WO2010098139A9 - 弾性表面波共振子、弾性表面波発振器、及び電子機器 - Google Patents
弾性表面波共振子、弾性表面波発振器、及び電子機器 Download PDFInfo
- Publication number
- WO2010098139A9 WO2010098139A9 PCT/JP2010/001347 JP2010001347W WO2010098139A9 WO 2010098139 A9 WO2010098139 A9 WO 2010098139A9 JP 2010001347 W JP2010001347 W JP 2010001347W WO 2010098139 A9 WO2010098139 A9 WO 2010098139A9
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- acoustic wave
- surface acoustic
- range
- groove depth
- film thickness
- Prior art date
Links
- 238000010897 surface acoustic wave method Methods 0.000 title claims abstract description 222
- 239000000758 substrate Substances 0.000 claims abstract description 69
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims abstract description 55
- 239000010453 quartz Substances 0.000 claims abstract description 53
- 239000004020 conductor Substances 0.000 claims description 14
- 230000000994 depressogenic effect Effects 0.000 claims 1
- 235000012239 silicon dioxide Nutrition 0.000 description 52
- 238000005259 measurement Methods 0.000 description 42
- 230000014509 gene expression Effects 0.000 description 26
- 239000013078 crystal Substances 0.000 description 22
- 238000010586 diagram Methods 0.000 description 22
- 238000012937 correction Methods 0.000 description 21
- 238000004088 simulation Methods 0.000 description 16
- 238000004519 manufacturing process Methods 0.000 description 9
- 238000000034 method Methods 0.000 description 9
- 238000012360 testing method Methods 0.000 description 8
- 239000000463 material Substances 0.000 description 7
- 230000001681 protective effect Effects 0.000 description 7
- 238000006073 displacement reaction Methods 0.000 description 6
- 230000000694 effects Effects 0.000 description 5
- 238000011156 evaluation Methods 0.000 description 5
- 229910052782 aluminium Inorganic materials 0.000 description 4
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 4
- 238000004891 communication Methods 0.000 description 4
- 230000007613 environmental effect Effects 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 230000003068 static effect Effects 0.000 description 4
- 239000000956 alloy Substances 0.000 description 3
- 229910045601 alloy Inorganic materials 0.000 description 3
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 3
- 230000000644 propagated effect Effects 0.000 description 3
- 229910004298 SiO 2 Inorganic materials 0.000 description 2
- 230000032683 aging Effects 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 238000005530 etching Methods 0.000 description 2
- 230000005284 excitation Effects 0.000 description 2
- 230000001747 exhibiting effect Effects 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 230000002349 favourable effect Effects 0.000 description 2
- 230000001902 propagating effect Effects 0.000 description 2
- 230000035939 shock Effects 0.000 description 2
- 238000013459 approach Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 229910052681 coesite Inorganic materials 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 229910052906 cristobalite Inorganic materials 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- NJPPVKZQTLUDBO-UHFFFAOYSA-N novaluron Chemical compound C1=C(Cl)C(OC(F)(F)C(OC(F)(F)F)F)=CC=C1NC(=O)NC(=O)C1=C(F)C=CC=C1F NJPPVKZQTLUDBO-UHFFFAOYSA-N 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 229910052682 stishovite Inorganic materials 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 229910052905 tridymite Inorganic materials 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03H—IMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
- H03H9/00—Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
- H03H9/02—Details
- H03H9/02535—Details of surface acoustic wave devices
- H03H9/02543—Characteristics of substrate, e.g. cutting angles
- H03H9/02551—Characteristics of substrate, e.g. cutting angles of quartz substrates
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03H—IMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
- H03H9/00—Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
- H03H9/25—Constructional features of resonators using surface acoustic waves
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03B—GENERATION OF OSCILLATIONS, DIRECTLY OR BY FREQUENCY-CHANGING, BY CIRCUITS EMPLOYING ACTIVE ELEMENTS WHICH OPERATE IN A NON-SWITCHING MANNER; GENERATION OF NOISE BY SUCH CIRCUITS
- H03B5/00—Generation of oscillations using amplifier with regenerative feedback from output to input
- H03B5/30—Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element being electromechanical resonator
- H03B5/32—Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element being electromechanical resonator being a piezoelectric resonator
- H03B5/326—Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element being electromechanical resonator being a piezoelectric resonator the resonator being an acoustic wave device, e.g. SAW or BAW device
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03H—IMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
- H03H9/00—Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
- H03H9/02—Details
- H03H9/02535—Details of surface acoustic wave devices
- H03H9/0296—Surface acoustic wave [SAW] devices having both acoustic and non-acoustic properties
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03H—IMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
- H03H9/00—Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
- H03H9/02—Details
- H03H9/02535—Details of surface acoustic wave devices
- H03H9/02992—Details of bus bars, contact pads or other electrical connections for finger electrodes
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03H—IMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
- H03H9/00—Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
- H03H9/02—Details
- H03H9/125—Driving means, e.g. electrodes, coils
- H03H9/145—Driving means, e.g. electrodes, coils for networks using surface acoustic waves
- H03H9/14538—Formation
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03H—IMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
- H03H9/00—Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
- H03H9/02—Details
- H03H9/125—Driving means, e.g. electrodes, coils
- H03H9/145—Driving means, e.g. electrodes, coils for networks using surface acoustic waves
- H03H9/14544—Transducers of particular shape or position
- H03H9/14594—Plan-rotated or plan-tilted transducers
Definitions
- the present invention relates to a surface acoustic wave resonator and a surface acoustic wave oscillator equipped with the same, and more particularly to a surface acoustic wave resonator of a type in which a groove is provided on a substrate surface, and a surface acoustic wave oscillator equipped with the same.
- the change in frequency temperature characteristics includes the formation of a stop band of SAW, a cut angle of a piezoelectric substrate (for example, a quartz substrate), and an IDT (interdigital transducer).
- SAW surface acoustic wave
- the change in frequency temperature characteristics includes the formation of a stop band of SAW, a cut angle of a piezoelectric substrate (for example, a quartz substrate), and an IDT (interdigital transducer). The influence of the form etc. is great.
- Patent Document 1 discloses a configuration for exciting each of the upper end mode and the lower end mode of the SAW stop band, and the distribution of each standing wave in the upper end mode and the lower end mode of the stop band.
- Patent Documents 2 to 5 describe that the frequency temperature characteristic is better in the upper end mode of the stop band in SAW than in the lower end mode of the stop band.
- the cut angle of the quartz substrate is adjusted and the normalized film thickness (H / ⁇ ) of the electrode is set. It is described that the thickness is increased to about 0.1.
- Patent Document 4 describes that in a SAW device using Rayleigh waves, the cut angle of the quartz substrate is adjusted and the standardized film thickness (H / ⁇ ) of the electrode is increased by about 0.045 or more. Yes.
- Patent Literature 5 uses a rotation Y-cut X-propagation quartz crystal substrate and uses the resonance at the upper end of the stop band to improve the frequency-temperature characteristics as compared with the case of using the resonance at the lower end of the stop band. Are listed.
- Patent Document 6 and Non-Patent Document 1 in a SAW device using an ST cut quartz substrate, a groove is provided between electrode fingers constituting the IDT and between conductor strips constituting the reflector. Are listed. Non-Patent Document 1 describes that the frequency temperature characteristic changes depending on the depth of the groove.
- Patent Document 7 describes a configuration for making a curve indicating frequency temperature characteristics a cubic curve in a SAW device using an LST cut quartz substrate, and in a SAW device using a Rayleigh wave. It is described that a substrate having a cut angle having a temperature characteristic as shown by a cubic curve could not be found.
- Patent Document 1 JP 11-214958 A
- Patent Document 2 JP 2006-148622
- Patent Document 3 JP 2007-208771
- Patent Document 4 JP 2007-267033
- Patent Document 5 Japanese Patent Laid-Open No. 2002-100959
- Patent Document 6 Japanese Patent Laid-Open No. 57-5418
- Patent Document 7 Japanese Patent No. 3851336
- Manufacturing conditions and characteristics of groove type SAW resonator ( IEICE Technical Report MW82-59 (1982))
- the problems in providing a surface acoustic wave resonator and a surface acoustic wave oscillator in the present invention are, first, to realize a good frequency temperature characteristic, secondly to improve environmental resistance characteristics, and thirdly to a high Q value. Is to get.
- the present invention has been made to solve at least a part of the above problems, and can be realized as the following forms or application examples.
- ⁇ is the wavelength of G and the depth of the inter-electrode finger groove is G
- the line occupancy of the IDT is ⁇ , the depth G of the inter-electrode finger groove and the line occupancy ⁇
- the resonance frequency shift between individuals is suppressed within the correction range. be able to.
- the surface acoustic wave resonator having such characteristics, it is possible to realize a good frequency temperature characteristic within the operating temperature range. Moreover, according to having such a characteristic, it becomes possible to suppress degradation of the environmental resistance characteristics accompanying the increase in the electrode film thickness.
- Application Example 4 The surface acoustic wave resonator according to Application Example 3, wherein the line occupancy ⁇ is A surface acoustic wave resonator characterized by satisfying the following relationship: By defining ⁇ so as to satisfy the formula (8) within the range of the electrode film thickness in Application Example 3, it becomes possible to keep the secondary temperature coefficient within approximately ⁇ 0.01 ppm / ° C. 2 .
- a surface acoustic wave resonator By manufacturing a surface acoustic wave resonator using a quartz substrate cut with a cut angle having such characteristics, a surface acoustic wave resonator exhibiting good frequency temperature characteristics in a wide range can be obtained.
- Application Example 7 The surface acoustic wave resonator according to any one of Application Examples 1 to 6, wherein the frequency of the stop band upper end mode in the IDT is ft2, and the IDT is the propagation direction of the surface acoustic wave.
- the frequency of the stop band lower end mode in the reflector arranged so as to be sandwiched between fr1 is fr1
- the frequency of the stop band upper end mode of the reflector is fr2
- of the reflector increases at the frequency ft2 of the IDT stopband upper end mode, and the stopband upper end mode surface acoustic wave excited from the IDT is generated in the reflector. Therefore, it is reflected to the IDT side with a high reflection coefficient. And the energy confinement of the surface acoustic wave of the stop band upper end mode becomes strong, and a surface acoustic wave resonator having a low loss can be realized.
- Application Example 9 A surface acoustic wave oscillator comprising the surface acoustic wave resonator according to any one of Application Examples 1 to 8, and an IC for driving the IDT.
- Application Example 10 Electronic equipment comprising the surface acoustic wave resonator according to Application Example 1 or Application Example 2.
- Application Example 11 An electronic apparatus comprising the surface acoustic wave resonator according to Application Example 3.
- Application Example 12 An electronic apparatus comprising the surface acoustic wave resonator according to Application Example 4.
- Application Example 13 An electronic apparatus comprising the surface acoustic wave resonator according to Application Example 5.
- Application Example 14 An electronic apparatus comprising the surface acoustic wave resonator according to Application Example 6.
- Application Example 15 An electronic apparatus comprising the surface acoustic wave resonator according to Application Example 7.
- Application Example 16 An electronic apparatus comprising the surface acoustic wave resonator according to Application Example 8.
- Application Example 17 An electronic apparatus comprising the surface acoustic wave oscillator according to Application Example 9.
- G is 3% ⁇
- (F) is the groove depth G is 4% ⁇
- (G) is the groove depth G is 5% ⁇
- (H) is the groove depth G is 6% ⁇
- (I) is the groove. It is a graph in case the depth G is 8% ⁇ . It is a graph which shows the relationship between the depth of the electrode finger groove
- FIG. 7 is a diagram showing a range where
- FIG. 6 is a diagram showing a range where
- A) shows the case of ⁇ 1
- (B) shows the case of ⁇ 2.
- FIG. 6 is a diagram showing a range where
- A) shows the case of ⁇ 1, and (B) shows the case of ⁇ 2.
- FIG. 6 is a diagram showing a range where
- FIG. 10 is a diagram showing a range where
- FIG. 10 is a diagram showing a range where
- FIG. 10 is a diagram showing
- 6 is a diagram showing a range where
- the range of the electrode film thickness H is 0.010 ⁇ ⁇ H ⁇ 0.015 ⁇ , it is a graph showing the range of ⁇ that satisfies the requirement of
- the range of the electrode film thickness H is 0.015 ⁇ ⁇ H ⁇ 0.020 ⁇ , it is a graph showing the range of ⁇ that satisfies the requirement of
- the range of the electrode film thickness H is 0.025 ⁇ ⁇ H ⁇ 0.030 ⁇ , it is a graph showing the range of ⁇ that satisfies the requirement of
- the range of the electrode film thickness H is 0.030 ⁇ ⁇ H ⁇ 0.035 ⁇ , it is a graph showing the range of ⁇ that satisfies the requirement of
- (A) Are the maximum and minimum values of ⁇
- (B) is a graph showing the region of ⁇ that satisfies the requirement of ⁇ . It is a graph which shows the relationship between Euler angle (theta) and secondary temperature coefficient (beta) in electrode film thickness 0.02 (lambda) and depth of electrode finger groove
- FIG. 2 is a graph showing frequency temperature characteristics of a SAW resonator
- (A) is a graph showing frequency temperature characteristics of a SAW resonator disclosed in Japanese Patent Application Laid-Open No. 2006-203408, and (B) is in a substantial operating temperature range. It is a graph which shows the range of the frequency temperature characteristic in. It is a graph which shows the change of the frequency fluctuation amount in the operating range in the SAW resonator which coat
- SYMBOLS 10 Surface acoustic wave resonator (SAW resonator), 12 ?? IDT, 14a, 14b .... Comb-like electrode, 16a, 16b ?? Bus bar, 18a, 18b ?? Electrode finger, 20 ......... Reflector, 22 ......... Conductor strip, 30 ......... Quartz substrate, 32 ......... Groove.
