formation process.
- the vapor deposition layer 12 is preferably formed on the surface of the substrate 11 in a roll-to-roll manner from the viewpoint of productivity.
- the apparatus capable of producing the vapor deposition layer 12 by the plasma chemical vapor deposition method is not particularly limited. However, the apparatus includes at least a pair of film forming rolls and a plasma power source, and can discharge between the film forming rolls. It is preferable that the device is.
- FIG. 5 is a schematic diagram illustrating an example of a manufacturing apparatus suitable for manufacturing the vapor deposition layer 12.
- the manufacturing apparatus 30 shown in FIG. 5 includes a delivery roll 31, transport rolls 32, 33, 34, 35, film formation rolls 36, 37, a gas supply pipe 38, a plasma generation power source 39, and a film formation roll 36. And 37, and magnetic field generators 41 and 42 installed inside 37, and a winding roll 43.
- a delivery roll 31 transport rolls 32, 33, 34, 35, film formation rolls 36, 37, a gas supply pipe 38, a plasma generation power source 39, and a film formation roll 36.
- And 37, and magnetic field generators 41 and 42 installed inside 37, and a winding roll 43.
- at least film forming rolls 36 and 37, a gas supply pipe 38, a plasma generation power source 39, and magnetic field generation apparatuses 41 and 42 are disposed in a vacuum chamber (not shown).
- the vacuum chamber is connected to a vacuum pump (not shown), and the pressure in the vacuum chamber can be adjusted by the vacuum pump.
- each film forming roll is connected to the plasma generation power source 39 so that the pair of film forming rolls (the film forming roll 36 and the film forming roll 37) can function as a pair of counter electrodes. It is connected. For this reason, in the manufacturing apparatus 30, it is possible to discharge to the space between the film forming roll 36 and the film forming roll 37 by supplying power from the plasma generating power source 39. Plasma can be generated in the space between the film forming roll 37.
- the material and design of the film forming roll 36 and the film forming roll 37 may be changed so that they can be used as electrodes.
- the pair of film forming rolls (film forming rolls 36 and 37) are preferably arranged so that the central axes are substantially parallel on the same plane.
- the film forming rate can be doubled and a film having the same structure can be formed. For this reason, it is possible to at least double the extreme value in the carbon distribution curve.
- the manufacturing apparatus 30 it is possible to form the vapor deposition layer 12 on the surface of the film 40 by the CVD method, while depositing a film component on the surface of the film 40 on the film forming roll 36, and further, Since the film component can be deposited on the surface of the film 40 also on the film forming roll 37, the vapor deposition layer 12 can be efficiently formed on the surface of the film 40.
- the film forming roll 36 and the film forming roll 37 magnetic field generators 41 and 42 fixed so as not to rotate even when the film forming roll rotates are provided, respectively. Furthermore, as the film forming roll 36 and the film forming roll 37, known rolls can be used. As the film forming rolls 36 and 37, it is preferable to use rolls having the same diameter from the viewpoint of forming a thin film more efficiently. The diameters of the film forming rolls 36 and 37 are preferably in the range of 5 to 100 cm from the viewpoint of discharge conditions, chamber space, and the like.
- the film 40 is arrange
- a pair of film-forming roll The film-forming roll 36 and the film-forming roll 37
- the vapor deposition layer 12 can be formed. That is, according to the manufacturing apparatus 30, the film component can be deposited on the surface of the film 40 on the film forming roll 36 and further the film component can be deposited on the film forming roll 37 by the CVD method. It becomes possible to form the vapor deposition layer 12 on the surface of the film 40 efficiently.
- the winding roll 43 is not particularly limited as long as the film 40 on which the vapor deposition layer 12 is formed can be wound, and a known roll can be used.
- the gas supply pipe 38 a pipe capable of supplying or discharging the raw material gas at a predetermined speed can be used.
- the plasma generation power source 39 a power source of a known plasma generation apparatus can be used.
- the plasma generating power source 39 supplies power to the film forming rolls 36 and 37 connected thereto, and enables the film forming rolls 36 and 37 to be used as counter electrodes for discharging.
- the plasma generating power source 39 it is preferable to use an AC power source or the like capable of alternately reversing the polarity of the film forming roll, because it is possible to perform plasma CVD more efficiently.
- the power source 39 for plasma generation that can make the applied power 100 W to 10 kW and the AC frequency 50 Hz to 500 kHz. It is more preferable to use As the magnetic field generators 41 and 42, known magnetic field generators can be used. Furthermore, as the film 40, in addition to the base material 11 applicable to the gas barrier film 10, the base material 11 on which the vapor deposition layer 12 is formed in advance can be used. As described above, by using the base material 11 on which the vapor deposition layer 12 is formed in advance as the film 40, it is possible to increase the thickness of the vapor deposition layer 12.
- the vapor deposition layer 12 can be manufactured by adjusting. That is, by using the manufacturing apparatus 30 shown in FIG.
- a film forming gas (raw material gas or the like) between the pair of film forming rolls (film forming rolls 36 and 37) while supplying it into the vacuum chamber
- the film forming gas (raw material gas or the like) is decomposed by plasma, and the vapor deposition layer 12 is formed on the surface of the film 40 on the film forming roll 36 and the surface of the film 40 on the film forming roll 37 by the plasma CVD method.
- the film 40 is conveyed by the delivery roll 31 and the film formation roll 36, respectively, so that the vapor deposition layer 12 is formed on the surface of the film 40 by a roll-to-roll continuous film formation process. It is formed.
- the source gas in the film forming gas used for forming the vapor deposition layer 12 can be appropriately selected and used according to the material of the vapor deposition layer 12 to be formed.
- the source gas for example, an organosilicon compound containing silicon can be used.
- organosilicon compounds include hexamethyldisiloxane, 1,1,3,3-tetramethyldisiloxane, vinyltrimethylsilane, methyltrimethylsilane, hexamethyldisilane, methylsilane, dimethylsilane, trimethylsilane, diethylsilane, propyl
- organosilicon compounds include silane, phenylsilane, vinyltriethoxysilane, vinyltrimethoxysilane, tetramethoxysilane, tetraethoxysilane, phenyltrimethoxysilane, methyltriethoxysilane, and octamethylcyclotetrasiloxane.
- organosilicon compounds hexamethyldisiloxane and 1,1,3,3-tetramethyldisiloxane should be used from the viewpoint of handling in film formation and characteristics such as light distribution of the obtained vapor deposition layer 12. Is preferred. Moreover, these organosilicon compounds can be used individually by 1 type or in combination of 2 or more types.
- a reactive gas may be used in addition to the source gas.
- a gas that reacts with the raw material gas to become an inorganic compound such as an oxide or a nitride can be appropriately selected and used.
- a reaction gas for forming an oxide for example, oxygen or ozone can be used.
- a reactive gas for forming nitride nitrogen and ammonia can be used, for example. These reaction gases can be used singly or in combination of two or more. For example, when forming an oxynitride, the reaction gas for forming an oxide and a nitride are formed. Can be used in combination with the reaction gas for
- a carrier gas may be used as necessary in order to supply the source gas into the vacuum chamber.
- a discharge gas may be used as necessary in order to generate plasma discharge.
- a known gas can be used.
- a rare gas such as helium, argon, neon, or xenon, or hydrogen can be used.
- the ratio of the source gas and the reactive gas is the amount of the reactive gas that is theoretically necessary to completely react the raw material gas and the reactive gas. It is preferable not to make the ratio of the reaction gas excessively higher than the ratio of. If the ratio of the reaction gas is excessive, the light distribution of the vapor deposition layer 12 cannot be obtained sufficiently.
- the film-forming gas contains an organosilicon compound and oxygen, the amount is preferably less than the theoretical oxygen amount necessary for complete oxidation of the entire amount of the organosilicon compound in the film-forming gas.
- the amount of oxygen required to completely oxidize 1 mol of hexamethyldisiloxane is 12 mol.
- the amount of oxygen needs to be less than 12 moles of the stoichiometric ratio with respect to 1 mole of hexamethyldisiloxane.
- the molar amount (flow rate) of the reactive gas oxygen is the raw material. Even if the molar amount (flow rate) is 12 times the molar amount (flow rate) of hexamethyldisiloxane, the reaction cannot actually proceed completely. That is, it is considered that the reaction is completed only when the oxygen content is supplied in a large excess compared to the stoichiometric ratio.
- the molar amount (flow rate) of oxygen may be about 20 times or more the molar amount (flow rate) of hexamethyldisiloxane as a raw material.
- the molar amount (flow rate) of oxygen with respect to the molar amount (flow rate) of the raw material hexamethyldisiloxane is preferably 12 times or less (more preferably 10 times or less) which is the stoichiometric ratio.
- the lower limit of the molar amount (flow rate) of oxygen relative to the molar amount (flow rate) of hexamethyldisiloxane in the film forming gas is more than 0.1 times the molar amount (flow rate) of hexamethyldisiloxane.
- the amount is more than 0.5 times.
- the pressure (degree of vacuum) in the vacuum chamber can be appropriately adjusted according to the type of the raw material gas, but is preferably in the range of 0.5 Pa to 100 Pa.
- the electric power applied to the electrode drum connected to the plasma generating power source 39 in order to discharge between the film forming rolls 36 and 37 depends on the type of source gas, the pressure in the vacuum chamber, and the like. Can be adjusted accordingly. For example, a range of 0.1 to 10 kW is preferable. If the applied power is less than the lower limit, particles tend to be easily generated. On the other hand, when the upper limit is exceeded, the amount of heat generated during film formation increases, the temperature of the substrate surface during film formation rises, and the substrate 11 loses heat and wrinkles occur during film formation. In this example, the electrode drum is installed on the film forming rolls 36 and 37.
- the transport speed (line speed) of the film 40 can be adjusted as appropriate according to the type of source gas, the pressure in the vacuum chamber, and the like, but is preferably in the range of 0.25 to 100 m / min. A range of 5 to 20 m / min is more preferable. If the line speed is less than the lower limit, wrinkles due to heat tend to occur in the film, whereas if it exceeds the upper limit, the thickness of the deposited layer 12 formed tends to be thin.
- a smooth layer may be formed between the substrate 11 and the vapor deposition layer 12.
- the smooth layer is provided in order to flatten the rough surface of the substrate 11 on which protrusions and the like exist, or to fill the unevenness and pinholes generated in the vapor deposition layer 12 with the protrusions on the substrate 11 and flatten them.
- Such a smooth layer is basically formed by curing a photosensitive resin.
- Examples of the photosensitive resin used for forming the smooth layer include a resin composition containing an acrylate compound having a radical-reactive unsaturated compound, a resin composition containing an acrylate compound and a mercapto compound having a thiol group, epoxy acrylate, Examples thereof include resin compositions in which polyfunctional acrylate monomers such as urethane acrylate, polyester acrylate, polyether acrylate, polyethylene glycol acrylate, and glycerol methacrylate are dissolved. It is also possible to use an arbitrary mixture of the above resin compositions, and any photosensitive resin containing a reactive monomer having one or more photopolymerizable unsaturated bonds in the molecule can be used. There are no particular restrictions.
- Examples of reactive monomers having at least one photopolymerizable unsaturated bond in the molecule include methyl acrylate, ethyl acrylate, n-propyl acrylate, isopropyl acrylate, n-butyl acrylate, isobutyl acrylate, tert-butyl acrylate, and n-pentyl.
- the photosensitive resin composition contains a photopolymerization initiator.
- the photopolymerization initiator include benzophenone, methyl o-benzoylbenzoate, 4,4-bis (dimethylamine) benzophenone, 4,4-bis (diethylamine) benzophenone, ⁇ -amino acetophenone, 4,4-dichloro Benzophenone, 4-benzoyl-4-methyldiphenyl ketone, dibenzyl ketone, fluorenone, 2,2-diethoxyacetophenone, 2,2-dimethoxy-2-phenylacetophenone, 2-hydroxy-2-methylpropiophenone, p- tert-butyldichloroacetophenone, thioxanthone, 2-methylthioxanthone, 2-chlorothioxanthone, 2-isopropylthioxanthone, diethylthioxanthone, benzyldimethyl ketal, benzylmeth
- the smooth layer is not particularly limited, but is preferably formed by a wet coating method such as a spin coating method, a spray method, a blade coating method, or a dip method, or a dry coating method such as an evaporation method.
- a wet coating method such as a spin coating method, a spray method, a blade coating method, or a dip method
- a dry coating method such as an evaporation method.
- additives such as an antioxidant, an ultraviolet absorber, and a plasticizer can be added to the above-described photosensitive resin as necessary.
- an appropriate resin or additive may be used in order to improve the film formability and prevent the generation of pinholes in the film.
- the solvent used includes alcohols such as methanol, ethanol, n-propanol, isopropanol, ethylene glycol, and propylene glycol; Terpenes such as ⁇ - or ⁇ -terpineol, etc., ketones such as acetone, methyl ethyl ketone, cyclohexanone, N-methyl-2-pyrrolidone, diethyl ketone, 2-heptanone, 4-heptanone, toluene, xylene, tetramethylbenzene, etc.
- alcohols such as methanol, ethanol, n-propanol, isopropanol, ethylene glycol, and propylene glycol
- Terpenes such as ⁇ - or ⁇ -terpineol, etc.
- ketones such as acetone, methyl ethyl ketone, cyclohexanone, N-methyl-2-pyrrolidone, diethyl ketone,
- the smoothness of the smooth layer is a value expressed by the surface roughness specified by JIS B 0601, and the maximum cross-sectional height Rt (p) is preferably 10 nm or more and 30 nm or less.
- the coating property may be impaired when the coating means comes into contact with the surface of the smooth layer in the step of applying a silicon compound described later by a coating method such as a wire bar or a wireless bar.
- a coating method such as a wire bar or a wireless bar.
- the surface roughness is a roughness related to the amplitude of fine irregularities measured using an AFM (atomic force microscope). This surface roughness is calculated from the cross-sectional curve of the unevenness measured continuously by measuring a number of times within several tens of ⁇ m with a detector having a stylus having a minimum tip radius of AFM.
- the smooth layer may contain an additive.
- the additive contained in the smooth layer is preferably reactive silica particles in which a photosensitive group having photopolymerization reactivity is introduced on the surface of the photosensitive resin (hereinafter also simply referred to as “reactive silica particles”).
- examples of the photopolymerizable photosensitive group include polymerizable unsaturated groups represented by a (meth) acryloyloxy group.
- the photosensitive resin preferably contains a compound capable of undergoing a photopolymerization reaction with the photosensitive group introduced on the surface of the reactive silica particles, for example, an unsaturated organic compound having a polymerizable unsaturated group.
- the photosensitive resin may have a solid content adjusted by mixing a general-purpose diluent solvent with reactive silica particles or an unsaturated organic compound having a polymerizable unsaturated group.
- the average particle diameter of the reactive silica particles is preferably 0.001 to 0.1 ⁇ m.
- a smooth layer having both optical properties such as light distribution and hard coat properties when used in combination with a matting agent composed of inorganic particles having an average particle size of 1 to 10 ⁇ m described later. It becomes easy to form.
- the average particle size is preferably in the range of 0.001 to 0.01 ⁇ m.
- the smooth layer preferably contains the above inorganic particles in a mass ratio of 20% to 60%. By adding 20% or more, the adhesion between the substrate 11 and the vapor deposition layer 12 is improved. On the other hand, if it exceeds 60%, the film may be bent or cracks may occur when heat treatment is performed, or optical properties such as transparency and refractive index of the deposited layer 12 may be affected.
- a hydrolyzable silyl group is hydrolyzed to form a silyloxy group between the silica particles and chemically bonded to the polymerizable unsaturated group modified hydrolyzable.
- Silane can be used.
- the hydrolyzable silyl group include a carboxylylated silyl group such as an alkoxylyl group and an acetoxysilyl group, a halogenated silyl group such as a chlorosilyl group, an aminosilyl group, an oximesilyl group, and a hydridosilyl group.
- Examples of the polymerizable unsaturated group include acryloyloxy group, methacryloyloxy group, vinyl group, propenyl group, butadienyl group, styryl group, ethynyl group, cinnamoyl group, malate group, and acrylamide group.
- the thickness of the smooth layer is preferably 1 to 10 ⁇ m, more preferably 2 to 7 ⁇ m. By setting it to 1 ⁇ m or more, the smoothness of the base material 11 having a smooth layer becomes sufficient. Moreover, by making it 10 ⁇ m or less, it becomes easy to adjust the balance of optical characteristics, and it is possible to easily suppress curling when a smooth layer is provided only on one surface of the substrate 11.
- the smooth layer may contain a matting agent as another additive.
- a matting agent inorganic particles having an average particle diameter of about 0.1 to 5 ⁇ m are preferable.
- inorganic particles one or more of silica, alumina, talc, clay, calcium carbonate, magnesium carbonate, barium sulfate, aluminum hydroxide, titanium dioxide, zirconium oxide and the like can be used in combination. .
- the matting agent composed of inorganic particles is 2 parts by mass or more, preferably 4 parts by mass or more, more preferably 6 parts by mass or more and 20 parts by mass or less, preferably 18 parts per 100 parts by mass of the solid content of the smooth layer. It is preferable that they are mixed in a proportion of not more than part by mass, more preferably not more than 16 parts by mass.
- the vapor deposition layer 12 can be provided with a bleed-out prevention layer.
- the bleed-out prevention layer suppresses the phenomenon that when the film-like substrate 11 having a smooth layer is heated, unreacted oligomers and the like move from the substrate 11 to the surface and contaminate the surface of the substrate 11. In order to do so, it is provided on the opposite surface of the substrate having a smooth layer.
- the bleed-out prevention layer may basically have the same configuration as the smooth layer as long as it has this function.
- an unsaturated organic compound having a polymerizable unsaturated group can be used as the bleed-out prevention layer.
- the unsaturated organic compound include a polyunsaturated organic compound having two or more polymerizable unsaturated groups in the molecule, or a unit price unsaturated organic compound having one polymerizable unsaturated group in the molecule. Is preferably used.
