WO2011096308A1 - 有機エレクトロルミネッセンスパネルの製造方法 - Google Patents

有機エレクトロルミネッセンスパネルの製造方法 Download PDF

Info

Publication number
WO2011096308A1
WO2011096308A1 PCT/JP2011/051427 JP2011051427W WO2011096308A1 WO 2011096308 A1 WO2011096308 A1 WO 2011096308A1 JP 2011051427 W JP2011051427 W JP 2011051427W WO 2011096308 A1 WO2011096308 A1 WO 2011096308A1
Authority
WO
WIPO (PCT)
Prior art keywords
organic
light emitting
functional layer
heating
emitting layer
Prior art date
Application number
PCT/JP2011/051427
Other languages
English (en)
French (fr)
Inventor
智博 内田
真昭 村山
Original Assignee
コニカミノルタホールディングス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタホールディングス株式会社 filed Critical コニカミノルタホールディングス株式会社
Priority to JP2011552738A priority Critical patent/JPWO2011096308A1/ja
Publication of WO2011096308A1 publication Critical patent/WO2011096308A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/87Passivation; Containers; Encapsulations
    • H10K59/871Self-supporting sealing arrangements
    • H10K59/8722Peripheral sealing arrangements, e.g. adhesives, sealants
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/86Series electrical configurations of multiple OLEDs