- SAW resonator Surface acoustic wave resonator
- FIG. 1A is a plan view of a SAW resonator
- FIG. 1B is a partially enlarged sectional view
- FIG. 1C is an enlarged view for explaining details in FIG. 1B
- FIG. 1D is a cross-sectional shape that can be assumed when the SAW resonator according to the present invention is manufactured using a photolithographic technique and an etching technique with respect to a partially enlarged view of FIG.
- the line occupancy ⁇ is a convexity at a height that is 1 ⁇ 2 of (G + H), which is a value obtained by adding the depth (pedestal height) G of the groove 32 and the electrode film thickness H from the bottom of the groove 32.
- the ratio of the width L to the value obtained by adding the width L of the portion and the width S of the groove 32 (L + S) is appropriate.
- the SAW resonator 10 is configured based on a quartz substrate 30, an IDT 12, and a reflector 20.
- FIG. 2 is a diagram showing the orientation of the wafer 1 that is the base material of the quartz crystal substrate 30 used in the present invention.
- the X axis is an electric axis of quartz
- the Y axis is a mechanical axis of quartz
- the Z axis is an optical axis of quartz.
- the wafer 1 has a surface obtained by rotating a surface 2 perpendicular to the Y axis by an angle ⁇ ′ degrees in the direction of rotation from the + Z axis toward the ⁇ Y axis with the X axis as a rotation axis.
- the axis perpendicular to the rotated surface is the Y ′ axis
- the axis parallel to the rotated surface and perpendicular to the X axis is the Z ′ axis.
- the IDT 12 and the reflector 20 constituting the SAW resonator 10 have + ⁇ degrees (or ⁇ ) with the X axis of the crystal as a rotation axis and the rotation direction from the + X axis toward the + Z ′ axis as a positive direction.
- the quartz crystal substrate 30 constituting the SAW resonator 10 is cut out from the wafer 1 and separated into pieces.
- the shape of the quartz substrate 30 in plan view is not particularly limited.
- the quartz substrate 30 is represented by Euler angles ( ⁇ 1.5 ° ⁇ ⁇ ⁇ 1.5 °, 117 ° ⁇ ⁇ ⁇ 142 °, 42.79 ° ⁇
- An in-plane rotating ST-cut quartz substrate was adopted.
- the Euler angle will be described.
- a substrate represented by Euler angles (0 °, 0 °, 0 °) is a Z-cut substrate having a main surface perpendicular to the Z-axis.
- ⁇ of Euler angles ( ⁇ , ⁇ , ⁇ ) relates to the first rotation of the Z-cut substrate, and the positive rotation angle is the direction rotating from the + X axis to the + Y axis side with the Z axis as the rotation axis.
- Euler's angle ⁇ is related to the second rotation after the first rotation of the Z-cut substrate.
- the X axis after the first rotation is the rotation axis
- the rotation from the + Y axis after the first rotation to the + Z axis is performed.
- This is a second rotation angle in which the direction to perform is a positive rotation angle.
- the cut surface of the piezoelectric substrate is determined by the first rotation angle ⁇ and the second rotation angle ⁇ .
- the Euler angle ⁇ relates to the third rotation performed after the second rotation of the Z-cut substrate.
- the Z axis after the second rotation is used as the rotation axis, and the second rotation from the + X axis after the second rotation.
- This is a third rotation angle in which the direction of rotation toward the + Y-axis side after rotation is a positive rotation angle.
- the propagation direction of SAW is represented by a third rotation angle ⁇ with respect to the X axis after the second rotation.
- the IDT 12 includes a pair of comb-like electrodes 14a and 14b in which the base ends of the plurality of electrode fingers 18a and 18b are respectively connected by bus bars 16a and 16b, and the electrode fingers 18a constituting one comb-like electrode 14a;
- the electrode fingers 18b constituting the other comb-like electrode 14b are alternately arranged at a predetermined interval. Further, as shown in FIG. 1A, the electrode fingers 18a and 18b are arranged so that the extending direction of the electrode fingers is orthogonal to the X ′ axis, which is the propagation direction of the surface acoustic wave.
- the SAW excited by the SAW resonator 10 configured as described above is a Rayleigh type (Rayleigh type) SAW, and has vibration displacement components on both the Y ′ axis and the X ′ axis.
- X axis which is the crystal axis of the quartz crystal
- FIG. 3A is a plan view showing an embodiment of the tilted IDT 12a, in which the X ′ axis, which is the SAW propagation direction determined by the Euler angle, and the directions of the electrode fingers 18a and 18b of the tilted IDT 12a are orthogonal to each other.
- the arrangement form of the electrode fingers 18a and 18b in the inclined IDT 12a is inclined so as to be in a relationship.
- FIG. 3B is a plan view showing another embodiment of the tilted IDT 12a.
- the bus bars 16a and 16b that connect the electrode fingers 18a and 18b to each other are inclined so that the electrode finger arrangement direction is inclined with respect to the X ′ axis.
- the X ′ axis and the extending direction of the electrode fingers 18a and 18b are configured to be orthogonal to each other.
- the electrode fingers are arranged so that the direction perpendicular to the X ′ axis is the extension direction of the electrode fingers as in these embodiment examples.
- a low-loss SAW resonator can be realized while maintaining the characteristics.
- each standing wave is an antinode (or The positions of the nodes are shifted by ⁇ / 2.
- FIG. 4 is a diagram showing the distribution of standing waves in the stopband upper end mode and lower end mode in the normal type IDT 12.
- the standing wave in the stop band lower end mode indicated by the solid line has an antinode at the center position of the electrode finger 18, that is, the reflection center position, and the stop band upper end mode indicated by the alternate long and short dash line.
- the standing wave has a node at the reflection center position.
- the SAW vibration cannot be efficiently converted into electric charges by the electrode fingers 18 (18a, 18b), and the mode is excited as an electric signal, or In many cases, it cannot be received.
- the standing wave in the stopband upper end mode is changed to a solid line in FIG.
- a pair of reflectors 20 are provided so as to sandwich the IDT 12 in the SAW propagation direction.
- both ends of a plurality of conductor strips 22 provided in parallel with the electrode fingers 18 constituting the IDT 12 are connected.
- end face reflection type SAW resonators that actively use the reflected wave from the end face of the quartz substrate in the SAW propagation direction, and that the IDT itself excites SAW standing waves by increasing the number of electrode finger pairs of the IDT.
- the reflector is not always necessary.
- the material of the electrode film constituting the IDT 12 and the reflector 20 thus configured, aluminum (Al) or an alloy mainly composed of Al can be used.
- Al aluminum
- the influence of the temperature characteristics of the electrodes is minimized.
- a good frequency temperature characteristic is derived by taking a large depth of the groove of the quartz substrate portion and utilizing the good temperature characteristic of the quartz according to the performance of the groove of the quartz substrate portion.
- the influence of the temperature characteristics of the electrode on the temperature characteristics of the SAW resonator can be reduced, and good temperature characteristics can be maintained if the mass of the electrode varies within 10%.
- the metal other than Al as the main component may be 10% or less, preferably 3% or less by weight.
- the thickness of the electrode may be adjusted so that the mass of the electrode is within ⁇ 10% of the case where Al is used. In this way, good temperature characteristics equivalent to those obtained when Al is used can be obtained.
- the quartz crystal substrate 30 in the SAW resonator 10 having the above basic configuration is provided with grooves (interelectrode finger grooves) 32 between the electrode fingers of the IDT 12 and between the conductor strips of the reflector 20.
- the groove 32 provided in the quartz substrate 30 has the SAW wavelength in the stop band upper end mode as ⁇ and the groove depth as G. And good.
- the range is good. This is because by defining the groove depth G in such a range, the amount of frequency fluctuation within the operating temperature range ( ⁇ 40 ° C. to + 85 ° C.) can be made 25 ppm or less as a target value to be described in detail later. .
- the groove depth G is: The range is good.
- the line occupancy ⁇ is the line width of the electrode finger 18 (in the case of only the crystal convex portion, it means the width of the convex portion) L.
- the value divided by the pitch ⁇ / 2 between 18 ( L + S). Therefore, the line occupancy ⁇ can be expressed by Equation (4).
- the line occupancy ⁇ may be determined in a range that satisfies the expressions (5) and (6).
- ⁇ can be derived by determining the depth G of the groove 32.
- the film thickness of the electrode film material (IDT 12, reflector 20, etc.) in the SAW resonator 10 according to the present embodiment is as follows: It is desirable to be in the range.
- the electrode film thickness H As the electrode film thickness increases, the variation in electrical characteristics (especially resonance frequency) increases as the electrode film thickness increases, and the electrode film thickness H is within ⁇ 0.04 within the range of equations (5) and (6).
- H> 0.035 ⁇ there is a high possibility that a manufacturing variation greater than ⁇ 0.04 will occur.
- the electrode film thickness H is in the range of the formulas (5) and (6) and the variation in the line occupancy ⁇ is within ⁇ 0.04, a SAW device having a small secondary temperature coefficient ⁇ can be realized. . That is, the line occupancy ⁇ can be allowed up to the range of the formula (9) obtained by adding a tolerance of ⁇ 0.04 to the formula (8).
- the secondary temperature coefficient ⁇ is set within ⁇ 0.01 (ppm / ° C. 2 ), and preferably the SAW operating temperature range is ⁇ 40 ° C. to + 85 ° C.
- the object is to improve the frequency temperature characteristic to such an extent that the frequency fluctuation amount ⁇ F within the operating temperature range can be 25 ppm or less.
- the temperature characteristic of a surface acoustic wave resonator is generally expressed by the following equation.
- ⁇ f ⁇ ⁇ (T ⁇ T 0 ) + ⁇ ⁇ (T ⁇ T 0 ) 2
- ⁇ f is a frequency change amount (ppm) between the temperature T and the apex temperature T 0
- ⁇ is a primary temperature coefficient (ppm / ° C.)
- ⁇ is a secondary temperature coefficient (ppm / ° C. 2 )
- T is a temperature
- T0 means the temperature (apex temperature) at which the frequency is maximum.
- the first order constant ⁇ 0.
- second-order constant ⁇ ⁇ 0.034, which is shown in FIG.
- the temperature characteristic depicts an upwardly convex parabola (secondary curve).
- the SAW resonator as shown in FIG. 6 has a very large frequency fluctuation amount with respect to a temperature change, and it is necessary to suppress the frequency change amount ⁇ f with respect to the temperature change. Accordingly, the elastic surface is adjusted so that the secondary temperature coefficient ⁇ shown in FIG. 6 is closer to 0 and the frequency change ⁇ f with respect to the change in temperature (operating temperature) when the SAW resonator is actually used approaches 0. It is necessary to realize a wave resonator based on new knowledge. Accordingly, one of the objects of the present invention is to solve the above-mentioned problems, to make the surface temperature wave device have excellent frequency-temperature characteristics, and to operate with a stable frequency even if the temperature changes. It is to realize the device.
- the frequency variation ⁇ F within the operating temperature range is about 133 (ppm) when the operating temperature range is the same.
- the secondary temperature coefficient ⁇ is about ⁇ 0.034 (ppm / ° C. 2 ).
- a stop band in a SAW resonator using an in-plane rotating ST-cut quartz substrate in which the cut angle and SAW propagation direction of the quartz substrate are expressed as Euler angles (0, 123 °, 45 °) and the operating temperature range is the same.
- the frequency fluctuation amount ⁇ F is about 63 ppm
- the secondary temperature coefficient ⁇ is about ⁇ 0.016 (ppm / ° C. 2 ).
- All of these SAW resonators using ST-cut quartz substrates and in-plane rotating ST-cut quartz substrates use surface acoustic waves called Rayleigh waves, compared to surface acoustic waves called leaky waves of LST-cut quartz substrates. Since the variation of the frequency and frequency temperature characteristics with respect to the processing accuracy of the quartz substrate and the electrode is extremely small, it is excellent in mass productivity and is used in various SAW devices.
- SAW resonators using ST-cut quartz substrates and in-plane rotated ST-cut quartz substrates that have been conventionally used have secondary temperature characteristics in which the curve indicating the frequency temperature characteristics is a quadratic curve as described above. Further, since the absolute value of the secondary temperature coefficient of the secondary temperature characteristic is large, the amount of frequency fluctuation in the operating temperature range is large, and a resonator used in a wired communication device or a wireless communication device for obtaining frequency stability, It could not be used for SAW devices such as oscillators.