- the polyunsaturated organic compound for example, ethylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, glycerol di (meth) acrylate, glycerol tri (meth) acrylate, 1,4-butanediol di- (Meth) acrylate, 1,6-hexanediol di (meth) acrylate, neopentyl glycol di (meth) acrylate, trimethylolpropane tri (meth) acrylate, dicyclopentanyl di (meth) acrylate, pentaerythritol tri (meth) ) Acrylate, pentaerythritol tetra (meth) acrylate, dipentaerythritol hexa (meth) acrylate, dipentaerythritol monohydroxypenta (meth) acrylate, ditrimethylolpro Ntetora (
- Examples of monounsaturated organic compounds include methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, isodecyl (meth) acrylate, and lauryl.
- the bleed-out prevention layer may contain a thermoplastic resin, a thermosetting resin, an ionizing radiation curable resin, a photopolymerization initiator, and the like.
- thermoplastic resin include cellulose derivatives such as acetylcellulose, nitrocellulose, acetylbutylcellulose, ethylcellulose, and methylcellulose, vinyl acetate and copolymers thereof, vinyl chloride and copolymers thereof, vinylidene chloride and copolymers thereof, and the like.
- Acetal resins such as vinyl resins, polyvinyl formal, polyvinyl butyral, acrylic resins and copolymers thereof, acrylic resins such as methacrylic resins and copolymers thereof, polystyrene resins, polyamide resins, linear polyester resins, polycarbonate resins, etc. Is mentioned.
- thermosetting resin examples include thermosetting urethane resin composed of acrylic polyol and isocyanate prepolymer, phenol resin, urea melamine resin, epoxy resin, unsaturated polyester resin, and silicon resin.
- ionizing radiation curable resins are cured by irradiating ionizing radiation (ultraviolet rays or electron beams) to ionizing radiation curable paints in which one or more of photopolymerizable prepolymers or photopolymerizable monomers are mixed.
- the photopolymerizable prepolymer is particularly preferably an acrylic prepolymer having two or more acryloyl groups in one molecule and having a three-dimensional network structure by crosslinking and curing.
- the acrylic prepolymer urethane acrylate, polyester acrylate, epoxy acrylate, melamine acrylate and the like can be used.
- the photopolymerizable monomer the above polyunsaturated organic compounds can be used.
- photopolymerization initiators include acetophenone, benzophenone, Michler ketone, benzoin, benzylmethyl ketal, benzoin benzoate, hydroxycyclohexyl phenyl ketone, 2-methyl-1- (4- (methylthio) phenyl) -2- (4-morpholinyl). ) -1-propane, ⁇ -acyloxime ester, thioxanthone and the like.
- the bleed-out prevention layer is prepared by blending a matting agent and other necessary components, and then preparing a coating solution with a diluting solvent as necessary, and applying the coating solution to the substrate surface by a conventionally known coating method. It can be formed by irradiating the liquid with ionizing radiation and curing it.
- ionizing radiation ultraviolet rays in a wavelength region of 100 to 400 nm, preferably 200 to 400 nm, emitted from an ultrahigh pressure mercury lamp, a high pressure mercury lamp, a low pressure mercury lamp, a carbon arc, a metal halide lamp, or the like are irradiated.
- an electron beam having a wavelength region of 100 nm or less emitted from a scanning type or curtain type electron beam accelerator is irradiated.
- the thickness of the bleed-out prevention layer is preferably 1 to 10 ⁇ m, and particularly preferably 2 to 7 ⁇ m. Heat resistance can be sufficiently achieved by setting the thickness to 1 ⁇ m or more. Moreover, by setting it as 10 micrometers or less, while becoming easy to adjust the balance of an optical characteristic, the curling at the time of providing the smooth layer in one surface of the base material 11 can be suppressed.
- the polysilazane modified layer 13 is a layer provided for smoothing the unevenness of the surface of the vapor deposition layer 12, and is a light-transmitting layer formed on the vapor deposition layer 12.
- the polysilazane modified layer 13 is preferably a layer formed by subjecting a coating film of a polysilazane-containing liquid to a modification treatment. This modified layer is mainly formed from a silicon oxide or a silicon oxynitride compound.
- a layer containing a silicon oxide or a silicon oxynitride compound is formed by applying a modification treatment after applying a coating liquid containing at least one polysilazane compound on a substrate.
- the method of forming is mentioned.
- the supply of silicon oxide or silicon oxynitride compound for forming the polysilazane modified layer 13 of silicon oxide or silicon oxynitride compound is a gas as in CVD (Chemical Vapor Deposition).
- CVD Chemical Vapor Deposition
- foreign substances called unnecessary particles are generated in the gas phase simultaneously with the step of depositing the source material having increased reactivity in the gas phase on the surface of the substrate. As these generated particles accumulate, the smoothness of the surface decreases.
- the coating method it is possible to suppress the generation of these particles by preventing the raw material from being present in the gas phase reaction space. For this reason, a smooth surface can be formed by using a coating method.
- the coating film of the polysilazane-containing liquid is formed by applying a coating liquid containing a polysilazane compound in at least one layer on the substrate.
- any appropriate method can be adopted as a coating method.
- a coating method includes a spin coating method, a roll coating method, a flow coating method, an ink jet method, a spray coating method, a printing method, a dip coating method, a casting film forming method, a bar coating method, and a gravure printing method.
- the coating thickness can be appropriately set according to the purpose.
- the coating thickness can be set so that the thickness after drying is preferably about 1 nm to 100 ⁇ m, more preferably about 10 nm to 10 ⁇ m, and most preferably about 10 nm to 1 ⁇ m.
- Polysilazane is a polymer having a silicon-nitrogen bond, and is a ceramic precursor inorganic polymer such as SiO 2, Si 3 N 4 made of Si—N, Si—H, N—H, or the like, and an intermediate solid solution SiOxNy of both. Polysilazane is represented by the following general formula (I).
- each of R1, R2, and R3 independently represents a hydrogen atom, an alkyl group, an alkenyl group, a cycloalkyl group, an aryl group, an alkylsilyl group, an alkylamino group, an alkoxy group, or the like.
- Perhydropolysilazane in which all of R 1, R 2, and R 3 are hydrogen atoms is particularly preferable from the viewpoint of denseness as a barrier film to be obtained.
- the organopolysilazane in which the hydrogen part bonded to Si is partially substituted with an alkyl group or the like has an alkyl group such as a methyl group, so that the adhesion to the base substrate is improved and the polysilazane is hard and brittle.
- the ceramic film can be provided with toughness, and there is an advantage that generation of cracks can be suppressed even when the (average) film thickness is increased.
- Perhydropolysilazane is presumed to have a linear structure and a ring structure centered on 6- and 8-membered rings. Its molecular weight is about 600 to 2000 (polystyrene conversion) in terms of number average molecular weight (Mn), is a liquid or solid substance, and varies depending on the molecular weight. These are marketed in a solution state dissolved in an organic solvent, and the commercially available product can be used as it is as a polysilazane-containing coating solution.
- polysilazane which is ceramicized at a low temperature silicon alkoxide-added polysilazane obtained by reacting silicon alkoxide with polysilazane represented by the above general formula (I) (Japanese Patent Laid-Open No. 5-23827), glycidol is reacted.
- Glycidol-added polysilazane Japanese Patent Laid-Open No. 6-122852
- alcohol-added polysilazane obtained by reacting alcohol
- metal carboxylate obtained by reacting metal carboxylate Addition polysilazane (JP-A-6-299118), acetylacetonate complex-added polysilazane obtained by reacting a metal-containing acetylacetonate complex (JP-A-6-306329), metal obtained by adding metal fine particles Polysilaza added with fine particles (JP-A-7-196986 publication), and the like.
- organic solvent for preparing a liquid containing polysilazane examples include hydrocarbon solvents such as aliphatic hydrocarbons, alicyclic hydrocarbons, and aromatic hydrocarbons, halogenated hydrocarbon solvents, aliphatic ethers, and fats.
- Ethers such as cyclic ethers can be used.
- Specific examples include hydrocarbons such as pentane, hexane, cyclohexane, toluene, xylene, solvesso and turben, halogen hydrocarbons such as methylene chloride and trichloroethane, and ethers such as dibutyl ether, dioxane and tetrahydrofuran.
- solvents may be selected according to purposes such as the solubility of polysilazane and the evaporation rate of the solvent, and a plurality of solvents may be mixed. Note that alcohol-based or water-containing solvents are not preferable because they easily react with polysilazane.
- the polysilazane concentration in the polysilazane-containing coating solution is about 0.2 to 35% by mass, although it varies depending on the target silica film thickness and the pot life of the coating solution.
- the organic polysilazane may be a derivative in which a hydrogen part bonded to Si is partially substituted with an alkyl group or the like.
- an alkyl group especially a methyl group having the smallest molecular weight, the adhesion to the base material can be improved, and the hard and brittle silica film can be toughened, and even if the film thickness is increased, cracks are not generated. Occurrence is suppressed.
- an amine or metal catalyst can be added.
- Specific examples include Aquamica NAX120-20, NN110, NN310, NN320, NL110A, NL120A, NL150A, NP110, NP140, and SP140 manufactured by AZ Electronic Materials Co., Ltd.
- the coating film of the polysilazane-containing liquid preferably has moisture removed before or during the modification treatment. Therefore, it is preferable to divide into the 1st process of the objective which removes the solvent in a polysilazane coating film, and the 2nd process of the objective which removes the water
- the drying conditions for mainly removing the solvent can be appropriately determined by a method such as heat treatment, but the conditions may be such that moisture is removed at this time.
- the heat treatment temperature is preferably high from the viewpoint of rapid treatment, but the temperature and treatment time are determined in consideration of thermal damage to the resin substrate.
- the heat treatment temperature can be set to 200 ° C. or less.
- the treatment time is preferably set to a short time so that the solvent is removed and the thermal damage to the substrate is reduced. If the heat treatment temperature is 200 ° C. or less, the treatment time can be set within 30 minutes.
- the second step is a step for removing moisture in the polysilazane coating film, and the method for removing moisture is preferably in a form maintained in a low humidity environment. Since the humidity in the low humidity environment varies depending on the temperature, a preferable form of the relationship between the temperature and the humidity is indicated by the definition of the dew point temperature.
- a preferable dew point temperature is 4 degrees or less (temperature 25 degrees / humidity 25%), a more preferable dew point temperature is ⁇ 8 degrees (temperature 25 degrees / humidity 10%) or less, and a more preferable dew point temperature is ⁇ 31 degrees (temperature 25 degrees / temperature).
- the humidity is 1%) or less, and the maintained time varies depending on the film thickness of the polysilazane modified layer 13.
- the preferable dew point temperature is ⁇ 8 degrees or less, and the maintaining time is 5 minutes or more.
- the pressure in the vacuum drying can be selected from normal pressure to 0.1 MPa.
- the dew point of the second step is 4 degrees or less.
- the treatment time can be selected from 5 minutes to 120 minutes to remove moisture.
- the first process and the second process can be distinguished by changing the dew point, and can be classified by changing the dew point of the process environment by 10 degrees or more.
- the polysilazane modified layer 13 is preferably subjected to a modification treatment while maintaining its state even after moisture is removed in the second step.
- the water content of the polysilazane modified layer 13 can be detected by the following analysis method.
- Headspace-gas chromatograph / mass spectrometry instrument HP6890GC / HP5973MSD Oven: 40 ° C. (2 min), then heated to 150 ° C. at a rate of 10 ° C./min
- Detector: SIM m / z 18 HS condition: 190 ° C, 30min
- the water content in the polysilazane modified layer is defined as a value obtained by dividing the water content obtained by the above analysis method by the volume of the polysilazane modified layer 13, and is preferably 0 in a state where moisture is removed by the second step. .1% or less. A more preferable moisture content is 0.01% or less (below the detection limit). This is a preferred mode for promoting the dehydration reaction of polysilazane converted to silanol by removing water before or during the modification treatment.
- Modification process For the modification treatment, a known method based on the conversion reaction of polysilazane can be selected. Production of a silicon oxide film or a silicon oxynitride film by a substitution reaction of a silazane compound requires a high temperature of 450 ° C. or more, and is difficult to adapt to a flexible substrate such as plastic. For adaptation to plastic substrates, a conversion reaction using plasma, ozone, or ultraviolet light that can be converted at a lower temperature is preferable. Specifically, a method similar to the method used for the surface treatment of the vapor deposition layer 12 described above can be applied. For application to a resin film substrate, a conversion reaction using plasma, ozone, or ultraviolet light that can be converted at a lower temperature is preferable. In particular, a modification treatment by vacuum ultraviolet irradiation using a rare gas excimer lamp is preferable.
- the surface roughness (Ra) of the surface of the polysilazane modified layer 13 is 2 nm or less, more preferably 1 nm or less.
- the surface roughness (Ra) of the polysilazane modified layer 13 can be measured by the following method.
- the surface roughness (Ra) of the surface of the polysilazane modified layer 13 is, for example, a condition in which, when a polysilazane coating film is formed by coating, the solvent and moisture are uniformly removed after coating the coating liquid constituting the polysilazane coating film. It becomes possible to make it 2 nm or less by making it dry. Furthermore, the surface roughness (Ra) of the surface of the polysilazane modified layer 13 can be reduced to 2 nm or less by optimizing the concentration and viscosity of the coating solution, the coating speed, and selecting the leveling agent.
- the surface roughness is calculated from an uneven sectional curve continuously measured with an AFM (Atomic Force Microscope), for example, DI3100 manufactured by Digital Instruments, with a detector having a stylus with a minimum tip radius. This is a roughness related to the amplitude of fine irregularities measured by a stylus many times in a section whose measurement direction is several tens of ⁇ m.
- AFM Atomic Force Microscope
- the vapor deposition layer 12 is made of a silicon compound having an inclined composition change, the reforming process can easily proceed in the thickness direction from the surface during the reforming process. For this reason, the surface treatment of the vapor deposition layer 12 can be performed sufficiently and uniformly, and a sufficient hydrophilic group can be formed on the surface of the vapor deposition layer 12.
- gas Barrier Film Manufacturing Method (Second Embodiment)> Next, the manufacturing method of the gas barrier film 10 is demonstrated.
- the gas barrier film 10 can be produced by using the formation method of each configuration described in the embodiment of the gas barrier film 10 described above.
- the base material 11 is prepared.
- the base material 11 can be appropriately selected from the above resin films.
- the vapor deposition layer 12 is formed on the base material 11.
- the vapor deposition layer 12 is formed by vapor deposition using a source gas containing a silicon compound together with at least one element selected from carbon (C), nitrogen (N), and oxygen (O).
- a source gas containing a silicon compound together with at least one element selected from carbon (C), nitrogen (N), and oxygen (O).
- the silicon compound having an inclined composition change by controlling the supply amount of the source gas containing at least one element selected from carbon (C), nitrogen (N), and oxygen (O) To deposit.
- a surface treatment is performed on the formed vapor deposition layer 12 to modify the silicon compound.
- This surface treatment can be performed using plasma, ozone, and ultraviolet rays. In particular, treatment with vacuum ultraviolet irradiation using a rare gas excimer lamp is preferable.
- the surface of the vapor deposition layer 12 made of a silicon compound is made hydrophilic.
- the polysilazane modified layer 13 is formed on the vapor deposition layer 12 after the surface treatment.
- the polysilazane modified layer 13 is formed by the step of applying the polysilazane-containing liquid, the step of removing the solvent and moisture in the coating film, and the step of modifying the polysilazane coating film.
- the polysilazane-containing liquid is applied onto the vapor deposition layer 12.
- the vapor deposition layer 12 is surface-treated, the wettability of the polysilazane-containing liquid is improved.
- the polysilazane-containing coating film is modified.
- the same method as the surface treatment of the vapor deposition layer 12 may be used, or a different method may be used.
- treatment by vacuum ultraviolet irradiation using a rare gas excimer lamp is performed.
- the substrate 11 contains at least one element selected from carbon (C), nitrogen (N), and oxygen (O), and is continuous from the surface in the thickness direction.
- the gas barrier film 10 which consists of the vapor deposition layer 12 of the silicon compound which has a composition change and is surface-treated, and the polysilazane modified layer 13 formed on the vapor deposition layer 12 can be manufactured.
- Embodiment of Organic Electroluminescence Element (Third Embodiment)> [Configuration of organic electroluminescence element]
- an organic electroluminescence element hereinafter referred to as an organic EL element
- FIG. 6 the schematic block diagram (sectional drawing) of the organic EL element of this embodiment is shown.
- the organic EL element 20 includes a base material 11, a vapor deposition layer 12, a polysilazane modified layer 13, a first electrode 24, an organic functional layer 25, a second electrode 26, a sealing resin layer 27, and A sealing member 28 is provided.
- the base material 11, the vapor deposition layer 12, and the polysilazane modified layer 13 have the same configuration as the gas barrier film 10 of the first embodiment described above.
- the organic EL element 20 shown in FIG. 6 has a configuration in which a first electrode 24 serving as an anode, an organic functional layer 25 including a light emitting layer, and a second electrode 26 serving as a cathode are stacked on the gas barrier film 10. . Furthermore, the first electrode 24, the organic functional layer 25, and the second electrode 26 are solid-sealed by the gas barrier film 10, the sealing resin layer 27, and the sealing member 28.
- the first electrode 24 used as an anode is configured as a translucent electrode. In such a configuration, only a portion where the organic functional layer 25 is sandwiched between the first electrode 24 and the second electrode 26 becomes a light emitting region in the organic EL element 20.
- the organic EL element 20 is configured as a bottom emission type in which generated light (hereinafter referred to as emitted light h) is extracted from at least the substrate 11 side.
- the organic EL element 20 has a sealing member 28 attached on one surface of the substrate 11 via a sealing resin layer 27 that covers the first electrode 24, the organic functional layer 25, and the second electrode 26. By being combined, it is solid-sealed.
- a plurality of uncured resin materials are provided on either the bonding surface of the sealing member 28 or the polysilazane modified layer 13 and the second electrode 26 of the substrate 11. The base material 11 and the sealing member 28 are pressed and integrated with each other in a heated state with the resin material interposed therebetween.
- translucency means that the light transmittance in wavelength 550nm is 50% or more.
