WO2010106853A1 - 有機エレクトロニクスパネルおよび有機エレクトロニクスパネルの製造方法 - Google Patents

有機エレクトロニクスパネルおよび有機エレクトロニクスパネルの製造方法 Download PDF

Info

Publication number
WO2010106853A1
WO2010106853A1 PCT/JP2010/052045 JP2010052045W WO2010106853A1 WO 2010106853 A1 WO2010106853 A1 WO 2010106853A1 JP 2010052045 W JP2010052045 W JP 2010052045W WO 2010106853 A1 WO2010106853 A1 WO 2010106853A1
Authority
WO
WIPO (PCT)
Prior art keywords
organic
layer
metal foil
thickness
polymer film
Prior art date
Application number
PCT/JP2010/052045
Other languages
English (en)
French (fr)
Inventor
真昭 村山
源田 和男
野島 隆彦
Original Assignee
コニカミノルタホールディングス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタホールディングス株式会社 filed Critical コニカミノルタホールディングス株式会社
Priority to US13/255,851 priority Critical patent/US8445899B2/en
Priority to JP2011504779A priority patent/JP5660030B2/ja
Publication of WO2010106853A1 publication Critical patent/WO2010106853A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/80Constructional details
    • H10K30/88Passivation; Containers; Encapsulations
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/842Containers
    • H10K50/8423Metallic sealing arrangements
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/842Containers
    • H10K50/8426Peripheral sealing arrangements, e.g. adhesives, sealants
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/87Passivation; Containers; Encapsulations
    • H10K59/871Self-supporting sealing arrangements
    • H10K59/8721Metallic sealing arrangements
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/87Passivation; Containers; Encapsulations
    • H10K59/871Self-supporting sealing arrangements
    • H10K59/8722Peripheral sealing arrangements, e.g. adhesives, sealants
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention In the organic electronics panel sealed by bonding a sealing substrate (metal foil / conductivity), the present invention has problems such as electrode short circuit / substrate warpage and peeling at the sealing end when the sealing material is cured.
  • the present invention relates to a method for manufacturing a solved organic electronics panel.
  • organic electronics panels consisting of organic electroluminescence elements and organic photoelectric conversion elements.
  • the material and the light emitting unit constituting the light emitting layer in the organic electroluminescence element absorb moisture, the light emission luminance is significantly impaired.
  • the organic photoelectric conversion element in the case of the material and the power generation unit constituting the photoelectric conversion layer, the power generation performance is impaired when moisture is absorbed. Therefore, it is necessary to lower the humidity inside the organic electroluminescence element (organic EL element) or the organic photoelectric conversion element, and a means for protecting the inside from the outside air is provided.
  • a casing type method is disclosed in which a glass cap or a metal can is sealed with an adhesive to create a confidential space, and a desiccant is placed therein.
  • an adhesion type method has been disclosed in which an organic light-emitting layer or the like is formed on a plastic or glass substrate, and then the surface is sealed with an adhesive using a flexible thin high barrier film or metal foil.
  • thin and lightweight organic EL elements and organic photoelectric conversion elements excellent in moisture resistance have been proposed.
  • metal plate, foil
  • it is conductive, it can be electrically connected by contact with an organic EL element or an extraction electrode. There is a problem that a short circuit occurs and light emission failure and uniform light emission characteristics cannot be obtained, and various methods have been proposed. Similarly, it was found that when an organic photoelectric conversion element is used, a leak failure during power generation is likely to occur.
  • a particulate spacer is mixed into the adhesive layer between the substrate and the sealing member to provide clearance (contact limit, gap) ) Has been proposed.
  • a method has also been proposed in which a resin layer is disposed on the surface (one side or both sides) of a metal member and subjected to insulation treatment (for example, Patent Documents 1 and 2).
  • a short circuit may occur, and the current situation is that no fundamental measures have been taken.
  • the phenomenon that the sealing substrate warps to the electrode side due to the curing shrinkage of the adhesive layer and the edges contact (short-circuit) has also been clarified.
  • the object of the present invention is to suppress the warping (deformation) of a member when a metal member is used as a sealing member, thereby preventing an electrical short circuit and preventing the occurrence of light emission defects and the occurrence of leaks during power generation. There is to do.
  • a sealing substrate is bonded and laminated via an adhesive layer on an organic electronics element formed of an anode layer including at least a first electrode, an organic compound layer, and a cathode layer including a second electrode formed on the substrate,
  • the sealing substrate is made of a metal foil, a polymer film is laminated on the surface of the metal foil opposite to the adhesive layer, and the thickness of the polymer film is equal to or less than the thickness of the metal foil.
  • organic electronics panel as described in 1 above, wherein the organic compound layer includes a light emitting layer, and the organic electronics element is an organic electroluminescence element.
  • a method for producing an organic electronics panel comprising producing the organic electronics panel according to any one of 1 to 8 above.
  • the present invention it is possible to suppress warpage (deformation) due to shrinkage and hardening of the adhesive layer when sealed using a metal member, and to prevent a short circuit with the extraction electrode.
  • the seal gap can be narrowed, gas permeation from the seal portion is suppressed, and the sealing performance is improved.
  • the panel can be thinned.
  • the present invention provides an organic electroluminescence device (also referred to as an organic EL device) formed on a substrate and comprising an anode layer including at least a first electrode, an organic compound layer including a light emitting layer, and a cathode layer including a second electrode, or
  • the sealing substrate is pasted on the organic photoelectric conversion element formed on the substrate, which includes the anode layer including the first electrode, the organic compound layer including the photoelectric conversion coarse, and the cathode layer including the second electrode, through the adhesive layer.
  • An organic electroluminescence panel or an organic photoelectric conversion panel (both of which is referred to as an organic electronics element) to be formed by stacking and stacking, wherein the sealing substrate is made of a metal foil, and the metal foil faces the organic electronics element.
  • the polymer film is laminated on the surface opposite to the adhesive layer, and the thickness of the polymer film is equal to or less than the thickness of the metal foil.
  • Ri is characterized in that the heating during bonding-laminating time or adhesive layer hardening of the sealing substrate.
  • the heating temperature is preferably 50 ° C. or higher and 200 ° C. or lower, more preferably 80 ° C. to 160 ° C.
  • curing proceeds in the case of thermosetting resins, and in the case of thermoplastic resins, it is plasticized by heat at the time of laminating and laminating, and in the course of cooling Adhere to the element.
  • rate can be raised by implementing light irradiation and a heating simultaneously after sealing substrate bonding.
  • the metal foil used as the sealing substrate in the present invention has a thickness of 9 to 500 ⁇ m, and a polymer film is laminated thereon, and the thickness of the polymer film is preferably 10 to 100% with respect to the metal foil. .
  • the metal foil is preferably aluminum because it is inexpensive and flexible.
  • the surface roughness Ra of the polished surface of the aluminum foil is 10 nm or more, preferably 50 nm or more, and most preferably 100 nm or more.
  • the surface roughness of the scraped surface is preferably 0.8 ⁇ m or less, more preferably 0.5 ⁇ m or less. When this value is small, peeling occurs easily when laminated with a polymer film. When the surface roughness of the scraped surface increases, there is a risk that the element surface may be damaged when used on the organic electronics element side.
  • the glossy surface is a glossy surface having a surface roughness Ra of less than 10 nm.
  • FIG. 1 An example of a conventional organic electronics panel is shown in cross-sectional view in FIG. 1
  • an organic electronic element comprising a first electrode 2, an organic functional layer 3 including, for example, a light-emitting layer, and a second electrode 4 is formed on a substrate 1, and a sealing substrate 5 is adhered thereon as an adhesive layer.
  • 6 shows a sealed organic electronics panel having a configuration sealed at 6 at its end.
  • Such a short circuit at the end portion gradually occurs, for example, due to curing shrinkage of the adhesive layer during sealing, pressure bonding during pasting of the sealing substrate, and over time.
  • an organic electronic panel is individually manufactured by punching from a large panel, it also occurs by cutting with a cutter, for example.
  • FIG. 1 is a cross-sectional view showing an example of a conventional organic electronics panel sealed with a sealing substrate.
  • the metal foil sealing substrate is placed at the end on the first electrode side due to curing shrinkage of the adhesive layer.
  • Patent Document 1 or 2 it is effective to apply an insulating layer to a metal foil that is a conductive sealing substrate.
  • the edge of the sealing substrate is also cut, so that the conductive portion Will be exposed.
  • the electrical short circuit occurs when the sealing substrate warps to the electrode side due to the curing shrinkage of the adhesive layer and the edge contacts, so that the warping of the sealing substrate to the electrode side is prevented.
  • the present inventors have found that electrical short-circuits can be greatly reduced, and have reached the present invention.
  • the present invention is characterized in that the warpage (deformation) of the sealing substrate due to the curing shrinkage when the sealing material is cured and the stress when the sealing substrate is bonded is prevented.
  • a polymer film is laminated on a surface (back surface: anti-adhesion layer surface) opposite to the adhesive layer surface side of the metal foil that is the sealing substrate.
  • the present invention is characterized by heating using a metal foil laminated with a polymer film as a sealing substrate.
  • FIG. 2 is a schematic sectional view showing the configuration of the organic electronics panel of the present invention.
  • a metal foil laminated with a polymer film is used as a sealing substrate.
  • a polymer film 7 is laminated on the metal foil 5. This prevents warping of the sealing substrate.
  • the adhesive layer When the adhesive layer is a thermosetting type, the adhesive layer can be cured and the polymer film can be simultaneously contracted by heating after bonding the sealing substrate.
  • the adhesive layer When the adhesive layer is a photo-curing type, it can be dealt with by performing light irradiation and heating at the same time after the sealing substrate is bonded.
  • the adhesive layer When the adhesive layer is a thermoplastic resin, it can be handled by bonding the sealing substrate and the adhesive layer while heating (melting the adhesive layer).
  • the thickness of the metal foil and the thickness of the polymer film are preferable to select the relationship between the thickness of the metal foil and the thickness of the polymer film as follows.
  • the metal foil used as the sealing substrate used in the present invention preferably has a thickness in the range of 9 to 500 ⁇ m.
  • the thickness is less than 9 ⁇ m, pinholes are easily formed during use, and required barrier performance (moisture permeability, oxygen permeability) may not be obtained.
  • the thickness exceeds 500 ⁇ m, the cost increases depending on the material used for the metal foil, and the organic electronics panel becomes thick, and the merit of thinning is reduced.
  • the thickness of the polymer film should not exceed the thickness of the metal foil, and the thickness of the polymer film should be 10 to 10 times the thickness of the metal foil. It is preferable to set it as 100%.
  • the thickness is less than 10% with respect to the thickness of the metal foil, the stress due to the polymer film is small and the effect of suppressing deformation of the metal foil cannot be obtained.
  • the thickness of the metal foil is larger than 100%, when there is thermal shrinkage, the stress due to thermal shrinkage becomes large and the metal foil warps to the polymer film side (deformation), and the sealing substrate at the bonded end. There is a risk of peeling.
  • the thermal shrinkage rate of the polymer film is preferably 0.2 to 3% at the heating temperature when the sealing substrate is bonded and laminated or when the adhesive layer is cured. If this is 0.2% or less, the thermal shrinkage rate is too small, and the effect of suppressing deformation of the metal foil (to the first electrode substrate side) is small. There is a possibility that warpage becomes large and peeling of the sealing substrate itself is caused.
  • the heat shrinkage rate can be measured by the following method.
  • Heat shrinkage As a polymer film sample, three test pieces each having a width of 30 mm and a length of 120 mm are collected. Holes of 6 mm ⁇ are punched at 100 mm intervals on both ends of the test piece. This is conditioned for at least 3 hours in a room at 23 ⁇ 3 ° C. and a relative temperature of 65 ⁇ 5%. Using an automatic pin gauge (manufactured by Shinto Kagaku Co., Ltd.), the original size (L 1 ) of the punch interval is measured to the minimum scale / 1000 mm. Next, the test piece is hung on a thermostat set to the heating temperature at the time of curing and heat-treated for 3 hours.
  • Thermal contraction rate (L 1 ⁇ L 2 / L 1 ) ⁇ 100
  • the thermal contraction rate of PET is about 0.8% at 120 ° C.
  • the Tg of the polymer film is lower than the heating temperature at the time of sealing substrate lamination and lamination or at the time of curing of the adhesive layer. This allows the polymer film to follow and shrink as the adhesive cures and shrinks, reducing the difference in thermal shrinkage and reducing the deformation (curl and breakage) caused by curing and bonding at the edges. This also makes it difficult for the part to occur.
  • thermosetting temperature (heating temperature)
  • the metal foil surface on the adhesive layer side is a glossy surface (Ra is less than 10 nm). Since the smooth surface is on the organic electronics element side, scratches and irregularities on the surface hardly damage the surface of the element sensitive to pressure.
  • the substrate used for the organic electronics panel is a substrate such as glass or plastic, but is not limited thereto.
  • Transparent resin films include polyethylene, ethylene-vinyl acetate copolymer, ethylene-vinyl alcohol copolymer, polymethyl methacrylate, polyether ether ketone, polyether sulfone, and tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer. Examples include, but are not limited to, coalescence, polyester, polycarbonate, polyurethane, polyimide, and polyetherimide.
  • a gas barrier film having a high gas barrier property can also be used.
  • the gas barrier film include a film having a gas barrier film having a sealing function of 50 nm to 50 ⁇ m in thickness, such as a metal oxide film, an oxynitride film, a nitride film, and a metal thin film, specifically, an alumina deposited film, a resin There is a metal foil laminated with a film.
  • the metal foil used as the sealing substrate is not particularly limited in the type of metal.
  • a particularly preferred metal foil is an Al foil.
  • the metal foil mainly refers to a metal foil or film formed by metal rolling or the like, but a metal thin film formed by sputtering or vapor deposition on a polymer film, or a fluid electrode such as a conductive paste.
  • a conductive film formed of a material may be used.
  • polymer film material laminated with the metal foil various polymer materials described in “New development of functional packaging materials (Toray Research Center, Inc.)” can be used.
  • polyethylene resin polypropylene resin, polyethylene terephthalate resin, polyamide resin, ethylene-vinyl alcohol copolymer resin, ethylene-vinyl acetate copolymer resin, acrylonitrile-butadiene copolymer resin, cellophane resin, vinylon Resin, vinylidene chloride resin and the like.
  • Resins such as polypropylene resin and nylon resin may be stretched and further coated with vinylidene chloride resin. Moreover, a low density or a high density thing can also be used for a polyethylene-type resin.
  • a generally used laminating machine can be used as a method of laminating a polymer film on one side of a metal foil.
  • the adhesive polyurethane-based, polyester-based, epoxy-based, acrylic-based adhesives and the like can be used. You may use a hardening
  • a hot melt lamination method, an extrusion lamination method and a coextrusion lamination method can also be used, but a dry lamination method is preferred.
  • the thickness of the adhesive is preferably in the range of 0.5 to 10 ⁇ m.
  • the metal foil is formed by sputtering or vapor deposition, or is formed from a fluid electrode material such as a conductive paste, it is created by using a polymer film as a base material and forming the metal foil on this. Also good.
  • thermosetting resin for the adhesive layer used in the present invention, a thermosetting resin, a photocurable resin, a thermoplastic resin, or the like can be used.
  • a curable resin an epoxy resin, an acrylic resin, a silicone resin, and the like can be given.
  • the thickness of the adhesive layer is preferably 0.1 ⁇ m to 100 ⁇ m.
  • thermosetting adhesive resin that is excellent in moisture resistance and water resistance and has little shrinkage upon curing.
  • thermosetting adhesive for example, the adhesive is uniformly applied to the adhesive surface of the sealing substrate, and the adhesive surface is closely adhered to the substrate so as to cover the adhesive layer via the adhesive layer, and thermocompression bonding is performed. And cured and bonded. What is necessary is just to adhere
  • the heating temperature is preferably 50 ° C. or higher and 200 ° C. or lower, more preferably 80 ° C. to 160 ° C. It is preferable that it is higher than Tg of the polymer film used for the sealing substrate.
