WO2017104799A1 - サファイア複合基材とその製造方法 - Google Patents

サファイア複合基材とその製造方法 Download PDF

Info

Publication number
WO2017104799A1
WO2017104799A1 PCT/JP2016/087542 JP2016087542W WO2017104799A1 WO 2017104799 A1 WO2017104799 A1 WO 2017104799A1 JP 2016087542 W JP2016087542 W JP 2016087542W WO 2017104799 A1 WO2017104799 A1 WO 2017104799A1
Authority
WO
WIPO (PCT)
Prior art keywords
single crystal
substrate
sapphire
crystal sapphire
film
Prior art date
Application number
PCT/JP2016/087542
Other languages
English (en)
French (fr)
Inventor
和寿 永田
芳宏 久保田
Original Assignee
信越化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 信越化学工業株式会社 filed Critical 信越化学工業株式会社
Priority to CN201680073809.4A priority Critical patent/CN108367973A/zh
Priority to KR1020187019063A priority patent/KR102544665B1/ko
Priority to JP2017556463A priority patent/JP6644374B2/ja
Priority to US16/062,707 priority patent/US11001036B2/en
Priority to EP16875773.0A priority patent/EP3392221B1/en
Publication of WO2017104799A1 publication Critical patent/WO2017104799A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/1055Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer
    • B32B17/10761Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer containing vinyl acetal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/10009Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the number, the constitution or treatment of glass sheets
    • B32B17/10036Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the number, the constitution or treatment of glass sheets comprising two outer glass sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/10009Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the number, the constitution or treatment of glass sheets
    • B32B17/10082Properties of the bulk of a glass sheet
    • B32B17/10119Properties of the bulk of a glass sheet having a composition deviating from the basic composition of soda-lime glass, e.g. borosilicate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/1055Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer
    • B32B17/10798Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer containing silicone
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/02Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by a sequence of laminating steps, e.g. by adding new layers at consecutive laminating stations
    • B32B37/025Transfer laminating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/12Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by using adhesives
    • B32B37/1284Application of adhesive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/14Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers
    • B32B37/16Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers with all layers existing as coherent layers before laminating
    • B32B37/18Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers with all layers existing as coherent layers before laminating involving the assembly of discrete sheets or panels only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B38/00Ancillary operations in connection with laminating processes
    • B32B38/0036Heat treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/22Surface treatment of glass, not in the form of fibres or filaments, by coating with other inorganic material
    • C03C17/23Oxides
    • C03C17/27Oxides by oxidation of a coating previously applied
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/28Surface treatment of glass, not in the form of fibres or filaments, by coating with organic material
    • C03C17/32Surface treatment of glass, not in the form of fibres or filaments, by coating with organic material with synthetic or natural resins
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C21/00Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface
    • C03C21/001Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface in liquid phase, e.g. molten salts, solutions
    • C03C21/002Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface in liquid phase, e.g. molten salts, solutions to perform ion-exchange between alkali ions
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C27/00Joining pieces of glass to pieces of other inorganic material; Joining glass to glass other than by fusing
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/16Oxides
    • C30B29/20Aluminium oxides
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B31/00Diffusion or doping processes for single crystals or homogeneous polycrystalline material with defined structure; Apparatus therefor
    • C30B31/20Doping by irradiation with electromagnetic waves or by particle radiation
    • C30B31/22Doping by irradiation with electromagnetic waves or by particle radiation by ion-implantation
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B33/00After-treatment of single crystals or homogeneous polycrystalline material with defined structure
    • C30B33/04After-treatment of single crystals or homogeneous polycrystalline material with defined structure using electric or magnetic fields or particle radiation
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B33/00After-treatment of single crystals or homogeneous polycrystalline material with defined structure
    • C30B33/06Joining of crystals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/20Inorganic coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/24Organic non-macromolecular coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/26Polymeric coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2305/00Condition, form or state of the layers or laminate
    • B32B2305/72Cured, e.g. vulcanised, cross-linked
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/584Scratch resistance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2315/00Other materials containing non-metallic inorganic compounds not provided for in groups B32B2311/00 - B32B2313/04
    • B32B2315/08Glass
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/20Displays, e.g. liquid crystal displays, plasma displays
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T156/00Adhesive bonding and miscellaneous chemical manufacture
    • Y10T156/10Methods of surface bonding and/or assembly therefor
    • Y10T156/1052Methods of surface bonding and/or assembly therefor with cutting, punching, tearing or severing
    • Y10T156/1056Perforating lamina
    • Y10T156/1057Subsequent to assembly of laminae