Definitions

  • the present invention relates to an organic electroluminescence panel for sealing an organic EL element by bonding an organic electroluminescence (hereinafter abbreviated as organic EL) element via a thermosetting adhesive layer to the sealing substrate.
  • organic EL organic electroluminescence
  • This is a manufacturing method, and more specifically, a manufacturing method of an organic electroluminescence panel related to a heating method of a thermosetting adhesive layer when sealing an organic EL element.
  • an organic EL element the light emitting performance and the like of the material and the organic functional layer constituting the light emitting layer are significantly impaired when absorbing moisture. For this reason, it is necessary to reduce the humidity inside the organic EL element, and a means for shielding and protecting from the outside air is provided.
  • a casing-type method is disclosed in which a glass cap or a metal can is sealed with an adhesive to create an airtight space, and a desiccant is placed therein (see, for example, Patent Document 1).
  • organic light-emitting layer is formed on a plastic film or glass substrate, and then a close-contact type system in which the surface is bonded with an adhesive or the like using a flexible thin film high barrier film or metal foil.
  • organic EL panels that are excellent in moisture resistance, thin and lightweight.
  • thermosetting resin is suitable as a sealing adhesive because it does not melt once cured and is impermeable to humidity and the like.
  • thermosetting resin it is necessary to heat and cure the thermosetting resin, but the curing conditions for the thermosetting adhesive are mainly temperature and heating. Depending on the time, the time required for curing is several seconds at high temperatures and several hours at low temperatures. Considering productivity, it is desirable to perform curing at a high temperature in a short time.
  • the curing conditions of the thermosetting sealing adhesive used in the organic EL element are often low temperature and long time conditions (for example, patent documents). 4).
  • a process dedicated to curing is often provided separately from the sealing process, resulting in a significant decrease in productivity.
  • the organic functional layer including the light emitting layer is heated even at a low temperature, the light emitting performance, particularly the light emission luminance, is adversely affected.
  • This invention is made
  • a method for producing an organic electroluminescence panel comprising heating a portion avoiding the organic functional layer including the light emitting layer to cure the thermosetting adhesive layer.
  • thermosetting adhesive layer is brought into contact with the substrate, the thermosetting adhesive layer in contact with the first electrode, and the thermosetting adhesive in contact with the substrate. It is characterized by having a heat curing step of heating only the adhesive adhesive layer to heat the portion avoiding the organic functional layer and curing the thermosetting adhesive layer to produce an organic electroluminescence panel 2.
  • the heating of the portion avoiding the organic functional layer including the light emitting layer is performed by using a heat plate having a heating portion having a shape avoiding the organic functional layer including the light emitting layer, and an organic functional layer including the light emitting layer of the organic electroluminescence element. 3.
  • the heating of the portion avoiding the organic functional layer including the light emitting layer is performed by using a heat roll having a heating portion having a shape avoiding the organic functional layer including the light emitting layer, and an organic functional layer including the light emitting layer of the organic electroluminescence element.
  • the heating of the portion avoiding the organic functional layer including the light emitting layer is performed by irradiating a region of the organic electroluminescence element that avoids the organic functional layer including the light emitting layer by heating with a laser. 2.
  • an organic electroluminescence panel that suppresses deterioration of the performance of an organic functional layer including a light emitting layer and is particularly excellent in light emission luminance.
  • thermosetting adhesive layer on an organic electroluminescent element having at least a first electrode, an organic functional layer including a light emitting layer, and a second electrode on a substrate.
  • the portion that avoids the organic functional layer including the light emitting layer is heated to cure the thermosetting adhesive layer. It has been found that a method for producing an organic electroluminescence panel can be realized by suppressing the deterioration of the performance of the organic functional layer including the light emitting layer, and particularly having excellent light emission luminance. It is up to the present invention.
  • the manufacturing method of the organic electroluminescent panel of this invention has the process of forming a thermosetting adhesive bond layer, and in the process of forming this thermosetting adhesive bond layer, at least 1st on an organic electroluminescent element.
  • a thermosetting adhesive layer in contact with the electrode and a thermosetting adhesive layer in contact with the substrate are formed and the sealing substrate is installed.
  • thermosetting adhesive layer 6 in contact with the first electrode 3 and the substrate 1 are in contact.
  • the thermosetting adhesive layer 6 is formed.
  • thermosetting adhesive layer in contact with the first electrode is, for example, the thermosetting adhesive layer in the portion A of the thermosetting adhesive layer 6 in FIG.
  • thermosetting adhesive layer in contact with the substrate is, for example, the thermosetting adhesive layer in the portion B of the thermosetting adhesive layer 6 in FIG. 5, and in FIG.
  • the thermosetting adhesive layer 6 is in contact with the substrate 1 and the sealing substrate 2 in the vertical direction to the substrate 1 in the vertical direction (the layer thickness direction of the thermosetting adhesive layer).
  • FIGS. 5A and 5C are schematic plan views thereof. .
  • thermosetting resin used for the thermosetting adhesive layer examples include epoxy resins, acrylic resins, silicone resins, and the like, but the invention is not limited thereto. Absent.
  • thermosetting resins it is preferable to use an epoxy thermosetting resin because it is excellent in moisture resistance and water resistance and has little shrinkage during curing.
  • the thickness of the thermosetting adhesive layer is generally 5 ⁇ m to 100 ⁇ m, preferably 10 ⁇ m to 50 ⁇ m.
  • thermosetting adhesive layer As a method for forming the thermosetting adhesive layer, a coating method such as roll coating, spin coating, screen printing, spray coating, or the like can be used depending on the material to be used. Moreover, in order to remove moisture contained in the thermosetting adhesive layer, a desiccant such as barium oxide or calcium oxide may be mixed.
  • FIG. 1 is a schematic diagram showing an example of the configuration of an organic EL panel according to the present invention.
  • FIG. 1A is a schematic cross-sectional view showing an example of the configuration of an organic EL panel according to the present invention.
  • the organic EL panel P is composed of a substrate 1, a sealing substrate 2, a first electrode 3, an organic functional layer 4, a second electrode 5, and a thermosetting adhesive layer 6.
  • Reference numeral 7 denotes a “portion avoiding the organic functional layer including the light emitting layer” on the substrate side
  • 8 denotes a “portion avoiding the organic functional layer including the light emitting layer” on the sealing substrate side. That is, the “portion avoiding the organic functional layer including the light emitting layer” as used in the present invention means that the organic functional layer including the light emitting layer is parallel (in FIG. 1A), as shown in FIG. It is a part which does not have an organic functional layer including a light emitting layer between a substrate and a sealing substrate which are vertically (vertical direction in FIG. 1A) with respect to the horizontal direction.
  • thermosetting adhesive layer in contact with the first electrode and the substrate 1. And heating at least a part of the thermosetting adhesive layer and the substrate or the sealing substrate existing above and below (the vertical direction in FIG. 5).
  • the organic EL panel manufacturing method of the present invention is characterized in that a portion avoiding the organic functional layer including the light emitting layer according to the present invention is heated to cure the thermosetting adhesive layer.
  • the portion 7 or 8 that avoids the organic functional layer including the light emitting layer according to the present invention is heated to cure the thermosetting adhesive layer 6, and the substrate 1 and the sealing substrate 2 is bonded.
  • the heating direction may be either the substrate 1 side or the sealing substrate 2 side, but it is preferable to heat both sides simultaneously from the viewpoint of further speeding the curing of the thermosetting adhesive layer.
  • FIG. 1B is a top view of the organic EL panel according to the present invention having the configuration shown in FIG.
  • a thin adhesive layer exists between the sealing substrate 2 and the second electrode 5, but is omitted in FIG. 1.
  • thermosetting adhesive layer 6 for example, a method of heating using a heat plate 9 as shown in FIG. 2, shown in FIG. A method of heating using such a heat roll 10 and a method of heating using a laser 11 as shown in FIG. 4 can be mentioned, but the present invention is not limited to these, and any method can be used to form the light emitting layer.
  • the part avoiding the organic functional layer containing may be heated.
  • a heat plate which is a heating means applicable to the present invention is a SUS foil carrying a heating electric resistor made of a silicon rubber heater or the like, and an insulating layer, an aluminum plate, and further a fluorine resin or the like are coated thereon.
  • the thermosetting adhesive layer 6 is cured by generating heat by supplying power from the power source and heating the “part avoiding the organic functional layer including the light emitting layer” to a desired temperature.
  • the heat roller which is a heating means applicable to the present invention, is a thermal conductivity in which a temperature-controllable heat source (for example, a metal resistance heating element, a halogen lamp, etc.) for heating the outer peripheral portion is mounted at the center. It is composed of a roller using a good metal (for example, aluminum, stainless steel, iron, copper, etc.) or a plastic material (for example, bakelite, etc.), and its outer periphery is covered with Teflon (registered trademark) or silicon rubber, etc. It is a roller that is heated.
  • a temperature-controllable heat source for example, a metal resistance heating element, a halogen lamp, etc.
  • Examples of the laser that is a heating means applicable to the present invention include a neodymium laser, a YAG laser, a ruby laser, a helium-neon laser, a krypton laser, an argon laser, an H 2 laser, an N 2 laser, and a semiconductor laser.
  • a laser beam can be mentioned. More preferable lasers include YAG: neodymium 3+ laser (laser light wavelength: 1060 nm) and semiconductor laser (laser light wavelength: 500 to 1000 nm).
  • the output of the laser beam is preferably 5 to 1000 W.
  • the laser may be a continuous wavelength or a pulse wave. When the width of the pulse wave is controlled, the heating can be adjusted, and the optimum condition can be easily obtained.
  • the heating temperature is generally 50 ° C. to 200 ° C., preferably in the range of 80 ° C. to 160 ° C., particularly preferably 90 ° C. to 140 ° C. .
  • the heating time is approximately 1 second to 30 minutes, so that curing (crosslinking reaction) proceeds and adheres, but preferably 4.0 seconds or more and 600 seconds or less. It is to heat.