  • the curing (adhesion) speed can be increased by simultaneously performing light irradiation and heating after the sealing substrate is bonded.
  • thermoplastic resin an acid-modified product of polyolefin such as polyethylene, polypropylene, ethylene / propylene copolymer, an acid-modified product of ethylene / vinyl acetate copolymer, ethylene / acrylic acid copolymer, ethylene / methacrylic acid copolymer.
  • polymers, ionomers, and the like can be used.
  • thermoplastic adhesive a thermoplastic adhesive (thermoplastic resin) (for example, an acid-modified product of polypropylene; Mitsui Chemicals QE050) is laminated and bonded to the adhesive surface (shiny surface) of the aluminum foil of the sealing substrate. Deposit layers. Thereafter, the sealing substrate may be heated and bonded by adhering and laminating the adhesive surface on the substrate on which the element is formed.
  • the pressure at the time of bonding is preferably in the range of 0.05 to 5 MPa, and the heating temperature is preferably 50 ° C. or higher and 200 ° C. or lower, more preferably 80 ° C. to 160 ° C. It is preferable that it is higher than Tg of the polymer film used for the sealing substrate.
  • thermoplastic adhesive resin
  • it is plasticized by the heat at the time of pasting and laminating, and then adhered to the element in the process of cooling.
  • a coating method such as roll coating, spin coating, screen printing, spray coating, or the like can be used depending on the material.
  • a desiccant such as barium oxide or calcium oxide may be mixed.
  • the sealing structure may be a hollow structure, a sealing material-filled adhesion structure, or the like.
  • Organic EL element has a structure in which one or more organic layers are laminated between electrodes.
  • various organic compounds such as anode layer / hole injection / transport layer / light emitting layer / electron injection / transport layer / cathode layer, etc.
  • the functional layer made of is laminated as necessary. Most simply, it has a structure comprising an anode layer / a light emitting layer / a cathode layer.
  • Organic materials used for the hole injection / transport layer are typified by phthalocyanine derivatives, heterocyclic azoles, aromatic tertiary amines, polyvinyl carbazole, polyethylenedioxythiophene / polystyrene sulfonic acid (PEDOT: PSS), and the like.
  • a polymer material such as a conductive polymer is used.
  • carbazole-based luminescent materials such as 4,4′-dicarbazolylbiphenyl, 1,3-dicarbazolylbenzene, (di) azacarbazoles, 1,3,5-
  • carbazole-based luminescent materials such as 4,4′-dicarbazolylbiphenyl, 1,3-dicarbazolylbenzene, (di) azacarbazoles, 1,3,5-
  • low-molecular light-emitting materials typified by pyrene-based light-emitting materials such as tripyrenylbenzene, polymer light-emitting materials typified by polyphenylene vinylenes, polyfluorenes, polyvinyl carbazoles, and the like.
  • a low molecular weight light emitting material having a molecular weight of 10,000 or less is preferably used as the light emitting material.
  • the light emitting material may preferably contain about 0.1 to 20% by mass of a dopant.
  • the dopant include known fluorescent dyes such as perylene derivatives and pyrene derivatives, phosphorescent dyes, For example, orthometalated iridium complexes represented by tris (2-phenylpyridine) iridium, bis (2-phenylpyridine) (acetylacetonato) iridium, bis (2,4-difluorophenylpyridine) (picolinato) iridium, etc. And complex compounds.
  • Examples of the electron injection / transport layer material include metal complex compounds such as 8-hydroxyquinolinate lithium and bis (8-hydroxyquinolinate) zinc, and the following nitrogen-containing five-membered ring derivatives. That is, oxazole, thiazole, oxadiazole, thiadiazole or triazole derivatives are preferred.
  • a material used for these light emitting layers and each functional layer a material having a polymerization reactive group such as a vinyl group in the molecule may be used, and a crosslinked / polymerized film may be formed after film formation.
  • the conductive material used for the anode layer those having a work function larger than 4 eV are suitable, and metal oxides such as silver, gold, platinum, palladium and their alloys, tin oxide, indium oxide, ITO, etc. Furthermore, organic conductive resins such as polythiophene and polypyrrole are used.
  • the conductive material used for the cathode layer those having a work function smaller than 4 eV are suitable, such as magnesium and aluminum.
  • the alloy include magnesium / silver and lithium / aluminum.
  • each functional layer described above may be formed by a dry method such as vacuum deposition or sputtering, or may be formed by a wet method such as coating or printing.
  • Organic photoelectric conversion element Although an organic photoelectric conversion element is demonstrated, it is not limited to the following forms.
  • organic photoelectric conversion element which can be used by this invention, If it is an element which has an anode and a cathode and at least 1 or more photoelectric conversion layer pinched
  • the configuration of the photoelectric conversion layer is not particularly limited as long as it is a configuration in which an organic semiconductor material is stacked.
  • a heterojunction type in which a p-type semiconductor material and an n-type semiconductor material are stacked, or both a p-type and an n-type semiconductor are used.
  • a so-called bulk heterojunction type in which materials are mixed and have a microphase separation structure can be given. From the viewpoint of improving internal quantum efficiency, a configuration excellent in charge separation efficiency is preferable, and a bulk heterojunction structure is more preferable in the present application.
  • the organic photoelectric conversion element of the present invention when used as a solar cell, it is preferable to use an organic semiconductor material having an absorption characteristic optimal for the sunlight spectrum, and an organic material having a blacker appearance from the viewpoint of efficiency and designability.
  • a photoelectric conversion element is preferable.
  • a transparent electrode, a photoelectric conversion layer, and a counter electrode are sequentially laminated on one surface of a support.
  • the present invention is not limited thereto, and for example, a hole transport layer, an electron transport layer, a hole block layer, an electron block layer, an electrode buffer layer, a smoothing layer, or the like between the transparent electrode or the counter electrode and the photoelectric conversion layer.
  • the organic photoelectric conversion element may be configured with the above layer. Further, it may be an electron transport layer having a hole blocking ability or a hole transport layer having an electron blocking ability.
  • an organic photoelectric conversion element having a bulk heterojunction type photoelectric conversion layer a hole transport layer and / or an electron block layer are provided between the photoelectric conversion layer and the anode (usually the transparent electrode side), By forming an electron transport layer and / or a hole blocking layer between the conversion layer and the cathode (usually the counter electrode side), the charges generated in the bulk heterojunction photoelectric conversion layer can be taken out more efficiently. Therefore, it is preferable to have these layers.
  • the same materials as those used in the organic EL element can be used.
  • anode / hole transport layer / electron block layer / photoelectric conversion layer / hole block layer / electron transport layer / cathode (ii) Anode / hole transport layer having electron blocking ability / photoelectric conversion layer / hole block Electron transport layer / cathode buffer layer / cathode (iii) anode / anode buffer layer / hole transport layer / electron block layer / photoelectric conversion layer / hole block layer / electron transport layer / cathode (iv) anode / anode Buffer layer / hole transport layer / electron block layer / photoelectric conversion layer / hole block layer / electron transport layer / cathode buffer layer / cathode As described above, the organic photoelectric conversion element is layered on the substrate by overlapping each layer.
  • each functional layer can be formed by various known methods such as a vacuum deposition method, a dry method such as a sputtering method, and a wet method such as a coating method and a printing method.
  • Each functional layer described above is formed on the substrate and sealed with a sealing substrate to constitute an organic electronics panel.
  • Example 1 An organic EL panel was prepared according to the configuration of FIG.
  • a transparent support substrate was prepared by depositing 100 nm of ITO (indium tin oxide) as an anode on a glass substrate of 100 mm ⁇ 100 mm ⁇ 1.1 mm. This was ultrasonically cleaned with isopropyl alcohol, dried with dry nitrogen gas, and further subjected to UV ozone cleaning for 5 minutes.
  • ITO indium tin oxide
  • a luminescent composition having the following composition was adjusted to 1 ml and spin-coated. (Thickness of about 25 nm).
  • Luminescent composition Solvent Toluene 100% by mass Host material: HA 1% by mass Blue material: Ir-A 0.10% by mass Green material: Ir (ppy) 3 0.004 mass% Red material: Ir (piq) 3 0.005 mass%
  • an electron transport layer coating solution was prepared as follows, and applied with a spin coater under the conditions of 1500 rpm and 30 seconds to provide an electron transport layer. The film thickness was 20 nm when it apply
  • the sample on which the electron transport layer was formed was transferred to a vacuum deposition apparatus, the vacuum chamber was depressurized to 4 ⁇ 10 ⁇ 4 Pa, and lithium fluoride 10 nm as a cathode buffer layer and aluminum 110 nm as a cathode on the electron transport layer.
  • the layers were sequentially deposited to produce an organic EL device.
  • the matte surface (scratch surface) has a different thickness (described in Table 1) and a polyethylene terephthalate (PET) film adhesive for dry lamination (two-component reaction type) (Urethane-based adhesive) was laminated (adhesive layer thickness 1.5 ⁇ m).
  • PET polyethylene terephthalate
  • the surface roughness of the cut surface (matt surface) of this aluminum foil was Ra 470 nm, and Ra of the polished surface was 1 nm or less.
  • the prepared PET laminated aluminum foil is made approximately the same size (100 mm ⁇ 100 mm) as the glass substrate on which the organic EL element is formed, and the following thermosetting adhesive is used on the glossy surface (opposite side of the PET laminated surface). And glued.
  • Thermosetting adhesive Epoxy adhesive Bisphenol A diglycidyl ether (DGEBA) Dicyandiamide (DICY) Epoxy adduct curing accelerator Thermosetting adhesive is applied uniformly along the adhesive surface (glossy surface) of the aluminum foil using a dispenser, and then the sealing substrate is removed from the organic EL so that the take-out electrode is exposed.
  • the adhesive surface was closely attached and arranged on the glass substrate on which the element was formed, and was pressure-bonded (pressure 0.15 MPa, time 30 seconds) and temporarily adhered.
  • the temporarily bonded organic EL panel was placed on a hot plate and heated (temperature: 120 ° C., 30 minutes) to thermally cure the thermosetting adhesive, thereby producing an organic EL panel.
  • Organic EL panels 2 to 7 having different thicknesses of the PET film used for producing the sealing substrate were obtained.
  • the aluminum foil is not laminated with the polyester sheet, and only the aluminum foil (PET thickness 0) is sealed.
  • PET thickness 0 the aluminum foil
  • the organic EL panel sealed with metal foil has a low rectification ratio and a short circuit. Moreover, in the thing using the metal foil which laminated
  • Example 2 In the same manner as in Example 1, an organic EL panel was prepared according to the configuration of FIG.
  • Example 1 ⁇ Creation of organic EL panel> As in Example 1, an anode, a hole transport layer, a light-emitting composition, an electron transport layer, a cathode buffer layer, and a cathode were sequentially formed on a 100 mm ⁇ 100 mm ⁇ 1.1 mm glass substrate to form an organic EL device.
  • an anode, a hole transport layer, a light-emitting composition, an electron transport layer, a cathode buffer layer, and a cathode were sequentially formed on a 100 mm ⁇ 100 mm ⁇ 1.1 mm glass substrate to form an organic EL device.
  • a 50 ⁇ m thick aluminum foil (manufactured by Toyo Aluminum Co., Ltd.) was used, and a 25 ⁇ m thick polyethylene terephthalate (PET) film was laminated on the mat surface using an adhesive for dry lamination (two-component reaction type urethane adhesive).
  • PET polyethylene terephthalate
  • Adhesive layer thickness 1.5 ⁇ m The surface roughness of the cut surface (matt surface) of this aluminum foil was Ra 470 nm, and Ra of the polished surface was 1 nm or less.
  • thermoplastic adhesive polypropylene acid-modified product; Mitsui Chemicals QE050
  • the thickness of the thermoplastic adhesive was 30 ⁇ m.
  • the prepared PET laminated aluminum foil with an adhesive layer is made approximately the same size (100 mm ⁇ 100 mm) as the glass substrate on which the organic EL element is formed, and then the organic EL element is formed so that the take-out electrode is exposed from the sealing substrate.
  • the adhesive surface was closely placed and disposed on the glass substrate so as to cover the glass substrate and bonded by thermocompression bonding.
  • the pressure at the time of pasting was 0.15 MPa, the time was 30 seconds, the heating temperature was changed (described in Table 2), and a plurality of organic EL panels 8 to 14 were produced under different conditions of the shrinkage rate of the PET film.
  • the organic EL panel having a small PET shrinkage ratio has a low rectification ratio and a short circuit. Moreover, when the shrinkage rate of PET is 0.2% or more, the rectification ratio is high and no short circuit occurs. When the shrinkage rate of PET exceeded 3%, the warping amount at the end of the sealing member was increased, and peeling was confirmed. The effectiveness of the present invention was confirmed. This was particularly effective when the shrinkage of PET was 0.8-3.
  • Example 3 An organic photoelectric conversion panel was prepared according to the configuration of FIG.
  • a transparent support substrate was prepared by depositing 100 nm of ITO (indium tin oxide) as an anode on a glass substrate of 100 mm ⁇ 100 mm ⁇ 1.1 mm. This was ultrasonically cleaned with isopropyl alcohol, dried with dry nitrogen gas, and further subjected to UV ozone cleaning for 5 minutes.
  • ITO indium tin oxide
  • the substrate was brought into the glove box and worked in a nitrogen atmosphere.
  • the substrate was heat-treated at 140 ° C. for 3 minutes in a nitrogen atmosphere.
  • the substrate on which the series of functional layers is formed is moved into a vacuum deposition apparatus chamber, the inside of the vacuum deposition apparatus is depressurized to 1 ⁇ 10 ⁇ 4 Pa or less, and then fluorinated at a deposition rate of 0.01 nm / second.
  • Lithium was laminated to 0.6 nm, and then passed through a shadow mask with a width of 2 mm (deposition so that the light receiving portion was 2 ⁇ 2 mm), and 100 nm of Al metal was laminated at a deposition rate of 0.2 nm / sec. To form an organic photoelectric conversion element.
  • the matte surface had a different thickness (described in Table 3).
  • the surface roughness (matte surface) of this aluminum foil was Ra 470 nm, and Ra of the polished surface was 1 nm or less.
  • the prepared PET laminated aluminum foil is made approximately the same size (100 mm ⁇ 100 mm) as the glass substrate on which the organic photoelectric conversion element is formed, and the following thermosetting adhesive is used on the glossy surface (opposite side of the PET laminated surface). And glued.
  • Thermosetting adhesive Epoxy adhesive Bisphenol A diglycidyl ether (DGEBA) Dicyandiamide (DICY) Epoxy adduct curing accelerator Thermosetting adhesive is applied uniformly along the adhesive surface (glossy surface) of the aluminum foil using a dispenser, and then the sealing substrate is removed from the organic EL so that the take-out electrode is exposed. The adhesive surface was closely attached and disposed on the glass substrate on which the element organic photoelectric conversion element was formed, and the sealing substrate was pressure-bonded (pressure 0.15 MPa, time 30 seconds) and temporarily adhered.
  • the temporarily bonded organic photoelectric conversion panel was placed on a hot plate and heated (temperature: 120 ° C., 30 minutes) to thermally cure the thermosetting adhesive, thereby producing an organic photoelectric conversion panel.
  • Organic photoelectric conversion panels SP2 to SP7 having different thicknesses of the PET film used for producing the sealing substrate were obtained.
  • organic photoelectric conversion panel SP7 comparative sample
  • aluminum foil is not laminated with polyester sheet, and only aluminum foil (PET thickness 0) is sealed.
  • An organic photoelectric conversion panel SP1 sealed in the same manner as a substrate was prepared for comparison.
  • + 1V (forward direction) and -1V (reverse direction) are applied to the created organic photoelectric conversion panel from each extraction electrode in the dark using a low-voltage power supply (DC voltage / current source R6243 manufactured by ADC Corporation).
  • the organic photoelectric conversion panel sealed with metal foil has a low rectification ratio and a short circuit. Moreover, in the thing using the metal foil which laminated
  • Example 4 In Example 1, instead of the glass substrate of the organic EL panel, an organic EL panel was prepared using a polyethylene naphthalate (PEN) film having a thickness of 125 ⁇ m as a substrate, and the same test as in Example 1 was performed. Even when a plastic substrate was used, the same effect as in Example 1 was obtained.
  • PEN polyethylene naphthalate
  • Example 5 In Example 2, instead of the glass substrate of the organic EL panel, an organic EL panel was prepared by using a polyethylene naphthalate (PEN) film having a thickness of 125 ⁇ m as a substrate, and the same test as in Example 2 was performed. Even when a plastic substrate was used, essentially the same effect was obtained.
  • PEN polyethylene naphthalate
  • Example 6 In Example 3, it replaced with the glass substrate of the organic photoelectric conversion panel, the organic photoelectric conversion panel was similarly created using the polyethylene naphthalate (PEN) film of thickness 125 micrometers as a board
  • PEN polyethylene naphthalate

