JP2007038529A - ガスバリア性薄膜積層体、ガスバリア性樹脂基材および有機エレクトロルミネッセンスデバイス - Google Patents

ガスバリア性薄膜積層体、ガスバリア性樹脂基材および有機エレクトロルミネッセンスデバイス Download PDF

Info

Publication number
JP2007038529A
JP2007038529A JP2005225290A JP2005225290A JP2007038529A JP 2007038529 A JP2007038529 A JP 2007038529A JP 2005225290 A JP2005225290 A JP 2005225290A JP 2005225290 A JP2005225290 A JP 2005225290A JP 2007038529 A JP2007038529 A JP 2007038529A
Authority
JP
Japan
Prior art keywords
film
gas barrier
thin film
organic
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005225290A
Other languages
English (en)
Inventor
Hiroaki Arita
浩了 有田
Kazuhiro Fukuda
和浩 福田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Priority to JP2005225290A priority Critical patent/JP2007038529A/ja
Publication of JP2007038529A publication Critical patent/JP2007038529A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Chemical Vapour Deposition (AREA)
  • Electroluminescent Light Sources (AREA)
  • Laminated Bodies (AREA)

Abstract

【課題】 ガスバリア性積層膜の光吸収や層間の屈折率差による色味の発生等が緩和され、透明性が高いと同時にガスバリア性能に優れた有機ELデバイス用樹脂基板を得ることにあり、また有機ELデバイスを封止構造とする際の光硬化型接着剤による接着不良が軽減された有機ELデバイス用樹脂基板を得ることにある。
【解決手段】 少なくとも2層以上のセラミック膜を有し、かつ水蒸気透過率が0.01g/m2/day以下、酸素透過率が0.01cc/m2/day/atm以下であるガスバリア性薄膜積層体において、該ガスバリア性薄膜積層体の波長380〜800nmでの光吸収率が0.1%以下であることを特徴とするガスバリア性薄膜積層体。
【選択図】 なし