  • the thermosetting adhesive can be used at a high temperature without worrying about the effect of the performance degradation on the organic functional layer due to heat.
  • the layer can be cured and can be cured in a short time.
  • an oven or the like dedicated to curing is not required, and continuous production in the sealing process is possible.
  • heating is performed while avoiding the organic functional layer including the light emitting layer that is vulnerable to high-temperature environments, so that sealing (moisture barrier) performance can be obtained while avoiding thermal damage to the organic EL element. It becomes.
  • the substrate used for the organic EL panel is a substrate such as glass or plastic, but is not limited thereto.
  • Transparent resin films include polyethylene, polyethylene naphthalate (PEN), polyethylene terephthalate (PET), ethylene-vinyl acetate copolymer, ethylene-vinyl alcohol copolymer, polymethyl methacrylate, polyether ether ketone, polyether.
  • PEN polyethylene naphthalate
  • PET polyethylene terephthalate
  • PEN polyethylene naphthalate
  • PEN polyethylene terephthalate
  • PEN polyethylene terephthalate
  • ethylene-vinyl acetate copolymer ethylene-vinyl alcohol copolymer
  • polymethyl methacrylate polyether ether ketone
  • polyether examples include, but are not limited to, sulfone, tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer, polyester, polycarbonate, polyurethane, polyimide, polyetherimide, and the like.
  • Polyethylene naphthalate (PEN) is preferable. It is prefer
  • a gas barrier film having a high gas barrier property can also be used.
  • the gas barrier film include a metal oxide film, for example, a film having a gas barrier film having a sealing function of 50 nm or more and 50 ⁇ m or less in thickness, such as an oxynitride film, a nitride film, and a metal thin film.
  • a sealing substrate used for sealing an organic EL element metals such as stainless steel, aluminum and magnesium alloy, polyethylene naphthalate (PEN), polyethylene terephthalate (PET), polycarbonate, polystyrene, nylon, polyvinyl chloride and other plastics, And a composite thereof, glass and the like, and polyethylene naphthalate (PEN) is preferable.
  • metals such as stainless steel, aluminum and magnesium alloy, polyethylene naphthalate (PEN), polyethylene terephthalate (PET), polycarbonate, polystyrene, nylon, polyvinyl chloride and other plastics, And a composite thereof, glass and the like, and polyethylene naphthalate (PEN) is preferable.
  • PEN polyethylene naphthalate
  • PEN polyethylene naphthalate
  • a laminate of gas barrier layers such as aluminum, aluminum oxide, silicon oxide, and silicon nitride can be used.
  • the gas barrier layer can be formed by sputtering, vapor deposition, or
  • the oxygen permeability is 1 ⁇ 10 ⁇ 3 ml / (m 2 ⁇ 24 h ⁇ atm) or less
  • the water vapor permeability (25 ⁇ 0.5 ° C., relative humidity (90 ⁇ 2)% RH) is 1 ⁇ It is preferably 10 ⁇ 3 g / (m 2 ⁇ 24 h) or less.
  • the sealing substrate may be a film laminated with a metal foil such as aluminum.
  • a method for laminating the polymer film on one side of the metal foil a generally used laminating machine can be used.
  • the adhesive polyurethane-based, polyester-based, epoxy-based, acrylic-based adhesives and the like can be used. You may use a hardening
  • a hot melt lamination method, an extrusion lamination method and a coextrusion lamination method can also be used, but a dry lamination method is preferred.
  • the sealing structure is not particularly limited to a hollow structure, a sealing material-filled close-contact structure, or the like.
  • a metal foil by sputtering or vapor deposition or a method of forming from a fluid electrode material such as a conductive paste
  • a polymer film is used as a base material, and a metal foil is formed thereon. You may produce by the method to do.
  • Organic EL element has a structure in which one or more organic layers are laminated between electrodes.
  • an anode layer (first electrode) / hole injection / transport layer / light emission is formed on the organic EL structure.
  • a functional layer made of various organic compounds such as layer / electron injection / transport layer / cathode layer (second electrode) is laminated as necessary. Most simply, it has a structure comprising an anode layer / a light emitting layer / a cathode layer.
  • Organic materials used for the hole injection / transport layer are typified by phthalocyanine derivatives, heterocyclic azoles, aromatic tertiary amines, polyvinyl carbazole, polyethylenedioxythiophene / polystyrene sulfonic acid (PEDOT: PSS), and the like.
  • a polymer material such as a conductive polymer is used.
  • carbazole-based luminescent materials such as 4,4′-dicarbazolylbiphenyl, 1,3-dicarbazolylbenzene, (di) azacarbazoles, 1,3,5-
  • carbazole-based luminescent materials such as 4,4′-dicarbazolylbiphenyl, 1,3-dicarbazolylbenzene, (di) azacarbazoles, 1,3,5-
  • low-molecular light-emitting materials typified by pyrene-based light-emitting materials such as tripyrenylbenzene, polymer light-emitting materials typified by polyphenylene vinylenes, polyfluorenes, polyvinyl carbazoles, and the like.
  • a low molecular weight light emitting material having a molecular weight of 10,000 or less is preferably used as the light emitting material.
  • the light emitting layer may contain a dopant of about 0.1 to 20% by weight as a light emitting material.
  • the dopant include known fluorescent dyes such as perylene derivatives and pyrene derivatives, and phosphorescent dyes such as, for example, Ortho-metalated iridium complexes represented by tris (2-phenylpyridine) iridium, bis (2-phenylpyridine) (acetylacetonato) iridium, bis (2,4-difluorophenylpyridine) (picolinato) iridium, etc. There are complex compounds.
  • Examples of the electron injection / transport layer material include metal complex compounds such as 8-hydroxyquinolinate lithium and bis (8-hydroxyquinolinate) zinc, and the following nitrogen-containing five-membered ring derivatives. That is, oxazole, thiazole, oxadiazole, thiadiazole or triazole derivatives are preferred.
  • a material used for these light emitting layers and each functional layer a material having a polymerization reactive group such as a vinyl group in the molecule may be used, and a crosslinked / polymerized film may be formed after film formation.
  • the conductive material used for the anode layer those having a work function larger than 4 eV are suitable, and oxidation of silver, gold, platinum, palladium, etc. and their alloys, tin oxide, indium oxide, ITO, etc.
  • Metals and organic conductive resins such as polythiophene and polypyrrole are used.
  • the conductive material used for the cathode layer those having a work function smaller than 4 eV are suitable, such as magnesium and aluminum.
  • the alloy include magnesium / silver and lithium / aluminum.
  • Each functional layer described above is formed on the substrate and sealed with a sealing substrate to constitute an organic EL panel.
  • each organic functional layer may be formed by a wet method such as coating or printing, or using another film forming method (dry method) such as a vacuum evaporation method. May be.
  • a transparent support substrate was prepared by forming a film of ITO (indium tin oxide) with a thickness of 100 nm as an anode on a polyethylene naphthalate (PEN) film substrate having a width of 100 mm ⁇ 100 mm and a thickness of 100 ⁇ m. This was ultrasonically cleaned with isopropyl alcohol, dried with dry nitrogen gas, and further subjected to UV ozone cleaning for 5 minutes.
  • ITO indium tin oxide
  • PEN polyethylene naphthalate
  • an adhesive for dry lamination two-component reaction type urethane adhesive
  • laminated adheresive layer thickness 1.5 ⁇ m
  • thermosetting adhesive layer constituent material ⁇ Epoxy adhesive> Bisphenol A diglycidyl ether (DGEBA) Dicyandiamide (DICY) Epoxy adduct-based curing accelerator
  • DGEBA diglycidyl ether
  • DIY Dicyandiamide
  • the thermosetting adhesive layer constituent material is uniformly applied along the adhesive surface (shiny surface) of the aluminum foil constituting the sealing substrate using a dispenser, and then the sealing substrate is The adhesive surface was closely attached and arranged on a polyethylene naphthalate (PEN) film substrate on which an organic EL element was formed, and the sealing substrate was pressure-bonded (pressure 0.15 MPa, time 30 seconds) and temporarily adhered.
  • PEN polyethylene naphthalate
  • the organic EL panel 101 was produced by curing the thermosetting adhesive layer at 30 ° C. for 30 minutes.
  • thermosetting adhesive layer was 20 ⁇ m.
  • the surface of a 40 mm-thick aluminum plate is cut into an organic functional layer shape, and the portion that avoids the organic functional layer including the light emitting layer is convex, and the cartridge heater (model number: 05072008) The one with 6 inserted was used.
  • organic EL panel 106 In the production of the organic EL panel 104 (heating temperature: 130 ° C., heating time: 60 seconds), the transparent support substrate of the organic EL element is replaced with polyethylene naphthalate (PEN), and polyethylene having a width of 100 mm ⁇ 100 mm and a thickness of 100 ⁇ m An organic EL panel 106 was produced in the same manner except that terephthalate (PET) was used.
  • PET terephthalate
  • the organic EL panel is the same as the curing means for the thermosetting adhesive layer except that it is heated using a heat roll according to the method shown in FIG. 4 instead of the heat plate. 108 was produced.
  • organic EL panel 113 In the production of the organic EL panel 111 (heating temperature: 130 ° C., heating time: 60 seconds), the transparent support substrate of the organic EL element is replaced with polyethylene naphthalate (PEN), and polyethylene having a width of 100 mm ⁇ 100 mm and a thickness of 100 ⁇ m An organic EL panel 113 was produced in the same manner except that terephthalate (PET) was used.
  • PET terephthalate
  • a YVO4 laser marker manufactured by Keyence Corporation was used, and the temperature was measured with a film type resistance temperature detector (model number: NFR-CF4V-0820) manufactured by Sakaguchi Electric Heat Co., Ltd.
  • organic EL panel 120 In the production of the organic EL panel 118 (heating temperature: 130 ° C., heating time: 60 seconds), the transparent support substrate of the organic EL element is replaced with polyethylene naphthalate (PEN), and polyethylene having a width of 100 mm ⁇ 100 mm and a thickness of 100 ⁇ m An organic EL panel 120 was produced in the same manner except that terephthalate (PET) was used.
  • PET terephthalate
  • a portion that avoids the organic functional layer including the light emitting layer is a portion that avoids the organic functional layer including the light emitting layer of the sealing substrate with a heat plate having a convex shape as shown in FIG.
  • the temporarily bonded organic EL panel is placed on a plate in an oven, and the entire organic EL panel is heated (temperature 80 ° C., 30 minutes) to form a thermosetting adhesive layer.
  • An organic EL panel 122 was produced in the same manner except that it was thermally cured.
  • Organic EL panels 123 to 126 were manufactured in the same manner as in the manufacture of the organic EL panel 122 except that the oven heating conditions (temperature and time) were changed to the conditions described in Table 1.
  • the light emission luminance (cd / m 2 ) when driven at a constant current of 2.5 mA / cm 2 was measured.
  • the light emission luminance is expressed as a relative value when the light emission luminance of the organic EL panel 101 is 100.
  • a spectral radiance meter CS-1000 manufactured by Konica Minolta Sensing was used.
  • the portion of the organic functional layer including the light emitting layer is heated to cure the thermosetting adhesive layer, and the sealed organic EL panel of the present invention is a comparative example. It can be seen that the emission luminance is higher than In addition, it can be seen that when the heating temperature is increased, the heating time is proportionally reduced, so that the productivity is improved.