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)
  • Photovoltaic Devices (AREA)

Abstract

 本発明は、有機エレクトロニクスパネルにおいて、封止基板に金属製部材を使用したときの部材の反り(変形)を抑制し、これによる電気的な短絡を防止し、発光不良の発生や発電性能の劣化を防止した有機エレクトロニクスパネルである。本発明の有機エレクトロニクスパネルは、封止基板が金属箔からなり、該金属箔の接着層とは反対側の面に、ポリマーフィルムが積層され、かつ、ポリマーフィルムの厚みが金属箔の厚み以下であり、封止基板の貼合・積層時または接着層硬化時に加熱することを特徴とする。

Description

有機エレクトロニクスパネルおよび有機エレクトロニクスパネルの製造方法
 本発明は、封止基板(金属箔/導電性)を貼合することで封止した有機エレクトロニクスパネルにおいて、シール材硬化時の封止端部の電極短絡/基板反り、剥れ等の不具合を解決した有機エレクトロニクスパネルの製造方法に関する。
 有機エレクトロルミネッセンス素子や有機光電変換素子からなる有機エレクトロニクスパネルの封止に関する。有機エレクトロルミネッセンス素子において発光層を構成する材料および発光ユニットは、吸湿すると、その発光輝度は著しく損なわれる。また、有機光電変換素子において、光電変換層を構成する材料および発電ユニットの場合は、吸湿すると発電性能が損なわれる。そのため、有機エレクトロルミネッセンス素子(有機EL素子)や有機光電変換素子の内部の湿度を下げる必要があり、さらに外気から内部を遮断保護するための手段が設けられている。例えば、ガラスキャップや金属製缶を、接着剤を使用して封止し、機密空間を作り、その中に乾燥剤を入れるケーシングタイプの方法が開示されている。また近年、プラスチックやガラス基板上に有機発光層等を形成したのち、可撓性のある薄膜なハイバリアフィルムや金属箔等を用いて接着剤で面接着して封止する密着タイプの方法が開示され、耐湿性に優れた薄型・軽量な有機EL素子および有機光電変換素子が提案されている。
 封止部材としては、ガス透過性が低く安価であるため、金属(板、箔)が多く適用されるが、導電性があるため、有機EL素子や取り出し電極等との接触により、電気的な短絡が発生し、発光不良や均一な発光特性が得られないことが問題となっており、各種方式が提案されている。また、同様に有機光電変換素子を用いた場合には、発電時のリーク不良を起こしやすいことが分かった。
 また、硬質、軟質アルミ箔を使い分けることで、封止工程でのハンドリング性向上やシワ防止等を行う方法が提案されている。
 導電性の高い金属製部材を封止部材に使用するときの電気的な短絡発生に対しては、基板と封止部材との接着層に、粒子状のスペーサを混ぜ込みクリアランス(接触限界、間隙)を確保する方法が提案されている。
 しかしながら、これもスペーサの厚み分だけ接着材が厚くなるため大気中の水分や酸素ガスが封止内に浸入し易くなり封止性能が低下してしまう。また、スペーサによるコストアップもある。
 金属製部材の表面(片側もしくは両面)に樹脂層を配置し絶縁化処理を施して対応する方法も提案されているが(例えば、特許文献1、2)、封止部材の端部の接触により短絡が発生する場合があり根本対策にまで至っていないのが現状である。また、接着層の硬化収縮により封止基板が電極側に反り、エッジが接触(短絡)する現象も明らかになった。
 また、端部への絶縁層付与はプロセス上困難な場合があるし、もしくはコスト上昇をもたらす。また、樹脂層による絶縁処理を行った場合には、樹脂層端部からのガス侵入(サイドリーク)もあり封止性能が低下してしまう。さらに、また接着部の白濁化や界面の剥離が発生し品質劣化を伴う。封止部材端部は露出短絡の懸念もある。
 その他、封止部材(基板)に金属箔を使用した場合においては、ハンドリング中のピンホールやシワの問題もあり各種検討がなされている。例えば、硬質アルミ箔によるハンドリング性向上、シワ防止が検討されている(例えば、特許文献3)。しかし、根本対策までには至っていない。
特開2001-43970号公報 特開2002-93573号公報 特開2004-171806号公報
 本発明の目的は、封止部材に金属製部材を使用したときの部材の反り(変形)を抑制し、これによる電気的な短絡を防止し、発光不良の発生や発電時のリーク発生を防止することにある。
 本発明の上記課題は以下の手段により達成される。
 1.基板上に形成された、少なくとも第1電極を含む陽極層、有機化合物層および第2電極を含む陰極層からなる有機エレクトロニクス素子に、接着層を介して封止基板を貼合・積層して、形成する有機エレクトロニクスパネルにおいて、
 封止基板が金属箔からなり、該金属箔の前記接着層とは反対側の面に、ポリマーフィルムが積層され、かつ、ポリマーフィルムの厚みが金属箔の厚み以下であり、封止基板の貼合・積層時または接着層硬化時に加熱することを特徴とする有機エレクトロニクスパネル。
 2.前記有機化合物層が発光層を含み、有機エレクトロニクス素子が有機エレクトロルミネッセンス素子であることを特徴とする前記1に記載の有機エレクトロニクスパネル。
 3.前記有機化合物層が光電変換層を含み、有機エレクトロニクス素子が有機光電変換素子であることを特徴とする前記1に記載の有機エレクトロニクスパネル。
 4.前記金属箔の厚みが9~500μmであり、ポリマーフィルムの厚みが金属箔に対し、10~100%の厚みであることを特徴とする前記1~3のいずれか1項に記載の有機エレクトロニクスパネル。
 5.前記金属箔がアルミニウムであることを特徴とする前記1~4のいずれか1項に記載の有機エレクトロニクスパネル。
 6.前記金属箔がアルミニウムであり、かつ、該金属箔の接着層側の面がつや面であることを特徴とする前記1~4のいずれか1項に記載の有機エレクトロニクスパネル。
 7.前記ポリマーフィルムのTgが、前記封止基板の貼合・積層時または接着層硬化時の加熱温度より低いことを特徴とする前記1~4のいずれか1項に記載の有機エレクトロニクスパネル。
 8.前記ポリマーフィルムの熱収縮率が、前記封止基板の貼合・積層時または接着層硬化時の加熱温度において0.2~3%であることを特徴とする前記1~4のいずれか1項に記載の有機エレクトロニクスパネル。
 9.前記1~8のいずれか1項に記載の有機エレクトロニクスパネルを製造することを特徴とする有機エレクトロニクスパネルの製造方法。
 本発明により、金属製部材を用い封止した際の接着層硬化収縮による反り(変形)を抑制し、取出し電極との短絡を防止することができる。
 本発明によれば、封止用シール材にスペーサを混入しなくてもよく、また小ギャップでも短絡の発生がなくなる。
 また、シールギャップを狭くできるため、シール部からのガス浸透が抑えられ封止性能が向上する。またパネルの薄型化が図れる。
 また、シール部分において、封止部材に絶縁層を設けることなく短絡の発生を抑制できる。絶縁層を付与しなくてもよい(付与してもよいが)ので、コストダウンが図れる。
 また、金属箔の場合、ポリマーフィルムを積層することで、金属箔のハンドリングが容易になりピンホール等の発生も抑制できる。
従来構成の有機エレクトロニクスパネルの一例を示す断面図である。 本発明の有機エレクトロニクスパネルの構成を示す概略断面図である。
 本発明は、基板上に形成された、少なくとも第1電極を含む陽極層、発光層を含む有機化合物層および第2電極を含む陰極層からなる有機エレクトロルミネッセンス素子(有機EL素子ともいう)、若しくは、基板上に形成された、第1電極を含む陽極層、光電変換粗を含む有機化合物層および第2電極を含む陰極層からなる有機光電変換素子に、接着層を介して封止基板を貼合・積層して、形成する有機エレクトロルミネッセンスパネル若しくは有機光電変換パネル(両者を含めて有機エレクトロニクス素子という)であって、前記封止基板が金属箔からなり、金属箔の、有機エレクトロニクス素子に対向する面側の、接着層とは反対側の面に、ポリマーフィルムが積層されており、かつ、ポリマーフィルムの厚みが金属箔の厚み以下であり、封止基板の貼合・積層時または接着層硬化時に加熱することを特徴とするものである。
 接着層の硬化において加熱温度は好ましくは50℃以上200℃以下、さらに好ましくは80℃~160℃の範囲である。1秒~1時間の範囲で加熱することで、熱硬化樹脂の場合には硬化(架橋反応)が進み、熱可塑性樹脂などの場合には貼合・積層時、熱により可塑化し冷却の課程で素子に接着する。また、光硬化性接着剤の場合にも、封止基板貼合後に光の照射と加熱を同時に実施することで硬化(接着)速度を上げることが出来る。
 本発明において封止基板として用いられる金属箔は、厚みが9~500μmであり、これにポリマーフィルムが積層され、ポリマーフィルムの厚みが金属箔に対し、10~100%の厚みであることが好ましい。
 また、前記金属箔としては安価であり、柔軟性があることから、アルミニウムであることが好ましい。
 アルミニウム箔のつやのないけし面の表面粗さRaは10nm以上であり、好ましくは50nm以上、最も好ましいのは100nm以上である。けし面の表面粗さは、好ましくは0.8μm以下、より好ましくは0.5μm以下である。この値が小さいとポリマーフィルムとの積層した場合剥離が起きやすい。このけし面の表面粗さが大きくなると有機エレクトロニクス素子側に用いた場合素子表面が傷つく不都合が生じるおそれがある。なお、つや面は表面粗さRaが10nm未満の光沢のある面である。
 従来構成の有機エレクトロニクスパネルの一例を断面図で図1に示した。
 図1は、基板1上に、第一電極2、さらに例えば発光層等を含む有機機能層3、第二電極4、からなる有機エレクトロニクス素子が形成され、この上に封止基板5を接着層6によりその端部で封止した構成を有する封止された有機エレクトロニクスパネルを示している。
 この様な構成で、金属箔(導電性封止基板)を使用し、パネルを作成したとき起こる電気的短絡の原因を調査した結果、金属箔と第一電極との端部における接触が大きな原因であることが分かった。
 この様な端部における短絡は、例えば、封止の際の接着層の硬化収縮、封止基板貼合時の圧着によって、また経時によっても徐々に起こる。また、大きなパネルから打ちぬいて個々に有機エレクトロニクスパネルを作成するときには、例えばカッターによる断裁によっても起こる。
 図1には、封止基板で封止した従来構成の有機エレクトロニクスパネルの一例を断面図で示したが、接着層の硬化収縮によって、金属箔の封止基板が第一電極側に端部で折り曲げられ、第一電極あるいは取り出し電極と接触し短絡部を形成してしまう様子を同時に示した。
 例えば、特許文献1あるいは2に記載のように導電性の封止基板である金属箔に絶縁層を付与すれば効果はあるが、封止基板のエッジについては、また断裁等するため、導電部が露出してしまう。また、端部への絶縁層付与はプロセス的に封止部材に加工が必要となり高価となって対応が難しい。