- the vapor deposition layer 12 is a silicon compound containing at least one element selected from carbon (C), nitrogen (N), and oxygen (O), formed by a vapor deposition method. Moreover, the silicon compound which comprises the vapor deposition layer 12 has the characteristics in which a composition changes in an inclined shape in the depth direction (thickness direction) from the surface. Further, the surface of the vapor deposition layer 12 is subjected to a modification treatment for improving the adhesion with the polysilazane modified layer 13.
- the polysilazane modified layer 13 is preferably a layer containing a silicon oxide or silicon oxynitride compound by performing a modification treatment after applying a coating solution containing a polysilazane compound film.
- the first electrode 24 is a substantial anode.
- the organic EL element 20 is a bottom emission type element that passes through the first electrode 24 and extracts light from the substrate 11 side. For this reason, the 1st electrode 24 needs to be formed with a translucent conductive layer.
- the first electrode 24 is, for example, a layer composed mainly of silver and is composed of silver or an alloy composed mainly of silver.
- Examples of the method for forming the first electrode 24 include a method using a wet process such as a coating method, an inkjet method, a coating method, a dip method, a vapor deposition method (resistance heating, EB method, etc.), a sputtering method, a CVD method, and the like. And a method using the dry process. Of these, the vapor deposition method is preferably applied.
- the alloy mainly composed of silver (Ag) constituting the first electrode 24 is silver magnesium (AgMg), silver copper (AgCu), silver palladium (AgPd), silver palladium copper (AgPdCu), silver indium (AgIn). ) And the like.
- the first electrode 24 as described above may have a configuration in which silver or an alloy layer mainly composed of silver is divided into a plurality of layers as necessary.
- the first electrode 24 preferably has a thickness in the range of 4 to 12 nm.
- a thickness of 12 nm or less is preferable because the absorption component and reflection component of the layer are kept low and the light transmittance of the translucent electrode is maintained. Further, when the thickness is 4 nm or more, the conductivity of the layer is also ensured.
- the first electrode 24 as described above may be covered with a protective film at the top, or may be laminated with another conductive layer.
- the protective film and the conductive layer have light transmittance so that the light transmittance of the organic EL element 20 is not impaired.
- FIG. For example, an improvement in the characteristics of the first electrode 24 or a base layer for facilitating the formation may be formed.
- the first electrode 24 may have a configuration other than that containing silver as a main component.
- various transparent conductive material thin films such as other metals and alloys, ITO, zinc oxide, tin oxide and the like may be used.
- the second electrode 26 is an electrode layer that functions as a cathode for supplying electrons to the organic functional layer 25, and a metal, an alloy, an organic or inorganic conductive compound, and a mixture thereof are used. Specifically, gold, aluminum, silver, magnesium, lithium, magnesium / copper mixture, magnesium / silver mixture, magnesium / aluminum mixture, magnesium / indium mixture, indium, lithium / aluminum mixture, rare earth metal, ITO, ZnO, TiO2 And oxide semiconductors such as SnO 2.
- the second electrode 26 can be formed of these conductive materials by a method such as vapor deposition or sputtering.
- the sheet resistance as the second electrode 26 is several hundred ⁇ / sq. The following is preferable, and the thickness is usually selected in the range of 5 nm to 5 ⁇ m, preferably 5 nm to 200 nm.
- the organic EL element 20 is a double-sided light emitting type that also takes out the emitted light h from the second electrode 26 side, a conductive material having a good light transmission property is selected from the above-described conductive materials, and the second is selected.
- the electrode 26 is configured.
- the organic functional layer 25 has a configuration in which [hole injection layer 25a / hole transport layer 25b / light emitting layer 25c / electron transport layer 25d / electron injection layer 25e] is laminated in this order on the first electrode 24 which is an anode. As an example, it is necessary to have at least the light emitting layer 25c formed using an organic material.
- the hole injection layer 25a and the hole transport layer 25b may be provided as a hole transport / injection layer having a hole transport property and a hole injection property.
- the electron transport layer 25d and the electron injection layer 25e may be provided as a single layer having electron transport properties and electron injection properties.
- the electron injection layer 25e may be composed of an inorganic material.
- the organic functional layer 25 may be laminated with a hole blocking layer, an electron blocking layer, or the like as necessary.
- the light emitting layer 25c has each color light emitting layer for generating light emission in each wavelength region, and each of these color light emitting layers is laminated through a non-light emitting intermediate layer to form a light emitting layer unit. Also good.
- the intermediate layer may function as a hole blocking layer and an electron blocking layer.
- the light emitting layer 25c contains, for example, a phosphorescent light emitting compound as a light emitting material.
- the light emitting layer 25c is a layer that emits light by recombination of electrons injected from the electrode or the electron transport layer 25d and holes injected from the hole transport layer 25b, and the light emitting portion is the light emitting layer 25c. Even within the layer, it may be an interface with an adjacent layer in the light emitting layer 25c.
- the configuration of the light emitting layer 25c is not particularly limited as long as the included light emitting material satisfies the light emission requirements. Moreover, there may be a plurality of layers having the same emission spectrum and emission maximum wavelength. In this case, it is preferable to have a non-light emitting intermediate layer (not shown) between the light emitting layers 25c.
- the total thickness of the light emitting layer 25c is preferably in the range of 1 to 100 nm, and more preferably 1 to 30 nm because it can be driven at a lower voltage.
- the sum total of the thickness of the light emitting layer 25c is a thickness also including the said intermediate
- the thickness of each light emitting layer is preferably adjusted to a range of 1 to 50 nm, and more preferably adjusted to a range of 1 to 20 nm.
- the plurality of stacked light emitting layers correspond to the respective emission colors of blue, green, and red, there is no particular limitation on the relationship between the thicknesses of the blue, green, and red light emitting layers.
- the light emitting layer 25c as described above can be formed of a light emitting material or a host compound, which will be described later, by a known thin film forming method such as a vacuum deposition method, a spin coating method, a casting method, an LB method, or an ink jet method.
- a known thin film forming method such as a vacuum deposition method, a spin coating method, a casting method, an LB method, or an ink jet method.
- the light emitting layer 25c may be a mixture of a plurality of light emitting materials, or a phosphorescent light emitting material and a fluorescent light emitting material (also referred to as a fluorescent dopant or a fluorescent compound) may be mixed and used in the same light emitting layer 25c.
- the structure of the light emitting layer 25c preferably includes a host compound (also referred to as a light emitting host) and a light emitting material (also referred to as a light emitting dopant compound or a guest material) and emits light from the light emitting material.
- a host compound also referred to as a light emitting host
- a light emitting material also referred to as a light emitting dopant compound or a guest material
- the host compound contained in the light emitting layer 25c As the host compound contained in the light emitting layer 25c, a compound having a phosphorescence quantum yield of phosphorescence emission at room temperature (25 ° C.) of less than 0.1 is preferable. Furthermore, the compound whose phosphorescence quantum yield is less than 0.01 is preferable.
- the host compound preferably has a volume ratio in the layer of 50% or more among the compounds contained in the light emitting layer 25c.
- the host compound a known host compound may be used alone, or a plurality of types may be used. By using a plurality of types of host compounds, the movement of charges can be adjusted, and the organic EL element 20 can be made highly efficient. In addition, by using a plurality of kinds of light emitting materials described later, it is possible to mix different light emission, thereby obtaining an arbitrary light emission color.
- the host compound used may be a conventionally known low molecular compound, a high molecular compound having a repeating unit, or a low molecular compound having a polymerizable group such as a vinyl group or an epoxy group (evaporation polymerizable light emitting host). .
- Tg glass transition temperature
- the host compound applicable to the organic electroluminescence device include compounds H1 to H79 described in paragraphs [0163] to [0178] of JP2013-4245A.
- the compounds H1 to H79 described in paragraphs [0163] to [0178] of JP2013-4245 are incorporated in the present specification.
- Luminescent material examples of the light-emitting material that can be used for the organic electroluminescence element of the present embodiment include phosphorescent compounds (also referred to as phosphorescent compounds and phosphorescent materials).
- a phosphorescent compound is a compound in which light emission from an excited triplet is observed. Specifically, a phosphorescent compound emits phosphorescence at room temperature (25 ° C.), and a phosphorescence quantum yield of 0.01 at 25 ° C. Although defined as the above compounds, the preferred phosphorescence quantum yield is 0.1 or more.
- the phosphorescent quantum yield can be measured by the method described in Spectroscopic II, page 398 (1992 edition, Maruzen) of Experimental Chemistry Course 4 of the 4th edition. Although the phosphorescence quantum yield in a solution can be measured using various solvents, when the phosphorescent compound is used in this example, the phosphorescence quantum yield (0.01 or more) is achieved in any solvent. It only has to be done.
- phosphorescent compounds There are two types of light emission principles of phosphorescent compounds. One is that recombination of carriers occurs on the host compound to which carriers are transported to generate an excited state of the host compound, and this energy is transferred to the phosphorescent compound to obtain light emission from the phosphorescent compound.
- the other is a carrier trap type in which the phosphorescent compound becomes a carrier trap, and carriers are recombined on the phosphorescent compound to emit light from the phosphorescent compound. In either case, it is a condition that the excited state energy of the phosphorescent compound is lower than the excited state energy of the host compound.
- the phosphorescent compound can be appropriately selected from known materials used for the light emitting layer of a general organic electroluminescence device, but preferably contains a metal of group 8 to 10 in the periodic table of elements. It is a complex compound. More preferred are iridium compounds, osmium compounds, platinum compounds (platinum complex compounds), and rare earth complexes, and most preferred are iridium compounds.
- At least one light emitting layer 25c may contain two or more kinds of phosphorescent compounds, and the concentration ratio of the phosphorescent compounds in the light emitting layer 25c is the same as that of the light emitting layer 25c. It may change in the thickness direction.
- the phosphorescent compound is preferably 0.1% by volume or more and less than 30% by volume with respect to the total amount of the light emitting layer 25c.
- Examples of the phosphorescent compound applicable to the organic electroluminescence device include those represented by general formulas (4), (5), and (6) described in paragraphs [0185] to [0235] of JP2013-4245A.
- Preferred examples include the compounds represented and exemplary compounds.
- Ir-46, Ir-47, and Ir-48 are shown below.
- Compounds represented by general formula (4), general formula (5) and general formula (6) described in paragraphs [0185] to [0235] of JP2013-4245A and exemplified compounds (Pt-1 to Pt) -3, Os-1, Ir-1 to Ir-45) are incorporated herein.
- these phosphorescent compounds are contained as a light emitting dopant in the light emitting layer 25c of the organic EL element 20, organic functions other than the light emitting layer 25c are included. It may be contained in the layer.
- the phosphorescent compound can be appropriately selected from known compounds used for the light emitting layer 25c of the organic EL element 20.
- the phosphorescent compound applied to the organic electroluminescence device of the present embodiment is preferably a complex compound containing a group 8-10 metal in the periodic table of elements, more preferably an iridium compound, an osmium compound, or Platinum compounds (platinum complex compounds) and rare earth complexes, and most preferred are iridium compounds.
- phosphorescent compounds are, for example, OrganicOrLetters magazine vol.3 No.16 2579-2581 (2001), Inorganic Chemistry, Vol.30, No.8 1685-1687. (1991), J. Am. Chem. Soc., 123 4304 (2001), Inorganic Chemistry, Vol. 40, No. 7, 704 1704-1711 (2001), Inorganic Chemistry, Vol. 41 No. 12 3055-3066 (2002), New Journal of ⁇ Chemistry., 26261171 (2002), European Journal of Organic Chemistry, Vol.4 695-709 (2004), further described in these documents Can be synthesized by applying a method such as the reference.
- Fluorescent materials include coumarin dyes, pyran dyes, cyanine dyes, croconium dyes, squalium dyes, oxobenzanthracene dyes, fluorescein dyes, rhodamine dyes, pyrylium dyes, perylene dyes, stilbene dyes Examples thereof include dyes, polythiophene dyes, and rare earth complex phosphors.
- injection layer hole injection layer, electron injection layer
- the injection layer is a layer provided between the electrode and the light emitting layer 25c in order to lower the driving voltage and improve the light emission luminance.
- the injection layer can be provided as necessary.
- the hole injection layer 25a is disposed between the anode and the light emitting layer 25c or the hole transport layer 25b, and the electron injection layer 25e is disposed between the cathode and the light emitting layer 25c or the electron transport layer 25d.
- JP-A-9-45479 JP-A-9-260062, JP-A-8-288069, and the like.
- Specific examples include phthalocyanine represented by copper phthalocyanine.
- examples thereof include a layer, an oxide layer typified by vanadium oxide, an amorphous carbon layer, and a polymer layer using a conductive polymer such as polyaniline (emeraldine) or polythiophene.
- the details of the electron injection layer 25e are described in JP-A-6-325871, JP-A-9-17574, JP-A-10-74586, and the like, and specifically represented by strontium, aluminum, and the like.
- Examples thereof include a metal layer, an alkali metal halide layer typified by potassium fluoride, an alkaline earth metal compound layer typified by magnesium fluoride, and an oxide layer typified by molybdenum oxide.
- the electron injection layer 25e is desirably a very thin layer, and its thickness is preferably in the range of 1 nm to 10 ⁇ m, although it depends on the material.
- the hole transport layer 25b is made of a hole transport material having a function of transporting holes, and in a broad sense, the hole injection layer 25a and the electron blocking layer are also included in the hole transport layer 25b.
- the hole transport layer 25b can be provided as a single layer or a plurality of layers.
- the hole transport material has any of hole injection or transport and electron barrier properties, and may be either organic or inorganic.
- triazole derivatives oxadiazole derivatives, imidazole derivatives, polyarylalkane derivatives, pyrazoline derivatives and pyrazolone derivatives, phenylenediamine derivatives, arylamine derivatives, amino-substituted chalcone derivatives, oxazole derivatives, styrylanthracene derivatives, fluorenone derivatives, hydrazone derivatives
- Examples thereof include stilbene derivatives, silazane derivatives, aniline copolymers, and conductive polymer oligomers, particularly thiophene oligomers.
- hole transport material those described above can be used, but it is preferable to use a porphyrin compound, an aromatic tertiary amine compound and a styrylamine compound, particularly an aromatic tertiary amine compound.
- aromatic tertiary amine compounds and styrylamine compounds include N, N, N ′, N′-tetraphenyl-4,4′-diaminophenyl; N, N′-diphenyl-N, N′— Bis (3-methylphenyl)-[1,1′-biphenyl] -4,4′-diamine (TPD); 2,2-bis (4-di-p-tolylaminophenyl) propane; 1,1-bis (4-di-p-tolylaminophenyl) cyclohexane; N, N, N ′, N′-tetra-p-tolyl-4,4′-diaminobiphenyl; 1,1-bis (4-di-p-tolyl) Aminophenyl) -4-phenylcyclohexane; bis (4-dimethylamino-2-methylphenyl) phenylmethane; bis (4-di-p-tolylaminoph
- a polymer material in which these materials are introduced into a polymer chain or these materials are used as a polymer main chain can also be used.
- inorganic compounds such as p-type-Si and p-type-SiC can also be used as the hole injection material and the hole transport material.
- p-type hole transport materials as described in JP-A-11-251067, J. Huang et al., Applied Physics Letters, 80 (2002), p. 139 can be used. . These materials are preferably used because a highly efficient light-emitting element can be obtained.
- the hole transport layer 25b is formed by thinning the hole transport material by a known method such as a vacuum deposition method, a spin coating method, a casting method, a printing method including an inkjet method, or an LB method. be able to.
- the thickness of the hole transport layer 25b is not particularly limited, but is usually about 5 nm to 5 ⁇ m, preferably 5 to 200 nm.
- the hole transport layer 25b may have a single layer structure made of one or more of the above materials.
- the electron transport layer 25d is made of a material having a function of transporting electrons. In a broad sense, the electron transport layer 25e and a hole blocking layer (not shown) are also included in the electron transport layer 25d.
- the electron transport layer 25d can be provided as a single layer structure or a stacked structure of a plurality of layers.
- an electron transport material (also serving as a hole blocking material) constituting the layer portion adjacent to the light emitting layer 25c in the electron transport layer 25d having a single layer structure and the electron transport layer 25d having a multilayer structure
- electrons injected from the cathode are used. What is necessary is just to have the function to transmit to the light emitting layer 25c.
- Such a material can be arbitrarily selected from conventionally known compounds. Examples include nitro-substituted fluorene derivatives, diphenylquinone derivatives, thiopyran dioxide derivatives, carbodiimides, fluorenylidenemethane derivatives, anthraquinodimethane, anthrone derivatives, and oxadiazole derivatives.
- a thiadiazole derivative in which the oxygen atom of the oxadiazole ring is substituted with a sulfur atom, and a quinoxaline derivative having a quinoxaline ring known as an electron withdrawing group are also used as the material for the electron transport layer 25d.
- a polymer material in which these materials are introduced into a polymer chain or these materials are used as a polymer main chain can also be used.
- metal complexes of 8-quinolinol derivatives such as tris (8-quinolinol) aluminum (Alq3), tris (5,7-dichloro-8-quinolinol) aluminum, tris (5,7-dibromo-8-quinolinol) aluminum Tris (2-methyl-8-quinolinol) aluminum, tris (5-methyl-8-quinolinol) aluminum, bis (8-quinolinol) zinc (Znq), and the like, and the central metals of these metal complexes are In, Mg, A metal complex replaced with Cu, Ca, Sn, Ga, or Pb can also be used as the material of the electron transport layer 25d.
- metal-free or metal phthalocyanine or the terminal thereof is substituted with an alkyl group or a sulfonic acid group, it can be preferably used as a material for the electron transport layer 25d.
- a distyrylpyrazine derivative exemplified also as a material of the light emitting layer 25c can be used as a material of the electron transport layer 25d.
- n-type-Si, n-type An inorganic semiconductor such as -SiC can also be used as the material of the electron transport layer 25d.
- the electron transport layer 25d can be formed by thinning the above material by a known method such as a vacuum deposition method, a spin coating method, a casting method, a printing method including an ink jet method, or an LB method.
- the thickness of the electron transport layer 25d is not particularly limited, but is usually about 5 nm to 5 ⁇ m, preferably 5 to 200 nm.