Description

本発明は、透明で色味が抑制されたガスバリア性の高いガスバリア性薄膜積層体、これを樹脂基材上に有するガスバリア性樹脂基材および該ガスバリア性樹脂基材を用いた有機エレクトロルミネッセンスデバイスに関するものである。
従来より、プラスチック基板やフィルムの表面に酸化アルミニウム、酸化マグネシウム、酸化珪素等の金属酸化物の薄膜を形成したガスバリア性フィルムは、水蒸気や酸素等の各種ガスの遮断を必要とする物品の包装、食品や工業用品及び医薬品等の変質を防止するための包装用途に広く用いられている。また、包装用途以外にも液晶表示素子、太陽電池、有機エレクトロルミネッセンス(EL)基板等で使用されている。
この様な分野での包装材料としてアルミ箔等が広く用いられているが、使用後の廃棄処理が問題となっているほか、基本的には不透明であり、外から内容物を確認することができないという課題を抱えており、更に、ディスプレイ材料では透明性が求められており、これらの封止材料は全く適用することができない。
特に液晶表示素子、有機EL素子などへの応用が進んでいる透明基材には、近年、軽量化、大型化という要求に加え、長期信頼性や形状の自由度が高いこと、曲面表示が可能であること等の高度な要求が加わり、重く割れやすく大面積化が困難なガラス基板に代わって透明プラスチック等のフィルム基材が採用されはじめている。例えば、特開平2−251429号公報や特開平6−124785号公報には、優位エレクトロルミネッセンス素子の基板として高分子フィルムを用いた例が開示されている。
しかしながら、透明プラスチックフィルム等の樹脂基材はガラスに対しガスバリア性が劣るという問題がある。例えば、有機エレクトロルミネッセンス素子の基板として用いた場合、ガスバリア性が劣る基材を用いると、水蒸気や空気が浸透して有機膜が劣化し、発光特性あるいはその耐久性等を損なう要因となる。また、電子デバイス用基板として高分子からなる樹脂基板を用いた場合には、酸素が樹脂基板を透過して電子デバイス内に浸透、拡散し、デバイスを劣化させてしまうことや、電子デバイス内で求められる真空度を維持できないといった問題を引き起こす。
この様な問題を解決するために樹脂フィルム基板上に金属酸化物薄膜を形成してガスバリア性フィルム基材とすることが知られている。包装材や液晶表示素子に使用されるガスバリア性フィルムとしてはプラスチックフィルム上に酸化珪素を蒸着したもの(特許文献1)や酸化アルミニウムを蒸着したもの(特許文献2)が知られているが、いずれも2g/m2/day程度の水蒸気バリア性、あるいは2cc/m2/day/atm程度の酸素透過性を有するにすぎないのが現状である。近年では、更なるガスバリア性の向上が要求される有機ELディスプレイや、液晶ディスプレイの大型化、高精細ディスプレイ等の開発により、フィルム基板へのガスバリア性能については、水蒸気バリア性能で10-2g/m2/day程度まで要求が上がってきている。
これら高い水蒸気遮断性の要望に応える方法の1つとして、緻密なセラミック層と、柔軟性を有し、外部からの衝撃を緩和するポリマー層とを交互に繰り返し積層した構成のガスバリア性フィルムが提案されている(特許文献3参照)。しかしながら、光の吸収(特に低波長域)があるセラミック膜の使用や屈折率の異なる膜の交互積層を行っているため、ガラスと比較して光取出しや色バランスが劣る他、光硬化型接着剤の接着不良といった課題が生じている。特に、この密着性の劣化は、高温高湿等の過酷な環境下や紫外線の照射を長期にわたり受けた際顕著に現れ、早急な改良が求められている。
特公昭52−12953号公報 特開昭58−217344号公報 米国特許第6,268,695号明細書
従って本発明の目的は、ガスバリア性積層膜の光吸収や層間の屈折率差による色味の発生等が緩和され、透明性が高いと同時にガスバリア性能に優れた有機エレクトロルミネッセンスデバイス(以下有機ELデバイスともいう)用樹脂基板を得ることにあり、また有機ELデバイスを封止構造とする際の光硬化型接着剤による接着不良が軽減された有機ELデバイス用樹脂基板を得ることにある。
本発明の上記課題は以下の手段により達成されるものである。
(1)少なくとも2層以上のセラミック膜を有し、かつ水蒸気透過率が0.01g/m2/day以下、酸素透過率が0.01cc/m2/day/atm以下であるガスバリア性薄膜積層体において、該ガスバリア性薄膜積層体の波長380〜800nmでの光吸収率が0.1%以下であることを特徴とするガスバリア性薄膜積層体。
(2)波長380〜800nmでの光反射率が10%以下であることを特徴とする前記(1)に記載のガスバリア性薄膜積層体。
(3)前記セラミック膜のうち少なくとも1層は、炭素含有量が0.1%(原子数濃度%)以下のバリア膜であることを特徴とする前記(1)または(2)に記載のガスバリア性薄膜積層体。
(4)前記セラミック膜は、炭素含有量が0.1%(原子数濃度%)以下のバリア膜と炭素含有量が1%(原子数濃度%)以上の緩衝膜をそれぞれ1層以上有することを特徴とする前記(1)または(2)に記載のガスバリア性薄膜積層体。
(5)前記バリア膜は、1.0×10-14g・cm/(cm2・sec・Pa)以下の水蒸気透過係数を有することを特徴とする前記(3)〜(4)のいずれか1項に記載のガスバリア性薄膜積層体。
(6)前記バリア膜は、0.001以上20MPa以下の圧縮応力を有することを特徴とする前記(3)〜(5)のいずれか1項に記載のガスバリア性薄膜積層体。
(7)前記バリア膜は、酸化ケイ素を主成分とする膜であることを特徴とする前記(3)〜(6)のいずれか1項に記載のガスバリア性薄膜積層体。
(8)前記バリア膜は、プラズマCVD法により形成されたことを特徴とする前記(3)〜(7)のいずれか1項に記載のガスバリア性薄膜積層体。
(9)前記プラズマCVD法は、大気圧またはその近傍下の圧力で行われることを特徴とする前記(8)に記載のガスバリア性薄膜積層体。
(10)前記緩衝膜は、酸化ケイ素を主成分とする膜であることを特徴とする前記(4)〜(9)のいずれか1項に記載のガスバリア性薄膜積層体。
(11)前記緩衝膜は、プラズマCVD法により形成されたことを特徴とする前記(4)〜(10)のいずれか1項に記載のガスバリア性薄膜積層体。
(12)前記プラズマCVD法は、大気圧またはその近傍下の圧力で行われることを特徴とする前記(11)に記載のガスバリア性薄膜積層体。
(13)樹脂基材の少なくとも1面に、前記(1)〜(12)のいずれか1項に記載のガスバリア性薄膜積層体を有することを特徴とするガスバリア性樹脂基材。
(14)基材および基材上に、少なくとも電極、有機化合物層、更に該電極および有機化合物層を覆うように配置された封止膜を有する有機エレクトロルミネッセンスデバイスにおいて、前記封止膜が、前記(1)〜(12)のいずれか1項に記載のガスバリア性薄膜積層体であることを特徴とする有機エレクトロルミネッセンスデバイス。
(15)基材および該基材上に、少なくとも電極および有機化合物層、更に該電極および有機化合物層を覆うように、封止用フィルムを配置し、前記基材と貼り合わせ、前記電極および有機化合物層を封止した有機エレクトロルミネッセンスデバイスにおいて、該封止用フィルムが、前記(13)に記載のガスバリア性樹脂基材であることを特徴とする有機エレクトロルミネッセンスデバイス。
(16)前記電極および有機化合物層を有する前記基材が、前記(13)に記載のガスバリア性樹脂基材であることを特徴とする前記(18)または(19)に記載の有機エレクトロルミネッセンスデバイス。
本発明により、ガスバリア性薄膜積層体の光吸収が改善されると共に積層膜間の屈折率差による色味の発生も改善され、輝度減少や色バランスの劣化が改善されたガスバリア性能に優れた有機ELデバイスが得られる。
次に、本発明を実施するための最良の形態について説明する。
本発明は、高いガスバリア性能を有すると共に、ガスバリア性薄膜積層体(後述する)の可視吸収が、可視光域、即ち波長380nm〜800nmの範囲においてその光吸収率が全範囲にわたって0.1%以下である、透明性の高い、色味の少ないガスバリア性薄膜積層体に関するものである。
また、光反射率でみたときも、同じく波長380nm〜800nmの全範囲において光反射率が10%以下であることが好ましい。
ガスバリア性薄膜積層体の光吸収率は、分光光度計(例えば株式会社日立製作所製)を使用して波長範囲380〜800nmに亘ってガスバリア性薄膜積層体が形成された基材の光吸収率を測定し、基材との差分からガスバリア性薄膜積層体の光吸収率を算出することが出来る。
また、分光反射率については、同様にして分光光度計により波長範囲380〜800nmに亘ってガスバリア性薄膜積層体が形成された基材表面の反射率を測定することでうることが出来る。
本発明において高いガスバリア性とは、水蒸気透過率が0.01g/m2/day以下、酸素透過率が0.01cc/m2/day/atm以下であり、これらの特性を有することで、有機ELデバイス等のディスプレイにおいて、これを基板等として用いたときに、該有機ELデバイスに優れたガスバリア性能を付与することが出来、また、本発明に係わるプラズマCVD法を用いることでこれらのガスバリア性薄膜積層体また樹脂基板は透明性が高く、色味の少ない優れたガスバリア性樹脂基材となる。
水蒸気透過率は、JIS K 7129Bに記載された方法により測定する。なお、測定にはMOCON社製 水蒸気透過率測定装置 PERMATRAN−W 3/33 MGモジュールを使用することが出来る[g/m2/day]。
また、酸素透過率についても同じく、JIS K 7126Bに従って、MOCON社製 酸素透過率測定装置 OX−TRAN 2/21 MLモジュールを使用して測定することが出来る[cc/m2/day/atm]。
本発明のガスバリア性薄膜積層体とは、樹脂基材上に形成された少なくとも2層以上のセラミック膜を有する積層膜である。
これら少なくとも2層以上のセラミック膜とは、具体的には、緩衝膜、およびバリア膜からなるものである。これらの緩衝膜、バリア膜からなる積層体(それぞれが2層以上であってもよい)により、本発明のガスバリア性薄膜積層体は構成される。
前記ガスバリア性を確保するために、好ましくは、前記ガスバリア性薄膜積層体を構成するセラミック膜の少なくとも1層は1.0×10-14g・cm/(cm2・sec・Pa)以下の水蒸気透過係数を有するように形成されたバリア膜であることが好ましい。
本発明に係わるガスバリア性薄膜積層体は、バリア膜と緩衝膜とにより構成されており、後述するが、密度が高くガス、水蒸気透過係数の小さいバリア膜は、緻密な構造を有し、堅く、割れやすいセラミック膜であるため。同じ組成を有すると共に、ガスバリア膜に対しては比較的密度が低く柔軟性のあるセラミック膜を緩衝膜として積層し応力緩和することで、柔軟性とガスバリア性を両立させるものである。
本発明において、水蒸気透過係数は以下の方法で測定する。水蒸気透過係数が既知の支持体(例えばセルローストリアセテートフィルム;厚み100μm)上に前記セラミック膜を所定の厚みで形成しそのまま試料膜として用い、この試料膜を挟んで隔てた一次側と二次側の2つの容器を真空にする。一次側に40℃相対湿度90%の水蒸気を導入し、試料膜を透過し二次側に出てきた水蒸気量(或いは圧力変化)を、25℃において真空計を用いて計測する。これを経時で測定し、縦軸に二次側水蒸気圧(Pa)、横軸に時間(秒)をとり透過曲線を作成する。この透過曲線の直線部の勾配を用いて水蒸気透過係数(g・cm・cm-2・sec-1・Pa-1)を求める。支持体の水蒸気透過係数は既知なので、この厚み、また、支持体上に形成したセラミック膜の厚みから、セラミック膜の水蒸気透過係数が計算できる。
本発明における前記、緩衝膜、バリア膜からなるガスバリア性薄膜積層体は、その構成膜である緩衝膜、バリア膜共に、セラミック材料を含有して構成され、各膜を構成するセラミック材料としては金属酸化物、金属窒化物、金属炭化物、金属硫化物、金属ハロゲン化物、またこれらの混合物(金属酸窒化物、金属酸化ハロゲン化物、金属窒化炭化物など)があげられる。これらのうち、金属酸化物、金属酸窒化物、金属窒化物が好ましく、具体的には、酸化珪素、酸化アルミニウム、酸化窒化珪素、酸化窒化アルミニウム、酸化マグネシウム、酸化亜鉛、酸化インジウム、酸化スズ等が好ましく挙げられる。
特に、酸化珪素、酸化窒化珪素、窒化珪素から選ばれる少なくとも1種であることが好ましい。
本発明においては、従って、緩衝膜、ガスバリア膜は、同一組成物を含有しており、それぞれの膜が同一組成物を含有していることは本発明の特徴である。本発明でいう同一組成物を含有するとは、各膜を構成している物質の50%以上が同一の化合物により構成されていることを意味し、好ましくは70%以上である。
緩衝膜、セラミック膜からなるガスバリア性薄膜積層体の厚さは、用いられる材料の種類、構成により最適条件が異なり、適宜選択されるが、1〜5000nmの範囲内であることが好ましく、更に好ましいのは5〜500nmの範囲内である。ガスバリア性薄膜積層体の厚さが、上記の範囲より薄い場合には、均一な膜が得られず、ガスに対するバリア性を得ることが困難であるからである。また、特にバリア膜の厚さは、1〜5000nmの範囲内、更には5〜500nmの範囲が好ましい。バリア膜が上記の範囲より厚い場合には、ガスバリア性樹脂基材(フィルム)にフレキシビリティを保持させることが困難であり、成膜後に折り曲げ、引っ張り等の外的要因により、ガスバリア性樹脂基材に亀裂が生じる等のおそれがあるからである。
緩衝膜は応力緩和の役割をもつ層であるが、緩衝膜が基材とバリア膜間の密着性を改善する密着膜としても用いられる場合、1〜500nmが好ましく、さらに好ましいのは20〜200nmである。
また、最上層にある緩衝膜は保護膜として用いられ、このとき緩衝膜は、1〜1000nmの厚みが、さらには100nm〜800nmの厚みが好ましい。
本発明において、セラミック材料を含有する前記緩衝膜、バリア膜からなる前記ガスバリア性薄膜積層体のうち少なくともバリア膜は、0.001以上、20MPa以下の圧縮応力を有することが好ましい。
圧縮応力とは、形成された膜の内部に発生する応力であり圧縮応力の場合には基材上に形成された膜は基材に対し縮むためにプラスの内部応力と表現され、また逆に引っ張り応力によりマイナスカールを生じる場合マイナスの内部応力(引っ張り応力)と表現する。
〈内部応力の測定方法〉
セラミック材料膜中の内部応力の測定は、以下の方法により測定する。即ち、測定膜と同じ組成、厚みのセラミック膜を、幅10mm、長さ50mm、厚み0.1mmの石英基板上に同じ方法により厚み1μmとなるよう製膜し、作製したサンプルに生じるカールをサンプルの凹部を上に向けて、NEC三栄社製、薄膜物性評価装置MH4000にて測定して得ることができる。一般に圧縮応力により基材にたいし膜側が縮むプラスカールの場合プラスの内部応力(圧縮応力)とし、逆に、引っ張り応力によりマイナスカールを生じる場合マイナスの内部応力(引っ張り応力)と表現する。
この様な内部応力の低い膜の場合には、内部歪みが小さいため、平滑で、折り曲げ等による変形に対し平均的には強いことを意味するため、本発明の積薄膜積層体を構成する膜のうち特に少なくともバリア膜は、0.001以上20MPa以下と低い圧縮応力をもつ膜であることが好ましい。
バリア膜は前記1.0×10-14g・cm/(cm2・sec・Pa)以下の水蒸気透過係数を有するように形成され、緻密な構造を有する密度の大きな膜であり、従って、折れ、割れに敏感な膜であるため、0.001以上20MPa以下と低い圧縮応力をもつ内部応力の小さい膜であることは好ましい。内部応力が大きすぎる場合には折れ、割れに特に敏感であり、製造上、また、これを用いた膜材料を更に加工する際に充分な注意が必要であり、工程の収率等も低い。逆に小さすぎるときには部分的に引っ張り応力になっている場合もあり、同様に膜にひびや、亀裂が入りやすく、耐久性のない膜となる。
本発明において、酸化珪素、酸窒化珪素等のセラミック材料からなるセラミック膜は、ゾル−ゲル法、また、真空蒸着法、スパッタリング法、更にプラズマCVD法、更には大気圧または大気圧近傍でのプラズマCVD法等の方法を用いて樹脂基材上に容易に形成できる。
本発明においては、これらのいずれの方法を用いた場合においても0.001以上20MPa以下と低い圧縮応力をもつセラミック材料膜を形成することが好ましい。
しかしながら、スプレー法やスピンコート法等のゾル−ゲル法(湿式法)を用いた場合には、分子レベルの平滑性を得ることが難しく、又溶媒等を用いるため使用可能な基材が制限されるということもあり、プラズマCVD法が好ましい。また、なかでも、減圧チャンバー等が不要で、高速製膜ができ、生産性の高い製膜方法である点、大気圧又は大気圧近傍でのプラズマCVD法(以下大気圧プラズマCVD法という)がこの様な内部応力が小さい歪みの少ないセラミック材料膜を作製する上で適しており好ましい。大気圧近傍とは、20kPa〜110kPaの圧力を表すが、本発明に記載の良好な効果を得るためには、93kPa〜104kPaが好ましい。尚、大気圧プラズマCVD法によるセラミック材料膜の形成条件の詳細については後述する。
また、前記セラミック材料を含有する緩衝膜、バリア膜からなる積層体におけるセラミック材料として、酸化珪素、酸化窒化珪素を主体とすることが好ましく、特に酸化珪素を主体とすることが好ましい。
酸化珪素を主体とするとは、セラミック組成物のうち、酸化珪素が50%以上、好ましくは70%以上の割合を有する膜であることである。
特にバリア膜は、密度の高い、緻密な膜であることが好ましく、緩衝膜は、稍密度の低い、柔軟性を有する膜である。これら膜の密度はX線反射率法等により求めることができる。
X線反射率法の概要は、X線回折ハンドブック 151ページ(理学電機株式会社編 2000年 国際文献印刷社)や化学工業1999年1月No.22を参照して行うことができる。
しかしながら、セラミック膜における密度は、炭素の含有量と密接に相関があり、例えば、バリア膜は、少なくともSi、およびO原子を有するセラミック組成物であることが好ましく、また、緩衝膜は、同様に、少なくともSi、OおよびC原子を有するセラミック組成物であることが好ましい。
本発明において、それぞれセラミック組成物から構成される本発明に係る緩衝膜、バリア膜からなる薄膜積層体における各薄膜間の分離、例えば、各薄膜間での密度差の確認方法としては、原料化合物の含有量差、各薄膜の硬度差等もあるが、各セラミック膜中の炭素含有量差を測定することにより、緩衝膜、バリア膜の分離を行うことが出来好ましい。
即ち、本発明の緩衝膜、バリア膜を有するガスバリア性薄膜積層体において、低密度膜は高炭素含有膜と相関を持ち、また高密度膜は低炭素含有膜と相関を持つため、セラミック材料膜の炭素含有量差により、密度の違う、各膜(層)の境界部を確認することができる。
本発明において、セラミック材料膜を緻密な密度の高い膜とするには、例えば、本発明においてバリア膜として好ましい酸化珪素、酸化窒化珪素、窒化珪素の場合、炭素含有量0at%以上、0.1at%以下である炭素原子の含有量が少ない膜であることが好ましく。また、緩衝膜は、ガスバリア膜と同一組成でかつ比較的柔軟な層とするには、例えば、酸化珪素、酸化窒化珪素、窒化珪素の場合、炭素含有量が前記バリア膜よりも多いものとすればよい。好ましくは、炭素含有量が1.0at%〜40at%の範囲にある膜であることが好ましい。ここにおいて、at%は、後述する原子数濃度%(atomic concentration)を表す。
本発明において前記炭素含有量は原子数濃度%であり、公知の分析手段を用いて求めることができるが、本発明においては下記のXPS法によって算出されるもので、以下に定義される。
原子数濃度%(atomic concentration)=炭素原子の個数/全原子の個数×100
XPS表面分析装置は、本発明では、VGサイエンティフィックス社製ESCALAB−200Rを用いた。具体的には、X線アノードにはMgを用い、出力600W(加速電圧15kV、エミッション電流40mA)で測定する。エネルギー分解能は、清浄なAg3d5/2ピークの半値幅で規定したとき、1.5eV〜1.7eVとなるように設定する。
測定としては、先ず、結合エネルギ0eV〜1100eVの範囲を、データ取り込み間隔1.0eVで測定し、いかなる元素が検出されるかを求める。
次に、検出された、エッチングイオン種を除く全ての元素について、データの取り込み間隔を0.2eVとして、その最大強度を与える光電子ピークについてナロースキャンをおこない、各元素のスペクトルを測定する。
得られたスペクトルは、測定装置、あるいは、コンピュータの違いによる含有率算出結果の違いを生じせしめなくするために、VAMAS−SCA−JAPAN製のCOMMON DATA PROCESSING SYSTEM (Ver.2.3以降が好ましい)上に転送した後、同ソフトで処理をおこない、各分析ターゲットの元素(炭素、酸素、ケイ素、チタン等)の含有率の値を原子数濃度(atomic concentration:at%)として求める。
定量処理をおこなう前に、各元素についてCount Scaleのキャリブレーションをおこない、5ポイントのスムージング処理をおこなう。定量処理では、バックグラウンドを除去したピークエリア強度(cps*eV)を用いる。バックグラウンド処理には、Shirleyによる方法を用いる。また、Shirley法については、D.A.Shirley,Phys.Rev.,B5,4709(1972)を参考にすることができる。
以上のように、大気圧プラズマCVD法を用いて形成される、同一の組成物(セラミック材料からなる)を含有する密度の異なる膜から構成される積層膜を用いてガスバリア性薄膜積層体を構成したとき、特に前記本発明に係わる内部応力の小さなセラミック膜は、ガスバリア性と共に、折り曲げ耐性等、ストレスに強い積層膜を与え、またガスバリア性能が劣化しにくく、膜による光の吸収や多層積層による層間の屈折率差から生ずる色味等の少ない、透過率の高いセラミック積層膜を与え好ましい。本発明に係わる大気圧プラズマ法により形成された内部応力の低いセラミック材料を含有するバリア膜、好ましくは緩衝膜は、透明性が高く光吸収が均一で可視光域380〜800nmにおける光吸収率が0.1%以下である膜をあたえるものである。
本発明の緩衝膜、またバリア膜は、同一の組成物を含有すると共に密度が異なる膜である。これは、同一組成物といっても、例えば、大気圧プラズマCVD法の場合、製造条件、又用いる薄膜形成ガス(原料ガス、添加ガス等の種類、比率等)によって、セラミック粒子の充填の程度、また混入する微量の不純物粒子等に差が生じることでそれに伴う物性、例えば密度等は異なってくることによる。
本発明に係わる緩衝膜は、バリア膜と同一の組成物を含有する膜であると共に、ガスバリア膜よりも小さい膜密度を有しているが、密度の値としてはガスバリア膜の90%以下の密度を有する膜であることが好ましい。これらの層はバリア膜ほどに水蒸気を遮断する性能はないが、柔軟性があり、緩衝膜として応力緩和層、密着層または保護層としての役割を同一組成物を含有する膜でありながら果たすものである。
次いで、本発明に係るガスバリア性薄膜積層体またはガスバリア性樹脂基材の構成要素に次いで説明する。
《緩衝膜、ガスバリア膜》
本発明に係る緩衝膜、ガスバリア膜(以下、総称してセラミック材料膜またはセラミック膜という)の製造に用いる原料について説明する。
本発明のセラミック材料膜は、プラズマCVD法、大気圧プラズマCVD法において、原料(原材料ともいう)である有機金属化合物、分解ガス、分解温度、投入電力などの条件を選ぶことで、金属炭化物、金属窒化物、金属酸化物、金属硫化物、金属ハロゲン化物、またこれらの混合物(金属酸窒化物、金属酸化ハロゲン化物、金属窒化炭化物など)等その組成を作り分けることができる。
例えば、珪素化合物を原料化合物として用い、分解ガスに酸素を用いれば、珪素酸化物が生成する。また、亜鉛化合物を原料化合物として用い、分解ガスに二硫化炭素を用いれば、硫化亜鉛が生成する。これはプラズマ空間内では非常に活性な荷電粒子・活性ラジカルが高密度で存在するため、プラズマ空間内では多段階の化学反応が非常に高速に促進され、プラズマ空間内に存在する元素は熱力学的に安定な化合物へと非常な短時間で変換されるためである。
このような無機物の原料としては、典型または遷移金属元素を有していれば、常温常圧下で気体、液体、固体いずれの状態であっても構わない。気体の場合にはそのまま放電空間に導入できるが、液体、固体の場合は、加熱、バブリング、減圧、超音波照射等の手段により気化させて使用する。又、溶媒によって希釈して使用してもよく、溶媒は、メタノール,エタノール,n−ヘキサンなどの有機溶媒及びこれらの混合溶媒が使用できる。尚、これらの希釈溶媒は、プラズマ放電処理中において、分子状、原子状に分解されるため、影響は殆ど無視することができる。
このような有機金属化合物としては、ケイ素化合物として、シラン、テトラメトキシシラン、テトラエトキシシラン、テトラn−プロポキシシラン、テトライソプロポキシシラン、テトラn−ブトキシシラン、テトラt−ブトキシシラン、ジメチルジメトキシシラン、ジメチルジエトキシシラン、ジエチルジメトキシシラン、ジフェニルジメトキシシラン、メチルトリエトキシシラン、エチルトリメトキシシラン、フェニルトリエトキシシラン、(3,3,3−トリフルオロプロピル)トリメトキシシラン、ヘキサメチルジシロキサン、ビス(ジメチルアミノ)ジメチルシラン、ビス(ジメチルアミノ)メチルビニルシラン、ビス(エチルアミノ)ジメチルシラン、N,O−ビス(トリメチルシリル)アセトアミド、ビス(トリメチルシリル)カルボジイミド、ジエチルアミノトリメチルシラン、ジメチルアミノジメチルシラン、ヘキサメチルジシラザン、ヘキサメチルシクロトリシラザン、ヘプタメチルジシラザン、ノナメチルトリシラザン、オクタメチルシクロテトラシラザン、テトラキスジメチルアミノシラン、テトライソシアナートシラン、テトラメチルジシラザン、トリス(ジメチルアミノ)シラン、トリエトキシフルオロシラン、アリルジメチルシラン、アリルトリメチルシラン、ベンジルトリメチルシラン、ビス(トリメチルシリル)アセチレン、1,4−ビストリメチルシリル−1,3−ブタジイン、ジ−t−ブチルシラン、1,3−ジシラブタン、ビス(トリメチルシリル)メタン、シクロペンタジエニルトリメチルシラン、フェニルジメチルシラン、フェニルトリメチルシラン、プロパルギルトリメチルシラン、テトラメチルシラン、トリメチルシリルアセチレン、1−(トリメチルシリル)−1−プロピン、トリス(トリメチルシリル)メタン、トリス(トリメチルシリル)シラン、ビニルトリメチルシラン、ヘキサメチルジシラン、オクタメチルシクロテトラシロキサン、テトラメチルシクロテトラシロキサン、ヘキサメチルシクロテトラシロキサン、Mシリケート51等が挙げられる。
チタン化合物としては、例えば、チタンメトキシド、チタンエトキシド、チタンイソプロポキシド、チタンテトライソポロポキシド、チタンn−ブトキシド、チタンジイソプロポキシド(ビス−2,4−ペンタンジオネート)、チタンジイソプロポキシド(ビス−2,4−エチルアセトアセテート)、チタンジ−n−ブトキシド(ビス−2,4−ペンタンジオネート)、チタンアセチルアセトネート、ブチルチタネートダイマー等が挙げられる。
ジルコニウム化合物としては、ジルコニウムn−プロポキシド、ジルコニウムn−ブトキシド、ジルコニウムt−ブトキシド、ジルコニウムトリ−n−ブトキシドアセチルアセトネート、ジルコニウムジ−n−ブトキシドビスアセチルアセトネート、ジルコニウムアセチルアセトネート、ジルコニウムアセテート、ジルコニウムヘキサフルオロペンタンジオネート等が挙げられる。
アルミニウム化合物としては、アルミニウムエトキシド、アルミニウムトリイソプロポキシド、アルミニウムイソプロポキシド、アルミニウムn−ブトキシド、アルミニウムs−ブトキシド、アルミニウムt−ブトキシド、アルミニウムアセチルアセトナート、トリエチルジアルミニウムトリ−s−ブトキシド等が挙げられる。
硼素化合物としては、ジボラン、テトラボラン、フッ化硼素、塩化硼素、臭化硼素、ボラン−ジエチルエーテル錯体、ボラン−THF錯体、ボラン−ジメチルスルフィド錯体、三フッ化硼素ジエチルエーテル錯体、トリエチルボラン、トリメトキシボラン、トリエトキシボラン、トリ(イソプロポキシ)ボラン、ボラゾール、トリメチルボラゾール、トリエチルボラゾール、トリイソプロピルボラゾール、等が挙げられる。
錫化合物としては、テトラエチル錫、テトラメチル錫、二酢酸ジ−n−ブチル錫、テトラブチル錫、テトラオクチル錫、テトラエトキシ錫、メチルトリエトキシ錫、ジエチルジエトキシ錫、トリイソプロピルエトキシ錫、ジエチル錫、ジメチル錫、ジイソプロピル錫、ジブチル錫、ジエトキシ錫、ジメトキシ錫、ジイソプロポキシ錫、ジブトキシ錫、錫ジブチラート、錫ジアセトアセトナート、エチル錫アセトアセトナート、エトキシ錫アセトアセトナート、ジメチル錫ジアセトアセトナート等、錫水素化合物等、ハロゲン化錫としては、二塩化錫、四塩化錫等が挙げられる。
また、その他の有機金属化合物としては、例えば、アンチモンエトキシド、ヒ素トリエトキシド、バリウム2,2,6,6−テトラメチルヘプタンジオネート、ベリリウムアセチルアセトナート、ビスマスヘキサフルオロペンタンジオネート、ジメチルカドミウム、カルシウム2,2,6,6−テトラメチルヘプタンジオネート、クロムトリフルオロペンタンジオネート、コバルトアセチルアセトナート、銅ヘキサフルオロペンタンジオネート、マグネシウムヘキサフルオロペンタンジオネート−ジメチルエーテル錯体、ガリウムエトキシド、テトラエトキシゲルマン、テトラメトキシゲルマン、ハフニウムt−ブドキシド、ハフニウムエトキシド、インジウムアセチルアセトナート、インジウム2,6−ジメチルアミノヘプタンジオネート、フェロセン、ランタンイソプロポキシド、酢酸鉛、テトラエチル鉛、ネオジウムアセチルアセトナート、白金ヘキサフルオロペンタンジオネート、トリメチルシクロペンタジエニル白金、ロジウムジカルボニルアセチルアセトナート、ストロンチウム2,2,6,6−テトラメチルヘプタンジオネート、タンタルメトキシド、タンタルトリフルオロエトキシド、テルルエトキシド、タングステンエトキシド、バナジウムトリイソプロポキシドオキシド、マグネシウムヘキサフルオロアセチルアセトナート、亜鉛アセチルアセトナート、ジエチル亜鉛、などが挙げられる。