 図1において説明したように、電気的短絡は、接着層の硬化収縮により封止基板が電極側に反り、エッジが接触することから起こるので、この電極側への封止基板の反りを防ぐことで、電気的短絡は大幅に減らすことができることを、本発明者は見出し本発明に至ったものである。
 従って、本発明は、シール材硬化時の硬化収縮や封止基板貼合時の応力による封止基板の反り(変形)を防止したことに特徴がある。具体的には、封止基板である金属箔の接着層面側とは反対の面(裏面:反接着層面)に、ポリマーフィルムを積層する。封止基板の貼合・積層時またはその後に加熱することで、ポリマーフィルムが収縮し封止基板が第一電極の側に反りを起こすことを防止して短絡を抑制するものである。
 従って、本発明は、封止基板として金属箔にポリマーフィルムを積層したものを用い加熱することを特徴とする。
 図2に本発明の有機エレクトロニクスパネルの構成を概略断面図にて示す。
 図1の構成に対し金属箔にポリマーフィルムを積層したものを封止基板として用いている。前記の構成に加え、金属箔5にポリマーフィルム7が積層されている。これにより封止基板の反りを防ぐものである。接着層を硬化させる時に加熱することで硬化接着層の収縮に応じて、金属箔の反対側に積層されたポリマーフィルムは適度に収縮して反りを大幅に減らすことができる。
 接着層が熱硬化型の場合は、封止基板貼合後に加熱することで接着層の硬化とポリマーフィルムの収縮が同時に可能となる。接着層が光硬化型の場合は、封止基板貼合後に光の照射と加熱を同時に実施することで対応可能である。接着層が熱可塑性樹脂の場合は、封止基板及び接着層を加熱(接着層をメルト)しながら貼合することで対応可能である。
 効率よく封止基板の反りを防止するためには、金属箔の厚みとポリマーフィルムの厚みの関係を、以下のように選択することが好ましい。
 即ち、本発明において用いられる、封止基板としての金属箔は、厚みが9~500μmの範囲であることが好ましい。厚みが9μ未満の場合は、使用時にピンホールが形成しやすく、必要とするバリアー性能(透湿度、酸素透過率)が得られなくなる場合がある。
 また、500μmを越えた場合は、金属箔に用いる材料によってはコストが高くなったり、有機エレクトロニクスパネルが厚くなり薄型化のメリットが少なくなる。
 また、これらの封止基板において、効率よく反りを防止するためには、ポリマーフィルムの厚みが金属箔の厚みを超えないこと、さらに、ポリマーフィルムの厚みを、金属箔の厚みに対し、10~100%とすることが好ましい。
 金属箔の厚みに対し、10%未満である場合は、ポリマーフィルムによる応力が小さく金属箔の変形を抑制する効果が得られない。
 また、金属箔の厚みに対し、100%より大きい場合は、熱収縮があるとき、熱収縮による応力が大きくなり金属箔がポリマーフィルム側に反ってしまい(変形)、接着端部において封止基板の剥れが生じるおそれがある。
 また、ポリマーフィルムの熱収縮率は、封止基板貼合・積層時または接着層の硬化時の加熱温度にて0.2~3%であることが好ましい。これが0.2%以下だと、熱収縮率が小さすぎて、金属箔の変形(第一電極基板側への)を抑える効果が小さく、また、3%を超えると、基板と反対側への反りが大きくなり、また封止基板そのものの剥がれ等を引き起こすおそれがある。
 熱収縮率は、以下の方法で測定することができる。
 (熱収縮率)
 ポリマーフィルム試料として、30mm幅×120mm長さの試験片を各3枚採取する。試験片の両端に6mmφの穴をパンチで100mm間隔に開ける。これを23±3℃、相対温度65±5%の室内で3時間以上調湿する。自動ピンゲージ(新東科学(株)製)を用いてパンチ間隔の原寸(L)を最小目盛り/1000mmまで測定する。次に試験片を硬化時の加熱温度に設定した恒温器に吊して3時間熱処理し、23±3℃、相対湿度65±5%の室内で3時間以上調湿した後、自動ピンゲージで熱処理後のパンチ間隔の寸法(L)を測定する。そして、以下の式により熱収縮率を算出する。
 熱収縮率=(L-L/L)×100
 例えばPETの熱収縮率は120℃で0.8%程度である。
 また、前記ポリマーフィルムのTgが、封止基板貼合・積層時または接着層の硬化時の加熱温度より低いことが好ましい。これにより、接着剤の硬化収縮にともない、ポリマーフィルムをこれに追随させ収縮させることができるので、熱収縮率の差が緩和され端部の硬化接着による変形(カール、折れ)が緩和され、短絡部がこれによっても生じにくくなる。
 例えばPET(ポリエチレンテレフタレート)の場合Tgが70℃程度なので、熱硬化接着層を使用した場合、熱硬化温度(加熱温度)を120℃とすれば都合がよい。
 また、金属箔を素子表面に貼合して封止するとき、接着層側の金属箔面がつや面(Raで10nm未満)であることが好ましい。平滑な面が有機エレクトロニクス素子側となるため傷や表面の凹凸が、圧力に敏感な素子の表面にダメージを与えにくい。
 本発明において有機エレクトロニクスパネルの基板として用いられるものとしては、ガラス、プラスチック等の基板であるが、これらのみに限定されない。
 プラスチック(樹脂)基板として用いられる基材としては、透明性樹脂フィルムがある。厚さ100μm~2mm程度の厚みを有するものが使用される。透明性樹脂フィルムとしては、ポリエチレン、エチレン-酢酸ビニル共重合体、エチレン-ビニルアルコール共重合体、ポリメチルメタアクリレート、ポリエーテルエーテルケトン、ポリエーテルサルフォン、テトラフルオロエチレン-パーフルオロアルキルビニルエーテル共重合体、ポリエステル、ポリカーボネート、ポリウレタン、ポリイミド、ポリエーテルイミド等が挙げられるが限定されない。
 また、ガスバリア性が高いガスバリアフィルムを用いることもできる。ガスバリアフィルムとしては、例えば、金属の酸化膜、酸化窒化膜、窒化膜、また金属薄膜等、厚み50nm以上50μm以下の封止機能を有するガスバリア膜を有するフィルム、具体的にはアルミナ蒸着フィルム、樹脂フィルムがラミネートされた金属箔等がある。
 封止基板として用いられる金属箔としては、金属の種類に特に限定はなく、例えば銅(Cu)箔、アルミニウム(Al)箔、金(Au)箔、黄銅箔、ニッケル(Ni)箔、チタン(Ti)箔、銅合金箔、ステンレス箔、スズ(Sn)箔、高ニッケル合金箔等が挙げられる。これらの各種の金属箔の中で特に好ましい金属箔としてはAl箔が挙げられる。
 金属箔としては、主に、金属の圧延等により形成された金属の箔またはフィルム等を指すが、ポリマーフィルム上にスパッタや蒸着等で形成された金属薄膜や、導電性ペースト等の流動性電極材料から形成された導電膜であってもよい。
 また、金属箔と積層されるポリマーフィルムの材料としては、「機能性包装材料の新展開(株式会社東レリサーチセンター)」に記載の各種ポリマー材料を使用することが可能である。
 例えば、ポリエチレン系樹脂、ポリプロピレン系樹脂、ポリエチレンテレフタレート系樹脂、ポリアミド系樹脂、エチレン-ビニルアルコール共重合体系樹脂、エチレン-酢酸ビニル共重合体系樹脂、アクリロニトリル-ブタジエン共重合体系樹脂、セロハン系樹脂、ビニロン系樹脂、塩化ビニリデン系樹脂等が挙げられる。
 ポリプロピレン系樹脂、ナイロン系樹脂等の樹脂は、延伸されていてもよく、さらに塩化ビニリデン系樹脂をコートされていてもよい。また、ポリエチレン系樹脂は、低密度あるいは高密度のものも用いることができる。
 金属箔の片面にポリマーフィルムを積層する方法としては、一般に使用されているラミネート機を使用することができる。接着剤としてはポリウレタン系、ポリエステル系、エポキシ系、アクリル系等の接着剤を用いることができる。必要に応じて硬化剤を併用してもよい。ホットメルトラミネーション法やエクストルージョンラミネート法および共押出しラミネーション法も使用できるがドライラミネート方式が好ましい。接着剤の厚みは0.5~10μmの範囲が好ましい。
 また、金属箔をスパッタや蒸着等で形成したり、導電性ペースト等の流動性電極材料から形成する場合は、逆にポリマーフィルムを基材としてこれに金属箔を成膜する方法で作成してもよい。
 本発明において用いられる、接着層は、熱硬化性樹脂、光硬化性樹脂、熱可塑性樹脂などを用いることができる。硬化性樹脂の場合は、エポキシ系樹脂、アクリル系樹脂、シリコーン樹脂などが挙げられる。接着層の厚みは、0.1μm~100μmが好ましい。
 耐湿性、耐水性に優れ、硬化時の収縮が少ないエポキシ系熱硬化型接着性樹脂を用いることが、特に好ましい。
 熱硬化性接着剤の場合には、例えば、封止基板の接着面に接着剤を均一に塗布し、該接着層を介して、基板上にこれを覆うようにして接着面を密着、加熱圧着して硬化貼合する。0.05~5MPaの範囲で接着面を密着させればよい。密着させ加熱により硬化する。
 接着層の硬化において加熱温度は好ましくは50℃以上200℃以下、さらに好ましくは80℃~160℃の範囲である。封止基板に用いたポリマーフィルムのTgよりも高いことが好ましい。1秒~1時間の範囲で加熱することで、熱硬化樹脂の場合には硬化(架橋反応)が進み貼合される。
 また、光硬化性接着剤の場合にも、封止基板貼合後に光の照射と加熱を同時に実施することで硬化(接着)速度を上げることが出来る。
 熱可塑性樹脂の場合は、ポリエチレン、ポリプロピレン、エチレン・プロピレン共重合体などのポリオレフィンの酸変性物、エチレン・酢酸ビニル共重合体の酸変性物、エチレン・アクリル酸共重合体、エチレン・メタクリル酸共重合体、アイオノマーなどを用いることができる。特に、有機エレクトロニクス素子を劣化させるアウトガス成分が少ないポリエチレン、ポリプロピレンの酸変性物を用いることが望ましい。
 熱可塑性接着剤の場合には、封止基板のアルミ箔の接着面(つや面)に熱可塑性接着剤(熱可塑性樹脂)(例えばポリプロピレンの酸変性物;三井化学QE050)を、例えばラミネートし接着層を成膜する。しかる後、封止基板を、素子を形成した基板上に接着剤面を密着・積層配置して加熱・貼合すればよい。貼合時の圧力は0.05~5MPaの範囲が好ましく、加熱温度は好ましくは50℃以上200℃以下、さらに好ましくは80℃~160℃の範囲である。封止基板に用いたポリマーフィルムのTgよりも高いことが好ましい。熱可塑性接着剤(樹脂)の場合には貼合・積層時の熱により可塑化したのち、冷却の過程で素子に接着する。
 また、接着層の形成方法としては、材料に応じて、ロールコート、スピンコート、スクリーン印刷法、スプレーコートなどのコーティング法、印刷法を用いることができる。また、接着層内部の含有水分を除去するために、酸化バリウムや酸化カルシウムなどの乾燥剤を混入してもよい。
 また、本発明において、封止構造については、中空構造、また、シール材充填密着構造等を問わない。
 《有機EL素子》