- the electron transport layer 25d may have a single layer structure composed of one or more of the above materials.
- the electron transport layer 25d can be doped with impurities to increase the n property. Examples thereof include JP-A-4-297076, JP-A-10-270172, JP-A-2000-196140, 2001-102175, J. Appl. Phys., 95, 5773 (2004), etc. What has been described. Further, the electron transport layer 25d preferably contains potassium, a potassium compound, or the like. As the potassium compound, for example, potassium fluoride can be used. Thus, when the n property of the electron transport layer 25d is increased, an element with lower power consumption can be manufactured.
- Examples of the material (electron transporting compound) of the electron transport layer 25d include, for example, General Formula (1), General Formula (2), and Paragraphs [0057] to [0148] of JP2013-4245A,
- the compound represented by the general formula (3) is preferably used, and Exemplified Compounds 1-111 can be used. Further, as other exemplary compounds, compounds 112 to 134 are shown below.
- the compounds represented by general formula (1), general formula (2), and general formula (3) described in paragraphs [0057] to [0148] of JP2013-4245 are incorporated in the present specification.
- Blocking layer hole blocking layer, electron blocking layer
- the blocking layer is provided as necessary in addition to the basic constituent layer of the organic compound thin film. For example, it is described in JP-A Nos. 11-204258 and 11-204359, and “Organic EL elements and the forefront of industrialization (published by NTT Corporation on November 30, 1998)” on page 237. There is a hole blocking (hole blocking) layer.
- the hole blocking layer has a function of the electron transport layer 25d in a broad sense.
- the hole blocking layer is made of a hole blocking material that has a function of transporting electrons but has a very small ability to transport holes, and recombines electrons and holes by blocking holes while transporting electrons. Probability can be improved.
- the structure of the electron carrying layer 25d mentioned later can be used as a hole-blocking layer as needed.
- the hole blocking layer is preferably provided adjacent to the light emitting layer 25c.
- the electron blocking layer has the function of the hole transport layer 25b in a broad sense.
- the electron blocking layer is made of a material that has a function of transporting holes but has a very small ability to transport electrons, and improves the probability of recombination of electrons and holes by blocking electrons while transporting holes. be able to.
- the structure of the positive hole transport layer 25b mentioned later can be used as an electron blocking layer as needed.
- the thickness of the blocking layer is preferably 3 to 100 nm, and more preferably 5 to 30 nm.
- the sealing member 28 covers the organic EL element 20, and the plate-like (film-like) sealing member 28 is fixed to the substrate 11 side by the sealing resin layer 27.
- the sealing member 28 is provided in a state of covering at least the organic functional layer 25 and is provided in a state of exposing the terminal portions (not shown) of the organic EL element 20 and the second electrode 26.
- an electrode may be provided on the sealing member 28 so that the organic EL element 20 of the organic EL element 20 and the terminal portion of the second electrode 26 are electrically connected to this electrode.
- the plate-like (film-like) sealing member 28 include a glass substrate and a polymer substrate, and these substrate materials may be used in the form of a thinner film.
- the glass substrate include soda-lime glass, barium / strontium-containing glass, lead glass, aluminosilicate glass, borosilicate glass, barium borosilicate glass, and quartz.
- the polymer substrate include polycarbonate, acrylic, polyethylene terephthalate, polyether sulfide, and polysulfone.
- a polymer substrate in the form of a thin film can be preferably used as the sealing member 28.
- the polymer substrate in the form of a film has an oxygen permeability measured by a method according to JIS-K-7126-1987 of 1 ⁇ 10 ⁇ 3 ml / (m 2 ⁇ 24 h ⁇ atm) or less, and JIS-K-7129.
- the water vapor permeability (25 ⁇ 0.5 ° C., relative humidity (90 ⁇ 2)% RH) measured by a method according to 1992 is 1 ⁇ 10 ⁇ 3 g / (m 2 ⁇ 24 h) or less. preferable.
- the above-described substrate material may be processed into a concave plate shape and used as the sealing member 28.
- the above-described substrate member is subjected to processing such as sand blasting or chemical etching to form a concave shape.
- the present invention is not limited to this, and a metal material may be used.
- the metal material include one or more metals or alloys selected from the group consisting of stainless steel, iron, copper, aluminum, magnesium, nickel, zinc, chromium, titanium, molybdenum, silicon, germanium, and tantalum.
- the sealing resin layer 27 for fixing the sealing member 28 to the base material 11 side is used for sealing the organic EL element 20 sandwiched between the sealing member 28 and the base material 11.
- a structure in which the organic EL element formed on the substrate 11 is covered with a sealing material is exemplified as a solid-sealed structure.
- the sealing resin layer 27 is, for example, a photocurable or thermosetting adhesive having a reactive vinyl group of an acrylic acid-based oligomer or a methacrylic acid-based oligomer, or an epoxy-based thermosetting or chemical curing property. Examples thereof include (two-component mixed) adhesives, hot-melt type polyamides, polyesters, polyolefins, and cationic curing type ultraviolet curable epoxy resins.
- the sealing resin layer 27 With a thermosetting adhesive. Moreover, as a form of the sealing resin layer 27, it is preferable to use a thermosetting adhesive processed into a sheet shape. When a sheet-like thermosetting adhesive is used, the adhesive exhibits non-fluidity at room temperature (about 25 ° C.) and exhibits fluidity at a temperature in the range of 50 to 130 ° C. when heated. (Sealant) is used.
- thermosetting adhesive any adhesive can be used. From the viewpoint of improving the adhesion with the sealing member 28 adjacent to the sealing resin layer 27, the base material 11, and the like, a suitable thermosetting adhesive is appropriately selected.
- the thermosetting adhesive it is possible to use a resin mainly composed of a compound having an ethylenic double bond at the molecular end or side chain and a thermal polymerization initiator. More specifically, a thermosetting adhesive made of an epoxy resin, an acrylic resin, or the like can be used.
- a fusion type thermosetting adhesive according to the bonding apparatus and hardening processing apparatus which are used at the manufacturing process of the organic EL element 20, you may use a fusion type thermosetting adhesive.
- what mixed 2 or more types of above-mentioned adhesives may be used as an adhesive agent, and the adhesive agent provided with both thermosetting and ultraviolet-curing property may be used.
- the organic EL element 20 described above includes silicon, oxygen, and carbon formed by the above-described plasma CVD method, and includes a vapor deposition layer in which the distribution curve of each element satisfies the above conditions (i) to (iii). Thereby, the adhesiveness of a base material and a sealing member can be improved.
- the said vapor deposition layer is formed from the inorganic film containing silicon, oxygen, and carbon, and has the characteristic which is excellent in thermal diffusivity. In particular, the inclusion of carbon is considered to improve the thermal conductivity as compared with an inorganic film made only of silicon and oxygen.
- the vapor deposition layer dissipates heat applied to the organic EL element, so that the flexible substrate Can alleviate heat damage.
- the polysilazane modified layer on the base material By providing the polysilazane modified layer on the base material, it is possible to proceed with the curing treatment of the sealing resin layer even in an organic EL element that tends to have low adhesion between the sealing resin layer and the base material in the past. Adhesion between the sealing resin layer and the substrate can be increased. In other words, the organic EL element can be peeled off even in a configuration in which a polysilazane modified layer is formed in order to alleviate irregularities on the surface of the substrate and the vapor deposition layer, prevent defects due to short-circuiting of the electrode, etc. Can be prevented.
- a substrate, a vapor deposition layer, and a polysilazane modified layer are provided, and an element composed of a first electrode, an organic functional layer, and a second electrode is provided thereon, and this element is solid-sealed.
- a bottom emission type organic electroluminescence element is described.
- the organic electroluminescence element in which the element is provided on the base material, the vapor deposition layer, and the polysilazane modified layer is not limited to the bottom emission type, for example, a top emission type configuration in which light is extracted from the second electrode side, It is good also as a double-sided light emission type
- the organic electroluminescence element is a top emission type, a transparent material may be used for the second electrode, and the emitted light h may be extracted from the second electrode side. Further, if the organic electroluminescence element is a double-sided light emitting type, a transparent material may be used for the second electrode, and the emitted light h may be extracted from both sides.
- organic electroluminescent elements Since the organic electroluminescent elements having the above-described configurations are surface light emitters as described above, they can be used as various light emission sources.
- lighting devices such as home lighting and interior lighting, backlights for clocks and liquid crystals, lighting for billboard advertisements, light sources for traffic lights, light sources for optical storage media, light sources for electrophotographic copying machines, light sources for optical communication processors, Examples include a light source of an optical sensor.
- it can be effectively used as a backlight of a liquid crystal display device combined with a color filter and an illumination light source.
- the organic electroluminescence element of each embodiment may be used as a kind of lamp for illumination or an exposure light source, a projection device that projects an image, and a still image or a moving image is directly visually recognized. It may be used as a type of display device (display). In this case, with the recent increase in the size of lighting devices and displays, the light emitting surface may be enlarged by so-called tiling, in which light emitting panels provided with organic electroluminescence elements are joined together in a plane.
- the drive method when used as a display device for moving image reproduction may be either a simple matrix (passive matrix) method or an active matrix method.
- a color or full-color display device can be manufactured by using two or more kinds of organic electroluminescence elements having different emission colors.
- Each organic EL element of Samples 101 to 108 was fabricated such that the area of the light emitting region was 5 cm ⁇ 5 cm. Table 1 below shows the configuration of each layer in each organic EL element of Samples 101 to 108.
- the base material was mounted on the vapor deposition layer manufacturing apparatus shown in FIG. 5 described above, and the vapor deposition layer was formed to a thickness of 300 nm on the base material under the following film formation conditions (plasma CVD conditions).
- Supply gas (HMDSO) supply 100 sccm (Standard Cubic Centimeter per Minute)
- Supply amount of oxygen gas (O2) 500 sccm Degree of vacuum in the vacuum chamber: 3Pa
- Frequency of power source for plasma generation 80 kHz
- Film transport speed 0.5 m / min
- the formed vapor deposition layer is fixed on the operation stage of an excimer irradiation apparatus MECL-M-1-200 (manufactured by M.D. Com) and subjected to surface treatment under the following processing conditions to form silicon constituting the vapor deposition layer.
- the compound was modified. Irradiation wavelength: 172 nm
- Lamp filled gas Xe Excimer lamp light intensity: 130 mW / cm 2 (172 nm)
- Distance between sample and light source 1mm
- Oxygen concentration in the irradiation device 1.0%
- Excimer lamp irradiation time 1 second
- a polysilazane modified layer was formed on the deposited layer on which the surface treatment was performed.
- a polysilazane-containing liquid a 10% by mass dibutyl ether solution of perhydropolysilazane (Aquamica NN120-10, non-catalytic type, manufactured by AZ Electronic Materials Co., Ltd.) was prepared.
- a polysilazane-containing liquid is applied onto the substrate with a wireless bar so that the average film thickness after drying is 300 nm, and is treated for 1 minute in an atmosphere of temperature 85 ° C. and humidity 55% RH. Dried. Further, it was kept in an atmosphere of a temperature of 25 ° C. and a humidity of 10% RH (dew point temperature ⁇ 8 ° C.) for 10 minutes to perform a dehumidification treatment to form a polysilazane coating film.
- the base material on which the polysilazane coating film is formed is fixed on the operation stage of the excimer irradiation device MECL-M-1-200 (manufactured by M.D. Com) and modified under the following modification treatment conditions.
- the treatment was performed to form a polysilazane modified layer.
- Irradiation wavelength 172 nm
- Lamp filled gas Xe Excimer lamp light intensity: 130 mW / cm 2 (172 nm)
- Distance between sample and light source 1mm
- Excimer lamp irradiation time 5 seconds
- the base material on which the polysilazane modified layer is formed is fixed to a base material holder of a commercially available vacuum deposition apparatus, and the compound 118 is put in a resistance heating boat made of tungsten, and the base material holder and the heating boat are vacuumed. It attached in the 1st vacuum chamber of the vapor deposition apparatus. Moreover, silver (Ag) was put into the resistance heating boat made from tungsten, and it attached in the 2nd vacuum chamber of a vacuum evaporation system.
- the heating boat containing the compound 118 was energized and heated, and the deposition rate was 0.1 nm / second to 0.2 nm / second.
- the base layer of the first electrode was provided with a thickness of 10 nm.
- the base material formed up to the underlayer was transferred to the second vacuum chamber while being vacuumed, and the pressure in the second vacuum chamber was reduced to 4 ⁇ 10 ⁇ 4 Pa, and then the heating boat containing silver was energized and heated.
- a first electrode made of silver having a thickness of 8 nm was formed at a deposition rate of 0.1 nm / second to 0.2 nm / second.
- Compound A-1 and Compound A-2 each had a concentration of 0.2% by weight without depending on the film thickness.
- the compound H-1 was co-deposited to a thickness of 70 nm by changing the deposition rate depending on the location so that it was 64.6 wt% to 94.6 wt%.
- the light emitting layer was formed.
- Compound ET-1 was deposited to a thickness of 30 nm to form an electron transport layer, and potassium fluoride (KF) was further formed to a thickness of 2 nm.
- KF potassium fluoride
- aluminum 110nm was vapor-deposited and the 2nd electrode was formed.
- Compound 118, Compound HT-1, Compounds A-1 to A-3, Compound H-1, and Compound ET-1 are the compounds shown below.
- the sample was placed in a decompression device, and the laminated base material and the sealing member were pressed and held for 5 minutes under a decompression condition of 0.1 MPa at 90 ° C. Subsequently, the sample was returned to an atmospheric pressure environment and further heated at 120 ° C. for 30 minutes to cure the adhesive.
- the sealing process is performed under atmospheric pressure and in a nitrogen atmosphere with a moisture content of 1 ppm or less, in accordance with JIS B 9920, with a measured cleanliness of class 100, a dew point temperature of ⁇ 80 ° C. or less, and an oxygen concentration of 0.8 ppm or less. At atmospheric pressure.
- the description regarding formation of the lead-out wiring from the 1st electrode and the 2nd electricity is omitted.
- an organic EL element of Sample 102 was produced in the same manner as Sample 101, except that an ITO electrode was formed by sputtering to a thickness of 100 nm.
- the base material was mounted on the vapor deposition layer manufacturing apparatus shown in FIG. 5 described above, and a vapor deposition layer having a thickness of 300 nm was formed on the base material under the following film forming conditions (plasma CVD conditions).
- Supply amount of oxygen gas (O2) 500 sccm Degree of vacuum in the vacuum chamber: 3Pa
- Film transport speed 0.5 m / min
- the formed vapor deposition layer is fixed on the operation stage of an excimer irradiation apparatus MECL-M-1-200 (manufactured by M.D. Com) and subjected to surface treatment under the following conditions to form a silicon compound constituting the vapor deposition layer
- the reforming treatment was performed.
- Irradiation wavelength 172 nm
- Lamp filled gas Xe Excimer lamp light intensity: 130 mW / cm 2 (172 nm)
- Distance between sample and light source 1mm
- Oxygen concentration in the irradiation device 1.0%
- Excimer lamp irradiation time 3 seconds
- the substrate is mounted on a commercially available roll-to-roll atmospheric pressure plasma discharge treatment apparatus, and the following deposition conditions (atmospheric pressure plasma CVD: AGP), the first vapor deposition layer, the second vapor deposition layer, A vapor deposition layer having a three-layer structure composed of the third vapor deposition layer was formed.
- the thickness of the 1st vapor deposition layer, the 2nd vapor deposition layer, and the 3rd vapor deposition layer was produced with a total of 160 nm of 100 nm, 30 nm, and 30 nm, respectively.
- N2 gas Reaction gas 1 1% of hydrogen gas with respect to the total gas Reaction gas 2: 0.5% TEOS (tetraethoxysilane) with respect to the total gas Film formation conditions;
- 1st electrode side Power supply type Applied Electronics 80kHz Frequency: 80kHz Output density: 8W / cm2 Electrode temperature: 115 ° C
- Second electrode side Power supply type Pearl Industrial 13.56MHz CF-5000-13M Frequency: 13.56MHz Output density: 10W / cm2 Electrode temperature: 95 ° C
- N2 gas Reaction gas 1 5% of oxygen gas to the total gas Reaction gas 2: TEOS is 0.1% of the total gas Film formation conditions;
- 1st electrode side Power supply type HEIDEN Laboratory 100kHz (continuous mode) PHF-6k Frequency: 100kHz Output density: 10W / cm2 Electrode temperature: 120 ° C
- Second electrode side Power supply type Pearl Industrial 13.56MHz CF-5000-13M Frequency: 13.56MHz Output density: 10W / cm2 Electrode temperature: 95 ° C
- Table 1 shows the configurations of the organic EL elements of Samples 101 to 108.
- Luminescence efficiency Using a spectral radiance meter CS-1000 (manufactured by Konica Minolta Sensing), the front luminance and luminance angle dependency of the organic EL elements of Samples 101 to 108 were measured, and the power efficiency at the front luminance of 1000 cd / m 2 was evaluated. In addition, the electrode efficiency was evaluated by comparing and comparing the power efficiency of the sample 101 with a relative value of 100, and classifying and evaluating the following five levels. 5: 110 or more 4: 91-109 3: 80-90 2: 80 or less 1: 70 or less
- Rectification ratio rank 5 Rectification ratio of 10000 or more (level at which driving is very stable) 4: Rectification ratio of 1000 or more and less than 10,000 (level of stable driving) 3: Rectification ratio of 500 or more and less than 1000 (slightly inferior, but at a level where there is no practical problem) 2: Rectification ratio of 100 or more and less than 500 (inferior level with practical problems) 1: Rectification ratio of less than 100 (very inferior, practically problematic level)
- All dark spots generated on the 0th day have a size (0.1 mm or less) that cannot be easily observed by visual observation, luminance unevenness is not observed, and the non-light-emitting area is 0% of the total light-emitting area after 120 days.
- the generated dark spot maintained a size (0.1 mm or less) that cannot be easily observed visually.
- the dark spots that occurred on the 3rd day were all in a size (0.1 mm or less) that could not be easily observed visually, and after 120 days, the non-light emitting area exceeded 2% of the total light emitting area.