また、これらの金属を含む原料ガスを分解して無機化合物を得るための分解ガスとしては、水素ガス、メタンガス、アセチレンガス、一酸化炭素ガス、二酸化炭素ガス、窒素ガス、アンモニアガス、亜酸化窒素ガス、酸化窒素ガス、二酸化窒素ガス、酸素ガス、水蒸気、フッ素ガス、フッ化水素、トリフルオロアルコール、トリフルオロトルエン、硫化水素、二酸化硫黄、二硫化炭素、塩素ガスなどが挙げられる。
金属元素を含む原料ガスと、分解ガスを適宜選択することで、各種の金属炭化物、金属窒化物、金属酸化物、金属ハロゲン化物、金属硫化物を得ることができる。
これらの反応性ガスに対して、主にプラズマ状態になりやすい放電ガスを混合し、プラズマ放電発生装置にガスを送りこむ。このような放電ガスとしては、窒素ガスおよび/または周期表の第18属原子、具体的には、ヘリウム、ネオン、アルゴン、クリプトン、キセノン、ラドン等が用いられる。これらの中でも特に、窒素、ヘリウム、アルゴンが好ましく用いられる。
上記放電ガスと反応性ガスを混合し、薄膜形成(混合)ガスとしてプラズマ放電発生装置(プラズマ発生装置)に供給することで膜形成を行う。放電ガスと反応性ガスの割合は、得ようとする膜の性質によって異なるが、混合ガス全体に対し、放電ガスの割合を50%以上として反応性ガスを供給する。
本発明に係るガスバリア性薄膜積層体を構成するセラミック膜においては、セラミック膜が含有する無機化合物が、酸化珪素、酸化窒化珪素、窒化珪素、酸化アルミナ及びそれらの混合物から選ばれる少なくとも1種であることが好ましく、特に水分の透過性、光線透過性及び後述する大気圧プラズマCVD適性の観点から、酸化珪素であることが好ましい。
例えば、上記有機珪素化合物に、更に酸素ガスや窒素ガスを所定割合で組み合わせて、O原子とN原子の少なくともいずれかと、Si原子とを含む本発明に係る酸化珪素、酸化窒化珪素、窒化珪素等のセラミック膜を得ることができる。
即ち、前記大気圧プラズマ法によって作製されるた、同一組成を有する2種類の膜、即ち、
バリア膜;密度の高い、水蒸気透過係数の小さい膜であり、は少なくともSi、およびO原子を有する、炭素含有率の少ない或いは含まないセラミック組成物からなる膜、及び、緩衝膜;バリア膜よりも水蒸気透過係数としては大きな、密度としては低い柔軟な膜であり、Si、OおよびC原子を有する炭素原子の含有量の多い膜から構成される膜、
という性質が異なった2種の薄膜から構成される積層構造により本発明のガスバリア性薄膜積層体、またガスバリア性樹脂基材は得られる。
また、これらセラミック材料膜、特にバリア膜は、内部応力(圧縮応力)が0.001以上、20MPa以下である内部歪みの少ない膜であり、積層したとき折り曲げ等ストレスに強い割れにくい膜を与える。また、これらのバリア膜、緩衝膜はそれぞれ光吸収率が380nm〜800nmの範囲において、0.1%以下となり、また光反射率も10%以下の積層膜としたときに色味の少ない優れた積層膜を構成する。
本発明に係わるガスバリア性薄膜積層体はバリア膜、緩衝膜を1つ以上有する形態であってもよく、一例としては、樹脂基材、緩衝膜、バリア膜、保護膜(緩衝膜を兼ねる)といった形態があり、また、この積層体を2組以上有する形態、即ち、例えば、樹脂基材上に、緩衝膜(密着膜を兼ねる)、バリア膜、緩衝膜、バリア膜、緩衝膜(保護膜を兼ねる)というガスバリア性積層体を2組有する構成でもよい。勿論バリア膜、緩衝膜は、3つ以上有する構成でもよい。
第2、或いは第3のガスバリア性薄膜積層体は、第1の薄膜積層体と全く同じである必要はないが、それぞれの積層体を構成する緩衝膜、バリア膜は、それぞれ水蒸気透過係数、また密度、組成等、緩衝膜、バリア膜として必要な特性を満たす範囲であれば全く厳密に同じでなくとも構わない。しかしながら、同じ薄膜積層体を用いる方が生産効率上は好ましい。また、樹脂基材との接着性を向上させるための密着膜も、緩衝膜として形成するのが好ましく、また保護膜についても緩衝膜であることが好ましい。
図1(1)及び(2)に、本発明に係わるガスバリア性樹脂基材の構成の代表例について、その断面図を示した。樹脂基材としては例えばPET(ポリエチレンテレフタレート)フィルムをもちいており、また此処では後述するポリマー膜をガスバリア性薄膜積層体と樹脂基材(フィルム)との接着性の向上の為また平滑性の確保の為形成している。
(1)樹脂基材1(125μm)/ポリマー膜2(6μm)/緩衝膜3(100nm)/ガスバリア膜4(50nm)/保護膜5(500nm)
(2)樹脂基材1/ポリマー膜2/緩衝膜膜3/ガスバリア膜4/第2の緩衝膜3′(100nm)/第2のガスバリア膜4′(50nm)/保護膜5
以上において()は各膜の厚みを示す。また、それぞれにおいて保護膜は緩衝膜と同一の膜を用いてよく、またポリマー層に隣接する緩衝膜は実質的にはポリマー層も含めた基材との密着性向上の役割をもっている。
本発明においては、緩衝膜またはバリア膜と樹脂基材(後述する樹脂フィルム基材)の間に、ポリマー膜を有することが好ましい。これは、ガスバリア性薄膜積層体の緩衝膜またはガスバリア膜と樹脂基材との密着性、接着性の向上を目的として、また平滑性の確保のために形成される。
ポリマー膜としては、厚みで0.1〜10μmの範囲にあるポリマー膜であり、好ましくは1〜10μmの範囲である。
ポリマー膜としては、アクリル樹脂、ポリエステル樹脂、ウレタン樹脂等の樹脂コート層が好ましく、ロールコート、グラビアコート、ディップコート等公知の方法により樹脂基材上に相当する樹脂溶液をコーティングして容易に形成できる。
又、本発明においては、これらポリマー層は、熱硬化樹脂または活性線硬化樹脂から形成することが好ましく、特に紫外線硬化樹脂を用いて樹脂硬化層を形成することが好ましい。なお、これらの層を形成する前に樹脂基材(フィルム)の表面をコロナ放電処理またはグロー放電処理することは好ましい。
樹脂硬化層は、エチレン性不飽和結合を有するモノマーを1種以上含む成分を重合させて形成した層であることが好ましく、エチレン性不飽和結合を有するモノマーを含む成分を重合させて形成した樹脂層としては、活性線硬化樹脂または熱硬化樹脂を硬化させて形成された層が好ましく用いられるが、特に好ましく用いられるのは活性線硬化樹脂層である。ここで、活性線硬化樹脂層とは紫外線や電子線のような活性線照射により架橋反応等を経て硬化する樹脂を主たる成分とする層をいう。
活性線硬化樹脂としては紫外線硬化性樹脂や電子線硬化性樹脂等が代表的なものとして挙げられるが、紫外線や電子線以外の活性線照射によって硬化する樹脂でもよい。
紫外線硬化性樹脂としては、例えば、紫外線硬化型アクリルウレタン系樹脂、紫外線硬化型ポリエステルアクリレート系樹脂、紫外線硬化型エポキシアクリレート系樹脂、紫外線硬化型ポリオールアクリレート系樹脂または紫外線硬化型エポキシ樹脂等あげられるが、アクリルを主成分とした、例えば、紫外線硬化型アクリルウレタン系樹脂、紫外線硬化型ポリエステルアクリレート系樹脂、紫外線硬化型エポキシアクリレート系樹脂、紫外線硬化型ポリオールアクリレート系樹脂等が好ましい。
具体例としては、例えば、トリメチロールプロパントリアクリレート、ジトリメチロールプロパンテトラアクリレート、ペンタエリスリトールトリアクリレート、ペンタエリスリトールテトラアクリレート、ジペンタエリスリトールヘキサアクリレート、アルキル変性ジペンタエリスリトールペンタアクリレート等を挙げることができる。
紫外線硬化型アクリルウレタン系樹脂としては、一般にポリエステルポリオールにイソシアネートモノマー、またはプレポリマーを反応させて得られた生成物に更に2−ヒドロキシエチルアクリレート、2−ヒドロキシエチルメタクリレート(以下アクリレートにはメタクリレートを包含するものとしてアクリレートのみを表示する)、2−ヒドロキシプロピルアクリレート等の水酸基を有するアクリレート系のモノマーを反応させる容易に形成されるものを挙げることができ、特開昭59−151110号に記載のものを用いることができる。
紫外線硬化型ポリエステルアクリレート系樹脂としては、一般にポリエステルポリオールに2−ヒドロキシエチルアクリレート、2−ヒドロキシアクリレート系のモノマーを反応させる容易に形成されるものを挙げることができ、特開昭59−151112号に記載のものを用いることができる。
紫外線硬化型エポキシアクリレート系樹脂の具体例としては、エポキシアクリレートをオリゴマーとし、これに反応性希釈剤、光反応開始剤を添加し、反応させて生成するものを挙げることができ、特開平1−105738号に記載のものを用いることができる。
これらの光反応開始剤としては、具体的には、ベンゾイン及び誘導体、アセトフェノン、ベンゾフェノン、ヒドロキシベンゾフェノン、ミヒラーズケトン、α−アミロキシムエステル、チオキサントン等及びこれらの誘導体を挙げることができる。光増感剤と共に使用してもよい。
上記光反応開始剤は光増感剤としても使用できる。また、エポキシアクリレート系の光反応剤の使用の際、n−ブチルアミン、トリエチルアミン、トリ−n−ブチルホスフィン等の増感剤を用いることができる。
樹脂モノマーとしては、例えば、不飽和二重結合が一つのモノマーとして、メチルアクリレート、エチルアクリレート、ブチルアクリレート、ベンジルアクリレート、シクロヘキシルアクリレート、酢酸ビニル、スチレン等の一般的なモノマーを挙げることができる。また不飽和二重結合を二つ以上持つモノマーとして、エチレングリコールジアクリレート、プロピレングリコールジアクリレート、ジビニルベンゼン、1,4−シクロヘキサンジアクリレート、1,4−シクロヘキシルジメチルアジアクリレート、前出のトリメチロールプロパントリアクリレート、ペンタエリスリトールテトラアクリルエステル等を挙げることができる。
本発明において使用し得る市販品の紫外線硬化樹脂としては、アデカオプトマーKR・BYシリーズ:KR−400、KR−410、KR−550、KR−566、KR−567、BY−320B(旭電化(株)製);コーエイハードA−101−KK、A−101−WS、C−302、C−401−N、C−501、M−101、M−102、T−102、D−102、NS−101、FT−102Q8、MAG−1−P20、AG−106、M−101−C(広栄化学(株)製);セイカビームPHC2210(S)、PHC X−9(K−3)、PHC2213、DP−10、DP−20、DP−30、P1000、P1100、P1200、P1300、P1400、P1500、P1600、SCR900(大日精化工業(株)製);KRM7033、KRM7039、KRM7130、KRM7131、UVECRYL29201、UVECRYL29202(ダイセル・ユーシービー(株)製);RC−5015、RC−5016、RC−5020、RC−5031、RC−5100、RC−5102、RC−5120、RC−5122、RC−5152、RC−5171、RC−5180、RC−5181(大日本インキ化学工業(株)製);オーレックスNo.340クリヤ(中国塗料(株)製);サンラッドH−601(三洋化成工業(株)製);SP−1509、SP−1507(昭和高分子(株)製);RCC−15C(グレース・ジャパン(株)製)、アロニックスM−6100、M−8030、M−8060(東亞合成(株)製)等を適宜選択して利用できる。
これらの活性線硬化樹脂層は公知の方法で塗設することができる。
紫外線硬化性樹脂を光硬化反応により硬化させるための光源としては、紫外線を発生する光源であれば制限なく使用できる。例えば、低圧水銀灯、中圧水銀灯、高圧水銀灯、超高圧水銀灯、カーボンアーク灯、メタルハライドランプ、キセノンランプ等を用いることができる。照射条件はそれぞれのランプによって異なるが、照射光量は20〜10000mJ/cm2程度あればよく、好ましくは、50〜2000mJ/cm2である。近紫外線領域〜可視光線領域にかけてはその領域に吸収極大のある増感剤を用いることによって効率よく形成することができる。
紫外線硬化樹脂層組成物塗布液の有機溶媒としては、例えば、炭化水素類、アルコール類、ケトン類、エステル類、グリコールエーテル類、その他の有機溶媒の中から適宜選択し、またはこれらを混合し利用できる。例えば、プロピレングリコールモノアルキルエーテル(アルキル基の炭素原子数として1〜4)またはプロピレングリコールモノアルキルエーテル酢酸エステル(アルキル基の炭素原子数として1〜4)等を5質量%以上、より好ましくは5〜80質量%以上含有する上記有機溶媒を用いるのが好ましい。
紫外線硬化性樹脂組成物塗布液の塗布量は、ウェット膜厚として0.1〜30μmが適当で、好ましくは0.5〜15μmである。紫外線硬化性樹脂組成物は塗布乾燥中または後に、紫外線を照射するのがよく、照射時間としては0.5秒〜5分が好ましく、紫外線硬化性樹脂の硬化効率または作業効率の観点から3秒〜2分がより好ましい。
また、本発明に係わるポリマー膜として、大気圧プラズマCVD法を用いて形成されたプラズマ重合膜が好ましい。即ち、大気圧プラズマCVD法において、薄膜形成ガス中に少なくとも1種類以上の有機化合物を含有させ、有機化合物をプラズマ重合することによりポリマー膜を形成してもよい。
大気圧プラズマCVD法において、薄膜形成ガスは、放電ガスと原料成分からなり、更に添加ガスを用いることもある。
大気圧プラズマCVD法において、薄膜形成ガス中含有させるプラズマ重合の原料成分となる有機化合物としては、公知の有機化合物を用いることができるが、その中でも、分子内に少なくとも1つ以上の不飽和結合または環状構造を有する有機化合物が好ましく用いることができ、特に(メタ)アクリル化合物、エポキシ化合物、またはオキセタン化合物のモノマーまたはオリゴマー等が好ましく用いることができるが、特に好ましいのは、アクリル、メタアクリル化合物等アクリルを主成分とするものである。
有用な(メタ)アクリル化合物としては特に限定はないが、代表例として以下のような化合物があげられる。2−エチルヘキシルアクリレート、2−ヒドロキシプロピルアクリレート、グリセロールアクリレート、テトラヒドロフルフリルアクリレート、フェノキシエチルアクリレート、ノニルフェノキシエチルアクリレート、テトラヒドロフルフリルオキシエチルアクリレート、テトラヒドロフルフリルオキシヘキサノリドアクリレート、1,3−ジオキサンアルコールのε−カプロラクトン付加物のアクリレート、1,3−ジオキソランアクリレート等の単官能アクリル酸エステル類、或いはこれらのアクリレートをメタクリレートに代えたメタクリル酸エステル、例えば、エチレングリコールジアクリレート、トリエチレングルコールジアクリレート、ペンタエリスリトールジアクリレート、ハイドロキノンジアクリレート、レゾルシンジアクリレート、ヘキサンジオールジアクリレート、ネオペンチルグリコールジアクリレート、トリプロピレングリコールジアクリレート、ヒドロキシピバリン酸ネオペンチルグリコールのジアクリレート、ネオペンチルグリコールアジペートのジアクリレート、ヒドロキシピバリン酸ネオペンチルグリコールのε−カプロラクトン付加物のジアクリレート、2−(2−ヒドロキシ−1,1−ジメチルエチル)−5−ヒドロキシメチル−5−エチル−1,3−ジオキサンジアクリレート、トリシクロデカンジメチロールアクリレート、トリシクロデカンジメチロールアクリレートのε−カプロラクトン付加物、1,6−ヘキサンジオールのジグリシジルエーテルのジアクリレート等の2官能アクリル酸エステル類、或いはこれらのアクリレートをメタクリレートに代えたメタクリル酸エステル、例えばトリメチロールプロパントリアクリレート、ジトリメチロールプロパンテトラアクリレート、トリメチロールエタントリアクリレート、ペンタエリスリトールトリアクリレート、ペンタエリスリトールテトラアクリレート、ジペンタエリスリトールテトラアクリレート、ジペンタエリスリトールペンタアクリレート、ジペンタエリスリトールヘキサアクリレート、ジペンタエリスリトールヘキサアクリレートのε−カプロラクトン付加物、ピロガロールトリアクリレート、プロピオン酸・ジペンタエリスリトールトリアクリレート、プロピオン酸・ジペンタエリスリトールテトラアクリレート、ヒドロキシピバリルアルデヒド変性ジメチロールプロパントリアクリレート等の多官能アクリル酸エステル酸、或いはこれらのアクリレートをメタクリレートに代えたメタクリル酸等。前記活性線硬化樹脂としてもあげられた化合物も含まれる。
放電ガスとしては、前記ガスバリア層の場合と同様であり、窒素、希ガス、空気などがあり、希ガスとしては、周期表の第18属元素、具体的には、ヘリウム、ネオン、アルゴン、クリプトン、キセノン、ラドン等から選ばれ、本発明において、放電ガスとしては窒素、アルゴン、ヘリウムが好ましく、更に好ましくは窒素であることも同様である。
放電ガス量は、プラズマ重合においては、放電空間内に供給する薄膜形成ガス量に対して70〜99.99体積%含有することが好ましい。
プラズマ重合法においても、前記原料ガス、放電ガスに加えて、添加ガスを、反応や膜質を制御するために導入してもよく、水素、酸素、窒素酸化物、アンモニア、メタン等の炭化水素類、アルコール類、有機酸類または水分を該ガスに対して0.001体積%〜30体積%混合させて使用してもよい。
これらの方法によって得られる前記ポリマー膜の表面粗さRaは、5nm以下である平滑な膜であることが好ましい。表面平均粗さは中心線平均粗さであり、中心線平均粗さが5nm以上の膜では、この上に形成されるガスバリア層の均質性が損なわれガスバリア層に欠陥(孔)ができガスバリア性が低下する。
本発明でいう中心線平均粗さ(Ra)とは、JIS表面粗さのJIS−B−0601により定義される。すなわち、中心線平均粗さ(Ra)とは、粗さ曲線からその中心線の方向に測定長さL(本発明では2.5mm)の部分を抜き取り、カットオフ値0.8mmとして、この抜き取り部分の中心線をX軸、縦倍率の方向をY軸、粗さ曲線をY=f(X)で表したとき、下式によって求められる値をマイクロメートル(μm)で表したものをいう。
Figure 2007038529
中心線平均粗さ(Ra)の測定方法としては、25℃、65%RH環境下で測定試料同士が重ね合わされない条件で24時間調湿したのち、該環境下で測定した。ここで示す重ね合わされない条件とは、例えば、支持体のエッジ部分を高くした状態で巻き取る方法や支持体と支持体の間に紙をはさんで重ねる方法、厚紙等で枠を作製しその四隅を固定する方法のいずれかである。用いることのできる測定装置としては、例えば、WYKO社製 RSTPLUS非接触三次元微小表面形状測定システム等を挙げることができる。
本発明において規定した支持体表面の中心線平均粗さ(Ra)を達成する方法として、特に制限はないが、前記活性線硬化樹脂により得られるポリマー膜、またはプラズマ重合により得られる平滑なポリマー膜は好ましい。平滑な平面とすることで、前記バリア膜、また緩衝膜の欠陥が減少しガスバリア性の高い積層体が得られる。
《樹脂フィルム》
本発明係るガスバリア性樹脂基材で用いられる樹脂(フィルム)基材は、上述したガスバリア層を保持することができる樹脂フィルムであれば特に限定されるものではない。
具体的には、エチレン、ポリプロピレン、ブテン等の単独重合体または共重合体または共重合体等のポリオレフィン(PO)樹脂、環状ポリオレフィン等の非晶質ポリオレフィン樹脂(APO)、ポリエチレンテレフタレート(PET)、ポリエチレン2,6−ナフタレート(PEN)等のポリエステル系樹脂、ナイロン6、ナイロン12、共重合ナイロン等のポリアミド系(PA)樹脂、ポリビニルアルコール(PVA)樹脂、エチレン−ビニルアルコール共重合体(EVOH)等のポリビニルアルコール系樹脂、ポリイミド(PI)樹脂、ポリエーテルイミド(PEI)樹脂、ポリサルホン(PS)樹脂、ポリエーテルサルホン(PES)樹脂、ポリエーテルエーテルケトン(PEEK)樹脂、ポリカーボネート(PC)樹脂、ポリビニルブチラート(PVB)樹脂、ポリアリレート(PAR)樹脂、エチレン−四フッ化エチレン共重合体(ETFE)、三フッ化塩化エチレン(PFA)、四フッ化エチレン−パーフルオロアルキルビニルエーテル共重合体(FEP)、フッ化ビニリデン(PVDF)、フッ化ビニル(PVF)、パーフルオロエチレン−パーフロロプロピレン−パーフロロビニルエーテル−共重合体(EPA)等のフッ素系樹脂等を用いることができる。
また、上記に挙げた樹脂以外にも、ラジカル反応性不飽和化合物を有するアクリレート化合物によりなる樹脂組成物や、上記アクリルレート化合物とチオール基を有するメルカプト化合物よりなる樹脂組成物、エポキシアクリレート、ウレタンアクリレート、ポリエステルアクリレート、ポリエーテルアクリレート等のオリゴマーを多官能アクリレートモノマーに溶解せしめた樹脂組成物等の光硬化性樹脂およびこれらの混合物等を用いることも可能である。さらに、これらの樹脂の1または2種以上をラミネート、コーティング等の手段によって積層させたものを樹脂フィルムとして用いることも可能である。
これらの素材は単独であるいは適宜混合されて使用することもできる。中でもゼオネックスやゼオノア(日本ゼオン(株)製)、非晶質シクロポリオレフィン樹脂フィルムのARTON(ジェイエスアール(株)製)、ポリカーボネートフィルムのピュアエース(帝人(株)製)、セルローストリアセテートフィルムのコニカタックKC4UX、KC8UX(コニカミノルタオプト(株)製)などの市販品を好ましく使用することができる。
また、樹脂フィルムは透明であることが好ましい。樹脂フィルムが透明であり、樹脂フィルム上に形成するガスバリア層も透明であることにより、透明なガスバリア性フィルムとすることが可能となるため、有機EL素子等の透明基板とすることも可能となるからである。
また、上記に挙げた樹脂フィルムは、未延伸フィルムでもよく、延伸フィルムでもよい。
本発明に係る樹脂フィルムは、従来公知の一般的な方法により製造することが可能である。例えば、材料となる樹脂を押し出し機により溶融し、環状ダイやTダイにより押し出して急冷することにより、実質的に無定形で配向していない未延伸の基材を製造することができる。また、未延伸の基材を一軸延伸、テンター式逐次二軸延伸、テンター式同時二軸延伸、チューブラー式同時二軸延伸などの公知の方法により、基材の流れ(縦軸)方向、または基材の流れ方向と直角(横軸)方向に延伸することにより延伸基材を製造することができる。この場合の延伸倍率は、基材の原料となる樹脂に合わせて適宜選択することできるが、縦軸方向および横軸方向にそれぞれ2〜10倍が好ましい。
また、本発明に係る樹脂フィルム基材においては、前記ガスバリア膜、またポリマー膜等を形成する前にコロナ処理、火炎処理、プラズマ処理、グロー放電処理、粗面化処理、薬品処理などの表面処理を行ってもよい。
樹脂フィルムは、ロール状に巻き上げられた長尺品が便利である。樹脂フィルムの厚さは、得られるガスバリア性フィルムの用途によって異なるので一概には規定できないが、ガスバリア性フィルムを包装用途とする場合には、特に制限を受けるものではなく、包装材料としての適性から、3〜400μm、中でも6〜30μmの範囲内とすることが好ましい。
また、本発明に用いられる樹脂フィルムは、フィルム形状のものの膜厚としては10〜200μmが好ましく、より好ましくは50〜100μmである。
本発明のガスバリア性フィルムの水蒸気透過度としては、有機ELディスプレイや高精彩カラー液晶ディスプレイ等の高度の水蒸気バリア性を必要とする用途に用いる場合、JIS K7129 B法に従って測定した水蒸気透過率が、0.01g/m2/day以下でり、より好ましくは1×10-3g/m2/day以下であり、さらに有機ELディスプレイ用途の場合、極わずかであっても、成長するダークスポットが発生し、ディスプレイの表示寿命が極端に短くなる場合があるため、水蒸気透過度が、1×10-5g/m2/day未満であることが好ましい。
つぎに本発明に係る大気圧プラズマ法について説明する。
本発明に係るセラミック材料からなる緩衝膜やバリア膜、またこれらの薄膜積層体の形成には、また、前記ポリマー膜をプラズマ重合により形成するための大気圧プラズマ法としては、特開平10−154598号公報や特開2003−49272号公報、WO02/048428号パンフレットなどに記載されている薄膜形成方法を用いることができるが、特開2004−68143号公報に記載されている薄膜形成方法が、緻密でガスバリア性が高い圧縮応力の小さいセラミック材料膜を形成するには好ましく、薄膜形成ガスの選択、また形成条件の調整により、樹脂基材上に、緩衝膜、ガスバリア膜の形成や、プラズマ重合によるポリマー膜の形成を行うことができる。また、ロール状の元巻きからウエブ状の基材を繰り出して、これらポリマー膜や、セラミック材料膜を連続的に形成することも出来る。
本発明に係る上記の大気圧プラズマ法は、大気圧もしくはその近傍の圧力下で行われるが、大気圧もしくはその近傍の圧力とは20kPa〜110kPa程度であり、本発明に記載の良好な効果を得るためには、93kPa〜104kPaが好ましい。
本発明における放電条件は、放電空間に異なる周波数の電界を2つ以上印加したもので、第1の高周波電界と第2の高周波電界とを重畳した電界を印可する。
前記第1の高周波電界の周波数ω1より前記第2の高周波電界の周波数ω2が高く、且つ、前記第1の高周波電界の強さV1と、前記第2の高周波電界の強さV2と、放電開始電界の強さIVとの関係が、
V1≧IV>V2
または V1>IV≧V2 を満たし、
前記第2の高周波電界の出力密度が、1W/cm2以上である。
高周波とは、少なくとも0.5kHzの周波数を有するものを言う。
重畳する高周波電界が、ともにサイン波である場合、第1の高周波電界の周波数ω1と該周波数ω1より高い第2の高周波電界の周波数ω2とを重ね合わせた成分となり、その波形は周波数ω1のサイン波上に、それより高い周波数ω2のサイン波が重なった鋸歯状の波形となる。
本発明において、放電開始電界の強さとは、実際の薄膜形成方法に使用される放電空間(電極の構成など)および反応条件(ガス条件など)において放電を起こすことの出来る最低電界強度のことを指す。放電開始電界強度は、放電空間に供給されるガス種や電極の誘電体種または電極間距離などによって多少変動するが、同じ放電空間においては、放電ガスの放電開始電界強度に支配される。
上記で述べたような高周波電界を放電空間に印加することによって、薄膜形成可能な放電を起こし、高品位な薄膜形成に必要な高密度プラズマを発生することが出来ると推定される。
ここで重要なのは、このような高周波電界が対向する電極間に印加され、すなわち、同じ放電空間に印加されることである。特開平11−16696号公報のように、印加電極を2つ併置し、離間した異なる放電空間それぞれに、異なる高周波電界を印加する方法は好ましくない。
上記でサイン波等の連続波の重畳について説明したが、これに限られるものではなく、両方パルス波であっても、一方が連続波でもう一方がパルス波であってもかまわない。また、更に周波数の異なる第3の電界を有していてもよい。
上記本発明の高周波電界を、同一放電空間に印加する具体的な方法としては、例えば、対向電極を構成する第1電極に周波数ω1であって電界強度V1である第1の高周波電界を印加する第1電源を接続し、第2電極に周波数ω2であって電界強度V2である第2の高周波電界を印加する第2電源を接続した大気圧プラズマ放電処理装置を用いる。
上記の大気圧プラズマ放電処理装置には、対向電極間に、放電ガスと薄膜形成ガスとを供給するガス供給手段を備える。更に、電極の温度を制御する電極温度制御手段を有することが好ましい。
また、第1電極、第1電源またはそれらの間の何れかには第1フィルタを、また第2電極、第2電源またはそれらの間の何れかには第2フィルタを接続することが好ましく、第1フィルタは第1電源から第1電極への第1の高周波電界の電流を通過しやすくし、第2の高周波電界の電流をアースして、第2電源から第1電源への第2の高周波電界の電流を通過しにくくする。また、第2フィルタはその逆で、第2電源から第2電極への第2の高周波電界の電流を通過しやすくし、第1の高周波電界の電流をアースして、第1電源から第2電源への第1の高周波電界の電流を通過しにくくする機能が備わっているものを使用する。ここで、通過しにくいとは、好ましくは、電流の20%以下、より好ましくは10%以下しか通さないことをいう。逆に通過しやすいとは、好ましくは電流の80%以上、より好ましくは90%以上を通すことをいう。
例えば、第1フィルタとしては、第2電源の周波数に応じて数10pF〜数万pFのコンデンサ、もしくは数μH程度のコイルを用いることが出来る。第2フィルタとしては、第1電源の周波数に応じて10μH以上のコイルを用い、これらのコイルまたはコンデンサを介してアース接地することでフィルタとして使用出来る。
更に、本発明の大気圧プラズマ放電処理装置の第1電源は、第2電源より高い電界強度を印加出来る能力を有していることが好ましい。
ここで、本発明でいう印加電界強度と放電開始電界強度は、下記の方法で測定されたものをいう。
印加電界強度V1及びV2(単位:kV/mm)の測定方法:
各電極部に高周波電圧プローブ(P6015A)を設置し、該高周波電圧プローブの出力信号をオシロスコープ(Tektronix社製、TDS3012B)に接続し、所定の時点の電界強度を測定する。
放電開始電界強度IV(単位:kV/mm)の測定方法:
電極間に放電ガスを供給し、この電極間の電界強度を増大させていき、放電が始まる電界強度を放電開始電界強度IVと定義する。測定器は上記印加電界強度測定と同じである。
なお、上記測定に使用する高周波電圧プローブとオシロスコープによる電界強度の測定位置については、後述の図1に示してある。
本発明で規定する放電条件をとることにより、例え窒素ガスのように放電開始電界強度が高い放電ガスでも、放電を開始し、高密度で安定なプラズマ状態を維持出来、高性能な薄膜形成を行うことが出来る。