Abstract

 本発明は、基板上に、少なくとも第1電極、発光層を含む有機機能層及び第2電極を有する有機エレクトロルミネッセンス素子に、熱硬化性接着剤層を介して封止基板を貼合積層して製造する有機エレクトロルミネッセンスパネルの製造方法において、該発光層を含む有機機能層を避けた部分を加熱して、該熱硬化性接着剤層を硬化させることを特徴とし、発光層を含む有機機能層の性能劣化を抑制し、特に発光輝度に優れた有機エレクトロルミネッセンスパネルの製造方法を提供する。

Description

有機エレクトロルミネッセンスパネルの製造方法
 本発明は、封止基板を、熱硬化性接着剤層を介して有機エレクトロルミネッセンス(以下、有機ELと略記する)素子を貼合することで、有機EL素子を封止する有機エレクトロルミネッセンスパネルの製造方法であり、詳しくは、有機EL素子を封止する際の熱硬化性接着剤層の加熱方法に関する有機エレクトロルミネッセンスパネルの製造方法である。
 一般に、有機EL素子において、発光層を構成する材料および有機機能層は、吸湿するとその発光性能等が著しく損なわれる。そのため、有機EL素子内部の湿度を下げる必要があり、さらに外気から遮断保護するための手段が設けられている。例えば、ガラスキャップや金属製缶を、接着剤を用いて封止し、気密空間を作り、その中に乾燥剤を入れるケーシングタイプの方法が開示されている(例えば、特許文献1参照。)。
 また近年、プラスチックフィルムやガラス基板上に有機発光層を形成した後、可撓性のある薄膜のハイバリアフィルムや金属箔等を用いて、接着剤等で面接着して封止する密着タイプの方式があり、耐湿性に優れ、薄型で軽量な有機ELパネルが提案されている。
 有機ELパネルの封止方法として、熱可塑性樹脂または熱硬化性樹脂を接着剤として使用して封止基板を取り付ける方法が開示されている(例えば、特許文献2、3参照。)。熱硬化性樹脂は、一度硬化すると溶けないこと及び湿度等に対し非透過性を有していることで、封止用接着剤として適している。通常、熱硬化性樹脂を封止用接着剤として使用する場合には、熱硬化性樹脂を加熱して硬化させる必要があるが、熱硬化性接着剤の硬化条件は、主には温度と加熱時間に依存し、硬化に要する時間は高温であれば数秒、低温だと数時間に及ぶ。生産性を考慮すると高温短時間で硬化を行うことが望ましいが、基板にプラスチックを用いた場合等には、プラスチックの軟化点を超える温度での運用が困難である。そして、高温環境下での加熱は、発光層を含む有機機能層への影響が大きく、また、発光層を含む有機機能層と、該有機機能層に接する部材との熱収縮差による応力集中等の発生により、有機EL素子の発光性能、特に発光輝度に悪影響を及ぼす場合がある。
 上記の様な影響を回避する観点から、有機EL素子に使用する熱硬化性である封止用接着剤の硬化条件としては、低温長時間の条件を採用することが多かった(例えば、特許文献4参照。)。しかしながら、上記の様な条件を選択した場合には、有機EL素子の熱硬化性接着剤の硬化に対し、封止工程とは別に硬化専用の工程を設けることが多くなり、著しい生産性の低下を招く結果となった。また、低温であれ、発光層を含む有機機能層も加熱されるために、発光性能、特に発光輝度に悪影響を及ぼしている。
特開2002-43055号公報 特開2002-93573号公報 特開2004-171806号公報 特開2003-282243号公報
 本発明は、上記課題に鑑みなされたものであり、その目的は、発光層を含む有機機能層の性能劣化を抑制し、特に発光輝度に優れた有機エレクトロルミネッセンスパネルの製造方法を提供することにある。
 本発明の上記目的は、以下の構成により達成される。
 1.基板上に、少なくとも第1電極、発光層を含む有機機能層及び第2電極を有する有機エレクトロルミネッセンス素子に、熱硬化性接着剤層を介して封止基板を貼合積層して製造する有機エレクトロルミネッセンスパネルの製造方法において、
 該発光層を含む有機機能層を避けた部分を加熱して、該熱硬化性接着剤層を硬化させることを特徴とする有機エレクトロルミネッセンスパネルの製造方法。
 2.前記熱硬化性接着剤層を、前記基板上に接触させると共に、前記第1電極に接触させ、該第1電極に接触している熱硬化性接着剤層および該基板に接触している熱硬化性接着剤層のみを加熱することにより、有機機能層を避けた部分の加熱を行い、該熱硬化性接着剤層を硬化させ有機エレクトロルミネッセンスパネルを作製する加熱硬化工程を有することを特徴とする1に記載の有機エレクトロルミネッセンスパネルの製造方法。
 3.前記発光層を含む有機機能層を避けた部分の加熱は、前記発光層を含む有機機能層を避けた形状の加熱部を有するヒートプレートを、前記有機エレクトロルミネッセンス素子の発光層を含む有機機能層を避けた部分の基板面または封止基板面に接触して行なうことを特徴とする1または2に記載の有機エレクトロルミネッセンスパネルの製造方法。
 4.前記発光層を含む有機機能層を避けた部分の加熱は、前記発光層を含む有機機能層を避けた形状の加熱部を有するヒートロールを、前記有機エレクトロルミネッセンス素子の発光層を含む有機機能層を避けた部分の基板面または封止基板面に接触して行なうことを特徴とする1または2に記載の有機エレクトロルミネッセンスパネルの製造方法。
 5.前記発光層を含む有機機能層を避けた部分の加熱は、前記有機エレクトロルミネッセンス素子の前記発光層を含む有機機能層を避けた領域に、レーザーを照射して加熱することを特徴とする1または2に記載の有機エレクトロルミネッセンスパネルの製造方法。
 6.前記発光層を含む有機機能層を避けた部分の加熱は、前記有機エレクトロルミネッセンスパネルの基板面側から行なうことを特徴とする1から5のいずれか1項に記載の有機エレクトロルミネッセンスパネルの製造方法。
 7.前記基板は、透明性樹脂フィルムであることを特徴とする1から6のいずれか1項に記載の有機エレクトロルミネッセンスパネルの製造方法。
 8.前記透明性樹脂フィルムは、ポリエチレンナフタレートからなることを特徴とする7に記載の有機エレクトロルミネッセンスパネルの製造方法。
 9.前記発光層を含む有機機能層を避けた部分を加熱する温度が、90℃以上、140℃以下であることを特徴とする1から8のいずれか1項に記載の有機エレクトロルミネッセンスパネルの製造方法。
 10.前記発光層を含む有機機能層を避けた部分を加熱する時間が、4.0秒以上、600秒以下であることを特徴とする1から9のいずれか1項に記載の有機エレクトロルミネッセンスパネルの製造方法。
 本発明により、発光層を含む有機機能層の性能の劣化を抑制し、特に発光輝度に優れた有機エレクトロルミネッセンスパネルの製造方法を提供することができた。
本発明に係る有機ELパネルの構成の一例を示す概略図である。 本発明に係るヒートプレートを用いた加熱工程の一例を示す図である。 本発明に係るヒートロールを用いた加熱工程の一例を示す図である。 本発明に係るレーザーを用いた加熱工程の一例を示す図である。 本発明に係る有機ELパネルの構成の他の一例を示す概略図である。
 以下、本発明を実施するための形態について詳細に説明する。
 本発明者は、上記課題に鑑み鋭意検討を行った結果、基板上に、少なくとも第1電極、発光層を含む有機機能層及び第2電極を有する有機エレクトロルミネッセンス素子に、熱硬化性接着剤層を介して封止基板を貼合積層して製造する有機エレクトロルミネッセンスパネルの製造方法において、該発光層を含む有機機能層を避けた部分を加熱して、該熱硬化性接着剤層を硬化させることを特徴とする有機エレクトロルミネッセンスパネルの製造方法により、発光層を含む有機機能層の性能の劣化を抑制し、特に発光輝度に優れた有機エレクトロルミネッセンスパネルの製造方法を実現することができることを見出し、本発明に至った次第である。
 本発明の有機エレクトロルミネッセンスパネルの製造方法は、熱硬化性接着剤層を形成する工程を有し、この熱硬化性接着剤層を形成する工程では、有機エレクトロルミネッセンス素子上に、少なくとも、第1電極に接触している熱硬化性接着剤層および基板に接触している熱硬化性接着剤層を形成して前記封止基板を設置する。
 具体的に、図5により説明する。
 即ち、基板1上に、第1電極3および有機機能層4を有する、有機エレクトロルミネッセンス素子上に、少なくとも第1電極3に接触している熱硬化性接着剤層6および基板1に接触している熱硬化性接着層6を形成する。
 第1電極に接触している熱硬化性接着剤層とは、例えば、図5の熱硬化性接着剤層6のうち、Aの部分の熱硬化性接着剤層であり、図5の(a)における上下方向(熱硬化性接着層の層厚方向)に渡る、基板1と垂直方向において、第1電極3及び封止基板2に接している熱硬化性接着剤層6Aのことである。
 基板に接触している熱硬化性接着剤層とは、例えば、図5の熱硬化性接着剤層6のうち、Bの部分の熱硬化性接着剤層であり、図5の(a)における上下方向(熱硬化性接着層の層厚方向)に渡る、基板1と垂直方向において、基板1及び封止基板2に接している熱硬化性接着剤層6のことである。
 尚、図5の(a)は、本発明に係る有機ELパネルの構成の一例を示す、X-X′の概略断面図であり、(b)および(c)は、その概略平面図である。
 《熱硬化性接着剤層》
 本発明の有機ELパネルの製造方法において、熱硬化性接着剤層に用いられる熱硬化性樹脂としては、エポキシ系樹脂、アクリル系樹脂、シリコーン樹脂等が挙げられるが、これらに限定されるものではない。これらの熱硬化性樹脂の中でも、耐湿性、耐水性に優れ、硬化時の収縮が少ないことから、エポキシ系熱硬化樹脂を用いることが好ましい。また、熱硬化性接着剤層の厚さは、概ね5μm~100μmであり、好ましくは10μm~50μmである。
 熱硬化性接着剤層の形成方法としては、用いる材料に応じて、ロールコート、スピンコート、スクリーン印刷法、スプレーコート等のコーティング法、印刷法を用いることができる。また、熱硬化性接着層内部の含有水分を除去するために、酸化バリウムや酸化カルシウム等の乾燥剤を混入してもよい。
 《発光層を含む有機機能層を避けた部分》
 本発明に係る「発光層を含む有機機能層を避けた部分」について、図1を用いて説明する。
 図1は、本発明に係る有機ELパネルの構成の一例を示す概略図である。
 図1の(a)は、本発明に係る有機ELパネルの構成の一例を示す概略断面図である。
 図1の(a)において、有機ELパネルPは、基板1、封止基板2、第1電極3、有機機能層4、第2電極5、熱硬化性接着剤層6から構成されており、7は基板側の「発光層を含む有機機能層を避けた部分」であり、8は封止基板側の「発光層を含む有機機能層を避けた部分」を指している。すなわち、本発明でいう「発光層を含む有機機能層を避けた部分」とは、図1の(a)に示すように、発光層を含む有機機能層を平行(図1の(a)における横方向)に対して、垂直(図1の(a)における縦方向)上の基板及び封止基板の間で、発光層を含む有機機能層を有さない部分のことである。
 即ち、発光層を含む有機機能層を避けた部分を加熱する、とは前述の図5の例のように、第1電極に接触している熱硬化性接着剤層および基板1に接触している熱硬化性接着層ならびにこれらの上下(図5における上下方向)に存在する基板または封止基板、の少なくとも一部を加熱することである。