- Table 2 shows the evaluation results of the organic EL elements of the samples 101 to 108.
- composition change (Composition change)
- the composition change of the silicon compound constituting the vapor deposition layer is represented by the change in the atomic ratio of carbon. From the results shown in FIGS. 7 and 8, the sample 101 has a thickness of 30 nm from the surface and a composition change of 3% or more. The sample 107 is 15 nm thick from the surface and has a composition change of 10% or more.
- sample 102 and the sample 103 formed by the same manufacturing method as the sample 101 have a composition change of 3% with a thickness of 30 nm from the surface.
- Samples 105 to 107 formed by the same manufacturing method as sample 104 have a thickness of 15 nm from the surface and a composition change of 10%.
- the sample 108 had a thickness of 30 nm from the surface and a composition change of 1% or less. That is, the sample 108 is formed by an atmospheric pressure plasma CVD method so that the composition of each layer constituting the vapor deposition layer is uniform, and three layers of this uniform composition are stacked. Therefore, the vapor deposition layer of the sample 108 does not have a continuous composition change of the silicon compound, unlike the vapor deposition layers of the samples 101 to 107.
- each characteristic evaluation In the samples 101 to 103 in which the composition of the vapor deposition layer is changed by 3% or more from the surface with a thickness of 30 nm, the luminous efficiency of the sample 101 in which the first electrode is formed of Ag is the highest.
- the sample 101 and the sample 102 subjected to the surface treatment by excimer treatment have a smaller contact angle after the surface treatment than the sample 103 obtained by performing the surface treatment by UV treatment.
- a decrease in the contact angle indicates that the surface of the deposited layer is hydrophilic. From this result, it is understood that the storage stability of the organic EL element is improved by increasing the hydrophilicity of the surface of the vapor deposition layer.
- the characteristics of the sample 105 having a long surface treatment time are improved.
- the surface treatment is performed with more energy. For this reason, it is thought that the preservation
- the characteristics of the sample 104 having a large composition change on the surface of the vapor deposition layer are improved. From this result, it can be seen that, due to the large composition change of the surface of the vapor deposition layer, even when the surface treatment conditions are the same, the modification treatment of the vapor deposition layer proceeds and the characteristics are improved.
- the underlayer and the first electrode are formed directly on the vapor deposition layer. Since the deposited layer has a rough plane, leakage characteristics and storage stability are deteriorated as compared with the sample 104. Further, in the sample 107 in which the surface treatment is not performed, the adhesiveness between the vapor deposition layer and the polysilazane modified layer is low, so that the storage stability is lowered as compared with the sample 104. In the sample 108 in which the vapor deposition layer has no composition change, like the sample 107, since the adhesion between the vapor deposition layer and the polysilazane modified layer is low, the leak characteristics and the storage stability are lower than those in the sample 104. .
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- Inorganic Chemistry (AREA)
- Plasma & Fusion (AREA)
- Health & Medical Sciences (AREA)
- Toxicology (AREA)
- Optics & Photonics (AREA)
- Electroluminescent Light Sources (AREA)
- Laminated Bodies (AREA)
Abstract
Description
に係わる。
また、このガスバリアフィルムを用いることにより、信頼性の高い有機エレクトロルミネッセンス素子を構成することができる。
なお、説明は以下の順序で行う。
1.ガスバリアフィルムの実施の形態(第1実施形態)
2.ガスバリアフィルムの製造方法(第2実施形態)
3.有機エレクトロルミネッセンス素子の実施形態(第3実施形態)
[ガスバリアフィルムの構成]
本発明のガスバリアフィルムの具体的な実施の形態について説明する。
図1に、第1実施形態のガスバリアフィルムの概略構成図(断面図)を示す。図1に示すように、ガスバリアフィルム10は、基材11、ケイ素化合物の蒸着層12、及び、ポリシラザン改質層13を備える。
なお、本例のガスバリアフィルム10において、光透過性とは波長550nmでの光透過率が50%以上であることをいう。
また、蒸着層12は、ポリシラザン改質層13が形成される面(表面)側において、ポリシラザン改質層13を形成する前に、ケイ素化合物に表面処理が行われる。
本例のガスバリアフィルムにおいて、ポリシラザン改質層13は、シラザン化合物を含む液体を塗布、乾燥した後に改質処理された層である。
以下、ガスバリアフィルム10の構成について詳細に説明する。
ガスバリアフィルム10に適用される基材11としては、ガスバリアフィルム10にフレキシブル性を与えることが可能な可撓性の基材であれば特に限定されない。可撓性の基材としては、透明樹脂フィルムを挙げることができる。
また、基材11が光透過性を有することが好ましい。基材11が光透過性を有することにより、光透過性を有するガスバリアフィルム10とすることが可能となる。そして、この光透過性のガスバリアフィルム10を、有機EL素子や太陽電池等の透明基板や封止フィルムとして好適に用いることができる。
基材11上には、蒸着層12が設けられている。蒸着層12は、蒸着法により形成されたケイ素化合物から構成される。このケイ素化合物は、炭素(C)、窒素(N)、及び、酸素(O)から選ばれる少なくとも1種以上の元素を含む。また、蒸着層12は、表面から厚さ方向に向けて連続的な組成変化を有する。さらに、蒸着層12の表面が改質処理され、蒸着層12を構成するケイ素化合物の表面に、親水性の改質部が形成されている。
蒸着層12を構成するケイ素化合物は、表面から深さ方向(厚さ方向)において、傾斜状に組成が変化する特徴を有している。この組成変化は、直線状や曲線状でよく、実質的に連続であればよい。
これらのC、N、及び、Oから選ばれる任意の元素、又は、任意の元素の合計の元素比率が、表面から厚さ方向に向けて連続的に変化することを、蒸着層12のケイ素化合物の連続的な組成変化とする。
ケイ素化合物が深さ方向で組成変化する領域は、後述する表面処理が効力を発する領域となる。
蒸着層12は、ポリシラザン改質層13と接する側の面(表面)が、表面処理により改質されている。この表面処理は、ポリシラザン改質層13との接着性を向上させるために行われる。このため、蒸着層12の表面処理は、ポリシラザン改質層13を形成する前に行う必要がある。
表面処理方法は、基材11として樹脂フィルムを用いることを考慮し、低温で行うことが可能な方法を選択することが好ましい。例えば、プラズマ、オゾン、及び、紫外線を用いる処理が好ましい。
また、VUVが酸素に吸収され、活性酸素とオゾンを生成する。生成されたオゾンは再び分解して、活性酸素を形成する。
ケイ素化合物から分解された原子と、発生した活性酸素との結合により、ヒドロキシル基(OH)、アシル基(COH)、カルボキシル基(COOH)等の親水基が、蒸着層の表面に形成される。
一例として、上述のエキシマ光で切断されやすい、ケイ素化合物のケイ素と炭素との結合(Si-C)と、炭素の元素比率とを用いて、ケイ素化合物の改質処理を説明する。
この構成では、炭素の元素比率が高い表面で吸収されるものの、炭素の元素比率が連続的に低くなる深い位置ほど、エキシマ光の透過が効果的となる。つまり、深い位置までの透過が有効となるため、ケイ素化合物の深い位置での改質処理が進みやすい。
この構成では、炭素の元素比率が低い表面での吸収よりも、炭素の元素比率が連続的に高くなる深い位置ほど、エキシマ光の吸収が効果的となる。つまり、表面から深さ方向へのエキシマ光の照射が有効となる。深い位置での吸収が有効となるため、ケイ素化合物の深い位置での改質処理が進みやすい。
また、組成変化が不均一な場合には、深さ方向で局所的に濃度が高い部分や低い部分が存在する。局所的に炭素の元素比率が高いと、この高い部分でエキシマ光の吸収が集中する。このため、この元素比率が高い部分に改質が集中し、その周囲の部分での改質が進みにくい。局所的に炭素の元素比率が低い部分では、表面からの連鎖的な改質が停止しやすく、深さ方向への改質が進みにくくなる。このように、局所的な元素比率の変化があると、ケイ素化合物の深さ方向への改質処理が進みにくくなる。
ケイ素化合物の表面処理に用いるプラズマ処理は、公知の方法を用いることができるが、大気圧プラズマ処理が好ましい。大気圧プラズマ処理の場合は、放電ガスとしては窒素ガス及び/又は周期表の第18属原子、具体的には、ヘリウム、ネオン、アルゴン、クリプトン、キセノン、ラドン等が用いられる。これらの中でも窒素、ヘリウム、アルゴンが好ましく用いられ、特に窒素がコストも安く好ましい。
V1≧IV>V2 又は V1>IV≧V2
を満たし、第2の高周波電界の出力密度が、1W/cm2以上である。
ケイ素化合物の表面処理の方法としては、紫外線照射による処理も好ましい。紫外線(紫外光と同義)によって生成されるオゾンや活性酸素原子は高い酸化能力を有しており、低温で高い緻密性と絶縁性を有する酸化ケイ素膜又は酸化窒化ケイ素膜を作製することが可能である。
さらに好ましいケイ素化合物の表面処理の方法としては、真空紫外線照射による処理が挙げられる。真空紫外線照射による処理は、ケイ素化合物内の原子間結合力より大きい100~200nmの光エネルギーを用い、好ましくは100~180nmの波長の光のエネルギーを用い、原子の結合を光量子プロセスと呼ばれる光子のみの作用により、直接切断しながら活性酸素やオゾンによる酸化反応を進行させることで、比較的低温で、表面処理を行う方法である。
これに必要な真空紫外光源としては、希ガスエキシマランプが好ましく用いられる。
Xe,Kr,Ar,Neなどの希ガスの原子は化学的に結合して分子を作らないため、不活性ガスと呼ばれる。しかし、放電などによりエネルギーを得た希ガスの原子(励起原子)は他の原子と結合して分子を作ることができる。希ガスがキセノンの場合には、
e+Xe→e+Xe*
Xe*+Xe+Xe→Xe2*+Xe
となり、励起されたエキシマ分子であるXe2*が基底状態に遷移するときに172nmのエキシマ光を発光する。エキシマランプの特徴としては、放射が一つの波長に集中し、必要な光以外がほとんど放射されないので効率が高いことが挙げられる。
蒸着層12は、C、N及びOから選ばれる少なくとも1種以上の元素含むケイ素化合物から構成され、C、N及びOの含有率が連続的に変化する構造を有する。そして、蒸着層12は、膜厚方向における蒸着層12の表面(ポリシラザン改質層13側の界面)からの距離と、上記各元素(ケイ素、炭素、窒素又は酸素)の原子量の比率(原子比)との関係を示す、各元素の分布曲線に特徴を有している。
ケイ素分布曲線、炭素分布曲線、窒素分布曲線、及び、酸素分布曲線は、蒸着層12の表面からの距離における、ケイ素の原子比、酸素の原子比、炭素の原子比、及び、窒素の原子比を示す。
また、膜厚方向における蒸着層12の表面(ポリシラザン改質層13側の界面)からの距離と、酸素と炭素との合計の原子量の比率(原子比)との関係を示す分布曲線を、酸素炭素分布曲線とする。
図2に、蒸着層12のケイ素分布曲線、酸素分布曲線、炭素分布曲線、及び、窒素分布曲線の一例を示す。また、図3に、図2に示すケイ素分布曲線、酸素分布曲線、炭素分布曲線、及び、窒素分布曲線から、炭素分布曲線を拡大して示す。図2及び図3において、横軸は、膜厚方向における蒸着層12の表面からの距離[nm]を示す。また、縦軸は、ケイ素、酸素及び炭素の各元素の合計量に対する、ケイ素、酸素、炭素又は窒素のそれぞれの原子比[at%]を示す。
なお、ケイ素分布曲線、酸素分布曲線、炭素分布曲線、及び、窒素分布曲線の測定方法の詳細については後述する。
上述のように、蒸着層12は、厚さ方向において傾斜状に組成が変化するため、厚さ方向において組成変化に依存した屈折率の分布を有す。蒸着層12は、屈折率分布において1つ以上の極値を持つことが好ましい。
また、上述のように炭素の原子比と酸素の原子比とにも相関関係があることから、酸素の原子比及び分布曲線を制御することにより、蒸着層12の屈折率分布曲線を制御することができる。
蒸着層12は、上述の連続的な組成変化に加えて、さらに、ケイ素、酸素及び炭素の原子比、又は、各元素の分布曲線が、以下(i)~(iii)の条件を満たすことが好ましい。
(酸素の原子比)>(ケイ素の原子比)>(炭素の原子比)・・・(1)
で表される条件を満たす。
または、ケイ素の原子比、酸素の原子比及び炭素の原子比が、蒸着層12の膜厚の90%以上の領域において下記式(2):
(炭素の原子比)>(ケイ素の原子比)>(酸素の原子比)・・・(2)
で表される条件を満たす。
蒸着層12は、炭素分布曲線が少なくとも1つの極値を有することが好ましい。このような蒸着層12においては、炭素分布曲線が少なくとも2つの極値を有することがより好ましく、少なくとも3つの極値を有することが特にさらに好ましい。さらに、炭素分布曲線が少なくとも1つの極大値と、1つの極小値とを有することが好ましい。
また、蒸着層12が3つ以上の極値を有する場合には、炭素分布曲線の有する1つの極値と、この極値に隣接する他の極値とは、蒸着層12の表面からの膜厚方向の距離の差が、200nm以下であることが好ましく、100nm以下であることがより好ましい。
蒸着層12において、分布曲線の極値とは、蒸着層12の膜厚方向における、蒸着層12の表面からの距離に対する元素の原子比の極大値又は極小値、又はその値に対応した屈折率分布曲線の測定値である。
炭素分布量と屈折率は相関があり、上記の好ましい炭素原子の最大値と最小値の絶対値が7at%以上のときに、得られる屈折率の最大値と最小値との差の絶対値は0.2以上になる。
蒸着層12は、酸素分布曲線が少なくとも1つの極値を有することが好ましい。特に、蒸着層12は、酸素分布曲線が少なくとも2つの極値を有することがより好ましく、少なくとも3つの極値を有することがさらに好ましい。さらに、酸素分布曲線が少なくとも1つの極大値と、1つの極小値とを有することが好ましい。
また、蒸着層12が3つ以上の極値を有する場合には、酸素分布曲線の有する1つの極値と、この極値に隣接する他の極値とは、蒸着層12の表面からの膜厚方向の距離の差が、200nm以下であることが好ましく、100nm以下であることがより好ましい。
蒸着層12は、ケイ素分布曲線において、ケイ素の原子比の最大値と最小値との差の絶対値が、5at%未満であることが好ましい。また、このような蒸着層12においては、ケイ素の原子比の最大値と最小値との差の絶対値が4at%未満であることがより好ましく、さらに3at%未満であることが好ましい。ケイ素の原子比の最大値と最小値との差が上記範囲以上では、得られる蒸着層12の屈折率分布曲線から配光性が不十分となる。
また、蒸着層12において、ケイ素原子と酸素原子と炭素原子との合計量に対する、酸素原子と炭素原子との合計量の比率を、酸素炭素分布曲線とする。
蒸着層12は、酸素炭素分布曲線において、酸素及び炭素の合計原子比の最大値と最小値との差の絶対値が、5at%未満であることが好ましく、4at%未満であることがより好ましく、3at%未満であることが特に好ましい。
酸素及び炭素の合計原子比の最大値と最小値との差が上記範囲以上では、得られる蒸着層12の屈折率分布曲線から配光性が不十分となる。