Definitions

  • the present invention relates to a composite substrate in which a single crystal sapphire film is provided on the surface of a glass material, and relates to a composite substrate mainly used for a display or the like.
  • Sapphire is a material that has Mohs hardness next to diamond, and is used for windshields of high-end watches or displays such as mobile phones because of its durability, that is, the property that it is not easily scratched in everyday environments.
  • glass is inferior in hardness to sapphire, it is generally hard, transparent to visible light, and has been used for various industrial applications because of its good chemical resistance and surface slipperiness. Glass also has the property that fragments are likely to scatter when broken. For this reason, for example, laminated glass formed by sandwiching a resin film between a pair of glass plates is used in applications such as window glass for traffic vehicles such as automobiles and window glass for buildings. In general, laminated glass has glass and resin firmly adhered to each other, so that it is difficult for scattering and dropping to occur at the time of breakage, and characteristics can be imparted by a resin sandwiched between the glass plates. Attempts have also been made (Patent Document 1).
  • An object of the present invention is to provide a sapphire composite base material that is low in cost, hardly scratches on its surface, and hardly scatters when damaged, and a method for producing the same.
  • the present inventors have provided a sapphire film on an inorganic glass substrate via an intermediate film.
  • a sapphire composite substrate was found. That is, according to one aspect, the present invention provides a sapphire composite substrate comprising an inorganic glass substrate, an intermediate film of polyvinyl butyral or silica on the inorganic glass substrate, and a single crystal sapphire film on the intermediate film. can do.
  • a step of implanting hydrogen ions from the surface of the single crystal sapphire substrate to form an ion implantation layer inside the single crystal sapphire substrate, and an ion implantation of the single crystal sapphire substrate Polyvinyl butyral or silica precursor on at least one surface selected from the group consisting of the surface before the ion implantation, the ion-implanted surface of the single crystal sapphire substrate, and the surface of the inorganic glass substrate to be bonded to the single crystal sapphire substrate
  • Bonding the surface of the inorganic glass substrate to be bonded together to obtain a bonded body; and Peeled along on injection layer, through said intermediate layer comprises at least a step of transferring the single crystal sapphire film to the inorganic glass substrate, it is possible to provide a method of manufacturing a sapphire composite substrate.
  • the single crystal sapphire film is provided on the inorganic glass substrate through the intermediate film, it is possible to obtain a sapphire composite base material that has good bondability and is difficult to be scattered when damaged. Moreover, the single crystal sapphire substrate after separating the single crystal sapphire film on the inorganic glass substrate can be used again for the production of the sapphire composite base material, and the cost can be reduced. Furthermore, since the obtained sapphire composite base material has sapphire on its surface, the surface is hardly scratched and is suitable for display protection applications.
  • a sapphire composite substrate comprising an inorganic glass substrate, an intermediate film of polyvinyl butyral or silica on the inorganic glass substrate, and a single crystal sapphire film on the intermediate film can be provided.
  • the inorganic glass substrate examples include soda lime glass, borosilicate glass, or chemically strengthened glass.
  • soda lime glass in order to reduce warpage when bonded to a single crystal sapphire substrate, 5 ⁇ 10 ⁇ 6 / ° C. or more at 20 to 400 ° C., which is a temperature region where the difference in thermal expansion coefficient from sapphire is small.
  • a substrate of soda-lime glass, borosilicate glass or chemically tempered glass having an expansion coefficient of ⁇ 10 ⁇ 5 / ° C. or less is preferred.
  • the inorganic glass substrate may be a single substrate composed of the above-mentioned one type or a combination of two or more types described above.
  • the shape of the inorganic glass substrate is not particularly limited, but may be, for example, a wafer having a diameter of 2 to 8 inches or a square plate having a side of 2 to 8 inches.
  • the thickness of the inorganic glass substrate is not particularly limited, but may be 50 to 1000 ⁇ m.
  • the intermediate film is a polyvinyl butyral or silica film.
  • Polyvinyl butyral or silica is suitable as the intermediate film because the bonding strength between the single crystal sapphire substrate and the inorganic glass substrate is improved by passing the intermediate film.
  • the intermediate film is at least one layer, and may be, for example, two or more layers.
  • the intermediate film preferably has a thickness of 0.1 to 2 ⁇ m when it is a single-layer film and its total thickness when it is a film of two or more layers.
  • Polyvinyl butyral (hereinafter PVB) is poly [(2-propyl-1,3-dioxane-4,6-diyl) methylene] (— [(C 7 O 2 H 12 ) —CH 2 ] n—).
  • the polyvinyl butyral film is formed by, for example, a coating method.
  • ESREC KS-5 manufactured by Sekisui Chemical Co., Ltd.
  • Sekisui Chemical Co., Ltd. can be used.
  • Silica is represented by SiO 2 , and the silica film is formed, for example, by forming a film of perhydropolysilazane that is a silica precursor by a coating method and heating to convert the perhydropolysilazane into silica.
  • Examples of commercially available perhydropolysilazane include Tresmile (manufactured by Sanwa Chemical Co., Ltd.).
  • the method for forming the intermediate film is not particularly limited, but the coating method is preferable as described above.
  • the coating method include spray coating, dip coating, spin coating, bar coating, blade coating, and casting method.
  • a solution containing polyvinyl butyral or a silica precursor can be used.
  • the solution containing polyvinyl butyral used in the coating method includes alcohols such as methanol, ethanol, isopropanol and n-butanol, aromatics such as toluene and xylene, esters such as ethyl acetate, ketones such as methyl ethyl ketone, An ether solvent such as -n-butyl ether can be used.
  • the solution containing polyvinyl butyral may contain water.
  • the concentration of polyvinyl butyral in the solution is preferably 3 to 50% by mass.
  • the solution containing polyvinyl butyral may be applied to the substrate surface, and then the solvent or the like may be removed to form an intermediate film of polyvinyl butyral.
  • the removal of the solvent is preferably performed by heating to 100 to 300 ° C.
  • the heating time is preferably 1 to 30 minutes. Heating may be performed under atmospheric pressure or under reduced pressure (1000 to 0.1 Pa).
  • the solution containing the silica precursor used in the coating method for example, when perhydropolysilazane is used as the silica precursor, an aromatic solvent such as xylene or dibutyl ether can be used as the solvent.
  • the concentration of perhydropolysilazane in the solution is preferably 1 to 30% by mass.
  • the solution containing perhydropolysilazane may contain water in the solution in order to convert to silica, or water may be added by allowing the solution to stand on a humidified condition after being applied to the substrate surface. Good.
  • the solution containing perhydropolysilazane may be applied to the substrate surface, and then heated to remove the solvent and the like, and may be converted to silica to form an intermediate film of silica.
  • the heating temperature is preferably 100 to 300 ° C. for removing the solvent and the like, and preferably 300 to 1000 ° C., more preferably 500 to 1000 ° C. for the silica conversion.
  • removal of the solvent and the like and silica conversion can be carried out preferably at a temperature rising rate of 1 to 10 ° C./min.
  • the heating time is preferably 5 to 120 minutes. Heating may be performed under atmospheric pressure or under reduced pressure (1000 to 0.1 Pa).
  • Perhydropolysilazane is an inorganic polymer having — (SiH 2 NH) — as a basic unit. When heated in the air or in an atmosphere containing water vapor, it reacts with moisture and oxygen to obtain a dense amorphous SiO 2 film. It is done. In addition, perhydropolysilazane generates ammonia as a by-product by reaction with water during silica conversion. For this reason, when silica conversion is performed using, for example, a convection type humidifying dryer, it is desirable to install an ammonia trap inside the humidifying dryer.
  • the single crystal sapphire film preferably has a thickness of 0.05 to 2 ⁇ m, more preferably 0.1 to 1 ⁇ m. If the thickness is less than 0.05 ⁇ m, the portion where structural damage due to ion implantation remains may not be removed later, and the hardness of sapphire may not be sufficiently secured. When the thickness of the single crystal sapphire film exceeds 2 ⁇ m, a high-power ion implantation apparatus is required. Further, when the thickness of the single crystal sapphire film is increased, the cost as a composite substrate is increased. Note that the portion where structural damage remains may be removed by etching or polishing with an etching solvent such as phosphoric acid or sulfuric acid to obtain a desired thickness. As will be described later, the single crystal sapphire film is preferably formed by forming an ion implantation layer in a single crystal sapphire substrate, peeling it along the ion implantation layer, and transferring it onto a desired substrate, for example.
  • a method for producing a sapphire composite substrate having a single crystal sapphire film on an inorganic glass substrate via an intermediate film can be provided.
  • the single crystal sapphire substrate is not particularly limited, but a single crystal sapphire substrate having a diameter of 2 to 8 inches and a thickness of 200 to 800 ⁇ m may be used.
  • hydrogen ions are implanted from the surface of the single crystal sapphire substrate to form an ion implantation layer inside the single crystal sapphire substrate.
  • the ion implantation layer implants a predetermined dose of hydrogen ions (H + ) or hydrogen molecular ions (H 2 + ) with an implantation energy that can form the ion implantation layer at a desired depth from the surface of the single crystal sapphire substrate. It is formed by doing.
  • the implantation energy can be set to 50 to 200 keV.
  • the amount of hydrogen molecular ion (H 2 + ) implantation is preferably 1.0 ⁇ 10 16 atoms / cm 2 or more and 2.5 ⁇ 10 17 atoms / cm 2 or less, more preferably 1.0 ⁇ 10 16 atoms / cm 2. ⁇ 2.0 ⁇ 10 17 atoms / cm 2 .
  • the ion implantation layer may not be embrittled in a later step. If it exceeds 2.5 ⁇ 10 17 atoms / cm 2 , ion implantation is performed during ion implantation. In some cases, microcavities are formed on the surface, and irregularities are formed on the substrate surface.
  • a solution containing polyvinyl butyral or a silica precursor it is heated to form an intermediate film of polyvinyl butyral or silica. That is, the order of forming the ion implantation layer and the step of forming the intermediate film may be reversed in some cases.
  • a silica intermediate film may be formed by applying a solution containing a silica precursor to the surface of the single crystal sapphire substrate and then heating. Thereafter, hydrogen ions may be implanted from the surface on which the silica intermediate film is formed to form an ion implantation layer inside the single crystal sapphire substrate.