- the secondary temperature coefficient ⁇ corresponding to an improvement of 1/3 or less of the secondary temperature coefficient ⁇ of the ST-cut quartz substrate and 37% or more of the secondary temperature coefficient ⁇ of the in-plane rotated ST-cut quartz substrate is ⁇ 0.01. If a frequency temperature characteristic having a secondary temperature characteristic of (ppm / ° C. 2 ) or less is obtained, an apparatus for obtaining such frequency stability can be realized. Further, it is more desirable that the secondary temperature coefficient ⁇ is substantially zero and that a tertiary temperature characteristic having a cubic curve representing the frequency temperature characteristic is obtained, the frequency stability is further improved in the operating temperature range. With such third-order temperature characteristics, even within a wide operating temperature range of ⁇ 40 ° C. to + 85 ° C., extremely high frequency stability that could not be realized with conventional SAW devices of ⁇ 25 ppm or less can be obtained.
- the change in the frequency temperature characteristic of the SAW resonator 10 is related to the line occupancy ⁇ , the electrode film thickness H, the groove depth G, and the like of the electrode fingers 18 in the IDT 12. It was clarified by the knowledge based on the simulation and experiment conducted.
- the SAW resonator 10 according to the present embodiment uses stopband upper end mode excitation.
- H 0% ⁇
- 7A shows the secondary temperature coefficient ⁇ in the resonance of the stop band upper end mode when the groove depth G is 0.02 ⁇
- FIG. 7B shows the groove depth G of 0.02 ⁇ .
- the secondary temperature coefficient ⁇ in the resonance of the stop band lower end mode is shown.
- FIG. 7C shows the secondary temperature coefficient ⁇ in resonance in the stop band upper end mode when the groove depth G is 0.04 ⁇
- FIG. 7D shows the groove depth G of 0.
- the secondary temperature coefficient ⁇ in the resonance of the stop band lower end mode when .04 ⁇ is set is shown.
- the simulation shown in FIG. 7 shows an example in which SAW is propagated in some form to the quartz crystal substrate 30 not provided with an electrode film in order to reduce the factor that fluctuates the frequency temperature characteristic.
- the cut angle of the quartz substrate 30 was Euler angles (0 °, 123 °, ⁇ ). For ⁇ , a value that minimizes the absolute value of the secondary temperature coefficient ⁇ is appropriately selected.
- the secondary temperature coefficient ⁇ changes greatly when the line occupancy ⁇ is 0.6 to 0.7 in both the stop band upper end mode and the lower end mode. it can.
- the change in the secondary temperature coefficient ⁇ in the stop band upper end mode is compared with the change in the secondary temperature coefficient ⁇ in the stop band lower end mode, the following can be read. That is, the characteristic of the change in the secondary temperature coefficient ⁇ in the stop band lower end mode is deteriorated by changing from the minus side to the minus side (the absolute value of the secondary temperature coefficient ⁇ is increased).
- the change in the secondary temperature coefficient ⁇ in the stop band upper end mode is improved by changing from the minus side to the plus side (there is a point where the absolute value of the secondary temperature coefficient ⁇ becomes small). It is that).
- FIG. 9 is a graph plotting ⁇ 1 and ⁇ 2 at which the secondary temperature coefficient ⁇ becomes 0 when the groove depth G is changed.
- FIG. 9 shows that ⁇ 1 and ⁇ 2 become smaller as the groove depth G increases.
- FIG. 5 is a graph showing the relationship between the frequency variation ⁇ F and the groove depth G at the point ( ⁇ 1) at which the secondary temperature coefficient ⁇ is minimum at each groove depth G.
- the lower limit value of the groove depth G at which the frequency fluctuation amount ⁇ F is 25 ppm or less, which is the target value is 0.01 ⁇
- the range of the groove depth G is more than that, that is, 0. 01 ⁇ G.
- the graph shown in FIG. 5 is a simulation in a state where the electrode film such as the IDT 12 and the reflector 20 is not formed on the quartz substrate 30.
- the SAW resonator 10 is considered to be able to reduce the frequency fluctuation amount ⁇ F when the electrode film is provided. Accordingly, if the upper limit value of the groove depth G is determined, the maximum value in a state where the electrode film is not formed, that is, G ⁇ 0.094 ⁇ , may be set, and the groove depth G suitable for achieving the target is set. As a range, Can be shown.
- FIG. 11 shows individual frequency fluctuation amounts ⁇ f of the SAW resonator 10 when the groove depth G is shifted by ⁇ 0.001 ⁇ when the line occupation ratio ⁇ is constant.
- G 0.04 ⁇
- ⁇ 0.001 ⁇ when the groove depth G is shifted by ⁇ 0.001 ⁇ , that is, when the groove depth is 0.039 ⁇ ⁇ G ⁇ 0.041 ⁇ , It can be read that ⁇ f is about ⁇ 500 ppm.
- the frequency variation ⁇ f is less than ⁇ 1000 ppm
- the frequency can be adjusted by various frequency fine adjustment means.
- the adjustment of the frequency affects the static characteristics such as the Q value and the CI (crystal impedance) value and the long-term reliability, and the SAW resonator 10 is obtained. This leads to a decrease in the yield rate.
- the graph of is shown.
- the quartz substrate 30 has Euler angles (0 °, 123 °, ⁇ ).
- In the graph of electrode film thickness H 0.02 ⁇ in FIG. 34 (FIG.
- Table 1 shows the coordinates of the points a to h in FIG.
- the secondary temperature coefficient ⁇ is allowed to be within ⁇ 0.01 (ppm / ° C. 2 ), in 0.0100 ⁇ ⁇ G ⁇ 0.0500 ⁇ , both the expressions (3) and (5) are satisfied, In the case of 0.0500 ⁇ ⁇ G ⁇ 0.0695 ⁇ , the second-order temperature coefficient ⁇ is within ⁇ 0.01 (ppm / ° C. 2 ) if both the expressions (3) and (6) are satisfied. It was confirmed.
- the relationship between the groove depth G and the line occupation ratio ⁇ in the quartz crystal substrate 30 without the electrode film is as shown in FIG.
- the electrode film thickness H As the electrode film thickness increases, the variation in electrical characteristics (especially resonance frequency) increases as the electrode film thickness increases, and the electrode film thickness H is within ⁇ 0.04 within the range of equations (5) and (6).
- H> 0.035 ⁇ there is a high possibility that a manufacturing variation greater than ⁇ 0.04 will occur.
- the electrode film thickness H is in the range of the formulas (5) and (6) and the variation in the line occupancy ⁇ is within ⁇ 0.04, a SAW device having a small secondary temperature coefficient ⁇ can be realized. . That is, when the secondary temperature coefficient ⁇ is set within ⁇ 0.01 ppm / ° C. 2 in consideration of the manufacturing variation of the line occupancy, the line occupancy ⁇ adds ⁇ 0.04 tolerance to the equation (8).
- the range of the formula (9) is acceptable.
- the electrode film thicknesses are 0.01 ⁇ (1% ⁇ ), 0.015 ⁇ (1.5% ⁇ ), 0.02 ⁇ (2% ⁇ ), and 0.025 ⁇ (2.5% ⁇ , respectively). ), 0.03 ⁇ (3% ⁇ ), 0.035 ⁇ (3.5% ⁇ ), and the relationship between the line occupancy ⁇ and the secondary temperature coefficient ⁇ when the groove depth G is changed. A graph is shown.
- FIGS. 21 to 26 are graphs showing the relationship between the line occupancy ⁇ and the frequency fluctuation amount ⁇ F in the SAW resonator 10 corresponding to FIGS. 15 to 20, respectively. Note that all quartz substrates have Euler angles (0 °, 123 °, ⁇ ), and an angle that minimizes ⁇ F is appropriately selected for ⁇ .
- FIGS. 15A to 15F are diagrams showing the relationship between the line occupancy ⁇ and the secondary temperature coefficient ⁇ when the electrode film thickness H is 0.01 ⁇
- FIG. (F) to (F) are diagrams showing the relationship between the line occupancy ⁇ and the frequency variation ⁇ F when the electrode film thickness H is 0.01 ⁇ .
- FIGS. 16A to 16F are diagrams showing the relationship between the line occupancy ⁇ and the secondary temperature coefficient ⁇ when the electrode film thickness H is 0.015 ⁇
- FIGS. (F) is a diagram showing the relationship between the line occupancy ⁇ and the frequency variation ⁇ F when the electrode film thickness H is 0.015 ⁇ .
- FIGS. 17A to 17F are diagrams showing the relationship between the line occupancy ⁇ and the secondary temperature coefficient ⁇ when the electrode film thickness H is 0.02 ⁇
- FIGS. (F) is a diagram showing the relationship between the line occupancy ⁇ and the frequency variation ⁇ F when the electrode film thickness H is 0.02 ⁇ .
- FIGS. (F) is a diagram showing the relationship between the line occupancy ⁇ and the frequency variation ⁇ F when the electrode film thickness H is 0.025 ⁇ .
- FIGS. 19A to 19F are diagrams showing the relationship between the line occupancy ⁇ and the secondary temperature coefficient ⁇ when the electrode film thickness H is 0.03 ⁇
- FIGS. (F) is a diagram showing the relationship between the line occupancy ⁇ and the frequency variation ⁇ F when the electrode film thickness H is 0.03 ⁇ .
- FIGS. (F) is a diagram showing the relationship between the line occupancy ⁇ and the frequency variation ⁇ F when the electrode film thickness H is 0.035 ⁇ .
- FIGS. 15 to 26 Although there is a slight difference in any of the graphs, the line occupancy ⁇ , the secondary temperature coefficient ⁇ , and the line occupancy of only the quartz substrate 30 are ascertained. It can be seen that the graph is similar to FIGS. 8 and 10 which are graphs showing the relationship between the rate ⁇ and the frequency variation ⁇ F. That is, it can be said that the effect according to the present embodiment can also be achieved in the propagation of the surface acoustic wave in the crystal substrate 30 alone excluding the electrode film.
- FIG. 27A is a graph showing the relationship between ⁇ 1 satisfying the range of ⁇ and the groove depth G when the electrode film thickness H is 0.000 ⁇ ⁇ H ⁇ 0.005 ⁇ .
- Table 3 FIG. 28 is a table showing coordinates (G / ⁇ , ⁇ ) of main measurement points for determining the range shown in FIG. 27A and the value of ⁇ at the measurement points.
- FIG. 27B is a graph showing the relationship between ⁇ 2 satisfying the range of ⁇ and the groove depth G when the electrode film thickness H is 0.000 ⁇ ⁇ H ⁇ 0.005 ⁇ .
- Table 4 28 is a table showing the coordinates (G / ⁇ , ⁇ ) of main measurement points for determining the range shown in FIG. 27B and the value of ⁇ at the measurement points.
- FIG. 28A is a graph showing the relationship between ⁇ 1 satisfying the range of ⁇ and the groove depth G when the electrode film thickness H is 0.005 ⁇ ⁇ H ⁇ 0.010 ⁇ .
- Table 5 FIG. 29 is a table showing coordinates (G / ⁇ , ⁇ ) of main measurement points for determining the range shown in FIG. 28A and the value of ⁇ at the measurement points.
- FIG. 28B is a graph showing the relationship between ⁇ 2 that satisfies the above range of ⁇ and the groove depth G when the electrode film thickness H is 0.005 ⁇ ⁇ H ⁇ 0.010 ⁇ .
- FIG. 29 is a table showing coordinates (G / ⁇ , ⁇ ) of main measurement points for determining the range shown in FIG. 28B and the value of ⁇ at the measurement points.
- FIG. 29A is a graph showing the relationship between ⁇ 1 satisfying the range of ⁇ and the groove depth G when the electrode film thickness H is 0.010 ⁇ ⁇ H ⁇ 0.015 ⁇ .
- Table 7 30 is a table showing coordinates (G / ⁇ , ⁇ ) of main measurement points for determining the range shown in FIG. 29A and the value of ⁇ at the measurement points.
- FIG. 29B is a graph showing the relationship between ⁇ 2 satisfying the range of ⁇ and the groove depth G when the electrode film thickness H is 0.010 ⁇ ⁇ H ⁇ 0.015 ⁇ .
- Table 8 30 is a table showing coordinates (G / ⁇ , ⁇ ) of main measurement points for determining the range shown in FIG. 29B and the value of ⁇ at the measurement points.
- FIG. 30A is a graph showing the relationship between ⁇ 1 satisfying the range of ⁇ and the groove depth G when the electrode film thickness H is 0.015 ⁇ ⁇ H ⁇ 0.020 ⁇ .
- Table 9 FIG. 31 is a table showing coordinates (G / ⁇ , ⁇ ) of main measurement points for determining the range shown in FIG. 30A and the value of ⁇ at the measurement points.
- FIG. 30B is a graph showing the relationship between ⁇ 2 satisfying the range of ⁇ and the groove depth G when the electrode film thickness H is 0.015 ⁇ ⁇ H ⁇ 0.020 ⁇ .