上述のケイ素分布曲線、酸素分布曲線、炭素分布曲線、酸素炭素分布曲線、及び、窒素分布曲線は、X線光電子分光法(XPS:Xray Photoelectron Spectroscopy)の測定と、アルゴン等の希ガスイオンスパッタとを併用することにより、試料内部を露出させつつ順次表面組成分析を行う、いわゆるXPSデプスプロファイル測定により作成することができる。XPSデプスプロファイル測定により得られる分布曲線は、例えば、縦軸を各元素の原子比(単位:at%)とし、横軸をエッチング時間(スパッタ時間)として作成することができる。
XPSデプスプロファイル測定には、エッチングイオン種としてアルゴン(Ar+)を用いた希ガスイオンスパッタ法を採用し、エッチング速度(エッチングレート)を0.05nm/sec(SiO2熱酸化膜換算値)とすることが好ましい。
また、ケイ素分布曲線、酸素分布曲線及び炭素分布曲線において、ケイ素の原子比、酸素の原子比及び炭素の原子比が、蒸着層12の膜厚の90%以上の領域において上記式(1)で表される条件を満たすことが好ましい。この場合には、蒸着層12中におけるケイ素原子、酸素原子及び炭素原子の合計量に対する、ケイ素原子の含有量の原子比率は、25~45at%であることが好ましく、30~40at%であることがより好ましい。
さらに、蒸着層12中におけるケイ素原子、酸素原子及び炭素原子の合計量に対する、炭素原子の含有量の原子比率は、3~33at%であることが好ましく、3~25at%であることがより好ましい。
蒸着層12の厚さは、5~3000nmの範囲であることが好ましく、10~2000nmの範囲であることがより好ましく、100~1000nmの範囲であることが特に好ましい。蒸着層12の厚さが上記範囲を外れると、蒸着層12の配光性が不十分となる。
また、蒸着層12を複数の層から形成する場合には、蒸着層12の全体の厚さが10~10000nmの範囲であり、10~5000nmの範囲であることが好ましく、100~3000nmの範囲であることがより好ましく、200~2000nmの範囲であることが特に好ましい。
蒸着層12は、基材11との間にプライマーコート層、ヒートシール性樹脂層、接着剤層等を備えていてもよい。プライマーコート層は、基材11と蒸着層12との接着性を向上させることが可能な公知のプライマーコート剤を用いて形成することができる。また、ヒートシール性樹脂層は、適宜公知のヒートシール性樹脂を用いて形成することができる。さらに、接着剤層は、適宜公知の接着剤を用いて形成することができ、このような接着剤層により複数の蒸着層12を接着させてもよい。
ガスバリアフィルム10においては、蒸着層12がプラズマ化学気相成長(プラズマCVD,PECVD)法により形成された層であることが好ましい。プラズマ化学気相成長法により形成される蒸着層12としては、基材11を一対の成膜ロール上に配置し、この一対の成膜ロール間に放電してプラズマを発生させるプラズマ化学気相成長法で形成された層であることがより好ましい。プラズマ化学気相成長法はペニング放電プラズマ方式のプラズマ化学気相成長法であってもよい。また、一対の成膜ロール間に放電する際には、一対の成膜ロールの極性を交互に反転させることが好ましい。
蒸着層12は、連続的な成膜プロセスにより形成された層であることが好ましい。
蒸着層12は、上述のように生産性の観点からロールツーロール方式で基材11の表面上に形成されることが好ましい。プラズマ化学気相成長法により蒸着層12を製造できる装置としては、特に制限されないが、少なくとも一対の成膜ロールと、プラズマ電源とを備え、且つ、成膜ロール間において放電することが可能な構成となっている装置であることが好ましい。
さらに、成膜ロール36及び成膜ロール37としては、公知のロールを用いることができる。成膜ロール36及び37としては、より効率よく薄膜を形成するという観点から、同一の直径のロールを使うことが好ましい。また、成膜ロール36及び37の直径としては、放電条件、チャンバーのスペース等の観点から、5~100cmの範囲とすることが好ましい。
蒸着層12の形成に用いる成膜ガス中の原料ガスとしては、形成する蒸着層12の材質に応じて適宜選択して使用することができる。原料ガスとしては、例えばケイ素を含有する有機ケイ素化合物を用いることができる。有機ケイ素化合物としては、例えば、ヘキサメチルジシロキサン、1,1,3,3-テトラメチルジシロキサン、ビニルトリメチルシラン、メチルトリメチルシラン、ヘキサメチルジシラン、メチルシラン、ジメチルシラン、トリメチルシラン、ジエチルシラン、プロピルシラン、フェニルシラン、ビニルトリエトキシシラン、ビニルトリメトキシシラン、テトラメトキシシラン、テトラエトキシシラン、フェニルトリメトキシシラン、メチルトリエトキシシラン、オクタメチルシクロテトラシロキサン等が挙げられる。これらの有機ケイ素化合物の中でも、成膜での取り扱い及び得られる蒸着層12の配光性等の特性の観点から、ヘキサメチルジシロキサン、1,1,3,3-テトラメチルジシロキサンを用いることが好ましい。また、これらの有機ケイ素化合物は、1種を単独で又は2種以上を組み合わせて使用することができる。
原料ガスとしてヘキサメチルジシロキサン、反応ガスとして酸素を含有する成膜ガスをプラズマCVDにより反応させて、ケイ素-酸素系の薄膜を作製する場合、成膜ガスにより下記反応式(1):
(CH3)6Si2O+12O2→6CO2+9H2O+2SiO2 ・・・(1)
の反応が起こり、二酸化ケイ素が生成される。この反応において、ヘキサメチルジシロキサン1モルを完全酸化するのに必要な酸素量は12モルである。このため、成膜ガス中に、ヘキサメチルジシロキサン1モルに対して、酸素を12モル以上含有させて完全に反応させた場合には、均一な二酸化ケイ素膜が形成されてしまう。このため、原料のガス流量比を、理論比である完全反応の原料比以下の流量に制御して、非完全反応を遂行させる。つまり、ヘキサメチルジシロキサン1モルに対して酸素量を化学量論比の12モルより少ない量にする必要がある。
真空チャンバー内の圧力(真空度)は、原料ガスの種類等に応じて適宜調整することができるが、0.5Pa~100Paの範囲とすることが好ましい。
上述のプラズマCVD法において、成膜ロール36、37間に放電するために、プラズマ発生用電源39に接続された電極ドラムに印加する電力は、原料ガスの種類や真空チャンバー内の圧力等に応じて適宜調整することができる。例えば、0.1~10kWの範囲とすることが好ましい。印加電力が下限未満ではパーティクルが発生し易くなる傾向にある。他方、上限を超えると成膜時に発生する熱量が多くなり、成膜時の基材表面の温度が上昇してしまい、基材11が熱負けして成膜時に皺が発生してしまう。
なお、本例において、電極ドラムは、成膜ロール36、37に設置されている。
基材11と蒸着層12との間には、平滑層が形成されていてもよい。平滑層は突起等が存在する基材11の粗面を平坦化し、或いは、基材11に存在する突起により、蒸着層12に生じた凹凸やピンホールを埋めて平坦化するために設けられる。このような平滑層は、基本的には感光性樹脂を硬化させて形成される。
光重合開始剤としては、例えば、ベンゾフェノン、o-ベンゾイル安息香酸メチル、4,4-ビス(ジメチルアミン)ベンゾフェノン、4,4-ビス(ジエチルアミン)ベンゾフェノン、α-アミノ・アセトフェノン、4,4-ジクロロベンゾフェノン、4-ベンゾイル-4-メチルジフェニルケトン、ジベンジルケトン、フルオレノン、2,2-ジエトキシアセトフェノン、2,2-ジメトキシ-2-フェニルアセトフェノン、2-ヒドロキシ-2-メチルプロピオフェノン、p-tert-ブチルジクロロアセトフェノン、チオキサントン、2-メチルチオキサントン、2-クロロチオキサントン、2-イソプロピルチオキサントン、ジエチルチオキサントン、ベンジルジメチルケタール、ベンジルメトキシエチルアセタール、ベンゾインメチルエーテル、ベンゾインブチルエーテル、アントラキノン、2-tert-ブチルアントラキノン、2-アミルアントラキノン、β-クロルアントラキノン、アントロン、ベンズアントロン、ジベンズスベロン、メチレンアントロン、4-アジドベンジルアセトフェノン、2,6-ビス(p-アジドベンジリデン)シクロヘキサン、2,6-ビス(p-アジドベンジリデン)-4-メチルシクロヘキサノン、2-フェニル-1,2-ブタジオン-2-(o-メトキシカルボニル)オキシム、1-フェニル-プロパンジオン-2-(o-エトキシカルボニル)オキシム、1,3-ジフェニル-プロパントリオン-2-(o-エトキシカルボニル)オキシム、1-フェニル-3-エトキシ-プロパントリオン-2-(o-ベンゾイル)オキシム、ミヒラーケトン、2-メチル[4-(メチルチオ)フェニル]-2-モノフォリノ-1-プロパン、2-ベンジル-2-ジメチルアミノ-1-(4-モノフォリノフェニル)-ブタノン-1、ナフタレンスルホニルクロライド、キノリンスルホニルクロライド、n-フェニルチオアクリドン、4,4-アゾビスイソブチロニトリル、ジフェニルジスルフィド、ベンズチアゾールジスルフィド、トリフェニルホスフィン、カンファーキノン、四臭素化炭素、トリブロモフェニルスルホン、過酸化ベンゾイン、エオシン、メチレンブルー等の光還元性の色素とアスコルビン酸、トリエタノールアミン等の還元剤の組み合わせ等が挙げられ、これらの光重合開始剤を1種又は2種以上の組み合わせで使用することができる。
平滑層の形成では、上述の感光性樹脂に、必要に応じて、酸化防止剤、紫外線吸収剤、可塑剤等の添加剤を加えることができる。また、平滑層の積層位置に関係なく、いずれの平滑層においても、成膜性向上及び膜のピンホール発生防止等のために適切な樹脂や添加剤を使用してもよい。
表面粗さは、AFM(原子間力顕微鏡)を用いて測定された、微細な凹凸の振幅に関する粗さである。この表面粗さは、AFMの極小の先端半径の触針を持つ検出器によって、数十μmの区間内を多数回測定し、この連続測定した凹凸の断面曲線から算出される。
平滑層には、添加剤が含まれていてもよい。平滑層に含まれる添加剤としては、感光性樹脂の表面に光重合反応性を有する感光性基が導入された反応性シリカ粒子(以下、単に「反応性シリカ粒子」ともいう)が好ましい。
なお、上記効果をより得やすくするためには、平均粒子径を0.001~0.01μmの範囲をすることが好ましい。平滑層中には、上述の様な無機粒子を質量比として20%以上60%以下含有することが好ましい。20%以上添加することで、基材11と蒸着層12との密着性が向上する。また、60%を超えると、フィルムを湾曲させたり、加熱処理を行った場合にクラックが生じたり、蒸着層12の透明性や屈折率等の光学的物性に影響を及ぼすことがある。
加水分解性シリル基としては、例えば、アルコキシリル基、アセトキシリル基等のカルボキシリレートシリル基、クロロシリル基等のハロゲン化シリル基、アミノシリル基、オキシムシリル基、ヒドリドシリル基等が挙げられる。
重合性不飽和基としては、アクリロイルオキシ基、メタクリロイルオキシ基、ビニル基、プロペニル基、ブタジエニル基、スチリル基、エチニイル基、シンナモイル基、マレート基、アクリルアミド基等が挙げられる。
このような無機粒子としては、シリカ、アルミナ、タルク、クレイ、炭酸カルシウム、炭酸マグネシウム、硫酸バリウム、水酸化アルミニウム、二酸化チタン、酸化ジルコニウム等の1種又は2種以上を併せて使用することができる。
蒸着層12には、ブリードアウト防止層を設けることができる。ブリードアウト防止層は、平滑層を有するフィルム状の基材11を加熱した際に、基材11中から未反応のオリゴマー等が表面へ移行して、基材11の表面を汚染する現象を抑制するために、平滑層を有する基材の反対面に設けられる。ブリードアウト防止層は、この機能を有していれば、基本的に平滑層と同じ構成をとっても構わない。
この熱可塑性樹脂としては、アセチルセルロース、ニトロセルロース、アセチルブチルセルロース、エチルセルロース、メチルセルロース等のセルロース誘導体、酢酸ビニル及びその共重合体、塩化ビニル及びその共重合体、塩化ビニリデン及びその共重合体等のビニル系樹脂、ポリビニルホルマール、ポリビニルブチラール等のアセタール系樹脂、アクリル樹脂及びその共重合体、メタクリル樹脂及びその共重合体等のアクリル系樹脂、ポリスチレン樹脂、ポリアミド樹脂、線状ポリエステル樹脂、ポリカーボネート樹脂等が挙げられる。
ポリシラザン改質層13は、蒸着層12の表面の凹凸を平滑化するために設けられる層であり、蒸着層12上に形成された光透過性の層である。このポリシラザン改質層13は、ポリシラザン含有液の塗布膜に改質処理を施して形成された層であることが好ましい。この改質層は、主にケイ素酸化物又は酸化窒化ケイ素化合物から形成されている。
ポリシラザン含有液の塗布膜は、基材上に少なくとも1層にポリシラザン化合物を含有する塗布液を塗布することにより形成される。
ポリシラザン含有液の塗布膜は、改質処理前又は処理中に水分が除去されていることが好ましい。そのために、ポリシラザン塗布膜中の溶媒を取り除く目的の第一工程と、それに続くポリシラザン塗布膜中の水分を取り除く目的の第二工程に分かれていることが好ましい。
ポリシラザン改質層13の含水量は以下の分析方法で検出できる。
装置:HP6890GC/HP5973MSD
オーブン:40℃(2min)、その後、10℃/minの速度で150℃まで昇温
カラム:DB-624(0.25mmid×30m)
注入口:230℃
検出器:SIM m/z=18
HS条件:190℃・30min
改質処理前、又は改質中に水分が除去されることでシラノールに転化したポリシラザンの脱水反応を促進するために好ましい形態である。
改質処理は、ポリシラザンの転化反応に基づく公知の方法を選ぶことができる。シラザン化合物の置換反応による酸化ケイ素膜又は酸化窒化ケイ素膜の作製には450℃以上の高温が必要であり、プラスチック等のフレキシブル基板においては適応が難しい。プラスチック基板への適応のためには、より低温で転化反応が可能なプラズマやオゾンや紫外線を使う転化反応が好ましい。
具体的には、上述の蒸着層12の表面処理に用いる方法と、同様の方法を適用することができる。樹脂フィルム基板への適応のためには、より低温で転化反応が可能なプラズマやオゾンや紫外線を使う転化反応が好ましい。特に、希ガスエキシマランプを用いた真空紫外線照射による改質処理が好ましい。
ポリシラザン改質層13の表面の表面粗さ(Ra)は、2nm以下であり、さらに好ましくは1nm以下である。表面粗さが上記範囲にあることで、有機EL素子用の樹脂基材として使用する際に、凹凸が少ない平滑な膜面による光透過効率の向上と、電極間リーク電流の低減によるエネルギー変換効率が向上するので好ましい。ポリシラザン改質層13の表面粗さ(Ra)は以下の方法で測定することができる。
ポリシラザン改質層13の表面の表面粗さ(Ra)は、例えば、塗布によりポリシラザン塗布膜を形成する場合、ポリシラザン塗布膜を構成する塗布液を塗布した後に、溶媒や水分を均一に取り除く条件で乾燥させることで、2nm以下とすることが可能になる。さらに、塗布液の濃度及び粘度、塗布速度の最適化、レベリング剤の選択等によりポリシラザン改質層13の表面の表面粗さ(Ra)を2nm以下にすることが可能になる。
表面粗さは、AFM(原子間力顕微鏡)、例えば、Digital Instruments社製DI3100で、極小の先端半径の触針を持つ検出器で連続測定した凹凸の断面曲線から算出され、極小の先端半径の触針により測定方向が数十μmの区間内を多数回測定し、微細な凹凸の振幅に関する粗さである。
上述のガスバリアフィルム10は、表面改質処理により、蒸着層12の表面が親水性になる。このため、蒸着層12上に、ポリシラザンを形成する工程において、ポリシラザン含有液の塗布性が向上し、ポリシラザン改質層13と蒸着層12との接着性が向上する。さらに、表面改質処理により蒸着層12表面に形成された親水基により、ポリシラザン改質層13との接着性が向上する。
次に、ガスバリアフィルム10の製造方法について説明する。ガスバリアフィルム10は、上述のガスバリアフィルム10の実施形態において説明した、各構成の形成方法を用いて作製することができる。
次に、基材11上に蒸着層12を形成する。蒸着層12は、炭素(C)、窒素(N)、及び、酸素(O)から選ばれる少なくとも1種以上の元素と共に、ケイ素化合物を含む原料ガスを用いて蒸着法により形成する。具体例としては、上述の図5に示す、プラズマCVDロールコーター装置を用いて、ロールツーロール方式で形成することが好ましい。
このとき、炭素(C)、窒素(N)、及び、酸素(O)から選ばれる少なくとも1種以上の元素を含む原料ガスの供給量を制御することにより、傾斜状の組成変化を有するケイ素化合物を堆積させる。
ポリシラザン改質層13の形成は、上述のように、ポリシラザン含有液を塗布する工程と、塗布膜中の溶媒及び水分を取り除く工程と、ポリシラザン塗布膜を改質処理する工程とにより行う。
さらに、乾燥処理や低湿度環境下で溶媒や水分を除去した後、ポリシラザン含有塗布膜の改質処理を行う。この改質処理は、上述の蒸着層12の表面処理と同じ方法を用いてもよく、また、異なる方法を用いてもよい。好ましくは、希ガスエキシマランプを用いた、真空紫外線照射による処理を行う。
[有機エレクトロルミネッセンス素子の構成]
有機エレクトロルミネッセンス素子(以下有機EL素子と記す)の具体的な実施の形態について説明する。
図6に、本実施形態の有機EL素子の概略構成図(断面図)を示す。図6に示すように、有機EL素子20は、基材11、蒸着層12、ポリシラザン改質層13、第1電極24、有機機能層25、第2電極26、封止樹脂層27、及び、封止部材28を備える。
有機EL素子20において、ガスバリアフィルム10は上述の第1実施形態と同じ構成を適用することができる。
ガスバリアフィルム10を構成する基材11としては、可撓性の基材、特に透明樹脂フィルムを用いることが好ましい。
蒸着層12は、蒸着法により形成された、炭素(C)、窒素(N)、及び、酸素(O)から選ばれる少なくとも1種以上の元素を含むケイ素化合物である。また、蒸着層12を構成するケイ素化合物は、表面から深さ方向(厚さ方向)において、傾斜状に組成が変化する特徴を有している。さらに、この蒸着層12の表面は、ポリシラザン改質層13との接着性を向上するための改質処理が行われている。
ポリシラザン改質層13は、ポリシラザン化合物成膜を含有する塗布液を塗布後、改質処理を行うことにより、ケイ素酸化物又は酸化窒化ケイ素化合物を含有する層であることが好ましい。
(第1電極)
有機EL素子20は、第1電極24が実質的なアノードとなる。有機EL素子20は、第1電極24を透過して基材11側から光を取り出す、ボトミエミッション型の素子である。このため、第1電極24は、透光性の導電層により形成される必要がある。
また、第1電極24の下部、すなわち、ポリシラザン改質層13と第1電極24の間にも、必要に応じた層を設けた構成としてもよい。例えば、第1電極24の特性向上や、形成を容易にするための下地層等を形成してもよい。
また、第1電極24は、上記銀を主成分とする以外の構成としてもよい。例えば、他の金属や合金、ITO、酸化亜鉛、酸化スズ等の各種の透明導電性物質薄膜を用いてもよい。
第2電極26は、有機機能層25に電子を供給するためのカソードとして機能する電極層であり、金属、合金、有機又は無機の導電性化合物、及びこれらの混合物が用いられる。具体的には、金、アルミニウム、銀、マグネシウム、リチウム、マグネシウム/銅混合物、マグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、インジウム、リチウム/アルミニウム混合物、希土類金属、ITO、ZnO、TiO2、SnO2等の酸化物半導体等が挙げられる。
有機機能層25は、アノードである第1電極24の上部に[正孔注入層25a/正孔輸送層25b/発光層25c/電子輸送層25d/電子注入層25e]をこの順に積層した構成を例示できるが、このうち少なくとも有機材料を用いて構成された発光層25cを有することが必要である。正孔注入層25a及び正孔輸送層25bは、正孔輸送性と正孔注入性とを有する正孔輸送/注入層として設けられてもよい。電子輸送層25d及び電子注入層25eは、電子輸送性と電子注入性とを有する単一層として設けられてもよい。また、これらの有機機能層25のうち、例えば電子注入層25eは無機材料で構成されている場合もある。
発光層25cは、発光材料として例えば燐光発光化合物が含有されている。
この発光層25cは、電極又は電子輸送層25dから注入された電子と、正孔輸送層25bから注入された正孔とが再結合して発光する層であり、発光する部分は発光層25cの層内であっても発光層25cにおける隣接する層との界面であってもよい。