  • surface activation treatment may be performed on at least one of the surface of the single crystal sapphire substrate on which ions are implanted and the surface of the inorganic glass substrate to be bonded to the single crystal sapphire substrate.
  • the intermediate film is formed on both substrate surfaces, at least one of both surfaces may be subjected to a surface activation treatment.
  • surface activation treatment may be performed on at least one of the surface of the intermediate film and the other substrate surface.
  • Examples of the surface activation treatment include plasma treatment, ozone water treatment, UV ozone treatment, and ion beam treatment.
  • a cleaned substrate is placed in a vacuum chamber, a plasma gas is introduced under reduced pressure (1.0 to 1.0 ⁇ 10 5 Pa), and then a high-frequency plasma of about 100 W is applied. For about 5 to 120 seconds and plasma treatment of the surface.
  • oxygen gas can be used when the surface is oxidized, and hydrogen gas, nitrogen gas, argon gas, or a mixed gas thereof can be used when the surface is not oxidized.
  • organic substances on the surface of the substrate are oxidized and removed, and OH groups on the surface are increased and activated.
  • ozone gas When processing with ozone, ozone gas can be introduced into pure water and the surface can be activated with active ozone.
  • UV ozone processing When UV ozone processing is performed, short wavelength UV light (wavelength in the atmosphere or oxygen gas) The surface can be activated by generating active ozone.
  • the ion beam treatment can be performed by exposing an ion beam of Ar or the like to the surface in a high vacuum ( ⁇ 1 ⁇ 10 ⁇ 6 Torr) to expose a dangling bond having high activity.
  • an ion-implanted surface of the single crystal sapphire substrate is bonded to the surface of the inorganic glass substrate to be bonded to the single crystal sapphire substrate through an intermediate film to obtain a joined body.
  • Bonding may be performed at room temperature. Further, after bonding, in order to increase the bonding strength, it may be further heated at 100 to 300 ° C. for 0.5 to 24 hours.
  • peeling may be caused by applying mechanical impact, light irradiation and / or heating to the ion implantation layer.
  • the method of performing peeling may be used alone or in combination.
  • the mechanical peeling is preferably by cleavage from one end to the other end.
  • a wedge-shaped member for example, a wedge (wedge) is preferably inserted into the ion implantation layer (implantation interface), and the cleavage is progressed by the deformation by the wedge, and the separation may be performed.
  • care should be taken to avoid generation of scratches and particles at the contacted portion of the wedge, and generation of substrate cracking due to excessive deformation of the substrate caused by driving the wedge.
  • a jet of a fluid such as a gas or a liquid may be sprayed continuously or intermittently from the side surface of the bonded substrate.
  • a jet of a fluid such as a gas or a liquid
  • visible light is preferable. Due to the amorphous structure near the ion implantation interface formed inside the single crystal sapphire substrate, the ion implantation layer becomes brittle and peels by a mechanism that easily absorbs visible light and easily accepts energy. It is possible. Moreover, this peeling method is preferable because it is simpler than mechanical peeling.
  • the visible light source is preferably a Rapid Thermal Annealer (RTA), a green laser light, a flash lamp light, or the like.
  • the visible light source is preferably a Rapid Thermal Annealer (RTA), a green laser light, or a flash lamp light.
  • RTA Rapid Thermal Annealer
  • the heating time is preferably 0.5 to 24 hours.
  • the heating temperature for peeling is preferably higher than the temperature for increasing the bonding strength described above. In some cases, the heating temperature for peeling may be the same as the temperature for increasing the bonding strength, and peeling may be achieved by adjusting the heating time. In this way, a sapphire composite base material that peels along the ion implantation layer of the bonded body and has a single crystal sapphire film on the inorganic glass substrate through the intermediate film can be obtained.
  • the manufacturing process of the sapphire composite base material according to the present invention is not particularly limited, but one mode thereof is shown in FIG.
  • Hydrogen ions 12 are implanted from the surface of the single crystal sapphire substrate 11 to form an ion implantation layer 13 inside the single crystal sapphire substrate 11 (step a).
  • a solution containing polyvinyl butyral or a silica precursor is applied to the surface of the inorganic glass substrate 14 to be bonded to the single crystal sapphire substrate, followed by heating to form an intermediate film 15 of polyvinyl butyral or silica (step b).
  • the surface 15 s of the inorganic glass substrate 14 to be bonded to the single crystal sapphire substrate and the surface 11 s of the single crystal sapphire substrate 11 which are ion-implanted are bonded to obtain a bonded body 17 (step c).
  • the sapphire composite substrate 18 obtained by transferring the single crystal sapphire film 11a onto the inorganic glass substrate 14 through the intermediate film 15 is obtained. (Step d).
  • FIG. 2 shows another aspect of the manufacturing process of the sapphire composite substrate according to the present invention.
  • a solution containing a silica precursor is applied to the surface of the single crystal sapphire substrate 21 and then heated to form a silica intermediate film 25.
  • Hydrogen ions 22 are implanted from the surface on which the intermediate film 25 is formed on the single crystal sapphire substrate 21 to form an ion implantation layer 23 inside the single crystal sapphire substrate 21 (step a).
  • the bonded body 27 is obtained by bonding the surface 24s of the inorganic glass substrate 24 and the surface 25s of the intermediate film on the ion-implanted single crystal sapphire substrate 21 (step c).
  • a sapphire composite substrate 28 obtained by transferring the single crystal sapphire film 21a onto the inorganic glass substrate 24 through the intermediate film 25 is obtained. (Step d).
  • Example 1 As the single crystal sapphire substrate, a substrate having a diameter of 6 inches and a thickness of 600 ⁇ m was used. H 2 + ions were implanted from the surface of the single crystal sapphire substrate at an injection amount of 150 KeV and 2.0 ⁇ 10 17 atoms / cm 2 to form an ion implantation layer inside the single crystal sapphire substrate (depth of about 500 nm). . A borosilicate glass substrate having a diameter of 6 inches and a thickness of 600 ⁇ m was used as the inorganic glass substrate.
  • Polyvinyl butyral (PVB, manufactured by Sekisui Chemical Co., Ltd., ESREC KS-5, 10% by mass) on the surface of a borosilicate glass substrate to be bonded to the ion-implanted surface of a single crystal sapphire substrate at room temperature in an air atmosphere Using an ethanol solution, a spin coater was applied. Thereafter, the film was heated at 100 ° C. for 10 minutes in an atmospheric pressure / air atmosphere to form an intermediate film (thickness 150 nm).
  • PVB Polyvinyl butyral
  • a high-frequency plasma apparatus is used to reduce the pressure (1.0 to 1.0 ⁇ 10 5 Pa) and a nitrogen atmosphere between the surface of the single crystal sapphire substrate on which the intermediate film is formed and the surface of the inorganic glass substrate on which the intermediate film is formed. Under the room temperature, plasma activation treatment was performed. Thereafter, the surfaces of the single crystal sapphire substrate and the inorganic glass substrate that had been subjected to the plasma activation treatment were brought into contact with each other at room temperature in an atmospheric pressure / air atmosphere to obtain a joined body.
  • a single crystal sapphire film is mechanically peeled off by inserting a blade into the ion implantation layer of the joined body, and the single crystal sapphire film is transferred onto the borosilicate glass substrate through the PVB film, and sapphire film / PVB / borosilicate.
  • a sapphire composite substrate made of a glass substrate was obtained.
  • the cross section of the obtained sapphire composite substrate was observed with a transmission electron microscope (TEM) (not shown). As a result, it was confirmed that the single crystal sapphire film was transferred onto the intermediate film, and the intermediate film was present as a binder between the single crystal sapphire film and the glass substrate.
  • TEM transmission electron microscope
  • Example 2 As the single crystal sapphire substrate, a substrate having a diameter of 6 inches and a thickness of 600 ⁇ m was used. H 2 + ions were implanted from the surface of the single crystal sapphire substrate at an injection amount of 150 KeV and 2.0 ⁇ 10 17 atoms / cm 2 to form an ion implantation layer inside the single crystal sapphire substrate.
  • FIG. 3 shows the results of measuring the position of the formed ion implantation layer from the substrate surface by secondary ion mass spectrometry (SIMS). With respect to the ion implantation amount, it was found that an ion implantation layer was formed at a depth of about 500 nm from the surface.
  • SIMS secondary ion mass spectrometry
  • a borosilicate glass substrate having a diameter of 6 inches and a thickness of 600 ⁇ m was used as the inorganic glass substrate.
  • Di-n-butyl ether solution of polysilazane (Sanwa Chemical Co., Ltd., Tresmile, 20% by mass) at room temperature in an air atmosphere on the surface of a borosilicate glass substrate to be bonded to the ion-implanted surface of a single crystal sapphire substrate was applied with a spin coater. After that, it was converted to silica by heating at 200 ° C. for 3 minutes under atmospheric pressure / atmosphere, and further cured by heating at 450 ° C. for 30 minutes to form an intermediate film (thickness 150 nm).
  • a high-frequency plasma apparatus is used to reduce the pressure (1.0 to 1.0 ⁇ 10 5 Pa) and a nitrogen atmosphere on the surface of the single crystal sapphire substrate on which the intermediate film is formed and on the surface of the inorganic glass substrate on which the intermediate film is formed. Under the room temperature, plasma activation treatment was performed. Thereafter, the surfaces of the single crystal sapphire substrate and the inorganic glass substrate that had been subjected to the plasma activation treatment were brought into contact with each other at room temperature in an atmospheric pressure / air atmosphere to obtain a joined body.
  • the single crystal sapphire film is mechanically peeled by inserting a blade into the ion implantation layer of the joined body, and the single crystal sapphire film is transferred onto the borosilicate glass substrate through the silica film, and the sapphire film / silica film / borosilicate A sapphire composite substrate made of an acid glass substrate was obtained.
  • the result of having observed the cross section of the obtained sapphire composite base material with the transmission electron microscope is shown in FIG.
  • the single crystal sapphire film (31a) of about 500 nm was transferred onto the inorganic glass substrate (34) through the intermediate film (35), and it was observed that the intermediate film was present as a binder.
  • the surface layer of the single crystal sapphire film (31a) remains structurally damaged by ion implantation, it may be further etched or polished with a solvent depending on the application.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Electromagnetism (AREA)
  • Ceramic Engineering (AREA)
  • Laminated Bodies (AREA)
  • Surface Treatment Of Glass (AREA)
  • Recrystallisation Techniques (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Joining Of Glass To Other Materials (AREA)