- Table 10 FIG. 31 is a table showing coordinates (G / ⁇ , ⁇ ) of main measurement points for defining the range shown in FIG. 30B and the value of ⁇ at the measurement points.
- FIG. 31A is a graph showing the relationship between ⁇ 1 satisfying the range of ⁇ and the groove depth G when the electrode film thickness H is 0.020 ⁇ ⁇ H ⁇ 0.025 ⁇ .
- Table 11 FIG. 32 is a table showing coordinates (G / ⁇ , ⁇ ) of main measurement points for defining the range shown in FIG. 31A and the value of ⁇ at the measurement points.
- FIG. 31B is a graph showing the relationship between ⁇ 2 that satisfies the range of ⁇ and the groove depth G when the electrode film thickness H is 0.020 ⁇ ⁇ H ⁇ 0.025 ⁇ .
- Table 12 FIG. 32 is a table showing the coordinates (G / ⁇ , ⁇ ) of main measurement points for defining the range shown in FIG. 31B and the value of ⁇ at the measurement points.
- FIG. 32A is a graph showing the relationship between ⁇ 1 satisfying the range of ⁇ and the groove depth G when the electrode film thickness H is 0.025 ⁇ ⁇ H ⁇ 0.030 ⁇ .
- Table 13 is a table showing coordinates (G / ⁇ , ⁇ ) of main measurement points for determining the range shown in FIG. 32A and the value of ⁇ at the measurement points.
- FIG. 32B is a graph showing the relationship between ⁇ 2 satisfying the range of ⁇ and the groove depth G when the electrode film thickness H is 0.025 ⁇ ⁇ H ⁇ 0.030 ⁇ .
- Table 14 is a table showing coordinates (G / ⁇ , ⁇ ) of main measurement points for determining the range shown in FIG. 32B and the value of ⁇ at the measurement points.
- FIG. 33A is a graph showing the relationship between ⁇ 1 satisfying the range of ⁇ and the groove depth G when the electrode film thickness H is 0.030 ⁇ ⁇ H ⁇ 0.035 ⁇ .
- Table 15 It is a table
- FIG. 33 (B) is a graph showing the relationship between ⁇ 2 satisfying the range of ⁇ and the groove depth G when the electrode film thickness H is 0.030 ⁇ ⁇ H ⁇ 0.035 ⁇ .
- FIG. 34 is a table showing coordinates (G / ⁇ , ⁇ ) of main measurement points for defining the range shown in FIG. 33B and the value of ⁇ at the measurement points.
- FIG. 35 summarizes the relationship between ⁇ obtained by ⁇ 1 in the graph shown in FIG. 34 and the groove depth G.
- the reason for selecting ⁇ 1 is as described above.
- the optimum angle of ⁇ may change according to the variation of the groove depth G. I understand. This can also be said to support that the ratio of the change in the secondary temperature coefficient ⁇ is high due to the form of the crystal substrate 30.
- FIG. 38A is a graph showing the range of ⁇ that satisfies the requirement of
- a range sandwiched between a straight line connecting plots indicating the maximum value of ⁇ and a broken line connecting plots indicating the minimum value of ⁇ is a range satisfying the above condition.
- FIG. 39A is a graph showing a range of ⁇ that satisfies the requirement of
- a range sandwiched between a straight line connecting plots indicating the maximum value of ⁇ and a broken line connecting plots indicating the minimum value of ⁇ is a range satisfying the above condition.
- FIG. 40A is a graph showing a range of ⁇ that satisfies the requirement of
- a range sandwiched between a straight line connecting plots indicating the maximum value of ⁇ and a broken line connecting plots indicating the minimum value of ⁇ is a range satisfying the above condition.
- FIG. 41A is a graph showing the range of ⁇ that satisfies the requirement of
- a range sandwiched between a straight line connecting plots indicating the maximum value of ⁇ and a broken line connecting plots indicating the minimum value of ⁇ is a range satisfying the above condition.
- FIG. 42A is a graph showing a range of ⁇ that satisfies the requirement of
- a range sandwiched between a straight line connecting plots indicating the maximum value of ⁇ and a broken line connecting plots indicating the minimum value of ⁇ is a range satisfying the above condition.
- FIG. 43A is a graph showing the range of ⁇ that satisfies the requirement of
- a range sandwiched between a straight line connecting plots indicating the maximum value of ⁇ and a broken line connecting plots indicating the minimum value of ⁇ is a range satisfying the above condition.
- FIG. 44A is a graph showing the range of ⁇ that satisfies the requirement of
- a range sandwiched between a straight line connecting plots indicating the maximum value of ⁇ and a broken line connecting plots indicating the minimum value of ⁇ is a range satisfying the above condition.
- FIG. 45 shows the change in the secondary temperature coefficient ⁇ when the angle ⁇ is swung, that is, the relationship between ⁇ and the secondary temperature coefficient ⁇ .
- the SAW device used for the simulation is a quartz substrate in which the cut angle and the SAW propagation direction are represented by Euler angles (0, ⁇ , ⁇ ) and the groove depth G is 0.04 ⁇ , and the electrode thickness H Is 0.02 ⁇ .
- ⁇ a value that minimizes the absolute value of the secondary temperature coefficient ⁇ was appropriately selected within the above-described angle range based on the set angle of ⁇ . Further, ⁇ was set to 0.6383 according to the above formula (8).
- the absolute value of the secondary temperature coefficient ⁇ is 0.00 when the ⁇ is in the range of 117 ° to 142 °. It can be read that it is within the range of 01 (ppm / ° C. 2 ). Therefore, it can be said that the SAW resonator 10 having good frequency temperature characteristics can be configured by setting ⁇ within the range of 117 ° ⁇ ⁇ ⁇ 142 ° in the above set values. Tables 17 to 19 are shown as simulation data supporting the relationship between ⁇ and the secondary temperature coefficient ⁇ .
- Table 17 is a table showing the relationship between ⁇ and the secondary temperature coefficient ⁇ when the electrode film thickness H is changed.
- the electrode film thickness H is 0.01% ⁇
- the electrode film thickness H is 3%.
- the value of the secondary temperature coefficient ⁇ at the critical value of ⁇ (117 °, 142 °) in the case of .50% ⁇ is shown. Note that the groove depth G in this simulation is 4% ⁇ . From Table 17, when the thickness of the electrode film thickness H is changed within the range of 117 ° ⁇ ⁇ ⁇ 142 ° (0 ⁇ 0.01% ⁇ and 3.5% ⁇ defined as the critical value of the electrode film thickness). Even so, it can be read that
- Table 18 is a table showing the relationship between ⁇ and the secondary temperature coefficient ⁇ when the groove depth G is changed, and ⁇ when the groove depth G is 1.00% ⁇ and 6.95% ⁇ .
- the values of the secondary temperature coefficient ⁇ at the critical values (117 °, 142 °) are shown. Note that the electrode film thickness H in this simulation is 2.00% ⁇ . From Table 18, in the range of 117 ° ⁇ ⁇ ⁇ 142 °, the groove depth G is changed (1.00% ⁇ and 6.95% ⁇ defined as the critical value of the groove depth G). However, it can be read that
- Table 19 is a table showing the relationship between ⁇ and the secondary temperature coefficient ⁇ when the line occupancy ⁇ is changed.
- the critical value of ⁇ when the line occupancy ⁇ is 0.62 and 0.76 The values of the secondary temperature coefficient ⁇ at 117 °, 142 °) are shown.
- the electrode film thickness H is 2.00% ⁇
- the groove depth G is 4.00% ⁇ .
- the electrode film thickness H is in the range of 0.020 ⁇ to 0.025 ⁇ .
- FIG. 31A showing the relationship between the line occupancy ⁇ ( ⁇ 1) and the groove depth G, the minimum and maximum values of ⁇ when the groove depth is 4% ⁇ It can be read that
- a crystal substrate 30 of Euler angle display ( ⁇ , 123 °, 43.77 °) is used, the groove depth G is 0.04 ⁇ , the electrode film thickness H is 0.02 ⁇ , and the line occupancy ⁇ is It is a graph which shows the relationship between the angle of (phi), and secondary temperature coefficient (beta), when it is set to 0.65.
- the secondary temperature coefficient ⁇ is lower than ⁇ 0.01, but ⁇ is ⁇ 1.5 ° to + 1.5 °. If it is within the range, it can be reliably read that the absolute value of the secondary temperature coefficient ⁇ is within the range of 0.01. Therefore, by setting ⁇ within the range of ⁇ 1.5 ° ⁇ ⁇ ⁇ + 1.5 °, preferably ⁇ 1 ° ⁇ ⁇ ⁇ + 1 ° at the set value as described above, good frequency temperature characteristics can be obtained.
- the SAW resonator 10 can be configured.
- FIG. 47 shows a highly desirable relationship between ⁇ and ⁇ that minimizes the amount of frequency fluctuation at ⁇ 40 ° C. to + 85 ° C., and an approximate expression is obtained.
- the angle of ⁇ changes as the angle of ⁇ increases, and rises to draw a cubic curve.
- ⁇ can be determined by defining ⁇ , and the range of ⁇ when the range of ⁇ is 117 ° ⁇ ⁇ ⁇ 142 ° is 42.79 ° ⁇ ⁇ ⁇ 49.57 °. it can.
- the film thickness H of the electrode film is set in the range of 0 ⁇ H ⁇ 0.035 ⁇ , and the frequency is set.
- the temperature characteristics are improved. This is to improve the frequency temperature characteristics while maintaining the environmental resistance characteristics, unlike the conventional technique in which the film thickness H is extremely increased to improve the frequency temperature characteristics.
- FIG. 54 shows the relationship between the electrode film thickness (Al electrode film thickness) and the frequency fluctuation in the heat cycle test. The results of the heat cycle test shown in FIG. 54 show that the SAW resonator was exposed to a ⁇ 55 ° C. atmosphere for 30 minutes, then the temperature was raised to + 125 ° C.
- the frequency variation (F variation). ) Can be read as 1/3 or less.
- H + G 0.06 ⁇ is set for all plots.
- FIG. 49 is a graph showing the relationship between the step and the CI value when the step is changed from 0.062 ⁇ to 0.071 ⁇ . According to FIG. 49, it can be read that the CI value converges when the step is set to 0.067 ⁇ , and does not improve (is not lowered) even when the step is further increased.
- FIG. 50 shows the frequencies, equivalent circuit constants, and static characteristics of the SAW resonator 10 exhibiting frequency temperature characteristics as shown in FIG.
- F is a frequency
- Q is a Q value
- ⁇ is a capacitance ratio
- CI is a CI (Crystal Impedance) value
- M is a figure of merit ( Figure of Merit).
- FIG. 52 shows a graph for comparing the relationship between the step and the Q value in the conventional SAW resonator and the SAW resonator 10 according to the present embodiment.
- the graph indicated by the bold line shows the characteristics of the SAW resonator 10 according to the present embodiment, and a groove is provided between the electrode fingers and the resonance in the stop band upper end mode is used.
- a graph indicated by a thin line shows the characteristics of a conventional SAW resonator, and uses a stop band upper end mode resonance without providing a groove between electrode fingers. As is apparent from FIG.
- the gap between the electrode fingers is in a region where the step (G + H) is 0.0407 ⁇ (4.07% ⁇ ) or more.
- the step (G + H) is 0.0407 ⁇ (4.07% ⁇ ) or more.
- the basic data of the SAW resonator according to the simulation is as follows.
- G Change IDT line occupancy ⁇ i: 0.6
- 120 Crossing width: 40 ⁇ ( ⁇ 10 ⁇ m) Number of reflectors (per one side): 60 No inclination angle of electrode fingers
- Basic data of conventional SAW resonator H Change G: Zero IDT line occupancy ⁇ i: 0.4 Reflector line occupancy ⁇ r: 0.3 Euler angles (0 °, 123 °, 43.5 °)
- 120 Crossing width: 40 ⁇ ( ⁇ 10 ⁇ m) Number of reflectors (per one side): 60 No electrode finger tilt angle
- the frequency ft2 at the upper end of the stop band of the IDT 12 is set to the frequency fr1 at the lower end of the stop band of the reflector 20 and the reflector. What is necessary is just to set between the frequency fr2 of 20 stopband upper ends. That is, It may be set so as to satisfy the relationship.
- the reflection coefficient ⁇ of the reflector 20 becomes large at the frequency ft2 at the upper end of the stop band of the IDT 12, and the SAW in the stop band upper end mode excited from the IDT 12 is reflected by the reflector 20 toward the IDT 12 with a high reflection coefficient. Will come to be. And the energy confinement of the SAW in the stop band upper end mode becomes stronger, and a low-loss resonator can be realized.
- the relationship between the frequency ft2 at the upper end of the stop band of the IDT 12 and the frequency fr1 at the lower end of the stop band of the reflector 20 and the frequency fr2 at the upper end of the stop band of the reflector 20 is set to a state of ft2 ⁇ fr1 or fr2 ⁇ ft2. If set, the reflection coefficient ⁇ of the reflector 20 becomes small at the stop band upper end frequency ft2 of the IDT 12, and it becomes difficult to realize a strong energy confinement state.