 有機EL素子は、電極間に単数又は複数の有機層を積層した構造であり、例えば、陽極層/正孔注入・輸送層/発光層/電子注入・輸送層/陰極層等、各種の有機化合物からなる機能層が必要の応じ積層された構成をもつ。最も単純には、陽極層/発光層/陰極層からなる構造を有する。
 正孔注入・輸送層に用いられる有機材料としては、フタロシアニン誘導体、ヘテロ環アゾール類、芳香族三級アミン類、ポリビニルカルバゾール、ポリエチレンジオキシチオフェン/ポリスチレンスルホン酸(PEDOT:PSS)などに代表される導電性高分子等の高分子材料が用いられる。
 また、発光層に用いられる、例えば、4,4′-ジカルバゾリルビフェニル、1,3-ジカルバゾリルベンゼン等のカルバゾール系発光材料、(ジ)アザカルバゾール類、1,3,5-トリピレニルベンゼンなどのピレン系発光材料に代表される低分子発光材料、ポリフェニレンビニレン類、ポリフルオレン類、ポリビニルカルバゾール類などに代表される高分子発光材料などが挙げられる。これらのうちで、発光材料としては分子量10000以下の低分子系発光材料が好ましく用いられる。
 また発光層中、発光材料には、好ましくは0.1~20質量%程度のドーパントが含まれてもよく、ドーパントとしては、ペリレン誘導体、ピレン誘導体等公知の蛍光色素、また、りん光色素、例えば、トリス(2-フェニルピリジン)イリジウム、ビス(2-フェニルピリジン)(アセチルアセトナート)イリジウム、ビス(2,4-ジフルオロフェニルピリジン)(ピコリナート)イリジウム、などに代表されるオルトメタル化イリジウム錯体等の錯体化合物がある。
 電子注入・輸送層材料としては、8-ヒドロキシキノリナートリチウム、ビス(8-ヒドロキシキノリナート)亜鉛等の金属錯体化合物もしくは以下に挙げられる含窒素五員環誘導体がある。即ち、オキサゾール、チアゾール、オキサジアゾール、チアジアゾールもしくはトリアゾール誘導体が好ましい。具体的には、2,5-ビス(1-フェニル)-1,3,4-オキサゾール、2,5-ビス(1-フェニル)-1,3,4-チアゾール、2,5-ビス(1-フェニル)-1,3,4-オキサジアゾール、2-(4′-tert-ブチルフェニル)-5-(4″-ビフェニル)1,3,4-オキサジアゾール、2,5-ビス(1-ナフチル)-1,3,4-オキサジアゾール、1,4-ビス[2-(5-フェニルオキサジアゾリル)]ベンゼン、1,4-ビス[2-(5-フェニルオキサジアゾリル)-4-tert-ブチルベンゼン]、2-(4′-tert-ブチルフェニル)-5-(4″-ビフェニル)-1,3,4-チアジアゾール、2,5-ビス(1-ナフチル)-1,3,4-チアジアゾール、1,4-ビス[2-(5-フェニルチアジアゾリル)]ベンゼン、2-(4′-tert-ブチルフェニル)-5-(4″-ビフェニル)-1,3,4-トリアゾール、2,5-ビス(1-ナフチル)-1,3,4-トリアゾール、1,4-ビス[2-(5-フェニルトリアゾリル)]ベンゼン等が挙げられる。
 これら発光層、また各機能層に用いられる材料として、分子中にビニル基等の重合反応性基を有する材料を用い、製膜後に架橋・重合膜を形成させてもよい。
 因みに陽極層に使用される導電性材料としては、4eVより大きな仕事関数をもつものが適しており、銀、金、白金、パラジウム等及びそれらの合金、酸化スズ、酸化インジウム、ITO等の酸化金属、さらにはポリチオフェンやポリピロール等の有機導電性樹脂が用いられる。
 また、陰極層に使用される導電性物質としては、4eVより小さな仕事関数をもつものが適しており、マグネシウム、アルミニウム等。合金としては、マグネシウム/銀、リチウム/アルミニウム等が代表例として挙げられる。
 有機エレクトロニクスパネルにおいて、上記の各機能層は、真空蒸着法、またスパッタ法等の乾式法により形成されてもよく、また塗布、印刷法等の湿式法で成膜されてもよい。
 《有機光電変換素子》
 次に、有機光電変換素子について説明するが、以下の形態に限定されるものではない。
 本発明で用いることのできる有機光電変換素子としては特に制限がなく、陽極と陰極と、両者に挟まれた光電変換層が少なくとも1層以上あり、光を照射すると電流を発生する素子であればよい。
 光電変換層の構成としては、有機半導体材料を積層した構成であれば特に限定されないが、例えば、p型半導体材料とn型半導体材料を積層したヘテロジャンクション型や、p型、n型両方の半導体材料を混合し、ミクロ相分離構造を有した所謂バルクヘテロジャンクション型を挙げることができる。内部量子効率向上の観点から、電荷分離効率に優れる構成が好ましく、バルクヘテロジャンクション型の構造が本願においてより好ましい。
 また、本発明の有機光電変換素子を太陽電池として用いる場合には、太陽光スペクトルに最適な吸収特性を有する有機半導体材料を用いることが好ましく、効率、意匠性の観点からより黒い外観である有機光電変換素子であることが好ましい。
 《有機光電変換素子の構成》
 本発明を適用した有機光電変換素子は、支持体の一方面上に、透明電極、光電変換層及び対電極が順次積層されている。
 また、これに限られず、例えば透明電極や対電極と光電変換層との間に正孔輸送層、電子輸送層、正孔ブロック層、電子ブロック層、電極バッファー層、或いは平滑化層等の他の層を有して有機光電変換素子が構成されてもよい。また、正孔ブロック能を有する電子輸送層、電子ブロック能を有する正孔輸送層であっでもよい。これらの中でも、バルクヘテロジャンクション型の光電変換層を有する有機光電変換素子においては、光電変換層と陽極(通常、透明電極側)との中間には正孔輸送層及び/または電子ブロック層を、光電変換層と陰極(通常、対電極側)との中間には電子輸送層及び/または正孔ブロック層を形成することで、バルクヘテロジャンクション型の光電変換層で発生した電荷をより効率的に取り出すことが可能となるため、これらの層を有していることが好ましい。
 これら正孔輸送層、電子輸送層等の有機材料としては前記有機EL素子において用いられるものと同様のものが用いられる。
 (i)陽極/正孔輸送層/電子ブロック層/光電変換層/正孔ブロック層/電子輸送層/陰極
 (ii)陽極/電子ブロック能を有する正孔輸送層/光電変換層/正孔ブロック能を有する電子輸送層/陰極バッファー層/陰極
 (iii)陽極/陽極バッファー層/正孔輸送層/電子ブロック層/光電変換層/正孔ブロック層/電子輸送層/陰極
 (iv)陽極/陽極バッファー層/正孔輸送層/電子ブロック層/光電変換層/正孔ブロック層/電子輸送層/陰極バッファー層/陰極
 上記のように、有機光電変換素子は基板上に各層を重ね合わせて重層され構成される。有機光電変換素子においても、上記各機能層は、真空蒸着法、またスパッタ法等の乾式法、また塗布、印刷法等の湿式法等、種々の公知の方法により成膜することができる。
 以上の各機能層が前記基板上に形成され、封止基板により封止され有機エレクトロニクスパネルを構成する。
 以下実施例により本発明を具体的に説明するが、本発明はこれにより限定されるものではない。
 実施例1
 図2の構成に従って、有機ELパネルを作成した。
 〈有機ELパネルの作成〉
 100mm×100mm×1.1mmのガラス基板上に、陽極としてITO(インジウムチンオキシド)を100nm成膜した透明支持基板を準備した。これをイソプロピルアルコールで超音波洗浄し、乾燥窒素ガスで乾燥し、UVオゾン洗浄を更に5分間行った。
 この透明支持基板上に、ポリ(3,4-エチレンジオキシチオフェン)-ポリスチレンスルホン酸(PEDOT/PSS Bayer社製、Baytron P Al 4083)を純水で70%に希釈した溶液を3000rpm、30秒でスピンコート法により成膜した後、200℃で1時間乾燥し、膜厚30nmの正孔輸送層とした。
 更に下記組成の発光組成物を1mlとなるように調整し、スピンコートした。(膜厚約25nm)。
 発光組成物
 溶媒:トルエン                   100質量%
 ホスト材料:H-A                   1質量%
 青色材料:Ir-A                0.10質量%
 緑色材料:Ir(ppy)            0.004質量%
 赤色材料:Ir(piq)            0.005質量%
 次いで、電子輸送層用塗布液を下記のように調製し、スピンコーターにて、1500rpm、30秒の条件で塗布し、電子輸送層を設けた。別途用意した基板にて、同条件にて塗布を行い、測定をしたところ、膜厚は20nmであった。
 (電子輸送層用塗布液)
 2,2,3,3-テトラフルオロ-1-プロパノール   100ml
 ET-A                       0.50g
Figure JPOXMLDOC01-appb-C000001
 更に電子輸送層が形成された上記試料を真空蒸着装置に移し、真空槽を4×10-4Paまで減圧し、前記電子輸送層上に陰極バッファー層としてフッ化リチウム10nm及び陰極としてアルミニウム110nmの層を順次蒸着成膜して、有機EL素子を作製した。
 (封止基板)
 次いで封止基板として、ポリエステルシートでラミネートされたアルミ箔を作成した。
 厚み50μmのアルミ箔(東洋アルミニウム株式会社製)を用いこのマット面(けし面)に厚みが異なった(表1に記載)ポリエチレンテレフタレート(PET)フィルムをドライラミネーション用の接着剤(2液反応型のウレタン系接着剤)を用いラミネートした(接着剤層の厚み1.5μm)。なお、このアルミ箔のけし面(マット面)の表面粗さはRa470nm、因みにつや面のRaは1nm以下であった。
 (有機ELパネルの作成)
 次いで、作成したPETラミネートアルミ箔を、有機EL素子を形成したガラス基板と略同じサイズ(100mm×100mm)とし、そのつや面(PETラミネート面の反対側)に以下の熱硬化性接着剤を用いて接着した。
 (熱硬化接着剤)エポキシ接着剤
   ビスフェノールAジグリシジルエーテル(DGEBA)
   ジシアンジアミド(DICY)
   エポキシアダクト系硬化促進剤
 熱硬化接着剤はディスペンサを使用してアルミ箔の接着面(つや面)に沿って均一に塗布し、しかる後、封止基板を、取り出し電極が露出するよう、有機EL素子を形成したガラス基板上にこれを覆うようにして接着面を密着・配置して、圧着(圧力0.15MPa、時間30秒)し仮接着した。仮接着された有機ELパネルをホットプレート上に載置し加熱し(温度120℃、30分)熱硬化接着剤を熱硬化させ、有機ELパネルを作成した。封止基板の作成に用いたPETフィルムの厚みが異なる有機ELパネル2~7を得た。
 また、75μm厚のPETをラミネートしたアルミ箔を封止基板として用いた有機ELパネル7(比較試料)に加え、アルミ箔をポリエステルシートでラミネートせずアルミ箔のみ(PET厚み0)を封止基板として用いて同様に封止した有機ELパネル1を比較として作成した。
 〈有機ELパネルの評価〉