Abstract

表面にキズがつきにくく、破損時に飛散しにくいサファイア複合基材とその製造方法を提供する。具体的には、無機ガラス基板と、無機ガラス基板上のポリビニルブチラールまたはシリカの中間膜と、中間膜上の単結晶サファイア膜とを備えるサファイア複合基材である。また、単結晶サファイア基板の内部にイオン注入層を形成する工程と、単結晶サファイア基板のイオン注入をする前の前記表面、単結晶サファイア基板のイオン注入した表面、および、無機ガラス基板の表面からなる群から選ばれる少なくとも一つの表面に、ポリビニルブチラールまたはシリカの中間膜を形成する工程と、中間膜を介して、単結晶サファイア基板のイオン注入した表面と、無機ガラス基板の表面とを貼り合わせて接合体を得る工程と、中間膜を介して無機ガラス基板上に単結晶サファイア膜を転写する工程とを少なくとも含む、サファイア複合基材の製造方法である。

Description

サファイア複合基材とその製造方法
 本発明は、ガラス材料の表面に単結晶サファイア膜を設けた複合基材に関し、主としてディスプレイなどに利用される複合基材に関するものである。
 サファイアは、ダイヤモンドに次ぐモース硬度を持つ材料であり、耐久性、つまり、日常環境下においてキズがつきにくい特性から、高級時計の風防、あるいは、携帯電話などのディスプレイ用途等に利用されている。
 ガラスは、サファイアに比べて硬度は劣るものの、一般的に硬く、可視光線に対して透明であり、耐薬品性、表面滑性が良い点から、様々な産業用途に利用されている。ガラスは、また、破損時に破片が飛散しやすいという特性も有する。このため、例えば、自動車等の交通車両の窓ガラスや建築物の窓ガラス等の用途において、一対のガラス板間に樹脂膜をサンドイッチしてなる合わせガラスが採用されている。合わせガラスは、一般に、ガラスと樹脂がしっかりと接着しているため破損時に飛散や脱落が生じにくく、そのガラス板間にサンドイッチさせる樹脂によって特性を付与し得ることから、例えばさらに遮音性を付与する試みも行われている(特許文献1)。
特許第2703471号
 近年、LED用途向けに単結晶サファイア基板が大量に生産されるようになり、サファイアの工業的な製造は一般にも広く普及してきた。しかし、サファイアは、依然としてガラスと比較すると高コストな材料であり、また、その硬度から加工しにくく、ディスプレイ保護用途への応用範囲は限られていた。
 本発明の目的は、低コスト、かつ、表面にキズがつきにくく、また、破損時に飛散しにくいサファイア複合基材とその製造方法を提供することにある。
 本発明者らは、SOI(Silicon on Insulator)基板の作製に応用されているイオン注入・剥離技術に着目して鋭意検討を行った結果、中間膜を介して無機ガラス基板上にサファイア膜を備えたサファイア複合基材を見出した。
 すなわち、本発明は、一態様によれば、無機ガラス基板と、前記無機ガラス基板上のポリビニルブチラールまたはシリカの中間膜と、前記中間膜上の単結晶サファイア膜とを備えるサファイア複合基材を提供することができる。
 また、本発明は、一態様によれば、単結晶サファイア基板の表面から水素イオンを注入し、前記単結晶サファイア基板の内部にイオン注入層を形成する工程と、前記単結晶サファイア基板のイオン注入をする前の前記表面、前記単結晶サファイア基板のイオン注入した表面、および、前記単結晶サファイア基板と貼り合わせる無機ガラス基板の表面からなる群から選ばれる少なくとも一つの表面に、ポリビニルブチラールまたはシリカ前駆体を含む溶液を塗布した後に加熱して、ポリビニルブチラールまたはシリカの中間膜を形成する工程と、前記中間膜を介して、前記単結晶サファイア基板のイオン注入した表面と、前記単結晶サファイア基板と貼り合わせる無機ガラス基板の表面とを貼り合わせて接合体を得る工程と、前記接合体を前記イオン注入層に沿って剥離し、前記中間膜を介して前記無機ガラス基板上に単結晶サファイア膜を転写する工程とを少なくとも含む、サファイア複合基材の製造方法を提供することができる。
 本発明の製造方法によれば、中間膜を介して無機ガラス基板上に単結晶サファイア膜を備えるため、接合性がよく、破損時に飛散しにくいサファイア複合基材を得ることができる。また、無機ガラス基板上に単結晶サファイア膜を分離した後の単結晶サファイア基板を、再度、サファイア複合基材の製造に用いることができ、低コスト化することが可能となる。さらに、得られたサファイア複合基材は、その表面にサファイアを有するため、表面にキズがつきにくく、ディスプレイ保護用途に適している。
本発明のサファイア複合基材の製造方法の模式図である。 本発明のサファイア複合基材の製造方法の別の模式図である。 本発明の実施例2におけるH イオン注入後の単結晶サファイア基板のSIMS測定の結果図である。 本発明の実施例2におけるサファイア複合基材のTEM像である。
 以下、本発明を実施するための一例である最良の形態を詳細に説明するが、本発明の範囲はこの形態に限定されるものではない。
 本発明の一実施形態によれば、無機ガラス基板と、無機ガラス基板上のポリビニルブチラールまたはシリカの中間膜と、中間膜上の単結晶サファイア膜とを備えるサファイア複合基材を提供できる。
 無機ガラス基板としては、ソーダ石灰ガラス、ホウケイ酸ガラス、または化学強化ガラス等の基板が挙げられる。特に、単結晶サファイア基板と貼り合わせた際の反りを低減するために、サファイアとの熱膨張率の差が小さい温度領域となる20~400℃下において、5×10-6/℃以上、1×10-5/℃以下の膨張率を有するソーダ石灰ガラス、ホウケイ酸ガラスまたは化学強化ガラスの基板が好ましい。無機ガラス基板は、上記の1種からなる単一の基板であっても、上記の2種以上の組み合わせであってもよい。無機ガラス基板の形状は、特に限定するものではないが、例えば直径2~8インチのウェハであってもよいし、一辺が2~8インチの角板であってもよい。無機ガラス基板の厚さは、特に限定するものではないが、50~1000μmであってもよい。
 中間膜は、ポリビニルブチラールまたはシリカの膜である。中間膜を介することで単結晶サファイア基板と無機ガラス基板の接合強度が向上する点から、ポリビニルブチラールまたはシリカは、中間膜として好適である。中間膜は、少なくとも1層であり、例えば2以上の層であってもよい。中間膜は、1層の膜のときはその厚さが、2層以上の膜のときはそれらの合計の厚さが、0.1~2μmの厚さを有することが好ましい。
 ポリビニルブチラール(以下、PVB)は、ポリ[(2-プロピル-1,3-ジオキサン-4,6-ジイル)メチレン](-[(C12)-CH]n-)であり、ポリビニルブチラール膜は、例えば塗布法によって形成される。市販のポリビニルブチラールとしては、例えば、エスレックKS-5(積水化学工業(株)社製)等を用いることができる。
 シリカは、SiOで表され、シリカ膜は、例えば、塗布法によってシリカ前駆体であるパーヒドロポリシラザンの膜を形成し、加熱してパーヒドロポリシラザンをシリカ転化させることで形成される。市販のパーヒドロポリシラザンとしては、例えば、トレスマイル(サンワ化学(株)社製)等を用いることができる。
 中間膜の形成方法としては、特に限定するものではないが、上述のように塗布法が好ましい。塗布法としては、例えば、スプレーコーティング、ディップコーティング、スピンコーティング、バーコーティング、ブレードコーティング、およびキャスト法等が挙げられる。塗布によって中間膜を形成する場合、ポリビニルブチラールまたはシリカ前駆体を含む溶液を用いることができる。
 塗布法に用いるポリビニルブチラールを含む溶液は、メタノール、エタノール、イソプロパノール、n-ブタノールなどのアルコール系、トルエン、キシレンなどの芳香族系、酢酸エチルなどのエステル系、メチルエチルケトンなどのケトン系、および、ジ-n-ブチルエーテルなどのエーテル系の溶媒を用いることができる。場合によって、ポリビニルブチラールを含む溶液は、水を含んでいてもよい。溶液中のポリビニルブチラール濃度は、好ましくは3~50質量%である。