- the frequency of the stop band of the reflector 20 it is necessary to shift the frequency of the stop band of the reflector 20 to a higher frequency side than the stop band of the IDT 12. Specifically, this can be realized by making the arrangement period of the conductor strips 22 of the reflector 20 smaller than the arrangement period of the electrode fingers 18 of the IDT 12.
- the film thickness of the electrode film formed as the conductor strip 22 of the reflector 20 is made thinner than the film thickness of the electrode film formed as the electrode finger 18 of the IDT 12, or between the electrode fingers of the IDT 12 This can be realized by making the depth of the groove between the conductor strips of the reflector 20 shallower than the depth of the groove. Also, a combination of these methods may be applied.
- FIG. 51 is a graph showing the relationship between impedance Z and frequency in the SAW resonator obtained in FIG. From FIG. 51, it can be read that there is no useless spurious near the resonance point.
- the IDT 12 constituting the SAW resonator 10 is shown as all electrode fingers intersecting alternately.
- the SAW resonator 10 according to the present invention can have a considerable effect only by the quartz substrate. For this reason, even if it is a case where the electrode finger 18 in IDT12 is thinned, the same effect can be produced.
- the groove 32 may be partially provided between the electrode fingers 18 or between the conductor strips 22 of the reflector 20.
- the groove 32 may be provided only in that portion. Even with such a structure, the SAW resonator 10 having good frequency-temperature characteristics can be obtained.
- the electrode film may be configured using other metal materials as long as the metal can achieve the same effect as the above embodiment.
- the above embodiment is a one-terminal-pair SAW resonator provided with only one IDT, but the present invention can also be applied to a two-terminal-pair SAW resonator provided with a plurality of IDTs.
- the present invention is also applicable to other types of dual mode SAW filters and multimode SAW filters.
- the SAW oscillator according to the present invention accommodates the SAW resonator 10 described above, an IC (integrated circuit) 50 that controls driving by applying a voltage to the IDT 12 of the SAW resonator 10, and these. Package.
- FIG. 55 FIG. 55 (A) is a plan view excluding the lid, and FIG. 55 (B) is a view showing a cross section AA in FIG. 55 (A).
- the SAW resonator 10 and the IC 50 are accommodated in the same package 56, the electrode patterns 54 a to 54 g formed on the bottom plate 56 a of the package 56, and the comb-like electrode 14 a of the SAW resonator 10. 14b and the pads 52a to 52f of the IC 50 are connected by a metal wire 60.
- the cavity of the package 56 that houses the SAW resonator 10 and the IC 50 is hermetically sealed by the lid 58. With such a configuration, the IDT 12 (see FIG. 1), the IC 50, and an external mounting electrode (not shown) formed on the bottom surface of the package 56 can be electrically connected.
- the SAW resonator according to the present invention or the SAW oscillator including the SAW resonator realizes a significant improvement in frequency temperature characteristics, for example, mobile phones, hard disks, personal computers, BSs and CS broadcasts can be used.
- electronic devices such as network devices and wireless communication devices, it greatly contributes to the realization of products with excellent frequency temperature characteristics, as well as excellent jitter and phase noise characteristics, and further improves system reliability and quality. Needless to say, it contributes greatly.
- the SAW resonator according to the present invention has an inflection point in the operating temperature range (operating temperature range: ⁇ 40 ° C. to + 85 ° C.) as shown in FIG.
- a frequency temperature characteristic of about 20 ppm or less with a very small frequency fluctuation amount close to a curve or a cubic curve could be realized.
- FIG. 56A is a graph showing the frequency temperature characteristics of the SAW resonator disclosed in Japanese Patent Laid-Open No. 2006-203408.
- the frequency-temperature characteristic shows a cubic curve, but as you can see, the inflection point exists in the region beyond the operating temperature range (operating temperature range: -40 ° C to + 85 ° C).
- FIG. 56 (B) a quadratic curve having an upwardly convex vertex is obtained. For this reason, the frequency fluctuation amount is an extremely large value of 100 (ppm).
- the SAW resonator according to the present invention achieves a frequency fluctuation amount close to a cubic curve or a cubic curve within the operating temperature range, and realizes a drastic reduction in the frequency fluctuation amount.
- FIG. 57 and FIG. 58 show changes in the frequency fluctuation amount within the operating range in the SAW resonator in which the IDT and the reflector are covered with the protective film.
- the example shown in FIG. 57 is a diagram showing the amount of frequency fluctuation within the operating temperature range when alumina as a protective film is coated on the electrode. According to FIG. 57, it can be read that the amount of frequency fluctuation within the operating temperature range can be 10 (ppm) or less.
- Example shown in FIG. 58 is a diagram showing a frequency variation in the operating temperature range in the case where the film of SiO 2 as a protective film against the electrodes. According to FIG. 58, it can be read that the frequency fluctuation amount within the operating temperature range can be 20 (ppm) or less.
Landscapes
- Physics & Mathematics (AREA)
- Acoustics & Sound (AREA)
- Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)
- Oscillators With Electromechanical Resonators (AREA)
Abstract
Description
[特許文献1]特開平11-214958号公報
[特許文献2]特開2006-148622号公報
[特許文献3]特開2007-208871号公報
[特許文献4]特開2007-267033号公報
[特許文献5]特開2002-100959号公報
[特許文献6]特開昭57-5418号公報
[特許文献7]特許第3851336号公報
[非特許文献1]グルーブ形SAW共振器の製造条件と特性(電子通信学会技術研究報告MW82-59(1982))
[適用例2]適用例1に記載の弾性表面波共振子であって、前記電極指間溝の深さGが、
適用例3における電極膜厚の範囲内において式(8)を満たすようにηを定めることで、二次温度係数を略、±0.01ppm/℃2以内に収めることが可能となる。
電極指間溝の深さGと電極膜厚Hとの和を上式のように定めることで、従来の弾性表面波共振子よりも高いQ値を得ることができる。
このような特徴を有することで、反射器のストップバンドをIDTのストップバンドよりも高域側へ周波数シフトさせることができる。このため、式(32)の関係を実現させることが可能となる。
[適用例9]適用例1乃至適用例8のいずれか1例に記載の弾性表面波共振子と、前記IDTを駆動するためのICを備えたことを特徴とする弾性表面波発振器。
[適用例10]適用例1または適用例2に記載の弾性表面波共振子を備えたことを特徴とする電子機器。
[適用例11]適用例3に記載の弾性表面波共振子を備えたことを特徴とする電子機器。
[適用例12]適用例4に記載の弾性表面波共振子を備えたことを特徴とする電子機器。
[適用例13]適用例5に記載の弾性表面波共振子を備えたことを特徴とする電子機器。
[適用例14]適用例6に記載の弾性表面波共振子を備えたことを特徴とする電子機器。
[適用例15]適用例7に記載の弾性表面波共振子を備えたことを特徴とする電子機器。
[適用例16]適用例8に記載の弾性表面波共振子を備えたことを特徴とする電子機器。
[適用例17]適用例9に記載の弾性表面波発振器を備えたことを特徴とする電子機器。
まず、図1を参照して、本発明の弾性表面波(SAW)共振子に係る第1の実施形態について説明する。なお図1において、図1(A)はSAW共振子の平面図であり、図1(B)は部分拡大断面図、図1(C)は同図(B)における詳細を説明するための拡大図、図1(D)は図1(C)の部分拡大図に関して、本発明に係るSAW共振子をフォトリソグラフィ技法とエッチング技法とを用いて製造したときに想定しえる断面形状であって、断面形状が矩形ではなく台形状となった場合における、IDT電極指のライン占有率ηの特定方法を説明するための図である。ライン占有率ηは、溝32の底部から、溝32の深さ(台座の高さ)Gと電極膜厚Hとを足した値である(G+H)の1/2となる高さにおける、凸部の幅Lと溝32の幅Sとを足した値(L+S)に対する前記幅Lの占める割合とするのが適切である。
図2は、本発明で用いる水晶基板30の母材となるウェーハ1の方位を示す図である。図2において、X軸は水晶の電気軸、Y軸は水晶の機械軸、Z軸は水晶の光学軸である。ウェーハ1は、Y軸に垂直な面2を、X軸を回転軸として、+Z軸から-Y軸に向かって回転する方向に角度θ´度(ディグリー)回転させた面を有している。この回転した面に垂直な軸がY´軸、回転した面に平行且つX軸に垂直な軸がZ´軸である。さらに、SAW共振子10を構成するIDT12および反射器20は、水晶のX軸を、Y´軸を回転軸とし、+X軸から+Z´軸に向かって回転する方向を正として+ψ度(または-ψ度)回転させたX´軸に沿って配置される。SAW共振子10を構成する水晶基板30は、ウェーハ1から切り出されて個片化されたものである。水晶基板30の平面視形状は特に限定されないが、例えばY´軸を回転軸としてZ´軸を+ψ度回転させたZ´´軸に平行な短辺を有し、X´軸に平行な長辺を有する長方形であってもよい。尚、θ´とオイラー角におけるθとの関係は、θ´=θ―90°となる。
本実施形態では水晶基板30として、オイラー角(-1.5°≦φ≦1.5°,117°≦θ≦142°,42.79°≦|ψ|≦49.57°)で表される面内回転STカット水晶基板を採用した。ここで、オイラー角について説明する。オイラー角(0°,0°,0°)で表される基板は、Z軸に垂直な主面を有するZカット基板となる。ここで、オイラー角(φ,θ,ψ)のφはZカット基板の第1の回転に関するものであり、Z軸を回転軸とし、+X軸から+Y軸側へ回転する方向を正の回転角度とした第1回転角度である。オイラー角のθはZカット基板の第1の回転後に行う第2の回転に関するものであり、第1の回転後のX軸を回転軸とし、第1の回転後の+Y軸から+Z軸へ回転する方向を正の回転角度とした第2の回転角度である。圧電基板のカット面は、第1回転角度φと第2回転角度θとで決定される。オイラー角のψはZカット基板の第2の回転後に行う第3の回転に関するものであり、第2の回転後のZ軸を回転軸とし、第2の回転後の+X軸から第2の回転後の+Y軸側へ回転する方向を正の回転角度とした第3回転角度である。SAWの伝搬方向は、第2の回転後のX軸に対する第3回転角度ψで表される。