発光層25cに含有されるホスト化合物としては、室温(25℃)における燐光発光の燐光量子収率が0.1未満の化合物が好ましい。さらに、燐光量子収率が0.01未満である化合物が好ましい。また、ホスト化合物は、発光層25cに含有される化合物の中で、層中での体積比が50%以上であることが好ましい。
本実施形態の有機エレクトロルミネッセンス素子に用いることのできる発光材料としては、燐光発光性化合物(燐光性化合物、燐光発光材料ともいう)が挙げられる。
蛍光発光材料としては、クマリン系色素、ピラン系色素、シアニン系色素、クロコニウム系色素、スクアリウム系色素、オキソベンツアントラセン系色素、フルオレセイン系色素、ローダミン系色素、ピリリウム系色素、ペリレン系色素、スチルベン系色素、ポリチオフェン系色素、又は希土類錯体系蛍光体等が挙げられる。
注入層とは、駆動電圧低下や発光輝度向上のために電極と発光層25cの間に設けられる層のことで、「有機EL素子とその工業化最前線(1998年11月30日エヌ・ティー・エス社発行)」の第2編第2章「電極材料」(123~166頁)に詳細に記載されており、正孔注入層25aと電子注入層25eとがある。
正孔輸送層25bは、正孔を輸送する機能を有する正孔輸送材料からなり、広い意味で正孔注入層25a、電子阻止層も正孔輸送層25bに含まれる。正孔輸送層25bは単層又は複数層設けることができる。
電子輸送層25dは、電子を輸送する機能を有する材料からなり、広い意味で電子注入層25e、正孔阻止層(図示せず)も電子輸送層25dに含まれる。電子輸送層25dは単層構造又は複数層の積層構造として設けることができる。
阻止層は、上述のように有機化合物薄膜の基本構成層の他に、必要に応じて設けられる。例えば、特開平11-204258号公報、同11-204359号公報、及び「有機EL素子とその工業化最前線(1998年11月30日エヌ・ティー・エス社発行)」の237頁等に記載されている正孔阻止(ホールブロック)層がある。
封止部材28は、有機EL素子20を覆うものであって、板状(フィルム状)の封止部材28が封止樹脂層27によって基材11側に固定される。この封止部材28は、少なくとも有機機能層25を覆う状態で設けられ、有機EL素子20及び第2電極26の端子部分(図示省略)を露出させる状態で設けられている。また封止部材28に電極を設け、有機EL素子20の有機EL素子20及び第2電極26の端子部分と、この電極とを導通させるように構成されていてもよい。
封止部材28を基材11側に固定するための封止樹脂層27は、封止部材28と基材11とで挟持された有機EL素子20の封止に用いられる。このような基材11上に形成された有機EL素子を封止材料で被覆する構造は固体封止されている構造として例示される。封止樹脂層27は、例えば、アクリル酸系オリゴマー若しくはメタクリル酸系オリゴマーの反応性ビニル基を有する、光硬化性又は熱硬化性の接着剤、或いは、エポキシ系等の熱硬化性又は化学硬化性(二液混合)の接着剤、ホットメルト型のポリアミド、ポリエステル、ポリオレフィン、カチオン硬化タイプの紫外線硬化性エポキシ樹脂による接着剤が挙げられる。
また、接着剤として、上記した接着剤を2種以上混合したものを用いてもよいし、熱硬化性および紫外線硬化性をともに備えた接着剤を用いてもよい。
以上説明した有機EL素子20は、上述のプラズマCVD法により形成された、ケイ素、酸素及び炭素を含み、各元素の分布曲線が上記(i)~(iii)の条件を満たす蒸着層を備えることにより、基材と封止部材との密着性を向上させることができる。
上記蒸着層は、ケイ素、酸素及び炭素を含む無機膜から形成され、熱拡散性に優れる特性を有する。特に、炭素を含むことにより、ケイ素と酸素のみからなる無機膜よりも熱導電率が向上すると考えられる。厚さ方向に炭素含有率の分布を有することから、組成の異なる複数の層が厚さ方向に積層された構成と、類似の特性を有すると推測することができる。つまり、積層された無機膜中に、炭素の含有により熱拡散性に優れた層が介在することにより、この層による面方向への熱拡散性が向上する。このため、蒸着層に熱拡散性に優れる特性が得られると考えられる。
従って、固体封止時に、封止樹脂層を硬化させるための処理をした際に、樹脂フィルム等の可撓性基材への損傷を抑制することができる。特に、封止樹脂層に熱硬化性樹脂を用いて、硬化処理として長時間の高温処理を行った場合においても、有機EL素子にかかる熱を蒸着層が放散することにより、可撓性基材への熱ダメージを緩和することができる。
上述した各構成の有機エレクトロルミネッセンス素子は、上述したように面発光体であるため各種の発光光源として用いることができる。例えば、家庭用照明や車内照明などの照明装置、時計や液晶用のバックライト、看板広告用照明、信号機の光源、光記憶媒体の光源、電子写真複写機の光源、光通信処理機の光源、光センサーの光源等が挙げられる。また、これらの発光光源に限定されず、その他の光源としても用いることができる。
特に、カラーフィルタと組み合わせた液晶表示装置のバックライト、照明用光源としての用途に有効に用いることができる。
試料101~108の各有機EL素子を、発光領域の面積が5cm×5cmとなるように作製した。下記表1には試料101~108の各有機EL素子における各層の構成を示す。
試料101の作製において、まず、透明な2軸延伸ポリエチレンナフタレートフィルムの基材上に蒸着層とポリシラザン改質層とを形成し、この上に下記化合物118からなる下地層と、銀からなる導電層を形成して、透光性電極を作製した。さらに、透光性電極上に、有機機能層と、対向電極とを形成した後、封止樹脂層と封止部材により固体封止し、試料101の有機EL素子を作製した。
基材を上述の図5に示す蒸着層の製造装置に装着して、下記成膜条件(プラズマCVD条件)にて、基材上に蒸着層を300nmの厚さで作製した。
原料ガス(HMDSO)の供給量:100sccm(Standard Cubic Centimeter per Minute)
酸素ガス(O2)の供給量:500sccm
真空チャンバー内の真空度:3Pa
プラズマ発生用電源からの印加電力:1.2kW
プラズマ発生用電源の周波数:80kHz
フィルムの搬送速度:0.5m/min
形成した蒸着層を、エキシマ照射装置MECL-M-1-200(株式会社エム・ディ・コム製)の稼動ステージ上に固定し、下記の処理条件で表面処理を行い、蒸着層を構成するケイ素化合物の改質処理を行った。
照射波長:172nm
ランプ封入ガス:Xe
エキシマランプ光強度:130mW/cm2(172nm)
試料と光源の距離:1mm
ステージ加熱温度:70℃
照射装置内の酸素濃度:1.0%
エキシマランプ照射時間:1秒
次に、表面処理が行われた蒸着層上に、ポリシラザン改質層を形成した。
まず、ポリシラザン含有液として、パーヒドロポリシラザン(アクアミカ NN120-10、無触媒タイプ、AZエレクトロニックマテリアルズ(株)製)の10質量%ジブチルエーテル溶液を作製した。
次に、基材上に、ポリシラザン含有液を、ワイヤレスバーにて、乾燥後の平均膜厚が300nmとなるように塗布し、温度85℃、湿度55%RHの雰囲気下で1分間処理して乾燥させた。更に、温度25℃、湿度10%RH(露点温度-8℃)の雰囲気下に10分間保持し、除湿処理を行って、ポリシラザン塗布膜を形成した。
照射波長:172nm
ランプ封入ガス:Xe
エキシマランプ光強度:130mW/cm2(172nm)
試料と光源の距離:1mm
ステージ加熱温度:70℃
照射装置内の酸素濃度:0.5%
エキシマランプ照射時間:5秒
次に、ポリシラザン改質層までを形成した基材を、市販の真空蒸着装置の基材ホルダーに固定し、化合物118をタングステン製の抵抗加熱ボートに入れ、これら基材ホルダーと加熱ボートとを真空蒸着装置の第1真空槽内に取り付けた。また、タングステン製の抵抗加熱ボートに銀(Ag)を入れ、真空蒸着装置の第2真空槽内に取り付けた。
次に、下地層まで形成した基材を真空のまま第2真空槽に移し、第2真空槽を4×10-4Paまで減圧した後、銀の入った加熱ボートを通電して加熱した。これにより、蒸着速度0.1nm/秒~0.2nm/秒で厚さ8nmの銀からなる第1電極を形成した。
引き続き、市販の真空蒸着装置を用い、真空度1×10-4Paまで減圧した後、基材を移動させながら化合物HT-1を、蒸着速度0.1nm/秒で蒸着し、20nmの正孔輸送層(HTL)を設けた。
次に、化合物A-3(青色発光ドーパント)、化合物A-1(緑色発光ドーパント)、化合物A-2(赤色発光ドーパント)及び化合物H-1(ホスト化合物)を、化合物A-3が膜厚に対し線形に35重量%から5重量%になるように場所により蒸着速度を変化させ、化合物A-1と化合物A-2は膜厚に依存することなく各々0.2重量%の濃度になるように、蒸着速度0.0002nm/秒で、化合物H-1は64.6重量%から94.6重量%になるように場所により蒸着速度を変化させて、厚さ70nmになるよう共蒸着して発光層を形成した。
その後、化合物ET-1を膜厚30nmに蒸着して電子輸送層を形成し、更にフッ化カリウム(KF)を厚さ2nmで形成した。更に、アルミニウム110nmを蒸着して第2電極を形成した。
なお、上記化合物118、化合物HT-1、化合物A-1~3、化合物H-1、及び、化合物ET-1は、以下に示す化合物である。
次に、封止部材として厚さ25μmのアルミ箔を使用し、このアルミ箔の片面に封止樹脂層として熱硬化型のシート状接着剤(エポキシ系樹脂)を厚さ20μmで貼り付けた封止部材を用いて、第2電極までを作製した試料に重ね合わせた。このとき、第1電極及び第2電極の引き出し電極の端部が外に出るように、封止部材の接着剤形成面と、素子の有機機能層面とを連続的に重ね合わせた。
以上の工程により、試料101の有機EL素子を作製した。
第1電極として、ITO電極をスパッタ成膜で100nm形成した以外は、試料101と同様の方法で試料102の有機EL素子を作製した。
蒸着層の表面処理条件を、下記条件のUV処理に変更した以外は、試料102と同様の方法で試料103の有機EL素子を作製した。
(UV照射による表面処理)
形成した蒸着層を、紫外照射装置UVH-0252C(株式会社ウシオ製)の稼動ステージ上に固定した試料を、以下の条件で表面処理を行った。
UV光強度:2000mW/cm2
試料と光源の距離:30mm
ステージ加熱温度:40℃
照射装置内の酸素濃度:5%
UV照射時間:180秒
蒸着層を形成する条件を、下記条件に変更した以外は、試料101と同様の方法で試料104の有機EL素子を作製した。
基材を上述の図5に示す蒸着層の製造装置に装着して、下記製膜条件(プラズマCVD条件)にて、基材上に蒸着層を300nmの厚さで作製した。
原料ガス(HMDSO)の供給量:50sccm(Standard Cubic Centimeter per Minute)
酸素ガス(O2)の供給量:500sccm
真空チャンバー内の真空度:3Pa
プラズマ発生用電源からの印加電力:1.2kW
プラズマ発生用電源の周波数:80kHz
フィルムの搬送速度:0.5m/min
蒸着層の表面処理条件を、下記条件のエキシマ処理に変更した以外は、試料104と同様の方法で試料105の有機EL素子を作製した。
形成した蒸着層を、エキシマ照射装置MECL-M-1-200(株式会社エム・ディ・コム製)の稼動ステージ上に固定し、下記の条件で表面処理を行い、蒸着層を構成するケイ素化合物の改質処理を行った。
照射波長:172nm
ランプ封入ガス:Xe
エキシマランプ光強度:130mW/cm2(172nm)
試料と光源の距離:1mm
ステージ加熱温度:70℃
照射装置内の酸素濃度:1.0%
エキシマランプ照射時間:3秒
ポリシラザン改質層を形成せずに有機EL素子を形成した以外は、試料104と同様の方法で試料106の有機EL素子を作製した。この素子では、蒸着層上に下地層が形成されている。
蒸着層の表面処理を行わなかったことを除き、試料104と同様の方法で試料107の有機EL素子を作製した。この素子では、蒸着法により蒸着層を形成した後、ケイ素化合物に表面処理を行わずに、ポリシラザン改質層を形成した。
蒸着層を形成する条件を、下記条件に変更した以外は、試料101と同様の方法で試料108の有機EL素子を作製した。
基材を市販のロールツーロール形態の大気圧プラズマ放電処理装置に装着して、下記成膜条件(大気圧プラズマCVD:AGP)にて、基材上に第1蒸着層、第2蒸着層、第3蒸着層からなる3層構成の蒸着層を形成した。第1蒸着層、第2蒸着層、及び、第3蒸着層の厚みは、それぞれ100nm、30nm、30nmの合計160nmで作製した。
放電ガス :N2ガス
反応ガス1:水素ガスを全ガスに対し1%
反応ガス2:TEOS(テトラエトキシシラン)を全ガスに対し0.5%
成膜条件 ;
第1電極側 電源種類:応用電機製 80kHz
周波数 :80kHz
出力密度:8W/cm2
電極温度:115℃
第2電極側 電源種類:パール工業製 13.56MHz CF-5000-13M
周波数 :13.56MHz
出力密度:10W/cm2
電極温度:95℃
放電ガス :N2ガス
反応ガス1:酸素ガスを全ガスに対し5%
反応ガス2:TEOSを全ガスに対し0.1%
成膜条件 ;
第1電極側 電源種類:ハイデン研究所 100kHz(連続モード) PHF-6k
周波数 :100kHz
出力密度:10W/cm2
電極温度:120℃
第2電極側 電源種類:パール工業製 13.56MHz CF-5000-13M
周波数 :13.56MHz
出力密度:10W/cm2
電極温度:95℃
放電ガス :N2ガス
反応ガス1:水素ガスを全ガスに対し1%
反応ガス2:TEOSを全ガスに対し0.5%
成膜条件 ;
第1電極側 電源種類:応用電機製 80kHz
周波数 :80kHz
出力密度:8W/cm2
電極温度:120℃
第2電極側 電源種類:パール工業製 13.56MHz CF-5000-13M
周波数 :13.56MHz
出力密度:10W/cm2
電極温度:100℃
(蒸着層:組成変化)
試料101、試料104及び試料108の蒸着層について、ケイ素分布曲線、炭素分布曲線、窒素分布曲線、及び、酸素分布曲線を測定した。各元素の分布曲線は、X線光電子分光法と、アルゴン等の希ガスイオンスパッタ法とを併用し、試料内部を露出させつつ順次表面組成分析を行う、XPSデプスプロファイル測定により測定した。
試料101について測定した分布曲線を図7に示す。また、試料104について測定した分布曲線を図8に示す。
分光放射輝度計CS-1000(コニカミノルタセンシング社製)を用いて、試料101~108の有機EL素子の正面輝度及び輝度角度依存性を測定し、正面輝度1000cd/m2における電力効率を評価した。なお、電極効率の評価は、試料101の電力効率を100とする相対値で比較し、下記の5段階に分類、評価した。
5:110以上
4:91~109
3:80~90
2:80以下
1:70以下
有機EL素子を室温下、500μA/cm2流れる順電圧とその逆電圧による電流値を3回測定し、その平均値より整流比を算出した。整流比が高いほどリーク特性に優れていることを表す。評価結果(5段階評価)を表2に示す。
整流比のランク
5:整流比10000以上(非常に安定して駆動している水準)
4:整流比1000以上10000未満(安定に駆動している水準)
3:整流比500以上1000未満(わずかに劣位だが、実技上問題のない水準)
2:整流比100以上500未満(劣位、実技上問題のある水準)
1:整流比100未満(非常に劣位、実技上問題のある水準)
試料101~108の有機EL素子を60℃、90%RHの環境下で通電を行い、ダークスポットの発生等の発光ムラの状況を、0日から120日までの変化を観察した。観測された各試料の発光ムラを下記の5段階に分類し、評価した。
5:0日目でダークスポット、輝度ムラは観察されず、120日経過後に非発光領域が全発光面積の0.1%以下で、発生したダークスポットは全て目視では容易に観察できない大きさ(0.1mm径以下)であった。
4:0日目で発生したダークスポットは、全て目視では容易に観察できない大きさ(0.1mm以下)であり、輝度ムラは観察されず、120日経過後に非発光領域が全発光面積の0.2%以下で、発生したダークスポットは目視では容易に観察できない大きさ(0.1mm以下)を維持した。
3:0日目で発生したダークスポットは、全て目視では容易に観察できない大きさ(0.1mm以下)であり、120日経過後に非発光領域が全発光面積の2%を超えた。
2:0日目に目視で判別可能なダークスポット、輝度ムラが観察され、120日経過後に非発光領域が全発光面積の2%を超えた。
1:0日目に目視で判別可能なダークスポット、輝度ムラの非発光領域が全発光面積の1%を超えて観察され、120日以内に非発光領域が全発光面積の10%を超えた。
以上の評価結果(5段階評価)を表2に示す。
試料101~108の有機EL素子のダークスポットについて、屈曲前後のダークスポットの変化を確認するために、あらかじめ、半径10mmの曲率になるように、180度の角度で100回屈曲を繰り返し処理した後に、上記保存性試験と同様の条件で保持した。各試料の発光ムラを、上述の保存性と同様の基準で、5段階に分類、評価した。
以上の評価結果(5段階評価)を表2に示す。
試料101~108の有機EL素子の蒸着層について、表面改質前と表面改質後の表面の水接触角を測定した。接触角は、全自動接触角計DM-901(協和界面科学株式会社製)を用いて、30mm×30mmの面積を3mmおきに計121点測定した。表面改質前と表面改質後とについて、得られた測定値から平均を求め、平均接触角(°)とした。
また、得られた測定値の平均から、測定値の変動を以下のように分類した。評価結果(5段階評価)を表2に示す。
5:測定値の100点以上が平均値±5%以内に含まれる
4:測定値の100点以上が平均値±10%以内に含まれる
3:測定値の100点以上が平均値±20%以内に含まれる
2:測定値の100点以上が平均値±30%以内に含まれる
1:測定値の100点以上が平均値±40%以内に含まれる
(組成変化)
本実施例では、蒸着層を構成するケイ素化合物の組成変化を、炭素の原子比の変化により表している。図7及び図8に示す結果から、試料101は、表面から30nmの厚さで、3%以上の組成変化を有している。試料107は、表面から15nmの厚さで、10%以上の組成変化を有している。
蒸着層の組成が、表面から30nmの厚さで3%以上変化している試料101~103では、第1電極をAgで形成した試料101の発光効率が最も高い。
また、表面処理を、エキシマ処理で行った試料101、試料102は、表面処理をUV処理で行った試料103よりも、表面処理後の接触角が小さい。接触角の減少は、蒸着層の表面が親水性となっていることを示している。
この結果から、蒸着層の表面の親水性が高くなることにより、有機EL素子の保存性が向上することがわかる。
また、表面処理が行われていない試料107では、蒸着層とポリシラザン改質層との接着性が低いため、試料104に比べて保存性が低下している。
蒸着層が組成変化を有していない試料108では、試料107と同様に、蒸着層とポリシラザン改質層との接着性が低いため、試料104に比べてリーク特性や保存性が低下している。
Claims (11)
- 基材と、
炭素(C)、窒素(N)、及び、酸素(O)から選ばれる少なくとも1種以上の元素を含み、表面から厚さ方向に向けて連続的な組成変化を有し、且つ、表面処理されているケイ素化合物の蒸着層と、
ポリシラザン改質層と、を備える、
ガスバリアフィルム。 - 前記蒸着層の組成変化が、表面から深さ30nmの領域において、5%以上である請求項1に記載のガスバリアフィルム。
- 前記蒸着層の組成変化が、表面から深さ15nmの領域において、10%以上である請求項1に記載のガスバリアフィルム。
- 前記蒸着層が、希ガスエキシマランプを用いた真空紫外線照射により改質されている請求項1に記載のガスバリアフィルム。
- 前記蒸着層が、厚さ方向の屈折率分布に少なくとも1つ以上の極値を有する請求項1に記載のガスバリアフィルム。
- 基材上に、炭素(C)、窒素(N)、及び、酸素(O)から選ばれる少なくとも1種以上の元素を含み、表面から厚さ方向に向けて連続的な組成変化を有する蒸着層を形成する工程と、
前記蒸着層の表面処理を行う工程と、
表面処理後の前記蒸着層上に、ポリシラザン改質層を形成する工程と、を有する
ガスバリアフィルムの製造方法。 - 前記蒸着層の表面処理が、希ガスエキシマランプを用いた真空紫外線照射である請求項6に記載のガスバリアフィルムの製造方法。