 ポリビニルブチラールを含む溶液は、例えば、基板表面に塗布した後に、溶媒等を除去して、ポリビニルブチラールの中間膜を形成してもよい。溶媒の除去等は、100~300℃に加熱することで行うことが好ましい。加熱時間は、好ましくは1~30分間である。加熱は、大気圧下としても減圧(1000~0.1Pa)下で行ってもよい。
 塗布法に用いるシリカ前駆体を含む溶液は、例えばシリカ前駆体にパーヒドロポリシラザンを用いる場合、溶媒としては、キシレン、ジブチルエーテルなどの芳香族系の溶媒を用いることができる。溶液中のパーヒドロポリシラザン濃度は、好ましくは1~30質量%である。パーヒドロポリシラザンを含む溶液は、また、シリカ転化させるために、溶液内に水を含んでいてもよいし、溶液を基板表面に塗布した後に加湿条件下に静置することによって水分を加えてもよい。
 パーヒドロポリシラザンを含む溶液は、例えば、基板表面に塗布した後に、加熱して溶媒等を除去し、シリカ転化させ、シリカの中間膜を形成してもよい。加熱温度は、溶媒等の除去のために、好ましくは100~300℃であり、シリカ転化のために、好ましくは300~1000℃、より好ましくは500~1000℃である。また、好ましくは1~10℃/分の昇温速度で、溶媒等の除去とシリカ転化を行うこともできる。加熱時間は、好ましくは5~120分間である。加熱は、大気圧下としても減圧(1000~0.1Pa)下で行ってもよい。パーヒドロポリシラザンは、-(SiHNH)-を基本ユニットとする無機ポリマーであり、大気中または水蒸気含有雰囲気中で加熱することにより、水分や酸素と反応して緻密なアモルファスSiO膜が得られる。また、パーヒドロポリシラザンは、シリカ転化の際に水との反応によって、副生成物としてアンモニアを発生させる。このため、シリカ転化を例えば対流型の加湿乾燥機を用いて行う場合、加湿乾燥機の内部にアンモニアトラップを設置しておくことが望ましい。
 単結晶サファイア膜は、好ましくは0.05~2μm、より好ましくは0.1~1μmの厚さを有することが好ましい。0.05μm未満だと、イオン注入による構造上のダメージが残っている部分を後に除去することができないことがあり、また、サファイアの硬度を十分に確保することができない場合がある。単結晶サファイア膜の厚さが2μmを超えるものとする場合、高出力のイオン注入装置が必要となる。また、単結晶サファイア膜の厚さが厚くなると、複合基材としてのコストが高くなる。なお、構造上のダメージが残っている部分を、例えばリン酸あるいは硫酸等のエッチング溶剤によるエッチング処理や研磨により除去して、所望の厚さとしてもよい。単結晶サファイア膜は、後述するように、好ましくは単結晶サファイア基板中にイオン注入層を形成し、イオン注入層に沿って剥離して、例えば所望の基板上に転写させることで形成する。
 本発明の別の一実施形態によれば、中間膜を介して無機ガラス基板上に単結晶サファイア膜を備えたサファイア複合基材の製造方法を提供できる。
 単結晶サファイア基板としては、特に限定するものではないが、直径2~8インチ、厚さ200~800μmの単結晶サファイア基板を用いてよい。
 まず、単結晶サファイア基板の表面から水素イオンを注入し、単結晶サファイア基板の内部にイオン注入層を形成する。イオン注入層は、単結晶サファイア基板の表面から所望の深さにイオン注入層を形成できるような注入エネルギーで、所定の線量の水素イオン(H)または水素分子イオン(H )を注入することにより形成される。このときの条件として、例えば注入エネルギーは50~200keVとすることができる。水素分子イオン(H )注入量は、好ましくは1.0×1016atoms/cm以上2.5×1017atoms/cm以下、より好ましくは1.0×1016atoms/cm~2.0×1017atoms/cmである。1.0×1016atoms/cm未満だと、後の工程でイオン注入層の脆化が起こらない場合があり、2.5×1017atoms/cmを超えると、イオン注入時にイオン注入した面においてマイクロキャビティが形成され、基板表面に凹凸が形成される場合がある。
 次に、単結晶サファイア基板のイオン注入した表面と、単結晶サファイア基板と貼り合わせる無機ガラス基板の表面との少なくとも一方に、ポリビニルブチラールまたはシリカ前駆体を含む溶液を塗布した後に加熱して、ポリビニルブチラールまたはシリカの中間膜を形成する。
 場合によって、単結晶サファイア基板のイオン注入をする前の表面、単結晶サファイア基板のイオン注入した表面、および、単結晶サファイア基板と貼り合わせる無機ガラス基板の表面からなる群から選ばれる少なくとも一つの表面に、ポリビニルブチラールまたはシリカ前駆体を含む溶液を塗布した後に加熱して、ポリビニルブチラールまたはシリカの中間膜を形成する。つまり、イオン注入層を形成する工程と中間膜を形成する工程は、場合によって、順序が逆であってもよい。例えば、単結晶サファイア基板の内部にイオン注入層を形成する前に、単結晶サファイア基板の表面に、シリカ前駆体を含む溶液を塗布した後に加熱して、シリカの中間膜を形成してもよく、その後に、シリカの中間膜を形成した表面から水素イオンを注入し、単結晶サファイア基板の内部にイオン注入層を形成してもよい。
 中間膜を形成した後に、必要に応じて、単結晶サファイア基板のイオン注入した表面と、単結晶サファイア基板と貼り合わせる無機ガラス基板の表面との少なくとも一方に、表面活性化処理を施してもよい。中間膜を両方の基板表面に形成した場合、両表面のうち少なくとも一方に、表面活性化処理を施してもよい。中間膜を両方の基板表面のうち一方のみに形成した場合、当該中間膜の表面と、他方の基板表面との少なくとも一方に、表面活性化処理を施してもよい。
 表面活性化処理の方法としては、プラズマ処理、オゾン水処理、UVオゾン処理、イオンビーム処理等が挙げられる。例えば、プラズマで処理をする場合、真空チャンバ中に洗浄した基板を載置し、プラズマ用ガスを減圧(1.0~1.0×10Pa)下で導入した後、100W程度の高周波プラズマに5~120秒程度さらし、表面をプラズマ処理する。プラズマ用ガスとしては、表面を酸化する場合には酸素ガス、酸化しない場合には水素ガス、窒素ガス、アルゴンガス、又は、これらの混合ガスを用いることができる。プラズマで処理することにより、基板表面の有機物が酸化して除去され、さらに表面のOH基が増加し活性化する。オゾンで処理をする場合は、純水中にオゾンガスを導入し、活性なオゾンで表面を活性化することができ、UVオゾン処理をする場合は、大気もしくは酸素ガスに短波長のUV光(波長195nm程度)を照射し、活性なオゾンを発生させることで表面を活性化することができる。イオンビーム処理をする場合は、高真空中(<1×10-6Torr)でAr等のイオンビームを表面に当て、活性度が高いダングリングボンドを露出させることで行うことができる。
 次に、中間膜を介して、単結晶サファイア基板のイオン注入した表面と、単結晶サファイア基板と貼り合わせる無機ガラス基板の表面とを貼り合わせて接合体を得る。貼り合わせは、室温で行ってもよい。また、貼り合わせ後に、接合強度を高めるために、好ましくは100~300℃で0.5~24時間さらに加熱してもよい。
 次に、得られた接合体を単結晶サファイア基板の内部に形成したイオン注入層に沿って剥離し、中間膜を介して無機ガラス基板上に単結晶サファイア膜を転写する。剥離を行う方法として、イオン注入層に向けて、機械的衝撃、光照射および/または加熱を与えることにより剥離を生じさせることが挙げられる。剥離を行う方法は単独で用いてもよいし、複数組み合わせて用いてもよい。
 イオン注入層に衝撃を与えて機械的剥離を行う場合、加熱に伴う熱歪、ひび割れ、貼り合わせた面の剥離等が発生するおそれがない。機械的剥離は、一端部から他端部に向かうへき開によるものが好ましい。へき開用部材として、好ましくは楔状の部材、例えば楔(くさび)をイオン注入層(注入界面)に挿入し、楔による変形でへき開を進行させて剥離する方法であってもよい。この方法の使用に際しては、楔が接触する部分での傷やパーティクルの発生や、楔を打ち込むことにより生じる基板の過大な変形による基板割れの発生を回避するように留意する。イオン注入層に衝撃を与えるためには、例えば、ガスや液体等の流体のジェットを貼り合わせた基板の側面から連続的又は断続的に吹き付ければよいが、衝撃による機械的剥離が生じる方法であれば特に限定はされない。