 作成した有機ELパネルに、各取り出し電極から、低電圧電源(株式会社エーディーシー製、直流電圧・電流源R6243)にて+5V(正方向)、-5V(逆方向)を印加しその時の電流値を測定し、正逆電流値の比(正方向電流値÷逆方向電流値=整流比)を算出し比較を実施した。
 [整流比の評価ランク]
 ◎:1000以上
 ○:100以上、1000未満
 △:10以上、100未満
 ×:10未満
 また、熱硬化後の、封止端部の剥れを測定した。具体的には封止基板端部において、ポリマーフィルム側への反り量(浮き上がり量)をハイトゲージにより測定し、剥れ量とした。
 [剥れ量の評価ランク]
 ○:0.05mm未満
 △:0.05mm以上、0.3mm未満
 ×:0.3mm以上
 表1に結果を示す。
Figure JPOXMLDOC01-appb-T000002
 表1で示されるように、金属箔で封止した有機ELパネルは整流比が低く短絡があることがわかる。また、ポリマーフィルムを積層した金属箔を用いたものでは、整流比もよく、また剥がれ量も小さい。なお、金属箔のみまたフィルムの厚みが小さいものは、ガラス基板からの反りはみられなかった(剥がれ量は「-」で表示した)。また、ポリマーフィルムの厚みが大きくなると、反り量が大きく目視でも端部で剥がれが見られた。本発明の有効性が確認された。アルミに対するPETの厚み比率が20~80%のものは特に好ましい。
 実施例2
 実施例1と同様に、図2の構成に従って、有機ELパネルを作成した。
 〈有機ELパネルの作成〉
 実施例1と同様に、100mm×100mm×1.1mmのガラス基板上に、陽極、正孔輸送層、発光組成物、電子輸送層、陰極バッファー層、陰極を順次成膜して、有機EL素子を作製した。
 (封止基板)
 次いで封止基板として、ポリエステルシートでラミネートされたアルミ箔を作成した。
 厚み50μmのアルミ箔(東洋アルミニウム株式会社製)を用いこのマット面に厚さ25μmのポリエチレンテレフタレート(PET)フィルムをドライラミネーション用の接着剤(2液反応型のウレタン系接着剤)を用いラミネートした(接着剤層の厚み1.5μm)。なお、このアルミ箔のけし面(マット面)の表面粗さはRa470nm、因みにつや面のRaは1nm以下であった。
 次いで、作成したPETラミネートアルミ箔の接着面(つや面)に熱可塑性接着剤(ポリプロピレンの酸変性物;三井化学QE050)を押し出しラミネートし接着層を成膜した。熱可塑性接着剤の厚みは30μmとした。
 (有機ELパネルの作成)
 作成した接着層付きPETラミネートアルミ箔を、有機EL素子を形成したガラス基板と略同じサイズ(100mm×100mm)とし、しかる後、封止基板を、取り出し電極が露出するよう、有機EL素子を形成したガラス基板上にこれを覆うようにして接着面を密着・配置して加熱圧着し貼合した。貼合時の圧力は0.15MPa、時間は30秒とし、加熱温度を変化させ(表2に記載)、PETフィルムの収縮率が異なる条件で複数の有機ELパネル8~14を作成した。
 〈有機ELパネルの評価〉
 作成した有機ELパネルに、各取り出し電極から、低電圧電源(株式会社エーディーシー製、直流電圧・電流源R6243)にて+5V(正方向)、-5V(逆方向)を印加しその時の電流値を測定し、正逆電流値の比(正方向電流値÷逆方向電流値=整流比)を算出し比較を実施した。
 [整流比の評価ランク]
 ◎:1000以上
 ○:100以上、1000未満
 △:10以上、100未満
 ×:10未満
 また、貼合後の、封止端部の剥れを測定した。具体的には封止部材端部において、ポリマーフィルム側への反り量(浮き上がり量)をハイトゲージにより測定し、剥れ量とした。
 [剥れ量の評価ランク]
 ○:0.05mm未満
 △:0.05mm以上、0.3mm未満
 ×:0.3mm以上
 表2に結果を示す。
Figure JPOXMLDOC01-appb-T000003
 表2で示されるように、PETの収縮率が小さい有機ELパネルは整流比が低く短絡があることがわかる。また、PETの収縮率が0.2%以上のものは整流比は高く短絡は発生しない。PETの収縮率が3%を超えると封止部材端部の反り量が大きくなり剥れが確認された。本発明の有効性が確認された。特にPETの収縮率が0.8~3である場合に有効であった。
 実施例3
 図2の構成に従って、有機光電変換パネルを作成した。
 〈有機光電変換パネルの作成〉
 100mm×100mm×1.1mmのガラス基板上に、陽極としてITO(インジウムチンオキシド)を100nm成膜した透明支持基板を準備した。これをイソプロピルアルコールで超音波洗浄し、乾燥窒素ガスで乾燥し、UVオゾン洗浄を更に5分間行った。
 この透明支持基板上に、ポリ(3,4-エチレンジオキシチオフェン)-ポリスチレンスルホン酸(PEDOT/PSS Bayer社製、Baytron P Al 4083)を30nmの乾燥膜厚となるようにスピンコート塗布した後、140℃で大気中10分間加熱乾燥した。なお、塗布工程は大気中、25℃相対湿度50%の環境で行った。
 これ以降は、基板をグローブボックス中に持ち込み、窒素雰囲気下で作業した。
 まず、窒素雰囲気下で上記基板を140℃で3分間加熱処理した。
 次に、クロロベンゼンにP3HT(プレクトロニクス社製:レジオレギュラーポリ-3-ヘキシルチオフェン)とPCBM(フロンティアカーボン社製:6,6-フェニル-C61-ブチリックアシッドメチルエステル)を3.0質量%になるように1:0.8で混合した液を調製し、フィルタでろ過しながら膜厚が100nmになるように塗布を行い、室温で放置して乾燥させた。続けて、150℃で15分間加熱処理を行い、光電変換層を製膜した。
 次に、上記一連の機能層を製膜した基板を真空蒸着装置チャンバー内に移動し、1×10-4Pa以下まで真空蒸着装置内を減圧した後、蒸着速度0.01nm/秒でフッ化リチウムを0.6nm積層し、更に続けて、2mm幅のシャドウマスクを通して(受光部が2×2mmになるように蒸着)、蒸着速度0.2nm/秒でAlメタルを100nm積層することで対電極を形成して、有機光電変換素子を作成した。
 (封止基板)
 次いで封止基板として、ポリエステルシートでラミネートされたアルミ箔を作成した。
 厚み50μmのアルミ箔(東洋アルミニウム株式会社製)を用いこのマット面に厚みが異なった(表3に記載)ポリエチレンテレフタレート(PET)フィルムをドライラミネーション用の接着剤(2液反応型のウレタン系接着剤)を用いラミネートした(接着剤層の厚み1.5μm)。なお、このアルミ箔のけし面(マット面)の表面粗さはRa470nm、因みにつや面のRaは1nm以下であった。
 (有機光電変換パネルの作成)
 次いで、作成したPETラミネートアルミ箔を有機光電変換素子を形成したガラス基板と略同じサイズ(100mm×100mm)とし、そのつや面(PETラミネート面の反対側)に以下の熱硬化性接着剤を用いて接着した。
 (熱硬化接着剤)エポキシ接着剤
   ビスフェノールAジグリシジルエーテル(DGEBA)
   ジシアンジアミド(DICY)
   エポキシアダクト系硬化促進剤
 熱硬化接着剤はディスペンサを使用してアルミ箔の接着面(つや面)に沿って均一に塗布し、しかる後、封止基板を、取り出し電極が露出するよう、有機EL素子有機光電変換素子を形成したガラス基板上にこれを覆うようにして接着面を密着・配置して、封止基板を圧着(圧力0.15MPa、時間30秒)し仮接着した。仮接着された有機光電変換パネルをホットプレート上に載置し加熱し(温度120℃、30分)熱硬化接着剤を熱硬化させ、有機光電変換パネルを作成した。封止基板の作成に用いたPETフィルムの厚みが異なる有機光電変換パネルSP2~SP7を得た。
 また、75μm厚のPETをラミネートしたアルミ箔を封止基板として用いた有機光電変換パネルSP7(比較試料)に加え、アルミ箔をポリエステルシートでラミネートせずアルミ箔のみ(PET厚み0)を封止基板として用いて同様に封止した有機光電変換パネルSP1を比較として作成した。
 〈有機光電変換パネルの評価〉
 作成した有機光電変換パネルに、各取り出し電極から、低電圧電源(株式会社エーディーシー製、直流電圧・電流源R6243)にて+5V(正方向)、-5V(逆方向)を印加しその時の電流値を測定し、正逆電流値の比(正方向電流値÷逆方向電流値=整流比)を算出し比較を実施した。
 作成した有機光電変換パネルに、各取り出し電極から、暗所で低電圧電源(株式会社エーディーシー製、直流電圧・電流源R6243)にて+1V(正方向)、-1V(逆方向)を印加しその時の電流値を測定し、正逆電流値の比(正方向電流値÷逆方向電流値=整流比)を算出し比較を実施した。
 [整流比の評価ランク]
 ◎:1000以上
 ○:100以上、1000未満
 △:10以上、100未満
 ×:10未満
 また、熱硬化後の、封止端部の剥れを測定した。具体的には封止基板端部において、ポリマーフィルム側への反り量(浮き上がり量)をハイトゲージにより測定し、剥れ量とした。
 [剥れ量の評価ランク]
 ○:0.05mm未満
 △:0.05mm以上、0.3mm未満
 ×:0.3mm以上
 表3に結果を示す。
Figure JPOXMLDOC01-appb-T000004
 表3で示されるように、金属箔で封止した有機光電変換パネルは整流比が低く短絡があることがわかる。また、ポリマーフィルムを積層した金属箔を用いたものでは、整流比もよく、また剥がれ量も小さい。なお、金属箔のみまたフィルムの厚みが小さいものは、ガラス基板からの反りはみられなかった。また、ポリマーフィルムの厚みが大きくなると、反り量が大きく目視でも端部で剥がれが見られた。実施例1と同様に、有機光電変換素子においても本発明の有効性が確認された。アルミに対するPETの比率が20~80%の場合特に有効であった。
 実施例4
 実施例1において、有機ELパネルのガラス基板に代えて、厚み125μmのポリエチレンナフタレート(PEN)フィルムを基板として用いて有機ELパネル作成し、実施例1と同様の試験を行った。プラスチック基板を用いた場合でも本質的に実施例1と全く同様の効果が得られた。
 実施例5
 実施例2において、有機ELパネルのガラス基板に代えて、厚み125μmのポリエチレンナフタレート(PEN)フィルムを基板として用いて有機ELパネル作成し、実施例2と同様の試験を行ったが、その結果、プラスチック基板を用いた場合でも本質的に全く同様の効果が得られた。
 実施例6
 実施例3において、有機光電変換パネルのガラス基板に代え、同様に厚み125μmのポリエチレンナフタレート(PEN)フィルムを基板として用いて有機光電変換パネルを作成し、実施例3と同様の試験を行った。その結果プラスチック基板を用いた場合でも有機光電変換パネルにおいて同様の効果であり、同様の結果であった。
 1 基板
 2 第一電極
 3 有機機能層
 4 第二電極
 5 封止基板
 6 接着層
 7 ポリマーフィルム