上記の測定により放電ガスを窒素ガスとした場合、その放電開始電界強度IV(1/2Vp−p)は3.7kV/mm程度であり、従って、上記の関係において、第1の印加電界強度を、V1≧3.7kV/mmとして印加することによって窒素ガスを励起し、プラズマ状態にすることが出来る。
ここで、第1電源の周波数としては、200kHz以下が好ましく用いることが出来る。またこの電界波形としては、連続波でもパルス波でもよい。下限は1kHz程度が望ましい。
一方、第2電源の周波数としては、800kHz以上が好ましく用いられる。この第2電源の周波数が高い程、プラズマ密度が高くなり、緻密で良質な薄膜が得られる。上限は200MHz程度が望ましい。
このような2つの電源から高周波電界を印加することは、第1の高周波電界によって高い放電開始電界強度を有する放電ガスの放電を開始するのに必要であり、また第2の高周波電界の高い周波数および高い出力密度によりプラズマ密度を高くして緻密で良質な薄膜を形成することが本発明の重要な点である。
また、第1の高周波電界の出力密度を高くすることで、放電の均一性を維持したまま、第2の高周波電界の出力密度を向上させることができる。これにより、更なる均一高密度プラズマが生成でき、更なる製膜速度の向上と、膜質の向上が両立出来る。
本発明に用いられる大気圧プラズマ放電処理装置は、上述のように、対向電極の間で放電させ、前記対向電極間に導入したガスをプラズマ状態とし、前記対向電極間に静置あるいは電極間を移送される基材を該プラズマ状態のガスに晒すことによって、該基材の上に薄膜を形成させるものである。また他の方式として、大気圧プラズマ放電処理装置は、上記同様の対向電極間で放電させ、該対向電極間に導入したガスを励起しまたはプラズマ状態とし、該対向電極外にジェット状に励起またはプラズマ状態のガスを吹き出し、該対向電極の近傍にある基材(静置していても移送されていてもよい)を晒すことによって該基材の上に薄膜を形成させるジェット方式の装置がある。
図2は、本発明に有用なジェット方式の大気圧プラズマ放電処理装置の一例を示した概略図である。
ジェット方式の大気圧プラズマ放電処理装置は、プラズマ放電処理装置、二つの電源を有する電界印加手段の他に、図2では図示してない(後述の図3に図示してある)が、ガス供給手段、電極温度調節手段を有している装置である。
プラズマ放電処理装置10は、第1電極11と第2電極12から構成されている対向電極を有しており、該対向電極間に、第1電極11からは第1電源21からの周波数ω1、電界強度V1、電流I1の第1の高周波電界が印加され、また第2電極12からは第2電源22からの周波数ω2、電界強度V2、電流I2の第2の高周波電界が印加されるようになっている。第1電源21は第2電源22より高い高周波電界強度(V1>V2)を印加し、また第1電源21の第1の周波数ω1は第2電源22の第2の周波数ω2より低い周波数を印加する。
第1電極11と第1電源21との間には、第1フィルタ23が設置されており、第1電源21から第1電極11への電流を通過しやすくし、第2電源22からの電流をアースして、第2電源22から第1電源21への電流が通過しにくくなるように設計されている。
また、第2電極12と第2電源22との間には、第2フィルター24が設置されており、第2電源22から第2電極への電流を通過しやすくし、第1電源21からの電流をアースして、第1電源21から第2電源への電流を通過しにくくするように設計されている。
第1電極11と第2電極12との対向電極間(放電空間)13に、後述の図3に図示してあるようなガス供給手段から前述した薄膜形成ガスGを導入し、第1電源21と第2電源22により第1電極11と第2電極12間に、前述した高周波電界を印加して放電を発生させ、前述した薄膜形成ガスGをプラズマ状態にしながら対向電極の下側(紙面下側)にジェット状に吹き出させて、対向電極下面と基材Fとで作る処理空間をプラズマ状態のガスG°で満たし、図示してない基材の元巻き(アンワインダー)から巻きほぐされて搬送して来るか、あるいは前工程から搬送して来る基材Fの上に、処理位置14付近で薄膜を形成させる。薄膜形成中、後述の図3に図示してあるような電極温度調節手段から媒体が配管を通って電極を加熱または冷却する。プラズマ放電処理の際の基材の温度によっては、得られる薄膜の物性や組成等は変化することがあり、これに対して適宜制御することが望ましい。温度調節の媒体としては、蒸留水、油等の絶縁性材料が好ましく用いられる。プラズマ放電処理の際、基材の幅手方向あるいは長手方向での温度ムラが出来るだけ生じないように電極の内部の温度を均等に調節することが望まれる。
また、図2に前述の印加電界強度と放電開始電界強度の測定に使用する測定器と測定位置を示した。25及び26は高周波電圧プローブであり、27及び28はオシロスコープである。
ジェット方式の大気圧プラズマ放電処理装置を、基材Fの搬送方向と平行に複数台並べ、同時に同じプラズマ状態のガスを放電させることにより、同一位置に複数層の薄膜を形成可能となり、短時間で所望の膜厚を形成可能となる。また基材Fの搬送方向と平行に複数台並べ、各装置に異なる薄膜形成ガスを供給して異なったプラズマ状態のガスをジェット噴射すれば、異なった層の積層薄膜を形成することも出来る。
図3は本発明に有用な対向電極間で基材を処理する方式の大気圧プラズマ放電処理装置の一例を示す概略図である。
本発明の大気圧プラズマ放電処理装置は、少なくとも、プラズマ放電処理装置30、二つの電源を有する電界印加手段40、ガス供給手段50、電極温度調節手段60を有している装置である。
ロール回転電極(第1電極)35と角筒型固定電極群(第2電極)(以下角筒型固定電極群を固定電極群と記す)36との対向電極間32(以下対向電極間を放電空間32とも記す)で、基材Fをプラズマ放電処理して薄膜を形成するものである。
ロール回転電極35と固定電極群36との間に形成された放電空間32に、ロール回転電極35には第1電源41から周波数ω1、電界強度V1、電流I1の第1の高周波電界を、また固定電極群36には第2電源42から周波数ω2、電界強度V2、電流I2の第2の高周波電界をかけるようになっている。
ロール回転電極35と第1電源41との間には、第1フィルタ43が設置されており、第1フィルタ43は第1電源41から第1電極への電流を通過しやすくし、第2電源42からの電流をアースして、第2電源42から第1電源への電流を通過しにくくするように設計されている。また、固定電極群36と第2電源42との間には、第2フィルタ44が設置されており、第2フィルター44は、第2電源42から第2電極への電流を通過しやすくし、第1電源41からの電流をアースして、第1電源41から第2電源への電流を通過しにくくするように設計されている。
なお、本発明においては、ロール回転電極35を第2電極、また角筒型固定電極群36を第1電極としてもよい。何れにしろ第1電極には第1電源が、また第2電極には第2電源が接続される。第1電源は第2電源より高い高周波電界強度(V1>V2)を印加することが好ましい。また、周波数はω1<ω2となる能力を有している。
また、電流はI1<I2となることが好ましい。第1の高周波電界の電流I1は、好ましくは0.3mA/cm2〜20mA/cm2、さらに好ましくは1.0mA/cm2〜20mA/cm2である。また、第2の高周波電界の電流I2は、好ましくは10mA/cm2〜100mA/cm2、さらに好ましくは20mA/cm2〜100mA/cm2である。
ガス供給手段50のガス発生装置51で発生させた薄膜形成ガスGは、不図示のガス流量調整手段により流量を制御して給気口52よりプラズマ放電処理容器31内に導入する。
基材Fを、図示されていない元巻きから巻きほぐして搬送されて来るか、または前工程から矢印方向に搬送されて来て、ガイドロール64を経てニップロール65で基材に同伴されて来る空気等を遮断し、ロール回転電極35に接触したまま巻き回しながら角筒型固定電極群36との間に移送する。
移送中にロール回転電極35と固定電極群36との両方から電界をかけ、対向電極間(放電空間)32で放電プラズマを発生させる。基材Fはロール回転電極35に接触したまま巻き回されながらプラズマ状態のガスにより薄膜を形成する。
なお、角筒型固定電極の数は、上記ロール電極の円周より大きな円周上に沿って複数本設置されており、該電極の放電面積はロール回転電極35に対向している全ての角筒型固定電極のロール回転電極35と対向する面の面積の和で表される。
基材Fは、ニップロール66、ガイドロール67を経て、図示してない巻き取り機で巻き取るか、次工程に移送する。
放電処理済みの処理排ガスG′は排気口53より排出する。
薄膜形成中、ロール回転電極35及び固定電極群36を加熱または冷却するために、電極温度調節手段60で温度を調節した媒体を、送液ポンプPで配管61を経て両電極に送り、電極内側から温度を調節する。なお、68及び69はプラズマ放電処理容器31と外界とを仕切る仕切板である。
図4は、図3に示したロール回転電極の導電性の金属質母材とその上に被覆されている誘電体の構造の一例を示す斜視図である。
図4において、ロール電極35aは導電性の金属質母材35Aとその上に誘電体35Bが被覆されたものである。プラズマ放電処理中の電極表面温度を制御し、また、基材Fの表面温度を所定値に保つため、温度調節用の媒体(水もしくはシリコンオイル等)が循環できる構造となっている。
図5は、角筒型電極の導電性の金属質母材とその上に被覆されている誘電体の構造の一例を示す斜視図である。
図5において、角筒型電極36aは、導電性の金属質母材36Aに対し、図4同様の誘電体36Bの被覆を有しており、該電極の構造は金属質のパイプになっていて、それがジャケットとなり、放電中の温度調節が行えるようになっている。
図5に示した角筒型電極36aは、円筒型電極でもよいが、角筒型電極は円筒型電極に比べて、放電範囲(放電面積)を広げる効果があるので、本発明に好ましく用いられる。
図4及び図5において、ロール電極35a及び角筒型電極36aは、それぞれ導電性の金属質母材35A及び36Aの上に誘電体35B及び36Bとしてのセラミックスを溶射後、無機化合物の封孔材料を用いて封孔処理したものである。セラミックス誘電体は片肉で1mm程度被覆あればよい。溶射に用いるセラミックス材としては、アルミナ・窒化珪素等が好ましく用いられるが、この中でもアルミナが加工し易いので、特に好ましく用いられる。また、誘電体層が、ライニングにより無機材料を設けたライニング処理誘電体であってもよい。
導電性の金属質母材35A及び36Aとしては、チタン金属またはチタン合金、銀、白金、ステンレススティール、アルミニウム、鉄等の金属等や、鉄とセラミックスとの複合材料またはアルミニウムとセラミックスとの複合材料を挙げることが出来るが、後述の理由からはチタン金属またはチタン合金が特に好ましい。
対向する第1電極および第2の電極の電極間距離は、電極の一方に誘電体を設けた場合、該誘電体表面ともう一方の電極の導電性の金属質母材表面との最短距離のことを言う。双方の電極に誘電体を設けた場合、誘電体表面同士の距離の最短距離のことを言う。電極間距離は、導電性の金属質母材に設けた誘電体の厚さ、印加電界強度の大きさ、プラズマを利用する目的等を考慮して決定されるが、いずれの場合も均一な放電を行う観点から0.1〜20mmが好ましく、特に好ましくは0.5〜2mmである。
本発明に有用な導電性の金属質母材及び誘電体についての詳細については後述する。
プラズマ放電処理容器31はパイレックス(登録商標)ガラス製の処理容器等が好ましく用いられるが、電極との絶縁がとれれば金属製を用いることも可能である。例えば、アルミニウムまたは、ステンレススティールのフレームの内面にポリイミド樹脂等を張り付けても良く、該金属フレームにセラミックス溶射を行い絶縁性をとってもよい。図1において、平行した両電極の両側面(基材面近くまで)を上記のような材質の物で覆うことが好ましい。
本発明の大気圧プラズマ放電処理装置に設置する第1電源(高周波電源)としては、
印加電源記号 メーカー 周波数 製品名
A1 神鋼電機 3kHz SPG3−4500
A2 神鋼電機 5kHz SPG5−4500
A3 春日電機 15kHz AGI−023
A4 神鋼電機 50kHz SPG50−4500
A5 ハイデン研究所 100kHz* PHF−6k
A6 パール工業 200kHz CF−2000−200k
A7 パール工業 400kHz CF−2000−400k
等の市販のものを挙げることが出来、何れも使用することが出来る。
また、第2電源(高周波電源)としては、
印加電源記号 メーカー 周波数 製品名
B1 パール工業 800kHz CF−2000−800k
B2 パール工業 2MHz CF−2000−2M
B3 パール工業 13.56MHz CF−5000−13M
B4 パール工業 27MHz CF−2000−27M
B5 パール工業 150MHz CF−2000−150M
等の市販のものを挙げることが出来、何れも好ましく使用出来る。
なお、上記電源のうち、*印はハイデン研究所インパルス高周波電源(連続モードで100kHz)である。それ以外は連続サイン波のみ印加可能な高周波電源である。
本発明においては、このような電界を印加して、均一で安定な放電状態を保つことが出来る電極を大気圧プラズマ放電処理装置に採用することが好ましい。
本発明において、対向する電極間に印加する電力は、第2電極(第2の高周波電界)に1W/cm2以上の電力(出力密度)を供給し、放電ガスを励起してプラズマを発生させ、エネルギーを薄膜形成ガスに与え、薄膜を形成する。第2電極に供給する電力の上限値としては、好ましくは50W/cm2、より好ましくは20W/cm2である。下限値は、好ましくは1.2W/cm2である。なお、放電面積(cm2)は、電極間において放電が起こる範囲の面積のことを指す。
また、第1電極(第1の高周波電界)にも、1W/cm2以上の電力(出力密度)を供給することにより、第2の高周波電界の均一性を維持したまま、出力密度を向上させることが出来る。これにより、更なる均一高密度プラズマを生成出来、更なる製膜速度の向上と膜質の向上が両立出来る。好ましくは5W/cm2以上である。第1電極に供給する電力の上限値は、好ましくは50W/cm2である。
ここで高周波電界の波形としては、特に限定されない。連続モードと呼ばれる連続サイン波状の連続発振モードと、パルスモードと呼ばれるON/OFFを断続的に行う断続発振モード等があり、そのどちらを採用してもよいが、少なくとも第2電極側(第2の高周波電界)は連続サイン波の方がより緻密で良質な膜が得られるので好ましい。
このような大気圧プラズマによる薄膜形成法に使用する電極は、構造的にも、性能的にも過酷な条件に耐えられるものでなければならない。このような電極としては、金属質母材上に誘電体を被覆したものであることが好ましい。
本発明に使用する誘電体被覆電極においては、様々な金属質母材と誘電体との間に特性が合うものが好ましく、その一つの特性として、金属質母材と誘電体との線熱膨張係数の差が10×10-6/℃以下となる組み合わせのものである。好ましくは8×10-6/℃以下、更に好ましくは5×10-6/℃以下、更に好ましくは2×10-6/℃以下である。なお、線熱膨張係数とは、周知の材料特有の物性値である。
線熱膨張係数の差が、この範囲にある導電性の金属質母材と誘電体との組み合わせとしては、
1:金属質母材が純チタンまたはチタン合金で、誘電体がセラミックス溶射被膜
2:金属質母材が純チタンまたはチタン合金で、誘電体がガラスライニング
3:金属質母材がステンレススティールで、誘電体がセラミックス溶射被膜
4:金属質母材がステンレススティールで、誘電体がガラスライニング
5:金属質母材がセラミックスおよび鉄の複合材料で、誘電体がセラミックス溶射被膜
6:金属質母材がセラミックスおよび鉄の複合材料で、誘電体がガラスライニング
7:金属質母材がセラミックスおよびアルミの複合材料で、誘電体がセラミックス溶射皮膜
8:金属質母材がセラミックスおよびアルミの複合材料で、誘電体がガラスライニング等がある。線熱膨張係数の差という観点では、上記1項または2項および5〜8項が好ましく、特に1項が好ましい。
本発明において、金属質母材は、上記の特性からはチタンまたはチタン合金が特に有用である。金属質母材をチタンまたはチタン合金とすることにより、誘電体を上記とすることにより、使用中の電極の劣化、特にひび割れ、剥がれ、脱落等がなく、過酷な条件での長時間の使用に耐えることが出来る。
本発明に有用な電極の金属質母材は、チタンを70質量%以上含有するチタン合金またはチタン金属である。本発明において、チタン合金またはチタン金属中のチタンの含有量は、70質量%以上であれば、問題なく使用出来るが、好ましくは80質量%以上のチタンを含有しているものが好ましい。本発明に有用なチタン合金またはチタン金属は、工業用純チタン、耐食性チタン、高力チタン等として一般に使用されているものを用いることが出来る。工業用純チタンとしては、TIA、TIB、TIC、TID等を挙げることが出来、何れも鉄原子、炭素原子、窒素原子、酸素原子、水素原子等を極僅か含有しているもので、チタンの含有量としては、99質量%以上を有している。耐食性チタン合金としては、T15PBを好ましく用いることが出来、上記含有原子の他に鉛を含有しており、チタン含有量としては、98質量%以上である。また、チタン合金としては、鉛を除く上記の原子の他に、アルミニウムを含有し、その他バナジウムや錫を含有しているT64、T325、T525、TA3等を好ましく用いることが出来、これらのチタン含有量としては、85質量%以上を含有しているものである。これらのチタン合金またはチタン金属はステンレススティール、例えばAISI316に比べて、熱膨張係数が1/2程度小さく、金属質母材としてチタン合金またはチタン金属の上に施された後述の誘電体との組み合わせがよく、高温、長時間での使用に耐えることが出来る。
一方、誘電体の求められる特性としては、具体的には、比誘電率が6〜45の無機化合物であることが好ましく、また、このような誘電体としては、アルミナ、窒化珪素等のセラミックス、あるいは、ケイ酸塩系ガラス、ホウ酸塩系ガラス等のガラスライニング材等がある。この中では、後述のセラミックスを溶射したものやガラスライニングにより設けたものが好ましい。特にアルミナを溶射して設けた誘電体が好ましい。
または、上述のような大電力に耐える仕様の一つとして、誘電体の空隙率が10体積%以下、好ましくは8体積%以下であることで、好ましくは0体積%を越えて5体積%以下である。なお、誘電体の空隙率は、BET吸着法や水銀ポロシメーターにより測定することが出来る。後述の実施例においては、島津製作所製の水銀ポロシメーターにより金属質母材に被覆された誘電体の破片を用い、空隙率を測定する。誘電体が、低い空隙率を有することにより、高耐久性が達成される。このような空隙を有しつつも空隙率が低い誘電体としては、後述の大気プラズマ溶射法等による高密度、高密着のセラミックス溶射被膜等を挙げることが出来る。更に空隙率を下げるためには、封孔処理を行うことが好ましい。
上記、大気プラズマ溶射法は、セラミックス等の微粉末、ワイヤ等をプラズマ熱源中に投入し、溶融または半溶融状態の微粒子として被覆対象の金属質母材に吹き付け、皮膜を形成させる技術である。プラズマ熱源とは、分子ガスを高温にし、原子に解離させ、更にエネルギーを与えて電子を放出させた高温のプラズマガスである。このプラズマガスの噴射速度は大きく、従来のアーク溶射やフレーム溶射に比べて、溶射材料が高速で金属質母材に衝突するため、密着強度が高く、高密度な被膜を得ることが出来る。詳しくは、特開2000−301655号に記載の高温被曝部材に熱遮蔽皮膜を形成する溶射方法を参照することが出来る。この方法により、上記のような被覆する誘電体(セラミック溶射膜)の空隙率にすることが出来る。
また、大電力に耐える別の好ましい仕様としては、誘電体の厚みが0.5〜2mmであることである。この膜厚変動は、5%以下であることが望ましく、好ましくは3%以下、更に好ましくは1%以下である。
誘電体の空隙率をより低減させるためには、上記のようにセラミックス等の溶射膜に、更に、無機化合物で封孔処理を行うことが好ましい。前記無機化合物としては、金属酸化物が好ましく、この中では特に酸化ケイ素(SiOx)を主成分として含有するものが好ましい。
封孔処理の無機化合物は、ゾルゲル反応により硬化して形成したものであることが好ましい。封孔処理の無機化合物が金属酸化物を主成分とするものである場合には、金属アルコキシド等を封孔液として前記セラミック溶射膜上に塗布し、ゾルゲル反応により硬化する。無機化合物がシリカを主成分とするものの場合には、アルコキシシランを封孔液として用いることが好ましい。
ここでゾルゲル反応の促進には、エネルギー処理を用いることが好ましい。エネルギー処理としては、熱硬化(好ましくは200℃以下)や、紫外線照射などがある。更に封孔処理の仕方として、封孔液を希釈し、コーティングと硬化を逐次で数回繰り返すと、よりいっそう無機質化が向上し、劣化の無い緻密な電極が出来る。
本発明に係る誘電体被覆電極の金属アルコキシド等を封孔液として、セラミックス溶射膜にコーティングした後、ゾルゲル反応で硬化する封孔処理を行う場合、硬化した後の金属酸化物の含有量は60モル%以上であることが好ましい。封孔液の金属アルコキシドとしてアルコキシシランを用いた場合には、硬化後のSiOx(xは2以下)含有量が60モル%以上であることが好ましい。硬化後のSiOx含有量は、XPS(X線光電子分光法)により誘電体層の断層を分析することにより測定する。
本発明の薄膜形成方法に係る電極においては、電極の少なくとも基材と接する側のJIS B 0601で規定される表面粗さの最大高さ(Rmax)が10μm以下になるように調整することが、本発明に記載の効果を得る観点から好ましいが、更に好ましくは、表面粗さの最大値が8μm以下であり、特に好ましくは、7μm以下に調整することである。このように誘電体被覆電極の誘電体表面を研磨仕上げする等の方法により、誘電体の厚み及び電極間のギャップを一定に保つことが出来、放電状態を安定化出来ること、更に熱収縮差や残留応力による歪やひび割れを無くし、且つ、高精度で、耐久性を大きく向上させることが出来る。誘電体表面の研磨仕上げは、少なくとも基材と接する側の誘電体において行われることが好ましい。更にJIS B 0601で規定される中心線平均表面粗さ(Ra)は0.5μm以下が好ましく、更に好ましくは0.1μm以下である。
本発明に使用する誘電体被覆電極において、大電力に耐える他の好ましい仕様としては、耐熱温度が100℃以上であることである。更に好ましくは120℃以上、特に好ましくは150℃以上である。また上限は500℃である。なお、耐熱温度とは、大気圧プラズマ処理で用いられる電圧において絶縁破壊が発生せず、正常に放電出来る状態において耐えられる最も高い温度のことを指す。このような耐熱温度は、上記のセラミックス溶射や、泡混入量の異なる層状のガラスライニングで設けた誘電体を適用したり、上記金属質母材と誘電体の線熱膨張係数の差の範囲内の材料を適宜選択する手段を適宜組み合わせることによって達成可能である。
〔有機EL素子の封止〕
本発明に係わる有機ELデバイスは、このようにして形成されたガスバリア性薄膜積層体を有する樹脂基材上に透明導電膜を形成して、該透明導電膜を陽極として、更に有機EL素子を構成する有機エレクトロルミネッセンス(EL)材料膜、陰極となる金属層と積層し有機EL素子を形成したのち、陰極上に更に封止材料膜を形成し有機EL素子を封止して有機ELデバイスをうることができる。例えば、本発明に係わるガスバリア性薄膜積層体を陰極上に大気圧プラズマCVD法を用いて形成し、有機EL素子全体を覆うようにして封止することが出来る。
陰極上にセラミック膜からなるガスバリア性薄膜積層体を形成するには、前記ガスバリア性積層体の形成方法をそのまま用いることができる。例えば、ゾル−ゲル法、また、真空蒸着法、スパッタリング法等を用いることができるが、プラズマCVD法、更には大気圧または大気圧近傍でのプラズマCVD法が好ましい。陰極上に、これらの方法を用いて緩衝膜、バリア膜等のセラミック膜からなるガスバリア性薄膜積層体を形成する。また、ガスバリア性薄膜積層体は一組のみでなく、二組以上形成しても良い。また最外層は、緩衝膜を保護膜として形成することが好ましい。
また、他の封止材料、例えば包装材等に使用される公知のガスバリア性フィルム、例えばプラスチックフィルム上に酸化珪素や、酸化アルミニウムを蒸着したもの、セラミック層と衝撃緩和ポリマー層を交互に積層した構成を有するもの等、更にはポリマーフィルムをラミネートした金属箔等を封止フィルムとして用いて、有機EL素子を形成したガスバリア性樹脂基材とこれを重ね、接着剤により接着することで有機EL素子を封止することができる。
封止材料としては、ガスバリア性の高い材料であればよく、例えば、ガラス製の封止缶等を有機EL素子を形成したガスバリア性樹脂基材と重ね接着し封止してもよい。
封止材料を用いて、封止する場合、前記包装材等に使用される公知のガスバリア性フィルムのなかで、特に、樹脂ラミネート(ポリマー膜)された金属箔は、光取りだし側のガスバリアフィルムとして用いることはできないが、低コストで更に透湿性の低い封止材料であり光取り出しを意図しない(透明性を要求されない)場合封止フィルムとして好ましい。
本発明において金属箔とはスパッタや蒸着等で形成された金属薄膜や、導電性ペースト等の流動性電極材料から形成された導電膜と異なり、圧延等で形成された金属の箔またはフィルムを指す。
金属箔としては、金属の種類に特に限定はなく、例えば銅(Cu)箔、アルミニウム(Al)箔、金(Au)箔、黄銅箔、ニッケル(Ni)箔、チタン(Ti)箔、銅合金箔、ステンレス箔、スズ(Sn)箔、高ニッケル合金箔等が挙げられる。これらの各種の金属箔の中で特に好ましい金属箔としてはAl箔が挙げられる。
金属箔の厚さは6〜50μmが好ましい。6μm未満の場合は、金属箔に用いる材料によっては使用時にピンホールが空き、必要とするバリアー性(透湿度、酸素透過率)が得られなくなる場合がある。50μmを越えた場合は、金属箔に用いる材料によってはコストが高くなったり、有機EL素子が厚くなりフィルムのメリットが少なくなる場合がある。
樹脂フィルム(ポリマー膜)がラミネートされた金属箔において樹脂フィルムとしては、機能性包装材料の新展開(株式会社 東レリサーチセンター)に記載の各種材料を使用することが可能であり、例えばポリエチレン系樹脂、ポリプロピレン系樹脂、ポリエチレンテレフタレート系樹脂、ポリアミド系樹脂、エチレン−ビニルアルコール共重合体系樹脂、エチレン−酢酸ビニル共重合体系樹脂、アクリロニトリル−ブタジエン共重合体系樹脂、セロハン系樹脂、ビニロン系樹脂、塩化ビニリデン系樹脂等が挙げられる。ポリプロピレン系樹脂、ナイロン系樹脂等の樹脂は、延伸されていてもよく、さらに塩化ビニリデン系樹脂をコートされていてもよい。また、ポリエチレン系樹脂は、低密度あるいは高密度のものも用いることができる。
上記の高分子材料の中で、ナイロン(Ny)、塩化ビニリデン(PVDC)をコートしたナイロン(KNy)、無延伸ポリプロピレン(CPP)、延伸ポリプロピレン(OPP)、PVDCをコートしたポリプロピレン(KOP)、ポリエチレンテレフタレート(PET)、PVDCをコートしたセロハン(KPT)、ポリエチレン−ビニルアルコール共重合体(エバール)、低密度ポリエチレン(LDPE)、高密度ポリエチレン(HDPE)、線状低密度ポリエチレン(LLDPE)を用いることが好ましい。また、これら熱可塑性フィルムは、必要に応じて異種フィルムと共押し出しで作った多層フィルム、延伸角度を変えて張り合わせ積層した多層フィルム等も当然使用できる。さらに必要とする包装材料の物性を得るために使用するフィルムの密度、分子量分布を組み合わせて作ることも当然可能である。
ポリマー膜の厚さは一概には規定できないが3〜400μmが好ましく、10〜200μmがより好ましく、10〜50μmがさらに好ましい。
金属箔の片面にポリマー膜をコーティング(ラミネート)する方法としては、一般に使用されているラミネート機を使用することができる。接着剤としてはポリウレタン系、ポリエステル系、エポキシ系、アクリル系等の接着剤を用いることができる。必要に応じて硬化剤を併用してもよい。ドライラミネート方式、ホットメルトラミネーション法やエクストルージョンラミネート法も使用できるがドライラミネート方式が好ましい。
金属箔の片面がポリマー膜でコーティングされたフィルムは、包装材用に市販されている。例えば、接着剤層/アルミフィルム9μm/ポリエチレンテレフタレート(PET)38μmの構成のドライラミネートフィルム(接着剤層としては2液反応型のウレタン系接着剤、厚みは1.5μm)が入手でき、これを用いて有機EL素子の陰極側の封止を行うことができる。
本発明に係わる前記ガスバリア性薄膜積層体を有する樹脂フィルム基材(ガスバリア性樹脂基材)上に、有機EL素子各層を形成した後、上記封止材料を用いて封止するには、不活性ガスによりパージされた環境下で、上記封止フィルムで陰極面を覆うようにして、接着剤を用い接着することができる。
接着剤としては、前記2液反応型のウレタン系接着剤、エポキシ系接着剤等用いることができるが、本発明においては、光硬化型接着剤が好ましい。当該封止材料と前記ガスバリア性樹脂基材との間に臨ましめた光硬化型接着剤を高圧水銀灯やハロゲンランプにより得られる、紫外領域から可視領域の光により基材側から照射し、光硬化型接着剤を硬化させることによって、基材と封止材料との一体化を図ることができる。
光硬化型接着剤としては、エポキシ樹脂を主成分としたカチオン系の光硬化型接着剤、例えば、UV硬化型のエポキシ系接着剤XNR5493T(長瀬チバ(株)製)、またアクリル樹脂を主成分とするラジカル系の光硬化型接着剤、例えば、東亜合成株式会社製の、商品名ラックストラックLCR0641等、市販のものが使用できる。本発明に係わるガスバリア性樹脂基材の場合、緩衝膜、バリア膜ともセラミック膜からなるため、紫外〜青色領域での吸収が、有機ポリマーを緩衝膜とし、セラミック膜と積層したものよりも少ないため、基板越しに光照射し、封止する場合、照射量が低い場合でも充分に硬化するため生産性がよい。