 光照射による剥離の場合、可視光が好ましい。単結晶サファイア基板の内部に形成されたイオン注入界面近傍がアモルファス化していることによって、可視光の吸収を受けやすく、エネルギーを選択的に受容しやすいという機構によってイオン注入層を脆化させ剥離することが可能である。また、この剥離方法は、機械的剥離よりも簡易であるため好ましい。可視光の光源は、Rapid Thermal Annealer(RTA)、グリーンレーザー光、またはフラッシュランプ光等であることが好ましい。可視光の光源は、Rapid Thermal Annealer(RTA)、グリーンレーザー光、又はフラッシュランプ光であることが好ましい。
 加熱による剥離の場合、150~500℃で加熱することが好ましい。加熱時間としては、0.5~24時間とすることが好ましい。剥離のための加熱温度は、通常、上述した接合強度を高めるための温度よりも高い温度であることが好ましい。場合によっては、剥離のための加熱温度は、接合強度を高めるための温度と同じ温度とし、加熱時間を調節することで剥離を達成させることも可能である。
 このようにして、接合体のイオン注入層に沿って剥離し、中間膜を介して無機ガラス基板上に単結晶サファイア膜を備えたサファイア複合基材を得ることができる。
 本発明にかかるサファイア複合基材の製造工程は、特に限定されるものではないが、その一態様を図1に示す。単結晶サファイア基板11の表面から水素イオン12を注入し、単結晶サファイア基板11の内部にイオン注入層13を形成する(工程a)。単結晶サファイア基板と貼り合わせる無機ガラス基板14の表面に、ポリビニルブチラールまたはシリカ前駆体を含む溶液を塗布した後に加熱し、ポリビニルブチラールまたはシリカの中間膜15を形成する(工程b)。中間膜15を形成した後の、単結晶サファイア基板と貼り合わせる無機ガラス基板14の表面15sと、単結晶サファイア基板11のイオン注入した表面11sとを貼り合わせて接合体17を得る(工程c)。接合体17のイオン注入層13に沿って単結晶サファイア基板11bを剥離することにより、中間膜15を介して無機ガラス基板14上に単結晶サファイア膜11aを転写したサファイア複合基材18を得ることができる(工程d)。
 また、本発明にかかるサファイア複合基材の製造工程の別の一態様を図2に示す。単結晶サファイア基板21の表面に、シリカ前駆体を含む溶液を塗布した後に加熱し、シリカの中間膜25を形成する。単結晶サファイア基板21上の中間膜25を形成した表面から水素イオン22を注入し、単結晶サファイア基板21の内部にイオン注入層23を形成する(工程a)。無機ガラス基板24の表面24sと、イオン注入した単結晶サファイア基板21上の中間膜の表面25sとを貼り合わせて接合体27を得る(工程c)。接合体27のイオン注入層23に沿って単結晶サファイア基板21bを剥離することにより、中間膜25を介して無機ガラス基板24上に単結晶サファイア膜21aを転写したサファイア複合基材28を得ることができる(工程d)。
 <実施例1>
 単結晶サファイア基板として、6インチ径、厚さ600μmの基板を用いた。単結晶サファイア基板の表面からH イオンを150KeV、2.0×1017atoms/cmの注入量で注入し、単結晶サファイア基板の内部(深さ約500nm)にイオン注入層を形成した。
 無機ガラス基板として、6インチ径、厚さ600μmのホウケイ酸ガラス基板を用いた。単結晶サファイア基板のイオン注入した表面と貼り合わせるホウケイ酸ガラス基板の表面に、大気雰囲気下、室温で、ポリビニルブチラール(PVB、積水化学工業(株)社製、エスレックKS-5、10質量%)のエタノール溶液を用いて、スピンコーターで塗布した。その後、大気圧・大気雰囲気下、100℃で10分間加熱して中間膜(厚さ150nm)を形成した。
 単結晶サファイア基板の中間膜を形成した表面と、無機ガラス基板の中間膜を形成した表面とに、高周波プラズマ装置を用いて、減圧(1.0~1.0×10Pa)かつ窒素雰囲気下、室温で、プラズマ活性化処理を施した。その後、プラズマ活性化処理を施した単結晶サファイア基板と無機ガラス基板の表面を、大気圧・大気雰囲気下、室温で、接触させて貼り合わせ、接合体を得た。接合体のイオン注入層にブレードを挿入して単結晶サファイア膜を機械的に剥離して、PVB膜を介してホウケイ酸ガラス基板上に単結晶サファイア膜を転写し、サファイア膜/PVB/ホウケイ酸ガラス基板からなるサファイア複合基材を得た。
 得られたサファイア複合基材の断面を透過型電子顕微鏡(TEM)で観察した(図示せず)。結果、中間膜上に単結晶サファイア膜が転写されており、中間膜が単結晶サファイア膜とガラス基板とのバインダーとして存在することを確認できた。
 <実施例2>
 単結晶サファイア基板として、6インチ径、厚さ600μmの基板を用いた。単結晶サファイア基板の表面からH イオンを150KeV、2.0×1017atoms/cmの注入量で注入し、単結晶サファイア基板の内部にイオン注入層を形成した。形成したイオン注入層の基板表面からの位置を、二次イオン質量分析法(Secondary Ion Mass Spectrometry:SIMS)により測定した結果を図3に示す。該イオン注入量においては、表面から約500nmの深さにイオン注入層が形成されることがみられた。
 無機ガラス基板として、6インチ径、厚さ600μmのホウケイ酸ガラス基板を用いた。単結晶サファイア基板のイオン注入した表面と貼り合わせるホウケイ酸ガラス基板の表面に、大気雰囲気下、室温でポリシラザン(サンワ化学(株)社製、トレスマイル、20質量%)のジ-n-ブチルエーテル溶液を用いて、スピンコーターで塗布した。その後、大気圧・大気雰囲気下、200℃で3分間加熱してシリカ転化させ、更に450℃で30分間加熱してキュアすることで中間膜(厚さ150nm)を形成した。
 単結晶サファイア基板の中間膜を形成した表面と、無機ガラス基板の中間膜を形成した表面とに、高周波プラズマ装置を用いて、減圧(1.0~1.0×10Pa)かつ窒素雰囲気下、室温で、プラズマ活性化処理を施した。その後、プラズマ活性化処理を施した単結晶サファイア基板と無機ガラス基板の表面を、大気圧・大気雰囲気下、室温で、接触させて貼り合わせ、接合体を得た。接合体のイオン注入層にブレードを挿入して単結晶サファイア膜を機械的に剥離して、シリカ膜を介してホウケイ酸ガラス基板上に単結晶サファイア膜を転写し、サファイア膜/シリカ膜/ホウケイ酸ガラス基板からなるサファイア複合基材を得た。
 得られたサファイア複合基材の断面を透過型電子顕微鏡で観察した結果を図4に示す。結果、中間膜(35)を介して無機ガラス基板(34)上に約500nmの単結晶サファイア膜(31a)が転写されていることがみられ、中間膜がバインダーとして存在することが観察できた。単結晶サファイア膜(31a)の表層は、イオン注入による構造上のダメージが残っているため、用途によっては、更に溶剤によるエッチング処理または研磨を行ってもよい。
 11、21   :単結晶サファイア基板
 11s     :単結晶サファイア基板の表面
 11a、21a :単結晶サファイア膜
 11b、21b :剥離した後の単結晶サファイア基板
 12、22   :水素イオン
 13、23   :イオン注入層
 14、24   :無機ガラス基板
 24s     :無機ガラス基板の表面
 15、25   :中間膜
 15s     :無機ガラス基板上の中間膜の表面
 25s     :単結晶サファイア基板上の中間膜の表面
 17、27   :接合体
 18、28   :サファイア複合基材
 31a     :単結晶サファイア膜
 34      :無機ガラス基板
 35      :中間膜
 