Claims (9)

  1.  基板上に形成された、少なくとも第1電極を含む陽極層、有機化合物層および第2電極を含む陰極層からなる有機エレクトロニクス素子に、接着層を介して封止基板を貼合・積層して、形成する有機エレクトロニクスパネルにおいて、
     封止基板が金属箔からなり、該金属箔の前記接着層とは反対側の面に、ポリマーフィルムが積層され、かつ、ポリマーフィルムの厚みが金属箔の厚み以下であり、封止基板の貼合・積層時または接着層硬化時に加熱することを特徴とする有機エレクトロニクスパネル。
  2.  前記有機化合物層が発光層を含み、有機エレクトロニクス素子が有機エレクトロルミネッセンス素子であることを特徴とする請求項1に記載の有機エレクトロニクスパネル。
  3.  前記有機化合物層が光電変換層を含み、有機エレクトロニクス素子が有機光電変換素子であることを特徴とする請求項1に記載の有機エレクトロニクスパネル。
  4.  前記金属箔の厚みが9~500μmであり、ポリマーフィルムの厚みが金属箔に対し、10~100%の厚みであることを特徴とする請求項1~3のいずれか1項に記載の有機エレクトロニクスパネル。
  5.  前記金属箔がアルミニウムであることを特徴とする請求項1~4のいずれか1項に記載の有機エレクトロニクスパネル。
  6.  前記金属箔がアルミニウムであり、かつ、該金属箔の接着層側の面がつや面であることを特徴とする請求項1~4のいずれか1項に記載の有機エレクトロニクスパネル。
  7.  前記ポリマーフィルムのTgが、前記封止基板の貼合・積層時または接着層硬化時の加熱温度より低いことを特徴とする請求項1~4のいずれか1項に記載の有機エレクトロニクスパネル。
  8.  前記ポリマーフィルムの熱収縮率が、前記封止基板の貼合・積層時または接着層硬化時の加熱温度において0.2~3%であることを特徴とする請求項1~4のいずれか1項に記載の有機エレクトロニクスパネル。
  9.  請求項1~8のいずれか1項に記載の有機エレクトロニクスパネルを製造することを特徴とする有機エレクトロニクスパネルの製造方法。
PCT/JP2010/052045 2009-03-16 2010-02-12 有機エレクトロニクスパネルおよび有機エレクトロニクスパネルの製造方法 WO2010106853A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US13/255,851 US8445899B2 (en) 2009-03-16 2010-02-12 Organic electronic panel and method for manufacturing organic electronic panel
JP2011504779A JP5660030B2 (ja) 2009-03-16 2010-02-12 有機エレクトロニクスパネルおよび有機エレクトロニクスパネルの製造方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2009-062888 2009-03-16
JP2009062888 2009-03-16
JP2009279222 2009-12-09
JP2009-279222 2009-12-09

Publications (1)

Publication Number Publication Date
WO2010106853A1 true WO2010106853A1 (ja) 2010-09-23

Family

ID=42739519

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/052045 WO2010106853A1 (ja) 2009-03-16 2010-02-12 有機エレクトロニクスパネルおよび有機エレクトロニクスパネルの製造方法

Country Status (3)