なお、本願明細書における「紫外領域(の光)」とは、250nm〜400nmの範囲の波長の光をいい、また、「可視領域(の光)」とは、400nm〜700nmの範囲の波長の光をいう。
不活性ガスとしては、N2の他、He、Ar等の希ガスが好ましく用いられるが、HeとArを混合した希ガスも好ましく、気体中に占める不活性ガスの割合は、90〜100体積%であることが好ましい。不活性ガスによりパージされた環境下で封止することにより、保存性が改良される。
また、例えば、封止用のフィルムとして、前記の樹脂フィルム(ポリマー膜)がラミネートされた金属箔を用いて、有機EL素子を封止するにあたっては、ラミネートされた樹脂フィルム面を有機EL素子の陰極面と対向させ封止することができる。
また、樹脂フィルム(ポリマー膜)がラミネートされた金属箔を用いる場合、ポリマー膜と反対側の金属箔上に、セラミック膜を形成し、このセラミック膜面を有機EL素子の陰極に対向させ、接着、貼り合わせることが好ましい。封止フィルムのポリマー膜面を有機EL素子の陰極に貼り合わせると、部分的に導通が発生したり、それに伴う電飾が発生し、これによってダークスポットが発生することがある。金属箔上に形成するセラミック膜としては酸化珪素、酸化窒化珪素等が好ましく、また本発明に係わるバリア膜、また緩衝膜であってもよい。これらのセラミック膜は、前記のように蒸着や、プラズマCVD等によって形成してもよくその製造法は問わない。膜厚としては、1〜2000nm、好ましくは20〜1000nmの範囲である。
封止フィルムを有機EL素子の陰極に貼り合わせる封止方法としては、前記のように接着剤による方法、或いは、一般に使用されるインパルスシーラーで融着可能な樹脂フィルム、例えばエチレン酢酸ビニルコポリマー(EVA)やポリプロピレン(PP)フィルム、ポリエチレン(PE)フィルム等の熱融着性フィルムを積層して、インパルスシーラーで融着させ封止する方法がある。
接着方法としてはドライラミネート方式が作業性の面で優れている。この方法は一般には1.0〜2.5μm程度の硬化性の接着剤層を使用する。ただし接着剤の塗設量が多すぎる場合には、トンネル、浸み出し、縮緬皺等が発生することがあるため、好ましくは接着剤量を乾燥膜厚で3〜5μmになるように調節することが好ましい。
ホットメルトラミネーションとはホットメルト接着剤を溶融し基材に接着層を塗設する方法であるが、接着剤層の厚さは一般に1〜50μmと広い範囲で設定可能な方法である。一般に使用されるホットメルト接着剤のベースレジンとしては、EVA、EEA、ポリエチレン、ブチルラバー等が使用され、ロジン、キシレン樹脂、テルペン系樹脂、スチレン系樹脂等が粘着付与剤として、ワックス等が可塑剤として添加される。
エクストルージョンラミネート法とは高温で溶融した樹脂をダイスにより基材上に塗設する方法であり、樹脂層の厚さは一般に10〜50μmと広い範囲で設定可能である。
エクストルージョンラミネートに使用される樹脂としては一般に、LDPE、EVA、PP等が使用される。
以下、本発明に係わる、封止された有機ELデバイスの具体的な例を示す。
図6は、本発明のガスバリア性樹脂基材上に陽極、発光層等、有機層、陰極からなる有機EL素子各層を形成したのち、本発明に係わる前記緩衝膜、バリア膜からなるガスバリア性薄膜積層体を陰極上に形成し封止した有機ELデバイス例を断面構成図にて示す。図において、ガスバリア性薄膜積層体9を形成した樹脂基材1上にITOからなる陽極6、有機層(正孔輸送層、発光層、電子輸送層等からなる)7、陰極8が順次、積層され有機EL素子が構成されている。更にこの上に、本発明の緩衝膜3/バリア膜4/緩衝膜3と、セラミック(酸化珪素)膜が順次形成され、ガスバリア性薄膜積層体9を形成した構成をもつ。樹脂基材上のガスバリア性薄膜積層体9についても、また陰極上に形成されたガスバリア性薄膜積層体についても、バリア膜、また緩衝膜がそれぞれ二つ以上からなるものであってもよい。なお矢印は光取り出しの方向を示す。
図7には、同じく、本発明のガスバリア性樹脂基材上に陽極、発光層等、有機層、陰極からなる有機EL素子各層を形成したのち、これを更に別の封止フィルムで覆って接着封止した、有機ELデバイスの例を示す断面構成図である。
図7(a)に、本発明のガスバリア性樹脂基材上に陽極、発光層等の有機層、陰極からなる有機EL素子各層を形成したのち、封止フィルムとして、更にもう一つ本発明に係わるガスバリア性樹脂基材を用いた有機ELデバイスを示す。
図7(a)は、本発明のガスバリア性薄膜積層体9を有する樹脂基材1上にITOからなる陽極6、発光層等の有機層7、陰極8からなる有機EL素子各層を形成したのち、別の本発明のガスバリア性薄膜積層体9を有する樹脂基材1をセラミック膜側が陰極と対向するように接着剤adを用いて接着し封止した構造を有する。
また、図7(b)に、本発明のガスバリア性樹脂基材上に陽極、発光層等の有機層、陰極からなる有機EL素子各層が形成されたのち、更に酸化珪素膜付き樹脂ラミネートアルミ箔と基板として用いた前記ガスバリア性樹脂基材を接着することで封止した有機EL素子の断面概略図を示す。
図7(b)において、樹脂基材1上に形成された接着性改善の為のポリマー膜2、本発明に係わる緩衝膜、バリア膜からなるガスバリア性薄膜積層体9を樹脂基材上に形成したガスバリア性樹脂基材上に、陽極(ITO)6、発光層を含む有機層7、陰極(例えばアルミニウム)8がそれぞれ形成され有機EL素子を形成している。更に陰極上には別の封止フィルムSが重ねられ、基材フィルム周囲を接着することで有機EL材料層を含む有機EL素子は封止された構造となっている。封止フィルムSは、本発明に係わる酸化珪素膜S1が金属(アルミ)箔S2の上に形成されており、又金属箔の反対側には、樹脂層S3がラミネートされており、セラミック膜3側を陰極に接するように接着されている。尚、矢印は光の取り出し方向を示す。
ガスバリア性フィルム同士の封止は、フィルム膜厚が300μmを超えると封止作業時のフィルムの取り扱い性が悪化するのとインパルスシーラー等による熱融着が困難となるため膜厚としては300μm以下が望ましい。
本発明に係わる有機EL素子の封止はまた、前記封止フィルム等の基材のほか、水蒸気透過率、ガス透過率の低いガラス等の無機材料を用いることができる。
図8にガラス製の封止缶を使用し有機EL素子の封止を行った有機ELデバイスの例を示す。
図8は、透明電極を設けた、本発明に係わるガスバリア性樹脂基材101上に正孔注入/輸送層、発光層、正孔阻止層、電子輸送層等からなる有機EL層102を、そして陰極103を形成し有機EL素子を作製し、更にこれをガラス製封止缶104と紫外線硬化型接着剤107を用い紫外線ランプを照射、接着し作製した封止素子を示す。なお、105は捕水剤の酸化バリウムである。
ガラス製封止缶による封止は、例えば、これらの有機EL層、陰極を形成した後、大気に接触させることなく、例えば、窒素雰囲気下(例えば、純度99.999%以上の高純度窒素ガスで置換したグローブボックスを用いる)において、内部を窒素置換した後、封止構造とする。なお、捕水剤である酸化バリウムとしては、例えば、アルドリッチ社製の高純度酸化バリウム粉末を、粘着剤付きのフッ素樹脂系半透過膜(ミクロテックス S−NTF8031Q 日東電工製)等を用いて貼り付けることで作製できる。その他、ジャパンコアテックス(株)、双葉電子(株)などで市販されている補水剤も好ましく使用できる。
また、封止構造を形成するにあたっては、前記ガラス製の封止缶をもちいた封止構造に限らず、封止空間に吸水性の物質を配置したり、また、構造中に吸水層等の水蒸気を吸収する層を設けてもよい。
〔有機EL素子〕
次いで、本発明に係わる有機EL素子の構成層について詳細に説明する。本発明において、有機EL素子の層構成の好ましい具体例を以下に示すが、本発明はこれらに限定されない。
(1)陽極/発光層/電子輸送層/陰極
(2)陽極/正孔輸送層/発光層/電子輸送層/陰極
(3)陽極/正孔輸送層/発光層/正孔阻止層/電子輸送層/陰極
(4)陽極/正孔輸送層/発光層/正孔阻止層/電子輸送層/陰極バッファー層/陰極
(5)陽極/陽極バッファー層/正孔輸送層/発光層/正孔阻止層/電子輸送層/陰極バッファー層/陰極
(陽極)
有機EL素子における陽極としては、仕事関数の大きい(4eV以上)金属、合金、電気伝導性化合物及びこれらの混合物を電極物質とするものが好ましく用いられる。このような電極物質の具体例としてはAu等の金属、CuI、インジウムチンオキシド(ITO)、SnO2、ZnO等の導電性透明材料が挙げられる。また、IDIXO(In23−ZnO)等非晶質で透明導電膜を作製可能な材料を用いてもよい。陽極はこれらの電極物質を蒸着やスパッタリング、又前述の(大気圧)プラズマCVD法等の方法により、薄膜を形成させる。フォトリソグラフィー法で所望の形状のパターンを形成してもよく、あるいは形成時にマスクを介してパターンを形成してもよい。陽極より発光を取り出す場合、透過率は10%より大きくする。また陽極のシート抵抗は数百Ω/□以下が好ましい。さらに膜厚は、通常10〜1000nm、好ましくは10〜200nmの範囲で選ばれる。
(陰極)
一方、陰極としては、仕事関数の小さい(4eV以下)金属(電子注入性金属と称する)、合金、電気伝導性化合物及びこれらの混合物を電極物質とするものが用いられる。このような電極物質の具体例としては、ナトリウム、ナトリウム−カリウム合金、マグネシウム、リチウム、マグネシウム/銅混合物、マグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、アルミニウム/酸化アルミニウム(Al23)混合物、インジウム、リチウム/アルミニウム混合物、希土類金属等が挙げられる。これらの中で、電子注入性及び酸化等に対する耐久性の点から、電子注入性金属とこれより仕事関数の値が大きく安定な金属である第二金属との混合物、例えば、マグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、アルミニウム/酸化アルミニウム(Al23)混合物、リチウム/アルミニウム混合物、アルミニウム等が好適である。陰極はこれらの電極物質を蒸着やスパッタリング等の方法により薄膜を形成させることにより、作製することができる。また、陰極としてのシート抵抗は数百Ω/□以下が好ましく、膜厚は通常10nm〜5μm、好ましくは50〜200nmの範囲で選ばれる。なお、発光した光を透過させるため、有機EL素子の陽極または陰極のいずれか一方が、透明または半透明であれば発光輝度が向上し好都合である。
また、陰極に上記金属を1〜20nmの膜厚で作製した後に、陽極の説明で挙げた導電性透明材料をその上に作製することで、透明または半透明の陰極を作製することができ、これを応用することで陽極と陰極の両方が透過性を有する素子を作製することができる。
本発明に係わるガスバリア性薄膜積層体を樹脂基材上に有する前記ガスバリア性樹脂基材にこれら陽極となる透明導電膜或いは陰極となる金属薄膜等を形成し、透明導電膜付きガスバリア性樹脂基材を予め作製してもよい、これを用いれば、以下の有機薄膜層およびもう一方の電極を形成することで同様に有機EL素子を形成することが出来る。樹脂基材上に形成する電極物質としては、どちらでもよいが、作製上、或いは、構成上は、陽極となる透明導電膜を作製することが好ましい。
次に、本発明の有機EL素子の構成層として用いられる、注入層、阻止層、電子輸送層等について説明する。
(注入層:電子注入層、正孔注入層)
注入層は必要に応じて設け、電子注入層と正孔注入層があり、上記の如く陽極と発光層または正孔輸送層の間、及び陰極と発光層または電子輸送層との間に存在させてもよい。
注入層とは、駆動電圧低下や発光輝度向上のために電極と有機層間に設けられる層のことで、「有機EL素子とその工業化最前線(1998年11月30日エヌ・ティー・エス社発行)」の第2編第2章「電極材料」(123〜166頁)に詳細に記載されており、正孔注入層(陽極バッファー層)と電子注入層(陰極バッファー層)とがある。
陽極バッファー層(正孔注入層)は、特開平9−45479号公報、同9−260062号公報、同8−288069号公報等にもその詳細が記載されており、具体例として、銅フタロシアニンに代表されるフタロシアニンバッファー層、酸化バナジウムに代表される酸化物バッファー層、アモルファスカーボンバッファー層、ポリアニリン(エメラルディン)やポリチオフェン等の導電性高分子を用いた高分子バッファー層等が挙げられる。
陰極バッファー層(電子注入層)は、特開平6−325871号公報、同9−17574号公報、同10−74586号公報等にもその詳細が記載されており、具体的にはストロンチウムやアルミニウム等に代表される金属バッファー層、フッ化リチウムに代表されるアルカリ金属化合物バッファー層、フッ化マグネシウムに代表されるアルカリ土類金属化合物バッファー層、酸化アルミニウムに代表される酸化物バッファー層等が挙げられる。上記バッファー層(注入層)はごく薄い膜であることが望ましく、素材にもよるがその膜厚は0.1nm〜5μmの範囲が好ましい。
(阻止層:正孔阻止層、電子阻止層)
阻止層は、上記の如く、有機化合物薄膜の基本構成層の他に必要に応じて設けられるものである。例えば、特開平11−204258号公報、同11−204359号公報、及び「有機EL素子とその工業化最前線(1998年11月30日エヌ・ティー・エス社発行)」の237頁等に記載されている正孔阻止(ホールブロック)層がある。
正孔阻止層とは広い意味では電子輸送層の機能を有し、電子を輸送する機能を有しつつ正孔を輸送する能力が著しく小さい正孔阻止材料からなり、電子を輸送しつつ正孔を阻止することで電子と正孔の再結合確率を向上させることができる。また、後述する電子輸送層の構成を必要に応じて、本発明に係わる正孔阻止層として用いることができる。
一方、電子阻止層とは広い意味では正孔輸送層の機能を有し、正孔を輸送する機能を有しつつ電子を輸送する能力が著しく小さい材料からなり、正孔を輸送しつつ電子を阻止することで電子と正孔の再結合確率を向上させることができる。また、後述する正孔輸送層の構成を必要に応じて電子阻止層として用いることができる。
(発光層)
本発明に係る発光層は、電極または電子輸送層、正孔輸送層から注入されてくる電子及び正孔が再結合して発光する層であり、発光する部分は発光層の層内であっても発光層と隣接層との界面であってもよい。
本発明の有機EL素子の発光層には、以下に示すホスト化合物とドーパント化合物が含有されることが好ましい。これにより、より一層発光効率を高くすることができる。
発光ドーパントは、大きく分けて、蛍光を発光する蛍光性ドーパントとリン光を発光するリン光性ドーパントの2種類がある。
前者(蛍光性ドーパント)の代表例としては、クマリン系色素、ピラン系色素、シアニン系色素、クロコニウム系色素、スクアリウム系色素、オキソベンツアントラセン系色素、フルオレセイン系色素、ローダミン系色素、ピリリウム系色素、ペリレン系色素、スチルベン系色素、ポリチオフェン系色素、または希土類錯体系蛍光体等が挙げられる。
後者(リン光性ドーパント)の代表例としては、好ましくは元素の周期表で8属、9属、10属の金属を含有する錯体系化合物であり、さらに好ましくは、イリジウム化合物、オスミウム化合物であり、中でも最も好ましいのはイリジウム化合物である。具体的には以下の特許公報に記載されている化合物である。
国際公開第00/70655号パンフレット、特開2002−280178号公報、同2001−181616号公報、同2002−280179号公報、同2001−181617号公報、同2002−280180号公報、同2001−247859号公報、同2002−299060号公報、同2001−313178号公報、同2002−302671号公報、同2001−345183号公報、同2002−324679号公報、国際公開第02/15645号パンフレット、特開2002−332291号公報、同2002−50484号公報、同2002−332292号公報、同2002−83684号公報、特表2002−540572号公報、特開2002−117978号公報、同2002−338588号公報、同2002−170684号公報、同2002−352960号公報、国際公開第01/93642号パンフレット、特開2002−50483号公報、同2002−100476号公報、同2002−173674号公報、同2002−359082号公報、同2002−175884号公報、同2002−363552号公報、同2002−184582号公報、同2003−7469号公報、特表2002−525808号公報、特開2003−7471号公報、特表2002−525833号公報、特開2003−31366号公報、同2002−226495号公報、同2002−234894号公報、同2002−235076号公報、同2002−241751号公報、同2001−319779号公報、同2001−319780号公報、同2002−62824号公報、同2002−100474号公報、同2002−203679号公報、同2002−343572号公報、同2002−203678号公報等。
その具体例の一部を下記に示す。
Figure 2007038529
Figure 2007038529
Figure 2007038529
発光ドーパントは複数種の化合物を混合して用いてもよい。
〈発光ホスト〉
発光ホスト(単にホストともいう)とは、2種以上の化合物で構成される発光層中にて混合比(質量)の最も多い化合物のことを意味し、それ以外の化合物については「ドーパント化合物(単に、ドーパントともいう)」という。例えば、発光層を化合物A、化合物Bという2種で構成し、その混合比がA:B=10:90であれば化合物Aがドーパント化合物であり、化合物Bがホスト化合物である。さらに、発光層を化合物A、化合物B、化合物Cの3種から構成し、その混合比がA:B:C=5:10:85であれば、化合物A、化合物Bがドーパント化合物であり、化合物Cがホスト化合物である。
本発明に用いられる発光ホストとしては、構造的には特に制限はないが、代表的にはカルバゾール誘導体、トリアリールアミン誘導体、芳香族ボラン誘導体、含窒素複素環化合物、チオフェン誘導体、フラン誘導体、オリゴアリーレン化合物等の基本骨格を有するもの、または、カルボリン誘導体やジアザカルバゾール誘導体(ここで、ジアザカルバゾール誘導体とは、カルボリン誘導体のカルボリン環を構成する炭化水素環の少なくとも一つの炭素原子が窒素原子で置換されているものを表す。)等が挙げられる。
中でもカルボリン誘導体、ジアザカルバゾール誘導体等が好ましく用いられる。
以下に、カルボリン誘導体、ジアザカルバゾール誘導体等の具体例を挙げるが、本発明はこれらに限定されない。
Figure 2007038529
Figure 2007038529
また、本発明に用いられる発光ホストは低分子化合物でも、繰り返し単位をもつ高分子化合物でもよく、ビニル基やエポキシ基のような重合性基を有する低分子化合物(蒸着重合性発光ホスト)でもいい。
発光ホストとしては、正孔輸送能、電子輸送能を有しつつ、かつ、発光の長波長化を防ぎ、高Tg(ガラス転移温度)である化合物が好ましい。
発光ホストの具体例としては、以下の文献に記載されている化合物が好適である。例えば、特開2001−257076号公報、同2002−308855号公報、同2001−313179号公報、同2002−319491号公報、同2001−357977号公報、同2002−334786号公報、同2002−8860号公報、同2002−334787号公報、同2002−15871号公報、同2002−334788号公報、同2002−43056号公報、同2002−334789号公報、同2002−75645号公報、同2002−338579号公報、同2002−105445号公報、同2002−343568号公報、同2002−141173号公報、同2002−352957号公報、同2002−203683号公報、同2002−363227号公報、同2002−231453号公報、同2003−3165号公報、同2002−234888号公報、同2003−27048号公報、同2002−255934号公報、同2002−260861号公報、同2002−280183号公報、同2002−299060号公報、同2002−302516号公報、同2002−305083号公報、同2002−305084号公報、同2002−308837号公報等。
さらに公知のホスト化合物を複数種併用して用いてもよい。また、ドーパント化合物を複数種用いることで、異なる発光を混ぜることが可能となり、これにより任意の発光色を得ることができる。リン光性化合物の種類、ドープ量を調整することで白色発光が可能であり、照明、バックライトへの応用もできる。
本発明の有機EL素子の発光する色は、「新編色彩科学ハンドブック」(日本色彩学会編、東京大学出版会、1985)の108頁の図4.16において、分光放射輝度計CS−1000(コニカミノルタセンシング社製)で測定した結果をCIE色度座標に当てはめたときの色で決定される。
発光層は上記化合物を、例えば、真空蒸着法、スピンコート法、キャスト法、LB法、インクジェット法等の公知の薄膜化法により成膜して形成することができる。発光層としての膜厚は特に制限はないが、通常は5nm〜5μm、好ましくは5〜200nmの範囲で選ばれる。この発光層はこれらのリン光性化合物やホスト化合物が1種または2種以上からなる一層構造であってもよいし、あるいは同一組成または異種組成の複数層からなる積層構造であってもよい。
(正孔輸送層)
正孔輸送層とは正孔を輸送する機能を有する正孔輸送材料からなり、広い意味で正孔注入層、電子阻止層も正孔輸送層に含まれる。正孔輸送層は単層または複数層設けることができる。
正孔輸送材料としては、正孔の注入または輸送、電子の障壁性のいずれかを有するものであり、有機物、無機物のいずれであってもよい。例えば、トリアゾール誘導体、オキサジアゾール誘導体、イミダゾール誘導体、ポリアリールアルカン誘導体、ピラゾリン誘導体及びピラゾロン誘導体、フェニレンジアミン誘導体、アリールアミン誘導体、アミノ置換カルコン誘導体、オキサゾール誘導体、スチリルアントラセン誘導体、フルオレノン誘導体、ヒドラゾン誘導体、スチルベン誘導体、シラザン誘導体、アニリン系共重合体、また導電性高分子オリゴマー、特にチオフェンオリゴマー等が挙げられる。
正孔輸送材料としては上記のものを使用することができるが、ポルフィリン化合物、芳香族第3級アミン化合物及びスチリルアミン化合物、特に芳香族第3級アミン化合物を用いることが好ましい。
芳香族第3級アミン化合物及びスチリルアミン化合物の代表例としては、N,N,N′,N′−テトラフェニル−4,4′−ジアミノフェニル;N,N′−ジフェニル−N,N′−ビス(3−メチルフェニル)−〔1,1′−ビフェニル〕−4,4′−ジアミン(TPD);2,2−ビス(4−ジ−p−トリルアミノフェニル)プロパン;1,1−ビス(4−ジ−p−トリルアミノフェニル)シクロヘキサン;N,N,N′,N′−テトラ−p−トリル−4,4′−ジアミノビフェニル;1,1−ビス(4−ジ−p−トリルアミノフェニル)−4−フェニルシクロヘキサン;ビス(4−ジメチルアミノ−2−メチルフェニル)フェニルメタン;ビス(4−ジ−p−トリルアミノフェニル)フェニルメタン;N,N′−ジフェニル−N,N′−ジ(4−メトキシフェニル)−4,4′−ジアミノビフェニル;N,N,N′,N′−テトラフェニル−4,4′−ジアミノジフェニルエーテル;4,4′−ビス(ジフェニルアミノ)クオードリフェニル;N,N,N−トリ(p−トリル)アミン;4−(ジ−p−トリルアミノ)−4′−〔4−(ジ−p−トリルアミノ)スチリル〕スチルベン;4−N,N−ジフェニルアミノ−(2−ジフェニルビニル)ベンゼン;3−メトキシ−4′−N,N−ジフェニルアミノスチルベンゼン;N−フェニルカルバゾール、さらには米国特許第5,061,569号明細書に記載されている2個の縮合芳香族環を分子内に有するもの、例えば、4,4′−ビス〔N−(1−ナフチル)−N−フェニルアミノ〕ビフェニル(NPD)、特開平4−308688号公報に記載されているトリフェニルアミンユニットが3つスターバースト型に連結された4,4′,4″−トリス〔N−(3−メチルフェニル)−N−フェニルアミノ〕トリフェニルアミン(MTDATA)等が挙げられる。
さらにこれらの材料を高分子鎖に導入した、またはこれらの材料を高分子の主鎖とした高分子材料を用いることもできる。また、p型−Si、p型−SiC等の無機化合物も正孔注入材料、正孔輸送材料として使用することができる。
正孔輸送層は上記正孔輸送材料を、例えば、真空蒸着法、スピンコート法、キャスト法、インクジェット法を含む印刷法、LB法等の公知の方法により、薄膜化することにより形成することができる。正孔輸送層の膜厚については特に制限はないが、通常は5nm〜5μm程度、好ましくは5〜200nmである。この正孔輸送層は上記材料の1種または2種以上からなる一層構造であってもよい。
また、不純物をドープしたp性の高い正孔輸送層を用いることもできる。その例としては、特開平4−297076号、特開2000−196140号、特開2001−102175号、J.Appl.Phys.,95,5773(2004)等に記載されたものが挙げられる。
(電子輸送層)
電子輸送層とは電子を輸送する機能を有する材料からなり、広い意味で電子注入層、正孔阻止層も電子輸送層に含まれる。電子輸送層は単層または複数層設けることができる。
従来、単層の電子輸送層、及び複数層とする場合は発光層に対して陰極側に隣接する電子輸送層に用いられる電子輸送材料(正孔阻止材料を兼ねる)としては、陰極より注入された電子を発光層に伝達する機能を有していればよく、その材料としては従来公知の化合物の中から任意のものを選択して用いることができ、例えば、ニトロ置換フルオレン誘導体、ジフェニルキノン誘導体、チオピランジオキシド誘導体、カルボジイミド、フレオレニリデンメタン誘導体、アントラキノジメタン及びアントロン誘導体、オキサジアゾール誘導体等が挙げられる。さらに、上記オキサジアゾール誘導体において、オキサジアゾール環の酸素原子を硫黄原子に置換したチアジアゾール誘導体、電子吸引基として知られているキノキサリン環を有するキノキサリン誘導体も、電子輸送材料として用いることができる。さらにこれらの材料を高分子鎖に導入した、またはこれらの材料を高分子の主鎖とした高分子材料を用いることもできる。
また、8−キノリノール誘導体の金属錯体、例えば、トリス(8−キノリノール)アルミニウム(Alq)、トリス(5,7−ジクロロ−8−キノリノール)アルミニウム、トリス(5,7−ジブロモ−8−キノリノール)アルミニウム、トリス(2−メチル−8−キノリノール)アルミニウム、トリス(5−メチル−8−キノリノール)アルミニウム、ビス(8−キノリノール)亜鉛(Znq)等、及びこれらの金属錯体の中心金属がIn、Mg、Cu、Ca、Sn、GaまたはPbに置き替わった金属錯体も、電子輸送材料として用いることができる。その他、メタルフリーもしくはメタルフタロシアニン、またはそれらの末端がアルキル基やスルホン酸基等で置換されているものも、電子輸送材料として好ましく用いることができる。また、発光層の材料として例示したジスチリルピラジン誘導体も、電子輸送材料として用いることができるし、正孔注入層、正孔輸送層と同様に、n型−Si、n型−SiC等の無機半導体も電子輸送材料として用いることができる。
電子輸送層は上記電子輸送材料を、例えば、真空蒸着法、スピンコート法、キャスト法、インクジェット法を含む印刷法、LB法等の公知の方法により、薄膜化することにより形成することができる。電子輸送層の膜厚については特に制限はないが、通常は5nm〜5μm程度、好ましくは5〜200nmである。電子輸送層は上記材料の1種または2種以上からなる一層構造であってもよい。
また、不純物をドープしたn性の高い電子輸送層を用いることもできる。その例としては、特開平4−297076号、特開2000−196140号、特開2001−102175号、J.Appl.Phys.,95,5773(2004)等に記載されたものが挙げられる。
本発明に係わる有機EL素子に用いることのできるガスバリアフィルムを構成する樹脂フィルムとしては、例えば、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)等のポリエステル、ポリエチレン、ポリプロピレン、セロファン、セルロースジアセテート、セルローストリアセテート、セルロースアセテートブチレート、セルロースアセテートプロピオネート(CAP)、セルロースアセテートフタレート(TAC)、セルロースナイトレート等のセルロースエステル類またはそれらの誘導体、ポリ塩化ビニリデン、ポリビニルアルコール、ポリエチレンビニルアルコール、シンジオタクティックポリスチレン、ポリカーボネート、ノルボルネン樹脂、ポリメチルペンテン、ポリエーテルケトン、ポリイミド、ポリエーテルスルホン(PES)、ポリスルホン類、ポリエーテルケトンイミド、ポリアミド、フッ素樹脂、ナイロン、ポリメチルメタクリレート、アクリル或いはポリアリレート類、アートン(商品名JSR社製)或いはアペル(商品名三井化学社製)といったシクロオレフィン系樹脂等を挙げられる。
本発明の有機EL素子の発光の室温における外部取り出し効率は1%以上であることが好ましく、より好ましくは5%以上である。ここに、外部取り出し量子効率(%)=有機EL素子外部に発光した光子数/有機EL素子に流した電子数×100である。
また、カラーフィルター等の色相改良フィルター等を併用しても、有機EL素子からの発光色を蛍光体を用いて多色へ変換する色変換フィルターを併用してもよい。色変換フィルターを用いる場合においては、有機EL素子の発光のλmaxは480nm以下が好ましい。
(有機EL素子の作製方法)