Claims (10)

  1.  無機ガラス基板と、
     前記無機ガラス基板上のポリビニルブチラールまたはシリカの中間膜と、
     前記中間膜上の単結晶サファイア膜と
    を備えるサファイア複合基材。
  2.  前記シリカの中間膜が、パーヒドロポリシラザンをシリカ転化させた膜である、請求項1に記載のサファイア複合基材。
  3.  前記単結晶サファイア膜が、0.05~2μmの厚さを有する、請求項1または2に記載のサファイア複合基材。
  4.  前記無機ガラス基板が、20~400℃下において、5×10-6/℃以上、1×10-5/℃以下の膨張率を有するソーダ石灰ガラス、ホウケイ酸ガラス、および化学強化ガラスからなる群から選ばれる、請求項1~3のいずれか1項に記載のサファイア複合基材。
  5.  単結晶サファイア基板の表面から水素イオンを注入し、前記単結晶サファイア基板の内部にイオン注入層を形成する工程と、
     前記単結晶サファイア基板のイオン注入をする前の前記表面、前記単結晶サファイア基板のイオン注入した表面、および、前記単結晶サファイア基板と貼り合わせる無機ガラス基板の表面からなる群から選ばれる少なくとも一つの表面に、ポリビニルブチラールまたはシリカ前駆体を含む溶液を塗布した後に加熱して、ポリビニルブチラールまたはシリカの中間膜を形成する工程と、
     前記中間膜を介して、前記単結晶サファイア基板のイオン注入した表面と、前記単結晶サファイア基板と貼り合わせる無機ガラス基板の表面とを貼り合わせて接合体を得る工程と、
     前記接合体を前記イオン注入層に沿って剥離し、前記中間膜を介して前記無機ガラス基板上に単結晶サファイア膜を転写する工程と
    を少なくとも含む、サファイア複合基材の製造方法。
  6.  前記シリカ前駆体が、パーヒドロポリシラザンである、請求項5に記載のサファイア複合基材の製造方法。
  7.  前記水素イオンが水素分子イオンであり、前記水素分子イオンの注入量が、1.0×1016atoms/cm以上、2.5×1017atoms/cm以下である、請求項5または6に記載のサファイア複合基材の製造方法。
  8.  前記転写する工程において、前記剥離が、前記イオン注入層に向けて、機械的衝撃、光照射および/または加熱により行われる、請求項5~7のいずれか1項に記載のサファイア複合基材の製造方法。
  9.  前記単結晶サファイア膜が、0.05~2μmの厚さを有する、請求項5~8のいずれか1項に記載のサファイア複合基材の製造方法。
  10.  前記無ガラス基板が、20~400℃下において、5×10-6/℃以上、1×10-5/℃以下の膨張率を有するソーダ石灰ガラス、ホウケイ酸ガラス、および化学強化ガラスからなる群から選ばれる、請求項5~9のいずれか1項に記載のサファイア複合基材の製造方法。
PCT/JP2016/087542 2015-12-17 2016-12-16 サファイア複合基材とその製造方法 WO2017104799A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201680073809.4A CN108367973A (zh) 2015-12-17 2016-12-16 蓝宝石复合基材及其制造方法
KR1020187019063A KR102544665B1 (ko) 2015-12-17 2016-12-16 사파이어 복합 기재와 그 제조 방법
JP2017556463A JP6644374B2 (ja) 2015-12-17 2016-12-16 サファイア複合基材の製造方法
US16/062,707 US11001036B2 (en) 2015-12-17 2016-12-16 Sapphire composite base material and method for producing the same
EP16875773.0A EP3392221B1 (en) 2015-12-17 2016-12-16 Sapphire composite base and method for producing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-246397 2015-12-17
JP2015246397 2015-12-17

Publications (1)

Publication Number Publication Date
WO2017104799A1 true WO2017104799A1 (ja) 2017-06-22

Family

ID=59056659

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/087542 WO2017104799A1 (ja) 2015-12-17 2016-12-16 サファイア複合基材とその製造方法

Country Status (7)

Country Link
US (1) US11001036B2 (ja)
EP (1) EP3392221B1 (ja)
JP (1) JP6644374B2 (ja)
KR (1) KR102544665B1 (ja)
CN (1) CN108367973A (ja)
TW (1) TWI751127B (ja)
WO (1) WO2017104799A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210301419A1 (en) * 2018-08-09 2021-09-30 Shin-Etsu Chemical Co., Ltd. METHOD FOR PRODUCING GaN LAMINATE SUBSTRATE

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10612129B2 (en) * 2016-06-28 2020-04-07 Corning Incorporated Thin glass based article with high resistance to contact damage
CN111216421A (zh) * 2018-11-23 2020-06-02 惠州比亚迪电子有限公司 一种玻璃与蓝宝石复合体及其制备方法、电子设备壳体和电子设备