 (加熱硬化工程)
 本発明の有機ELパネルの製造方法においては、本発明に係る発光層を含む有機機能層を避けた部分を加熱し、熱硬化性接着剤層を硬化させることを特徴としている。図1の(a)においては、本発明に係る発光層を含む有機機能層を避けた部分7または8を加熱することにより、熱硬化性接着剤層6を硬化させ、基板1と封止基板2とを接着させる。加熱方向は、基板1側及び封止基板2側のいずれでもよいが、両側同時に加熱することが、熱硬化性接着剤層の硬化をさらに速めることができる観点から好ましい。図1の(b)は、図1の(a)に示した構成からなる本発明に係る有機ELパネルの基板1側から見た上面図である。
 尚、図1の例では、封止基板2と第二電極5との間に薄く接着剤層が存在するが、図1では省略している。
 本発明の有機ELパネルの製造方法において、熱硬化性接着剤層6を硬化させるための加熱方法としては、例えば、図2に示す様なヒートプレート9を用いて加熱する方法、図3に示す様なヒートロール10を用いて加熱する方法、図4に示す様なレーザー11を用いて加熱する方法が挙げられるが、本発明はこれらに限定されるものではなく、如何なる方法を用いて発光層を含む有機機能層を避けた部分を加熱してもよい。
 本発明に適用可能な加熱手段であるヒートプレートとは、シリコンラバーヒーター等からなる発熱電気抵抗体を担持したSUS箔に、絶縁層、その上にアルミ板、さらにフッ素系樹脂等が被膜されて構成され、電源からの電力供給により発熱して、所望の温度に「発光層を含む有機機能層を避けた部分」を加熱して、熱硬化性接着剤層6を硬化させる。
 また、本発明に適用可能な加熱手段であるヒートローラとは、外周部を加熱するための温度コントロール可能な熱源(例えば、金属抵抗発熱体、ハロゲンランプなど)を中心部に装着した熱伝導性のよい金属(例えばアルミニウム,ステンレス,鉄,銅等)又はプラスチック素材(例えばベークライト等)を用いたローラで構成され、その最外周部がテフロン(登録商標)又はシリコンゴムなどによって被覆され外周が適度に加熱されているローラである。
 また、本発明に適用可能な加熱手段であるレーザーとしては、例えば、ネオジムレーザー、YAGレーザー、ルビーレーザー、ヘリウム-ネオンレーザー、クリプトンレーザー、アルゴンレーザー、Hレーザー、Nレーザー、半導体レーザー等のレーザー光を挙げることができる。より好ましいレーザーとしては、YAG:ネオジム3+レーザー(レーザー光の波長:1060nm)や半導体レーザー(レーザー光の波長:500~1000nm)を挙げることができる。レーザー光の出力は、5~1000Wであることが好ましい。レーザーは連続波長でも良いし、パルス波でもよい。パルス波の幅を制御すると加温の調節が可能であり、最適条件を求め易い。
 本発明において、熱硬化性接着剤層の硬化条件として、加熱温度としては概ね50℃~200℃であり、好ましくは80℃~160℃の範囲であり、特に好ましくは90℃~140℃である。本発明においては、加熱時間は、概ね1秒~30分の範囲で加熱することにより、硬化(架橋反応)が進み、接着するが、好ましくは、4.0秒以上、600秒以下の範囲で加熱することである。
 このように、本発明では、発光層を含む有機機能層を避けた部分を加熱することにより、熱による有機機能層への性能低下等の影響を気にせずに、高温で熱硬化性接着剤層の硬化ができ、短時間での硬化が可能となる。また、硬化専用のオーブン等が不要となり、封止工程での連続生産が可能となる。
 その結果、生産設備の投資圧縮と生産性の確保が実現できる。さらに、上述したように、高温環境に弱い発光層を含む有機機能層を避けて加熱をするので、有機EL素子の熱ダメージを避けた状態で、封止(水分バリア)性能を得ることが可能となる。
 《基板》
 本発明において、有機ELパネルの基板として用いられるものとしては、ガラス、プラスチック等の基板であるが、これらのみに限定されない。
 プラスチック(樹脂)基板として用いられる基材としては、透明性樹脂フィルムがあり、厚さ100μm~2mm程度の厚みを有するものが使用される。透明性樹脂フィルムとしては、ポリエチレン、ポリエチレンナフタレート(PEN)、ポリエチレンテレフタレート(PET)、エチレン-酢酸ビニル共重合体、エチレン-ビニルアルコール共重合体、ポリメチルメタアクリレート、ポリエーテルエーテルケトン、ポリエーテルサルフォン、テトラフルオロエチレン-パーフルオロアルキルビニルエーテル共重合体、ポリエステル、ポリカーボネート、ポリウレタン、ポリイミド、ポリエーテルイミド等が挙げられるが、これらに限定されない。好ましくは、ポリエチレンナフタレート(PEN)である。基板がポリエチレンナフタレートであると、加熱した場合の変形量が小さいことから好ましい。
 また、ガスバリア性が高いガスバリアフィルムを用いることもできる。ガスバリアフィルムとしては、金属の酸化物膜、例えば、酸化窒化膜、窒化膜、金属薄膜等、厚みとして50nm以上、50μm以下の封止機能を有するガスバリア膜を有するフィルムが挙げられる。
 《封止基板》
 有機EL素子の封止に用いる封止基板としては、ステンレス、アルミニウム、マグネシウム合金等の金属、ポリエチレンナフタレート(PEN)、ポリエチレンテレフタレート(PET)、ポリカーボネート、ポリスチレン、ナイロン、ポリ塩化ビニル等のプラスチック、およびこれらの複合物、ガラス等が挙げられるが、好ましくは、ポリエチレンナフタレート(PEN)である。必要に応じて、特に樹脂フィルムの場合には、アルミニウム、酸化アルミニウム、酸化ケイ素、窒化ケイ素等のガスバリア層を積層したものを用いることができる。ガスバリア層は、封止基板成形前に封止基板の両面若しくは片面にスパッタリング、蒸着等により形成することもできるし、封止後に封止部材の両面若しくは片面に同様な方法で形成してもよい。
 これについても、酸素透過度が1×10-3ml/(m・24h・atm)以下、水蒸気透過度(25±0.5℃、相対湿度(90±2)%RH)が、1×10-3g/(m・24h)以下のものであることが好ましい。
 封止基板としては、アルミニウム等の金属箔をラミネートしたフィルム等でも良い。金属箔の片面にポリマーフィルムを積層する方法としては、一般に使用されているラミネート機を使用することができる。接着剤としてはポリウレタン系、ポリエステル系、エポキシ系、アクリル系等の接着剤を用いることができる。必要に応じて硬化剤を併用してもよい。ホットメルトラミネーション法やエクストルージョンラミネート法および共押出しラミネーション法も使用できるがドライラミネート方式が好ましい。
 また、本発明において、封止構造については、中空構造、また、シール材充填密着構造等に特に限定されるものではない。
 また、金属箔をスパッタや蒸着等で形成する方法、導電性ペースト等の流動性電極材料から形成する方法である場合には、逆にポリマーフィルムを基材として用い、これに金属箔を成膜する方法で作製してもよい。
 次いで、有機EL素子について説明する。
 《有機EL素子》
 本発明に係る有機EL素子は、電極間に単数又は複数の有機層を積層した構造であり、有機EL構造体上に、例えば、陽極層(第1電極)/正孔注入・輸送層/発光層/電子注入・輸送層/陰極層(第2電極)等、各種の有機化合物からなる機能層が必要に応じ積層された構成をもつ。最も単純には、陽極層/発光層/陰極層からなる構造を有する。
 正孔注入・輸送層に用いられる有機材料としては、フタロシアニン誘導体、ヘテロ環アゾール類、芳香族三級アミン類、ポリビニルカルバゾール、ポリエチレンジオキシチオフェン/ポリスチレンスルホン酸(PEDOT:PSS)などに代表される導電性高分子等の高分子材料が用いられる。
 また、発光層に用いられる、例えば、4,4′-ジカルバゾリルビフェニル、1,3-ジカルバゾリルベンゼン等のカルバゾール系発光材料、(ジ)アザカルバゾール類、1,3,5-トリピレニルベンゼンなどのピレン系発光材料に代表される低分子発光材料、ポリフェニレンビニレン類、ポリフルオレン類、ポリビニルカルバゾール類などに代表される高分子発光材料などが挙げられる。これらのうちで、発光材料としては、分子量10000以下の低分子系発光材料が好ましく用いられる。
 また発光層には、発光材料として、0.1~20質量%程度のドーパントが含まれてもよく、ドーパントとしては、ペリレン誘導体、ピレン誘導体等公知の蛍光色素、また、りん光色素、例えば、トリス(2-フェニルピリジン)イリジウム、ビス(2-フェニルピリジン)(アセチルアセトナート)イリジウム、ビス(2,4-ジフルオロフェニルピリジン)(ピコリナート)イリジウム、などに代表されるオルトメタル化イリジウム錯体等の錯体化合物がある。
 電子注入・輸送層材料としては、8-ヒドロキシキノリナートリチウム、ビス(8-ヒドロキシキノリナート)亜鉛等の金属錯体化合物もしくは以下に挙げられる含窒素五員環誘導体がある。即ち、オキサゾール、チアゾール、オキサジアゾール、チアジアゾールもしくはトリアゾール誘導体が好ましい。具体的には、2,5-ビス(1-フェニル)-1,3,4-オキサゾール、2,5-ビス(1-フェニル)-1,3,4-チアゾール、2,5-ビス(1-フェニル)-1,3,4-オキサジアゾール、2-(4′-tert-ブチルフェニル)-5-(4″-ビフェニル)1,3,4-オキサジアゾール、2,5-ビス(1-ナフチル)-1,3,4-オキサジアゾール、1,4-ビス[2-(5-フェニルオキサジアゾリル)]ベンゼン、1,4-ビス[2-(5-フェニルオキサジアゾリル)-4-tert-ブチルベンゼン]、2-(4′-tert-ブチルフェニル)-5-(4″-ビフェニル)-1,3,4-チアジアゾール、2,5-ビス(1-ナフチル)-1,3,4-チアジアゾール、1,4-ビス[2-(5-フェニルチアジアゾリル)]ベンゼン、2-(4′-tert-ブチルフェニル)-5-(4″-ビフェニル)-1,3,4-トリアゾール、2,5-ビス(1-ナフチル)-1,3,4-トリアゾール、1,4-ビス[2-(5-フェニルトリアゾリル)]ベンゼン等が挙げられる。
 これら発光層、また各機能層に用いられる材料として、分子中にビニル基等の重合反応性基を有する材料を用い、製膜後に架橋・重合膜を形成させてもよい。
 因みに、陽極層に使用される導電性材料としては、4eVより大きな仕事関数をもつものが適しており、銀、金、白金、パラジウム等及びそれらの合金、酸化スズ、酸化インジウム、ITO等の酸化金属、さらにはポリチオフェンやポリピロール等の有機導電性樹脂が用いられる。
 また、陰極層に使用される導電性物質としては、4eVより小さな仕事関数を有するものが適しており、マグネシウム、アルミニウム等。合金としては、マグネシウム/銀、リチウム/アルミニウム等が代表例として挙げられる。
 以上の各機能層が前記基板上に形成され、封止基板により封止され有機ELパネルを構成する。
 本発明に係る有機ELパネルにおいては、各有機機能層は、塗布、印刷法等の湿式法で成膜されてもよく、また、真空蒸着法などの他の成膜法(乾式法)を用いてもよい。