IDT12や反射器20を構成する電極膜の電極の厚みを極力少なくすることにより電極が有する温度特性の影響を最小限としている。更に、水晶基板部の溝の深さを大きく採り、水晶基板部の溝の性能によって、すなわち水晶の良好な温度特性を利用することで、良好な周波数温度特性を引き出している。それによって電極の温度特性がSAW共振子の温度特性に与える影響を小さくすることができ、電極の質量が10%以内の変動であれば良好な温度特性を維持することができる。
なお、上記の理由により電極膜材料として合金を用いる場合、主成分となるAl以外の金属は重量比で10%以下、望ましくは3%以下にすればよい。
Al以外の金属を主体とした電極を用いる場合には、電極の質量がAlを用いた場合の±10%以内となるようにその電極の膜厚を調整すれば良い。このようにすることでAlを用いたときと同等の良好な温度特性が得られる。
上記のような基本構成を有するSAW共振子10における水晶基板30は、IDT12の電極指間や反射器20の導体ストリップ間に溝(電極指間溝)32を設けている。
ところで、一般的に弾性表面波共振子の温度特性は、下式で示される。
Δf=α×(T-T0)+β×(T-T0)2
ここで、Δfは温度Tと頂点温度T0間の周波数変化量(ppm)、αは1次温度係数(ppm/℃)、βは2次温度係数(ppm/℃2)、Tは温度、T0は周波数が最大となる温度(頂点温度)を意味する。
例えば、圧電基板がいわゆるSTカット(オイラー角(φ、θ、ψ)=(0°、120°~130°、0°))の水晶板で形成されている場合、1次定数α=0.0、2次定数β=-0.034となり、グラフに示すと図6のようになる。図6において、温度特性は上に凸の放物線(2次曲線)を描いている。
図6に示すようなSAW共振子は、温度の変化に対する周波数変動量が極めて大きく、温度変化に対する周波数変化量Δfを抑圧することが必要となる。従って、図6に示す2次温度係数βをより0に近づけて、SAW共振子が実際に使用される際の温度(動作温度)の変化に対する周波数変化量Δfが0に近づくように、弾性表面波共振子を新たな知見に基づいて実現する必要があるのである。
従って、本発明の目的の1つは、上記の如き課題を解消し、弾性表面波デバイスの周波数温度特性を極めて良好なものとし、温度が変化しても周波数が安定して動作する弾性表面波デバイスを実現することである。
これらSTカット水晶基板や面内回転STカット水晶基板を用いたSAW共振子はいずれもレイリー波と呼ばれる弾性表面波を利用しており、LSTカット水晶基板のリーキー波と呼ばれる弾性表面波に比べて水晶基板や電極の加工精度に対する周波数や周波数温度特性のばらつきが極めて小さいため、量産性に優れ、各種のSAW装置に利用されている。しかしながら、従来利用されていたSTカット水晶基板や面内回転STカット水晶基板などを用いたSAW共振子は、前述のとおり、周波数温度特性を示す曲線を二次曲線とした2次温度特性であり、更に、その2次温度特性の2次温度係数の絶対値が大きいので、動作温度範囲における周波数変動量が大きく、周波数の安定性を求める有線通信装置や無線通信装置に使用される共振子や発振器などのSAW装置には利用できなかった。例えば、STカット水晶基板の2次温度係数βの1/3以下、面内回転STカット水晶基板の2次温度係数βの37%以上の改善に相当する2次温度係数βが±0.01(ppm/℃2)以下の2次温度特性を持つ周波数温度特性が得られれば、そのような周波数の安定性を求める装置を実現できる。更に、2次温度係数βがほぼ零であり、周波数温度特性を示す曲線を三次曲線とした3次温度特性が得られれば、動作温度範囲において、より周波数の安定性が高まり、より望ましい。このような3次温度特性では-40℃~+85℃もの広い動作温度範囲においても±25ppm以下の従来の如きSAWデバイスでは実現し得なかった極めて高い周波数安定度が得られる。
次に発明者は、溝深さGを種々変化させた水晶基板においてストップバンド上端モードのSAWを伝搬させた際におけるライン占有率ηと二次温度係数βとの関係について調べた。
なお、図5にはシミュレーションよって、溝深さGが0.08以上となる場合の例も追加した。このシミュレーションによれば溝深さGは、0.01λ以上で周波数変動量ΔFが25ppm以下となり、その後、溝深さGが増す毎に周波数変動量ΔFが小さくなる。しかし、溝深さGが約0.09λ以上となった場合に、周波数変動量ΔFは再び増加し、0.094λを越えると周波数変動量ΔFが25ppmを超えることとなる。
図5に示すグラフは水晶基板30上に、IDT12や反射器20等の電極膜を形成していない状態でのシミュレーションであるが、詳細を以下に示す図21~図26を参照すると解るように、SAW共振子10は電極膜を設けた方が周波数変動量ΔFを小さくすることができると考えられる。よって溝深さGの上限値を定めるとすれば電極膜を形成していない状態での最大値、すなわちG≦0.094λとすれば良く、目標を達成するために好適な溝深さGの範囲としては、
但し、この式(8)は、電極膜厚Hが、0<H≦0.030λの範囲において成立するものである。
つまり、本実施形態に係る効果は、電極膜を除いた水晶基板30単体における弾性表面波の伝播においても奏することができるということが言える。
上記と同様にして、二次温度係数β=-0.01(ppm/℃2)となるψとβ=+0.01(ppm/℃2)となるψについて溝深さGとの関係を求め、図36、図37にまとめた。これらのグラフ(図35~図37)から-0.01≦β≦+0.01とすることのできるψの角度を求めると、上記条件下における好適なψの角度範囲は43°<ψ<45°と定めることができ、さらに好適には43.2°≦ψ≦44.2°と定めることができる。
溝深さGを0.01λ≦G≦0.0695λの範囲として、図38(A)に示す実線と破線の範囲を多角形状で近似すると、図38(B)のように示すことができ、図38(B)において実線で示される多角形の内側にあたる範囲では、βが上記条件を満たすといえる。図38(B)に示される多角形の範囲を近似式で示すと、式(14)、(15)で示すことができる。
溝深さGを0.01λ≦G≦0.0695λの範囲として、図39(A)に示す実線と破線の範囲を多角形状で近似すると、図29(B)のように示すことができ、図39(B)において実線で示される多角形の内側にあたる範囲では、βが上記条件を満たすといえる。図39(B)に示される多角形の範囲を近似式で示すと、式(16)、(17)で示すことができる。
図40(A)は、電極膜厚Hの範囲を0.010λ<H≦0.015λとした場合において、|β|≦0.01の要件を満たすψの範囲を示すグラフである。ここで、ψの最大値を示すプロットを結ぶ直線と、ψの最小値を示すプロットを結ぶ破線とで挟まれた範囲が、上記条件を満たす範囲である。
溝深さGを0.01λ≦G≦0.0695λの範囲として、図40(A)に示す実線と破線の範囲を多角形状で近似すると、図40(B)のように示すことができ、図40(B)において実線で示される多角形の内側にあたる範囲では、βが上記条件を満たすといえる。図40(B)に示される多角形の範囲を近似式で示すと、式(18)、(19)で示すことができる。
図41(A)は、電極膜厚Hの範囲を0.015λ<H≦0.020λとした場合において、|β|≦0.01の要件を満たすψの範囲を示すグラフである。ここで、ψの最大値を示すプロットを結ぶ直線と、ψの最小値を示すプロットを結ぶ破線とで挟まれた範囲が、上記条件を満たす範囲である。
溝深さGを0.01λ≦G≦0.0695λの範囲として、図41(A)に示す実線と破線の範囲を多角形状で近似すると、図41(B)のように示すことができ、図41(B)において実線で示される多角形の内側にあたる範囲では、βが上記条件を満たすといえる。図41(B)に示される多角形の範囲を近似式で示すと、式(20)、(21)で示すことができる。
図42(A)は、電極膜厚Hの範囲を0.020λ<H≦0.025λとした場合において、|β|≦0.01の要件を満たすψの範囲を示すグラフである。ここで、ψの最大値を示すプロットを結ぶ直線と、ψの最小値を示すプロットを結ぶ破線とで挟まれた範囲が、上記条件を満たす範囲である。
溝深さGを0.01λ≦G≦0.0695λの範囲として、図42(A)に示す実線と破線の範囲を多角形状で近似すると、図42(B)のように示すことができ、図42(B)において実線で示される多角形の内側にあたる範囲では、βが上記条件を満たすといえる。図42(B)に示される多角形の範囲を近似式で示すと、式(22)~(24)で示すことができる。
図43(A)は、電極膜厚Hの範囲を0.025λ<H≦0.030λとした場合において、|β|≦0.01の要件を満たすψの範囲を示すグラフである。ここで、ψの最大値を示すプロットを結ぶ直線と、ψの最小値を示すプロットを結ぶ破線とで挟まれた範囲が、上記条件を満たす範囲である。
溝深さGを0.01λ≦G≦0.0695λの範囲として、図43(A)に示す実線と破線の範囲を多角形状で近似すると、図43(B)のように示すことができ、図43(B)において実線で示される多角形の内側にあたる範囲では、βが上記条件を満たすといえる。図43(B)に示される多角形の範囲を近似式で示すと、式(25)~(27)で示すことができる。
図44(A)は、電極膜厚Hの範囲を0.030λ<H≦0.035λとした場合において、|β|≦0.01の要件を満たすψの範囲を示すグラフである。ここで、ψの最大値を示すプロットを結ぶ直線と、ψの最小値を示すプロットを結ぶ破線とで挟まれた範囲が、上記条件を満たす範囲である。
溝深さGを0.01λ≦G≦0.0695λの範囲として、図44(A)に示す実線と破線の範囲を多角形状で近似すると、図44(B)のように示すことができ、図44(B)において実線で示される多角形の内側にあたる範囲では、βが上記条件を満たすといえる。図44(B)に示される多角形の範囲を近似式で示すと、式(28)~(30)で示すことができる。
θと二次温度係数βとの関係を裏付けるシミュレーションデータとして、表17~19を示す。
表19は、ライン占有率ηを変えた場合におけるθと二次温度係数βとの関係を示す表であり、ライン占有率ηを0.62と0.76とした場合におけるθの臨界値(117°、142°)での二次温度係数βの値を示す。なお、このシミュレーションにおける電極膜厚Hは、いずれも2.00%λであり、溝深さGは、いずれも4.00%λである。表19からは、117°≦θ≦142°の範囲では、ライン占有率ηを変えた場合(η=0.62、0.76は、電極膜厚Hを0.020λ~0.025λの範囲としてライン占有率η(η1)と溝深さGの関係を示した図31(A)において、溝深さを4%λとした場合におけるηの最小値と最大値)であっても、その値に依存する事無く|β|≦0.01を満足するということを読み取ることができる。
・本実施形態に係るSAW共振子10の基本データ
H:0.02λ
G:変化
IDTライン占有率ηi:0.6
反射器ライン占有率ηr:0.8
オイラー角(0°,123°,43.5°)
対数:120
交差幅:40λ(λ=10μm)
反射器本数(片側あたり):60
電極指の傾斜角度なし
・従来のSAW共振子の基本データ
H:変化
G:ゼロ
IDTライン占有率ηi:0.4
反射器ライン占有率ηr:0.3
オイラー角(0°,123°,43.5°)
対数:120
交差幅:40λ(λ=10μm)
反射器本数(片側あたり):60
電極指の傾斜角度なし
図56(A)は、特開2006-203408号に開示されているSAW共振子の周波数温度特性を示すグラフである。周波数温度特性が3次曲線を示しているが、ご覧のとおり変曲点が動作温度範囲(使用温度範囲:-40℃~+85℃)を超えた領域に存在しているため、実質的には図56(B)に示す如く上に凸の頂点を有する2次曲線となる。このため、周波数変動量は100(ppm)という極めて大きな値となっている。
・図57に示す例に係るSAW共振子の基本データ
H(材質:アルミ):2000(Å)
G:4700(Å)
(H+G=0.067)
IDTライン占有率ηi:0.6
反射器ライン占有率ηr:0.8
オイラー角(0°,123°,43.5°)の面内回転STカット基板
対数:120
交差幅:40λ(λ=10(μm))
反射器本数(片側あたり):36
電極指の傾斜角度なし
保護膜(アルミナ)の膜厚400(Å)
二次温度係数β=+0.0007(ppm/℃2)
・図58に示す例に係るSAW共振子の基本データ
H(材質:アルミ):2000(Å)
G:4700(Å)
(H+G=0.067)
IDTライン占有率ηi:0.6
反射器ライン占有率ηr:0.8
オイラー角(0°,123°,43.5°)の面内回転STカット基板
対数:120
交差幅:40λ(λ=10(μm))
反射器本数(片側あたり):36
電極指の傾斜角度なし
保護膜(SiO2)の膜厚400(Å)
二次温度係数β=+0.0039(ppm/℃2)
Claims (17)
- 請求項1乃至請求項7のいずれか1項に記載の弾性表面波共振子であって、
前記反射器を構成する導体ストリップ間に導体ストリップ間溝を設け、
前記電極指間溝よりも前記導体ストリップ間溝の深さの方が浅いことを特徴とする弾性表面波共振子。 - 請求項1乃至請求項8のいずれか1項に記載の弾性表面波共振子と、前記IDTを駆動するためのICを備えたことを特徴とする弾性表面波発振器。
- 請求項1または請求項2に記載の弾性表面波共振子を備えたことを特徴とする電子機器。
- 請求項3に記載の弾性表面波共振子を備えたことを特徴とする電子機器。
- 請求項4に記載の弾性表面波共振子を備えたことを特徴とする電子機器。
- 請求項5に記載の弾性表面波共振子を備えたことを特徴とする電子機器。
- 請求項6に記載の弾性表面波共振子を備えたことを特徴とする電子機器。
- 請求項7に記載の弾性表面波共振子を備えたことを特徴とする電子機器。
- 請求項8に記載の弾性表面波共振子を備えたことを特徴とする電子機器。
- 請求項9に記載の弾性表面波発振器を備えたことを特徴とする電子機器。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011501525A JP5257799B2 (ja) | 2009-02-27 | 2010-02-26 | 弾性表面波共振子、弾性表面波発振器、及び電子機器 |
CN201080009209.4A CN102334289B (zh) | 2009-02-27 | 2010-02-26 | 表面声波谐振器、表面声波振荡器以及电子设备 |
EP10746022.2A EP2403141B1 (en) | 2009-02-27 | 2010-02-26 | Surface acoustic wave resonator, surface acoustic wave oscillator, and electronic device |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009-045359 | 2009-02-27 | ||
JP2009045359 | 2009-02-27 | ||
JP2009050112 | 2009-03-04 | ||
JP2009-050112 | 2009-03-04 |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2010098139A1 WO2010098139A1 (ja) | 2010-09-02 |
WO2010098139A9 true WO2010098139A9 (ja) | 2010-12-23 |
Family
ID=42665352
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2010/001347 WO2010098139A1 (ja) | 2009-02-27 | 2010-02-26 | 弾性表面波共振子、弾性表面波発振器、及び電子機器 |
Country Status (6)
Country | Link |
---|---|
US (3) | US8952596B2 (ja) |
EP (1) | EP2403141B1 (ja) |
JP (4) | JP5257799B2 (ja) |
KR (1) | KR20110133037A (ja) |
CN (1) | CN102334289B (ja) |
WO (1) | WO2010098139A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8933612B2 (en) | 2009-02-27 | 2015-01-13 | Seiko Epson Corporation | Surface acoustic wave resonator, surface acoustic wave oscillator, and electronic instrument |
Families Citing this family (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4645923B2 (ja) | 2009-02-27 | 2011-03-09 | セイコーエプソン株式会社 | 弾性表面波共振子、および弾性表面波発振器 |
JP5678486B2 (ja) | 2010-06-17 | 2015-03-04 | セイコーエプソン株式会社 | 弾性表面波共振子、弾性表面波発振器および電子機器 |
JP5934464B2 (ja) | 2010-08-26 | 2016-06-15 | セイコーエプソン株式会社 | 弾性表面波共振子、および弾性表面波発振器、ならびに電子機器 |
JP2012049817A (ja) | 2010-08-26 | 2012-03-08 | Seiko Epson Corp | 弾性表面波デバイス、および弾性表面波発振器、ならびに電子機器 |
JP2012049818A (ja) | 2010-08-26 | 2012-03-08 | Seiko Epson Corp | 弾性表面波共振子、弾性表面波発振器、電子機器 |
JP2012060422A (ja) * | 2010-09-09 | 2012-03-22 | Seiko Epson Corp | 弾性表面波デバイス、電子機器及びセンサー装置 |