- 前記ポリシラザン改質層を形成する工程は、前記蒸着層にシラザン化合物を含む塗布液を塗布する工程と、前記シラザン化合物を含む塗布膜を改質処理する工程とを有する請求項6に記載のガスバリアフィルムの製造方法。
- 基材と、炭素(C)、窒素(N)、及び、酸素(O)から選ばれる少なくとも1種以上の元素を含み、表面から厚さ方向に向けて連続的な組成変化を有し、且つ、表面処理されているケイ素化合物の蒸着層と、ポリシラザン改質層とを有するガスバリアフィルムと、
対となる電極と、
前記電極間に少なくとも1層の発光層を有する有機機能層と、を備える、
有機エレクトロルミネッセンス素子。 - 前記電極の少なくとも一方が、銀を主成分とする請求項9に記載の有機エレクトロルミネッセンス素子。
- 前記基材と、前記基材に封止樹脂層で接合された封止部材とによって固体封止されている請求項10に記載の有機エレクトロルミネッセンス素子。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015505446A JPWO2014142036A1 (ja) | 2013-03-11 | 2014-03-07 | ガスバリアフィルム、ガスバリアフィルムの製造方法、及び、有機エレクトロルミネッセンス素子 |
CN201480012546.7A CN105026141A (zh) | 2013-03-11 | 2014-03-07 | 气体阻隔膜、气体阻隔膜的制造方法、及有机电致发光元件 |
US14/772,251 US9640780B2 (en) | 2013-03-11 | 2014-03-07 | Gas barrier film, method for producing gas barrier film, and organic electroluminescent element |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013048381 | 2013-03-11 | ||
JP2013-048381 | 2013-03-11 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014142036A1 true WO2014142036A1 (ja) | 2014-09-18 |
Family
ID=51536695
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/056065 WO2014142036A1 (ja) | 2013-03-11 | 2014-03-07 | ガスバリアフィルム、ガスバリアフィルムの製造方法、及び、有機エレクトロルミネッセンス素子 |
Country Status (4)
Country | Link |
---|---|
US (1) | US9640780B2 (ja) |
JP (1) | JPWO2014142036A1 (ja) |
CN (1) | CN105026141A (ja) |
WO (1) | WO2014142036A1 (ja) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015029795A1 (ja) * | 2013-08-30 | 2015-03-05 | コニカミノルタ株式会社 | ガスバリア性フィルムの製造方法 |
KR20150135521A (ko) * | 2013-03-29 | 2015-12-02 | 린텍 가부시키가이샤 | 가스 배리어성 적층체, 전자 디바이스용 부재 및 전자 디바이스 |
JP2016064647A (ja) * | 2014-09-08 | 2016-04-28 | 住友化学株式会社 | 積層フィルムおよびフレキシブル電子デバイス |
WO2016132901A1 (ja) * | 2015-02-19 | 2016-08-25 | コニカミノルタ株式会社 | ガスバリアーフィルム及びその製造方法 |
WO2017104799A1 (ja) * | 2015-12-17 | 2017-06-22 | 信越化学工業株式会社 | サファイア複合基材とその製造方法 |
JP2020024980A (ja) * | 2018-08-06 | 2020-02-13 | 日本放送協会 | 有機薄膜および有機薄膜の製造方法、有機エレクトロルミネッセンス素子およびその製造方法、表示装置、照明装置、有機薄膜太陽電池、薄膜トランジスタ |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102946832B (zh) * | 2010-06-18 | 2015-08-19 | 花王株式会社 | 发热器 |
US9359527B2 (en) * | 2013-01-11 | 2016-06-07 | Konica Minolta, Inc. | Gas barrier film |
JP6111171B2 (ja) * | 2013-09-02 | 2017-04-05 | 東京エレクトロン株式会社 | 成膜方法及び成膜装置 |
US9978812B2 (en) * | 2014-01-14 | 2018-05-22 | Sharp Kabushiki Kaisha | Organic electroluminescent display panel |
JP2016031889A (ja) * | 2014-07-30 | 2016-03-07 | 株式会社ジャパンディスプレイ | 表示装置、及びその製造方法 |
CN104733647B (zh) * | 2015-03-10 | 2016-08-24 | 京东方科技集团股份有限公司 | 薄膜封装方法及薄膜封装结构、显示装置 |
JP2017182892A (ja) | 2016-03-28 | 2017-10-05 | セイコーエプソン株式会社 | 発光素子、発光装置、及び電子機器 |
JPWO2018021021A1 (ja) * | 2016-07-28 | 2019-05-09 | コニカミノルタ株式会社 | ガスバリア性膜、これを用いたガスバリア性フィルム、およびこれらを用いた電子デバイス、ならびにガスバリア性膜の製造方法 |
KR102008184B1 (ko) * | 2016-11-11 | 2019-08-07 | 삼성에스디아이 주식회사 | 유기발광소자 봉지용 조성물 및 이로부터 제조된 유기발광소자 표시장치 |
KR102230817B1 (ko) * | 2017-11-28 | 2021-03-23 | 주식회사 엘지화학 | 배리어 필름 |
CN111224010B (zh) * | 2019-11-05 | 2022-03-29 | 武汉华星光电半导体显示技术有限公司 | 覆盖窗结构及oled显示装置 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008235165A (ja) * | 2007-03-23 | 2008-10-02 | Konica Minolta Holdings Inc | 透明導電膜を有するロール状樹脂フィルムの製造方法 |
JP2009252739A (ja) * | 2008-04-10 | 2009-10-29 | Samsung Electronics Co Ltd | 傾斜組成封止薄膜およびその製造方法 |
JP2012084307A (ja) * | 2010-10-08 | 2012-04-26 | Sumitomo Chemical Co Ltd | 有機el装置 |
JP2012084353A (ja) * | 2010-10-08 | 2012-04-26 | Sumitomo Chemical Co Ltd | 有機エレクトロルミネッセンス素子 |
JP2012106421A (ja) * | 2010-11-18 | 2012-06-07 | Konica Minolta Holdings Inc | ガスバリアフィルムの製造方法、ガスバリアフィルム及び電子機器 |
JP2013226758A (ja) * | 2012-04-26 | 2013-11-07 | Konica Minolta Inc | ガスバリア性フィルムの製造方法 |
JP2014083691A (ja) * | 2012-10-19 | 2014-05-12 | Konica Minolta Inc | ガスバリアーフィルム及びガスバリアーフィルムの製造方法 |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3214587B2 (ja) * | 1993-12-24 | 2001-10-02 | 東洋紡績株式会社 | ガスバリアフィルム |
EP2011639A4 (en) * | 2006-04-21 | 2012-03-07 | Konica Minolta Holdings Inc | GASSPERRFILM, HARZBASIS FOR ELECTROLUMINESCENCE DEVICE, THIS USING ELECTROLUMINESCENCE DEVICE AND METHOD FOR PRODUCING A GASPERRFILM |
WO2012014653A1 (ja) * | 2010-07-27 | 2012-02-02 | コニカミノルタホールディングス株式会社 | ガスバリア性フィルム、ガスバリア性フィルムの製造方法及び電子デバイス |
WO2012046767A1 (ja) * | 2010-10-08 | 2012-04-12 | 住友化学株式会社 | 積層フィルム |
JP5880442B2 (ja) * | 2010-11-19 | 2016-03-09 | コニカミノルタ株式会社 | ガスバリア性フィルム、ガスバリア性フィルムの製造方法及び電子デバイス |
EP2650121A4 (en) * | 2010-12-06 | 2014-05-07 | Konica Minolta Inc | GASPERRFILM, METHOD FOR THE PRODUCTION OF GASPERRFILMS AND ELECTRONIC DEVICE |
EP2660041B1 (en) * | 2010-12-27 | 2015-06-17 | Konica Minolta, Inc. | Gas-barrier film and electronic device |
KR101452680B1 (ko) * | 2011-06-27 | 2014-10-22 | 코니카 미놀타 가부시키가이샤 | 가스 배리어성 필름, 가스 배리어성 필름의 제조 방법 및 전자 디바이스 |
-
2014
- 2014-03-07 JP JP2015505446A patent/JPWO2014142036A1/ja active Pending
- 2014-03-07 US US14/772,251 patent/US9640780B2/en active Active
- 2014-03-07 WO PCT/JP2014/056065 patent/WO2014142036A1/ja active Application Filing
- 2014-03-07 CN CN201480012546.7A patent/CN105026141A/zh active Pending
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008235165A (ja) * | 2007-03-23 | 2008-10-02 | Konica Minolta Holdings Inc | 透明導電膜を有するロール状樹脂フィルムの製造方法 |
JP2009252739A (ja) * | 2008-04-10 | 2009-10-29 | Samsung Electronics Co Ltd | 傾斜組成封止薄膜およびその製造方法 |
JP2012084307A (ja) * | 2010-10-08 | 2012-04-26 | Sumitomo Chemical Co Ltd | 有機el装置 |
JP2012084353A (ja) * | 2010-10-08 | 2012-04-26 | Sumitomo Chemical Co Ltd | 有機エレクトロルミネッセンス素子 |
JP2012106421A (ja) * | 2010-11-18 | 2012-06-07 | Konica Minolta Holdings Inc | ガスバリアフィルムの製造方法、ガスバリアフィルム及び電子機器 |
JP2013226758A (ja) * | 2012-04-26 | 2013-11-07 | Konica Minolta Inc | ガスバリア性フィルムの製造方法 |
JP2014083691A (ja) * | 2012-10-19 | 2014-05-12 | Konica Minolta Inc | ガスバリアーフィルム及びガスバリアーフィルムの製造方法 |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018171929A (ja) * | 2013-03-29 | 2018-11-08 | リンテック株式会社 | ガスバリア性積層体、電子デバイス用部材及び電子デバイス |
KR20150135521A (ko) * | 2013-03-29 | 2015-12-02 | 린텍 가부시키가이샤 | 가스 배리어성 적층체, 전자 디바이스용 부재 및 전자 디바이스 |
KR102267093B1 (ko) | 2013-03-29 | 2021-06-18 | 린텍 가부시키가이샤 | 가스 배리어성 적층체, 전자 디바이스용 부재 및 전자 디바이스 |
JPWO2014157685A1 (ja) * | 2013-03-29 | 2017-02-16 | リンテック株式会社 | ガスバリア性積層体、電子デバイス用部材及び電子デバイス |
JP2019107906A (ja) * | 2013-03-29 | 2019-07-04 | リンテック株式会社 | ガスバリア性積層体、電子デバイス用部材及び電子デバイス |
WO2015029795A1 (ja) * | 2013-08-30 | 2015-03-05 | コニカミノルタ株式会社 | ガスバリア性フィルムの製造方法 |
JP2016064647A (ja) * | 2014-09-08 | 2016-04-28 | 住友化学株式会社 | 積層フィルムおよびフレキシブル電子デバイス |
JPWO2016132901A1 (ja) * | 2015-02-19 | 2017-11-30 | コニカミノルタ株式会社 | ガスバリアーフィルム及びその製造方法 |
WO2016132901A1 (ja) * | 2015-02-19 | 2016-08-25 | コニカミノルタ株式会社 | ガスバリアーフィルム及びその製造方法 |
WO2017104799A1 (ja) * | 2015-12-17 | 2017-06-22 | 信越化学工業株式会社 | サファイア複合基材とその製造方法 |
US11001036B2 (en) | 2015-12-17 | 2021-05-11 | Shin-Etsu Chemical Co., Ltd. | Sapphire composite base material and method for producing the same |
JP2020024980A (ja) * | 2018-08-06 | 2020-02-13 | 日本放送協会 | 有機薄膜および有機薄膜の製造方法、有機エレクトロルミネッセンス素子およびその製造方法、表示装置、照明装置、有機薄膜太陽電池、薄膜トランジスタ |
JP7108493B2 (ja) | 2018-08-06 | 2022-07-28 | 日本放送協会 | 有機薄膜および有機薄膜の製造方法、有機エレクトロルミネッセンス素子およびその製造方法、表示装置、照明装置、有機薄膜太陽電池、薄膜トランジスタ |
Also Published As
Publication number | Publication date |
---|---|
JPWO2014142036A1 (ja) | 2017-02-16 |
CN105026141A (zh) | 2015-11-04 |
US20160035999A1 (en) | 2016-02-04 |
US9640780B2 (en) | 2017-05-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2014142036A1 (ja) | ガスバリアフィルム、ガスバリアフィルムの製造方法、及び、有機エレクトロルミネッセンス素子 | |
JP6274199B2 (ja) | 有機エレクトロルミネッセンス素子及び照明装置 | |
WO2015083660A1 (ja) | 有機エレクトロルミネッセンス素子 | |
US10074825B2 (en) | Organic electroluminescent element | |
US20150303398A1 (en) | Translucent electrode, and electronic device | |
JP5895684B2 (ja) | ガスバリア性フィルムの製造方法、および前記ガスバリア性フィルムを用いた電子デバイスの製造方法 | |
WO2016143660A1 (ja) | 有機エレクトロルミネッセンス素子 | |
JP5835083B2 (ja) | 有機エレクトロニクスデバイス | |
JP6070411B2 (ja) | ガスバリアー性フィルム、ガスバリアー性フィルムの製造方法及び有機エレクトロルミネッセンス素子 | |
WO2017056635A1 (ja) | 有機エレクトロルミネッセンス素子 | |
WO2016063869A1 (ja) | 光取り出し基板、光取り出し基板の製造方法、有機エレクトロルミネッセンス素子、及び、有機エレクトロルミネッセンス素子の製造方法 | |
JPWO2016208237A1 (ja) | ガスバリアフィルム、透明導電部材、及び、有機エレクトロルミネッセンス素子、並びに、ガスバリアフィルムの製造方法、透明導電部材の製造方法、及び、有機エレクトロルミネッセンス素子の製造方法。 | |
JP6424513B2 (ja) | 有機エレクトロルミネッセンス素子 | |
WO2014185392A1 (ja) | 有機エレクトロルミネッセンス素子 | |
WO2014126063A1 (ja) | 有機エレクトロルミネッセンス素子、及び、有機エレクトロルミネッセンス素子の製造方法 | |
WO2014148595A1 (ja) | 有機エレクトロルミネッセンス素子及び照明装置 | |
WO2015178245A1 (ja) | 有機エレクトロルミネッセンス素子 | |
CN108293279B (zh) | 发光装置 | |
JP6477468B2 (ja) | 有機エレクトロルミネッセンス素子 | |
JP2016170879A (ja) | 有機エレクトロルミネッセンス素子 | |
WO2014208449A1 (ja) | 有機エレクトロルミネッセンス素子及びその製造方法 | |
JPWO2015115175A1 (ja) | 有機エレクトロルミネッセンス素子及びその製造方法 | |
JP2016054097A (ja) | 有機エレクトロルミネッセンス素子、及び、基板 | |
JP2016190442A (ja) | ガスバリアフィルム、透明導電部材、及び、有機エレクトロルミネッセンス素子 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201480012546.7 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14764843 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2015505446 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14772251 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 14764843 Country of ref document: EP Kind code of ref document: A1 |