有機EL素子の作製方法について以下に詳しく説明する。
有機EL素子の一例として、陽極/正孔注入層/正孔輸送層/発光層/電子輸送層/電子注入層/陰極からなる有機EL素子の作製法について説明する。
まず基体(本発明のガスバリア性樹脂基材(フィルム))上に所望の電極物質、例えば、陽極用物質からなる薄膜を1μm以下、好ましくは10〜200nmの膜厚になるように、蒸着やスパッタリング、又前記プラズマCVD等の方法により形成させ、陽極を作製する。次に、この上に有機EL素子材料である正孔注入層、正孔輸送層、発光層、電子輸送層、電子注入層、正孔阻止層の有機化合物薄膜を形成させる。
この有機化合物薄膜の薄膜化の方法としては、前記の如く蒸着法、ウェットプロセス(スピンコート法、キャスト法、インクジェット法、印刷法)等があるが、均質な膜が得られやすく、かつピンホールが生成しにくい等の点から、真空蒸着法、スピンコート法、インクジェット法、印刷法が特に好ましい。さらに層毎に異なる成膜法を適用してもよい。成膜に蒸着法を採用する場合、その蒸着条件は使用する化合物の種類等により異なるが、一般にボート加熱温度50〜450℃、真空度10-6〜10-2Pa、蒸着速度0.01〜50nm/秒、基板温度−50〜300℃、膜厚0.1nm〜5μm、好ましくは5〜200nmの範囲で適宜選ぶことが望ましい。
これらの層を形成後、その上に陰極用物質からなる薄膜を、1μm以下好ましくは50〜200nmの範囲の膜厚になるように、例えば、蒸着やスパッタリング等の方法により形成させ、陰極を設けることにより所望の有機EL素子が得られる。この有機EL素子の作製は、一回の真空引きで一貫して正孔注入層から陰極まで作製するのが好ましいが、途中で取り出して異なる成膜法を施しても構わない。その際、作業を乾燥不活性ガス雰囲気下で行う等の配慮が必要となる。
また作製順序を逆にして、陰極、電子注入層、電子輸送層、発光層、正孔輸送層、正孔注入層、陽極の順に作製することも可能である。このようにして得られた多色の表示装置に、直流電圧を印加する場合には、陽極を+、陰極を−の極性として電圧2〜40V程度を印加すると、発光が観測できる。また交流電圧を印加してもよい。なお、印加する交流の波形は任意でよい。
本発明の有機EL素子を用いた表示装置は、表示デバイス、ディスプレイ、各種発光光源として用いることができる。表示デバイス、ディスプレイにおいて、青、赤、緑発光の3種の有機EL素子を用いることにより、フルカラーの表示が可能となる。
表示デバイス、ディスプレイとしてはテレビ、パソコン、モバイル機器、AV機器、文字放送表示、自動車内の情報表示等が挙げられる。特に静止画像や動画像を再生する表示装置として使用してもよく、動画再生用の表示装置として使用する場合の駆動方式は単純マトリックス(パッシブマトリックス)方式でもアクティブマトリックス方式でもどちらでもよい。
本発明の有機EL素子を用いた照明装置は家庭用照明、車内照明、時計や液晶用のバックライト、看板広告、信号機、光記憶媒体の光源、電子写真複写機の光源、光通信処理機の光源、光センサーの光源等が挙げられるがこれに限定するものではない。
また、本発明の有機EL素子に共振器構造を持たせた有機EL素子として用いてもよい。このような共振器構造を有した有機EL素子の使用目的としては、光記憶媒体の光源、電子写真複写機の光源、光通信処理機の光源、光センサーの光源等が挙げられるが、これらに限定されない。また、レーザ発振をさせることにより、上記用途に使用してもよい。
本発明に係わる残留応力が所定範囲にあるセラミック膜を含むガスバリア層を塗設したガスバリア性樹脂基材は、生産性に優れており、過酷な条件下で保存され、また折り曲げ等に対しても強く、密着性、ガスバリ性等の劣化がなく良好な透明性が維持でき、また安定した製造が可能となる。
〔表示装置〕
本発明の有機EL素子は、照明用や露光光源のような1種のランプとして使用してもよいし、画像を投影するタイプのプロジェクション装置や、静止画像や動画像を直接視認するタイプの表示装置(ディスプレイ)として使用してもよい。動画再生用の表示装置として使用する場合の駆動方式は単純マトリックス(パッシブマトリックス)方式でもアクティブマトリックス方式でもどちらでもよい。または、異なる発光色を有する本発明の有機EL素子を3種以上使用することにより、フルカラー表示装置を作製することが可能である。または、一色の発光色、例えば、白色発光をカラーフィルターを用いてBGRにし、フルカラー化することも可能である。さらに有機ELの発光色を色変換フィルターを用いて他色に変換しフルカラー化することも可能であるが、その場合、有機EL発光のλmaxは480nm以下であることが好ましい。
本発明の有機EL素子から構成される表示装置の一例を図面に基づいて説明する。
図9は、有機EL素子から構成される表示装置の一例を示した模式図である。有機EL素子の発光により画像情報の表示を行う、例えば、携帯電話等のディスプレイの模式図である。
ディスプレイ111は、複数の画素を有する表示部A、画像情報に基づいて表示部Aの画像走査を行う制御部B等からなる。
制御部Bは、表示部Aと電気的に接続され、複数の画素それぞれに外部からの画像情報に基づいて走査信号と画像データ信号を送り、走査信号により走査線毎の画素が画像データ信号に応じて順次発光して画像走査を行って画像情報を表示部Aに表示する。
図10は、表示部Aの模式図である。
表示部Aは基板上に、複数の走査線115及びデータ線116を含む配線部と、複数の画素113等とを有する。表示部Aの主要な部材の説明を以下に行う。図9においては、画素113の発光した光が、白矢印方向(下方向)へ取り出される場合を示している。
配線部の走査線115及び複数のデータ線116は、各々導電材料からなり、走査線115とデータ線116は格子状に直交して、直交する位置で画素113に接続している(詳細は図示せず)。
画素113は、走査線115から走査信号が印加されると、データ線116から画像データ信号を受け取り、受け取った画像データに応じて発光する。発光の色が赤領域の画素、緑領域の画素、青領域の画素を、適宜、同一基板上に並置することによって、フルカラー表示が可能となる。
次に、画素の発光プロセスを説明する。
図11は、画素の模式図である。
画素は、有機EL素子120、スイッチングトランジスタ121、駆動トランジスタ122、コンデンサ123等を備えている。複数の画素に有機EL素子120として、赤色、緑色、青色発光の有機EL素子を用い、これらを同一基板上に並置することでフルカラー表示を行うことができる。
図11において、制御部Bからデータ線116を介してスイッチングトランジスタ121のドレインに画像データ信号が印加される。そして、制御部Bから走査線115を介してスイッチングトランジスタ121のゲートに走査信号が印加されると、スイッチングトランジスタ121の駆動がオンし、ドレインに印加された画像データ信号がコンデンサ123と駆動トランジスタ122のゲートに伝達される。
画像データ信号の伝達により、コンデンサ123が画像データ信号の電位に応じて充電されるとともに、駆動トランジスタ122の駆動がオンする。駆動トランジスタ122は、ドレインが電源ライン117に接続され、ソースが有機EL素子120の電極に接続されており、ゲートに印加された画像データ信号の電位に応じて電源ライン117から有機EL素子120に電流が供給される。
制御部Bの順次走査により走査信号が次の走査線115に移ると、スイッチングトランジスタ121の駆動がオフする。しかし、スイッチングトランジスタ121の駆動がオフしてもコンデンサ123は充電された画像データ信号の電位を保持するので、駆動トランジスタ122の駆動はオン状態が保たれて、次の走査信号の印加が行われるまで有機EL素子120の発光が継続する。順次走査により次に走査信号が印加されたとき、走査信号に同期した次の画像データ信号の電位に応じて駆動トランジスタ122が駆動して有機EL素子120が発光する。
すなわち、有機EL素子120の発光は、複数の画素それぞれの有機EL素子120に対して、アクティブ素子であるスイッチングトランジスタ121と駆動トランジスタ122を設けて、複数の画素113それぞれの有機EL素子120の発光を行っている。このような発光方法をアクティブマトリックス方式と呼んでいる。
ここで、有機EL素子120の発光は、複数の階調電位を持つ多値の画像データ信号による複数の階調の発光でもよいし、2値の画像データ信号による所定の発光量のオン、オフでもよい。
また、コンデンサ123の電位の保持は、次の走査信号の印加まで継続して保持してもよいし、次の走査信号が印加される直前に放電させてもよい。
本発明においては、上述したアクティブマトリックス方式に限らず、走査信号が走査されたときのみデータ信号に応じて有機EL素子を発光させるパッシブマトリックス方式の発光駆動でもよい。
図12は、パッシブマトリックス方式による表示装置の模式図である。図12において、複数の走査線115と複数の画像データ線116が画素113を挟んで対向して格子状に設けられている。
順次走査により走査線115の走査信号が印加されたとき、印加された走査線115に接続している画素113が画像データ信号に応じて発光する。パッシブマトリックス方式では画素113にアクティブ素子がなく、製造コストの低減が計れる。
〔照明装置〕
本発明に係わる有機EL材料は、また、照明装置として、実質白色の発光を生じる有機EL素子に適用できる。複数の発光材料により複数の発光色を同時に発光させて混色により白色発光を得る。複数の発光色の組み合わせとしては、青色、緑色、青色の3原色の3つの発光極大波長を含有させたものでもよいし、青色と黄色、青緑と橙色等の補色の関係を利用した2つの発光極大波長を含有したものでもよい。
また、複数の発光色を得るための発光材料の組み合わせは、複数のリン光または蛍光を発光する材料(発光ドーパント)を、複数組み合わせたもの、蛍光またはリン光を発光する発光材料と、該発光材料からの光を励起光として発光する色素材料とを組み合わせたもののいずれでもよいが、本発明に係わる白色有機EL素子においては、発光ドーパントを複数組み合わせる方式が好ましい。
複数の発光色を得るための有機EL素子の層構成としては、複数の発光ドーパントを、一つの発光層中に複数存在させる方法、複数の発光層を有し、各発光層中に発光波長の異なるドーパントをそれぞれ存在させる方法、異なる波長に発光する微小画素をマトリックス状に形成する方法等が挙げられる。
本発明に係わる白色有機EL素子においては、必要に応じ成膜時にメタルマスクやインクジェットプリンティング法等でパターニングを施してもよい。パターニングする場合は、電極のみをパターニングしてもいいし、電極と発光層をパターニングしてもいいし、素子全層をパターニングしてもいい。
発光層に用いる発光材料としては特に制限はなく、例えば液晶表示素子におけるバックライトであれば、CF(カラーフィルター)特性に対応した波長範囲に適合するように、本発明に係わる白金錯体、また公知の発光材料の中から任意のものを選択して組み合わせて白色化すればよい。
このように、白色発光有機EL素子は、前記表示デバイス、ディスプレイに加えて、各種発光光源、照明装置として、家庭用照明、車内照明、また、露光光源のような1種のランプとして、液晶表示装置のバックライト等、表示装置にも有用に用いられる。
その他、看板広告、信号機、光記憶媒体等の光源、電子写真複写機の光源、光通信処理機の光源、光センサーの光源等、さらには表示装置を必要とする一般の家庭用電気器具等広い範囲の用途が挙げられる。
以下、実施例により本発明を説明するが本発明はこれにより限定されるものではない。
実施例
樹脂基材(きもと社製クリアハードコート層(CHC)付ポリエチレンテレフタレート(PET)フィルム、PETの厚さ125μm、CHCの厚さ6μm)上に、以下の作製条件で緩衝(ポリマー)膜 500nm/バリア膜 50nm/緩衝(ポリマー)膜 500nm/バリア膜 50nm/緩衝(ポリマー)膜 500nm/バリア膜 50nm/緩衝(ポリマー)膜 500nmと順次薄膜形成を行い、各試料を得た。
〔試料1の作製〕
(緩衝膜の作製)
図3に記載の大気圧プラズマCVD装置を用いて、以下の条件で作製した。
〈緩衝膜混合ガス組成物〉
放電ガス:窒素ガス 94.85体積%
薄膜形成ガス:ヘキサメチルジシロキサン 0.15体積%
添加ガス:酸素ガス 5.0体積%
〈緩衝膜成膜条件〉
第1電極側 電源種類 ハイデン研究所 100kHz(連続モード) PHF−6k
周波数 100kHz
出力密度 10W/cm2(この時の電圧Vpは7kVであった)
電極温度 120℃
第2電極側 電源種類 パール工業 13.56MHz CF−5000−13M
周波数 13.56MHz
出力密度 5W/cm2(この時の電圧Vpは1kVであった)
電極温度 90℃
(バリア膜の作製)
同じ大気圧プラズマCVD装置を用い、以下の条件で作製した。
〈バリア膜混合ガス組成物〉
放電ガス:窒素ガス 94.99体積%
薄膜形成ガス:テトラエトキシシラン 0.01体積%
添加ガス:酸素ガス 5.0体積%
〈緩衝膜成膜条件〉
第1電極側 電源種類 ハイデン研究所 100kHz(連続モード) PHF−6k
周波数 100kHz
出力密度 10W/cm2(この時の電圧Vpは7kVであった)
電極温度 120℃
第2電極側 電源種類 パール工業 13.56MHz CF−5000−13M
周波数 13.56MHz
出力密度 10W/cm2(この時の電圧Vpは2kVであった)
電極温度 90℃
〔試料2の作製〕
(緩衝膜の作製)
真空蒸着装置の真空槽内に、基材をセットし、10-4Paまで真空脱気した後、テトラエトキシシラン(TEOS)、水素ガス及びヘリウムガスを用い、印加電圧(RFパワー)100W、基材温度180℃の条件で、表2に記載の平均炭素含有量となるように原料の供給量を適宜調製しながら、緩衝層を形成した。
(バリア膜の作製)
真空蒸着装置の真空槽内に、基材料をセットし、10-4Paまで真空脱気した後、ヘキサメチルジシロキサン(以下、HMDSOと略記する)、水素ガス、ヘリウムガスを用いて、印加電圧(RFパワー)300W、基材温度180℃の条件でバリア層を形成した。
〔試料3の作製〕
(バリア膜)
製法を大気圧プラズマ法から触媒CVD法に変更した。装置は特開2004−292877号記載された装置(実施例1参照)に準じた装置を用いた。
基材とワイヤの距離を20cm、堆積前の基材の温度を70℃、ワイヤの材質をΦ0.5×2800mmのタングステンとし、ワイヤの温度を1750℃に設定し、モノシラン流量8sccm、アンモニア流量20sccm、水素流量200sccmの条件で材料ガスを真空容器14に圧力10Paで流入させ5分間堆積した。堆積終了時の被堆積材の温度は100℃であった。得られた窒化シリコン膜の厚さは、60nmであり、堆積速度は12nm/分であった。エッチングレートを求めたところ90nm/分であり、屈折率は1.92、X線光電子分光分析の結果の組成比はシリコン1に対して窒素1.2であった。膜厚:50nm。
(緩衝膜)
UV架橋反応による体積収縮率が3.8%である3官能イソシアヌル酸EO変性トリアクリレート(アロニックスM−315:東亜合成社製)にラジカル開始剤(イルガキュアー651:チバガイギー社製)を1質量%添加し溶剤に溶かして基板上に塗布乾燥した後、UV照射により、硬化させ、樹脂基板上にポリマー層(厚さ500nmの膜)を作製した。
〔試料4の作製〕
(スパッタ法)
各所定の試料をスパッタ装置の真空槽内に、上記試料3において緩衝膜として用いたポリマー層を形成した側に成膜するようにセットし、10-4Pa台まで真空脱気し、真空槽内温度を150℃にした後、放電ガスとしてアルゴンを分圧で0.1Pa導入、反応ガスとして酸素を分圧で0.008Pa導入した。雰囲気圧力、温度が安定したところでスパッタ電力2W/cm2にて放電を開始し、Alターゲット上にプラズマを発生させ、スパッタリングプロセスを開始した。プロセスが安定したところでシャッターを開き、ポリマー層上へのガスバリア層の形成を開始した。
〔試料5の作製〕
(スパッタ法)
各所定の試料をスパッタ装置の真空槽内に、上記試料3において緩衝膜として用いたポリマー層を形成した側に成膜するようにセットし、10-4Pa台まで真空脱気し、真空槽内温度を150℃にした後、放電ガスとしてアルゴンを分圧で0.1Pa導入、反応ガスとして酸素を分圧で0.008Pa導入した。雰囲気圧力、温度が安定したところでスパッタ電力2W/cm2にて放電を開始し、Siターゲット上にプラズマを発生させ、スパッタリングプロセスを開始した。プロセスが安定したところでシャッターを開き、ポリマー層上へのガスバリア層の形成を開始した。
以上、作製した試料1〜5について、またそこで用いたバリア膜、緩衝膜について炭素含有量、屈折率を、またバリア膜についてはその内部応力を測定し、また、緩衝膜として用いた3官能イソシアヌル酸EO変性トリアクリレート(アロニックスM−315:東亜合成社製)を用いたポリマー膜について屈折率を、それぞれ測定した。また、ポリエチレンテレフタレート(PET)フィルム上にガスバリア性薄膜積層体を形成した各試料について、積層体の光吸収率、光反射率、また、試料1〜5について、水蒸気透過率、酸素透過率を測定した。測定法について以下に示す。
〈炭素含有量〉
作製した各緩衝膜、セラミック膜の炭素含有量をXPSにて測定した(原子数濃度%)。炭素含有率は下記のXPS法によって算出される原子数濃度%であり、以下に定義される。
原子数濃度%(atomic concentration)=炭素原子の個数/全原子の個数×100
XPS表面分析装置は、本発明では、VGサイエンティフィックス社製ESCALAB−200Rを用いた。具体的には、X線アノードにはMgを用い、出力600W(加速電圧15kV、エミッション電流40mA)で測定した。エネルギー分解能は、清浄なAg3d5/2ピークの半値幅で規定したとき、1.5eV〜1.7eVとなるように設定した。
測定としては、先ず、結合エネルギー0eV〜1100eVの範囲を、データ取り込み間隔1.0eVで測定し、いかなる元素が検出されるかを求めた。
次に、検出された、エッチングイオン種を除く全ての元素について、データの取り込み間隔を0.2eVとして、その最大強度を与える光電子ピークについてナロースキャンをおこない、各元素のスペクトルを測定した。
得られたスペクトルは、測定装置、あるいは、コンピュータの違いによる含有率算出結果の違いを生じせしめなくするために、VAMAS−SCA−JAPAN製のCOMMON DATA PROCESSING SYSTEM (Ver.2.3以降が好ましい)上に転送した後、同ソフトで処理をおこない、各分析ターゲットの元素(炭素、酸素、ケイ素、チタン等)の含有率の値を原子数濃度(atomic concentration:at%)として求めた。
定量処理をおこなう前に、各元素についてCount Scaleのキャリブレーションをおこない、5ポイントのスムージング処理をおこなった。定量処理では、バックグラウンドを除去したピークエリア強度(cps*eV)を用いた。バックグラウンド処理には、Shirleyによる方法を用いた。
〈屈折率〉
各構成層の屈折率の測定は、アッベの屈折率計、エリプソメータM−44(J.A.Woollam社製)を用いて測定した。
〈内部応力〉
セラミック膜中の内部応力の測定は、以下の方法により測定した。即ち、測定膜と同じ組成、厚みのセラミック膜を、幅10mm、長さ50mm、厚み0.1mmの石英基板上に同じ方法により厚み1μmとなるよう製膜し、作製したサンプルに生じるカールをサンプルの凹部を上に向けて、NEC三栄社製、薄膜物性評価装置MH4000にて測定して得た。
〈光吸収率〉
分光光度計を使用して波長範囲380〜800nmに亘って基材上に形成されたガスバリア性薄膜積層体の光吸収率を基材との差分から計算し、これが0.1%以内であるものを光吸収なし、0.1%以上の部分を有するものを光吸収があるととした。
なお、光吸収率の測定には、分光光度計U−4000型(日立製作所製)を用いた。
〈光反射率〉
同様にして分光光度計により試料の分光反射率を5度正反射の条件で反射率の測定を行った。試料の観察面の裏面を、目の細かいサンドペーパーを用いて粗面化処理した後、黒色のスプレーを吹きつけ光吸収処理を行い、試料裏面での光の反射を防止した。観察面について、380nm〜800nmの波長での反射率の測定を行い、いずれも10%以内であるものを○、10%をこえる波長があるものを×として評価した。
〈水蒸気透過率〉
作製した試料1〜5について、JIS K 7129Bに記載された方法により測定した。なお、測定にはMOCON社製 水蒸気透過率測定装置 PERMATRAN−W 3/33 MGモジュールを使用した[g/m2/day]。(40℃、90%RH)
〈酸素透過率〉
同じく、JIS K 7126Bに従って、MOCON社製 酸素透過率測定装置 OX−TRAN 2/21 MLモジュールを使用して測定した[cc/m2/day/atm]。(23℃DRY条件)
以上の結果は表1に纏めて示した。
次いで、以下の如く前記試料1〜5を基板として有機ELデバイスを作製して、更に各試料について評価を行った。
有機ELデバイスを以下に従って作製した。
先ず、試料1〜5をそれぞれ有機EL用ディスプレイ基板として用い、有機ELデバイスを以下に従って作製した。
各試料をはじめに、以下の溶液を用いて超音波にて順次記載の時間行い乾燥(120℃)した。
超音波洗浄;
界面活性剤7%水溶液 15min
超純水 5min
有機アルカリ(セミコクリーン56(フルウチ化学(株)製)) 15min
超純水 5min
超純水 5min
2−プロパノール 15min
〈ITO膜の作製〉
その後、洗浄したそれぞれの基材を真空チャンバー内に導入し、試料のセラミック膜が形成された側にそれぞれパターニングした蒸着用のマスクを設置し、SnO2含有率が10質量%のITOターゲット(インジウム:錫=95:5(モル比))を用いて、DCマグネトロンスパッタリング(条件:基板支持体の温度250℃、酸素圧1×10-3Pa)により、厚さ0.2μmのITO薄膜からなる陽極を形成した。
前記陽極の表面抵抗は10Ω/□であった。この陽極を形成した陽極基板を洗浄容器に入れ、イソプロピルアルコールにより超音波洗浄した後、酸素プラズマ処理を行った。
〈有機EL素子の作製〉
次いで、得られたITO膜付き樹脂基板のITO透明電極側にPEDOT−PSS(ポリエチレンジオキシチオフェン−ポリスチレンスルフォン酸ドープ体;バイエル製baytron)層を乾燥厚み40nmとなるようにスピンコート塗布により形成した。
この透明支持基板を市販の真空蒸着装置の基板ホルダーに固定した。
真空槽を4×10-4Paまで減圧した後、m−MTDATXAの入ったタンタル製抵抗加熱ボートに通電して加熱し、蒸着速度0.1nm/secで透明支持基板に蒸着し40nmの正孔輸送層を設けた。
その後、以下に示すように、発光層A、Bまた中間層1、2の各組成を用い、以下に示すような構成で発光層各層を積層形成した。
各発光層は、それぞれホスト化合物、ドーパントを以下の割合となるようそれぞれタンタル製の抵抗加熱ボートに容れ、ボートに通電して加熱し、蒸着速度0.1nm/secで記載された厚みに各発光層を蒸着し形成した。
発光層A CDBP:Ir−15(3%) 25nm
中間層1 L−98 3nm
発光層B CDBP:Ir−16(8%) 10nm
ここで各発光層において、CDBP:Ir−15(3%) 25nmとあるのは、ホストであるCDBPに対しドーパントであるIr−15が3質量%含まれる25nmの蒸着膜であることを示す。
次いで、その上に正孔阻止層としてL−98を10nm蒸着した。
更にAlq3の入った加熱ボートに通電して加熱し、蒸着速度0.1nm/secで前記正孔阻止層上に蒸着して膜厚35nmの電子輸送層を設けた。なお、蒸着時の基板温度は室温で行った。
引き続き陰極バッファー層(電子注入層)としてフッ化リチウム0.5nmを蒸着し、更に、アルミニウム110nmを蒸着して陰極を形成し、有機EL素子を作製した。
Figure 2007038529
さらにこれら有機EL素子の各層の上に図7(a)で示す構成のように、それぞれ基板に用いたものと同じ樹脂基板試料をそれぞれ封止材料として用いて、セラミック膜が形成された側を、陰極と対向させ、ナガセケミテックス製UV硬化型のエポキシ系接着剤(XNR−5570)を介して周囲を接着した。接着は、基板側からハロゲンランプにて6J/cm2の光量を計3分間照射して硬化することで行った。
以上により、有機ELデバイス101〜105を作製した。
また、ガラス基板を用いて、比較として有機EL素子6を作製した。
〈ITO膜付きガラス基板の作製〉
ガラス基板としては、面積75mm×75mm、厚さ1mmの石英ガラス基板(HOYA製、NA45)を用い、以下の方法で、先ずITO膜を形成した。ITO膜はバイアススパッター法を用いてスパッタリング法により作製した。得られたITO膜は厚さ150nm屈折率2.0、シート抵抗約10Ω/m2であった。
得られたITO膜付きガラス基板を用いて、有機EL素子1と同様にして有機EL素子各層を形成し最上層が陰極となる同じ構成の有機EL素子6を形成した。
作製した有機EL素子6に、更に、封止材料として、図8で示したガラス製の封止缶を、同じエポキシ系封止材料を用いて接着し、封止された有機ELデバイス106を作製した。接着は、同様に、ガラス基板側から有機ELデバイス101〜105と同条件でハロゲンランプを照射して行った。
作製した有機ELデバイス106に5Vの電圧を印加し発光させた。表示素子正面(視野角0度)において発光色を観察したが白色発光が観測された。
以上の作製過程において、接着剤の硬化の程度について、各有機ELデバイスを比較した。
試験法としては、基板と封止材料を強制的に引き剥がし硬化具合の確認を行った。
○:完全に硬化している
×:充分に硬化できていない
を評価した。同じく評価結果を表1に示す。
また、各有機ELデバイス101〜105について、有機ELデバイス106(発光色が白色)と比較として白色のずれの程度(色バランス)を評価した。
評価は、株式会社オプテル製有機EL発光特性評価装置にて測定した。
○:色バランスがガラス基板上に有機EL素子を形成したデバイスに比べほぼずれない。
×:色バランスがずれて、白色に視認されない。
で評価し、これについても表1に纏めて結果を示した。
また別に、前記樹脂基材試料1〜5それぞれについて以下の折り曲げ耐性試験を行ったものを基板及び封止用フィルムとして使用したほかは有機ELデバイス101〜105と同様に、有機ELデバイス201〜205を作製し、各試料について、以下のように比較、評価した。
〈折り曲げ耐性試験〉
作製したガスバリア性樹脂基材各試料を、100mmφの円柱に膜面側を20回巻きつけ(円柱に膜面側を20回巻きつけ)て、ひろげたのち、これを用いて同様に有機ELデバイスを作製し、これを60℃、90%RHの条件で500時間保管後、点灯しダークスポットの発生で評価した。
○:ダークスポットに劣化なし
×:劣化あり
以上全ての試験について、試料1〜5を用いた結果として以下の表1に纏めた。
Figure 2007038529
以上の結果が示すように、本発明に係わるガスバリア性樹脂基板、またガスバリア性薄膜積層体は、ガスバリア性能に優れると共に、色味が少なく、光吸収率また光反射率も小さい。特に大気圧プラズマ法により形成されたガスバリア性薄膜積層体を有する樹脂基板は、セラミック膜の内部応力が小さいため、屈曲試験にも耐性があり、これを用いて形成された有機ELデバイスのダークスポット発生の抑制にも効果がある。また、同じセラミック膜を緩衝膜、バリア膜として積層した互いに屈折率が同程度の薄膜積層体は特に樹脂基板の色味が少なく、有機ELデバイスとしたときに比較のガラスを基板としたデバイスに比べて遜色がない色バランスをもつ。また、基板と封止フィルムの光硬化性樹脂タイプの接着においても紫外領域から、可視領域に亘って透明度が高く、接着剤への光照射効率がよく、充分な接着性が得られる。
本発明に係わるガスバリア性樹脂基材の代表例を示す断面図である。 本発明に有用なジェット方式の大気圧プラズマ放電処理装置の一例を示した概略図である。 本発明に有用な対向電極間で基材を処理する方式の大気圧プラズマ放電処理装置の一例を示す概略図である。 図2に示したロール回転電極の導電性の金属質母材とその上に被覆されている誘電体の構造の一例を示す斜視図である。 角筒型電極の導電性の金属質母材とその上に被覆されている誘電体の構造の一例を示す斜視図である。 本発明ガスバリア性薄膜積層体を陰極上に形成し封止した有機ELデバイスの1例を示す断面構成図である。 本発明のガスバリア性樹脂基材上に形成した有機EL素子を別の封止フィルムで覆って接着封止した有機ELデバイスを示す断面構成図である。 ガラス製の封止缶を使用し有機EL素子の封止を行った有機ELデバイスの例を示す。 有機EL素子から構成される表示装置の一例を示した模式図である。 表示部Aの模式図である。 画素の模式図である。 パッシブマトリックス方式による表示装置の模式図である。
符号の説明
1 樹脂基材
2 ポリマー膜
3 密着膜
4 セラミック膜
5 保護膜
10 プラズマ放電処理装置
11 第1電極
12 第2電極
21 第1電源
30 プラズマ放電処理装置
32 放電空間
35 ロール回転電極
35a ロール電極
35A 金属質母材
35B 誘電体
36 角筒型固定電極群
40 電界印加手段
41 第1電源
42 第2電源
50 ガス供給手段
51 ガス発生装置
52 給気口
53 排気口
60 電極温度調節手段
G 薄膜形成ガス
G° プラズマ状態のガス
G’ 処理排ガス
101 ガスバリア性樹脂基材
102 有機EL層
103 陰極
104 ガラス製封止缶
105 酸化バリウム
107 接着剤
111 ディスプレイ
113 画素
115 走査線
116 データ線
117 電源ライン
120 有機EL素子
121 スイッチングトランジスタ
122 駆動トランジスタ
123 コンデンサ