 以下、実施例を挙げて本発明を具体的に説明するが、本発明はこれらに限定されるものではない。なお、実施例において「部」あるいは「%」の表示を用いるが、特に断りがない限り「質量部」あるいは「質量%」を表す。
 《有機EL素子の作製》
 下記の方法に従って、図1に記載の構成からなる有機EL素子を作製した。
 (透明支持基板の作製)
 幅100mm×100mm、厚さ100μmのポリエチレンナフタレート(PEN)フィルム基板上に、陽極としてITO(インジウムチンオキシド)を100nmの厚さで成膜した透明支持基板を準備した。これをイソプロピルアルコールで超音波洗浄し、乾燥窒素ガスで乾燥し、UVオゾン洗浄を更に5分間行った。
 (正孔輸送層の形成)
 この透明支持基板上に、ポリ(3,4-エチレンジオキシチオフェン)-ポリスチレンスルホン酸(PEDOT/PSS Bayer社製、Baytron P Al 4083)を純水で70%に希釈した溶液を、3000rpm、30秒でスピンコート法により成膜した後、200℃で1時間乾燥し、膜厚30nmの正孔輸送層を形成した。
 (発光層の形成)
 次いで、下記組成の発光層組成物の1mlを、スピンコートして、膜厚約25nmの発光層を形成した。
 〈発光層組成物〉
 溶媒:トルエン                    100質量%
 ホスト材料:H-A                    1質量%
 青色材料:Ir-A                 0.10質量%
 緑色材料:Ir(ppy)            0.004質量%
 赤色材料:Ir(piq)            0.005質量%
 (電子輸送層の形成)
 次いで、下記電子輸送層用塗布液を、スピンコーターにて、1500rpm、30秒の条件で塗布し、電子輸送層を設けた。別途用意した基板にて、同条件にて塗布を行い、測定をしたところ、電子輸送層の膜厚は20nmであった。
 〈電子輸送層用塗布液〉
 2,2,3,3-テトラフルオロ-1-プロパノール    100ml
 ET-A                        0.50g
Figure JPOXMLDOC01-appb-C000001
 (陰極バッファー層、陰極の形成)
 更に電子輸送層が形成された上記試料を真空蒸着装置に移し、真空槽を4×10-4Paまで減圧し、前記電子輸送層上に陰極バッファー層としてフッ化リチウム膜を10nm及び陰極としてアルミニウム膜を110nmの厚さで順次蒸着成膜して、有機EL素子を作製した。
 《封止基板の準備》
 次いで封止基板として、下記の方法に従ってポリエチレンテレフタレートシートでラミネートされたアルミ箔を作製した。
 厚み50μmのアルミ箔(東洋アルミニウム株式会社製)を用い、このマット面に厚みが12μm厚のポリエチレンテレフタレート(PET)フィルムをドライラミネーション用の接着剤(2液反応型のウレタン系接着剤)を用いてラミネート(接着剤層の厚み1.5μm)して、封止基材を作製した。
 《有機ELパネルの作製》
 〔有機ELパネル101の作製〕
 上記作製した封止基板(PETラミネートアルミ箔)を、有機EL素子を形成したポリエチレンナフタレート(PEN)フィルム基板と略同じサイズ(100mm×100mm)に断裁し、そのつや面(PETラミネート面の反対側)に、下記の熱硬化性接着剤層構成材料を用いて接着した。
 (熱硬化接着剤層構成材料)
 〈エポキシ接着剤〉
   ビスフェノールAジグリシジルエーテル(DGEBA)
   ジシアンジアミド(DICY)
   エポキシアダクト系硬化促進剤
 熱硬化接着剤層構成材料を、ディスペンサを使用して封止基板を構成するアルミ箔の接着面(つや面)に沿って均一に塗布し、次いで、封止基板を、有機EL素子を形成したポリエチレンナフタレート(PEN)フィルム基板上に接着面を密着・配置して、封止基板を圧着(圧力0.15MPa、時間30秒)して、仮接着した。仮接着された有機ELパネルの基板側の発光層を含む有機機能層を避けた部分(図1の7で示した部分)を、図3に示した方法と同様にして、ヒートプレート(温度80℃、30分)で加熱し、熱硬化性接着剤層を硬化させて、有機ELパネル101を作製した。
 なお、熱硬化性接着剤層の厚さは20μmとした。また、ヒートプレートとしては、40mm厚アルミ板の表面を有機機能層形状に削り込み、発光層を含む有機機能層を避けた部分を凸にしたものに、坂口電熱株式会社のカートリッジヒータ(型番:05072008)6本を挿入したものを使用した。
 〔有機ELパネル102~105の作製〕
 上記有機ELパネル101の作製において、熱硬化性接着剤層の硬化に用いたヒートプレートの加熱条件(温度及び時間)を、表1に記載した条件に変更した以外は同様にして、有機ELパネル102~105を作製した。
 〔有機ELパネル106の作製〕
 上記有機ELパネル104(加熱温度:130℃、加熱時間:60秒)の作製において、有機EL素子の透明支持基板をポリエチレンナフタレート(PEN)に代えて、幅100mm×100mm、厚さ100μmのポリエチレンテレフタレート(PET)を用いた以外は同様にして、有機ELパネル106を作製した。
 〔有機ELパネル107の作製〕
 上記有機ELパネル104の作製において、熱硬化性接着剤層の硬化方法として、有機ELパネルの基板側の発光層を含む有機機能層を避けた部分(図1の7で示した部分)の加熱方法を、有機ELパネルの封止基板側の発光層を含む有機機能層を避けた部分(図1の8で示した部分)を、ヒートプレート(加熱温度:130℃、加熱時間:60秒)により加熱する方法に変更した以外は同様にして、有機ELパネル107を作製した。
 〔有機ELパネル108の作製〕
 上記有機ELパネル101の作製において、熱硬化性接着剤層の硬化手段として、ヒートプレートに代えて、図4に示した方法に従って、ヒートロールを用いて加熱した以外は同様にして、有機ELパネル108を作製した。
 なお、ヒートロールとしては、表面にハードクロムメッキ、および硬度70のシリコンゴムをコーティングした直径120mmの鉄パイプの軸中心にガラス管ヒーターを挿入したものを使用した。
 〔有機ELパネル109~112の作製〕
 上記有機ELパネル108の作製において、熱硬化性接着剤層の硬化に用いたヒートロールの加熱条件(温度及び時間)を、表1に記載した条件に変更した以外は同様にして、有機ELパネル109~112を作製した。
 〔有機ELパネル113の作製〕
 上記有機ELパネル111(加熱温度:130℃、加熱時間:60秒)の作製において、有機EL素子の透明支持基板をポリエチレンナフタレート(PEN)に代えて、幅100mm×100mm、厚さ100μmのポリエチレンテレフタレート(PET)を用いた以外は同様にして、有機ELパネル113を作製した。
 〔有機ELパネル114の作製〕
 上記有機ELパネル111の作製において、熱硬化性接着剤層の硬化方法として、有機ELパネルの基板側の発光層を含む有機機能層を避けた部分(図1の7で示した部分)の加熱方法を、有機ELパネルの封止基板側の発光層を含む有機機能層を避けた部分(図1の8で示した部分)を、ヒートロール(加熱温度:130℃、加熱時間:60秒)により加熱する方法に変更した以外は同様にして、有機ELパネル114を作製した。
 〔有機ELパネル115の作製〕
 上記有機ELパネル101の作製において、熱硬化性接着剤層の硬化手段として、ヒートプレートに代えて、図5に示した方法に従って、下記レーザーを用いて加熱した以外は同様にして、有機ELパネル115を作製した。
 なお、レーザーとしては、株式会社キーエンス製のYVO4レーザーマーカを用い、坂口電熱株式会社のフィルム型測温抵抗体(型番:NFR-CF4V-0820)で温度計測した。
 〔有機ELパネル116~119の作製〕
 上記有機ELパネル115の作製において、熱硬化性接着剤層の硬化に用いたレーザーの加熱条件(温度及び時間)を、表1に記載した条件に変更した以外は同様にして、有機ELパネル116~119を作製した。
 〔有機ELパネル120の作製〕
 上記有機ELパネル118(加熱温度:130℃、加熱時間:60秒)の作製において、有機EL素子の透明支持基板をポリエチレンナフタレート(PEN)に代えて、幅100mm×100mm、厚さ100μmのポリエチレンテレフタレート(PET)を用いた以外は同様にして、有機ELパネル120を作製した。
 〔有機ELパネル121の作製〕
 上記有機ELパネル118の作製において、熱硬化性接着剤層の硬化方法として、有機ELパネルの基板側の発光層を含む有機機能層を避けた部分(図1の7で示した部分)の加熱方法を、有機ELパネルの封止基板側の発光層を含む有機機能層を避けた部分(図1の8で示した部分)を、レーザー(加熱温度:130℃、加熱時間:60秒)により加熱する方法に変更した以外は同様にして、有機ELパネル121を作製した。
 〔有機ELパネル122の作製〕
 有機ELパネル101の作製において、発光層を含む有機機能層を避けた部分を、図3に記載の様な凸形状を有するヒートプレートで封止基板の発光層を含む有機機能層を避けた部分を硬化させる方法に代えて、仮接着された有機ELパネルをオーブン内のプレート上に載置し、有機ELパネル全体を加熱(温度80℃、30分)して、熱硬化性接着剤層を熱硬化させた以外は同様にして、有機ELパネル122を作製した。
 〔有機ELパネル123~126の作製〕
 上記有機ELパネル122の作製において、オーブンの加熱条件(温度及び時間)を表1に記載された条件に変更した以外は同様にして、有機ELパネル123~126を作製した。
 〔有機ELパネル127の作製〕
 上記有機ELパネル122(加熱温度:130℃、加熱時間:60秒)の作製において、有機EL素子の透明支持基板をポリエチレンナフタレート(PEN)に代えて、幅100mm×100mm、厚さ100μmのポリエチレンテレフタレート(PET)を用いた以外は同様にして、有機ELパネル127を作製した。
 《有機ELパネルの評価》
 上記で作製した有機ELパネル101~127について、下記に記載の方法に従って、発光輝度を評価し、得られた結果を表1に示した。
 (発光輝度の測定)
 2.5mA/cmの一定電流で駆動したときの、発光輝度(cd/m)を測定した。発光輝度は、有機ELパネル101の発光輝度を100とした時の相対値で表した。測定には、分光放射輝度計CS-1000(コニカミノルタセンシング社製)を用いた。
Figure JPOXMLDOC01-appb-T000002
 表1に記載の結果より明らかな様に、発光層を含む有機機能層を避けた部分を加熱して熱硬化性接着剤層を硬化させ、封止した本発明の有機ELパネルは、比較例に比べて、発光輝度が高いことがわかる。また、加熱温度を高くすると、それに比例して、加熱時間が短くなるために生産性が向上することが分かる。
 1 基板
 2 封止基板
 3 第1電極
 4 有機機能層
 5 第2電極
 6 熱硬化性接着剤層
 7 基板側の発光層を含む有機機能層を避けた部分
 8 封止基板側の発光層を含む有機機能層を避けた部分
 9 ヒートプレート
 10 ヒートロール
 11 レーザー
 P 有機エレクトロルミネッセンスパネル