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08269690A (ja) * 1995-03-31 1996-10-15 Toppan Printing Co Ltd 被覆層形成用フィルムと被覆フィルム
JP2703471B2 (ja) 1992-04-23 1998-01-26 積水化学工業株式会社 合わせガラス用中間膜
JP2008543706A (ja) * 2005-06-10 2008-12-04 サン−ゴバン セラミックス アンド プラスティクス,インコーポレイティド 透明セラミック複合材料
JP2011243968A (ja) * 2010-04-20 2011-12-01 Sumitomo Electric Ind Ltd 複合基板の製造方法
WO2014078524A1 (en) * 2012-11-14 2014-05-22 Gtat Corporation A mobile electronic device comprising an ultrathin sapphire cover plate
WO2014142036A1 (ja) * 2013-03-11 2014-09-18 コニカミノルタ株式会社 ガスバリアフィルム、ガスバリアフィルムの製造方法、及び、有機エレクトロルミネッセンス素子
JP2015514604A (ja) * 2012-03-06 2015-05-21 アップル インコーポレイテッド サファイア積層体

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2084247A1 (en) * 1992-03-18 1993-09-19 Francis Paul Fehlner Lcd panel production
US5340654A (en) 1992-04-23 1994-08-23 Sekisui Kagaku Kogyo Kabushiki Kaisha Interlayer film for laminated glass
JPH05333164A (ja) * 1992-06-02 1993-12-17 Seiko Epson Corp 時計用複層カバーガラス
JP2000111952A (ja) 1998-10-07 2000-04-21 Sony Corp 電気光学装置、電気光学装置用の駆動基板、及びこれらの製造方法
JP5020425B2 (ja) * 2000-04-25 2012-09-05 Azエレクトロニックマテリアルズ株式会社 微細溝をシリカ質材料で埋封する方法
US6928215B1 (en) * 2001-07-25 2005-08-09 Lightwave Microsystems Corporation Optical tap for optical integrated circuits
JP5274859B2 (ja) * 2007-04-18 2013-08-28 信越化学工業株式会社 貼り合わせ基板の製造方法
FR2924273B1 (fr) 2007-11-28 2010-02-19 Commissariat Energie Atomique Procede de moderation de deformation
CN101521155B (zh) * 2008-02-29 2012-09-12 信越化学工业株式会社 制备具有单晶薄膜的基板的方法
JP5496608B2 (ja) * 2008-11-12 2014-05-21 信越化学工業株式会社 Soi基板の作製方法
CN102941713A (zh) 2012-10-24 2013-02-27 浙江上城科技有限公司 一种蓝宝石复合材料及其制备方法
US9613849B2 (en) * 2012-11-22 2017-04-04 Shin-Etsu Chemical Co., Ltd. Composite substrate manufacturing method, and composite substrate
EP2778252A3 (en) * 2013-03-15 2014-12-10 Apple Inc. Layered Coatings For Sapphire Structure
US10186698B2 (en) * 2013-12-04 2019-01-22 Cornell University Ceramic-polymer hybrid nanostructures, methods for producing and applications thereof
CN103707578B (zh) * 2013-12-26 2015-08-05 贵阳嘉瑜光电科技咨询中心 一种蓝宝石-玻璃层压片的制备方法
CN105589587B (zh) * 2014-10-21 2018-10-26 宸鸿科技(厦门)有限公司 透明复合基板与其制备方法及触控面板
WO2016163007A1 (ja) * 2015-04-09 2016-10-13 株式会社オーラル28 プラズマ照射装置及びプラズマ照射方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2703471B2 (ja) 1992-04-23 1998-01-26 積水化学工業株式会社 合わせガラス用中間膜
JPH08269690A (ja) * 1995-03-31 1996-10-15 Toppan Printing Co Ltd 被覆層形成用フィルムと被覆フィルム
JP2008543706A (ja) * 2005-06-10 2008-12-04 サン−ゴバン セラミックス アンド プラスティクス,インコーポレイティド 透明セラミック複合材料
JP2011243968A (ja) * 2010-04-20 2011-12-01 Sumitomo Electric Ind Ltd 複合基板の製造方法
JP2015514604A (ja) * 2012-03-06 2015-05-21 アップル インコーポレイテッド サファイア積層体
WO2014078524A1 (en) * 2012-11-14 2014-05-22 Gtat Corporation A mobile electronic device comprising an ultrathin sapphire cover plate
WO2014142036A1 (ja) * 2013-03-11 2014-09-18 コニカミノルタ株式会社 ガスバリアフィルム、ガスバリアフィルムの製造方法、及び、有機エレクトロルミネッセンス素子

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210301419A1 (en) * 2018-08-09 2021-09-30 Shin-Etsu Chemical Co., Ltd. METHOD FOR PRODUCING GaN LAMINATE SUBSTRATE
US11479876B2 (en) * 2018-08-09 2022-10-25 Shin-Etsu Chemical Co., Ltd. Method for producing GaN laminate substrate having front surface which is Ga polarity surface

Also Published As

Publication number Publication date
CN108367973A (zh) 2018-08-03
KR20180095842A (ko) 2018-08-28
US11001036B2 (en) 2021-05-11
US20180361713A1 (en) 2018-12-20
TWI751127B (zh) 2022-01-01
JPWO2017104799A1 (ja) 2018-10-25
TW201736125A (zh) 2017-10-16
EP3392221A1 (en) 2018-10-24
EP3392221B1 (en) 2020-07-15
JP6644374B2 (ja) 2020-02-12
EP3392221A4 (en) 2019-07-24
KR102544665B1 (ko) 2023-06-15

Similar Documents

Publication Publication Date Title
KR101057140B1 (ko) 미세 매립 절연층을 가지는 실리콘-온-절연물 기판들
KR102599962B1 (ko) 산화물 단결정 박막을 구비한 복합 웨이퍼의 제조 방법
KR101575917B1 (ko) 실리콘 박막 전사 절연성 웨이퍼의 제조 방법
JP4927080B2 (ja) 厚い絶縁層の粗さを減少させるための方法
JP5415129B2 (ja) 貼り合わせ基板の製造方法
EP2770525B1 (en) Method for producing transparent soi wafers
EP3099484A1 (en) Treatment of a surface modification layer for controlled bonding of thin sheets with carriers
WO2005124865A1 (ja) 貼り合わせウェーハの製造方法
TW201249643A (en) Laminate, manufacturing method of the same, display panel with supporting plate, display panel, and display device
CN104798176A (zh) 复合基板的制造方法和复合基板
EP2261954B1 (en) Method for producing soi substrate
WO2014153923A1 (zh) 薄膜和制造薄膜的方法
WO2017104799A1 (ja) サファイア複合基材とその製造方法
KR102094561B1 (ko) 음의 줄-톰슨 계수를 가지는 가스 분위기 안의 본딩 방법
KR20080100160A (ko) Soi 기판의 제조 방법
JP5536465B2 (ja) 高温貼り合わせ法による貼り合わせウェーハの製造方法
WO2019071978A1 (zh) 纳米级单晶薄膜
US8697544B2 (en) Method for manufacturing bonded wafer
KR20090042139A (ko) 반도체 기판의 제조 방법
JP2009253184A (ja) 貼り合わせ基板の製造方法
CN114864424A (zh) 一种碳化硅衬底的制备方法及碳化硅衬底
JP2009537076A (ja) 絶縁体上半導体構造を形成するための方法
WO2010137683A1 (ja) Soi基板の製造方法
JP5443833B2 (ja) 貼り合わせsoi基板の製造方法
JP5643488B2 (ja) 低応力膜を備えたsoiウェーハの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16875773

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017556463

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20187019063

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020187019063

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2016875773

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2016875773

Country of ref document: EP

Effective date: 20180717