Country Link
US (1) US8445899B2 (ja)
JP (1) JP5660030B2 (ja)
WO (1) WO2010106853A1 (ja)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012238463A (ja) * 2011-05-11 2012-12-06 Konica Minolta Holdings Inc 有機エレクトロルミネッセンス素子、及び、有機エレクトロルミネッセンス素子の製造方法
WO2013061757A1 (ja) * 2011-10-27 2013-05-02 シャープ株式会社 合わせガラス構造太陽電池モジュール
JP2013183139A (ja) * 2012-03-05 2013-09-12 Konica Minolta Inc 面状発光体及び照明装置
JP2013541158A (ja) * 2010-09-27 2013-11-07 コーニンクレッカ フィリップス エヌ ヴェ 可撓性の被覆層を持つoled
JP2014127575A (ja) * 2012-12-26 2014-07-07 Nitto Denko Corp 封止シート
KR101611924B1 (ko) * 2012-12-31 2016-04-12 엘지디스플레이 주식회사 유기 발광 다이오드 표시 장치
JP2016514895A (ja) * 2013-08-21 2016-05-23 エルジー・ケム・リミテッド 有機発光素子およびその製造方法
JP2017103258A (ja) * 2011-07-08 2017-06-08 株式会社半導体エネルギー研究所 表示装置
KR101772661B1 (ko) * 2010-11-29 2017-09-13 삼성디스플레이 주식회사 유기 발광 표시 장치
KR101803537B1 (ko) * 2012-02-09 2017-11-30 가부시키가이샤 한도오따이 에네루기 켄큐쇼 발광 소자
JP2018500731A (ja) * 2014-12-03 2018-01-11 深▲セン▼市華星光電技術有限公司 フレキシブルoled基板及びフレキシブルoled実装方法
JPWO2018221510A1 (ja) * 2017-05-31 2019-06-27 リンテック株式会社 シート状接着剤、ガスバリア性積層体、及び封止体

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5010758B2 (ja) * 2010-06-04 2012-08-29 三井金属鉱業株式会社 電極箔および有機デバイス
JP2012234974A (ja) * 2011-05-02 2012-11-29 Ma Packaging:Kk 太陽電池モジュール用バックシート
CN103337595B (zh) * 2013-07-04 2016-04-06 上海和辉光电有限公司 柔性封装衬底及其制造方法和使用该衬底的oled封装方法
CN103779511B (zh) * 2014-01-26 2016-01-20 江苏天楹之光光电科技有限公司 一种oled封装的制造方法
US10333100B2 (en) 2014-08-29 2019-06-25 Sumitomo Chemical Company, Limited Organic electroluminescent device
CN108475730A (zh) * 2016-02-12 2018-08-31 沙特基础工业全球技术有限公司 感光层压板、制造方法和图像传感器装置
KR102316563B1 (ko) * 2017-05-22 2021-10-25 엘지디스플레이 주식회사 금속으로 형성된 상부 기판을 포함하는 유기 발광 표시 장치 및 이의 제조 방법
CN107731749B (zh) * 2017-11-27 2020-02-07 合肥鑫晟光电科技有限公司 一种封装薄膜及其制备方法和一种oled显示装置
TWI667820B (zh) * 2018-03-30 2019-08-01 財團法人工業技術研究院 發光元件
KR20210079898A (ko) * 2019-12-20 2021-06-30 엘지디스플레이 주식회사 표시장치

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02192691A (ja) * 1989-01-20 1990-07-30 Kohjin Co Ltd El発光素子
JP2002093573A (ja) * 2000-09-14 2002-03-29 Nisshin Steel Co Ltd 有機el素子用絶縁性封止部材
JP2003168555A (ja) * 2001-11-29 2003-06-13 Sumitomo Electric Ind Ltd エレクトロルミネッセンス表示装置
JP2006299145A (ja) * 2005-04-22 2006-11-02 Konica Minolta Holdings Inc ガスバリア性フィルム、ガスバリア性フィルムを用いた有機エレクトロルミネッセンス用樹脂基材および有機エレクトロルミネッセンス素子
WO2007123006A1 (ja) * 2006-04-21 2007-11-01 Konica Minolta Holdings, Inc. ガスバリアフィルム、有機エレクトロルミネッセンス用樹脂基材、それを用いた有機エレクトロルミネッセンス素子及びガスバリアフィルムの製造方法
JP2009054606A (ja) * 2007-08-23 2009-03-12 Fujifilm Corp 有機半導体材料、該材料を含む膜、有機電子デバイス及び赤外色素組成物

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001043970A (ja) 1999-07-30 2001-02-16 Auto Network Gijutsu Kenkyusho:Kk 有機el表示装置
US6700185B1 (en) * 1999-11-10 2004-03-02 Hitachi Chemical Co., Ltd. Adhesive film for semiconductor, lead frame and semiconductor device using the same, and method for manufacturing semiconductor device
JP2004171806A (ja) 2002-11-18 2004-06-17 Toppan Printing Co Ltd 有機エレクトロルミネッセンス素子

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02192691A (ja) * 1989-01-20 1990-07-30 Kohjin Co Ltd El発光素子
JP2002093573A (ja) * 2000-09-14 2002-03-29 Nisshin Steel Co Ltd 有機el素子用絶縁性封止部材
JP2003168555A (ja) * 2001-11-29 2003-06-13 Sumitomo Electric Ind Ltd エレクトロルミネッセンス表示装置
JP2006299145A (ja) * 2005-04-22 2006-11-02 Konica Minolta Holdings Inc ガスバリア性フィルム、ガスバリア性フィルムを用いた有機エレクトロルミネッセンス用樹脂基材および有機エレクトロルミネッセンス素子
WO2007123006A1 (ja) * 2006-04-21 2007-11-01 Konica Minolta Holdings, Inc. ガスバリアフィルム、有機エレクトロルミネッセンス用樹脂基材、それを用いた有機エレクトロルミネッセンス素子及びガスバリアフィルムの製造方法
JP2009054606A (ja) * 2007-08-23 2009-03-12 Fujifilm Corp 有機半導体材料、該材料を含む膜、有機電子デバイス及び赤外色素組成物

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013541158A (ja) * 2010-09-27 2013-11-07 コーニンクレッカ フィリップス エヌ ヴェ 可撓性の被覆層を持つoled
KR101772661B1 (ko) * 2010-11-29 2017-09-13 삼성디스플레이 주식회사 유기 발광 표시 장치
US11251396B2 (en) 2010-11-29 2022-02-15 Samsung Display Co., Ltd. Organic light emitting diode display
US10050225B2 (en) 2010-11-29 2018-08-14 Samsung Display Co., Ltd. Organic light emitting diode display
JP2012238463A (ja) * 2011-05-11 2012-12-06 Konica Minolta Holdings Inc 有機エレクトロルミネッセンス素子、及び、有機エレクトロルミネッセンス素子の製造方法
JP2017103258A (ja) * 2011-07-08 2017-06-08 株式会社半導体エネルギー研究所 表示装置
US9966560B2 (en) 2011-07-08 2018-05-08 Semiconductor Energy Laboratory Co., Ltd. Light-emitting module, light-emitting device, and method for manufacturing the light-emitting module
JP2019070852A (ja) * 2011-07-08 2019-05-09 株式会社半導体エネルギー研究所 表示装置
JPWO2013061757A1 (ja) * 2011-10-27 2015-04-02 シャープ株式会社 合わせガラス構造太陽電池モジュール
WO2013061757A1 (ja) * 2011-10-27 2013-05-02 シャープ株式会社 合わせガラス構造太陽電池モジュール
US11997860B2 (en) 2012-02-09 2024-05-28 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element
US10693093B2 (en) 2012-02-09 2020-06-23 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element
KR101803537B1 (ko) * 2012-02-09 2017-11-30 가부시키가이샤 한도오따이 에네루기 켄큐쇼 발광 소자
US11495763B2 (en) 2012-02-09 2022-11-08 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element
US10326093B2 (en) 2012-02-09 2019-06-18 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element
JP2013183139A (ja) * 2012-03-05 2013-09-12 Konica Minolta Inc 面状発光体及び照明装置
JP2014127575A (ja) * 2012-12-26 2014-07-07 Nitto Denko Corp 封止シート
KR101611924B1 (ko) * 2012-12-31 2016-04-12 엘지디스플레이 주식회사 유기 발광 다이오드 표시 장치
US9876190B2 (en) 2013-08-21 2018-01-23 Lg Display Co., Ltd. Organic light-emitting diode and method for manufacturing same
JP2016514895A (ja) * 2013-08-21 2016-05-23 エルジー・ケム・リミテッド 有機発光素子およびその製造方法
JP2018500731A (ja) * 2014-12-03 2018-01-11 深▲セン▼市華星光電技術有限公司 フレキシブルoled基板及びフレキシブルoled実装方法
CN110709485A (zh) * 2017-05-31 2020-01-17 琳得科株式会社 片状粘接剂、阻气层叠体及密封体
JPWO2018221510A1 (ja) * 2017-05-31 2019-06-27 リンテック株式会社 シート状接着剤、ガスバリア性積層体、及び封止体
CN110709485B (zh) * 2017-05-31 2022-06-28 琳得科株式会社 片状粘接剂、阻气层叠体及密封体

Also Published As

Publication number Publication date
JP5660030B2 (ja) 2015-01-28
US20110315977A1 (en) 2011-12-29
JPWO2010106853A1 (ja) 2012-09-20
US8445899B2 (en) 2013-05-21

Similar Documents

Publication Publication Date Title
JP5660030B2 (ja) 有機エレクトロニクスパネルおよび有機エレクトロニクスパネルの製造方法
JP5943057B2 (ja) 有機エレクトロニクスパネルおよびその製造方法
JP6001595B2 (ja) 有機エレクトロルミネセンスデバイス
TWI462358B (zh) 經保護之聚合膜
WO2011070951A1 (ja) 有機エレクトロニクスパネル及びその製造方法
WO2011114882A1 (ja) 有機エレクトロルミネッセンスパネル及び有機エレクトロルミネッセンスパネルの製造方法
JP2009054420A (ja) 電子デバイス用可撓性基板の製造方法、電子デバイスの製造方法およびそれによって製造された電子デバイス
JP2007290369A (ja) ガスバリア性積層フィルムとその製造方法、および画像表示素子
JP2009123690A (ja) 塗布層形成後或いは対電極層形成後に乾燥剤フィルムを貼合して巻き取る有機エレクトロニクス素子とその製造方法
JP4747401B2 (ja) 有機エレクトロルミネッセンス素子及びその製造方法
EP3188572B1 (en) Organic electroluminescent element
US20050252602A1 (en) Organic thin-film device and its production method
JP5772819B2 (ja) 有機エレクトロルミネッセンスパネルの製造方法及びその製造方法で製造された有機エレクトロルミネッセンスパネル
JPWO2008023626A1 (ja) 有機エレクトロルミネッセンス素子およびその製造方法
JP5532887B2 (ja) 有機エレクトロニクスパネル
JP2003297561A (ja) 有機薄膜素子の製造方法及び有機薄膜素子
JP2004171806A (ja) 有機エレクトロルミネッセンス素子
WO2011105141A1 (ja) 有機エレクトロルミネッセンス素子及びその製造方法
WO2011099362A1 (ja) 有機エレクトロルミネッセンスパネルの製造方法
JP5578180B2 (ja) 有機エレクトロルミネッセンスパネルの製造方法とこれを用いて製造された有機エレクトロルミネッセンスパネル
WO2011096308A1 (ja) 有機エレクトロルミネッセンスパネルの製造方法
US20100044738A1 (en) Preparation of organic light emitting diodes by a vapour deposition method combined with vacuum lamination
JP2004079325A (ja) 有機電界発光素子の製造方法及び転写材料
JP2004288441A (ja) 有機電界発光素子の製造方法、及び有機電界発光素子
JP2002216974A (ja) エレクトロルミネッセンス素子

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10753348

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011504779

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13255851

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10753348

Country of ref document: EP

Kind code of ref document: A1