Claims (10)

  1.  基板上に、少なくとも第1電極、発光層を含む有機機能層及び第2電極を有する有機エレクトロルミネッセンス素子に、熱硬化性接着剤層を介して封止基板を貼合積層して製造する有機エレクトロルミネッセンスパネルの製造方法において、
     該発光層を含む有機機能層を避けた部分を加熱して、該熱硬化性接着剤層を硬化させることを特徴とする有機エレクトロルミネッセンスパネルの製造方法。
  2.  前記熱硬化性接着剤層を、前記基板上に接触させると共に、前記第1電極に接触させ、該第1電極に接触している熱硬化性接着剤層および該基板に接触している熱硬化性接着剤層のみを加熱することにより、有機機能層を避けた部分の加熱を行い、該熱硬化性接着剤層を硬化させ有機エレクトロルミネッセンスパネルを作製する加熱硬化工程を有することを特徴とする請求項1に記載の有機エレクトロルミネッセンスパネルの製造方法。
  3.  前記発光層を含む有機機能層を避けた部分の加熱は、前記発光層を含む有機機能層を避けた形状の加熱部を有するヒートプレートを、前記有機エレクトロルミネッセンス素子の発光層を含む有機機能層を避けた部分の基板面または封止基板面に接触して行なうことを特徴とする請求項1または2に記載の有機エレクトロルミネッセンスパネルの製造方法。
  4.  前記発光層を含む有機機能層を避けた部分の加熱は、前記発光層を含む有機機能層を避けた形状の加熱部を有するヒートロールを、前記有機エレクトロルミネッセンス素子の発光層を含む有機機能層を避けた部分の基板面または封止基板面に接触して行なうことを特徴とする請求項1または2に記載の有機エレクトロルミネッセンスパネルの製造方法。
  5.  前記発光層を含む有機機能層を避けた部分の加熱は、前記有機エレクトロルミネッセンス素子の前記発光層を含む有機機能層を避けた領域に、レーザーを照射して加熱することを特徴とする請求項1または2に記載の有機エレクトロルミネッセンスパネルの製造方法。
  6.  前記発光層を含む有機機能層を避けた部分の加熱は、前記有機エレクトロルミネッセンスパネルの基板面側から行なうことを特徴とする請求項1から5のいずれか1項に記載の有機エレクトロルミネッセンスパネルの製造方法。
  7.  前記基板は、透明性樹脂フィルムであることを特徴とする請求項1から6のいずれか1項に記載の有機エレクトロルミネッセンスパネルの製造方法。
  8.  前記透明性樹脂フィルムは、ポリエチレンナフタレートからなることを特徴とする請求項7に記載の有機エレクトロルミネッセンスパネルの製造方法。
  9.  前記発光層を含む有機機能層を避けた部分を加熱する温度が、90℃以上、140℃以下であることを特徴とする請求項1から8のいずれか1項に記載の有機エレクトロルミネッセンスパネルの製造方法。
  10.  前記発光層を含む有機機能層を避けた部分を加熱する時間が、4.0秒以上、600秒以下であることを特徴とする請求項1から9のいずれか1項に記載の有機エレクトロルミネッセンスパネルの製造方法。
PCT/JP2011/051427 2010-02-04 2011-01-26 有機エレクトロルミネッセンスパネルの製造方法 WO2011096308A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011552738A JPWO2011096308A1 (ja) 2010-02-04 2011-01-26 有機エレクトロルミネッセンスパネルの製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-023064 2010-02-04
JP2010023064 2010-02-04