JP2012060418A (ja) * | 2010-09-09 | 2012-03-22 | Seiko Epson Corp | 弾性表面波デバイス、電子機器及びセンサー装置 |
JP2012060421A (ja) * | 2010-09-09 | 2012-03-22 | Seiko Epson Corp | 弾性表面波デバイス、電子機器及びセンサー装置 |
JP2012060420A (ja) * | 2010-09-09 | 2012-03-22 | Seiko Epson Corp | 弾性表面波デバイス、電子機器及びセンサー装置 |
JP2012060417A (ja) * | 2010-09-09 | 2012-03-22 | Seiko Epson Corp | 弾性表面波デバイス、電子機器及びセンサー装置 |
JP2012060419A (ja) * | 2010-09-09 | 2012-03-22 | Seiko Epson Corp | 弾性表面波デバイス、電子機器及びセンサー装置 |
JP5652606B2 (ja) * | 2010-12-03 | 2015-01-14 | セイコーエプソン株式会社 | 弾性表面波共振子、弾性表面波発振器、及び電子機器 |
JP5648908B2 (ja) | 2010-12-07 | 2015-01-07 | セイコーエプソン株式会社 | 振動デバイス、並びに発振器、および電子機器 |
JP5648695B2 (ja) * | 2010-12-24 | 2015-01-07 | 株式会社村田製作所 | 弾性波装置及びその製造方法 |
US20130335170A1 (en) * | 2011-01-27 | 2013-12-19 | Kyocera Corporation | Acoustic wave element and acoustic wave device using same |
CN103929147B (zh) * | 2013-01-11 | 2017-02-01 | 中国科学院声学研究所 | 一种高品质因子的单端对声表面波谐振器 |
JP5835765B2 (ja) * | 2013-06-28 | 2015-12-24 | リバーエレテック株式会社 | 弾性波素子 |
JP6274223B2 (ja) * | 2013-12-26 | 2018-02-07 | 株式会社村田製作所 | 弾性波装置及びフィルタ装置 |
DE102014105860A1 (de) | 2014-04-25 | 2015-10-29 | Epcos Ag | Elektroakustisches Bauelement und Kristallschnitte für elektroakustische Bauelemente |
JP5850109B2 (ja) * | 2014-08-14 | 2016-02-03 | セイコーエプソン株式会社 | 弾性表面波共振子、弾性表面波発振器、及び電子機器 |
DE102015106191A1 (de) * | 2015-04-22 | 2016-10-27 | Epcos Ag | Elektroakustisches Bauelement mit verbesserter Akustik |
TWI679747B (zh) * | 2017-02-28 | 2019-12-11 | 穩懋半導體股份有限公司 | 聲波元件與變容二極體整合結構暨聲波元件、變容二極體與功率放大器整合結構及其製造方法 |
CN111649839B (zh) * | 2020-06-10 | 2022-01-04 | 北京遥测技术研究所 | 一种非线性自校正的谐振型声表面波温度传感器 |
Family Cites Families (112)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US382217A (en) * | 1888-05-01 | Sand-molding machine | ||
US4130813A (en) * | 1977-05-23 | 1978-12-19 | Raytheon Company | Surface wave device having enhanced reflectivity gratings |
JPS54156455A (en) | 1978-05-31 | 1979-12-10 | Toshiba Corp | Surface acoustic wave element and its trimming method |
JPS55110155A (en) | 1979-02-16 | 1980-08-25 | Toray Silicone Co Ltd | Organopolysiloxane composition forming releasable film |
JPS5799813A (en) * | 1980-12-13 | 1982-06-21 | Nippon Telegr & Teleph Corp <Ntt> | Surface acoustic wave resonator |
JPS575418A (en) | 1980-06-13 | 1982-01-12 | Nippon Telegr & Teleph Corp <Ntt> | Cavity type surface elastic wave resonator |
GB2078042B (en) * | 1980-06-13 | 1984-08-08 | Nippon Telegraph & Telephone | Surface acoustic wave resonator |
US4837355A (en) * | 1980-08-21 | 1989-06-06 | Ici Australia Limited | Process for the synthesis of phenoxyalkane derivatives |
JPS5833309A (ja) | 1981-08-21 | 1983-02-26 | Toyo Commun Equip Co Ltd | すべり波共振器 |
JPS59865A (ja) | 1982-06-28 | 1984-01-06 | Shin Kobe Electric Mach Co Ltd | 鉛蓄電池陽極板の製造法 |
JPS6192011A (ja) | 1984-10-11 | 1986-05-10 | Nec Kansai Ltd | 弾性表面波素子の製造方法 |
JPS6388910A (ja) | 1986-10-02 | 1988-04-20 | Toyo Commun Equip Co Ltd | 弾性表面波共振子 |
JPS6434411A (en) | 1987-07-29 | 1989-02-03 | Hitachi Ltd | Controlling device for injection amount of flocculant in purification plant |
JPS6468114A (en) | 1987-09-09 | 1989-03-14 | Hiroshi Shimizu | Structure for idt exciting type piezoelectric resonator |
JPH01231412A (ja) | 1988-03-11 | 1989-09-14 | Fujitsu Ltd | 弾性表面波ディバイスの周波数特性調整方法 |
JPH02189011A (ja) | 1989-01-18 | 1990-07-25 | Fujitsu Ltd | 弾性表面波デバイスの製造方法 |
JPH02224591A (ja) * | 1989-02-27 | 1990-09-06 | Ricoh Co Ltd | 磁気記録再生装置 |
JP2982208B2 (ja) | 1990-03-30 | 1999-11-22 | 富士通株式会社 | 弾性表面波素子 |
CA2038474C (en) * | 1990-03-19 | 1994-09-20 | Yoshio Satoh | Surface-acoustic-waver filter having a plurality of electrodes |
JP3126416B2 (ja) | 1991-06-26 | 2001-01-22 | キンセキ株式会社 | 弾性表面波装置 |
JPH0590865A (ja) | 1991-09-30 | 1993-04-09 | Oki Electric Ind Co Ltd | 弾性表面波フイルタの中心周波数調整方法 |
JPH06232671A (ja) * | 1993-02-04 | 1994-08-19 | Mitsubishi Electric Corp | 弾性表面波素子の製造方法 |
JP3411124B2 (ja) | 1994-05-13 | 2003-05-26 | 松下電器産業株式会社 | 弾性表面波モジュール素子の製造方法 |
US5895996A (en) * | 1994-09-29 | 1999-04-20 | Seiko Epson Corporation | Saw device |
US5815900A (en) * | 1995-03-06 | 1998-10-06 | Matsushita Electric Industrial Co., Ltd. | Method of manufacturing a surface acoustic wave module |
JPH10270974A (ja) | 1997-03-25 | 1998-10-09 | Kenwood Corp | 表面弾性波素子 |
JP3266846B2 (ja) * | 1998-01-20 | 2002-03-18 | 東洋通信機株式会社 | 反射反転型弾性表面波変換器及びフィルタ |
JP3301399B2 (ja) * | 1998-02-16 | 2002-07-15 | 株式会社村田製作所 | 弾性表面波装置 |
FR2779289B1 (fr) * | 1998-05-29 | 2000-09-01 | Thomson Csf | Transducteur unidirectionnel grave a ondes acoustiques de surface |
JP3840852B2 (ja) | 1998-10-15 | 2006-11-01 | セイコーエプソン株式会社 | 弾性表面波装置及び2ポート弾性表面波共振子 |
WO2000041523A2 (en) * | 1999-01-12 | 2000-07-20 | Hunter Douglas Inc. | Nonwoven fabric and method and apparatus for manufacturing same |
JP2000216632A (ja) | 1999-01-20 | 2000-08-04 | Kubota Corp | 表面弾性波発振器 |
US6674215B1 (en) * | 1999-11-16 | 2004-01-06 | Mitsubishi Denki Kabushiki Kaisha | Elastic wave device |
JP2002100959A (ja) | 2000-09-25 | 2002-04-05 | Toyo Commun Equip Co Ltd | 弾性表面波デバイス |
JP3897229B2 (ja) * | 2001-04-27 | 2007-03-22 | 株式会社村田製作所 | 表面波フィルタ |
AUPR507601A0 (en) * | 2001-05-21 | 2001-06-14 | Microtechnology Centre Management Limited | Surface acoustic wave sensor |
JP3724575B2 (ja) * | 2001-08-09 | 2005-12-07 | セイコーエプソン株式会社 | 弾性表面波装置 |
JP3622202B2 (ja) * | 2001-08-29 | 2005-02-23 | セイコーエプソン株式会社 | 弾性表面波装置の温度特性調整方法 |
JP2003188675A (ja) | 2001-12-19 | 2003-07-04 | Alps Electric Co Ltd | 表面弾性波素子及びそれを備えたデュプレクサ |
JP2003258601A (ja) * | 2001-12-28 | 2003-09-12 | Seiko Epson Corp | 弾性表面波装置およびそれを用いた通信機器 |
JP2003283282A (ja) | 2002-01-15 | 2003-10-03 | Murata Mfg Co Ltd | 電極を有する電子部品、及びその製造方法、通信装置 |
JP3826877B2 (ja) | 2002-01-22 | 2006-09-27 | 株式会社村田製作所 | 弾性表面波装置およびそれを有する通信装置 |
WO2003088483A1 (fr) | 2002-04-15 | 2003-10-23 | Matsushita Electric Industrial Co., Ltd. | Dispositif a ondes acoustiques de surface, appareil de communication mobile et capteur mettant tous deux en oeuvre ledit dispositif |
US7154659B1 (en) * | 2002-04-18 | 2006-12-26 | General Photonics Corporation | Optical depolarizers and DGD generators based on optical delay |
JP2004040636A (ja) | 2002-07-05 | 2004-02-05 | Murata Mfg Co Ltd | 表面波装置 |
JP2004274696A (ja) * | 2002-10-04 | 2004-09-30 | Seiko Epson Corp | 弾性表面波装置および弾性表面波装置の温度特性調整方法 |
JP4306458B2 (ja) * | 2003-03-20 | 2009-08-05 | セイコーエプソン株式会社 | 電圧制御型発振器、クロック変換器及び電子機器 |
JP2005012736A (ja) | 2003-06-17 | 2005-01-13 | Kazuhiko Yamanouchi | 弾性表面波変換器とこれを用いた電子装置 |
US7135805B2 (en) * | 2003-04-08 | 2006-11-14 | Nihon Dempa Kogyo Co., Ltd. | Surface acoustic wave transducer |
JP2005086233A (ja) | 2003-09-04 | 2005-03-31 | Seiko Epson Corp | 弾性表面波装置の周波数温度特性調整方法および弾性表面波装置 |
US7053521B2 (en) * | 2003-11-10 | 2006-05-30 | General Electric Company | Method for enhancing epoxy adhesion to gold surfaces |
JP4246604B2 (ja) | 2003-11-18 | 2009-04-02 | 富士通メディアデバイス株式会社 | 弾性表面波デバイス |
JP2005204275A (ja) * | 2003-12-12 | 2005-07-28 | Seiko Epson Corp | 弾性表面波素子片およびその製造方法並びに弾性表面波装置 |
BR0318689A (pt) * | 2003-12-30 | 2006-12-19 | Telecom Italia Spa | método e sistema para avaliar o campo recebido a partir de pelo menos uma fonte de campo eletromagnético em uma posição determinada do território coberto por uma rede de comunicação, rede de comunicação, terminal de rede de comunicação, métodos pára simular e planejar uma rede de rádio móvel e para localizar terminais móveis em uma rede de radio móvel e produto de programa de computador |
US7315805B2 (en) * | 2004-02-05 | 2008-01-01 | Raytheon Company | Operations and support discrete event stimulation system and method |
WO2005099089A1 (ja) | 2004-04-01 | 2005-10-20 | Toyo Communication Equipment Co., Ltd. | 弾性表面波デバイス |
JP2006013576A (ja) | 2004-06-22 | 2006-01-12 | Epson Toyocom Corp | Sawデバイスとこれを用いた装置 |
JP2006074136A (ja) | 2004-08-31 | 2006-03-16 | Seiko Epson Corp | 弾性表面波素子片および弾性表面波装置 |
JP2006148622A (ja) * | 2004-11-22 | 2006-06-08 | Seiko Epson Corp | 弾性表面波装置および電子機器 |
JP2006203408A (ja) * | 2005-01-19 | 2006-08-03 | Epson Toyocom Corp | 弾性表面波デバイス |
EP1675260A3 (en) * | 2004-12-03 | 2007-08-15 | Epson Toyocom Corporation | Surface acoustic wave device |
JP2006186623A (ja) | 2004-12-27 | 2006-07-13 | Seiko Epson Corp | 弾性表面波素子、その製造方法、及び弾性表面波デバイス |