Claims (16)

  1. 少なくとも2層以上のセラミック膜を有し、かつ水蒸気透過率が0.01g/m2/day以下、酸素透過率が0.01cc/m2/day/atm以下であるガスバリア性薄膜積層体において、該ガスバリア性薄膜積層体の波長380〜800nmでの光吸収率が0.1%以下であることを特徴とするガスバリア性薄膜積層体。
  2. 波長380〜800nmでの光反射率が10%以下であることを特徴とする請求項1に記載のガスバリア性薄膜積層体。
  3. 前記セラミック膜のうち少なくとも1層は、炭素含有量が0.1%(原子数濃度%)以下のバリア膜であることを特徴とする請求項1または2に記載のガスバリア性薄膜積層体。
  4. 前記セラミック膜は、炭素含有量が0.1%(原子数濃度%)以下のバリア膜と炭素含有量が1%(原子数濃度%)以上の緩衝膜をそれぞれ1層以上有することを特徴とする請求項1または2に記載のガスバリア性薄膜積層体。
  5. 前記バリア膜は、1.0×10-14g・cm/(cm2・sec・Pa)以下の水蒸気透過係数を有することを特徴とする請求項3〜4のいずれか1項に記載のガスバリア性薄膜積層体。
  6. 前記バリア膜は、0.001以上20MPa以下の圧縮応力を有することを特徴とする請求項3〜5のいずれか1項に記載のガスバリア性薄膜積層体。
  7. 前記バリア膜は、酸化ケイ素を主成分とする膜であることを特徴とする請求項3〜6のいずれか1項に記載のガスバリア性薄膜積層体。
  8. 前記バリア膜は、プラズマCVD法により形成されたことを特徴とする請求項3〜7のいずれか1項に記載のガスバリア性薄膜積層体。
  9. 前記プラズマCVD法は、大気圧またはその近傍下の圧力で行われることを特徴とする請求項8に記載のガスバリア性薄膜積層体。
  10. 前記緩衝膜は、酸化ケイ素を主成分とする膜であることを特徴とする請求項4〜9のいずれか1項に記載のガスバリア性薄膜積層体。
  11. 前記緩衝膜は、プラズマCVD法により形成されたことを特徴とする請求項4〜10いずれか1項に記載のガスバリア性薄膜積層体。
  12. 前記プラズマCVD法は、大気圧またはその近傍下の圧力で行われることを特徴とする請求項11に記載のガスバリア性薄膜積層体。
  13. 樹脂基材の少なくとも1面に、請求項1〜12のいずれか1項に記載のガスバリア性薄膜積層体を有することを特徴とするガスバリア性樹脂基材。
  14. 基材および基材上に、少なくとも電極、有機化合物層、更に該電極および有機化合物層を覆うように配置された封止膜を有する有機エレクトロルミネッセンスデバイスにおいて、前記封止膜が、請求項1〜12のいずれか1項に記載のガスバリア性薄膜積層体であることを特徴とする有機エレクトロルミネッセンスデバイス。
  15. 基材および該基材上に、少なくとも電極および有機化合物層、更に該電極および有機化合物層を覆うように、封止用フィルムを配置し、前記基材と貼り合わせ、前記電極および有機化合物層を封止した有機エレクトロルミネッセンスデバイスにおいて、該封止用フィルムが、請求項13に記載のガスバリア性樹脂基材であることを特徴とする有機エレクトロルミネッセンスデバイス。
  16. 前記電極および有機化合物層を有する前記基材が、請求項13に記載のガスバリア性樹脂基材であることを特徴とする請求項18または19に記載の有機エレクトロルミネッセンスデバイス。
JP2005225290A 2005-08-03 2005-08-03 ガスバリア性薄膜積層体、ガスバリア性樹脂基材および有機エレクトロルミネッセンスデバイス Pending JP2007038529A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005225290A JP2007038529A (ja) 2005-08-03 2005-08-03 ガスバリア性薄膜積層体、ガスバリア性樹脂基材および有機エレクトロルミネッセンスデバイス