Publications (1)

Publication Number Publication Date
WO2011096308A1 true WO2011096308A1 (ja) 2011-08-11

Family

ID=44355308

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/051427 WO2011096308A1 (ja) 2010-02-04 2011-01-26 有機エレクトロルミネッセンスパネルの製造方法

Country Status (2)

Country Link
JP (1) JPWO2011096308A1 (ja)
WO (1) WO2011096308A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017228512A (ja) * 2015-07-30 2017-12-28 株式会社半導体エネルギー研究所 発光装置の作製方法、発光装置、モジュール、及び電子機器

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05299172A (ja) * 1992-04-17 1993-11-12 Nichia Chem Ind Ltd El素子
JP2001237066A (ja) * 2000-02-25 2001-08-31 Toray Ind Inc 有機電界発光装置およびその製造方法
JP2004095415A (ja) * 2002-08-30 2004-03-25 Hitachi Chem Co Ltd 有機el素子の封止方法及び封止材
JP2004095412A (ja) * 2002-08-30 2004-03-25 Hitachi Chem Co Ltd 有機el素子の封止方法及び封止材
JP2005212230A (ja) * 2004-01-29 2005-08-11 Tomoegawa Paper Co Ltd 透明ガスバリアフィルムおよびエレクトロルミネッセンス素子
JP2006124698A (ja) * 2001-05-16 2006-05-18 Sekisui Chem Co Ltd 硬化性樹脂組成物、表示素子用シール剤及び表示素子用封口剤
JP2006236791A (ja) * 2005-02-25 2006-09-07 Tohoku Pioneer Corp 表示パネルの製造方法
WO2007004627A1 (ja) * 2005-07-05 2007-01-11 Konica Minolta Holdings, Inc. パターニング装置、有機エレクトロルミネッセンス素子とその製造方法及び有機エレクトロルミネッセンス表示装置
WO2008023626A1 (fr) * 2006-08-25 2008-02-28 Konica Minolta Holdings, Inc. dispositif électroluminescent organique ET SON PROCÉDÉ DE FABRICATION

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05299172A (ja) * 1992-04-17 1993-11-12 Nichia Chem Ind Ltd El素子
JP2001237066A (ja) * 2000-02-25 2001-08-31 Toray Ind Inc 有機電界発光装置およびその製造方法
JP2006124698A (ja) * 2001-05-16 2006-05-18 Sekisui Chem Co Ltd 硬化性樹脂組成物、表示素子用シール剤及び表示素子用封口剤
JP2004095415A (ja) * 2002-08-30 2004-03-25 Hitachi Chem Co Ltd 有機el素子の封止方法及び封止材
JP2004095412A (ja) * 2002-08-30 2004-03-25 Hitachi Chem Co Ltd 有機el素子の封止方法及び封止材
JP2005212230A (ja) * 2004-01-29 2005-08-11 Tomoegawa Paper Co Ltd 透明ガスバリアフィルムおよびエレクトロルミネッセンス素子
JP2006236791A (ja) * 2005-02-25 2006-09-07 Tohoku Pioneer Corp 表示パネルの製造方法
WO2007004627A1 (ja) * 2005-07-05 2007-01-11 Konica Minolta Holdings, Inc. パターニング装置、有機エレクトロルミネッセンス素子とその製造方法及び有機エレクトロルミネッセンス表示装置
WO2008023626A1 (fr) * 2006-08-25 2008-02-28 Konica Minolta Holdings, Inc. dispositif électroluminescent organique ET SON PROCÉDÉ DE FABRICATION

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017228512A (ja) * 2015-07-30 2017-12-28 株式会社半導体エネルギー研究所 発光装置の作製方法、発光装置、モジュール、及び電子機器
US10804503B2 (en) 2015-07-30 2020-10-13 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of light-emitting device, light-emitting device, module, and electronic device
JP2021093366A (ja) * 2015-07-30 2021-06-17 株式会社半導体エネルギー研究所 発光装置の作製方法
US11411208B2 (en) 2015-07-30 2022-08-09 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of light-emitting device, light-emitting device, module, and electronic device

Also Published As

Publication number Publication date
JPWO2011096308A1 (ja) 2013-06-10

Similar Documents

Publication Publication Date Title
JP6001595B2 (ja) 有機エレクトロルミネセンスデバイス
JP5660030B2 (ja) 有機エレクトロニクスパネルおよび有機エレクトロニクスパネルの製造方法
US8912018B2 (en) Manufacturing flexible organic electronic devices
US7950567B2 (en) Organic light emitting diode display device and method of fabricating the same
WO2011114882A1 (ja) 有機エレクトロルミネッセンスパネル及び有機エレクトロルミネッセンスパネルの製造方法
WO2011070951A1 (ja) 有機エレクトロニクスパネル及びその製造方法
JP2000323273A (ja) エレクトロルミネッセンス素子
WO2010150648A1 (ja) 有機エレクトロニクスパネルおよびその製造方法
JP5772819B2 (ja) 有機エレクトロルミネッセンスパネルの製造方法及びその製造方法で製造された有機エレクトロルミネッセンスパネル
JP5835082B2 (ja) シート状接着剤およびこれを用いてなる電子デバイス
JPWO2008023626A1 (ja) 有機エレクトロルミネッセンス素子およびその製造方法
JP2004303528A (ja) 有機エレクトロルミネッセンス素子及びその製造方法
WO2011096308A1 (ja) 有機エレクトロルミネッセンスパネルの製造方法
JP5960047B2 (ja) 有機エレクトロルミネッセンス素子及びその製造方法
JP2004079300A (ja) 発光素子及びその製造方法
JP2008235193A (ja) 有機電界発光素子
JP2002190384A (ja) 電界発光素子
JP5578180B2 (ja) 有機エレクトロルミネッセンスパネルの製造方法とこれを用いて製造された有機エレクトロルミネッセンスパネル
Zhu et al. Toward novel flexible display-top-emitting OLEDs on Al-laminated PET substrates
WO2011099362A1 (ja) 有機エレクトロルミネッセンスパネルの製造方法
JP2007103093A (ja) 有機電界発光素子
JP2004241364A (ja) 有機電界発光素子及びその製造方法
JP2004079325A (ja) 有機電界発光素子の製造方法及び転写材料
JP2008300292A (ja) 薄膜電子デバイスおよびその製造方法
JP2004079326A (ja) 有機電界発光素子の製造方法及び転写材料

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11739657

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011552738

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11739657

Country of ref document: EP

Kind code of ref document: A1