CN1825759B (zh) * | 2005-02-24 | 2011-11-16 | 京瓷株式会社 | 声表面波元件、分波器和通信设备 |
JP2006295311A (ja) | 2005-04-06 | 2006-10-26 | Seiko Epson Corp | 弾性表面波素子片および弾性表面波装置 |
JP3851336B1 (ja) | 2005-05-31 | 2006-11-29 | 隆彌 渡邊 | 弾性表面波装置 |
US8066967B2 (en) * | 2005-06-13 | 2011-11-29 | Electrox Corporation | System and method for the manipulation, classification sorting, purification, placement, and alignment of nano fibers using electrostatic forces and electrographic techniques |
JPWO2006137464A1 (ja) * | 2005-06-21 | 2009-01-22 | エプソントヨコム株式会社 | 弾性表面波デバイス、モジュール、及び発振器 |
TWI295771B (en) * | 2005-08-08 | 2008-04-11 | Rdc Semiconductor Co Ltd | Faulty storage area self markup access control method and system |
JP2007093213A (ja) | 2005-09-26 | 2007-04-12 | Epson Toyocom Corp | 圧力センサ |
JP2007288812A (ja) * | 2005-09-30 | 2007-11-01 | Epson Toyocom Corp | 弾性表面波デバイス、モジュール装置、発振回路および弾性表面波デバイスの製造方法 |
JP4809042B2 (ja) | 2005-11-10 | 2011-11-02 | 日本電波工業株式会社 | 弾性表面波素子及びその製造方法 |
JP4569447B2 (ja) | 2005-11-18 | 2010-10-27 | エプソントヨコム株式会社 | 弾性表面波素子片および弾性表面波デバイス |
JP2006166466A (ja) | 2005-12-09 | 2006-06-22 | Murata Mfg Co Ltd | 表面波装置 |
JP4412292B2 (ja) * | 2006-02-06 | 2010-02-10 | セイコーエプソン株式会社 | 弾性表面波装置および電子機器 |
DE202006001907U1 (de) * | 2006-02-07 | 2006-04-13 | Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH | Entladungslampe mit vergossenem Sockel |
JP2007228012A (ja) * | 2006-02-21 | 2007-09-06 | Seiko Epson Corp | 弾性表面波共振子 |
JP2007259414A (ja) | 2006-02-24 | 2007-10-04 | Seiko Epson Corp | 弾性表面波装置の温度特性調整方法および弾性表面波装置の製造方法、弾性表面波装置 |
JP2007267033A (ja) | 2006-03-28 | 2007-10-11 | Epson Toyocom Corp | 弾性表面波素子及び弾性表面波デバイス |
JP5141856B2 (ja) | 2006-04-04 | 2013-02-13 | セイコーエプソン株式会社 | 弾性表面波装置の製造方法、及び弾性表面波装置 |
JP4968510B2 (ja) * | 2006-04-27 | 2012-07-04 | セイコーエプソン株式会社 | 弾性表面波素子片の周波数温度特性調整方法、及び弾性表面波素子片、並びに弾性表面波デバイス |
JP2007300287A (ja) * | 2006-04-28 | 2007-11-15 | Epson Toyocom Corp | 弾性表面波素子および弾性表面波デバイス並びに電子機器 |
JP2007333500A (ja) | 2006-06-14 | 2007-12-27 | Epson Toyocom Corp | 圧力センサの製造方法および圧力センサ |
JP4158818B2 (ja) | 2006-06-21 | 2008-10-01 | 株式会社村田製作所 | 弾性波フィルタ装置及びデュプレクサ |
JP2008078739A (ja) | 2006-09-19 | 2008-04-03 | Fujitsu Media Device Kk | 弾性波デバイスおよびフィルタ |
JP2008078984A (ja) | 2006-09-21 | 2008-04-03 | Epson Toyocom Corp | Sawデバイスおよび電子機器 |
US7504705B2 (en) * | 2006-09-29 | 2009-03-17 | International Business Machines Corporation | Striped on-chip inductor |
JP4645957B2 (ja) | 2006-09-29 | 2011-03-09 | セイコーエプソン株式会社 | 弾性表面波素子片および弾性表面波装置 |
JP4465625B2 (ja) | 2006-09-29 | 2010-05-19 | Tdk株式会社 | 弾性表面波フィルタおよび弾性表面波共振器 |
JP2008177886A (ja) | 2007-01-19 | 2008-07-31 | Seiko Epson Corp | Fsk変調器 |
JP2008236295A (ja) * | 2007-03-20 | 2008-10-02 | Seiko Epson Corp | Saw共振子 |
JP2008278349A (ja) | 2007-05-02 | 2008-11-13 | Seiko Epson Corp | Saw共振子 |
JP5018227B2 (ja) | 2007-05-15 | 2012-09-05 | セイコーエプソン株式会社 | 力検知ユニット |
JP2008286521A (ja) | 2007-05-15 | 2008-11-27 | Epson Toyocom Corp | 回転速度検知ユニット、及び回転速度センサ |
JP4591800B2 (ja) * | 2008-02-20 | 2010-12-01 | エプソントヨコム株式会社 | 弾性表面波デバイスおよび弾性表面波発振器 |
JP5146160B2 (ja) | 2008-07-02 | 2013-02-20 | 株式会社村田製作所 | 弾性波共振子及びラダー型フィルタ |
EP2335365B1 (en) * | 2008-10-10 | 2018-09-12 | Intel Corporation | Crest factor reduction for ofdm communications systems by transmitting phase shifted resource blocks |
US8344815B2 (en) * | 2008-10-24 | 2013-01-01 | Seiko Epson Corporation | Surface acoustic wave resonator, surface acoustic wave oscillator, and surface acoustic wave module unit |
KR20110133037A (ko) * | 2009-02-27 | 2011-12-09 | 세이코 엡슨 가부시키가이샤 | 탄성 표면파 공진자, 탄성 표면파 발진기, 및 전자 기기 |
JP4645923B2 (ja) * | 2009-02-27 | 2011-03-09 | セイコーエプソン株式会社 | 弾性表面波共振子、および弾性表面波発振器 |
JP5678486B2 (ja) * | 2010-06-17 | 2015-03-04 | セイコーエプソン株式会社 | 弾性表面波共振子、弾性表面波発振器および電子機器 |
JP2012049817A (ja) * | 2010-08-26 | 2012-03-08 | Seiko Epson Corp | 弾性表面波デバイス、および弾性表面波発振器、ならびに電子機器 |
JP2012049818A (ja) * | 2010-08-26 | 2012-03-08 | Seiko Epson Corp | 弾性表面波共振子、弾性表面波発振器、電子機器 |
JP5934464B2 (ja) * | 2010-08-26 | 2016-06-15 | セイコーエプソン株式会社 | 弾性表面波共振子、および弾性表面波発振器、ならびに電子機器 |
JP2012060420A (ja) * | 2010-09-09 | 2012-03-22 | Seiko Epson Corp | 弾性表面波デバイス、電子機器及びセンサー装置 |
JP2012060422A (ja) * | 2010-09-09 | 2012-03-22 | Seiko Epson Corp | 弾性表面波デバイス、電子機器及びセンサー装置 |
JP2012060421A (ja) * | 2010-09-09 | 2012-03-22 | Seiko Epson Corp | 弾性表面波デバイス、電子機器及びセンサー装置 |
JP2012060418A (ja) * | 2010-09-09 | 2012-03-22 | Seiko Epson Corp | 弾性表面波デバイス、電子機器及びセンサー装置 |
JP2012060419A (ja) * | 2010-09-09 | 2012-03-22 | Seiko Epson Corp | 弾性表面波デバイス、電子機器及びセンサー装置 |
JP5652606B2 (ja) * | 2010-12-03 | 2015-01-14 | セイコーエプソン株式会社 | 弾性表面波共振子、弾性表面波発振器、及び電子機器 |
JP5648908B2 (ja) * | 2010-12-07 | 2015-01-07 | セイコーエプソン株式会社 | 振動デバイス、並びに発振器、および電子機器 |
WO2012137027A1 (en) * | 2011-04-07 | 2012-10-11 | Gvr Trade Sa | Surface acoustic wave resonator |
JP5799813B2 (ja) | 2012-01-10 | 2015-10-28 | 株式会社オートネットワーク技術研究所 | 回路ユニット及び電気接続箱 |
-
2010
- 2010-02-26 KR KR1020117022554A patent/KR20110133037A/ko not_active Application Discontinuation
- 2010-02-26 CN CN201080009209.4A patent/CN102334289B/zh active Active
- 2010-02-26 JP JP2011501525A patent/JP5257799B2/ja not_active Expired - Fee Related
- 2010-02-26 WO PCT/JP2010/001347 patent/WO2010098139A1/ja active Application Filing
- 2010-02-26 EP EP10746022.2A patent/EP2403141B1/en not_active Not-in-force
- 2010-02-26 US US12/713,461 patent/US8952596B2/en active Active
- 2010-08-31 JP JP2010193594A patent/JP5488825B2/ja active Active
-
2012
- 2012-04-30 US US13/460,149 patent/US8933612B2/en active Active
-
2013
- 2013-02-25 JP JP2013034978A patent/JP5574200B2/ja not_active Expired - Fee Related
-
2014
- 2014-02-25 JP JP2014034427A patent/JP2014112949A/ja not_active Withdrawn
- 2014-10-27 US US14/524,568 patent/US9762207B2/en active Active
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8933612B2 (en) | 2009-02-27 | 2015-01-13 | Seiko Epson Corporation | Surface acoustic wave resonator, surface acoustic wave oscillator, and electronic instrument |
US8952596B2 (en) | 2009-02-27 | 2015-02-10 | Seiko Epson Corporation | Surface acoustic wave resonator, surface acoustic wave oscillator, and electronic instrument |
Also Published As
Publication number | Publication date |
---|---|
US20100244626A1 (en) | 2010-09-30 |
EP2403141A1 (en) | 2012-01-04 |
EP2403141B1 (en) | 2018-10-24 |
EP2403141A4 (en) | 2013-04-17 |
JP5257799B2 (ja) | 2013-08-07 |
US20120212301A1 (en) | 2012-08-23 |
JP2011041287A (ja) | 2011-02-24 |
JPWO2010098139A1 (ja) | 2012-08-30 |
CN102334289A (zh) | 2012-01-25 |
US20150042408A1 (en) | 2015-02-12 |
US8952596B2 (en) | 2015-02-10 |
JP5574200B2 (ja) | 2014-08-20 |
WO2010098139A1 (ja) | 2010-09-02 |
US9762207B2 (en) | 2017-09-12 |
JP5488825B2 (ja) | 2014-05-14 |
KR20110133037A (ko) | 2011-12-09 |
JP2013138495A (ja) | 2013-07-11 |
CN102334289B (zh) | 2015-10-07 |
JP2014112949A (ja) | 2014-06-19 |
US8933612B2 (en) | 2015-01-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5574200B2 (ja) | 弾性表面波共振子、弾性表面波発振器、及び電子機器 | |
JP5678486B2 (ja) | 弾性表面波共振子、弾性表面波発振器および電子機器 | |
JP5652606B2 (ja) | 弾性表面波共振子、弾性表面波発振器、及び電子機器 | |
JP5934464B2 (ja) | 弾性表面波共振子、および弾性表面波発振器、ならびに電子機器 | |
JP4645923B2 (ja) | 弾性表面波共振子、および弾性表面波発振器 | |
JP2012060421A (ja) | 弾性表面波デバイス、電子機器及びセンサー装置 | |
US8471434B2 (en) | Surface acoustic wave device, surface acoustic wave oscillator, and electronic apparatus | |
JP5850109B2 (ja) | 弾性表面波共振子、弾性表面波発振器、及び電子機器 | |
JP2016167652A (ja) | 弾性表面波共振子、弾性表面波発振器および電子機器 | |
JP2015029358A (ja) | 弾性表面波共振子、弾性表面波発振器および電子機器 | |
JP2015084534A (ja) | 二端子対弾性表面波共振子、弾性表面波発振器および電子機器 | |
JP5737490B2 (ja) | トランスバーサル型弾性表面波デバイス、弾性表面波発振器および電子機器 | |
JP5750683B2 (ja) | 二端子対弾性表面波共振子、弾性表面波発振器および電子機器 | |
JP2015084535A (ja) | トランスバーサル型弾性表面波デバイス、弾性表面波発振器および電子機器 | |
JP2012049631A (ja) | 弾性表面波共振子、弾性表面波発振器、電子機器 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201080009209.4 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10746022 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011501525 Country of ref document: JP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2010746022 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 20117022554 Country of ref document: KR Kind code of ref document: A |