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005225290A JP2007038529A (ja) 2005-08-03 2005-08-03 ガスバリア性薄膜積層体、ガスバリア性樹脂基材および有機エレクトロルミネッセンスデバイス

Publications (1)

Publication Number Publication Date
JP2007038529A true JP2007038529A (ja) 2007-02-15

Family

ID=37796951

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005225290A Pending JP2007038529A (ja) 2005-08-03 2005-08-03 ガスバリア性薄膜積層体、ガスバリア性樹脂基材および有機エレクトロルミネッセンスデバイス

Country Status (1)

Country Link
JP (1) JP2007038529A (ja)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008120452A1 (ja) * 2007-03-29 2008-10-09 Fujifilm Corporation 電子デバイスおよびその製造方法
EP2141190A1 (en) * 2008-06-30 2010-01-06 Fujifilm Corporation Barrier laminate, gas barrier film, device and method for producing barrier laminate
JP2013504863A (ja) * 2009-09-10 2013-02-07 サン−ゴバン パフォーマンス プラスティックス コーポレイション 感受性要素を封入するための層状要素
JP2013048115A (ja) * 2012-12-03 2013-03-07 Sony Corp 表示装置、表示装置の製造方法、および電子機器
WO2013151095A1 (ja) * 2012-04-05 2013-10-10 シャープ株式会社 成膜方法、及び有機el表示装置の製造方法
JP5336016B1 (ja) * 2013-03-01 2013-11-06 尾池工業株式会社 積層体およびその製造方法
JP2013235726A (ja) * 2012-05-09 2013-11-21 Panasonic Corp 表示パネルの製造方法および表示パネル
US8766280B2 (en) 2009-09-10 2014-07-01 Saint-Gobain Performance Plastics Corporation Protective substrate for a device that collects or emits radiation
WO2015141741A1 (ja) * 2014-03-19 2015-09-24 コニカミノルタ株式会社 電子デバイス
JP2016512651A (ja) * 2013-03-12 2016-04-28 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated 薄膜封止用n2o希釈プロセスによるバリア膜性能の向上
KR20160047477A (ko) * 2013-08-30 2016-05-02 다이니폰 인사츠 가부시키가이샤 톱 에미션형 유기 일렉트로루미네센스 표시 장치의 제조 방법, 및 톱 에미션형 유기 일렉트로루미네센스 표시 장치 형성용 덮개재
US10036832B2 (en) 2011-04-08 2018-07-31 Saint-Gobain Performance Plastics Corporation Multilayer component for the encapsulation of a sensitive element
JP2020131676A (ja) * 2019-02-26 2020-08-31 大日本印刷株式会社 高層間密着性ガスバリア蒸着フィルム
KR20220138841A (ko) * 2014-12-15 2022-10-13 엘지디스플레이 주식회사 유기 발광 표시 장치
CN116024570A (zh) * 2023-03-29 2023-04-28 中北大学 超高温曲面金属基厚/薄膜传感器绝缘层及其制备方法
WO2023182042A1 (ja) * 2022-03-23 2023-09-28 ソニーグループ株式会社 導光板積層体、表示装置、及び表示装置用モジュール

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008251242A (ja) * 2007-03-29 2008-10-16 Fujifilm Corp 電子デバイスおよびその製造方法
WO2008120452A1 (ja) * 2007-03-29 2008-10-09 Fujifilm Corporation 電子デバイスおよびその製造方法
EP2141190A1 (en) * 2008-06-30 2010-01-06 Fujifilm Corporation Barrier laminate, gas barrier film, device and method for producing barrier laminate
US8766280B2 (en) 2009-09-10 2014-07-01 Saint-Gobain Performance Plastics Corporation Protective substrate for a device that collects or emits radiation
JP2013504863A (ja) * 2009-09-10 2013-02-07 サン−ゴバン パフォーマンス プラスティックス コーポレイション 感受性要素を封入するための層状要素
US9246131B2 (en) 2009-09-10 2016-01-26 Saint-Gobain Performance Plastics Corporation Layered element for encapsulating a senstive element
US10036832B2 (en) 2011-04-08 2018-07-31 Saint-Gobain Performance Plastics Corporation Multilayer component for the encapsulation of a sensitive element
WO2013151095A1 (ja) * 2012-04-05 2013-10-10 シャープ株式会社 成膜方法、及び有機el表示装置の製造方法
JP2013235726A (ja) * 2012-05-09 2013-11-21 Panasonic Corp 表示パネルの製造方法および表示パネル
JP2013048115A (ja) * 2012-12-03 2013-03-07 Sony Corp 表示装置、表示装置の製造方法、および電子機器
JP5336016B1 (ja) * 2013-03-01 2013-11-06 尾池工業株式会社 積層体およびその製造方法
JP2016512651A (ja) * 2013-03-12 2016-04-28 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated 薄膜封止用n2o希釈プロセスによるバリア膜性能の向上
KR20160047477A (ko) * 2013-08-30 2016-05-02 다이니폰 인사츠 가부시키가이샤 톱 에미션형 유기 일렉트로루미네센스 표시 장치의 제조 방법, 및 톱 에미션형 유기 일렉트로루미네센스 표시 장치 형성용 덮개재
KR102152743B1 (ko) * 2013-08-30 2020-09-07 다이니폰 인사츠 가부시키가이샤 톱 에미션형 유기 일렉트로루미네센스 표시 장치의 제조 방법, 및 톱 에미션형 유기 일렉트로루미네센스 표시 장치 형성용 덮개재
JPWO2015141741A1 (ja) * 2014-03-19 2017-04-13 コニカミノルタ株式会社 電子デバイス
WO2015141741A1 (ja) * 2014-03-19 2015-09-24 コニカミノルタ株式会社 電子デバイス
KR20220138841A (ko) * 2014-12-15 2022-10-13 엘지디스플레이 주식회사 유기 발광 표시 장치
KR102568120B1 (ko) * 2014-12-15 2023-08-17 엘지디스플레이 주식회사 유기 발광 표시 장치
JP2020131676A (ja) * 2019-02-26 2020-08-31 大日本印刷株式会社 高層間密着性ガスバリア蒸着フィルム
JP7322426B2 (ja) 2019-02-26 2023-08-08 大日本印刷株式会社 高層間密着性ガスバリア蒸着フィルム
WO2023182042A1 (ja) * 2022-03-23 2023-09-28 ソニーグループ株式会社 導光板積層体、表示装置、及び表示装置用モジュール
CN116024570A (zh) * 2023-03-29 2023-04-28 中北大学 超高温曲面金属基厚/薄膜传感器绝缘层及其制备方法
CN116024570B (zh) * 2023-03-29 2023-06-06 中北大学 超高温曲面金属基厚/薄膜传感器绝缘层及其制备方法

Similar Documents

Publication Publication Date Title
JP4946860B2 (ja) ガスバリアフィルム及びその製造方法、並びに該ガスバリアフィルムを用いた、有機el素子用樹脂基材、有機el素子
JP2007038529A (ja) ガスバリア性薄膜積層体、ガスバリア性樹脂基材および有機エレクトロルミネッセンスデバイス
JP2007277631A (ja) ガスバリア性薄膜積層体の製造方法、ガスバリア性薄膜積層体、ガスバリア性樹脂基材及び有機エレクトロルミネッセンスデバイス
JP5565454B2 (ja) ガスバリアフィルムの製造方法、有機エレクトロルミネッセンス用樹脂基材、それを用いた有機エレクトロルミネッセンス素子
JP2008056967A (ja) ガスバリア性樹脂基材および有機エレクトロルミネッセンスデバイス
JP2007190844A (ja) ガスバリア性樹脂基材および有機エレクトロルミネッセンスデバイス
US8486487B2 (en) Gas barrier film, gas barrier film manufacturing method, resin substrate for organic electroluminescent device using the aforesaid gas barrier film, and organic electroluminescent device using the aforementioned gas barrier film
JP2006297694A (ja) ガスバリアフィルム、有機エレクトロルミネッセンス用樹脂基材、該樹脂基材を用いた有機エレクトロルミネッセンス素子及びガスバリアフィルムの製造方法
JP4858167B2 (ja) 透明導電性フィルム、透明導電性フィルムの製造方法及び有機エレクトロルミネッセンス素子
US20150099126A1 (en) Gas barrier film, substrate for electronic device and electronic device
US8405301B2 (en) Organic electroluminescence element, display device and lighting device
JPWO2008032526A1 (ja) 可撓性封止フィルムの製造方法及びそれを用いた有機エレクトロルミネッセンス素子
JP4802576B2 (ja) ガスバリア性樹脂基材、透明導電膜付ガスバリア性樹脂基材および有機エレクトロルミネッセンス素子
JP2006299145A (ja) ガスバリア性フィルム、ガスバリア性フィルムを用いた有機エレクトロルミネッセンス用樹脂基材および有機エレクトロルミネッセンス素子
JP2007023304A (ja) 透明導電膜付ガスバリア性フィルムの製造方法及び有機エレクトロルミネッセンス素子の製造方法
JP2007083644A (ja) ガスバリアフィルム、有機エレクトロルミネッセンス用樹脂基材、該樹脂基材を用いた有機エレクトロルミネッセンス素子
JP2007073405A (ja) 有機エレクトロルミネッセンス素子及びそれを用いた表示装置
WO2010026869A1 (ja) 複合フィルム、ガスバリアフィルム及びその製造方法並びに有機エレクトロルミネッセンス素子
WO2006067952A1 (ja) ガスバリア性薄膜積層体、ガスバリア性樹脂基材、有機elデバイス
JP2015229317A (ja) ガスバリアーフィルムの製造方法及び有機エレクトロルミネッセンス素子
JP2007038445A (ja) ガスバリア性薄膜積層体、ガスバリア性樹脂基材及び有機エレクトロルミネッセンスデバイス
JP4835031B2 (ja) ガスバリア性フィルムの製造方法、有機エレクトロルミネッセンス用樹脂基材の製造方法及び有機エレクトロルミネッセンス素子の製造方法
WO2010026852A1 (ja) 樹脂フィルム及びその製造方法並びに有機エレクトロルミネッセンス素子
JP2007109422A (ja) 有機エレクトロルミネッセンス素子
JP2015024536A (ja) ガスバリアー性フィルムの製造方法